The Python Library Reference
Release 3.13.1

Guido van Rossum and the Python development team

January 01, 2025

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Notesonavailability e 3
1.1.1 ~ WebAssembly platforms 4
1.1.2 Mobile platforms 4
Built-in Functions 7
Built-in Constants 35
3.1 Constants added by the sitemodule 36
Built-in Types 37
4.1 Truth Value Testing o v it e e e e e e e e e e e e e e e 37
4.2 Boolean Operations — and, 0r, DOt « « v v v v v v v v e e e e e e e e e e e e e e e 37
4.3 CompariSONS e e e e e e e e e e 38
4.4 Numeric Types — int, float, COMPLEX « « v v v v v v v vt it et e e e e e e 38
4.4.1 Bitwise Operations on Integer Types 40
4.4.2 Additional Methods on Integer Types i e 40
443 Additional MethodsonFloat 42
4.4.4 Hashingof numeric types L e 43
4.5 Boolean Type -bool o o vt i e e e e 45
4.6 Tterator Types o i i e e e e e e 45
4.6.1 Generator TYPES v v v i e e e e e e e e e e e e e 46
477 Sequence Types — 1ist, tUple, TAnge . . . v v v v v v v v e bt et e e e e e e e 46
4.7.1 Common Sequence Operations v v vt v it 46
4.7.2 Immutable Sequence Types L 48
473 Mutable Sequence Types o o i e 48
O 1 49
4775 Tuples e e e e e e e e e e 49
476 RaNZES o e e e e e e e e e 50
4.8 TextSequence Type — str e 51
4.8.1 StringMethods 52
482 printf-style String Formatting e 61
4.9 Binary Sequence Types — bytes, bytearray, Memoryview« « v v v v v v v v v v v v o 63
49.1 BytesODJects o o v i e e e e e e e e 63
49.2 Bytearray Objects e e e e e e e e 64
4.9.3 Bytes and Bytearray Operations e e 65
494 printf-style Bytes Formatting 76
4.9.5 Memory VIEWS . . . o v v i i e 78
410 SetTypes — set, froZenset .« v v v v v v v v v vt e e e e e e e e e e e e e e e 85
411 Mapping Types — dict . . . v v v v it e e e e e e e e e e e e e e 87
4.11.1 Dictionary view ObJeCtS e e 91
4.12 Context Manager Types e 92
4.13 Type Annotation Types — Generic Alias, Union 93
4.13.1 Generic Alias Type o o i e e e e e e 93

4132 Union Type . . . v v o v e e e e e e e e e e e e e e e e e 97

4.14 Other Built-in Types o o v it e e e e e e e e e e e e e e e e e 99
4.14.1 Modules e 99
4.14.2 Classesand Class Instances i v i it 99
4143 Functions o vt it e e e e e e e e e 99
4144 Methods oL 99
4145 Code ObJects . . . v v v v i e e e e e e e e e e e e e 100
4.14.6 Type ObJectS . . . v v v v i i e e e e e e e e e e e e e e 100
41477 The NullObject o e e 100
4.14.8 The Ellipsis Object e e 100
4.14.9 The NotImplemented Object i 100
4.14.10 Internal ObJects v v v v i i e e e e e e e e e e e e e e e e 101

4.15 Special Attributes e e e e e e e e e e e e e e 101

4.16 Integer string conversion length limitation Lo oL, 101
4.16.1 Affected APIs 102
4.16.2 Configuring the limit L e 102
4.16.3 Recommended configuration e 103

Built-in Exceptions 105

5.1 EXCEpHOn CONTEXL v v v v vt i v e 105

5.2 Inheriting from built-in exceptions L L. Lo e 106

53 Baseclasses e e e e e e 106

54 Concrete eXCeptions oL i e e e e e e e e e e e e e e e e e 107
541 OSexCeptions v v v v it e e e e e e e e e e e e e e 112

5.5 Warningso e e e e e 113

5.6 EXCEption roups i e e e e e e e e e e e e e e 114

5.7 Exception hierarchy L e e e e e e 116

Text Processing Services 119

6.1 string — Common String OPErations v v v v v vt e e e e e e e e e e e e 119
6.1.1 String COnStants o . e e e e e e e e e e e e e e e e 119
6.1.2 Custom String Formatting e 120
6.1.3 Format String Syntax L 121
6.1.4 Template strings e e e e e e 128
6.1.5 Helperfunctions i i i e e e e e e e e e 130

6.2 re — Regular expression Operations v v v v i e e e e e e e e e e e e e 130
6.2.1 Regular Expression Syntax 131
6.2.2 Module Contents e e e 137
6.2.3 Regular Expression Objects 143
6.24 MatchObjects e e e e 145
6.2.5 Regular Expression Examples e 148

6.3 difflib — Helpers for computingdeltas, 153
6.3.1 SequenceMatcher Objects e 157
6.3.2 SequenceMatcher Examples oL o o 160
6.3.3 DifferObjects e e e 161
6.3.4 Differ Example e e e e e 161
6.3.5 A command-line interface todifflib oo oo 162
6.3.6 ndiffexample e e 163

6.4 textwrap — Textwrappingandfilling oo 165

6.5 unicodedata — Unicode Database 169

6.6 stringprep — Internet String Preparation L Lo 171

6.7 readline — GNUreadlineinterface 172
6.7.1 Initfile. e e 173
6.72 Linebuffer. L e 173
6.73 Historyfile. e 173
6.7.4 History list e e e 174
6.7.5 Startup hooks e e e e e e 174
6.7.6 Completion e e e e e e e e e e e 175

6.7.7 Example e e e 175

6.8 rlcompleter — Completion function for GNU readline 177
7 Binary Data Services 179
7.1 struct — Interpret bytes as packed binarydata oL oL 179
7.1.1 Functions and Exceptions e e 179

7.1.2 Format STrings o v v v v e e e e e e e e e e e e e e e e e e 180

7.1.3 Applicationsol e e 184

T4 Classes . . . v v v it e e e e 185

7.2 codecs — Codec registry and base classes o 186
7.2.1 Codec Base Classes o v i i ittt e e 189

7.2.2 Encodingsand Unicode e 195

7.23 Standard Encodings L 197

7.24 Python Specific Encodings 199

7.2.5 encodings.idna — Internationalized Domain Names in Applications 201

7.2.6 encodings.mbcs — Windows ANSIcodepage 202

7.277 encodings.utf_8_sig— UTF-8 codec with BOM signature 202

8 Data Types 203
8.1 datetime — Basicdate and time types it e e e e e e e 203
8.1.1 Awareand Naive Objects i v v it e e e e e e 203

8.1.2 Constants e e e 204

8.1.3 Available Types o e 204

8.14 timedelta Objects. o o i i i i i e e e 205

8.1.5 date ObJects i i e e e e e e e e e e e e 208

8.1.6 datetime ObJECtS i i i e e e e e e e e e 213

8.1.7 time ObJects o i e e e e e e e 225

8.1.8 tzinfoObjects L e e 228

8.1.9 timezone ObJECES L e e e 235
8.1.10 strftime() and strptime() Behavior 236

8.2 zoneinfo —IANA time Zone SUpPpPOrt o v v v v v i e e e e e e e e e e e e 240
8.2.1 USINE ZoneInfo . . . v v v v v vt i it e e e e e e e e e e e e e e e e e 240

8.2.2 DataSOUICES . . . « v v v v v e 241

8.2.3 The zoneInfoclass i i e e e e e e 242

824 Functions e e e 244

825 Globals e 244

8.2.6 Exceptions and warnings i it e e e e e e e e e e e e e e 245

8.3 calendar — General calendar-related functions L oL 245
83.1 Command-Line Usage 251

8.4 collections — Container datatypes« o v v it e e e e e e 252
8.4.1 ChainMap ObJeCtS v v i v e e e e e e e e e e e e e e e 253

8.4.2 CounterObJECIS o v i e e e e e e e e e 255

843 dequeObJECts e e e e e e e 259

844 defaultdict ObJECtS e 262

8.4.5 namedtuple () Factory Function for Tuples with Named Fields 264

8.4.6 OrderedDict OBJECES v v v i i e e e e e e e 267

847 UserDict ODJECIS v v v i i e e e e e e e e e e e e e e 269

84.8 UserList ODJECIS o v i v i i e e e e e e e e e e e e 270

8.4.9 UserStringObjects i i e e e e e e e e 270

8.5 collections.abc — Abstract Base Classes for Containers 270
8.5.1 Collections Abstract Base Classes it 272

8.5.2 Collections Abstract Base Classes — Detailed Descriptions 273

8.5.3 Examplesand Recipes e e e 275

8.6 heapg— Heapqueuealgorithm L 276
8.6.1 BasicExamples 277

8.6.2 Priority Queue Implementation Noteso 277

8.6.3 Theory i i e e e e e e e e e e e 278

8.7 bisect — Array bisection algorithm L oL 279

9

8.7.1 Performance NOteS v i e e e e e 281

8.7.2 Searching Sorted Lists e e e e 281
8.7.3 Examples e e e e e e e 282
8.8 array — Efficient arrays of numeric valueso oL 283
8.9 weakref — Weakreferences 286
89.1 Weak Reference Objects e 290
8.9.2 Example L e e e e e e e e 291
8.9.3 Finalizer Objects i e e e e e e e 2901
8.9.4 Comparing finalizers with __del_ () methods 292
8.10 types — Dynamic type creation and names for built-intypes 293
8.10.1 Dynamic Type Creation« o v v i v ittt e 294
8.10.2 Standard Interpreter Types o i i 295
8.10.3 Additional Utility Classes and Functions 299
8.10.4 Coroutine Utility Functions 299
8.11 copy — Shallow and deep copy operations 300
8.12 pprint — Datapretty printer e e e e 301
8.12.1 Functions e 301
8.12.2 PrettyPrinter Objects e e e e e e e e 302
8.12.3 Example L e e e e e e e e e 304
8.13 reprlib — Alternate repr () implementationo e 307
8.13.1 ReprObjects o o i e e e 308
8.13.2 Subclassing Repr Objects e 309
8.14 enum — Support for enumMerationso e e e e e e e e e e e e e e e 310
8.14.1 Module Contents e e e e e e e e e 311
8.14.2 DataTypes o v v i i e e e e e e e 312
8.14.3 Utilities and Decorators e e e e 323
8144 NOES . . . o i it e e e 325
8.15 graphlib — Functionality to operate with graph-like structures 325
. A5.1 EXCEPHONS . . . v v v v i e e e e e e e e e e e e e e e e e 327
Numeric and Mathematical Modules 329
9.1 numbers — Numeric abstract base classes L 329
9.1.1 ThenumeriC tOWer o i it ittt e e e e e 329
9.1.2 Notes for type implementers L e 330
9.2 math — Mathematical functions L e 332
9.2.1 Number-theoretic functions e 333
9.2.2 Floating point arithmetic e 334
9.2.3 Floating point manipulation functions L L. 335
9.2.4 Power, exponential and logarithmic functions 0. 337
9.2.5 Summation and product functions oL oL 338
9.2.6 Angular CONVErSiON v v vttt it e e e e e e e e e e 339
9.2.7 Trigonometric functions L. 339
9.2.8 Hyperbolic functions e e e e 339
9.2.9 Special functions e e e e e 340
9.2.10 Constants e e e e e e e e 340
9.3 cmath — Mathematical functions for complex numbers 341
9.3.1 Conversions to and from polar coordinates, 342
9.3.2 Power and logarithmic functions L o 342
9.3.3 Trigonometric functions L L. e e e e e 343
9.3.4 Hyperbolic functions e 343
9.3.5 Classification functions L e e e 343
9.3.6 Constantso i e e e e e e e e e 344
9.4 decimal — Decimal fixed-point and floating-point arithmetic 345
9.4.1 Quick-start Tutorial e 346
9.42 Decimal Objects e e e e e e e e 349
943 Context ObJects e e e 357
944 ConStantso it e e e e e e e e e e e e e e 363
945 Roundingmodes. e 363

9.4.6 Signals 364

9.47 Floating-Point NOtes o v i i e e e e e e e e e e 365

9.4.8 Workingwiththreads e 367

949 RECIPES . . . v v v i e e e e e 367
9.4.10 Decimal FAQ e 370

9.5 fractions —Rationalnumbers L e 373
9.6 random — Generate pseudo-random numbersol e e 377
9.6.1 Bookkeeping functions e e 377

9.6.2 Functionsforbytes e 378

9.6.3 Functions for integers e e e e e e e e 378

9.6.4 Functions for SEqUENCEs o i e e 378

9.6.5 Discrete distributions e 380

9.6.6 Real-valued distributions L 380

9.6.7 Alternative Generator e e e e e e e 381

9.6.8 NotesonReproducibility L 382

9.6.9 Examples e 382
9.6.10 ReCIPes i e 384

9.6.11 Command-line usage o v i i v it e e e e e e 385
9.6.12 Command-lineexample e e e e 386

9.7 statistics — Mathematical statistics functionso Lo 386
9.7.1 Averages and measures of central location L. 387

9.72 Measuresof spread e 387

9.7.3 Statistics for relations between two inputso ..ol e e 388

9.7.4 Functiondetails e 388

975 EXCEpLions i i e e e e e e e e e 397

9.7.6 NormalDistobjects 397

9.77 Examplesand Recipes 399

10 Functional Programming Modules 403
10.1 itertools — Functions creating iterators for efficient looping 403
10.1.1 Ttertool Functions e 405
10.1.2 Ttertools ReCipes v v i i e e e e e e e e e e e e 415

10.2 functools — Higher-order functions and operations on callable objects 420
10.2.1 partial ODbJECts v v v i i e e e e e e e e e e 430

10.3 operator — Standard operators as functions 0oL 430
10.3.1 Mapping Operators to Functions 435
10.3.2 In-place Operators v i v v it e e e e e e e e 436

11 File and Directory Access 439
11.1 pathlib — Object-oriented filesystem paths 439
I1.1.1 BaSiCUSE . . . v v vt e e e e e e e e e e e e e 440
I1.1.2 EXCEPHONS . . . v v v v e 441

11.1.3 Purepaths e e e e e e 441
11.1.4 Concretepaths e 450

11.1.5 Patternlanguage L 461
11.1.6 Comparisontothe globmodule 462
11.1.7 Comparison to the os and os.pathmodules. 462

11.2 os.path — Common pathname manipulations, 464
11.3 stat — Interpreting stat () results L L 470
11.4 filecmp — File and Directory Comparisons o v v v v v v vt i v 476
11.4.1 Thedircmpclass o i i e e e e e e e e e e e e 477

11.5 tempfile — Generate temporary files and directories 478
I1.5.1 Examples oo e e e e e e e e e e 482

11.5.2 Deprecated functions and variables 0. 483

11.6 glob — Unix style pathname pattern expansion 484
11.6.1 Examples o oo e e 485

11.7 fnmatch — Unix filename pattern matching 486
11.8 linecache — Randomaccesstotextlines 487

11.9 shutil — High-level file operations e 488
11.9.1 Directory and files operations v vt i e e e e e e e 488
11.9.2 Archiving operations i i i e e e e e e e e 494
11.9.3 Querying the size of the output terminal 497

12 Data Persistence 499

12.1 pickle — Python object serialization 499
12.1.1 Relationship to other Pythonmodules 499
12.1.2 Datastreamformat e e 500
12.1.3 Module Interface 501
12.1.4 What can be pickled and unpickled? 504
12.1.5 Pickling Class Instances o . i i i it e e 505
12.1.6 Custom Reduction for Types, Functions, and Other Objects 511
12.1.7 Out-of-band Buffers 511
12.1.8 Restricting Globals L 513
12.1.9 Performance L e e e e e e 514
12.1.10 Examples o e e e e e e e e e e e 514

12.2 copyreg — Register pickle support functions Lo 515
1221 Example o oo e 515

12.3 shelve — Python object persistence o .o e 516
12.3.1 ReStriCtions o it e e e e e e e e e e e e 517
1232 Example o o e e e e e e e 518

12.4 marshal — Internal Python object serialization 518

12.5 dbm — Interfaces to Unix “databases” e 520
12.5.1 dbm.sqlite3 — SQLite backend fordbm 522
12.5.2 dbm.gnu — GNU database managerot i it 522
12.5.3 dbm.ndbm — New Database Manager 524
12.5.4 dbm.dumb — Portable DBM implementation 525

12.6 sqglite3 — DB-API 2.0 interface for SQLite databases 526
12.6.1 Tutorial o e e e e 526
12.6.2 Reference e 528
12.6.3 How-toguides i i e e e e e e e e e e e 549
12.6.4 Explanation e e e e e e e e e e e 556

13 Data Compression and Archiving 559

13.1 =zlib — Compression compatible withgzip 559

13.2 gzip — Support for gzipfiles. e 562
13.2.1 Examplesofusage. L e 565
13.2.2 Command Line Interface 565

13.3 bz2 — Support for bzip2 cOMPression o v v v v bt e e e 566
13.3.1 (De)compression of files L e 566
13.3.2 Incremental (de)compressiono i Lo e e e e e e 568
13.3.3 One-shot (de)compression v v v v v vt i e e e e e e 569
1334 Examplesof usage L e 569

13.4 1zma — Compression using the LZMA algorithm 570
13.4.1 Reading and writing compressedfiles o oo 571
13.4.2 Compressing and decompressing data in memory oo v 572
13.43 Miscellaneous e e e e 574
13.4.4 Specifying custom filter chains oL o L oo 574
13.45 Examples oL 575

13,5 zipfile — Work with ZIP archives e 576
13.5.1 ZipFile Objects o i e e e e e e e e e e e e e e e 577
13.52 PathObjects o e e e e e e e 582
13.5.3 PyZipFile Objects o e e e e e 583
13.54 ZipInfoObjects« o e e e e e e e e e 584
13.5.5 Command-Line Interface L 586
13.5.6 Decompression pitfalls L 586

13.6 tarfile — Read and write tar archivefiles L. 587

vi

13.6.1 TarFile Objects o . i e e e e e e e e e e e 591
13.6.2 TarInfo Objects o ot i e e e e e e e e e 594

13.6.3 Extractionfilters L L e 597
13.6.4 Command-Line Interface 600

13.6.5 Examples o e e 601

13.6.6 Supported tar formatso e e 602

13.6.7 UnicodeiSSUES« v v v v it e e e e e e e e e e e e e e 602

14 File Formats 605
14.1 csv— CSVFile Readingand Writing 605
14.1.1 Module Contents o v it i e e e e e e e e e 605
14.1.2 Dialects and Formatting Parameters 609

14.1.3 Reader Objects e 610
14.1.4 Writer ObJects o L o it e e e e 610
14.1.5 Examples oo e 611

14.2 configparser — Configuration file parser e 612
1421 Quick Start e e e 613
14.2.2 Supported Datatypes L e 614
14.2.3 Fallback Values e 615
14.2.4 Supported INI File Structure L 615

1425 Unnamed Sections i i e e e e e e e e 617
14.2.6 Interpolationof values e e e 617
14.277 Mapping Protocol Access e 618

14.2.8 Customizing Parser Behaviour oo oo, 619
1429 Legacy APTExamples e 623
14.2.10 ConfigParser Objects o o v v i it e e e e e e e 625
14.2.11 RawConfigParser Objects o v i i e e e e e e e e 629
14.2.12 EXCEPLONS « . v v v v v e 630

143 tomllib—Parse TOMLfiles e 630
143.1 Examples e 631

1432 Conversion Table e 632

144 netrc—netrc file processing v v v it e e e e e e e e e e e e e e e 632
14.4.1 metrc ObJECtS v v v v i e e e e e e e e e e e e e e 633

145 plistlib — Generate and parse Apple .plistfiles. 633
14.5.1 Examples o e e e e e 635

15 Cryptographic Services 637
15.1 hashlib — Secure hashes and message digests 637
15.1.1 Hashalgorithms 637
15.1.2 Usage v v v e e e 638

15.1.3 Constructors v v v v vt e e e e e e e e e e e e e e e e 638

15.1.4 Attributes e e e e 639

15.1.5 HashObjects e e e e 639
15.1.6 SHAKE variable length digests 640
15.1.7 Filehashing e 640
15.1.8 Keyderivation v v v e e e e e e e e e e e e e e e 641

15.1.9 BLAKE2 e e 641

15.2 hmac — Keyed-Hashing for Message Authentication 648
15.3 secrets — Generate secure random numbers for managing secrets 650
153.1 Randomnumbers L e e e 650
15.3.2 Generating tokenso e e e e e 650

15.3.3 Otherfunctions i e e e e e 651

15.3.4 Recipesand best practices« v v v v i e e e e e e e e e e e e e e e 651

16 Generic Operating System Services 653
16.1 os — Miscellaneous operating system interfaces oo 653
16.1.1 File Names, Command Line Arguments, and Environment Variables 654
16.1.2 Python UTF-8Mode e 654
16.1.3 Process Parameters e e e 655

vii

16.2

16.3

16.4

16.5

16.6

16.7

16.1.4 File Object Creation v v v v v i e e e e e e e e e e e e e e e e 662

16.1.5 File Descriptor Operations v v v v v v v i e e e e e e e 662
16.1.6 Filesand Directories e 675
16.1.7 Process Management e 701
16.1.8 Interface to the scheduler 714
16.1.9 Miscellaneous System Information 716
16.1.10 Random numbers e 717
io — Core tools for working with streams L 719
16.2.1 OVerVIEW o i it e e e e e e 719
1622 TextEncoding e 720
16.2.3 High-level Module Interface 720
16.2.4 Classhierarchy e e e e e e e e 721
1625 Performance L e e e e 731
time — Time access and conversions oL e e 732
16.3.1 Functions e e e e e e e 733
16.3.2 Clock ID Constants o v v ittt e e e e 741
16.3.3 Timezone CONStants o v v vt v i e e e e e e e 743
logging — Logging facility for Python oo 743
16.4.1 Logger Objects o v i i i e e e e e e e e e e 745
1642 LoggingLevels e 749
1643 Handler Objects e e e e e e e e e 750
16.4.4 Formatter Objects i it e e e e e 752
16.4.5 Filter ObJects o v v i i e et e e e e e e e e e e e e e e e e 753
16.4.6 LogRecord Objects v i v i i i e e e e e e e e e e 754
16.47 LogRecord attributes L. e 755
16.4.8 LoggerAdapter Objects e 757
16,49 Thread Safety e 757
16.4.10 Module-Level Functions e 757
16.4.11 Module-Level Attributes e 761
16.4.12 Integration with the warningsmodule 0. 762
logging.config — Logging configuration 762
16.5.1 Configuration functionso e e 763
16.5.2 Security considerations oo e e e e e 765
16.5.3 Configuration dictionary schema oo 765
16.5.4 Configuration file format L e 772
logging.handlers — Logginghandlers 774
16.6.1 StreamHandler e 775
16.6.2 FileHandler e 775
16.6.3 NullHandler e 776
16.6.4 WatchedFileHandler e 776
16.6.5 BaseRotatingHandler L 777
16.6.6 RotatingFileHandler L oo 778
16.6.7 TimedRotatingFileHandler, 778
16.6.8 SocketHandler 780
16.6.9 DatagramHandler e e e e 781
16.6.10 SysLogHandler e 781
16.6.11 NTEventLogHandler 783
16.6.12 SMTPHandler e 784
16.6.13 MemoryHandler L 784
16.6.14 HTTPHandler e e e e e e e 785
16.6.15 QueueHandler e e e e 786
16.6.16 Queuelistener e e e e e e e e e e e e e e e e e 787
platform — Access to underlying platform’s identifyingdata 788
16.7.1 CrossPlatform e 788
16.7.2 JavaPlatform 790
16.7.3 Windows Platform 790
16,74 macOSPlatform e 791
16.7.5 1OSPlatform e 791

viii

16.7.6 Unix Platforms e 791

16.7.7 Linux Platforms e 791

16.7.8 Android Platform e 792

16.8 errno — Standard errno system symbols 0oL 0oL 792

16.9 ctypes — A foreign function library for Pythono 0oL 798

16.9.1 ctypestutorial 799

16.9.2 ctypesreference e e e e e e e 817

17 Command Line Interface Libraries 833

17.1 argparse — Parser for command-line options, arguments and subcommands 833

17.1.1 ArgumentParser ObJECts i e e e e e e e e 834

17.1.2 The add_argument() method e 841

17.1.3 The parse_args() method L. 851

17.1.4 Other utilities o o e e e e e e e e e e e e e 854

17.1.5 EXCEPHONS v o v v i it e e e e e e e e e 863

17.2 optparse — Parser for command line options e 877

17.2.1 Choosing an argument parsing libraryo oo 877

17.2.2 Introduction o i i i e e e e e e e e e e e e 878

1723 Background e 879

17.2.4 Tutorial e e e e e e e e e e e e 881

17.2.5 Reference Guide e 888

17.2.6 Option Callbacks e e e e e 897

17277 Extending optparsSe . . . v v v v v e e e e e e e e e e e e e e e e 901

1728 EXCEPUONS o i e e e 904

17.3 getpass — Portable password input L 904

17.4 fileinput — Iterate over lines from multiple input streams 905

17.5 curses — Terminal handling for character-cell displays 907

17.5.1 Functions i i e e e e e 908

1752 Window Objects o i e e 914

17.5.3 Constants e e e e e e e e e e e e e e e e 921

17.6 curses.textpad — Text input widget for curses programs 932

17.6.1 TextboX ODJECES . . . v v v v o o e et e e e e e e e e e e e e e e e e e 932

17.7 curses.ascii — Utilities for ASCII characters 933

17.8 curses.panel — A panel stack extension forcurses 937

17.8.1 Functions i i it e e e e e e e e e e e e 937

17.8.2 Panel Objects e e e 937

18 Concurrent Execution 939

18.1 threading — Thread-based parallelism 939

18.1.1 Thread-Local Data e e e 942

18.1.2 Thread Objects o v v v v e e e e e e e e e e e e e e e e e e 942

18.1.3 Lock Objects o o v i it e e e e e e e e e e 945

18.1.4 RLock Objects e 946

18.1.5 Condition Objects 947

18.1.6 Semaphore Objects e 949

18.1.7 EventODbjJects o v i it e e e e e e e e e e e e 950

18.1.8 Timer ObJects o v v i i e e i e e e e e e e e e e e e e e e e e 951

18.1.9 Barrier Objects i e e e e 951

18.1.10 Using locks, conditions, and semaphores in the with statement 952

18.2 multiprocessing — Process-based parallelism 953

18.2.1 Introduction i i i e e e e e e e e e e e e e e e e e 953

1822 Reference e e 960

18.2.3 Programming guidelines e e e 988

1824 Examples o e e e e e e 991

18.3 multiprocessing.shared_memory — Shared memory for direct access across processes . . . 997
18.4 The concurrent package L e e 1003
18.5 concurrent.futures — Launching parallel tasks 1003
18.5.1 Executor ObJects v v v v i i s e e e e e e e e e e e e 1003

18.5.2 ThreadPoolEXecutor 0 i e e e e e e e e e 1004

18.5.3 ProcessPoolExecutor 1006
1854 Future ObJects o v v i i e et e e e e e e e e e e e e e e e 1008
18.5.5 Module Functions e e e 1009
18.5.6 Exception classes e e 1010
18.6 subprocess — Subprocess managemento uea e e e e e e e 1010
18.6.1 Usingthe subprocessModule 1010
18.6.2 Security Considerationst v i e e e e e e e e 1019
18.6.3 Popen Objects o o e e e e e e e 1019
18.6.4 Windows Popen Helpers 1021
18.6.5 Older high-level APT e 1024
18.6.6 Replacing Older Functions with the subprocessModule 1025
18.6.7 Legacy Shell Invocation Functions, 1028
18.6.8 NOtES o v i e e 1029
18.7 sched — Eventscheduler e 1030
18.7.1 Scheduler Objects o o i e 1031
18.8 queue — A synchronized queueclass L oo 1032
18.8.1 Queue ObJectS v v v v i i e e e e e e e e e e e e e e e 1033
18.8.2 SimpleQueue Objects e 1034
18.9 contextvars — Context Variables 1035
18.9.1 Context Variables e e 1035
18.9.2 Manual Context Managementot i it e e 1036
18.9.3 asynCio SUPPOIt . . . v v v v o i e 1038
18.10 _thread — Low-level threading API 1039
19 Networking and Interprocess Communication 1043
19.1 asyncio— Asynchronous /O e e 1043
19.1.1 Runners e e e e 1044
19.1.2 Coroutines and Tasks o . e 1046
19.1.3 Streams oo e e e e e e e e e e 1065
19.1.4 Synchronization Primitives L e 1073
19.1.5 Subprocesses o v v i i e e e e e e e e e e e e e e e 1078
19.1.6 QUEUES o it e e e e e e e e e e e 1083
19.1.7 EXCEpHONS o it e e e e e 1086
19.1.8 EventLoop e 1087
19.1.9 Futures i e 1110
19.1.10 Transports and Protocols e e e 1113
19.1.11 Policies o o i e e e e e e 1127
19.1.12 Platform Support e e e 1130
19.1.13 Extending e 1132
19.1.14 High-level APIIndex i e 1133
19.1.15 Low-level APTIndex @ i i i e i e e e e e e 1135
19.1.16 Developing with asyncio v v v i i et e e e e e e e 1139
19.2 socket — Low-level networking interface 1142
19.2.1 Socketfamilies L e e e e 1143
19.2.2 Module contents Lo e e e e e e e e e e 1146
19.2.3 Socket Objects e 1159
19.2.4 Notes on socket timeouts o oot e e e e e e 1166
19.25 Example o L e e e e e e e e e 1166
19.3 ss1 — TLS/SSL wrapper for socketobjects Lo L. 1170
19.3.1 Functions, Constants, and Exceptions 1171
1932 SSLSockets oo 1182
19.3.3 SSLCONtextS v v v i i it e e e e e e e e e e e e e e 1186
19.3.4 Certificates o i e e e e e e e e e 1195
19.3.5 Examples e e e e e e e e e e 1197
19.3.6 Notes on non-blocking sockets o L. 1200
19.3.77 Memory BIO Support 1201
19.3.8 SSLSESSION o v v it e e e e e 1203

19.3.9 Security considerations L. oo e e e e 1203

19.3.10 TLS 1.3 .« o o e e e e 1204
19.4 select — Waiting for [/O completion e 1205
19.4.1 /dev/pollPollingObjects. e 1207
19.4.2 Edge and Level Trigger Polling (epoll) Objects 1208
19.43 Polling Objects e e e e e 1209
19.44 Kqueue ObJects v v v v v e e e e e e e e e e e e e 1210
19.45 Kevent Objects o v v i v v e e e e e e e e e e e e e e 1210
19.5 selectors — High-level /O multiplexing 1212
19.5.1 Introduction L i e e e e e e e e 1212
1952 ClIasses . . v v v v i i e e e e e 1212
19.53 Examples e e e e 1215
19.6 signal — Set handlers for asynchronousevents e 1215
19.6.1 Generalrules e 1215
19.6.2 Module contents oL e e e e e e e e e e 1216
19.6.3 Examples e 1223
19.64 NoteonSIGPIPE e 1223
19.6.5 Note on Signal Handlers and Exceptions 1224
19.7 mmap — Memory-mapped file support 1225
19.7.1 MADV_*Constants v v v vt it e e e e e e e e e e e e e 1229
19.7.2 MAP_*Constants v v v v e e e e e e e e e e e e e e e 1229
20 Internet Data Handling 1231
20.1 email — Anemail and MIME handling package 1231
20.1.1 email.message: Representing an email message 1232
20.1.2 email.parser: Parsingemail messageso 1240
20.1.3 email.generator: Generating MIME documents 1243
20.1.4 email.policy: Policy Objects it 1246
20.1.5 email.errors: Exceptionand Defectclasses 1252
20.1.6 email.headerregistry: Custom Header Objects 1254
20.1.7 email.contentmanager: Managing MIME Content. 1259
20.1.8 email: Examples e e e e e e e e e e e 1261
20.1.9 email.message.Message: Representing an email message using the compat32 APl . 1268
20.1.10 email.mime: Creating email and MIME objects from scratch 1276
20.1.11 email.header: Internationalized headers 1279
20.1.12 email.charset: Representing charactersets 1281
20.1.13 email.encoders: Encoders e e 1283
20.1.14 email.utils: Miscellaneous utilities 1284
20.1.15 email.iterators: Iterators L e 1286
20.2 json —JSONencoderanddecoder 1287
20.2.1 BasicUsage o i e e e e e 1290
20.2.2 Encodersand Decoders e 1292
20.2.3 EXCEPLONS « . v v v v v e 1294
20.2.4 Standard Compliance and Interoperability 1294
20.2.5 Command Line Interface 1296
20.3 mailbox — Manipulate mailboxes in various formats oo oL 1297
20.3.1 Mailbox ObJECES e e e e e e e e 1297
20.3.2 Message ODJECIS v v i i e e e e e e e e e e e e e e e e e 1306
20.3.3 EXCEPLONS . . v v v v v o e 1314
20.3.4 Examples e e e e e e e e e e e 1315
204 mimetypes — Map filenames to MIME types oo o oL 1316
20.4.1 MimeTypes ObJects v v v v i it e e e e e e e e e 1318
20.5 base64 — Basel6, Base32, Base64, Base85 Data Encodings 1319
20.5.1 Security Considerations it e e e e e e e e e e e e e 1322
20.6 binascii — Convert between binaryand ASCII 1322
20.7 quopri — Encode and decode MIME quoted-printable data 1324
21 Structured Markup Processing Tools 1327

Xi

21.1 html — HyperText Markup Language support v i i 1327
21.2 html.parser — Simple HTML and XHTML parser 1327
21.2.1 Example HTML Parser Application 1328
21.2.2 HTMLParser Methods e 1328
2123 Examples 1330
21.3 html.entities — Definitions of HTML general entities 1332
21.4 XML Processing Modules e e e e e e 1332
21.4.1 XML vulnerabilities L 1333
2142 Thedefusedxml Package 1334
21.5 xml.etree.ElementTree — The ElementTree XML API 1334
21.5.1 Tutorial L. e e e e 1334
21.5.2 XPathsupport o o e e e e e 1339
21.53 Reference e e 1341
21.5.4 XlInclude support e e e e e e 1344
21.5.5 Reference oL e e e e 1345
21.6 xml.dom — The Document Object Model APT 1353
21.6.1 Module Contents e e 1354
21.6.2 Objectsinthe DOM e 1355
21.63 Conformance e e e 1362
217 xml.dom.minidom — Minimal DOM implementation 1363
21.7.1 DOMODbJECts . . . o v v vt e e e e e e e e e e 1365
21.7.2 DOMExample e 1366
21.7.3 minidom and the DOM standard 1367
21.8 xml.dom.pulldom — Support for building partial DOM trees 1367
21.8.1 DOMEventStream Objects e 1369
21.9 =xml.sax — Supportfor SAX2 parsers Lo 1369
21.9.1 SAXException Objects o i e e e e 1371
21.10 xml.sax.handler — Base classes for SAX handlers 1371
21.10.1 ContentHandler Objects 0 v v i i e e e e e e e e 1373
21.10.2 DTDHandler Objects o o i ittt et e e e e 1375
21.10.3 EntityResolver Objects L. e 1375
21.10.4 ErrorHandler Objects o o o e e 1375
21.10.5 LexicalHandler Objects o v v it it e e e 1376
21.11 xml.sax.saxutils — SAXUtilities i i i i e 1376
21.12 xml.sax.xmlreader — Interface for XML parsers 1377
21.12.1 XMLReader Objects e 1378
21.12.2 IncrementalParser Objects L 1379
21.12.3 Locator ObJects o v v it e e e e e e e e e e 1380
21.12.4 InputSource ObJECtS v v v i e e e e e e e e e e e e e e 1380
21.12.5 The attributesInterface o 1381
21.12.6 The AttributesNsInterface 1381
21.13 xml.parsers.expat — Fast XML parsingusing Expat 1381
21.13.1 XMLParser Objects o v v it i e e e e e e 1382
21.13.2 ExpatError Exceptions L e 1387
21133 Example oL e e e e e e e e e e e 1387
21.13.4 Content Model Descriptions« v v v v v v i e e e e e e e e 1388
21.13.5 ExXpat error constantS oo i i e e e e e e e e 1388
22 Internet Protocols and Support 1393
22.1 webbrowser — Convenient web-browser controller 1393
22.1.1 Browser Controller Objects e 1395
22.2 wsgiref — WSGI Utilities and Reference Implementation 1396
22.2.1 wsgiref.util — WSGI environment utilities 1396
22.2.2 wsgiref.headers - WSGI response headertools 1398
22.2.3 wsgiref.simple_server —asimple WSGI HTTPserver 1399
2224 wsgiref.validate — WSGI conformance checker 1400
22.2.5 wsgiref.handlers —server/gateway baseclasses 1401
22.2.6 wsgiref.types — WSGI types for static type checking 1404

Xii

22277 Examples e e e e e e e e e e e e e e e 1404

22.3 urllib — URL handlingmodules i 1406
224 wurllib.request — Extensible library foropening URLs 1406
22.4.1 RequestObjects e e 1411
2242 OpenerDirector Objects o o i e e e e e 1413
2243 BaseHandler Objects e 1414
22.4.4 HTTPRedirectHandler Objects o o v i i et et e e e et e o 1415
22.4.5 HTTPCookieProcessor Objects v v v v v it et e e e e e e e e 1416
22.4.6 ProxyHandler Objects e 1416
22.477 HTTPPasswordMgr Objects i 1416
22.4.8 HTTPPasswordMgrWithPriorAuth Objects 1416
22.4.9 AbstractBasicAuthHandler Objects e 1417
22.4.10 HTTPBasicAuthHandler Objects o v vt et et et e o 1417
22.4.11 ProxyBasicAuthHandler Objects 1417
22.4.12 AbstractDigestAuthHandler Objects 1417
22.4.13 HTTPDigestAuthHandler Objects 1417
22.4.14 ProxyDigestAuthHandler Objects 1417
22.4.15 HTTPHandler Objects o v i i e e e e e e e e e e e e e e e 1417
22.4.16 HTTPSHandler Objects o i it e e e e e e e e e e 1417
22.4.17 FileHandler Objects e 1417
22.4.18 DataHandler Objects 1418
22.4.19 FTPHandler Objects o i i e e e 1418
22.4.20 CacheFTPHandler Objects i v v i i et e e e e e e e 1418
22.4.21 UnknownHandler Objects o 0 i et e e 1418
22.422 HTTPErrorProcessor Objects o i ittt i 1418
22423 Examples e e e 1418
22424 Legacyinterface e e e e e 1421
22.4.25 urllib.request Restrictions e 1423
22.5 urllib.response — Response classesusedbyurllib 1424
22.6 urllib.parse — Parse URLsintocomponents 1424
22.6.1 URLParsing e e e e e 1425
22.6.2 URL parsing SECUrity o v v v v it it e e e e e e e e e e 1429
22.6.3 Parsing ASCII Encoded Bytes e 1430
22.6.4 Structured Parse Results oo o 1430
22.6.5 URLQuoting 1431
2277 wurllib.error — Exception classes raised by urllib.request 1433
22.8 urllib.robotparser — Parserforrobots.txt 1434
229 http —HTTP modules e e e e e e e 1435
229.1 HTTPstatuscodes oo i i ittt ittt e e e e e 1436
22.9.2 HTTP Status category ¢ v v v v v e e e e e e e e e e e e e e e e e e e 1437
2293 HTTPmethods e 1438
22.10 http.client — HTTP protocolclient, 1438
22.10.1 HTTPConnection Objects o v v vt ittt e e e e e e 1441
22.10.2 HTTPResponse Objects v v v v v i e e e e e e e e e e e e e e e e e e 1443
22.10.3 Examples e e e e e e e e e e e e e 1444
22.10.4 HTTPMessage Objects o o i i it i ittt e et e 1446
2211 ftplib — FTP protocol client e 1446
22.11.1 Reference o e e 1446
22.12 poplib — POP3 protocol client i i e e e e 1452
22.12.1 POP3 Objects e 1454
22.12.2 POP3 Example e 1455
22.13 imaplib — IMAP4 protocolclient L 1455
22.13.1 IMAP4 Objects o o vt e e e e e e e e e 1457
22132 IMAP4 Exampleo e e e e 1462
22.14 smtplib — SMTP protocolclient o o e e e 1462
22.14.1 SMTP ODbjects o o ot e e e e e 1464
22142 SMTP Example e e 1468
22.15 uuid — UUID objects accordingto RFC 4122 1469

23

24

22.15.1 Command-Line Usage 0 i i i i ettt e 1472

22.15.2 Exampleo e e e e e e e e e e e e e 1472
22.15.3 Command-Line Example L 1473
22.16 socketserver — A framework for network servers Lo 1473
22.16.1 Server Creation NOtes o i i e e e e e 1474
22.16.2 Server ObJeCtS v o v v i e e e e e e e e e e e 1475
22.16.3 Request Handler Objects i i i i et e e e e 1477
22.16.4 Examples e e e e e e e e e e e 1478
2217 nttp.server — HTTPsservers e e 1481
22.17.1 Security Considerations oo 1487
22.18 http.cookies — HTTP state management 1488
22.18.1 Cookie ObJECtS . . . v v v v o e 1488
22.18.2 Morsel Objects o v i i e e e e e e e e e e e e e 1489
22,183 Example oL e e e e e 1490
22.19 http.cookiejar — Cookie handling for HTTP clients 1491
22.19.1 Cookielar and FileCookieJar Objects 1493
22.19.2 FileCookielar subclasses and co-operation with web browsers 1494
22.19.3 CookiePolicy Objects v v v i i e e e e e e e e e e e e e 1495
22.19.4 DefaultCookiePolicy Objects ittt e 1496
22.19.5 Cookie Objects e e e 1498
22.19.6 Examples 1499
22.20 xmlrpc — XMLRPC server and clientmodules 1499
2221 xmlrpc.client — XML-RPCclientaccess i ... 1500
22.21.1 ServerProxy Objects v v v i e e e e e e e e e e e e e e 1501
22.21.2 DateTime Objects o i e e 1502
22213 Binary Objects L e e 1503
22.21.4 Fault Objects o o v v i e e e e 1504
22.21.5 ProtocolError Objects v v v i e e e e e e e e e e e e e 1504
22.21.6 MultiCall Objects o o e e e e 1505
22.21.7 Convenience Functions e e 1506
22.21.8 Example of Client Usage 1506
22.21.9 Example of Client and Server Usage 1507
22.22 xmlrpc.server — Basic XML-RPCservers 1507
22.22.1 SimpleXMLRPCServer Objects o o v i i et e e e e 1508
22.22.2 CGIXMLRPCRequestHandler 1511
22.22.3 Documenting XMLRPCsserver e 1512
22.22.4 DocXMLRPCServer Objects o v v v i i i i it e 1512
22.22.5 DocCGIXMLRPCRequestHandler 1513
22.23 ipaddress — IPv4/IPv6 manipulation library 1513
22.23.1 Convenience factory functions e 1513
22232 TP AQAresses o o it e e e e 1514
22.23.3 IP Network definitions e 1518
22234 Interface ObJECtS L e e e e e 1524
22.23.5 Other Module Level Functions 1525
22.23.6 Custom EXceptions o i i i e e e e e e e e e e e 1526
Multimedia Services 1527
23.1 wave —Readand write WAV files e 1527
23.1.1 Wave_read ObJects v v v i e e e e e e e e e e e e e 1527
23.1.2 Wave_write Objects o e e e 1528
23.2 colorsys — Conversions between color systems oL 1530
Internationalization 1531
24.1 gettext — Multilingual internationalization services 1531
24.1.1 GNUgettext APL. e 1531
24.1.2 Class-based AP e 1532
24.1.3 Internationalizing your programs and modules 1536
24.1.4 Acknowledgements e e e e e e e e e 1538

Xiv

242 locale — Internationalization SErviCes o i it e e e e 1539
24.2.1 Background, details, hints, tipsand caveats 1546
24.2.2 For extension writers and programs that embed Python 1546
2423 Accesstomessage catalogsol e e e 1546

25 Program Frameworks 1547

25.1 turtle — Turtlegraphics e 1547
25.1.1 IntroduCtion o o v it e e e e e e e e e e e e e 1547
25.1.2 Getstarted e e e 1547
25.1.3 Tutorial e e e e 1548
25.1.4 HOWO... « o v v it e e e e e e e e e e e 1549
25.1.5 Turtle graphics reference L e e 1551
25.1.6 Methods of RawTurtle/Turtle and corresponding functions 1553
25.1.7 Methods of TurtleScreen/Screen and corresponding functions 1570
25.1.8 Publicclasses e e e e 1577
25.1.9 Explanation e e e e e e e e e e e e e 1578
25.1.10 Help and configuration i e e e e 1579
25.1.11 turtledemo — Demoscripts o o i i e e 1581
25.1.12 Changes since Python 2.6 L o 1582
25.1.13 Changes since Python 3.0 1582

25.2 cmd — Support for line-oriented command interpreters oo L. 1583
25.2.1 CmdObjects e e e e e 1583
2522 CmdExample e e e e 1585

25.3 shlex — Simplelexical analysis L e 1588
25.3.1 shlex Objects o o e e e e e 1589
2532 ParsingRules L 1591
25.3.3 TImproved Compatibility with Shells 1592

26 Graphical User Interfaces with Tk 1595

26.1 tkinter — Pythoninterface to Tcl/Tk 1595
26.1.1 Architecture L e e e e e 1596
26.1.2 Tkinter Modules e 1596
26.1.3 Tkinter Life Preserver oL 1598
26.1.4 Threadingmodel 1601
26.1.5 HandyReference e 1602
26.1.6 FileHandlers e 1607

26.2 tkinter.colorchooser — Color choosingdialog 1608

26.3 tkinter.font — Tkinter font wrapper L oo 1608

26.4 Tkinter Dialogs L 1609
26.4.1 tkinter.simpledialog — Standard Tkinter inputdialogs 1609
26.4.2 tkinter.filedialog— Fileselectiondialogs 1610
26.4.3 tkinter.commondialog — Dialog window templates 1612

26.5 tkinter.messagebox — TkKinter message prompts o bt e v e e e 1612

26.6 tkinter.scrolledtext — Scrolled Text Widget 1614

26.7 tkinter.dnd — Draganddropsupport e 1615

26.8 tkinter.ttk — Tkthemedwidgets i i 1616
26.8.1 Using Ttk o o e e e e 1616
26.82 Ttk WIidgets o o o e e e e 1616
26.8.3 Widget. o e e e e e e 1617
20.8.4 CombObOX e e e e e 1619
26.8.5 SpIinboxX e e e 1620
26.8.6 Notebook e e e 1621
26.8.7 Progressbar e e e e e e e e e e e 1623
26.8.8 Separator e e e e e e e e e e 1623
26.8.9 Sizegrip 1624
20.8.10 Treeview v v it e e e e e e 1624
26.8.11 Ttk Styling o o e e e e e 1629

260.9 IDLE e e e e 1634

26.9.1 MENUS v v o e e e e e e e e e 1634

26.9.2 Editingand Navigation i e e e e e e 1638
26.9.3 Startupand Code Execution e e e e 1641
26.9.4 Helpand Preferences e e 1644
26.9.5 idlelibo 1645
27 Development Tools 1647
27.1 typing— Supportfortypehints oL 1647
27.1.1 Specification for the Python Type System, 1648
27.1.2 Typealiases v o it e e e e e e e e 1648
27.1.3 NewType . . o o o i e e e e e e e e e e e e 1648
27.1.4 Annotating callable objects L L e 1650
27.1.5 GEeNeriCs v v v i e e e e e e e e 1651
27.1.6 Annotatingtuples L. 1652
27.1.77 Thetypeof classobjects 1653
27.1.8 Annotating generators and COTOULINGS v v v v v v v v v v e e e e e e e 1653
27.1.9 User-defined generic types o v v i i e e e e e e e e e e e e e 1654
27.1.10 The Any type . . . o v o v e e e e e e e e e e e e e e e e e e 1657
27.1.11 Nominal vs structural subtyping o 1658
27.1.12 Module contents L . e e e e e e e e e e 1659
27.1.13 Deprecation Timeline of Major Features 1699
27.2 pydoc — Documentation generator and online help system 1699
27.3 PythonDevelopment Mode L e 1700
27.3.1 Effects of the Python DevelopmentMode 1701
27.3.2 ResourceWarning Example 1702
27.3.3 Badfile descriptor errorexample e e e e e e e e e 1703
27.4 doctest — Testinteractive Pythonexamples 1703
27.4.1 Simple Usage: Checking Examples in Docstrings 1705
27.4.2 Simple Usage: Checking ExamplesinaTextFile, ... 1706
2743 HowltWorks e 1707
2744 Basic APL 1714
2745 Unittest APL 0 e e 1716
27.4.6 Advanced APL L e 1718
2747 Debugging e e e e e e e e e 1722
27.4.8 S0apboX e e 1725
27.5 unittest — Unittesting framework L 1726
27.5.1 Basicexample e e e e e e e e e e e e e e e 1727
27.5.2 Command-Line Interface L 1728
2753 TestDiSCOVEry o o o i it e e e e e 1729
27.5.4 Organizingtestcode L e 1731
27.5.5 Re-usingoldtestcode 1732
27.5.6 Skipping tests and expected failureso Lo 1733
27.5.7 Distinguishing test iterations using Subtestso e e e 1735
27.5.8 Classesand functions e 1736
27.5.9 Classand Module Fixtures e 1754
27.5.10 Signal Handling L 1756
27.6 unittest.mock — mock objectlibrary oL 1757
27.6.1 QuickGuide e 1757
27.6.2 TheMock Class o o v i it e e e 1759
27.63 Thepatchers L e e 1776
27.6.4 MagicMock and magic method supporto Lo 1785
27.6.5 Helpers e e 1789
27.6.6 Order of precedence of side_effect, return_valueandwraps 1796
277 unittest.mock — gettingstarted e e e 1798
27.7.1 UsingMock o e e 1798
27.7.2 PatchDecorators i i i i e e e e e e e 1804
2773 Further Examples 1806
27.8 test — Regression tests package for Python o oo 1818

27.8.1 Writing Unit Tests for the test package

27.8.2 Running tests using the command-line interface
279 test.support — Utilities for the Python testsuite
27.10 test.support.socket_helper — Utilities for sockettests
27.11 test.support.script_helper — Utilities for the Python execution tests
27.12 test.support .bytecode_helper — Support tools for testing correct bytecode generation
27.13 test.support.threading_helper — Ultilities for threadingtests
27.14 test.support.os_helper — Utilitiesforostests
27.15 test.support.import_helper — Utilities for importtests
27.16 test.support.warnings_helper — Utilities for warnings tests

Debugging and Profiling

28.1 Auditeventstable e
28.2 bdb — Debugger framework
28.3 faulthandler — Dump the Python traceback
28.3.1 Dumpingthe traceback e e e
28.3.2 Faulthandlerstate e
28.3.3 Dumping the tracebacks afteratimeout. oL
28.3.4 Dumping the traceback onausersignal L Lo
28.3.5 [Issue with file descriptors L.
28.3.6 Example e e e
28.4 pdb — The Python Debugger e e
28.4.1 Debugger Commands L e e e e e
28.5 The Python Profilers e
28.5.1 Introduction to the profilers
28.5.2 InstantUsersManual
28.5.3 profileand cProfile Module Reference
2854 ThestatsClass L
28.5.5 What Is Deterministic Profiling? o oo
28.5.6 Limitations e e e e e e e e e e e e e e e e
28.5.7 Calibration
28.5.8 Usingacustom tiMET v v v v v e e et e e e e e e e e e e e e e e e
28.6 timeit — Measure execution time of small code snippets,
28.6.1 Basic Examples L. e
28.6.2 PythonlInterface L
28.6.3 Command-Line Interface
28.6.4 Examples e e e e e
28.7 trace — Trace or track Python statement execution
28.7.1 Command-Line Usage ittt
28.7.2 Programmatic Interface o oL
28.8 tracemalloc — Trace memory allocations o
28.8.1 Examples e e e e
28.8.2 APL . . e

Software Packaging and Distribution

29.1 ensurepip — Bootstrapping the pipinstaller L.
29.1.1 Command lineinterface e e e e e
29.1.2 Module APT e e e e

29.2 venv — Creation of virtual environments
29.2.1 Creating virtual environmentso it e e e
2922 Howvenvs WOork o i e e e e e e e e
2023 APL . L e e e e e e e
29.2.4 Anexample of extending EnvBuilder oot e

29.3 =zipapp — Manage executable Python zip archives
293.1 BasicExample.o e
29.3.2 Command-Line Interface e
29.3.3 Python API e e e e e e

2034 Examples e e e e e e e e e

29.3.5 Specifying the Interpreter L e e e e 1899

29.3.6 Creating Standalone Applications with zipapp oo .. 1899
29.3.7 The Python Zip Application Archive Format 1900
30 Python Runtime Services 1901
30.1 sys — System-specific parameters and functions L L Lo 1901
30.2 sys.monitoring — Execution event monitoring oo 1927
30.2.1 Toolidentifiers i e e e e e e e e 1927
3022 EVENLS oo e e e e e e e e e e e e e 1928
30.2.3 Turningeventsonandoff L 1930
30.2.4 Registering callback functions L. L e 1930
30.3 sysconfig — Provide access to Python’s configuration information 1931
30.3.1 Configuration variables Lo e 1931
30.3.2 Inmstallation paths L 1932
3033 Userscheme o o e e e e 1933
30.3.4 Homescheme e e e e 1933
30.3.5 Prefixscheme e 1934
30.3.6 Installation path functions L 1935
30.3.7 Otherfunctions e e e e e e 1936
30.3.8 Using sysconfigasascript v v v v v v v v v i e 1936
304 puiltins — Built-inobjects L. e e e e 1937
30.5 __main__ — Top-level code environment e 1938
305.1 __name_ == ' main_ ' . ..o e e e e e e e e e e e e e 1938
3052 __main__ .pyinPythonPackages oo 0. 1940
30.5.3 import __main_ e e e e e e e e e e e e e e e 1941
30.6 warnings — Warningcontrol oLl e 1943
30.6.1 Warning Categories v v v v v i e e e e e e e e e e e e e e e e e e e 1943
30.6.2 The Warnings Filter e 1944
30.6.3 Temporarily Suppressing Warnings oL 1946
30.6.4 Testing Warningso e e e 1947
30.6.5 Updating Code For New Versions of Dependencies 1947
30.6.6 Available Functions 1947
30.6.7 Available Context Managers i it i e e e e e e e e 1949
30.7 dataclasses —DataClasses i e e e 1950
30.7.1 Modulecontentso e e e e e e e e e e e e 1951
30.7.2 PoSt-Init processing i i e e e e e e e e e e e 1957
30.7.3 Classvariables L. e e e e 1957
30.7.4 Init-only variables e e e e e e 1957
30.7.5 FrozeninStances oot e e e e e e e 1958
30.7.6 Inheritance e e e e e 1958
30.7.7 Re-ordering of keyword-only parametersin __init_ () 1958
30.7.8 Default factory functions 1959
30.7.9 Mutable default values L 1959
30.7.10 Descriptor-typed fields 1960
30.8 contextlib — Utilities for with-statementcontextso v oo oL 1961
30.8.1 UtltIes o o v v e e e e e e e e e 1961
30.8.2 Examplesand Recipes 1970
30.8.3 Single use, reusable and reentrant context managers e e e e e . 1973
30.9 abc — Abstract Base Classes o e 1975
30.10 atexit — Exithandlers oL 1980
30.10.1 atexit Example e 1981
30.11 traceback — Print or retrieve a stack traceback oL 1982
30.11.1 Module-Level Functions e 1982
30.11.2 TracebackException Objects o v v i i v vt it e e 1984
30.11.3 stackSummary Objects i i it e e e e e e 1986
30.11.4 Framesummary Objects e 1987
30.11.5 Examples of Using the Module-Level Functions 1987
30.11.6 Examples of Using TracebackException v v v v v v v i 1990

xviii

30.12 _ future_ — Future statement definitions L. 1991
30.12.1 Module Contents o v i e e e e e e e e e e 1992
30.13 gc — Garbage Collector interface o o i e e e e 1993
30.14 inspect — Inspectlive objects L e 1996
30.14.1 Typesandmembers L. e 1997
30.14.2 Retrieving source codeo i e e e e e e e 2001
30.14.3 Introspecting callables with the Signature object 2002
30.14.4 Classes and functions L e e 2007
30.14.5 The interpreter stack L e 2009
30.14.6 Fetching attributes statically oL oo 2011
30.14.7 Current State of Generators, Coroutines, and Asynchronous Generators 2012
30.14.8 Code Objects Bit Flags i e e e e 2013
30.14.9 Bufferflags L. e e e e 2014
30.14.10Command Line Interface L o 2015
30.15 site — Site-specific configurationhook o oL oL 2015
30.15.1 sitecustomize . . . v v v i i i e e e e e e e e e e e e e e e e e 2016
30.15.2 usercustomize . . . v v v i i e e e e e e e e e e e e e e e e e e 2017
30.15.3 Readline configuration e e e e e e 2017
30.15.4 Module contents o e e e e e e e e 2017
30.15.5 Command Line Interface L o 2018

31 Custom Python Interpreters 2019
31.1 code — Interpreter base classes oL 2019
31.1.1 Interactive Interpreter Objects L e 2020
31.1.2 Interactive Console Objects 2020
31.2 codeop — Compile Pythoncode 2021

32 Importing Modules 2023
32.1 =zipimport — Import modules from Zip archives oL 2023
32.1.1 zipimporter ObJects o i e e e e e e e e e e e e e 2024
32.1.2 Exampleso . e e e e e e e e e e e e 2025
32.2 pkgutil — Package extension utility oL o 2025
32.3 modulefinder — Find modulesused by ascript 2028
32.3.1 Example usage of ModuleFinder oot vt i i it 2028
32.4 runpy — Locating and executing Python modules 2029
32,5 importlib — The implementation of import 2032
32.5.1 Introduction L e e e e 2032
3252 Functions e e e e 2033
32.53 importlib.abc — Abstract base classes related toimport. L. L. 2034
32.54 importlib.machinery —Importers and pathhooks 2040
32.5.5 importlib.util - Utility code forimporters. 2046
32.5.6 Examples e e e e e e e e 2049
32.6 importlib.resources - Package resource reading, opening and access 2051
32.6.1 Functional API e 2052
327 importlib.resources.abc — Abstract base classes for resources 2054
32.8 importlib.metadata — Accessing packagemetadata 2056
32.8.1 OVEIVIEW . . . v v v i e i e e e e e e e e e e e 2057
32.8.2 Functional APT e 2058
32.83 Distributions e e e e e e e e 2061
32.8.4 Distribution Discovery 2062
32.8.5 Extending the search algorithm L o o 2062
32.9 The initialization of the sys.path module searchpath 2064
32.9.1 Virtual environments oL L e e e e e e e e e e 2064
329.2 _pthfiles. o e 2065
3293 Embedded Python L 2065

33 Python Language Services 2067
33.1 ast — Abstract Syntax Trees e e e e 2067
33.1.1 Abstract Grammar e e e e e e e e e e 2067

Xix

33.1.2 NodeClasses v v v i e e e e e e e e e e 2070

33.1.3 ast Helpers o e e e e e e e e 2099
33.1.4 Compiler Flags e e e 2103
33.1.5 Command-Line Usage e 2104
33.2 symtable — Access to the compiler’s symbol tables 2104
33.2.1 Generating Symbol Tables 2104
33.2.2 Examining Symbol Tables e e 2105
33.2.3 Command-Line Usage ittt e 2108
33.3 token — Constants used with Python parse trees 2108
33.4 keyword — Testing for Python keywords Lo oo 2112
33.5 tokenize — Tokenizer for Pythonsource 2112
33.5.1 TokenizingInput e e e e e e e e 2113
33.5.2 Command-Line Usage i ittt e 2114
3353 Exampleso L e e e e e e e 2114
33.6 tabnanny — Detection of ambiguous indentation 0oL 2116
337 pyclbr — Python module browser support oo 2117
33.7.1 Function Objects i e e e e 2117
33.7.2 Class ObJeCtS v o v v i e e e e e e e e e e e e e e 2118
33.8 py_compile — Compile Python sourcefiles 2119
33.8.1 Command-Line Interface o 2120
339 compileall — Byte-compile Python libraries 2120
33.9.1 Command-line use i e e e e e 2120
33.9.2 Publicfunctions e e e e 2122
33.10 dis — Disassembler for Pythonbytecode o o 2124
33.10.1 Command-lineinterface L e 2125
33.10.2 Bytecode analysis L. 2125
33.10.3 Analysisfunctions e 2126
33.10.4 Python Bytecode Instructions v i v it e e 2129
33.10.5 Opcode collections v v v i v e e e e e e e e e e e e 2145
33.11 pickletools — Tools for pickle developers 2146
33.11.1 Command ine usage o . i i e e e e e e e 2146
33.11.2 Programmatic Interface 2147
34 MS Windows Specific Services 2149
34.1 msvcrt — Useful routines from the MS VC++runtime 2149
34.1.1 FileOperations i e e e e e 2149
3412 Console I/O o e e 2150
34.1.3 Other Functions i e e e e 2150
342 winreg — WIndows registry aCCess« « c v v vt v v v e e e e e e e e e 2151
342.1 FunctionS v i i v it e e e e e e e e e e e e e e e 2152
3422 CoNStANLS . . . v ot vt e e e e e e e e e e e e e e 2157
3423 Registry Handle Objects e 2159
34.3 winsound — Sound-playing interface for Windows L Lo L. 2160
35 Unix Specific Services 2163
35.1 posix — The most common POSIX systemcalls 2163
35.1.1 Large File Support o e e e e e e e e 2163
35.1.2 Notable Module Contents i ittt e e e 2163
35.2 pwd — The password database L 2164
353 grp—Thegroupdatabase L 2165
354 termios — POSIXstylettycontrol 2165
354.1 Example e e e e e e e e e e e 2166
35.5 tty — Terminal control functions e e e e e 2167
35.6 pty — Pseudo-terminal utilities 2168
35.6.1 Example 2169
357 fentl —The fentland ioctlsystemcalls Lo o oo 2169
35.8 resource — Resource usage informationo 2172
35.8.1 Resource Limits L. e 2172

XX

36

37

38

39

3582 Resource Usage o v v vt i e e e e e 2175

359 syslog— Unix sysloglibrary routines o v i i vt i e e e e 2176
3590.1 Examples e e e e e 2178
Modules command-line interface (CLI) 2181
Superseded Modules 2183
37.1 getopt — C-style parser for command lineoptions 2183
Removed Modules 2187
38.1 aifc — Read and write AIFF and AIFCfiles 2187
38.2 asynchat — Asynchronous socket command/response handler 2187
38.3 asyncore — Asynchronous sockethandler 2187
38.4 audioop — Manipulate raw audiodata L L 2187
38.5 cgi — Common Gateway Interface support 2188
38.6 cgitb — Traceback manager for CGIscripts 2188
38.7 chunk — Read IFF chunkeddata 2188
38.8 crypt — Function to check Unix passwords i i vt 2188
38.9 distutils — Building and installing Python modules 2188
38.10 imghdr — Determine the type of animage L 2188
38.11 imp — Access the importinternals 0oL 2189
38.12 mailcap — Mailcapfilehandling 2189
38.13 msilib — Read and write Microsoft Installer files 2189
38.14 nis — Interface to Sun’s NIS (Yellow Pages), 2189
38.15 nntplib — NNTP protocol client e 2189
38.16 ossaudiodev — Access to OSS-compatible audiodevices 2189
38.17 pipes — Interface toshell pipelines oo 2190
38.18 smtpd — SMTP Server e e e e e e e e e 2190
38.19 sndhdr — Determine type of soundfile 2190
38.20 spwd — The shadow password database e 2190
38.21 sunau — Read and write Sun AU files 2190
38.22 telnetlib — Telnetclient e e 2190
38.23 uu — Encode and decode uuencode files L 2191
38.24 xdrlib — Encode and decode XDR data 2191
Security Considerations 2193
Glossary 2195
About this documentation 2213
B.1 Contributors to the Python documentation 2213
History and License 2215
C.1 Historyof thesoftware e 2215
C.2 Terms and conditions for accessing or otherwise using Python 2216
C.2.1 PSFLICENSE AGREEMENT FORPYTHON 3.13.1. 2216
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 2217
C.2.3 CNRILICENSE AGREEMENT FORPYTHON 1.6.1 2217
C.24 CWILICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 2218
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.13.1 DOCUMEN-
TATION e 2219
C.3 Licenses and Acknowledgements for Incorporated Software, 2219
C3.1 Mersenne TWISIET v v v v e ot e e e e e e e e e e e e e e e e e e e 2219
C32 Sockets o e e e 2220
C.3.3 Asynchronous socket Services v v v v v i i e e e e e e e 2221
C.3.4 Cookie management v v v v vt e e e e e e e e e e e e e e e e e 2221
C.3.5 EXecution tracing ¢ v v v vt e e e e e e e e e e e e e e 2221
C.3.6 UUencode and UUdecode functions o v v v i i i i 2222
C3.7 XML Remote Procedure Calls 2223

XXi

C.3.8 test_epoll L e e e e e e e e 2223
C.3.9 Selectkqueue e e e e e e e e e 2224
C.3.10 SipHash24 2224
C3.1 strtodand dtoa. oo o e e e e e e e e 2225
C3.12 OpenSSL o e e 2225
C3I3 eXPal. . o o o ot e e e e e e e e e e 2228
C3.14 Iibfli . . . oo e e 2229
C3.15 zlib . . o e e e e 2229
C3.16 cfuhash 2230
C3.17 Hbmpdec e e e e 2230
C3.18 WI3CCIANTeSt SUITE . .« v v v v v e e e e e e e e e e e e e e e e e e 2231
C3.19 mimalloc e e e 2232
C.3.20 asynCio . . . v v o i e e e e e e e e e e e e e 2232
C.3.21 Global Unbounded Sequences (GUS), 2232
D Copyright 2235
Bibliography 2237
Python Module Index 2239
Index 2243

XXii

The Python Library Reference, Release 3.13.1

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that
are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages,
so it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the
optional components.

In addition to the standard library, there is an active collection of hundreds of thousands of components (from in-
dividual programs and modules to packages and entire application development frameworks), available from the
Python Package Index.

CONTENTS 1

https://pypi.org

The Python Library Reference, Release 3.13.1

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like
the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the
core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and exceptions, and
finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual),
or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see module random) and read a section or two. Regardless
of the order in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the
remainder of the manual assumes familiarity with this material.

Let the show begin!

1.1 Notes on availability

e An “Availability: Unix” note means that this function is commonly found on Unix systems. It does not make
any claims about its existence on a specific operating system.

« If not separately noted, all functions that claim “Availability: Unix” are supported on macOS, iOS and Android,
all of which build on a Unix core.

« If an availability note contains both a minimum Kernel version and a minimum libc version, then both condi-
tions must hold. For example a feature with note Availability: Linux >= 3.17 with glibc >= 2.27 requires both
Linux 3.17 or newer and glibc 2.27 or newer.

The Python Library Reference, Release 3.13.1

1.1.1 WebAssembly platforms

The WebAssembly platforms wasm32-emscripten (Emscripten) and wasm32-wasi (WASI) provide a subset of
POSIX APIs. WebAssembly runtimes and browsers are sandboxed and have limited access to the host and external
resources. Any Python standard library module that uses processes, threading, networking, signals, or other forms
of inter-process communication (IPC), is either not available or may not work as on other Unix-like systems. File
1/0, file system, and Unix permission-related functions are restricted, too. Emscripten does not permit blocking I/O.
Other blocking operations like s1eep () block the browser event loop.

The properties and behavior of Python on WebAssembly platforms depend on the Emscripten-SDK or WASI-SDK
version, WASM runtimes (browser, NodeJS, wasmtime), and Python build time flags. WebAssembly, Emscripten,
and WASI are evolving standards; some features like networking may be supported in the future.

For Python in the browser, users should consider Pyodide or PyScript. PyScript is built on top of Pyodide, which
itself is built on top of CPython and Emscripten. Pyodide provides access to browsers’ JavaScript and DOM APIs
as well as limited networking capabilities with JavaScript’s XMLHt tpRequest and Fetch APIs.

 Process-related APIs are not available or always fail with an error. That includes APIs that spawn new processes
(fork (), execve ()), wait for processes (waitpid()), send signals (ki11 ()), or otherwise interact with
processes. The subprocess is importable but does not work.

e The socket module is available, but is limited and behaves differently from other platforms. On Emscripten,
sockets are always non-blocking and require additional JavaScript code and helpers on the server to proxy
TCP through WebSockets; see Emscripten Networking for more information. WASI snapshot preview 1 only
permits sockets from an existing file descriptor.

« Some functions are stubs that either don’t do anything and always return hardcoded values.

« Functions related to file descriptors, file permissions, file ownership, and links are limited and don’t support
some operations. For example, WASI does not permit symlinks with absolute file names.

1.1.2 Mobile platforms

Android and iOS are, in most respects, POSIX operating systems. File I/O, socket handling, and threading all behave
as they would on any POSIX operating system. However, there are several major differences:

» Mobile platforms can only use Python in “embedded” mode. There is no Python REPL, and no ability to use
separate executables such as python or pip. To add Python code to your mobile app, you must use the Python
embedding API. For more details, see using-android and using-ios.

o Subprocesses:

- On Android, creating subprocesses is possible but officially unsupported. In particular, Android does not
support any part of the System V IPC API, so multiprocessing is not available.

— An iOS app cannot use any form of subprocessing, multiprocessing, or inter-process communication. If
an i0S app attempts to create a subprocess, the process creating the subprocess will either lock up, or
crash. AniOS app has no visibility of other applications that are running, nor any ability to communicate
with other running applications, outside of the iOS-specific APIs that exist for this purpose.

« Mobile apps have limited access to modify system resources (such as the system clock). These resources will
often be readable, but attempts to modify those resources will usually fail.

o Console input and output:

— On Android, the native stdout and stderr are not connected to anything, so Python installs its own
streams which redirect messages to the system log. These can be seen under the tags python. stdout
and python. stderr respectively.

— 10S apps have a limited concept of console output. stdout and stderr exist, and content written to
stdout and stderr will be visible in logs when running in Xcode, but this content won’t be recorded
in the system log. If a user who has installed your app provides their app logs as a diagnostic aid, they
will not include any detail written to stdout or stderr.

— Mobile apps have no usable st din atall. While apps can display an on-screen keyboard, this is a software
feature, not something that is attached to stdin.

4 Chapter 1. Introduction

https://webassembly.org/
https://emscripten.org/
https://wasi.dev/
https://emscripten.org/
https://wasi.dev/
https://wasmtime.dev/
https://pyodide.org/
https://pyscript.net/
https://emscripten.org/docs/porting/networking.html
https://issuetracker.google.com/issues/128554619#comment4

The Python Library Reference, Release 3.13.1

As a result, Python modules that involve console manipulation (such as curses and readline) are not
available on mobile platforms.

1.1. Notes on availability 5

The Python Library Reference, Release 3.13.1

6 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed
here in alphabetical order.

Built-in Functions

A E L R
abs () enumerate () len() range ()
aiter() eval () 1ist () repr ()
all/() exec () locals () reversed()
anext () round ()
any () F M
ascii() filter() map () S

float () max () set ()
B format () memoryview () setattr ()
bin() frozenset () min () slice()
bool () sorted()
breakpoint () G N staticmethod ()
bytearray () getattr () next () str()
bytes () globals () sum ()

(0} super ()

C H object ()
callable () hasattr () oct () T
chr () hash () open () tuple ()
classmethod () help() ord () type ()
compile () hex ()
complex () P A%

I pow () vars ()
D id() print ()
delattr() input () property () V4
dict () int () zip ()
dir() isinstance ()
divmod () issubclass () _

iter () __import__ ()

abs (x)

Return the absolute value of a number. The argument may be an integer, a floating-point number, or an object
implementing __abs__ (). If the argument is a complex number, its magnitude is returned.

The Python Library Reference, Release 3.13.1

aiter (async_iterable)

Return an asynchronous iterator for an asynchronous iterable. Equivalent to calling x. __aiter ().
Note: Unlike iter (), aiter () has no 2-argument variant.
Added in version 3.10.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

awaitable anext (async_iterator)

awaitable anext (async_iterator, default)
When awaited, return the next item from the given asynchronous iterator, or default if given and the iterator is
exhausted.

This is the async variant of the next () builtin, and behaves similarly.

This calls the __anext__ () method of async_iterator, returning an awaitable. Awaiting this returns
the next value of the iterator. If default is given, it is returned if the iterator is exhausted, otherwise
StopAsyncIteration is raised.

Added in version 3.10.

any (iterable)

Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:
if element:
return True
return False

ascii (object)

As repr (), return a string containing a printable representation of an object, but escape the non-ASCII char-
acters in the string returned by repr () using \x, \u, or \U escapes. This generates a string similar to that
returned by repr () in Python 2.

bin (x)

Convert an integer number to a binary string prefixed with “Ob”. The result is a valid Python expression. If x
is not a Python int object, it has to define an __index__ () method that returns an integer. Some examples:

>>> bin (3)
'0Obl11"

>>> bin(-10)
'-0b1010"

L

If the prefix “Ob” is desired or not, you can use either of the following ways.

s N

>>> format (14, '#b'), format (14, 'b'")
('0b1110', '1110")

>>> f'{14:4b}', £'{14:b}"'

('0b1110', '1110")

See also format () for more information.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

class bool (object=Fulse, /)

Return a Boolean value, i.e. one of True or False. The argument is converted using the standard truth testing
procedure. If the argument is false or omitted, this returns False; otherwise, it returns True. The bool
class is a subclass of int (see Numeric Types — int, float, complex). It cannot be subclassed further. Its only
instances are False and True (see Boolean Type - bool).

Changed in version 3.7: The parameter is now positional-only.
breakpoint (*args, **kws)

This function drops you into the debugger at the call site. Specifically, it calls sys.breakpointhook (),
passing args and kws straight through. By default, sys.breakpointhook () calls pdb.set_trace ()
expecting no arguments. In this case, it is purely a convenience function so you don’t have to explicitly import
pdb or type as much code to enter the debugger. However, sys.breakpointhook () can be set to some
other function and breakpoint () will automatically call that, allowing you to drop into the debugger of
choice. If sys.breakpointhook () is not accessible, this function will raise Runt imeError.

By default, the behavior of breakpoint () can be changed with the PYTHONBREAKPOINT environment vari-
able. See sys.breakpointhook () for usage details.

Note that this is not guaranteed if sys.breakpointhook () has been replaced.
Raises an auditing event builtins.breakpoint with argument breakpointhook.
Added in version 3.7.

class bytearray (source=b")
class bytearray (source, encoding)
class bytearray (source, encoding, errors)

Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as
most methods that the bytes type has, see Byftes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

o If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using str.encode ().

o If it is an infeger, the array will have that size and will be initialized with null bytes.

« Ifitis an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

« If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size 0 is created.

See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.
class bytes (source=b")
class bytes (source, encoding)

class bytes (source, encoding, errors)

Return a new “bytes” object which is an immutable sequence of integers in the range 0 <= x < 256. bytes
is an immutable version of bytearray — it has the same non-mutating methods and the same indexing and
slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().
Bytes objects can also be created with literals, see strings.

See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes Objects, and Bytes and Bytearray Op-
erations.

The Python Library Reference, Release 3.13.1

callable (object)

Return True if the object argument appears callable, a1 se if not. If this returns True, it is still possible that
a call fails, but if it is False, calling object will never succeed. Note that classes are callable (calling a class
returns a new instance); instances are callable if their classhasa _ _call__ () method.

Added in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)

Return the string representing a character whose Unicode code point is the integer i. For example, chr (97)
returns the string 'a', while chr (8364) returns the string '€'. This is the inverse of ord ().

The valid range for the argument is from O through 1,114,111 (Ox10FFFF in base 16). valueError will be
raised if i is outside that range.

@classmethod

Transform a method into a class method.

A class method receives the class as an implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2):

The @classmethod form is a function decorator — see function for details.

A class method can be called either on the class (such as C. £ ()) or on an instance (such as ¢ () . £ ()). The
instance is ignored except for its class. If a class method is called for a derived class, the derived class object
is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in this
section. For more information on class methods, see types.

Changed in version 3.9: Class methods can now wrap other descriptors such as property ().

s name__,

Changed in version 3.10: Class methods now inherit the method attributes (__module
__qualname_ ,_ _doc__and _ _annotations__)and have a new __wrapped___ attribute.

Deprecated since version 3.11, removed in version 3.13: Class methods can no longer wrap other descriptors
such as property ().

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)

Compile the source into a code or AST object. Code objects can be executed by exec () or eval (). source
can either be a normal string, a byte string, or an AST object. Refer to the ast module documentation for
information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn’t read from a file (' <string>"' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists of a
sequence of statements, 'eval' if it consists of a single expression, or 'single’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which compiler options should be activated and which
future features should be allowed. If neither is present (or both are zero) the code is compiled with the same
flags that affect the code that is calling compile (). If the flags argument is given and dont_inherit is not (or is
zero) then the compiler options and the future statements specified by the flags argument are used in addition
to those that would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it — the
flags (future features and compiler options) in the surrounding code are ignored.

Compiler options and future statements are specified by bits which can be bitwise ORed together to specify
multiple options. The bitfield required to specify a given future feature can be found as the compiler flag
attribute on the _Feature instance inthe __future__ module. Compiler flags can be found in ast module,
with PyCF_ prefix.

10

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the
optimization level of the interpreter as given by —0 options. Explicit levels are 0 (no optimization; ___debug___
is true), 1 (asserts are removed, __debug___is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and valueError if the source contains
null bytes.

If you want to parse Python code into its AST representation, see ast .parse ().

Raises an auditing event compile with arguments source and £ilename. This event may also be raised by
implicit compilation.

© Note

When compiling a string with multi-line code in 'single' or 'eval' mode, input must be terminated
by at least one newline character. This is to facilitate detection of incomplete and complete statements in
the code module.

A\ Warning

It is possible to crash the Python interpreter with a sufficiently large/complex string when compiling to an
AST object due to stack depth limitations in Python’s AST compiler.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also, input in 'exec' mode does not
have to end in a newline anymore. Added the optimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

Added in version 3.8: ast .PyCF_ALLOW_TOP_LEVEL_AWAIT can how be passed in flags to enable support
for top-level await, async for, and async with.

class complex (number=0, /)

class complex (string, /)

class complex (real=0, imag=0)
Convert a single string or number to a complex number, or create a complex number from real and imaginary

parts.

Examples:

>>> complex ('+1.23")

(1.23+073)

>>> complex('-4.53")

-4.57

>>> complex ('-1.23+4.575")
(=1.23+4.57)

>>> complex ('\t(-1.23+4.5J)\n')
(=1.23+4.57)

>>> complex ('-Infinity+NaNj"')
(—inf+nanij)

>>> complex (1.23)

(1.23+03)

>>> complex (imag=-4.5)
-4 .57

>>> complex(-1.23, 4.5)
(-=1.2344.573)

L

11

The Python Library Reference, Release 3.13.1

If the argument is a string, it must contain either a real part (in the same format as for fioat ()) or an
imaginary part (in the same format but with a ' 5 ' or ' J' suffix), or both real and imaginary parts (the sign of
the imaginary part is mandatory in this case). The string can optionally be surrounded by whitespaces and the
round parentheses ' (' and ') ', which are ignored. The string must not contain whitespace between '+', '-',
the '§' or 'J"' suffix, and the decimal number. For example, complex ('1+275") is fine, but complex ('1
+ 27j') raises ValueError. More precisely, the input must conform to the complexvalue production rule
in the following grammar, after parentheses and leading and trailing whitespace characters are removed:

complexvalue = floatvalue |
floatvalue ("3" | "J") |
floatvalue sign absfloatvalue ("3" | "J")

If the argument is a number, the constructor serves as a numeric conversion like i nt and f1oat. For a general
Python object x, complex (x) delegates to x._complex_ (). If _ complex__ () is not defined then it
falls back to _ _float_ (). If _ float__ () is not defined then it falls back to __index__ ().

If two arguments are provided or keyword arguments are used, each argument may be any numeric type
(including complex). If both arguments are real numbers, return a complex number with the real component
real and the imaginary component imag. If both arguments are complex numbers, return a complex number
with the real component real.real-imag.imag and the imaginary component real.imag+imag.real.
If one of arguments is a real number, only its real component is used in the above expressions.

If all arguments are omitted, returns 07.
The complex type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

Changed in version 3.8: Falls backto __index__ () if _ complex_ () and _ float__ () are not defined.

delattr (object, name)

This is a relative of setattr (). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
example, delattr (x, 'foobar') isequivalent to del x.foobar. name need not be a Python identifier
(see setattr()).

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)

dir ()

Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.

For other containers see the built-in 1ist, set, and tuple classes, as well as the collections module.

dir (object)

Without arguments, return the list of names in the current local scope. With an argument, attempt to return a
list of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of attributes.
This allows objects that implement a custom ___getattr_ () or _ getattribute__ () function to cus-
tomize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete and
may be inaccurate when the object has a custom ___getattr_ ().

The default di r () mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

« If the object is a module object, the list contains the names of the module’s attributes.

12

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

« If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

« Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # show the names in the module namespace

['"__builtins_ ', '_ _name_ ', 'struct']

>>> dir (struct) # show the names in the struct module

['Struct', '__all_ ', ' builtins_ ', '__ cached_ ', '_doc_ ', '_file_ "',
' initializing ', '__loader__', '__name__', '__ package ',

' _clearcache', 'calcsize', 'error', 'pack', 'pack_into',
'unpack', 'unpack_from']
>>> class Shape:
def _ dir_ (self):
return ['area', 'perimeter', 'location']

>>> s = Shape ()
>>> dir (s)

["area', 'location', 'perimeter']
. J

© Note

Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to supply an
interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and
its detailed behavior may change across releases. For example, metaclass attributes are not in the result list
when the argument is a class.

divmod (a, b)

Take two (non-complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % b). For floating-point numbers the resultis (q,
a % b),where gisusuallymath.floor (a / b) butmay be 1 less than that. Inanycaseq * b + a $ b
is very close to a, if a % b is non-zero it has the same signas b, and 0 <= abs(a % b) < abs(b).

enumerate (iterable, start=0)

Return an enumerate object. iferable must be a sequence, an iferator, or some other object which supports
iteration. The _ next_ () method of the iterator returned by enumerate () returns a tuple containing a
count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']

>>> list (enumerate (seasons))

[(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list (enumerate (seasons, start=1))

[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

. J

Equivalent to:

s N

def enumerate (iterable, start=0):
n = start
for elem in iterable:
yield n, elem
n += 1

L J

eval (source, /, globals=None, locals=None)

13

The Python Library Reference, Release 3.13.1

Parameters
» source (str | code object) — A Python expression.
e globals (dict | None) — The global namespace (default: None).
e locals (mapping | None) — The local namespace (default: None).

Returns
The result of the evaluated expression.

Raises
Syntax errors are reported as exceptions.

A Warning

This function executes arbitrary code. Calling it with user-supplied input may lead to security vulnerabil-
ities.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition
list) using the globals and locals mappings as global and local namespace. If the globals dictionary is present
and does not contain a value for the key _ builtins__, a reference to the dictionary of the built-in module
builtins is inserted under that key before expression is parsed. That way you can control what builtins are
available to the executed code by inserting your own __builtins__ dictionary into globals before passing
it to eval (). If the locals mapping is omitted it defaults to the globals dictionary. If both mappings are
omitted, the expression is executed with the globals and locals in the environment where eval () is called.
Note, eval() will only have access to the nested scopes (non-locals) in the enclosing environment if they are
already referenced in the scope that is calling eval () (e.g. viaa nonlocal statement).

Example:

>>> x = 1
>>> eval ('
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In this
case, pass a code object instead of a string. If the code object has been compiled with 'exec' as the mode
argument, eval ()’s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and locals ()
functions return the current global and local dictionary, respectively, which may be useful to pass around for
use by eval () or exec ().

If the given source is a string, then leading and trailing spaces and tabs are stripped.

See ast.literal eval () for a function that can safely evaluate strings with expressions containing only
literals.

Raises an auditing event exec with the code object as the argument. Code compilation events may also be
raised.

Changed in version 3.13: The globals and locals arguments can now be passed as keywords.

Changed in version 3.13: The semantics of the default locals namespace have been adjusted as described for
the Jocals () builtin.

exec (source, /, globals=None, locals=None, *, closure=None)

A\ Warning

14

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

This function executes arbitrary code. Calling it with user-supplied input may lead to security vulnerabil-
ities.

This function supports dynamic execution of Python code. source must be either a string or a code object. If
it is a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error
occurs).! If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to be
valid as file input (see the section file-input in the Reference Manual). Be aware that the nonlocal, yield,
and return statements may not be used outside of function definitions even within the context of code passed
to the exec () function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary (and not a subclass of dictionary), which will be used for both the global and
the local variables. If globals and locals are given, they are used for the global and local variables, respectively.
If provided, locals can be any mapping object. Remember that at the module level, globals and locals are the
same dictionary.

© Note

When exec gets two separate objects as globals and locals, the code will be executed as if it were embedded
in a class definition. This means functions and classes defined in the executed code will not be able to
access variables assigned at the top level (as the “top level” variables are treated as class variables in a class
definition).

If the globals dictionary does not contain a value for the key __builtins__, a reference to the dictionary of
the built-in module bui 1t ins is inserted under that key. That way you can control what builtins are available
to the executed code by inserting your own __builtins__ dictionary into globals before passingitto exec ().

The closure argument specifies a closure-a tuple of cellvars. It’s only valid when the object is a code object
containing free (closure) variables. The length of the tuple must exactly match the length of the code object’s
co_freevars attribute.

Raises an auditing event exec with the code object as the argument. Code compilation events may also be
raised.

O Note

The built-in functions globals () and Iocals () return the current global and local namespace, respec-
tively, which may be useful to pass around for use as the second and third argument to exec ().

© Note

The default locals act as described for function Iocals () below. Pass an explicit locals dictionary if you
need to see effects of the code on locals after function exec () returns.

Changed in version 3.11: Added the closure parameter.
Changed in version 3.13: The globals and locals arguments can now be passed as keywords.

Changed in version 3.13: The semantics of the default locals namespace have been adjusted as described for
the Iocals () builtin.

! Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

15

The Python Library Reference, Release 3.13.1

filter (function, iterable)

clas

clas

Construct an iterator from those elements of iterable for which function is true. iterable may be either a
sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for item
in iterable if function (item)) if functionis not None and (item for item in iterable if
item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for which
function is false.

s float (number=0.0, /)
s float (string, /)
Return a floating-point number constructed from a number or a string.

Examples:

-

>>> float ('+1.23")

1.23

>>> float (' -12345\n")
-12345.0

>>> float ('1le-003")
0.001

>>> float ('+1E6")
1000000.0

>>> float ('-Infinity'")
—inf

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional signmaybe '+' or '-';a '+ ' sign has no effect on the value produced.
The argument may also be a string representing a NaN (not-a-number), or positive or negative infinity. More
precisely, the input must conform to the £1oatvalue production rule in the following grammar, after leading
and trailing whitespace characters are removed:

sign n= A

infinity = "Infinity" | "inf"

nan = "nan"

digit = <a Unicode decimal digit, i.e. characters in Unicode general category Nd>
digitpart = digit (["_"] digit)*

number = [digitpart] "." digitpart | digitpart ["."]

exponent = ("e"™ | "E") [sign] digitpart

floatnumber = number [exponent]

absfloatvalue = floatnumber | infinity | nan

floatvalue = [sign] absfloatvalue

Case is not significant, so, for example, “inf”, “Inf”, “INFINITY”, and “iNfINity” are all acceptable spellings
for positive infinity.

Otherwise, if the argument is an integer or a floating-point number, a floating-point number with the same
value (within Python’s floating-point precision) is returned. If the argument is outside the range of a Python
float, an overflowError will be raised.

For a general Python object x, f1oat (x) delegatestox._ float_ (). If _ float__ () isnotdefined then
it falls back to __index__ ().

If no argument is given, 0. 0 is returned.
The float type is described in Numeric Types — int, float, complex.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

Changed in version 3.7: The parameter is now positional-only.
Changed in version 3.8: Falls back to __index__ () if __float__ () is not defined.

format (value, format_spec=")

Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of for-
mat_spec will depend on the type of the value argument; however, there is a standard formatting syntax that is
used by most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling st r (value).

A call to format (value, format_spec) is translated to type (value)._ format_ (value,
format_spec) which bypasses the instance dictionary when searching for the value’s _ format__ ()
method. A TypeError exception is raised if the method search reaches object and the format_spec is
non-empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object () .__format__ (format_spec) raises TypeError if format_spec is not
an empty string.

class frozenset (iterable=sel())
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in class.

See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, 1ist, tuple, and dict classes, as well as the collections
module.

getattr (object, name)

getattr (object, name, default)

Return the value of the named attribute of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, 'foobar')
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised. name need not be a Python identifier (see setattr()).

© Note

Since private name mangling happens at compilation time, one must manually mangle a private attribute’s
(attributes with two leading underscores) name in order to retrieve it with getattr ().

globals ()
Return the dictionary implementing the current module namespace. For code within functions, this is set when
the function is defined and remains the same regardless of where the function is called.

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether it
raises an AttributeError Or not.)

hash (object)

Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

© Note

For objects with custom __hash__ () methods, note that hash () truncates the return value based on the
bit width of the host machine.

help ()

17

The Python Library Reference, Release 3.13.1

help (request)

Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

Note that if a slash(/) appears in the parameter list of a function when invoking help (), it means that the
parameters prior to the slash are positional-only. For more info, see the FAQ entry on positional-only param-
eters.

This function is added to the built-in namespace by the site module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables are
now more comprehensive and consistent.

hex (x)

Convert an integer number to a lowercase hexadecimal string prefixed with “0x”. If x is not a Python int
object, it has to define an __index__ () method that returns an integer. Some examples:

>>> hex (255)
'Oxff!
>>> hex (-42)
'-0x2a'

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or not, you
can use either of the following ways:

-

>>> ! ''% 255, ' ' % 255, ' ''% 255

('Oxff', 'ff', 'FE')

>>> format (255, '#x'), format (255, 'x'), format (255, 'X'")
('Oxff', 'ff', 'FE')

>>> f'{255:4x}', f£'{255:x}', f£'{255:X}'

('oxff', 'ff', 'FF')

o

L

See also format () for more information.

See also int () for converting a hexadecimal string to an integer using a base of 16.

© Note

To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)

Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.

Raises an auditing event builtins.id with argument id.

input ()

input (prompt)

If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is
read, EOFError is raised. Example:

>>> s = input('-—> ")
——> Monty Python's Flying Circus
>>> g

"Monty Python's Flying Circus"

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

Raises an auditing event builtins.input with argument prompt before reading input

Raises an auditing event builtins.input/result with the result after successfully reading input.

class int (number=0, /)
class int (string, /, base=10)

Return an integer object constructed from a number or a string, or return 0 if no arguments are given.

Examples:

s 2}

>>> int (123.45)

123

>>> int ('123")

123

>>> int (' -12_345\n")
-12345

>>> int ('"FACE', 16)
64206

>>> int ('Oxface', 0)
64206

>>> int ('01110011', base=2)
115

L J

If the argument defines __int__ (), int (x) returns x.__int__ (). If the argument defines __index__ (),
itreturns x. __index__ (). If the argument defines _ trunc__ (),itreturnsx.__trunc__ (). For floating-
point numbers, this truncates towards zero.

If the argument is not a number or if base is given, then it must be a string, bytes, or bytearray instance
representing an integer in radix base. Optionally, the string can be preceded by + or — (with no space in
between), have leading zeros, be surrounded by whitespace, and have single underscores interspersed between
digits.

A base-n integer string contains digits, each representing a value from O to n-1. The values 0-9 can be repre-
sented by any Unicode decimal digit. The values 10-35 can be represented by a to z (or A to 7). The default
base is 10. The allowed bases are 0 and 2-36. Base-2, -8, and -16 strings can be optionally prefixed with
0b/0B, 00/00, or 0x/0X, as with integer literals in code. For base 0, the string is interpreted in a similar way
to an integer literal in code, in that the actual base is 2, 8, 10, or 16 as determined by the prefix. Base 0 also
disallows leading zeros: int ('010', 0) is not legal, while int ('010') and int ('010"', 8) are.

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.__index__ method,
that method is called to obtain an integer for the base. Previous versions used base.__int__ instead of
base.__index_ .

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: The first parameter is now positional-only.

Changed in version 3.8: Falls back to __index_ () if __int__ () is not defined.
Changed in version 3.11: The delegation to __trunc__ () is deprecated.

Changed in version 3.11: int string inputs and string representations can be limited to help avoid denial of
service attacks. A valueError is raised when the limit is exceeded while converting a string to an int or
when converting an int into a string would exceed the limit. See the integer string conversion length limitation
documentation.

19

The Python Library Reference, Release 3.13.1

isinstance (object, classinfo)

Return True if the object argument is an instance of the classinfo argument, or of a (direct, indirect, or virfual)
subclass thereof. If object is not an object of the given type, the function always returns False. If classinfo is a
tuple of type objects (or recursively, other such tuples) or a Union Type of multiple types, return True if object
is an instance of any of the types. If classinfo is not a type or tuple of types and such tuples, a TypeError
exception is raised. TypeError may not be raised for an invalid type if an earlier check succeeds.

Changed in version 3.10: classinfo can be a Union Type.

issubclass (class, classinfo)

Return True if class is a subclass (direct, indirect, or virtual) of classinfo. A class is considered a subclass of
itself. classinfo may be a tuple of class objects (or recursively, other such tuples) or a Union Type, in which
case return True if class is a subclass of any entry in classinfo. In any other case, a TypeError exception is
raised.

Changed in version 3.10: classinfo can be a Union Type.

iter (object)

iter (object, sentinel)

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iterable
protocol (the __iter () method), or it must support the sequence protocol (the __getitem_ () method
with integer arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If
the second argument, sentinel, is given, then object must be a callable object. The iterator created in this case
will call object with no arguments for each call to its __next__ () method; if the value returned is equal to
sentinel, St opIteration will be raised, otherwise the value will be returned.

See also Iterator Types.

One useful application of the second form of iter () is to build a block-reader. For example, reading fixed-
width blocks from a binary database file until the end of file is reached:

from functools import partial
with open('mydata.db', 'rb') as f:
for block in iter (partial (f.read, 64), b''"):
process_block (block)

len (S)

Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes,
tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

CPython implementation detail: 1en raises OverflowError on lengths larger than sys.maxsize, such
as range (2 ** 100).

class list

class list (iterable)

Rather than being a function, 1i st is actually a mutable sequence type, as documented in Lists and Sequence
Types — list, tuple, range.

locals ()

Return a mapping object representing the current local symbol table, with variable names as the
keys, and their currently bound references as the values.

At module scope, as well as when using exec () or eval () with a single namespace, this function
returns the same namespace as globals ().

At class scope, it returns the namespace that will be passed to the metaclass constructor.

When using exec () or eval () with separate local and global arguments, it returns the local
namespace passed in to the function call.

In all of the above cases, each call to locals () in a given frame of execution will return the
same mapping object. Changes made through the mapping object returned from locals () will

20

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

be visible as assigned, reassigned, or deleted local variables, and assigning, reassigning, or deleting
local variables will immediately affect the contents of the returned mapping object.

In an optimized scope (including functions, generators, and coroutines), each call to locals ()
instead returns a fresh dictionary containing the current bindings of the function’s local variables
and any nonlocal cell references. In this case, name binding changes made via the returned dict
are not written back to the corresponding local variables or nonlocal cell references, and assigning,
reassigning, or deleting local variables and nonlocal cell references does not affect the contents of
previously returned dictionaries.

Calling 1ocals () as part of a comprehension in a function, generator, or coroutine is equivalent to
calling it in the containing scope, except that the comprehension’s initialised iteration variables will
be included. In other scopes, it behaves as if the comprehension were running as a nested function.

Calling 1ocals () as part of a generator expression is equivalent to calling it in a nested generator
function.

Changed in version 3.12: The behaviour of 1ocals () in a comprehension has been updated as described in
PEP 709.

Changed in version 3.13: As part of PEP 667, the semantics of mutating the mapping objects returned from
this function are now defined. The behavior in optimized scopes is now as described above. Aside from being
defined, the behaviour in other scopes remains unchanged from previous versions.

map (function, iterable, *iterables)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterables
arguments are passed, function must take that many arguments and is applied to the items from all iterables
in parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where
the function inputs are already arranged into argument tuples, see itertools.starmap ().

max (iterable, *, key=None)

max (iterable, *, default, key=None)

max (argl, arg2, *args, key=None)
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is returned. If
two or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable is
empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with other sort-
stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0] and heapq.
nlargest (1, iterable, key=keyfunc).

Changed in version 3.4: Added the default keyword-only parameter.
Changed in version 3.8: The key can be None.

class memoryview (object)

Return a “memory view” object created from the given argument. See Memory Views for more information.
min (iterable, *, key=None)
min (iterable, *, default, key=None)
min (argl, arg2, *args, key=None)

Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned.
If two or more positional arguments are provided, the smallest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable is
empty. If the iterable is empty and default is not provided, a ValueError is raised.

21

https://peps.python.org/pep-0709/
https://peps.python.org/pep-0667/

The Python Library Reference, Release 3.13.1

If multiple items are minimal, the function returns the first one encountered. This is consistent with other sort-
stability preserving tools such as sorted (iterable, key=keyfunc) [0] and heapg.nsmallest (1,
iterable, key=keyfunc).

Changed in version 3.4: Added the default keyword-only parameter.
Changed in version 3.8: The key can be None.

next (iterator)

next (iferator, default)
Retrieve the next item from the iterator by calling its __next__ () method. If default is given, it is returned
if the iterator is exhausted, otherwise StopIteration is raised.

class object

This is the ultimate base class of all other classes. It has methods that are common to all instances of Python
classes. When the constructor is called, it returns a new featureless object. The constructor does not accept
any arguments.

© Note
object instances do not have __dict__ attributes, so you can’t assign arbitrary attributes to an instance

of object.

oct (x)

Convert an integer number to an octal string prefixed with “0o0”. The result is a valid Python expression. If x
is not a Python int object, it has to define an __index__ () method that returns an integer. For example:

>>> oct (8)
'0010"

>>> oct (-56)
'-0070"

If you want to convert an integer number to an octal string either with the prefix “00” or not, you can use either
of the following ways.

-

>>> ! ''% 10, ! ' % 10

('0o12', '12")

>>> format (10, '#o0'), format (10, 'o')
('0o12', '12")

>>> f'{10:40}', £'{10:0}"'

("Ool2', "127")

L

See also format () for more information.

open (file, mode="r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)

Open file and return a corresponding file object. If the file cannot be opened, an 0SError is raised. See
tut-files for more examples of how to use this function.

file is a path-like object giving the pathname (absolute or relative to the current working directory) of the file
to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed
when the returned I/O object is closed unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ' r' which means
open for reading in text mode. Other common values are 'w' for writing (truncating the file if it already exists),
'x ' for exclusive creation, and 'a"' for appending (which on some Unix systems, means that all writes append
to the end of the file regardless of the current seek position). In text mode, if encoding is not specified the
encoding used is platform-dependent: Iocale.getencoding () is called to get the current locale encoding.
(For reading and writing raw bytes use binary mode and leave encoding unspecified.) The available modes are:

22 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

Character Meaning

i " open for reading (default)

w' open for writing, truncating the file first

'x! open for exclusive creation, failing if the file already exists
a' open for writing, appending to the end of file if it exists
b’ binary mode

0% text mode (default)

U open for updating (reading and writing)

The default mode is 'r' (open for reading text, a synonym of 'rt'). Modes 'w+' and 'w+b' open and
truncate the file. Modes 'r+' and 'r+b' open the file with no truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including 'b' in the mode argument) return contents as bytes objects without any decoding. In text mode
(the default, or when 't ' is included in the mode argument), the contents of the file are returned as st r, the
bytes having been first decoded using a platform-dependent encoding or using the specified encoding if given.

O Note

Python doesn’t depend on the underlying operating system’s notion of text files; all the processing is done
by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass O to switch buffering off (only allowed in
binary mode), 1 to select line buffering (only usable when writing in text mode), and an integer > 1 to indicate
the size in bytes of a fixed-size chunk buffer. Note that specifying a buffer size this way applies for binary
buffered 1/0O, but TextIOWrapper (i.e., files opened with mode="r+") would have another buffering. To
disable buffering in Text IOWrapper, consider using the write_through flag for io. Text TOWrapper.
reconfigure (). When no buffering argument is given, the default buffering policy works as follows:

« Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io.DEFAULT BUFFER _SI1ZE. On
many systems, the buffer will typically be 4096 or 8192 bytes long.

o “Interactive” text files (files for which isatty () returns True) use line buffering. Other text files use
the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text
mode. The default encoding is platform dependent (whatever locale.getencoding () returns), but any
text encoding supported by Python can be used. See the codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot
be used in binary mode. A variety of standard error handlers are available (listed under Error Handlers),
though any error handling name that has been registered with codecs. register error () is also valid.
The standard names include:

e 'strict' toraise a ValueError exception if there is an encoding error. The default value of None
has the same effect.

e 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.
e 'replace' causes a replacement marker (such as ' 2 ') to be inserted where there is malformed data.

e 'surrogateescape' will represent any incorrect bytes as low surrogate code units ranging from
U+DC80 to U+DCFF. These surrogate code units will then be turned back into the same bytes when
the surrogateescape error handler is used when writing data. This is useful for processing files in an
unknown encoding.

e 'xmlcharrefreplace' is only supported when writing to a file. Characters not supported by the
encoding are replaced with the appropriate XML character reference s #nnn; .

e 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.

23

The Python Library Reference, Release 3.13.1

e 'namereplace' (also only supported when writing) replaces unsupported characters with \N{. ..}
escape sequences.

newline determines how to parse newline characters from the stream. It can be None, '', '\n"', '\r', and
"\r\n"'. It works as follows:

o When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in
the input can end in "\n"', '\r', or '\r\n"', and these are translated into '\n' before being returned
to the caller. If it is ' ', universal newlines mode is enabled, but line endings are returned to the caller
untranslated. If it has any of the other legal values, input lines are only terminated by the given string,
and the line ending is returned to the caller untranslated.

o When writing output to the stream, if newline is None, any '\n"' characters written are translated to
the system default line separator, os. 1inesep. If newlineis ' ' or '\n"', no translation takes place. If
newline is any of the other legal values, any '\n"' characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will be
kept open when the file is closed. If a filename is given closefd must be True (the default); otherwise, an error
will be raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os. open
as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os. open () function to open a file relative to a given
directory:

-

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener (path, flags):
return os.open (path, flags, dir_fd=dir_f£fd)

>>> with open ('spamspam.txt', 'w', opener=opener) as f:

print ('This will be written to somedir/spamspam.txt', file=f)

>>> os.close(dir_fd) # don't leak a file descriptor

The type of file object returned by the open () function depends on the mode. When open () is used to open
afileinatextmode ("w', 'r', 'wt', 'rt',etc.), it returns a subclass of io. Text T0Base (specifically io.
Text TOWrapper). When used to open a file in a binary mode with buffering, the returned class is a subclass
of io.BufferedIOBase. The exact class varies: in read binary mode, it returns an io.BufferedReader;
in write binary and append binary modes, it returns an io.Bufferediiriter, and in read/write mode, it
returns an io.Buf feredRandom. When buffering is disabled, the raw stream, a subclass of io0.RawIOBase,
io.FileIo, is returned.

See also the file handling modules, such as fileinput, io (where open () is declared), os, os.path,
tempfile,and shutil.

Raises an auditing event open with arguments path, mode, flags.
The mode and f1lags arguments may have been modified or inferred from the original call.
Changed in version 3.3:
o The opener parameter was added.
e The 'x' mode was added.
e TOError used to be raised, it is now an alias of 0OSError.
e FileExistsErroris now raised if the file opened in exclusive creation mode (' x ') already exists.
Changed in version 3.4:

¢ The file is now non-inheritable.

24

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

Changed in version 3.5:

« If the system call is interrupted and the signal handler does not raise an exception, the function now retries
the system call instead of raising an InterruptedError exception (see PEP 475 for the rationale).

e The 'namereplace’' error handler was added.
Changed in version 3.6:

o Support added to accept objects implementing os.PathLike.

» On Windows, opening a console buffer may return a subclass of i10.RawIOBase otherthan i0.FileI0.
Changed in version 3.11: The 'U' mode has been removed.

ord (c)

Given a string representing one Unicode character, return an integer representing the Unicode code point of
that character. For example, ord ('a"') returns the integer 97 and ord ('€") (Euro sign) returns 8364. This
is the inverse of chr ().

pow (base, exp, mod=None)

Return base to the power exp; if mod is present, return base to the power exp, modulo mod (computed more
efficiently than pow (base, exp) % mod). The two-argument form pow (base, exp) isequivalent to using
the power operator: base* *exp.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, pow (10, 2) returns 100, but pow (10, -2) returns 0.01. For a negative base of type int
or float and a non-integral exponent, a complex result is delivered. For example, pow (-9, 0.5) returns a
value close to 3j. Whereas, for a negative base of type int or £1oat with an integral exponent, a float result
is delivered. For example, pow (-9, 2.0) returns 81.0.

For int operands base and exp, if mod is present, mod must also be of integer type and mod must be nonzero.
If mod is present and exp is negative, base must be relatively prime to mod. In that case, pow (inv_base,
—exp, mod) is returned, where inv_base is an inverse to base modulo mod.

Here’s an example of computing an inverse for 38 modulo 97:

>>> pow (38, -1, mod=97)
23

>>> 23 * 38 5 97 == 1
True

Changed in version 3.8: For int operands, the three-argument form of pow now allows the second argument
to be negative, permitting computation of modular inverses.

Changed in version 3.8: Allow keyword arguments. Formerly, only positional arguments were supported.

print (*objects, sep="", end="\n’, file=None, flush=False)
Print objects to the text stream file, separated by sep and followed by end. sep, end, file, and flush, if present,
must be given as keyword arguments.

All non-keyword arguments are converted to strings like st~ () does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no objects are given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None, sys.
stdout will be used. Since printed arguments are converted to text strings, print () cannot be used with
binary mode file objects. For these, use file.write (...) instead.

Output buffering is usually determined by file. However, if flush is true, the stream is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

25

https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.13.1

class property (fget=None, fset=None, fdel=None, doc=None)

Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a function
for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

p
class C:

def _ init_ (self):
self._x

None

def getx(self):
return self._x

def setx(self, wvalue):

self._x = value

def delx (self):
del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

If c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter, and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fger’s docstring
(if it exists). This makes it possible to create read-only properties easily using property () as a decorator:

p
class Parrot:

def _ init_ (self):
self. voltage = 100000

@property
def voltage(self):
"""Get the current voltage."""

return self._voltage

The @property decorator turns the voltage () method into a “getter” for a read-only attribute with the same
name, and it sets the docstring for voltage to “Get the current voltage.”

@getter
@setter

@deleter

A property object has getter, setter, and deleter methods usable as decorators that create a copy
of the property with the corresponding accessor function set to the decorated function. This is best
explained with an example:

class C:
def @ init_ (self):
self._x = None

@property

def x(self):
H”HIIm the VXY property. mrrn
return self._x

@x.setter

(continues on next page)

26

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

(continued from previous page)

def x(self, wvalue):
self. x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same
name as the original property (x in this case.)

The returned property object also has the attributes fget, fset, and £del corresponding to the con-
structor arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

name

Attribute holding the name of the property. The name of the property can be changed at runtime.
Added in version 3.13.

class range (sfop)

class range (start, stop, step=I)
Rather than being a function, range is actually an immutable sequence type, as documented in Ranges and
Sequence Types — list, tuple, range.

repr (object)

Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval (); otherwise,
the representation is a string enclosed in angle brackets that contains the name of the type of the object together
with additional information often including the name and address of the object. A class can control what
this function returns for its instances by defining a _repr__ () method. If sys.displayhook () is not
accessible, this function will raise Runt imeError.

This class has a custom representation that can be evaluated:

class Person:
def _ init__ (self, name, age):
self.name = name
self.age = age

def _ repr__ (self):

return f"Person('{self.name}', self.age /)"

reversed (seq)

Return a reverse iferator. seq must be an object which has a _ reversed__ () method or supports the se-
quence protocol (the __len_ () method and the _ getitem_ () method with integer arguments starting
at 0).

round (number, ndigits=None)

Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it returns
the nearest integer to its input.

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power
minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example,
both round (0.5) and round (-0.5) are 0, and round (1.5) is 2). Any integer value is valid for ndigits
(positive, zero, or negative). The return value is an integer if ndigits is omitted or None. Otherwise, the return
value has the same type as number.

For a general Python object number, round delegates to number._round_ .

27

The Python Library Reference, Release 3.13.1

© Note

The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives 2. 67 instead
of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal fractions can’t be
represented exactly as a float. See tut-fp-issues for more information.

class set

class set (iterable)

Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set and
Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, list, tuple, and dict classes, as well as the
collections module.

setattr (object, name, value)

This is the counterpart of getattr (). The arguments are an object, a string, and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr (x, 'foobar', 123) isequivalentto x.foobar = 123.

name need not be a Python identifier as defined in identifiers unless the object chooses to enforce that, for
example ina custom __getattribute_ () orvia__slots__ . An attribute whose name is not an identifier
will not be accessible using the dot notation, but is accessible through getattr () etc..

© Note

Since private name mangling happens at compilation time, one must manually mangle a private attribute’s
(attributes with two leading underscores) name in order to set it with setattr ().

class slice (stop)

class slice (start, stop, step=None)

Return a slice object representing the set of indices specified by range (start, stop, step). The start
and step arguments default to None.

start
stop

step

Slice objects have read-only data attributes start, stop, and step which merely return the argument
values (or their default). They have no other explicit functionality; however, they are used by NumPy
and other third-party packages.

Slice objects are also generated when extended indexing syntax is used. For example: a [start:stop:step]
ora[start:stop, il]. See itertools.islice () for an alternate version that returns an iterator.

Changed in version 3.12: Slice objects are now hashable (provided start, stop, and step are hashable).

sorted (iterable, /, *, key=None, reverse=False)

Return a new sorted list from the items in iterable.
Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each element in iterable
(for example, key=str.lower). The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.

Use functools.cmp_to_key () to convert an old-style cmp function to a key function.

28

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

The built-in sorted () function is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

The sort algorithm uses only < comparisons between items. While definingan __ 1t () method will suffice
for sorting, PEP 8 recommends that all six rich comparisons be implemented. This will help avoid bugs when
using the same data with other ordering tools such as max () that rely on a different underlying method. Im-
plementing all six comparisons also helps avoid confusion for mixed type comparisons which can call reflected
the _ gt_ () method.

For sorting examples and a brief sorting tutorial, see sortinghowto.

@staticmethod

Transform a method into a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, argN):

The @staticmethod form is a function decorator — see function for details.

A static method can be called either on the class (such as C.f ()) or on an instance (such as C () . £ ()).
Moreover, the static method descriptor is also callable, so it can be used in the class definition (such as f ()).

Static methods in Python are similar to those found in Java or C++. Also, see classmethod () for a variant
that is useful for creating alternate class constructors.

Like all decorators, it is also possible to call staticmethod as a regular function and do something with its
result. This is needed in some cases where you need a reference to a function from a class body and you want
to avoid the automatic transformation to instance method. For these cases, use this idiom:

def regular_ function() :

class C:
method = staticmethod (regular_function)

For more information on static methods, see types.

Changed in version 3.10: Static methods now inherit the method attributes (__module_, _ name_

__qualname__, doc___ and __annotations__), have a new __wrapped__ attribute, and are now

callable as regular functions.

class str (object=")
class str (object=b", encoding="utf-8’, errors=>strict’)
Return a st r version of object. See st r () for details.

str is the built-in string class. For general information about strings, see Text Sequence Type — str.

sum (iterable, /, start=0)

Sums start and the items of an iterable from left to right and returns the total. The iferable’s items are normally
numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence of
strings is by calling ' ' . join (sequence) . To add floating-point values with extended precision, see math.
fsum (). To concatenate a series of iterables, consider using i tertools.chain ().

Changed in version 3.8: The start parameter can be specified as a keyword argument.

Changed in version 3.12: Summation of floats switched to an algorithm that gives higher accuracy and better
commutativity on most builds.

class super

29

https://peps.python.org/pep-0008/

The Python Library Reference, Release 3.13.1

class super (fype, object_or_type=None)

Return a proxy object that delegates method calls to a parent or sibling class of fype. This is useful for accessing
inherited methods that have been overridden in a class.

The object_or_type determines the method resolution order to be searched. The search starts from the class
right after the fype.

For example, if __mro__ of object_or_typeisD -> B -> C —-> A -> object and the value of rype is B,
then super () searchesC -> A -> object.

The __mro__ attribute of the class corresponding to object_or_type lists the method resolution search order
used by both getattr () and super (). The attribute is dynamic and can change whenever the inheritance
hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) must be true. If the second argument is a type, issubclass (type2, type)
must be true (this is useful for classmethods).

When called directly within an ordinary method of a class, both arguments may be omitted (“zero-argument
super ()”). In this case, type will be the enclosing class, and obj will be the first argument of the immediately
enclosing function (typically sel1f). (This means that zero-argument super () will not work as expected
within nested functions, including generator expressions, which implicitly create nested functions.)

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This
use case is unique to Python and is not found in statically compiled languages or languages that only support
single inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes im-
plement the same method. Good design dictates that such implementations have the same calling signature in
every case (because the order of calls is determined at runtime, because that order adapts to changes in the
class hierarchy, and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, argqg):
super () .method (arg) # This does the same thing as:
super (C, self).method (arg)

In addition to method lookups, super () also works for attribute lookups. One possible use case for this is
calling descriptors in a parent or sibling class.

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such as
super () .__getitem__ (name). It does so by implementing its own __getattribute__ () method for
searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly, super ()
is undefined for implicit lookups using statements or operators such as super () [name].

Also note that, aside from the zero argument form, super () is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument form
only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve the class
being defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

class tuple
class tuple (iterable)
Rather than being a function, tuple is actually an immutable sequence type, as documented in Tuples and

Sequence Types — list, tuple, range.

class type (object)

30 Chapter 2. Built-in Functions

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.13.1

class type (name, bases, dict, **kwds)

With one argument, return the type of an object. The return value is a type object and generally the same object
as returned by object._ class_ .

The isinstance () built-in function is recommended for testing the type of an object, because it takes sub-
classes into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class statement.
The name string is the class name and becomes the __name___ attribute. The bases tuple contains the base
classes and becomes the _ bases___ attribute; if empty, object, the ultimate base of all classes, is added.
The dict dictionary contains attribute and method definitions for the class body; it may be copied or wrapped
before becoming the _ dict__ attribute. The following two statements create identical t ype objects:

>>> class X:

a=1

>>> X = type('X', (), dict(a=1))

See also:
o Documentation on attributes and methods on classes.
o Type Objects

Keyword arguments provided to the three argument form are passed to the appropriate metaclass machinery
(usually __init_subclass__()) in the same way that keywords in a class definition (besides metaclass)
would.

See also class-customization.

Changed in version 3.6: Subclasses of type which don’t override type._ _new__ may no longer use the
one-argument form to get the type of an object.

vars ()
vars (object)

Return the _ dict__ attribute for a module, class, instance, or any other object witha __ dict__ attribute.

Objects such as modules and instances have an updateable __dict__ attribute; however, other objects may
have write restrictions on their __dict__ attributes (for example, classes use a t ypes . MappingProxyType
to prevent direct dictionary updates).

Without an argument, vars () acts like locals ().

A TypeErrorexception is raised if an object is specified butitdoesn’thavea dict__ attribute (for example,
if its class defines the __slots__ attribute).

Changed in version 3.13: The result of calling this function without an argument has been updated as described
for the 7ocals () builtin.

zip (*iterables, strict=False)

Iterate over several iterables in parallel, producing tuples with an item from each one.

Example:

>>> for item in zip([1, 2, 3], ['sugar', 'spice', 'everything nice']):
print (item)

(1, 'sugar')
(2, 'spice')

(3, 'everything nice')
. J

More formally: zip () returns an iterator of tuples, where the i-th tuple contains the i-th element from each
of the argument iterables.

31

The Python Library Reference, Release 3.13.1

Another way to think of zip () is that it turns rows into columns, and columns into rows. This is similar to

transposing a matrix.

zip () is lazy: The elements won't be processed until the iterable is iterated on, e.g. by a for loop or by

wrapping ina 1ist.

One thing to consider is that the iterables passed to zip () could have different lengths; sometimes by de-
sign, and sometimes because of a bug in the code that prepared these iterables. Python offers three different

approaches to dealing with this issue:

o By default, zip () stops when the shortest iterable is exhausted. It will ignore the remaining items in the

longer iterables, cutting off the result to the length of the shortest iterable:

['fee', 'fi', 'fo',
'fo')]

>>> list (zip(range(3),
[(0, '"fee'), (1, 'fi'), (2,

"fum']))

|

e zip () is often used in cases where the iterables are assumed to be of equal length. In such cases, it’s
recommended to use the strict=True option. Its output is the same as regular zip ():

((ta', 1), ('b', 2), ('c', 3)]

>>> list(zip(('a', 'b', 'c'), (1, 2, 3), strict=True))

Unlike the default behavior, it raises a ValueError if one iterable is exhausted before the others:

>>> for item in zip(range(3), ['fee', 'fi', 'fo',

print (item)

(0, 'fee'")

(1, '"fi')
(2, 'fo')

Traceback (most recent call last):

strict=True) :

ValueError: zip() argument 2 is longer than argument 1

Without the st rict=True argument, any bug that results in iterables of different lengths will be silenced,
possibly manifesting as a hard-to-find bug in another part of the program.

« Shorter iterables can be padded with a constant value to make all the iterables have the same length. This
isdone by itertools.zip_longest ().

Edge cases: With a single iterable argument, zip () returns an iterator of 1-tuples. With no arguments, it

returns an empty iterator.

Tips and tricks:

o The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clus-
tering a data series into n-length groups using zip (* [iter (s)] *n, strict=True). Thisrepeatsthe
same iterator n times so that each output tuple has the result of n calls to the iterator. This has the effect
of dividing the input into n-length chunks.

e zip () in conjunction with the * operator can be used to unzip a list:

>> x = [1, 2, 3]

>> vy = [4, 5, 6]

>>> list (zip(x, y))

(1, 4), (2, 5), (3, 6)]

>>> %2, y2 = zip(*zip(x, y))

>>> x == list(x2) and y == list (y2)
True

Changed in version 3.10: Added the st rict argument.

Chapter 2. Built-in Functions

https://en.wikipedia.org/wiki/Transpose

The Python Library Reference, Release 3.13.1

__import__ (name, globals=None, locals=None, fromlist=(), level=0)

© Note

This is an advanced function that is not needed in everyday Python programming, unlike importlib.
import_module ().

This function is invoked by the import statement. It can be replaced (by importing the bui 1t ins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but doing
so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain the same goals
and does not cause issues with code which assumes the default import implementation is in use. Direct use of
Aiimportgi()isaBOdBCOuRgedinﬁ%QrOfimportlib.importfmodule(L

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at
all and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. 0 (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the
module calling _ import__ () (see PEP 328 for the details).

When the name variable is of the form package.module, normally, the top-level package (the name up till
the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is
given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

[spam = _ _import__ ('spam', globals (), locals(), [], 0)

The statement import spam.ham results in this call:

[spam = __import__ ('spam.ham', globals(), locals(), [], 0) }

Note how ___import__ () returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ ('spam.ham', globals(), locals(), ['eggs', 'sausage'], 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam.ham module is returned from __ import__ (). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module ().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the default value
to 0).

Changed in version 3.9: When the command line options -E or —I are being used, the environment variable
PYTHONCASEOK is now ignored.

33

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0328/

The Python Library Reference, Release 3.13.1

34 Chapter 2. Built-in Functions

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False

The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

True

The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
An object frequently used to represent the absence of a value, as when default arguments are not passed to
a function. Assignments to None are illegal and raise a SyntaxError. None is the sole instance of the
NoneType type.

NotImplemented
A special value which should be returned by the binary special methods (e.g. __eq (), __1t_ (),
__add__(),__rsub__ (), etc.) to indicate that the operation is not implemented with respect to the other

type; may be returned by the in-place binary special methods (e.g. __imul__ (), __iand__ (), etc.) for the
same purpose. It should not be evaluated in a boolean context. Not Implemented is the sole instance of the
types.NotImplementedType type.

© Note

When a binary (or in-place) method returns Not Implemented the interpreter will try the reflected
operation on the other type (or some other fallback, depending on the operator). If all attempts
return NotImplemented, the interpreter will raise an appropriate exception. Incorrectly returning
Not Implemented will result in a misleading error message or the Not Implemented value being re-
turned to Python code.

See Implementing the arithmetic operations for examples.

© Note

NotImplementedError and Not Implemented are not interchangeable, even though they have similar
names and purposes. See Not ImplementedError for details on when to use it.

Changed in version 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationwWarning. It will raise a TypeError in a future version of
Python.

Ellipsis
The same as the ellipsis literal “. . .”. Special value used mostly in conjunction with extended slicing syntax
for user-defined container data types. E11ipsis is the sole instance of the types.E11ipsisType type.
__debug
This constant is true if Python was not started with an —0 option. See also the assert statement.

35

The Python Library Reference, Release 3.13.1

© Note

The names None, False, Trueand __debug _ cannot be reassigned (assignments to them, even as an attribute
name, raise SyntaxError), so they can be considered “true” constants.

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —-S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not
be used in programs.
quit (code=None)
exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called,
raise SystemExit with the specified exit code.
help
Object that when printed, prints the message “Type help() for interactive help, or help(object) for help about
object.”, and when called, acts as described e 1sewhere.
copyright
credits

Objects that when printed or called, print the text of copyright or credits, respectively.

license

Object that when printed, prints the message “Type license() to see the full license text”, and when called,
displays the full license text in a pager-like fashion (one screen at a time).

36 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and don’t
return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared for
equality, tested for truth value, and converted to a string (with the repr () function or the slightly different st ()
function). The latter function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an i £ or while condition or as operand of the Boolean operations
below.

By default, an object is considered true unless its class defines eithera __bool__ () method that returns False or a
__len__ () method that returns zero, when called with the object.! Here are most of the built-in objects considered
false:

o constants defined to be false: None and False
« zero of any numeric type: 0, 0.0, 0J, Decimal (0), Fraction (0, 1)
« empty sequences and collections: '', (), [1, {}, set (), range (0)

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for
true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their
operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes
X or y if x is true, then x, else y (D
x and y if x is false, then x, else y 2)
not x if x is false, then True, else False (3)

Notes:
(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is false.

(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

! Additional information on these special methods may be found in the Python Reference Manual (customization).

37

The Python Library Reference, Release 3.13.1

(3) not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b), and
a == not b iSa syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x < y
and y <= z,except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is found
to be false).

This table summarizes the comparison operations:

Operation Meaning

< strictly less than

<= less than or equal

> strictly greater than

>= greater than or equal
== equal

1= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. The == operator is always defined
but for some object types (for example, class objects) is equivalent to is. The <, <=, > and >= operators are only
defined where they make sense; for example, they raise a TypeError exception when one of the arguments is a
complex number.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq_ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object, unless
the class defines enough of the methods 1t (), __le (), gt (),and__ge_ () (ingeneral, 1t ()
and __eq__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects and
never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported by types that are iterable or
implement the __contains__ () method.

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating-point numbers, and complex numbers. In addition, Booleans
are a subtype of integers. Integers have unlimited precision. Floating-point numbers are usually implemented using
double in C; information about the precision and internal representation of floating-point numbers for the machine
on which your program is running is available in sys. float_info. Complex numbers have a real and imaginary
part, which are each a floating-point number. To extract these parts from a complex number z, use z.real and
z.imag. (The standard library includes the additional numeric types fractions.Fraction, for rationals, and
decimal.Decimal, for floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an exponent
sign yield floating-point numbers. Appending '§' or 'J' to a numeric literal yields an imaginary number (a complex
number with a zero real part) which you can add to an integer or float to get a complex number with real and imaginary
parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point,

38 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

which is narrower than complex. A comparison between numbers of different types behaves as though the exact
values of those numbers were being compared.’

The constructors int (), float (), and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations (for priorities of the operations, see operator-

summary):

Operation Result Notes Full documen-
tation

X +y sum of x and y

X -y difference of x and y

x *y product of x and y

x /vy quotient of x and y

x //y floored quotient of x and y (DH(2)

X %y remainder of x / y 2)

=% X negated

+x x unchanged

abs (x) absolute value or magnitude of x abs ()

int (x) x converted to integer 3)©6) int()

float (x) x converted to floating point 4)(©6) float ()

complex (re, a complex number with real part re, imaginary part im. im de- (6) complex ()

im) faults to zero.

@ conjugate of the complex number ¢

conjugate ()

divmod (x, y) the pair (x // y, x % y) 2) divmod ()

pow (X, V) X to the power y (®)) pow ()

X ** y X to the power y 5)

Notes:
(1) Also referred to as integer division. For operands of type int, the result has type int. For operands of type

2
3)

“4)

(&)
(6)

float, the result has type float. In general, the result is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//21is 0, (-1)//21s -1,1//(-2) is
-1,and (-1)//(-2) is 0.

Not for complex numbers. Instead convert to floats using abs () if appropriate.

Conversion from float to int truncates, discarding the fractional part. See functions math. floor () and
math.ceil () for alternative conversions.

float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

Python defines pow (0, 0) and 0 ** 0 to be 1, as is common for programming languages.

The numeric literals accepted include the digits 0 to 9 or any Unicode equivalent (code points with the Nd
property).

See the Unicode Standard for a complete list of code points with the Nd property.

All numbers.Real types (int and float) also include the following operations:

Operation Result

math.trunc(x) xtruncated to Integral

round (x[, n]) xrounded to n digits, rounding half to even. If # is omitted, it defaults to 0.
math.floor (x) the greatest Integral <=x

math.ceil (x) the least Tntegral >=x

2 As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 39

https://unicode.org/Public/UNIDATA/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.13.1

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types

Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out
in two’s complement with an infinite number of sign bits.

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and -).

This table lists the bitwise operations sorted in ascending priority:

Operation Result Notes
x |y bitwise or of x and y)

x Ny bitwise exclusive or of xand y (4)

X & Yy bitwise and of x and y)

x << n x shifted left by n bits (DH(2)
X >> n x shifted right by n bits (H(3)
~X the bits of x inverted

Notes:
(1) Negative shift counts are illegal and cause a ValueError to be raised.
(2) A left shift by n bits is equivalent to multiplication by pow (2, n).
(3) A right shift by 7 bits is equivalent to floor division by pow (2, n).

(4) Performing these calculations with at least one extra sign extension bit in a finite two’s complement represen-
tation (a working bit-width of 1 + max (x.bit_length(), y.bit_length()) or more) is sufficient to
get the same result as if there were an infinite number of sign bits.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers. Integral abstract base class. In addition, it provides a few more methods:

int.bit_length/()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = 37

>>> bin (n)
'-0b100101"

>>> n.bit_length ()
6

More precisely, if x is nonzero, then x.bit_length () is the unique positive integer k such that 2** (k—1)
<= abs(x) < 2**k. Equivalently, when abs (x) is small enough to have a correctly rounded logarithm,
thenk = 1 + int (log(abs(x), 2)).If xiszero,then x.bit_length () returns 0.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) —--> '-0b100101'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101') —-—> 6

Added in version 3.1.

int.bit_count ()

Return the number of ones in the binary representation of the absolute value of the integer. This is also known
as the population count. Example:

40 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

>> n = 19

>>> bin (n)

'0b10011"

>>> n.bit_count ()

3

>>> (—-n) .bit_count ()
3

L J

Equivalent to:

def bit_count (self):
return bin(self) .count ("1")

Added in version 3.10.

int .to_bytes (length=1, byteorder="big’, *, signed=False)

Return an array of bytes representing an integer.

>>> (1024) .to_bytes (2, byteorder='big')

b'\x04\x00"'

>>> (1024) .to_bytes (10, byteorder='big')
b'"\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder='big', signed=True)

P \xfE\XEE\REF\XEF\XEF\xfF\xfFf\xff\xfc\x00"

>>> x = 1000

>>> x.to_bytes ((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03"'

.

J

The integer is represented using length bytes, and defaults to 1. An OverflowError is raised if the integer is
not representable with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer, and defaults to "big". If
byteorder is "big", the most significant byte is at the beginning of the byte array. If byteorder is "1ittle",
the most significant byte is at the end of the byte array.

The signed argument determines whether two’s complement is used to represent the integer. If signed is False
and a negative integer is given, an OverflowError is raised. The default value for signed is False.

The default values can be used to conveniently turn an integer into a single byte object:

>>> (65) .to_bytes ()
b'A'

However, when using the default arguments, don’t try to convert a value greater than 255 or you’ll get an
OverflowError

Equivalent to:

def to_bytes (n, length=1, byteorder='big', signed=False) :
if byteorder == 'little':
order = range (length)
elif byteorder == 'big':
order = reversed(range (length))
else:
raise ValueError ("byteorder must be either 'little' or 'big'")

return bytes((n >> i*8) & Oxff for i in order)
. J

Added in version 3.2.

Changed in version 3.11: Added default argument values for 1ength and byteorder.

4.4. Numeric Types — int, float, complex 41

The Python Library Reference, Release 3.13.1

classmethod int.from_bytes (bytes, byteorder="big’, *, signed=False)

Return the integer represented by the given array of bytes.

>>> int.from_bytes (b'\x00\x10', byteorder='big')

16

>>> int.from_bytes (b'\x00\x10', byteorder='little')

4096

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=True)
-1024

>>> int.from_bytes (b'\x£fc\x00', byteorder='big', signed=False)
64512

>>> int.from_bytes ([255, 0, 0], byteorder='big'")

16711680

L

The argument bytes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer, and defaults to "big". If
byteorder is "big", the most significant byte is at the beginning of the byte array. If byfeorder is "1ittle",
the most significant byte is at the end of the byte array. To request the native byte order of the host system,
use sys.byteorder as the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer.

Equivalent to:

def from bytes (bytes, byteorder='big', signed=False):

if byteorder == 'little':
little_ordered = list (bytes)
elif byteorder == 'big':

little_ordered = list (reversed(bytes))
else:
raise ValueError ("byteorder must be either 'little' or 'big'")

n = sum(b << 1*8 for i, b in enumerate (little_ordered))
if signed and little_ordered and (little_ordered[-1] & 0x80):
n —= 1 << 8*len(little_ordered)

return n

Added in version 3.2.
Changed in version 3.11: Added default argument value for byteorder.

int.as_integer_ratio()

Return a pair of integers whose ratio is equal to the original integer and has a positive denominator. The integer
ratio of integers (whole numbers) is always the integer as the numerator and 1 as the denominator.

Added in version 3.8.
int.is_integer ()
Returns True. Exists for duck type compatibility with float.is_integer ().

Added in version 3.12.

4.4.3 Additional Methods on Float

The float type implements the numbers. Real abstract base class. float also has the following additional methods.

float.as_integer_ratio ()

Return a pair of integers whose ratio is exactly equal to the original float. The ratio is in lowest terms and has
a positive denominator. Raises OverflowError on infinities and a ValueError on NaNs.

42 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

float.is_integer()

Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()

False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.
float.hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading 0x and a trailing p and exponent.
classmethod float.fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and
trailing whitespace.
Note that f1oat.hex () is an instance method, while f1oat. fromhex () is a class method.

A hexadecimal string takes the form:

[[sign] ['Ox'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or -, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of float.hex () is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s %a format
character or Java’s Double . toHexString are accepted by float. fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number (3
+ 10./16 + 7./16**2) * 2.0**10,0r 3740.0:

>>> float.fromhex ('0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex(3740.0)
'0x1.d4380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x == vy
(see the __hash__ () method documentation for more details). For ease of implementation and efficiency across a
variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction) Python’s hash
for numeric types is based on a single mathematical function that’s defined for any rational number, and hence applies
to all instances of int and fractions.Fraction, and all finite instances of float and decimal.Decimal.
Essentially, this function is given by reduction modulo P for a fixed prime p. The value of P is made available to
Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime used is? = 2**31 - 1 on machines with 32-bit C longs
andp = 2**61 - 1 on machines with 64-bit C longs.

Here are the rules in detail:

4.4. Numeric Types — int, float, complex 43

The Python Library Reference, Release 3.13.1

If x = m / n is a nonnegative rational number and n is not divisible by P, define hash(x) as m *
invmod (n, P) % P, where invmod (n, P) gives the inverse of n modulo P.

If x = m / nisanonnegative rational number and n is divisible by P (but m is not) then n has no inverse mod-
ulo P and the rule above doesn’t apply; in this case define hash (x) to be the constant value sys.hash_info.
inf.

If x = m / nis anegative rational number define hash (x) as —hash (-x). If the resulting hash is -1,
replace it with -2.

The particular values sys.hash_info.inf and -sys.hash_info.inf are used as hash values for positive
infinity or negative infinity (respectively).

For a complex number z, the hash values of the real and imaginary parts are combined by computing
hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo 2**sys.hash_info.
width so that it lies in range (-2** (sys.hash_info.width - 1), 2**(sys.hash_info.width -
1)) . Again, if the result is -1, it’s replaced with -2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash
of a rational number, float, or complex:

import sys, math

def

def

def

hash_fraction(m, n):
"""Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

mn

P = sys.hash _info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)
whilem $ P == n % == 0:
m, n=m// P, n//P
if n $ P ==
hash_value = sys.hash_info.inf
else:
Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

hash_value = (abs(m) % P) * pow(n, P - 2, P) % P
ifm< 0:

hash_value = -hash_value
if hash _value == -1:

hash_value = -2

return hash_value

hash_float (x):
"""Compute the hash of a float x."""

if math.isnan (x):

return object.__hash__ (x)
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

hash_complex (z) :
"""Compute the hash of a complex number z.'"""

(continues on next page)

44

Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

(continued from previous page)
hash_value = hash_float (z.real) + sys.hash_info.imag * hash_float (z.imag)
do a signed reduction modulo 2**sys.hash_info.width
M = 2**(sys.hash_info.width - 1)

hash_value = (hash_value & (M - 1)) — (hash_value & M)
if hash_value == -1:
hash_value = -2

return hash_value

4.5 Boolean Type - bool

Booleans represent truth values. The boo1 type has exactly two constant instances: True and False.

The built-in function boo1l () converts any value to a boolean, if the value can be interpreted as a truth value (see
section Truth Value Testing above).

For logical operations, use the boolean operators and, or and not. When applying the bitwise operators , |, ~ to
two booleans, they return a bool equivalent to the logical operations “and”, “or”, “xor”. However, the logical operators
and, or and ! = should be preferred over &, | and ~.

Deprecated since version 3.12: The use of the bitwise inversion operator ~ is deprecated and will raise an error in
Python 3.16.

bool is a subclass of int (see Numeric Types — int, float, complex). In many numeric contexts, False and True
behave like the integers 0 and 1, respectively. However, relying on this is discouraged; explicitly convert using int ()
instead.

4.6 lterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iterable support:

container.__iter_ ()

Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for
those iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure
which supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of
the type structure for Python objects in the Python/C APL

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter__ ()

Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C APIL.

iterator._ next__ ()

Return the next item from the iterator. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
APL

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s __next__ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5. Boolean Type - bool 45

The Python Library Reference, Release 3.13.1

4.6.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __iter ()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the _ iter_ () and _ next__ () methods. More information about generators can be found in the
documentation for the yield expression.

4.7 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for process-
ing of binary data and text strings are described in dedicated sections.

4.7.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.Sequence ABC is provided to make it easier to correctly implement these operations on cus-
tom sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and r are sequences of the same
type, n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation) and *
(repetition) operations have the same priority as the corresponding numeric operations.’

Operation Result Notes
x in s True if an item of s is equal to x, else False (1)

X not in s False if an item of s is equal to x, else True (D)

s + t the concatenation of s and ¢ 6)(7)
S * norn * s equivalent to adding s to itself n times @)(7)
s[i] ith item of s, origin O 3)
sli:j] slice of s from i to j 3)4)
s[i:j:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min (s) smallest item of s

max (s) largest item of s

s.index (x[, il, index of the first occurrence of x in s (at or after index i and before index (8)
311))

s.count (x) total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically
by comparing corresponding elements. This means that to compare equal, every element must compare equal and the
two sequences must be of the same type and have the same length. (For full details see comparisons in the language
reference.)

Forward and reversed iterators over mutable sequences access values using an index. That index will continue to
march forward (or backward) even if the underlying sequence is mutated. The iterator terminates only when an
IndexError ora StopIteration is encountered (or when the index drops below zero).

Notes:

(1) While the in and not in operations are used only for simple containment testing in the general case, some
specialised sequences (such as st r, bytes and bytearray) also use them for subsequence testing:

>>> nggu in "eggs"

True

3 They must have since the parser can’t tell the type of the operands.

46 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

2

Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note that
items in the sequence s are not copied; they are referenced multiple times. This often haunts new Python
programmers; consider:

-

L

>>> lists = [[]] * 3
>>> lists

(e, 1, 11

>>> lists[0].append(3)
>>> lists

(es1, 31, [311

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
* 3 are references to this single empty list. Modifying any of the elements of 1ists modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for 1 in range(3)]
>>> lists[0].append(3)

>>> lists[1].append(5)

>>> lists([2

>>> lists

[e31, 51, [711]

] .append (7)

3)

4)

®)

(6)

)

®)

Further explanation is available in the FAQ entry fag-multidimensional-list.

If i or j is negative, the index is relative to the end of sequence s: len(s) + iorlen(s) + j issubstituted.
But note that -0 is still 0.

The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j. Ifiorjis
greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s). Ifiis
greater than or equal to j, the slice is empty.

The slice of s from i to j with step k is defined as the sequence of items with index x = i + n*k such that
0 <= n < (j-i)/k. In other words, the indices are i, i+k, i+2*k, i+3*k and so on, stopping when j is
reached (but never including j). When k is positive, i and j are reduced to 1en (s) if they are greater. When k
is negative, i and j are reduced to len (s) - 1 if they are greater. If i or j are omitted or None, they become
“end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is treated like 1.

Concatenating immutable sequences always results in a new object. This means that building up a sequence by
repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime
cost, you must switch to one of the alternatives below:

« if concatenating st r objects, you can build a list and use str. join () at the end or else write to an
io.StringIO instance and retrieve its value when complete

« if concatenating bytes objects, you can similarly use bytes. join () or io.BytesIO, or you can do
in-place concatenation with a bytearray object. bytearray objects are mutable and have an efficient
overallocation mechanism

« if concatenating t uple objects, extend a 1ist instead
« for other types, investigate the relevant class documentation

Some sequence types (such as range) only support item sequences that follow specific patterns, and hence
don’t support sequence concatenation or repetition.

index raises ValueError when x is not found in s. Not all implementations support passing the additional
arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra
arguments is roughly equivalent to using s[i:75].index (x), only without copying any data and with the
returned index being relative to the start of the sequence rather than the start of the slice.

4.7. Sequence Types — list, tuple, range 47

The Python Library Reference, Release 3.13.1

4.7.2 Immutable Sequence Types

The only operation that immutable sequence types generally implement that is not also implemented by mutable
sequence types is support for the hash () built-in.

This support allows immutable sequences, such as t up1e instances, to be used as dict keys and stored in set and
frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.7.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The collections.abc.
MutableSequence ABC is provided to make it easier to correctly implement these operations on custom sequence

types.

In the table s is an instance of a mutable sequence type, is any iterable object and x is an arbitrary object that meets
any type and value restrictions imposed by s (for example, bytearray only accepts integers that meet the value
restriction 0 <= x <= 255).

Operation Result Notes

s[i] = x item i of s is replaced by x

s[i:j] =t slice of s from i to j is replaced by the contents of the iterable ¢

del s[i:j] sameas s[i:j] = []

s[i:j:k] =t the elements of s [i:7:k] are replaced by those of ¢ (D)

del s[i:j:k] removes the elements of s [i:7:k] from the list

s.append (x) appends x to the end of the sequence (same as s[len(s) :len(s)] = [x])

s.clear () removes all items from s (same as del s[:]) @)

s.copy () creates a shallow copy of s (same as s[:1) 5

s.extend(t) or s extends s with the contents of 7 (for the most part the same as

+= t s[len(s):len(s)] = t)

s *=n updates s with its contents repeated n times (6)

S.insert (i, x) inserts x into s at the index given by i (same as s[1:1] = [x])

s.pop () or s. retrieves the item at i and also removes it from s 2)

pop (1)

s.remove (x) removes the first item from s where s [1] is equal to x 3)

s.reverse () reverses the items of s in place @
Notes:

(1) If k is not equal to 1, r must have the same length as the slice it is replacing.
(2) The optional argument i defaults to -1, so that by default the last item is removed and returned.
(3) remove () raises ValueError when x is not found in s.

(4) The reverse () method modifies the sequence in place for economy of space when reversing a large sequence.
To remind users that it operates by side effect, it does not return the reversed sequence.

(5) clear () and copy () are included for consistency with the interfaces of mutable containers that don’t
support slicing operations (such as dict and set). copy () is not part of the collections.abc.
MutableSequence ABC, but most concrete mutable sequence classes provide it.

Added in version 3.3: clear () and copy () methods.

(6) The value n is an integer, or an object implementing __index__ (). Zero and negative values of 7 clear the
sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for s * n
under Common Sequence Operations.

48 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

4.7.4 Lists
Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of
similarity will vary by application).
class list ([iterable])
Lists may be constructed in several ways:

« Using a pair of square brackets to denote the empty list: []

« Using square brackets, separating items with commas: [a], [a, b, c]
o Using a list comprehension: [x for x in iterable]

» Using the type constructor: 1ist () or list (iterable)

The constructor builds a list whose items are the same and in the same order as iterable’s items. iterable may be
either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is
made and returned, similar to iterable[:]. For example, 1ist ('abc') returns ['a', 'b', 'c'] and
list((1, 2, 3))returns [1, 2, 3].If noargument is given, the constructor creates a new empty list,
(1.

Many other operations also produce lists, including the sorted () built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional
method:

sort (*, key=None, reverse=False)

This method sorts the list in place, using only < comparisons between items. Exceptions are not sup-
pressed - if any comparison operations fail, the entire sort operation will fail (and the list will likely be
left in a partially modified state).

sort () accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each list element
(for example, key=str.lower). The key corresponding to each item in the list is calculated once and
then used for the entire sorting process. The default value of None means that list items are sorted directly
without calculating a separate key value.

The functools.cmp_to_key () utility is available to convert a 2.x style cmp function to a key function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence. To
remind users that it operates by side effect, it does not return the sorted sequence (use sorted () to
explicitly request a new sorted list instance).

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or
even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the
duration, and raises ValueError if it can detect that the list has been mutated during a sort.

4.7.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples pro-
duced by the enumerate () built-in). Tuples are also used for cases where an immutable sequence of homogeneous
data is needed (such as allowing storage in a set or dict instance).

class tuple ([itemble])

Tuples may be constructed in a number of ways:

4.7. Sequence Types — list, tuple, range 49

The Python Library Reference, Release 3.13.1

« Using a pair of parentheses to denote the empty tuple: ()
« Using a trailing comma for a singleton tuple: a, or (a,)
o Separating items with commas: a, b, cor (a, b, c)
. Lkhgthetuple()bmndn:tuple()Ortuple(iterable)

The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterable may
be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it
is returned unchanged. For example, tuple ('abc') returns ('a', 'b', 'c') and tuple([1, 2, 3]
) returns (1, 2, 3).If noargument is given, the constructor creates a new empty tuple, ().

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional,
except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, f (a, b,
c) is a function call with three arguments, while £ ((a, b, c)) is a function call with a 3-tuple as the sole
argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple () may be a more appropriate choice than a simple tuple object.

4.7.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific number
of times in for loops.

class range (sfop)

class range(ﬂaﬁ,ﬂqus%p])

The arguments to the range constructor must be integers (either built-in int or any object that implements
the __index__ () special method). If the step argument is omitted, it defaults to 1. If the starr argument is
omitted, it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formular[i] = start + step*i where
i >= o0andr[i] < stop.

For a negative step, the contents of the range are still determined by the formula r[1] = start + step*i,
but the constraints are i >= Oand r[i] > stop.

A range object will be empty if r [0] does not meet the value constraint. Ranges do support negative indices,
but these are interpreted as indexing from the end of the sequence determined by the positive indices.

Ranges containing absolute values larger than sys . maxsize are permitted but some features (such as 1en ())
may raise OverflowError.

Range examples:

>>> list (range (10))

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range (1, 11))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

e, =1, =2, =3, =4, =5, =6, =7, =8, =91
>>> list (range (0))

>>> list (range (1, 0))

50

Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact
that range objects can only represent sequences that follow a strict pattern and repetition and concatenation
will usually violate that pattern).

start

The value of the start parameter (or 0 if the parameter was not supplied)

stop
The value of the sfop parameter

step
The value of the step parameter (or 1 if the parameter was not supplied)
The advantage of the range type over a regular 1ist or tuple is that a range object will always take the same

(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and step
values, calculating individual items and subranges as needed).

Range objects implement the collections.abc. Sequence ABC, and provide features such as containment tests,
element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range (0, 20, 2)
>>> r

range (0, 20, 2)
>>> 11 in r
False

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[-1]

18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects are
considered equal if they represent the same sequence of values. (Note that two range objects that compare equal might
have different start, stop and step attributes, for example range (0) == range (2, 1, 3) orrange (0, 3,
2) == range (0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test int objects for
membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘=="and ‘!="to compare range objects based on the sequence of values they define
(instead of comparing based on object identity).

Added the start, stop and step attributes.

> See also

 The linspace recipe shows how to implement a lazy version of range suitable for floating-point applications.

4.8 Text Sequence Type — str

Textual data in Python is handled with st r objects, or strings. Strings are immutable sequences of Unicode code
points. String literals are written in a variety of ways:

« Single quotes: 'allows embedded "double" quotes'

4.8. Text Sequence Type — str 51

https://code.activestate.com/recipes/579000-equally-spaced-numbers-linspace/

The Python Library Reference, Release 3.13.1

e Double quotes: "allows embedded 'single' quotes"
o Triple quoted: ' ' 'Three single quotes''',"""Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly converted
to a single string literal. Thatis, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the r (“raw”)
prefix that disables most escape sequence processing.

Strings may also be created from other objects using the st r constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty
string s, s[0] == s[0:1].

There is also no mutable string type, but st r. join () or io.StringI0 can be used to efficiently construct strings
from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again permitted
on string literals. It has no effect on the meaning of string literals and cannot be combined with the r prefix.

class str (object=")

class str (object=b", encoding="utf-8’, errors=>strict’)

Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior
of str () depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given, str (object) returns type (object) . _str__ (object), which
is the “informal” or nicely printable string representation of object. For string objects, this is the string itself.
If object does not have a __str__ () method, then st r () falls back to returning repr (object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytes or bytearray).
In this case, if objectisa bytes (or bytearray) object, then str (bytes, encoding, errors) isequiv-
alent to bytes.decode (encoding, errors). Otherwise, the bytes object underlying the buffer object is
obtained before calling bytes.decode (). See Binary Sequence Types — bytes, bytearray, memoryview and
bufferobjects for information on buffer objects.

Passinga bytes objectto st r () without the encoding or errors arguments falls under the first case of returning
the informal string representation (see also the —-b command-line option to Python). For example:

>>> str(b'Zoot!")
"b'Zoot!""

For more information on the str class and its methods, see Text Sequence Type — str and the String Methods
section below. To output formatted strings, see the f-strings and Format String Syntax sections. In addition,
see the Text Processing Services section.

4.8.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization
(see str. format (), Format String Syntax and Custom String Formatting) and the other based on C print £ style
formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the
cases it can handle (printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide various
text related utilities (including regular expression support in the re module).

str.capitalize()

Return a copy of the string with its first character capitalized and the rest lowercased.

Changed in version 3.8: The first character is now put into titlecase rather than uppercase. This means that
characters like digraphs will only have their first letter capitalized, instead of the full character.

52 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

str.casefold ()
Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.
Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions

in a string. For example, the German lowercase letter '3 ' is equivalent to "ss". Since it is already lowercase,
lower () would do nothing to 'B'; casefold () convertsitto "ss".

The casefolding algorithm is described in section 3.13 ‘Default Case Folding’ of the Unicode Standard.
Added in version 3.3.

str.center (width[, fillchar])

Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII
space). The original string is returned if width is less than or equal to len (s).

str.count (sub[, start[, end]])

Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional argu-
ments start and end are interpreted as in slice notation.

If sub is empty, returns the number of empty strings between characters which is the length of the string plus
one.

str.encode (encoding="utf-8’, errors='strict’)

Return the string encoded to bytes.
encoding defaults to 'ut £-8'; see Standard Encodings for possible values.

errors controls how encoding errors are handled. If 'strict' (the default), a UnicodeError
exception is raised. Other possible values are 'ignore', 'replace', 'xmlcharrefreplace',
'backslashreplace' and any other name registered via codecs.register_error (). See Error Han-
dlers for details.

For performance reasons, the value of errors is not checked for validity unless an encoding error actually occurs,
Python Development Mode is enabled or a debug build is used.

Changed in version 3.1: Added support for keyword arguments.

Changed in version 3.9: The value of the errors argument is now checked in Python Development Mode and in
debug mode.

str.endswith (suﬁix[, start[, end]])

Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

str.expandtabs (fabsize=8)

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the
current column and the given tab size. Tab positions occur every tabsize characters (default is 8, giving tab
positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string
is examined character by character. If the character is a tab (\t), one or more space characters are inserted in
the result until the current column is equal to the next tab position. (The tab character itself is not copied.) If
the character is a newline (\n) or return (\r), it is copied and the current column is reset to zero. Any other
character is copied unchanged and the current column is incremented by one regardless of how the character
is represented when printed.

>>> '01\t012\t0123\t01234"' .expandtabs ()

'01 012 0123 01234"
>>> '01\t012\t0123\t01234"'.expandtabs (4)
'01 012 0123 01234"

str.find (sub[, start[, end]])

Return the lowest index in the string where substring sub is found within the slice s [start :end]. Optional
arguments start and end are interpreted as in slice notation. Return -1 if sub is not found.

4.8. Text Sequence Type — str 53

https://www.unicode.org/versions/Unicode15.1.0/ch03.pdf

The Python Library Reference, Release 3.13.1

© Note

The rind () method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> 'Py' in 'Python'
True

str.format (*args, **kwargs)

Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces {}. Each replacement field contains either the numeric index of a
positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement
field is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is ".format (1+2)
'The sum of 1 + 2 is 3'

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

© Note

When formatting a number (int, float, complex, decimal.Decimal and subclasses) with the n type
(ex: '{:n}'.format (1234)), the function temporarily sets the LC_CTYPE locale to the LC_NUMERIC
locale to decode decimal point and thousands_sep fields of localeconv () if they are non-ASCII
or longer than 1 byte, and the L.c_NUMERIC locale is different than the Lc_cTYPE locale. This temporary
change affects other threads.

Changed in version 3.7: When formatting a number with the n type, the function sets temporarily the
LC_CTYPE locale to the LC_NUMERIC locale in some cases.

str.format_map (mapping, /)

str

str.

str.

Similar to str.format (**mapping), except that mapping is used directly and not copied to a dict. This
is useful if for example mapping is a dict subclass:

>>> class Default (dict) :
def _ missing__ (self, key):
return key

>>> ! was born in '.format_map (Default (name="'Guido"))

'Guido was born in country'
- J

Added in version 3.2.

.index (sub[, start[, end]])

Like rfind (), but raise ValueError when the substring is not found.

isalnum()

Return True if all characters in the string are alphanumeric and there is at least one character, False otherwise.
A character c is alphanumeric if one of the following returns True: c.isalpha(), c.isdecimal(), c.
isdigit (), 0r c.isnumeric ().

isalpha ()

Return True if all characters in the string are alphabetic and there is at least one character, False otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those
with general category property being one of “Lm”, “Lt”, “Lu”, “L1”, or “Lo”. Note that this is different from the
Alphabetic property defined in the section 4.10 ‘Letters, Alphabetic, and Ideographic’ of the Unicode Standard.

54

Chapter 4. Built-in Types

https://www.unicode.org/versions/Unicode15.1.0/ch04.pdf

The Python Library Reference, Release 3.13.1

str.

str.

str.

str.

str.

str.

str.

str.

str.

isascii ()

Return True if the string is empty or all characters in the string are ASCII, False otherwise. ASCII characters
have code points in the range U+0000-U+007F.

Added in version 3.7.

isdecimal ()

Return True if all characters in the string are decimal characters and there is at least one character, False
otherwise. Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”.
isdigit ()

Return True if all characters in the string are digits and there is at least one character, False otherwise. Digits
include decimal characters and digits that need special handling, such as the compatibility superscript digits.
This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers. Formally, a
digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.
isidentifier ()

Return True if the string is a valid identifier according to the language definition, section identifiers.
keyword. iskeyword () can be used to test whether string s is a reserved identifier, such as def and class.

Example:

>>> from keyword import iskeyword

>>> 'hello'.isidentifier (), iskeyword('hello')
(True, False)
>>> 'def'.isidentifier (), iskeyword('def'")

(True, True)
.

islower ()

Return True if all cased characters* in the string are lowercase and there is at least one cased character, False
otherwise.

isnumeric ()

Return True if all characters in the string are numeric characters, and there is at least one character, False
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value
property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the
property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

isprintable ()

Return True if all characters in the string are printable or the string is empty, False otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting
the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those
which should not be escaped when repr () is invoked on a string. It has no bearing on the handling of strings
written to sys. stdout Of sys.stderr.)

isspace ()
Return True if there are only whitespace characters in the string and there is at least one character, False

otherwise.

A character is whitespace if in the Unicode character database (see unicodedat a), either its general category
is zs (“Separator, space”), or its bidirectional class is one of Ws, B, or S.
istitle ()

Return True if the string is a titlecased string and there is at least one character, for example uppercase char-
acters may only follow uncased characters and lowercase characters only cased ones. Return False otherwise.

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “LI” (Letter, lowercase), or “Lt” (Letter,
titlecase).

4.8.

Text Sequence Type — str 55

The Python Library Reference, Release 3.13.1

str.

str.

str.

str.

str.

isupper ()

Return True if all cased characters"e¢ 54

False otherwise.

in the string are uppercase and there is at least one cased character,

>>> 'BANANA'.isupper ()
True

>>> 'banana'.isupper ()
False

>>> 'baNana'.isupper ()
False

>>> ' ' isupper ()
False

join (iterable)

Return a string which is the concatenation of the strings in iterable. A TypeError will be raised if there
are any non-string values in iterable, including bytes objects. The separator between elements is the string
providing this method.

1just (width|, fillchar |)
Return the string left justified in a string of length widrh. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to 1len (s).

lower ()

Page 55, 4

Return a copy of the string with all the cased characters converted to lowercase.

The lowercasing algorithm used is described in section 3.13 ‘Default Case Folding’ of the Unicode Standard.

1strip([Chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> ! spacious '.1strip()
'spacious !
>>> 'www.example.com'.lstrip('cmowz.")

'example.com'

See str.removeprerix () for a method that will remove a single prefix string rather than all of a set of
characters. For example:

>>> 'Arthur: three!'.lstrip('Arthur: ')

'ee!!
>>> 'Arthur: three!'.removeprefix ('Arthur: ")
'three!'

static str.maketrans(x[,y[,z]])

This static method returns a translation table usable for st r. translate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings
of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted
to ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character
in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string,
whose characters will be mapped to None in the result.

str.partition (sep)

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings.

56

Chapter 4. Built-in Types

https://www.unicode.org/versions/Unicode15.1.0/ch03.pdf

The Python Library Reference, Release 3.13.1

str.

str.

str.

str.

str

str.

str.

str

str.

removeprefix (prefix, /)

If the string starts with the prefix string, return string[len (prefix) : 1. Otherwise, return a copy of the
original string:

>>> 'TestHook'.removeprefix('Test')
'Hook'

>>> 'BaseTestCase'.removeprefix ('Test')
'BaseTestCase'’

Added in version 3.9.

removesuffix (suffix, /)

If the string ends with the suffix string and that suffix is not empty, return string[:-len (suffix)]. Oth-
erwise, return a copy of the original string:

>>> 'MiscTests'.removesuffix('Tests')
'Misc'

>>> '"TmpDirMixin'.removesuffix ('Tests')
'TmpDirMixin'

Added in version 3.9.

replace (old, new, count=-1)
Return a copy of the string with all occurrences of substring old replaced by new. If count is given, only the
first count occurrences are replaced. If count is not specified or -1, then all occurrences are replaced.

Changed in version 3.13: count is now supported as a keyword argument.

rfind (sub[, start[, end]])

Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on fail-
ure.

.rindex (sub[, start[, end]])

Like rfind () but raises ValueError when the substring sub is not found.

riust (width|, fillchar |)

Return the string right justified in a string of length width. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to 1len (s).

rpartition (sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

.rsplit (sep=None, maxsplit=-1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsp1it () behaves like sp1it () which is described in detail below.

rstrip ([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> ! spacious

.rstrip()
spacious'
>>> 'mississippi'.rstrip('ipz')

'mississ'

4.8.

Text Sequence Type — str 57

The Python Library Reference, Release 3.13.1

See str.removesuffix () for a method that will remove a single suffix string rather than all of a set of
characters. For example:

>>> 'Monty Python'.rstrip(' Python')

lM’

>>> 'Monty Python'.removesuffix (' Python')
'Monty'

str.split (sep=None, maxsplit=-1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or -1, then
there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, '1,,2"'.split (', ") returns ['1', '', '2'1). The sep argument may consist of multiple char-
acters as a single delimiter (to split with multiple delimiters, use re. split ()). Splitting an empty string with
a specified separator returns [''].

For example:

>>> '1,2,3"'.split (', ")

[lll, l2|, 13']

>>> '1,2,3'.split(',"', maxsplit=1)
[111’ 12,3|J

>>> '1,2,,3,"'.split (', ")

['1!, '2', 'l, |3|, l‘]

>>> '1<>2<>3<4 " . split ('<>")

[lll’ 12', l3<4l}

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [].

For example:

>>> '1 2 3'.split ()
['1', '2|, '3']
>>> '1 2 3'.split (maxsplit=1)

[Al 1 A} , A} 2 3) J
>>> ! 1 2 3 '.split ()
[Al 1 L} 0 Al 2 Al 0] 3 Al]

str.splitlines (keepends=False)
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal
newlines.

58 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

Representation Description

\n Line Feed

\r Carriage Return

\r\n Carriage Return + Line Feed
\v or \x0b Line Tabulation

\f or \x0c Form Feed

\x1lc File Separator

\x1d Group Separator

\xle Record Separator

\x85 Next Line (C1 Control Code)
\u2028 Line Separator

\u2029 Paragraph Separator

Changed in version 3.2: \v and \ £ added to list of line boundaries.

For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines()

['ab c¢', "', 'de fg', 'kl']

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
['ab c\n', '\n', 'de fg\r', 'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> "" _splitlines ()

[]

>>> "One line\n".splitlines()
['One line']

For comparison, split ('\n') gives:

>>> '' . split('\n")
['"]
>>> 'Two lines\n'.split('\n")

['"Two lines', '']

L

str.startswith (preﬁx[, start[, end]])

Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to
look for. With optional start, test string beginning at that position. With optional end, stop comparing string
at that position.

str. strip([chars])

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.strip()
'spacious’
>>> 'www.example.com'.strip ('cmowz.")

'example'

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed
from the leading end until reaching a string character that is not contained in the set of characters in chars. A
similar action takes place on the trailing end. For example:

4.8. Text Sequence Type — str 59

The Python Library Reference, Release 3.13.1

>>> comment_string = "#....... Section 3.2.1 Issue #32 U
>>> comment_string.strip('.#! ")
'Section 3.2.1 Issue #32'

str.swapcase ()

Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is
not necessarily true that s . swapcase () .swapcase () == s.

str.title ()

Return a titlecased version of the string where words start with an uppercase character and the remaining
characters are lowercase.

For example:

>>> 'Hello world'.title ()
'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they're bill's friends from the UK".title ()
"They'Re Bill'S Friends From The Uk"

The string.capwords () function does not have this problem, as it splits words on spaces only.

Alternatively, a workaround for apostrophes can be constructed using regular expressions:

s N

>>> import re
>>> def titlecase(s):
return re.sub(r" [A-Za-z]+ (' [A-Za-z]+)?",
lambda mo: mo.group (0) .capitalize(),
s)

>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

str.translate (fable)
Return a copy of the string in which each character has been mapped through the given translation table.
The table must be an object that implements indexing via ___getitem__ (), typically a mapping or sequence.
When indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a Unicode
ordinal or a string, to map the character to one or more other characters; return None, to delete the character
from the return string; or raise a LookupError exception, to map the character to itself.

Youcanuse str.maketrans () to create a translation map from character-to-character mappings in different
formats.

See also the codecs module for a more flexible approach to custom character mappings.

str.upper ()

Return a copy of the string with all the cased characters” 3> 4 converted to uppercase. Note that s . upper () .

isupper () might be False if s contains uncased characters or if the Unicode category of the resulting
character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 ‘Default Case Folding’ of the Unicode Standard.

str.zfill (width)

Return a copy of the string left filled with ASCII '0' digits to make a string of length width. A leading sign
prefix ('+'/'-") is handled by inserting the padding after the sign character rather than before. The original
string is returned if width is less than or equal to len (s).

For example:

60 Chapter 4. Built-in Types

https://www.unicode.org/versions/Unicode15.1.0/ch03.pdf

The Python Library Reference, Release 3.13.1

>>> "42" . z£fill (5)
'00042"

>>> "-42" z£i11(5)
'-0042"

4.8.2 printf-style String Formatting

© Note

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). Using the newer formatted string literals, the st r.
format () interface, or template strings may help avoid these errors. Each of these alternatives provides their
own trade-offs and benefits of simplicity, flexibility, and/or extensibility.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string formatting
or interpolation operator. Given format % values (where format is a string), % conversion specifications in format
are replaced with zero or more elements of values. The effect is similar to using the sprint£ () function in the C
language. For example:

>>> print (' has quote types.' % ('Python', 2))
Python has 2 quote types.

If format requires a single argument, values may be a single non-tuple object.’ Otherwise, values must be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '%' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ' * ' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), givenas a ' . ' (dot) followed by the precision. If specified as ' *' (an asterisk), the actual
precision is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a
parenthesised mapping key into that dictionary inserted immediately after the '$' character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print (' has quote types.' %
{'language': "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

4.8. Text Sequence Type — str 61

The Python Library Reference, Release 3.13.1

Flag Meaning
'#' The value conversion will use the “alternate form” (where defined below).
'0' The conversion will be zero padded for numeric values.

'—' The converted value is left adjusted (overrides the '0' conversion if both are given).

' ' (aspace) A blank should be left before a positive number (or empty string) produced by a signed conver-
sion.

'+' Asign character ('+' or '-"') will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical
to %d.

The conversion types are:

Con- Meaning Notes

version

T@ln Signed integer decimal.

i Signed integer decimal.

i@l Signed octal value. (1)

I Obsolete type - it is identical to 'd"'. (6)

'x" Signed hexadecimal (lowercase).)

g Signed hexadecimal (uppercase).)

'e! Floating-point exponential format (lowercase). 3)

07m0 Floating-point exponential format (uppercase). 3)

0D Floating-point decimal format. 3)

'F' Floating-point decimal format. 3)

T gt Floating-point format. Uses lowercase exponential format if exponent is less than -4 or not less ~ (4)
than precision, decimal format otherwise.

'G! Floating-point format. Uses uppercase exponential format if exponent is less than -4 or not (4)
less than precision, decimal format otherwise.

@l Single character (accepts integer or single character string).

'r' String (converts any Python object using repr ()). 4)

's' String (converts any Python object using st ()). 5)

'a' String (converts any Python object using ascii ()). 5)

060 No argument is converted, results ina '%' character in the result.

Notes:
(1) The alternate form causes a leading octal specifier (' 0o ") to be inserted before the first digit.

(2) The alternate form causes a leading '0x' or '0X' (depending on whether the 'x' or 'x' format was used)
to be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.
(5) If precision is N, the output is truncated to N characters.
(6) See PEP 237.
Since Python strings have an explicit length, %s conversions do not assume that '\ 0" is the end of the string.

Changed in version 3.1: % £ conversions for numbers whose absolute value is over 1e50 are no longer replaced by %g
conversions.

62 Chapter 4. Built-in Types

https://peps.python.org/pep-0237/

The Python Library Reference, Release 3.13.1

4.9 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray. They are supported by
memoryview which uses the buffer protocol to access the memory of other binary objects without needing to make

a copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision
floating values.

4.9.1 Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII
text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and
are closely related to string objects in a variety of other ways.

class bytes ([source[, encoding[, errors]]])

Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:
 Single quotes: b'still allows embedded "double" quotes'
e Double quotes: b"still allows embedded 'single' quotes"
. Triple quoted: b'''3 single quotes''',b"""3 double guotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any
binary values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See
strings for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable
sequences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to violate
this restriction will trigger valueError). This is done deliberately to emphasise that while many binary
formats include ASCII based elements and can be usefully manipulated with some text-oriented algorithms,
this is not generally the case for arbitrary binary data (blindly applying text processing algorithms to binary
data formats that are not ASCII compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:
« A zero-filled bytes object of a specified length: bytes (10)
« From an iterable of integers: bytes (range (20))
« Copying existing binary data via the buffer protocol: bytes (ob7)

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytes type has an additional class method to read data in
that format:

classmethod fromhex (string)

This byt es class method returns a bytes object, decoding the given string object. The string must contain
two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytes.fromhex ('2Ef0 F1£f2 ")
b' . \xfO\xfl\xf2'

Changed in version 3.7: bytes.fromhex () now skips all ASCII whitespace in the string, not just
spaces.

A reverse conversion function exists to transform a bytes object into its hexadecimal representation.

hex ([sep[, bytes _per_sep]])
Return a string object containing two hexadecimal digits for each byte in the instance.

4.9. Binary Sequence Types — bytes, bytearray, memoryview 63

The Python Library Reference, Release 3.13.1

>>> b'\x£f0\x£f1\x£f2'.hex ()
'fOf1£2"

If you want to make the hex string easier to read, you can specify a single character separator sep param-
eter to include in the output. By default, this separator will be included between each byte. A second
optional byfes_per_sep parameter controls the spacing. Positive values calculate the separator position
from the right, negative values from the left.

>>> value = b'\xf0\x£f1l\x£f2'
>>> value.hex ('-")

'FO-f1-£2"

>>> value.hex('_', 2)
'FO_f1£2"

>>> b'UUDDLRLRAB'.hex (' ', -4)

'55554444 4c524c52 4142"

Added in version 3.5.

Changed in version 3.8: bytes. hex () now supports optional sep and bytes_per_sep parameters to insert
separators between bytes in the hex output.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b [0] will be an integer, while
b[0:1] will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will
produce a string of length 1)

The representation of bytes objects uses the literal format (b'...") since it is often more useful than e.g.
bytes ([46, 46, 46]). You can always convert a bytes object into a list of integers using 1ist (b).

4.9.2 Bytearray Objects

bytearray objects are a mutable counterpart to bytes objects.

class bytearray ([source[, encoding[, errors]]])

There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the con-
structor:

L]

Creating an empty instance: bytearray ()
Creating a zero-filled instance with a given length: bytearray (10)
From an iterable of integers: bytearray (range (20))

Copying existing binary data via the buffer protocol: bytearray (b'Hi!")

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common
bytes and bytearray operations described in Bytes and Bytearray Operations.

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytearray type has an additional class method to read data
in that format:

classmethod fromhex (string)

This bytearray class method returns bytearray object, decoding the given string object. The string
must contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytearray.fromhex ('2Ef0 F1£f2 ")
bytearray (b'.\xf0\xf1\xf2")

Changed in version 3.7: bytearray. fromhex () now skips all ASCII whitespace in the string, not just
spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation.

64

Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

hex ([sep[, bytes _per_sep]])
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> bytearray (b'\x£f0\x£f1\x£f2') .hex ()
'fOf1£2"

Added in version 3.5.

Changed in version 3.8: Similar to bytes. hex (), bytearray.hex () now supports optional sep and
bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b [0] will be an integer,
while b [0: 1] will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and slicing
will produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (bytearray (b'...")) since it is often more
useful than e.g. bytearray ([46, 46, 46]). You can always convert a bytearray object into a list of integers
using 1ist (b).

4.9.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands
of the same type, but with any bytes-like object. Due to this flexibility, they can be freely mixed in operations without
causing errors. However, the return type of the result may depend on the order of operands.

© Note

The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on strings
don’t accept bytes as their arguments. For example, you have to write:

abc
b = a.replace("a", "f")

a = b"abc"

b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be
avoided when working with arbitrary binary data. These restrictions are covered below.

© Note

Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format may
lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.
bytes.count (sub[, start[, end]])

bytearray.count (sub[, start[, end]])

Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

If sub is empty, returns the number of empty slices between characters which is the length of the bytes object
plus one.

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.removeprefix (prefix, /)

4.9. Binary Sequence Types — bytes, bytearray, memoryview 65

The Python Library Reference, Release 3.13.1

bytearray.removeprefix (prefix, /)

If the binary data starts with the prefix string, return bytes[len (prefix) : 1. Otherwise, return a copy of
the original binary data:

>>> pb'TestHook'.removeprefix (b'Test"')
b'Hook'

>>> b'BaseTestCase'.removeprefix (b'Test"')
b'BaseTestCase'

The prefix may be any bytes-like object.

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

Added in version 3.9.

bytes.removesuffix (suffix, /)

bytearray.removesuffix (suffix, /)

If the binary data ends with the suffix string and that suffix is not empty, return bytes[:-len (suffix)].
Otherwise, return a copy of the original binary data:

>>> b'MiscTests'.removesuffix(b'Tests')
b'Misc'

>>> pb'TmpDirMixin'.removesuffix (b'Tests"')
b'TmpDirMixin'

The suffix may be any bytes-like object.

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

Added in version 3.9.

bytes .decode (encoding="utf-8’, errors='strict’)

bytearray.decode (encoding="utf-8’, errors='strict’)

Return the bytes decoded to a st r.
encoding defaults to 'ut £-8'; see Standard Encodings for possible values.

errors controls how decoding errors are handled. If 'strict' (the default), a UnicodeError exception
is raised. Other possible values are 'ignore', 'replace’, and any other name registered via codecs.
register_error (). See Error Handlers for details.

For performance reasons, the value of errors is not checked for validity unless a decoding error actually occurs,
Python Development Mode is enabled or a debug build is used.

© Note

Passing the encoding argument to st r allows decoding any bytes-like object directly, without needing to
make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.

66

Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

Changed in version 3.9: The value of the errors argument is now checked in Python Development Mode and in
debug mode.

bytes.endswith (suﬁix[, start[, end]])

bytearray.endswith (sujﬁx[, start[, end]])

Return True if the binary data ends with the specified suffix, otherwise return False. suffix can also be a tuple
of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing
at that position.

The suffix(es) to search for may be any byfes-like object.
bytes.find (sub[, start[, end]])

bytearray.find (sub[, start[, end]])

Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not
found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

© Note

The rind () method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> pb'Py' in b'Python'
True

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.
bytes.index (sub[, start[, end]])

bytearray.index (sub[, start[, end]])
Like find (), but raise ValueError when the subsequence is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.join (iterable)

bytearray.join (iterable)
Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A
TypeError will be raised if there are any values in iferable that are not bytes-like objects, including st r objects.
The separator between elements is the contents of the bytes or bytearray object providing this method.

static bytes.maketrans (from, 10)

static bytearray.maketrans (from, to)

This static method returns a translation table usable for bytes.transiate () that will map each character
in from into the character at the same position in fo; from and to must both be bytes-like objects and have the
same length.

Added in version 3.1.
bytes.partition (sep)
bytearray.partition (sep)

Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return
a 3-tuple containing a copy of the original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.

bytes.replace (0ld, new[, Count])

4.9. Binary Sequence Types — bytes, bytearray, memoryview 67

The Python Library Reference, Release 3.13.1

bytearray.replace (old, new[, Count])

Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced.

The subsequence to search for and its replacement may be any byfes-like object.

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rfind (sub[, start[, end]])

bytearray.rfind (sub[, start[, end]])

Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.
bytes.rindex (sub[, start[, end]])
bytearray.rindex (Sub[, Start[, end]])
Like rfind () but raises ValueError when the subsequence sub is not found.
The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.
bytes.rpartition (sep)
bytearray.rpartition (sep)

Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return
a 3-tuple containing two empty bytes or bytearray objects, followed by a copy of the original sequence.

The separator to search for may be any bytes-like object.
bytes.startswith (preﬁx[, start[, end]])

bytearray.startswith (preﬁx[, start[, end]])

Return True if the binary data starts with the specified prefix, otherwise return False. prefix can also be
a tuple of prefixes to look for. With optional start, test beginning at that position. With optional end, stop
comparing at that position.

The prefix(es) to search for may be any bytes-like object.

bytes.translate (table, /, delete=b")
bytearray.translate (table, /, delete=b")

Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are
removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes
object of length 256.

You can use the bytes.maketrans () method to create a translation table.

Set the table argument to None for translations that only delete characters:

>>> b'read this short text'.translate (None, b'aeiou')
b'rd ths shrt txt'

Changed in version 3.6: delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII com-
patible binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that
all of the bytearray methods in this section do not operate in place, and instead produce new objects.

68 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

bytes.center(w%ﬁh[hﬁﬂbym])

bytearray.center (width|, fillbyte |)

Return a copy of the object centered in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For bytes objects, the original sequence is returned if width is less than or equal
to len (s).

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.1ljust (width|, fillbyte])
bytearray.ljust(w%ﬂh[,ﬁﬂbym])

Return a copy of the object left justified in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if width is less than
or equal to len (s).

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.lstrip([chars])

bytearray.lstrip([cham])

Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> b spacious ".1strip()
b'spacious !

>>> b'www.example.com'.lstrip(b'cmowz. ")
b'example.com'

The binary sequence of byte values to remove may be any bytes-like object. See removeprefix () for a
method that will remove a single prefix string rather than all of a set of characters. For example:

>>> b'Arthur: three!'.lstrip(b'Arthur: ')
b'ee!'!

>>> p'Arthur: three!'.removeprefix (b'Arthur: ")
b'three!'

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rjust (width[, fillbyte |)
bytearray.rjust(wﬁﬁhL]ﬂﬂww])

Return a copy of the object right justified in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if width is less than
or equal to len (s).

4.9. Binary Sequence Types — bytes, bytearray, memoryview 69

The Python Library Reference, Release 3.13.1

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rsplit (sep=None, maxsplit=-1)

bytearray.rsplit (sep=None, maxsplit=-1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is
given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or None, any subsequence
consisting solely of ASCII whitespace is a separator. Except for splitting from the right, rsp1it () behaves
like sp1it () which is described in detail below.

bytes.rstrip([chars])

bytearray.rstrip([chars])

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> b' spacious ' rstrip()

b' spacious'

>>> b'mississippi'.rstrip(b'ipz')
b'mississ'

The binary sequence of byte values to remove may be any bytes-like object. See removesuffix () for a
method that will remove a single suffix string rather than all of a set of characters. For example:

>>> b'Monty Python'.rstrip(b' Python')

b'M'

>>> pb'Monty Python'.removesuffix(b' Python')
b'Monty'

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.split (sep=None, maxsplit=-1)

bytearray.split (sep=None, maxsplit=-1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is
given and non-negative, at most maxsplit splits are done (thus, the list will have at most maxsplit+1 elements).
If maxsplit is not specified or is —1, then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences
(for example, b'1,,2"'.split (b', ") returns [b'1', b'', b'2']). The sep argument may consist of a
multibyte sequence as a single delimiter. Splitting an empty sequence with a specified separator returns [b' ']
or [bytearray (b'")] depending on the type of object being split. The sep argument may be any bytes-like
object.

For example:

>>> b'1,2,3"'.split(b', ")
[b'1', b'2', b'3']
>>> p'1,2,3".split(b', "', maxsplit=1)
[b'1l', b'2,3"]
(continues on next page)

70

Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> pb'1,2,,3,"'.split(b', ")
[b'1', b'2', b'', b'3', b'']
>>> b'1<>2<>3<4" .split (b'<>")
[b'1l', b'2', b'3<4']

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive ASCII whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the sequence
has leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consisting solely
of ASCII whitespace without a specified separator returns [].

For example:

-

>>> b'l 2 3'.split ()

[b'1l', b'2', b'3"']

>>> p'l 2 3'.split (maxsplit=1)
[b'1', b'2 3']

>>> b' 1 2 3 '.split ()
[b'1l', b'2', b'3"']

bytes.strip([cham])

bytearray.strip([cham])
Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a
binary sequence specifying the set of byte values to be removed - the name refers to the fact this method
is usually used with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> b spacious '.strip()
b'spacious'
>>> b'www.example.com'.strip(b'cmowz.")

b'example'

The binary sequence of byte values to remove may be any byfes-like object.

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should
not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place,
and instead produce new objects.

bytes.capitalize()

bytearray.capitalize ()

Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized
and the rest lowercased. Non-ASCII byte values are passed through unchanged.

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.expandtabs (fabsize=8)

4.9. Binary Sequence Types — bytes, bytearray, memoryview 71

The Python Library Reference, Release 3.13.1

bytearray.expandtabs (fabsize=8)

Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces,
depending on the current column and the given tab size. Tab positions occur every fabsize bytes (default is
8, giving tab positions at columns 0, 8, 16 and so on). To expand the sequence, the current column is set to
zero and the sequence is examined byte by byte. If the byte is an ASCII tab character (b'\t '), one or more
space characters are inserted in the result until the current column is equal to the next tab position. (The tab
character itself is not copied.) If the current byte is an ASCII newline (b'\n") or carriage return (b'\r"'), it
is copied and the current column is reset to zero. Any other byte value is copied unchanged and the current
column is incremented by one regardless of how the byte value is represented when printed:

>>> b'01\t012\t0123\t01234"'.expandtabs ()
b'0l 012 0123 01234"

>>> p'01\t012\t0123\t01234"'.expandtabs (4)
b'01 012 0123 01234"

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.isalnum()
bytearray.isalnum()

Return True if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and the
sequence is not empty, False otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. ASCII decimal digits are those
byte values in the sequence b'0123456789"'.

For example:

>>> b'ABCabcl'.isalnum()
True
>>> b'ABC abcl'.isalnum()
False

bytes.isalpha ()
bytearray.isalpha()

Return True if all bytes in the sequence are alphabetic ASCII characters and the sequence is
not empty, False otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ .

For example:

>>> pb'ABCabc'.isalpha ()
True
>>> pb'ABCabcl'.isalpha ()
False

bytes.isascii ()
bytearray.isascii()

Return True if the sequence is empty or all bytes in the sequence are ASCII, False otherwise. ASCII bytes
are in the range 0-Ox7F.

Added in version 3.7.

bytes.isdigit ()

72 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

bytearray.isdigit ()

Return True if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, False
otherwise. ASCII decimal digits are those byte values in the sequence b' 0123456789

For example:

>>> p'1234"'.isdigit ()
True
>>> p'1.23'.isdigit ()
False

bytes.islower ()
bytearray.islower ()

Return True if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII
characters, False otherwise.

For example:

>>> b'hello world'.islower ()
True
>>> p'Hello world'.islower ()

False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHI JKLMNOPQRSTUVWXYZ '.

bytes.isspace ()
bytearray.isspace ()

Return True if all bytes in the sequence are ASCII whitespace and the sequence is not empty, False otherwise.
ASCII whitespace characters are those byte values in the sequence b' \t\n\r\x0b\f"' (space, tab, newline,
carriage return, vertical tab, form feed).

bytes.istitle()
bytearray.istitle()

Return True if the sequence is ASCII titlecase and the sequence is not empty, False otherwise. See bytes.
title () for more details on the definition of “titlecase”.

For example:

>>> b'Hello World'.istitle ()
True
>>> pb'Hello world'.istitle()
False

bytes.isupper ()
bytearray.isupper ()

Return True if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase
ASCII characters, False otherwise.

For example:

>>> Db'HELLO WORLD'.isupper ()
True
>>> pb'Hello world'.isupper ()
False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHI JKLMNOPQRSTUVWXYZ '.

bytes.lower ()

4.9. Binary Sequence Types — bytes, bytearray, memoryview 73

The Python Library Reference, Release 3.13.1

bytearray.lower ()

Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding low-
ercase counterpart.

For example:

>>> b'Hello World'.lower ()
b'hello world'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHI JKLMNOPQRSTUVWXYZ '.

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.splitlines (keepends=False)
bytearray.splitlines (keepends=False)

Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the
universal newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends
is given and true.

For example:

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines/()

[b'ab c¢', b''", b'de fg', b'kl']

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> b"".split(b'\n'), b"Two lines\n".split (b'\n"'")
(['"'], [b'Two lines', b''])

>>> b"".splitlines (), b"One line\n".splitlines ()
([], [L'One line'])

bytes.swapcase ()

bytearray.swapcase ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding up-
percase counterpart and vice-versa.

For example:

>>> pb'Hello World'.swapcase ()
b'hELLO wORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHI JKLMNOPQRSTUVWXYZ .

Unlike st r. swapcase (), itis always the case thatbin. swapcase () . swapcase () == bin for the binary
versions. Case conversions are symmetrical in ASCII, even though that is not generally true for arbitrary
Unicode code points.

O Note

74 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.title ()
bytearray.title()

Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and
the remaining characters are lowercase. Uncased byte values are left unmodified.

For example:

>>> b'Hello world'.title()
b'Hello World'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b' ABCDEFGHIJKLMNOPQRSTUVWXYZ .
All other byte values are uncased.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> pb"they're bill's friends from the UK".title()
b"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

-
>>> import re

>>> def titlecase(s):
return re.sub(rb" [A-Za-z]+ (' [A-Za-z]+)?2",
lambda mo: mo.group(0) [0:1] .upper () +
mo.group (0) [1:].lower (),
s)

>>> titlecase (b"they're bill's friends.")
b"They're Bill's Friends."

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.upper ()

bytearray.upper ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding up-
percase counterpart.

For example:

>>> b'Hello World'.upper ()
b'HELLO WORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHI JKLMNOPQRSTUVWXYZ '.

4.9. Binary Sequence Types — bytes, bytearray, memoryview 75

The Python Library Reference, Release 3.13.1

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.z£ill (width)
bytearray.z£fill (width)

Return a copy of the sequence left filled with ASCII b ' 0 ' digits to make a sequence of length widrth. A leading
sign prefix (b'+'/b'-") is handled by inserting the padding after the sign character rather than before. For
bytes objects, the original sequence is returned if width is less than or equal to len (seq) .

For example:

>>> b"42" . z£fi11 (5)
b'00042"

>>> p"-42".z£f111 (5)
b'-0042"

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

4.9.4 printf-style Bytes Formatting

© Note

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such
as failing to display tuples and dictionaries correctly). If the value being printed may be a tuple or dictionary,
wrap it in a tuple.

Bytes objects (bytes/bytearray) have one unique built-in operation: the % operator (modulo). This is also known
as the bytes formatting or interpolation operator. Given format % values (where format is a bytes object), %
conversion specifications in format are replaced with zero or more elements of values. The effect is similar to using
the sprintf () in the C language.

If format requires a single argument, values may be a single non-tuple object.”° !> Otherwise, values must be a
tuple with exactly the number of items specified by the format bytes object, or a single mapping object (for example,
a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '%' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ' * ' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), givenasa ' . ' (dot) followed by the precision. If specified as ' * ' (an asterisk), the actual
precision is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).

7. Conversion type.

76 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include
a parenthesised mapping key into that dictionary inserted immediately after the '%' character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print (b' has quote types.' %
. {b'language': b"Python", b"number": 2})
b'Python has 002 quote types.'

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag Meaning
"#' The value conversion will use the “alternate form” (where defined below).
'0' The conversion will be zero padded for numeric values.

'—' The converted value is left adjusted (overrides the '0' conversion if both are given).

' ' (aspace) A blank should be left before a positive number (or empty string) produced by a signed conver-
sion.

"+' Asign character ('+' or '-") will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical
to sd.

The conversion types are:

Con- Meaning Notes

version

T@ln Signed integer decimal.

0,0 Signed integer decimal.

" Signed octal value. @)

"u' Obsolete type - it is identical to 'd'. ®)

'x! Signed hexadecimal (lowercase).)

g Signed hexadecimal (uppercase). 2)

Te! Floating-point exponential format (lowercase). 3)

070 Floating-point exponential format (uppercase). 3)

0T Floating-point decimal format. 3)

'F' Floating-point decimal format. 3)

T gt Floating-point format. Uses lowercase exponential format if exponent is less than -4 or not less ~ (4)
than precision, decimal format otherwise.

el Floating-point format. Uses uppercase exponential format if exponent is less than -4 or not (4)
less than precision, decimal format otherwise.

ey Single byte (accepts integer or single byte objects).

U750 Bytes (any object that follows the buffer protocol or has _ bytes_ ()). (®))

's! 's' is an alias for 'b' and should only be used for Python2/3 code bases. (6)

'a’ Bytes (converts any Python object using repr(obj).encode('ascii', (5)
'backslashreplace')).

'r' 'r' is an alias for 'a' and should only be used for Python2/3 code bases. 7

0850 No argument is converted, results in a '%' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier (' 0o ") to be inserted before the first digit.

(2) The alternate form causes a leading '0x' or '0X' (depending on whether the 'x' or 'X' format was used)
to be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

4.9. Binary Sequence Types — bytes, bytearray, memoryview 77

The Python Library Reference, Release 3.13.1

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as

they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

(5) If precision is N, the output is truncated to N characters.

(6) b'ss' is deprecated, but will not be removed during the 3.x series.

(7) b'sr' is deprecated, but will not be removed during the 3.x series.

(8) See PEP 237.

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no
changes were made.

> See also

PEP 461 - Adding % formatting to bytes and bytearray

Added in version 3.5.

4.9.5 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol
without copying.

class memoryview (object)

Create a memoryview that references object. object must support the buffer protocol. Built-in objects that
support the buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object. For many simple types such as bytes and bytearray, an element is a single byte, but other types
such as array.array may have bigger elements.

len (view) isequal to the length of to1ist, which is the nested list representation of the view. If view.ndim
= 1, this is equal to the number of elements in the view.

Changed in version 3.12: If view.ndim == 0, len(view) now raises I'vpeError instead of returning 1.
The itemsize attribute will give you the number of bytes in a single element.

A memoryview supports slicing and indexing to expose its data. One-dimensional slicing will result in a
subview:

>>> v = memoryview (b'abcefg')
>>> v[1]

98

>>> v[-1]

103

>>> v[l:4]

<memory at 0x7£3ddc9f4350>
>>> bytes(v[1:4])

b'bce’

If format is one of the native format specifiers from the st ruct module, indexing with an integer or a tuple
of integers is also supported and returns a single element with the correct type. One-dimensional memoryviews
can be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with

78

Chapter 4. Built-in Types

https://peps.python.org/pep-0237/
https://peps.python.org/pep-0461/

The Python Library Reference, Release 3.13.1

tuples of exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can
be indexed with the empty tuple.

Here is an example with a non-byte format:

p
>>> import array

>>> a = array.array('l', [-11111111, 22222222, —-33333333, 44444444])
>>> m = memoryview (a)

>>> m[0]

-11111111

>>> m[-1]

44444444

>>> m[::2].tolist ()

[-11111111, -33333333]

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is
not allowed:

>>> data = bytearray(b'abcefg')

>>> v = memoryview (data)

>>> v.readonly

False

>>> v[0] = ord(b'z")

>>> data

bytearray (b'zbcefg')

>>> v[1:4] = b'123"

>>> data

bytearray (b'z123fg"')

>>> v[2:3] = b'spam'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: memoryview assignment: lvalue and rvalue have different structures

>>> v[2:6] = b'spam'

>>> data

bytearray (b'zlspam')

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘¢’ are also hashable. The
hash is defined as hash (m) == hash (m.tobytes ()):

>>> v = memoryview (b'abcefg')

>>> hash(v) == hash (b'abcefg')

True

>>> hash(v[2:4]) == hash(b'ce')

True

>>> hash(v[::-2]) == hash(b'abcefg'[::-2])
True

Changed in version 3.3: One-dimensional memoryviews can now be sliced. One-dimensional memoryviews
with formats ‘B’, ‘b’ or ‘c’ are now hashable.

Changed in version 3.4: memoryview is now registered automatically with collections.abc.Sequence
Changed in version 3.5: memoryviews can now be indexed with tuple of integers.
memoryview has several methods:

__eq__(exporter)
A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding
values are equal when the operands’ respective format codes are interpreted using st ruct syntax.

For the subset of struct format strings currently supported by tolist (), v and w are equal if v.
tolist () == w.tolist ():

4.9. Binary Sequence Types — bytes, bytearray, memoryview 79

https://peps.python.org/pep-3118/

The Python Library Reference, Release 3.13.1

>>> import array

>>> a = array.array('t', [1, 2, 3, 4, 5])

>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.0])
>>> c = array.array('b', [5, 3, 1]

>>> x = memoryview(a)

>>> y = memoryview (b)

EEE R == A = § =—

True

>>> x.tolist () == a.tolist() == y.tolist () == b.tolist ()
True

>>> z = y[::-2]

>>> 7z == C

True

>>> z.tolist () == c.tolist ()

True

If either format string is not supported by the st ruct module, then the objects will always compare as
unequal (even if the format strings and buffer contents are identical):

>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint (BigEndianStructure) :
fields = [("x", c_long), ("y", c_long)]

>>> point = BEPoint (100, 200)

>>> a = memoryview (point)

>>> b = memoryview (point)

>>> a == point

False

>>> a == b

False

Note that, as with floating-point numbers, v is w does not imply v == w for memoryview objects.

Changed in version 3.3: Previous versions compared the raw memory disregarding the item format and
the logical array structure.

tobytes (order="C")

Return the data in the buffer as a bytestring. This is equivalent to calling the by tes constructor on the
memoryview.

>>> m = memoryview (b"abc")
>>> m.tobytes ()

b'abc'

>>> bytes (m)

b'abc'

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted
to bytes. cobytes () supports all format strings, including those that are not in st ruct module syntax.

Added in version 3.8: order can be {‘C’, ‘F’, ‘A’}. When order is ‘C’ or ‘F’, the data of the original array is
converted to C or Fortran order. For contiguous views, ‘A’ returns an exact copy of the physical memory.
In particular, in-memory Fortran order is preserved. For non-contiguous views, the data is converted to
C first. order=None is the same as order="C".

hex ([sep[, bytes _per_sep]])

Return a string object containing two hexadecimal digits for each byte in the buffer.

>>> m = memoryview (b"abc")
>>> m.hex ()

(continues on next page)

80

Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

(continued from previous page)
{'616263'

Added in version 3.5.

Changed in version 3.8: Similar to bytes. hex (), memoryview. hex () now supports optional sep and
bytes_per_sep parameters to insert separators between bytes in the hex output.

tolist ()
Return the data in the buffer as a list of elements.

>>> memoryview (b'abc') .tolist ()

[97, 98, 99]

>>> import array

>>> a = array.array('d', [1.1, 2.2, 3.31)
>>> m = memoryview (a)

>>> m.tolist ()

(1.1, 2.2, 3.3]

Changed in version 3.3: tolist () now supports all single character native formats in st ruct module
syntax as well as multi-dimensional representations.

toreadonly ()

Return a readonly version of the memoryview object. The original memoryview object is unchanged.

>>> m = memoryview (bytearray (b'abc'))

>>> mm = m.toreadonly ()

>>> mm.tolist ()

[97, 98, 99]

>>> mm[0] = 42

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: cannot modify read-only memory

>>> m[0] = 43

>>> mm.tolist ()

[43, 98, 99]

Added in version 3.8.

release ()
Release the underlying buffer exposed by the memoryview object. Many objects take special actions when

a view is held on them (for example, a bytearray would temporarily forbid resizing); therefore, calling
release() is handy to remove these restrictions (and free any dangling resources) as soon as possible.

After this method has been called, any further operation on the view raises a ValueError (except
release () itself which can be called multiple times):

>>> m = memoryview (b'abc')

>>> m.release ()

>>> m[0]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview (b'abc') as m:
m[0]

97

(continues on next page)

4.9. Binary Sequence Types — bytes, bytearray, memoryview 81

The Python Library Reference, Release 3.13.1

(continued from previous page)
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

Added in version 3.2.

cast (format[, shape])

Cast a memoryview to a new format or shape. shape defaults to [byte_length//new_itemsize],
which means that the result view will be one-dimensional. The return value is a new memoryview, but
the buffer itself is not copied. Supported casts are 1D -> C-contiguous and C-contiguous -> 1D.

The destination format is restricted to a single element native format in struct syntax. One of the
formats must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the
original length. Note that all byte lengths may depend on the operating system.

Cast 1D/long to 1D/unsigned bytes:

>>> import array

>>> a = array.array('l', [1,2,3])
>>> x = memoryview(a)

>>> x.format

Ty

>>> x.itemsize

8

>>> len (X)

>>> x.nbytes
24

>>> = x.cast('B")

=

>>> y.format
B

>>> y.itemsize
1

>>> len(y)

24

>>> y.nbytes
24

Cast 1D/unsigned bytes to 1D/char:

>>> b = bytearray(b'zyz")
>>> x = memoryview (b)
>>> x[0] = b'a'

Traceback (most recent call last):

TypeError: memoryview: invalid type for format 'B'

>>> y = x.cast('c')
>>> y[0] = b'a'
>>> b

bytearray(b'ayz')

Cast 1D/bytes to 3D/ints to 1D/signed char:

>>> import struct

>>> buf = struct.pack("i"*12, *1list (range(12)))
>>> x = memoryview (buf)
>>> y = x.cast ('i', shape=[2,2,3])

(continues on next page)

82 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

>>> y.tolist ()
(reo, 1, 21, [3, 4,
>>> y.format

'il
>>> y.itemsize

>>> len (y)

>>> y.nbytes

48

>>> z = y.cast('b")
>>> z.format

b

>>> z.itemsize

1
>>>
48
>>>
48

len(z)

z .nbytes

(continued from previous page)

Cast 1D/unsigned long to 2D/unsigned long:

>>> buf =
>>>

struct.pack ("L"*6,
X = memoryview (buf)
shape=[2,3])

*1list (range (6)))

>>> y = x.cast('L"',
>>>
2
>>> y.nbytes

48

>>> y.tolist ()

((o, 1, 21, [3, 4, 511

len(y)

Added in version 3.3.

Changed in version 3.5: The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available:

obj
The underlying object of the memoryview:

>>> b = bytearray(b'xyz')
>>> m = memoryview (b)
>>> m.obj is b

True

Added in version 3.3.

nbytes
nbytes == product (shape)

* itemsize == len(m.tobytes()).

This is the amount of

space in bytes that the array would use in a contiguous representation. It is not necessarily equal to

len (m):

>>> import array

>>> a = array.array('i', [1,2,3,4,5])
>>> m = memoryview (a)
>>> len (m)

5

(continues on next page)

49. Binary Sequence Types — bytes, bytearray, memoryview

83

The Python Library Reference, Release 3.13.1

>>>
20
>>>
>>>
3
>>>
12
>>>
12

y.nbytes

len(y.tobytes ())

(continued from previous page)

Multi-dimensional arrays:

>>> import struct
buf = struct.pack("d"*12,
memoryview (buf)

shape=[3,41])

>>>
>>> x =
>>> y = x.cast('d’',
y.tolist ()
[([0.0, 1.5, 3.0, 4.
>>> len (y)

3
>>>

96

>>>
51, (6.0, 7:5, 9.0,

y.nbytes

*[1.5*x for x

10.5]7,

in range(12)1])

[12.0, 13.5, 15.0,

16.5]]

read

form

item

Added in version 3.3.

only

A bool indicating whether the memory is read only.

at

A string containing the format (in st ruct module style) for each element in the view. A memoryview
can be created from exporters with arbitrary format strings, but some methods (e.g. tolist ()) are

restricted to native single element formats.

Changed in version 3.3: format 'B"' is now handled according to the struct module syntax. This means

that memoryview (b'abc') [0] == b'abc'[0] ==
size

The size in bytes of each element of the memoryview:

>>> import array, struct

>>> m = memoryview(array.array('H',
>>> m.itemsize

2

>>> m[0]

32000

>>> struct.calcsize('H') == m.itemsize

True

[32000,

32001,

32002171))

ndim

shap

An integer indicating how many dimensions of a multi-dimensional array the memory represents.

e

A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

strides

A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension

of the array.

84

Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

Changed in version 3.3: An empty tuple instead of None when ndim = 0.
suboffsets

Used internally for PIL-style arrays. The value is informational only.
c_contiguous

A bool indicating whether the memory is C-contiguous.

Added in version 3.3.
f_contiguous

A bool indicating whether the memory is Fortran contiguous.

Added in version 3.3.
contiguous

A bool indicating whether the memory is contiguous.

Added in version 3.3.

4.10 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing,
removing duplicates from a sequence, and computing mathematical operations such as intersection, union, differ-
ence, and symmetric difference. (For other containers see the built-in dict, 1ist, and tuple classes, and the
collections module.)

Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used
as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: {'jack', 'sjoerd'}, in addition to the set constructor.

The constructors for both classes work the same:
class set ([iterable])

class frozenset ([iterable])

Return a new set or frozenset object whose elements are taken from iferable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a
new empty set is returned.

Sets can be created by several means:
o Use a comma-separated list of elements within braces: {'jack', 'sjoerd'}
o Use a set comprehension: {c for c in 'abracadabra' if ¢ not in 'abc'}
« Use the type constructor: set (), set (' foobar'),set(['a', 'b', 'foo'l)
Instances of set and frozenset provide the following operations:
len(s)
Return the number of elements in set s (cardinality of s).
X in s

Test x for membership in s.

4.10. Set Types — set, frozenset 85

The Python Library Reference, Release 3.13.1

x not in s

Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.

issubset (other)

set <= other

Test whether every element in the set is in other.

set < other

Test whether the set is a proper subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other

Test whether every element in other is in the set.

set > other

Test whether the set is a proper superset of other, thatis, set >= other and set != other.

union (*others)
set | other |

Return a new set with elements from the set and all others.

intersection (*others)
set & other &
Return a new set with elements common to the set and all others.

difference (*others)
set - other -

Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set ~ other

Return a new set with elements in either the set or other but not both.

copy ()
Return a shallow copy of the set.

Note, the non-operator versions of union (), intersection (), difference (),
symmetric_difference (), issubset (), and issuperset () methods Wﬂlaccqﬁ any iterable as
an argument. In contrast, their operator based counterparts require their arguments to be sets. This precludes
error-prone constructions like set ('abc') & 'cbs' in favor of the more readable set ('abc').
intersection('cbs').

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the
first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if
and only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For ex-
ample, set('abc') == frozenset('abc') returns True and so does set('abc') in
set ([frozenset ('abc')1).

The subset and equality comparisons do not generalize to a total ordering function. For example, any two
nonempty disjoint sets are not equal and are not subsets of each other, so all of the following return False:
a<b, a==b, Or a>b.

Since sets only define partial ordering (subset relationships), the output of the 1ist.sort () method is un-
defined for lists of sets.

86

Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset ('ab') | set ('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update (*others)
set |= other |

Update the set, adding elements from all others.

intersection_update (*others)
set &= other &
Update the set, keeping only elements found in it and all others.

difference_update (*others)
set —= other |

Update the set, removing elements found in others.

symmetric_difference_update (other)
set “= other

Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

remove (elem)

Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)

Remove element elem from the set if it is present.

Pop ()

Remove and return an arbitrary element from the set. Raises keyError if the set is empty.
clear ()

Remove all elements from the set.

Note, the non-operator versions of the update (), intersection_update (), difference_update (),
and symmetric_difference_update () methods will accept any iterable as an argument.

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a set. To
support searching for an equivalent frozenset, a temporary one is created from elem.

4.11 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, the dictionary. (For other containers see the built-in 1ist, set, and tuple classes, and
the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictio-
naries or other mutable types (that are compared by value rather than by object identity) may not be used as keys.
Values that compare equal (such as 1, 1.0, and True) can be used interchangeably to index the same dictionary
entry.

class dict (**kwargs)

class dict (mapping, **kwargs)

4.11. Mapping Types — dict 87

The Python Library Reference, Release 3.13.1

class dict (iterable, **kwargs)

Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword

arguments.

Dictionaries can be created by several means:

o Use a comma-separated list of key: value pairs within braces: {'jack': 4098, 'sjoerd':
4127} or {4098: 'jack', 4127: 'sjoerd'}

o Use a dict comprehension: {}, {x: x ** 2 for x in range(10)}

o Use the type constructor: dict (), dict ([('foo', 100), ('bar', 200)1), dict (foo=100,
bar=200)

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it
defines a keys () method, a dictionary is created by calling _ getitem__ () on the argument with each
returned key from the method. Otherwise, the positional argument must be an iterable object. Each item in
the iterable must itself be an iterable with exactly two elements. The first element of each item becomes a key
in the new dictionary, and the second element the corresponding value. If a key occurs more than once, the
last value for that key becomes the corresponding value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created
from the positional argument. If a key being added is already present, the value from the keyword argument

replaces the value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2, "three":
3}:

f N
>>> a = dict (one=1, two=2, three=3)

>> b = {'one': 1, 'two': 2, 'three': 3}

>>> ¢ = dict(zip(['one', 'two', 'three'l, [1, 2, 31))

>>> d = dict([('"two', 2), ('one', 1), ('three', 3)1])

>>> e = dict ({'three': 3, 'one': 1, 'two': 2})

>>> f = dict({'one': 1, 'three': 3}, two=2)

>>> a == b == ¢c == = 8 ==

True

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers.

Otherwise, any valid keys can be used.

These are the operations that dictionaries support (and therefore, custom mapping types should support too):

list (d)
Return a list of all the keys used in the dictionary d.

len (d)

Return the number of items in the dictionary d.

d[key]

Return the item of d with key key. Raises a keyError if key is not in the map.

If a subclass of dict defines a method __missing__ () and key is not present, the d[key] operation
calls that method with the key key as argument. The d[key] operation then returns or raises what-
ever is returned or raised by the _ missing__ (key) call. No other operations or methods invoke
__missing__().If__missing__()isnOtdeﬁned,KeyErrorisraBed.__missing__()nnmtbe
a method; it cannot be an instance variable:

>>> class Counter (dict):
def _ missing__ (self, key):
return 0O

>>> ¢ = Counter ()

>>> c['red']

(continues on next page)

88

Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

(continued from previous page)
0
>>> c['red'] +=1
>>> c['red']
1

The example above shows part of the implementation of collections.Counter. A different
_ missing__ methodis used by collections.defaultdict.

d[key] = value
Set d[key] to value.

del dlkey]

Remove d [key] from d. Raises a keyError if key is not in the map.
key in d

Return True if d has a key key, else False.
key not in d

Equivalent to not key in d.

iter (d)

Return an iterator over the keys of the dictionary. This is a shortcut for iter (d.keys ()).

clear ()

Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

classmethod fromkeys (iterable, value=None, /)
Create a new dictionary with keys from iterable and values set to value.
fromkeys () is a class method that returns a new dictionary. value defaults to None. All of the values
refer to just a single instance, so it generally doesn’t make sense for value to be a mutable object such as
an empty list. To get distinct values, use a dict comprehension instead.

get (key, default=None)
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None,
so that this method never raises a KeyError.

items ()
Return a new view of the dictionary’s items ((key, value) pairs). See the documentation of view
objects.

keys ()

Return a new view of the dictionary’s keys. See the documentation of view objects.

pop (key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and
key is not in the dictionary, a KeyError is raised.

popitem()
Remove and return a (key, value) pair from the dictionary. Pairs are returned in LIFO (last-in,
first-out) order.

popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem () raises a KeyError.

Changed in version 3.7: LIFO order is now guaranteed. In prior versions, popitem () would return an
arbitrary key/value pair.

4.11. Mapping Types — dict 89

The Python Library Reference, Release 3.13.1

reversed (d)

Return a reverse iterator over the keys of the dictionary. This is a shortcut for reversed (d.keys ()).
Added in version 3.8.

setdefault (key, default=None)

If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.
update () accepts either another object with a keys () method (in which case _ getitem__ () is
called with every key returned from the method) or an iterable of key/value pairs (as tuples or other

iterables of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update (red=1, blue=2).

values ()

Return a new view of the dictionary’s values. See the documentation of view objects.

An equality comparison between one dict . values () view and another will always return False. This
also applies when comparing dict.values () to itself:

>>> d = {'a': 1}
>>> d.values () == d.values()
False

d | other

Create a new dictionary with the merged keys and values of d and other, which must both be dictionaries.
The values of other take priority when d and other share keys.

Added in version 3.9.

d |= other

Update the dictionary d with keys and values from other, which may be either a mapping or an iterable
of key/value pairs. The values of other take priority when d and other share keys.

Added in version 3.9.

Dictionaries compare equal if and only if they have the same (key, value) pairs (regardless of ordering).
Order comparisons (‘<’, ‘<=’, >=’, >’) raise TypeError.

Dictionaries preserve insertion order. Note that updating a key does not affect the order. Keys added after
deletion are inserted at the end.

-

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d
{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list (d)
['one', 'two', 'three', 'four']
>>> list (d.values())

(1, 2, 3, 4]
>>> d["one"] = 42
>>> d

{'one': 42, 'two': 2, 'three': 3, 'four': 4}
>>> del d["two"]

>>> d["two"] = None
>>> d
{'one': 42, 'three': 3, 'four': 4, 'two': None}

Changed in version 3.7: Dictionary order is guaranteed to be insertion order. This behavior was an implemen-
tation detail of CPython from 3.6.

Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

Dictionaries and dictionary views are reversible.

>>> list (reversed(d))

['four', 'three', 'two', 'one']
>>> list (reversed(d.values()))
[4, 3, 2, 1]

>>> list (reversed(d.items()))

L

>>> d = {"one": 1, "two": 2, "three":
>>> d
{'one': 1, '"two': 2, 'three': 3, 'four':

[("four', 4), ('three', 3), ('two',

"four": 4}

4}

('one', 1)]

Changed in version 3.8: Dictionaries are now reversible.

> See also

types.MappingProxyType can be used to create a read-only view of a dict.

4.11.1 Dictionary view objects

The objects returned by dict.keys (), dict.values () and dict.items () are view objects. They provide a
dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these

changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len (dictview)

Return the number of entries in the dictionary.

iter (dictview)

Return an iterator over the keys, values or items (represented as tuples of (key, value)) in the dictionary.

Keys and values are iterated over in insertion order. This allows the creation of (value, key) pairs using
zip():pairs = zip(d.values(), d.keys()). Another way to create the same listis pairs = [(v,

k) for (k, v) in d.items{()].

Iterating views while adding or deleting entries in the dictionary may raise a RuntimeError or fail to iterate

over all entries.

Changed in version 3.7: Dictionary order is guaranteed to be insertion order.

X in dictview

Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,

value) tuple).

reversed (dictview)

Return a reverse iterator over the keys, values or items of the dictionary. The view will be iterated in reverse

order of the insertion.

Changed in version 3.8: Dictionary views are now reversible.

dictview.mapping

Return a t ypes.MappingProxyType that wraps the original dictionary to which the view refers.

Added in version 3.10.

Keys views are set-like since their entries are unique and hashable. Items views also have set-like operations since
the (key, value) pairs are unique and the keys are hashable. If all values in an items view are hashable as well, then the
items view can interoperate with other sets. (Values views are not treated as set-like since the entries are generally
not unique.) For set-like views, all of the operations defined for the abstract base class collections.abc. Set
are available (for example, ==, <, or ~). While using set operators, set-like views accept any iterable as the other

operand, unlike sets which only accept sets as the input.

4.11. Mapping Types — dict

91

The Python Library Reference, Release 3.13.1

An example of dictionary view usage:

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys ()
>>> values = dishes.values|()

>>> # iteration

>> n = 0

>>> for val in values:
n += val

>>> print (n)
504

>>> # keys and values are iterated over in the same order (insertion order)
>>> list (keys)

['eggs', 'sausage', 'bacon', 'spam']

>>> list (values)

[2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes|['eggs']

>>> del dishes|['sausage']

>>> list (keys)

['"bacon', 'spam']

>>> # set operations
>>> keys & {'eggs', 'bacon', 'salad'}
{'bacon'}

>>> keys ©~ {'sausage', 'juice'} == {'juice', 'sausage', 'bacon', 'spam'}
True

>>> keys | ['Juice', 'juice', 'juice'] == {'bacon', 'spam', 'juice'}
True

>>> # get back a read-only proxy for the original dictionary
>>> values.mapping

mappingproxy ({ 'bacon': 1, 'spam': 500})

>>> values.mapping|['spam']

500

4.12 Context Manager Types

Python’s wit h statement supports the concept of a runtime context defined by a context manager. This is implemented
using a pair of methods that allow user-defined classes to define a runtime context that is entered before the statement
body is executed and exited when the statement ends:

contextmanager.__enter__ ()

Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this context
manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __en-
ter__() to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by decimal.
localcontext (). These managers set the active decimal context to a copy of the original decimal context
and then return the copy. This allows changes to be made to the current decimal context in the body of the
with statement without affecting code outside the with statement.

92 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

contextmanager.__exit__ (exc_type, exc_val, exc_tb)

Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be sup-
pressed. If an exception occurred while executing the body of the with statement, the arguments contain the
exception type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur during execution of this method
will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value
to indicate that the method completed successfully and does not want to suppress the raised exception. This
allows context management code to easily detect whether or not an __exit__ () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially
beyond their implementation of the context management protocol. See the context 1ib module for some examples.

Python’s generators and the contextlib.contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the contextlib.contextmanager decorator, it will
return a context manager implementing the necessary __enter () and __exit__ () methods, rather than the
iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C
API. Extension types wanting to define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is
negligible.

4.13 Type Annotation Types — Generic Alias, Union

The core built-in types for type annotations are Generic Alias and Union.

4.13.1 Generic Alias Type

GenericAlias objects are generally created by subscripting a class. They are most often used with container classes,
suchas 1ist or dict. For example, 1ist [int] iSa GenericAlias object created by subscripting the 1ist class
with the argument int. GenericAlias objects are intended primarily for use with rype annotations.

© Note

It is generally only possible to subscript a class if the class implements the special method
__class_getitem__ ().

A GenericAlias object acts as a proxy for a generic type, implementing parameterized generics.

For a container class, the argument(s) supplied to a subscription of the class may indicate the type(s) of the elements
an object contains. For example, set [bytes] can be used in type annotations to signify a set in which all the
elements are of type bytes.

For a class which defines __class_getitem__ () butis not a container, the argument(s) supplied to a subscription
of the class will often indicate the return type(s) of one or more methods defined on an object. For example, regular
expressions can be used on both the st r data type and the bytes data type:

e If x = re.search('foo', 'foo'), x will be a re. Match object where the return values of x.group (0)
and x[0] will both be of type str. We can represent this kind of object in type annotations with the
GenericAlias re.Match[str].

e If y = re.search(b'bar', b'bar'), (note the b for bytes), y will also be an instance of re.Match,
but the return values of y.group (0) and y[0] will both be of type bytes. In type annotations, we would
represent this variety of re. Match objects with re .Match [bytes].

4.13. Type Annotation Types — Generic Alias, Union 93

The Python Library Reference, Release 3.13.1

GenericAlias objects are instances of the class types.GenericAlias, which can also be used to create
GenericAlias objects directly.
T[X, ¥, ...]

Creates a GenericAlias representing a type T parameterized by types X, Y, and more depending on the T
used. For example, a function expecting a 17 st containing float elements:

def average (values: list[float]) —-> float:
return sum(values) / len(values)

Another example for mapping objects, using a dict, which is a generic type expecting two type parameters
representing the key type and the value type. In this example, the function expects a dict with keys of type
str and values of type int:

def send_post_request (url: str, body: dict[str, int]) -> None:

The builtin functions isinstance () and issubclass () do not accept GenericAlias types for their second
argument:

>>> isinstance([1, 2], list[str])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: isinstance () argument 2 cannot be a parameterized generic

The Python runtime does not enforce fype annotations. This extends to generic types and their type parameters.
When creating a container object from a GenericAlias, the elements in the container are not checked against their
type. For example, the following code is discouraged, but will run without errors:

>>> t = list[str]
>>> t([1, 2, 3])
(1, 2, 3]

Furthermore, parameterized generics erase type parameters during object creation:

>>> t = list([str]
>>> type (t)
<class 'types.GenericAlias'>

>>> 1 = t ()
>>> type (1)
<class 'list'>

Calling repr () or str () on a generic shows the parameterized type:

>>> repr(list[int])
'list[int]"

>>> str(list[int])
'list[int]"’

The _ getitem () method of generic containers will raise an exception to disallow mistakes like
dict[str] [str]:

>>> dict[str] [str]

Traceback (most recent call last):

TypeError: dict[str] is not a generic class

94 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

However, such expressions are valid when rype variables are used. The index must have as many elements as there
are type variable items in the GenericAlias object’s __args_ .

>>> from typing import TypeVar
>>> Y = TypeVar('yY'")

>>> dict[str, Y] [int]
dict[str, int]

Standard Generic Classes
The following standard library classes support parameterized generics. This list is non-exhaustive.
e tuple
o Jist
e dict
e set
e frozenset
* type
e collections.deque
e collections.defaultdict
e collections.OrderedDict
e collections.Counter
e collections.ChainMap
e collections.abc.Awaitable
e collections.abc.Coroutine
e collections.abc.AsyncIterable
e collections.abc.AsyncIterator
e collections.abc.AsyncGenerator
e collections.abc.Iterable
e collections.abc.Iterator
e collections.abc.Generator
e collections.abc.Reversible
e collections.abc.Container
e collections.abc.Collection
e collections.abc.Callable
e collections.abc.Set
e collections.abc.MutableSet
e collections.abc.Mapping
e collections.abc.MutableMapping
e collections.abc.Sequence
e collections.abc.MutableSequence
e collections.abc.ByteString

e collections.abc.MappingView

4.13. Type Annotation Types — Generic Alias, Union 95

The Python Library Reference, Release 3.13.1

e collections.abc.KeysView

e collections.abc.ItemsView
e collections.abc.ValuesView
e contextlib.AbstractContextManager
e contextlib.AbstractAsyncContextManager
e dataclasses.Field

e functools.cached_property
e functools.partialmethod

e os.PathLike

e queue.LifoQueue

e queue.Queue

e queue.PriorityQueue

e queue.SimpleQueue

o re.Pattern

o re.Match

e shelve.BsdDbShelf

e shelve.DbfilenameShelf

e shelve.Shelf

e types.MappingProxyType

o weakref.WeakKeyDictionary
e weakref.WeakMethod

e weakref.WeakSet

e weakref.WeakValueDictionary

Special Attributes of Genericalias objects
All parameterized generics implement special read-only attributes.

genericalias.__origin

This attribute points at the non-parameterized generic class:

>>> list[int].__ _origin_
<class 'list'>

genericalias.__args

This attribute is a t up 1 e (possibly of length 1) of generic types passed to the original __class_getitem__ ()
of the generic class:

>>> dict([str, list[int]].__args___
(<class 'str'>, list[int])

genericalias.__parameters

This attribute is a lazily computed tuple (possibly empty) of unique type variables found in __args__:

96 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

>>> from typing import TypeVar

>>> T = TypeVar ('T")
>>> 1ist[T].__parameters_
(NT/)

© Note

A GenericAlias object with t yping. ParamSpec parameters may not have correct _parameters_

after substitution because t yping.ParamSpec is intended primarily for static type checking.

genericalias._ unpacked_

A boolean that is true if the alias has been unpacked using the * operator (see TypeVarTuple).

Added in version 3.11.

> See also

PEP 484 - Type Hints
Introducing Python’s framework for type annotations.

PEP 585 - Type Hinting Generics In Standard Collections

Introducing the ability to natively parameterize standard-library classes, provided they implement the spe-

cial class method _ class_getitem__ ().

Generics, user-defined generics and typing.Generic

Documentation on how to implement generic classes that can be parameterized at runtime and understood

by static type-checkers.

Added in version 3.9.

4.13.2 Union Type

A union object holds the value of the | (bitwise or) operation on multiple fype objects. These types are intended

primarily for rype annotations. The union type expression enables cleaner type hinting syntax compared to t ypin
Union.
X | Y|

Defines a union object which holds types X, Y, and so forth. x | Y means either X or Y. It is equivalent
typing.Union[X, Y].For example, the following function expects an argument of type int or float:

g.

to

def square (number: int | float) —-> int | float:
return number ** 2

© Note

The | operand cannot be used at runtime to define unions where one or more members is a forward ref-
erence. For example, int | "Foo", where "Foo" is a reference to a class not yet defined, will fail at
runtime. For unions which include forward references, present the whole expression as a string, e.g. "int

| Foo".

union_object == other

Union objects can be tested for equality with other union objects. Details:

« Unions of unions are flattened:

4.13. Type Annotation Types — Generic Alias, Union

97

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.13.1

[(int | str) | float == int | str | float

« Redundant types are removed:

[int | str | int == int | str

o When comparing unions, the order is ignored:

[int | str == str | int

o Itis compatible with t yping. Union:

[int | str == typing.Union[int, str]

» Optional types can be spelled as a union with None:

[str | None == typing.Optional[str]

isinstance (obj, union_object)

issubclass (obj, union_object)

Callsto isinstance () and issubclass () are also supported with a union object:

-
>>> isinstance("", int | str)

True
.

However, parameterized generics in union objects cannot be checked:

(

>>> isinstance (1, int | list[int]) # short-circuit evaluation
True
>>> isinstance([1], int | list[int])

Traceback (most recent call last):

TypeError: isinstance () argument 2 cannot be a parameterized generic
.

The user-exposed type for the union object can be accessed from ¢ ypes. UnionType and used for i sinstance ()
checks. An object cannot be instantiated from the type:

>>> import types
>>> isinstance (int | str, types.UnionType)
True
>>> types.UnionType ()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot create 'types.UnionType' instances

O Note

The _ or__ () method for type objects was added to support the syntax X | Y. If a metaclass implements
__or__ (), the Union may override it:
>>> class M(type) :
def _ or_ (self, other):
return "Hello"

>>> class C(metaclass=M) :
pass

98 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

>>> C | int
'Hello'
>>> int | C
int | C

> See also

PEP 604 - PEP proposing the X | Y syntax and the Union type.

Added in version 3.10.

4.14 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.14.1 Modules

The only special operation on a module is attribute access: m. name, where m is a module and name accesses a name
defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist, rather
it requires an (external) definition for a module named foo somewhere.)

A special attribute of every module is __dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the __ dict___
attribute is not possible (you can write m.__dict__ ['a'] = 1, which defines m.a to be 1, but you can’t write
m.__dict__ = {}). Modifying __dict__ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys' (built-in)>. If loaded from a file, they
are written as <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>.

4.14.2 Classes and Class Instances

See objects and class for these.

4.14.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-1list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.14.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance method. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object: a
bound method (also called instance method) object. When called, it will add the self argument to the argument list.
Bound methods have two special read-only attributes: m.___self__is the object on which the method operates, and
m.__ func__ is the function implementing the method. Calling m (arg-1, arg-2, ..., arg-n) is completely
equivalent to callingm.__ func__ (m.__self__, arg-1, arg-2, ..., arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (method.__func__), setting method attributes on bound methods

4.14. Other Built-in Types 99

https://peps.python.org/pep-0604/

The Python Library Reference, Release 3.13.1

is disallowed. Attempting to set an attribute on a method results in an At ¢t ributeError being raised. In order to
set a method attribute, you need to explicitly set it on the underlying function object:

>>> class C:
def method(self):
pass

>>> ¢ = C{()
>>> c.method.whoami = 'my name is method' # can't set on the method
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'method' object has no attribute 'whoami'
>>> c.method._ func__ .whoami = 'my name is method'
>>> c.method.whoami

'my name is method'

See instance-methods for more information.

4.14.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the built-in compile () function and can be extracted from function
objects through their __code___ attribute. See also the code module.

Accessing __code__raises an auditing event object .__getattr__ with arguments obj and "__code__".

A code object can be executed or evaluated by passing it (instead of a source string) to the exec () or eval ()
built-in functions.

See types for more information.

4.14.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function ¢t ype (). There
are no special operations on types. The standard module t ypes defines names for all standard built-in types.

Types are written like this: <class 'int'>.

4.14.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name). type (None) () produces the same singleton.

It is written as None.

4.14.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one ellipsis
object, named E11ipsis (abuilt-in name). type (E11lipsis) () produces the £111ipsis singleton.

It is written as E1lipsisor

4.14.9 The Notimplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types
they don’t support. See comparisons for more information. There is exactly one NotImplemented object.
type (NotImplemented) () produces the singleton instance.

It is written as Not Implemented.

100 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

4.14.10 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.15 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the dir () built-in function.
definition.__name___

The name of the class, function, method, descriptor, or generator instance.

definition._ _qualname_

The qualified name of the class, function, method, descriptor, or generator instance.
Added in version 3.3.

definition.__module_

The name of the module in which a class or function was defined.

definition.__doc

The documentation string of a class or function, or None if undefined.
definition.__type_params___
The type parameters of generic classes, functions, and fype aliases. For classes and functions that are not

generic, this will be an empty tuple.

Added in version 3.12.

4.16 Integer string conversion length limitation

CPython has a global limit for converting between int and str to mitigate denial of service attacks. This limit
only applies to decimal or other non-power-of-two number bases. Hexadecimal, octal, and binary conversions are
unlimited. The limit can be configured.

The int type in CPython is an arbitrary length number stored in binary form (commonly known as a “bignum”).
There exists no algorithm that can convert a string to a binary integer or a binary integer to a string in linear time, unless
the base is a power of 2. Even the best known algorithms for base 10 have sub-quadratic complexity. Converting a
large value such as int ('1' * 500_000) can take over a second on a fast CPU.

Limiting conversion size offers a practical way to avoid CVE 2020-10735.

The limit is applied to the number of digit characters in the input or output string when a non-linear conversion
algorithm would be involved. Underscores and the sign are not counted towards the limit.

When an operation would exceed the limit, a ValueError is raised:

>>> import sys

>>> sys.set_int_max_str_digits(4300) # Illustrative, this 1is the default.
>>> = int ('2' * 5432)

Traceback (most recent call last):

ValueError: Exceeds the limit (4300 digits) for integer string conversion: value.
—has 5432 digits; use sys.set_int_max_str_digits() to increase the limit

>>> i = int ('2' * 4300)

>>> len(str(i))

4300

>>> 1 _squared = i*i

>>> len(str(i_squared))

Traceback (most recent call last):

(continues on next page)

4.15. Special Attributes 101

https://www.cve.org/CVERecord?id=CVE-2020-10735

The Python Library Reference, Release 3.13.1

(continued from previous page)

ValueError: Exceeds the limit (4300 digits) for integer string conversion; use sys.

—set_int_max_str_digits() to increase the limit

>>> len (hex (i_squared))

7144

>>> assert int (hex (i_squared), base=16) == i1i*i1i # Hexadecimal is unlimited.

The default limit is 4300 digits as provided in sys. int_info.default_max_str_digits. The lowest limit that
can be configured is 640 digits as provided in sys. int_info.str digits_check_threshold.

Verification:

>>>
>>>
>>>
>>>

import sys

assert sys.int_info.default_max_str_digits == 4300, sys.int_info

assert sys.int_info.str_digits_check_threshold == 640, sys.int_info

msg = 1int ('578966293710682886880994035146873798396722250538762761564"
'9252925514383915483333812743580549779436104706260696366600"
'571186405732") .to_bytes (53, 'big')

Added in version 3.11.

4.16.1 Affected APIs

The limitation only applies to potentially slow conversions between int and str or bytes:

int (string) with default base 10.

int (string, base) for all bases that are not a power of 2.
str (integer).

repr (integer).

any other string conversion to base 10, for example £"{integer}", "{}".format (integer), or b"%d"

)

% integer.

The limitations do not apply to functions with a linear algorithm:

int (string, base) with base 2, 4, 8, 16, or 32.

int.from _bytes () and int.to_bytes ().

hex (), oct (), bin().

Format Specification Mini-Language for hex, octal, and binary numbers.
strto float.

strto decimal.Decimal.

4.16.2 Configuring the limit

Before Python starts up you can use an environment variable or an interpreter command line flag to configure the

limit:

PYTHONINTMAXSTRDIGITS, €.g. PYTHONINTMAXSTRDIGITS=640 python3 to set the limit to 640 or
PYTHONINTMAXSTRDIGITS=0 python3 to disable the limitation.

-X int_max_str_digits,e.g. python3 -X int_max_str_digits=640

sys.flags.int_max_str digits contains the value of PYTHONINTMAXSTRDIGITS or -X
int_max_str_digits. If both the env var and the -X option are set, the —x option takes precedence. A
value of -7 indicates that both were unset, thus a value of sys.int_info.default_max_ str digits
was used during initialization.

From code, you can inspect the current limit and set a new one using these sys APIs:

102

Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

e sys.get_int_max_str_digits () and sys.setfintfmaxfstrﬁdigits()aﬁiageﬁerandseuerﬁn

the interpreter-wide limit. Subinterpreters have their own limit.

Information about the default and minimum can be found in sys. int_info:

e sys.int_info.default_max_str_digits is the compiled-in default limit.

e sys.int_info.str digits_check_threshold is the lowest accepted value for the limit (other than O

which disables it).
Added in version 3.11.

%+ Caution

no limit.

to precompile .py sources to . pyc files.

Setting a low limit can lead to problems. While rare, code exists that contains integer constants in decimal in
their source that exceed the minimum threshold. A consequence of setting the limit is that Python source code
containing decimal integer literals longer than the limit will encounter an error during parsing, usually at startup
time or import time or even at installation time - anytime an up to date . pyc does not already exist for the code.
A workaround for source that contains such large constants is to convert them to 0x hexadecimal form as it has

Test your application thoroughly if you use a low limit. Ensure your tests run with the limit set early via the
environment or flag so that it applies during startup and even during any installation step that may invoke Python

4.16.3 Recommended configuration

The default sys.int_info.default _max_str_digits is expected to be reasonable for most applications. If
your application requires a different limit, set it from your main entry point using Python version agnostic code as

these APIs were added in security patch releases in versions before 3.12.

Example:

>>> import sys

>>> if hasattr(sys, "set_int_max_str_digits"):
upper_bound = 68000
lower_bound = 4004
current_limit = sys.get_int_max_str_digits()

if current_limit == 0 or current_limit > upper_bound:

sys.set_int_max_str_digits (upper_bound)
elif current_ limit < lower_bound:
sys.set_int_max_str_digits (lower_bound)

If you need to disable it entirely, set it to 0.

4.16. Integer string conversion length limitation

103

The Python Library Reference, Release 3.13.1

104 Chapter 4. Built-in Types

CHAPTER
FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. In a try statement with
an except clause that mentions a particular class, that clause also handles any exception classes derived from that
class (but not exception classes from which iz is derived). Two exception classes that are not related via subclassing
are never equivalent, even if they have the same name.

The built-in exceptions listed in this chapter can be generated by the interpreter or built-in functions. Except where
mentioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple
of several items of information (e.g., an error code and a string explaining the code). The associated value is usually
passed as arguments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to derive new
exceptions from the Exception class or one of its subclasses, and not from BaseExcept ion. More information
on defining exceptions is available in the Python Tutorial under tut-userexceptions.

5.1 Exception context

Three attributes on exception objects provide information about the context in which the exception was raised:

BaseException._ context_
BaseException._ cause_
BaseException.__ suppress_context_

When raising a new exception while another exception is already being handled, the new exception’s
__context___ attribute is automatically set to the handled exception. An exception may be handled when an
except or finally clause, or a with statement, is used.

This implicit exception context can be supplemented with an explicit cause by using from with raise:

[raise new_exc from original_exc

The expression following £rom must be an exception or None. It willbe setas ___cause___ on the raised excep-
tion. Setting __cause__ also implicitly sets the __suppress_context__ attribute to True, so that using
raise new_exc from None effectively replaces the old exception with the new one for display purposes
(e.g. converting KeyErrorto AttributeError), while leaving the old exception available in___context_
for introspection when debugging.

The default traceback display code shows these chained exceptions in addition to the traceback for the exception
itself. An explicitly chained exception in __cause___ is always shown when present. An implicitly chained
exception in __context__ is shownonly if _ cause_ is None and __suppress_context__is false.

In either case, the exception itself is always shown after any chained exceptions so that the final line of the
traceback always shows the last exception that was raised.

105

The Python Library Reference, Release 3.13.1

5.2 Inheriting from built-in exceptions

User code can create subclasses that inherit from an exception type. It’s recommended to only subclass one exception
type at a time to avoid any possible conflicts between how the bases handle the args attribute, as well as due to
possible memory layout incompatibilities.

CPython implementation detail: Most built-in exceptions are implemented in C for efficiency, see: Ob-
jects/exceptions.c. Some have custom memory layouts which makes it impossible to create a subclass that inherits
from multiple exception types. The memory layout of a type is an implementation detail and might change between
Python versions, leading to new conflicts in the future. Therefore, it’s recommended to avoid subclassing multiple
exception types altogether.

5.3 Base classes

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException

The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for
that, use Exception). If str () is called on an instance of this class, the representation of the argument(s) to
the instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like 0SError)
expect a certain number of arguments and assign a special meaning to the elements of this tuple, while
others are usually called only with a single string giving an error message.

with_traceback (1b)

This method sets #b as the new traceback for the exception and returns the exception object. It was more
commonly used before the exception chaining features of PEP 3134 became available. The following ex-
ample shows how we can convert an instance of SomeException into an instance of OtherException
while preserving the traceback. Once raised, the current frame is pushed onto the traceback of the
OtherException, as would have happened to the traceback of the original SomeException had we
allowed it to propagate to the caller.

try:

except SomeException:

tb = sys.exception().__traceback___
raise OtherException(...).with_traceback (tb)
__traceback_

A writable field that holds the traceback object associated with this exception. See also: raise.

add_note (note)
Add the string note to the exception’s notes which appear in the standard traceback after the exception
string. A TypeError is raised if note is not a string.
Added in version 3.11.

_ _notes__
A list of the notes of this exception, which were added with add_note (). This attribute is created when
add _note () is called.
Added in version 3.11.

exception Exception

All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also
be derived from this class.

106 Chapter 5. Built-in Exceptions

https://github.com/python/cpython/tree/3.13/Objects/exceptions.c
https://github.com/python/cpython/tree/3.13/Objects/exceptions.c
https://peps.python.org/pep-3134/

The Python Library Reference, Release 3.13.1

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError, FloatingPointError.

exception BufferError

Raised when a buffer related operation cannot be performed.

exception LookupError

The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by codecs. lookup ().

5.4 Concrete exceptions

The following exceptions are the exceptions that are usually raised.

exception AssertionError

Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not
support attribute references or attribute assignments at all, TypeError is raised.)

The name and obj attributes can be set using keyword-only arguments to the constructor. When set they
represent the name of the attribute that was attempted to be accessed and the object that was accessed for said
attribute, respectively.

Changed in version 3.10: Added the name and ob3 attributes.

exception EOFError
Raised when the input () function hits an end-of-file condition (EOF) without reading any data. (N.B.: the
io.IOBase.read() and io. IOBase.readline () methods return an empty string when they hit EOF.)
exception FloatingPointError

Not currently used.

exception GeneratorExit
Raised when a generator or coroutine is closed; see generator.close () and coroutine.close (). It
directly inherits from BaseException instead of Exception since it is technically not an error.
exception ImportError
Raised when the import statement has troubles trying to load a module. Also raised when the “from list” in
from ... import has a name that cannot be found.
The optional name and path keyword-only arguments set the corresponding attributes:

name

The name of the module that was attempted to be imported.
path

The path to any file which triggered the exception.
Changed in version 3.3: Added the name and path attributes.

exception ModuleNotFoundError

A subclass of TmportError which is raised by import when a module could not be located. It is also raised
when None is found in sys.modules.

Added in version 3.6.

exception IndexError

Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not an integer, TypeError is raised.)

5.4. Concrete exceptions 107

The Python Library Reference, Release 3.13.1

exception KeyError

Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt

Raised when the user hits the interrupt key (normally Control1-C or Delete). During execution, a check for
interrupts is made regularly. The exception inherits from BaseExcept ion so as to not be accidentally caught
by code that catches Except ion and thus prevent the interpreter from exiting.

© Note

Catching a KeyboardInterrupt requires special consideration. Because it can be raised at unpredictable
points, it may, in some circumstances, leave the running program in an inconsistent state. It is generally
best to allow KeyboardInterrupt to end the program as quickly as possible or avoid raising it entirely.
(See Note on Signal Handlers and Exceptions.)

exception MemoryError

Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that
because of the underlying memory management architecture (C’s malloc () function), the interpreter may
not always be able to completely recover from this situation; it nevertheless raises an exception so that a stack
traceback can be printed, in case a run-away program was the cause.

exception NameError

Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

The name attribute can be set using a keyword-only argument to the constructor. When set it represent the
name of the variable that was attempted to be accessed.

Changed in version 3.10: Added the name attribute.

exception NotImplementedError

This exception is derived from Runt imeError. In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method, or while the class is being developed
to indicate that the real implementation still needs to be added.

© Note

It should not be used to indicate that an operator or method is not meant to be supported at all - in that
case either leave the operator / method undefined or, if a subclass, set it to None.

© Note

NotImplementedError and Not Implemented are not interchangeable, even though they have similar
names and purposes. See Not Implemented for details on when to use it.

exception OSError ([arg])

exception OSError (errno, strerror[, ﬁlename[, winerror[, ﬁlenameZ]]])

This exception is raised when a system function returns a system-related error, including I/O failures such as
“file not found” or “disk full” (not for illegal argument types or other incidental errors).

The second form of the constructor sets the corresponding attributes, described below. The attributes default to
None if not specified. For backwards compatibility, if three arguments are passed, the args attribute contains
only a 2-tuple of the first two constructor arguments.

108

Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.13.1

The constructor often actually returns a subclass of 0SError, as described in OS exceptions below. The par-
ticular subclass depends on the final errno value. This behaviour only occurs when constructing OSError
directly or via an alias, and is not inherited when subclassing.

errno

A numeric error code from the C variable errno.

winerror
Under Windows, this gives you the native Windows error code. The errno attribute is then an approxi-
mate translation, in POSIX terms, of that native error code.

Under Windows, if the winerror constructor argument is an integer, the errno attribute is determined
from the Windows error code, and the errno argument is ignored. On other platforms, the winerror
argument is ignored, and the winerror attribute does not exist.

strerror
The corresponding error message, as provided by the operating system. It is formatted by the C functions
perror () under POSIX, and FormatMessage () under Windows.

filename

filename2

For exceptions that involve a file system path (such as open () or os.unlink ()), filename is the file
name passed to the function. For functions that involve two file system paths (such as os. rename ()),
filename?2 corresponds to the second file name passed to the function.

Changed in version 3.3: EnvironmentError, I0Error, WindowsError, socket.error, select.
error and mmap . error have been merged into 0OSError, and the constructor may return a subclass.

Changed in version 3.4: The rilename attribute is now the original file name passed to the function, instead
of the name encoded to or decoded from the filesystem encoding and error handler. Also, the filename2
constructor argument and attribute was added.
exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for integers
(which would rather raise MemoryError than give up). However, for historical reasons, OverflowError is
sometimes raised for integers that are outside a required range. Because of the lack of standardization of
floating-point exception handling in C, most floating-point operations are not checked.
exception PythonFinalizationError
This exception is derived from Runt imeError. It is raised when an operation is blocked during interpreter
shutdown also known as Python finalization.
Examples of operations which can be blocked with a PythonFinalizationError during the Python final-
ization:
o Creating a new Python thread.
e o0s.fork ().
See also the sys.is_finalizing () function.

Added in version 3.13: Previously, a plain Runt imeError was raised.

exception RecursionError
This exception is derived from Runt imeError. It is raised when the interpreter detects that the maximum
recursion depth (see sys.getrecursionlimit ())is exceeded.

Added in version 3.5: Previously, a plain Runt imeError was raised.

exception ReferenceError

This exception is raised when a weak reference proxy, created by the weakref.proxy () function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weakref module.

5.4. Concrete exceptions 109

The Python Library Reference, Release 3.13.1

exception RuntimeError

Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a string
indicating what precisely went wrong.

exception StopIteration

Raised by built-in function next () and an iterator’s __next__ () method to signal that there are no further
items produced by the iterator.
value
The exception object has a single attribute value, which is given as an argument when constructing the
exception, and defaults to nNone.

When a generator or coroutine function returns, a new StopIteration instance is raised, and the value
returned by the function is used as the value parameter to the constructor of the exception.

If a generator code directly or indirectly raises StopIteration, itis converted into a RuntimeError (re-
taining the StopIteration as the new exception’s cause).

Changed in version 3.3: Added value attribute and the ability for generator functions to use it to return a
value.

Changed in version 3.5: Introduced the RuntimeError transformation via from _ future import
generator_stop, see PEP 479.

Changed in version 3.7: Enable PEP 479 for all code by default: a StopTteration error raised in a generator
is transformed into a Runt imeError.

exception StopAsyncIteration

Must be raised by __anext__ () method of an asynchronous iterator object to stop the iteration.

Added in version 3.5.

exception SyntaxError (message, details)

Raised when the parser encounters a syntax error. This may occur in an import statement, in a call to the
built-in functions compile (), exec (), or eval (), or when reading the initial script or standard input (also
interactively).

The str () of the exception instance returns only the error message. Details is a tuple whose members are
also available as separate attributes.
filename

The name of the file the syntax error occurred in.

lineno
Which line number in the file the error occurred in. This is 1-indexed: the first line in the file has a
lineno of 1.

offset
The column in the line where the error occurred. This is 1-indexed: the first character in the line has an
offset of 1.

text

The source code text involved in the error.

end_lineno
Which line number in the file the error occurred ends in. This is 1-indexed: the first line in the file has a
lineno of 1.

end_offset
The column in the end line where the error occurred finishes. This is 1-indexed: the first character in the
line has an of fset of 1.

For errors in f-string fields, the message is prefixed by “f-string: ” and the offsets are offsets in a text constructed
from the replacement expression. For example, compiling f’Bad {a b} field’ results in this args attribute: (‘f-
string: ..., (°, 1, 2, “(ab)n’, 1, 5)).

110

Chapter 5. Built-in Exceptions

https://peps.python.org/pep-0479/
https://peps.python.org/pep-0479/

The Python Library Reference, Release 3.13.1

Changed in version 3.10: Added the end_1inenoand end offset attributes.

exception IndentationError

Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError
Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of
IndentationError

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpreter (sys.version; it is also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

exception SystemExit

This exception is raised by the sys.exit () function. It inherits from BaseException instead of
Exception so that it is not accidentally caught by code that catches Except ion. This allows the exception
to properly propagate up and cause the interpreter to exit. When it is not handled, the Python interpreter exits;
no stack traceback is printed. The constructor accepts the same optional argument passed to sys.exit (). If
the value is an integer, it specifies the system exit status (passed to C’s exit () function); if it is None, the exit
status is zero; if it has another type (such as a string), the object’s value is printed and the exit status is one.

A call to sys.exit () is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a call to os. fork ()).

code

The exit status or error message that is passed to the constructor. (Defaults to None.)

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

This exception may be raised by user code to indicate that an attempted operation on an object is not sup-
ported, and is not meant to be. If an object is meant to support a given operation but has not yet provided an
implementation, Not ImplementedError is the proper exception to raise.

Passing arguments of the wrong type (e.g. passing a 1ist when an int is expected) should result in a
TypeError, but passing arguments with the wrong value (e.g. a number outside expected boundaries) should
result in a ValueError

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclass of NameError.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of valueError.
UnicodeError has attributes that describe the encoding or decoding error. For example, err.object [err.
start:err.end] gives the particular invalid input that the codec failed on.
encoding

The name of the encoding that raised the error.

reason

A string describing the specific codec error.

5.4. Concrete exceptions 111

The Python Library Reference, Release 3.13.1

object
The object the codec was attempting to encode or decode.
start

The first index of invalid data in object.
end

The index after the last invalid data in object.

exception UnicodeEncodeError

Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError

Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.
exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError
Raised when an operation or function receives an argument that has the right type but an inappropriate value,
and the situation is not described by a more precise exception such as TndexError.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are kept for compatibility with previous versions; starting from Python 3.3, they are aliases
of OSError.

exception EnvironmentError
exception IOError

exception WindowsError

Only available on Windows.

5.4.1 OS exceptions
The following exceptions are subclasses of 0SError, they get raised depending on the system error code.

exception BlockingIOError
Raised when an operation would block on an object (e.g. socket) set for non-blocking operation. Corresponds
to errno EAGAIN, EALREADY, EWOULDBLOCK and ETNPROGRESS.
In addition to those of 0SError, BlockingIOError can have one more attribute:

characters_written
An integer containing the number of characters written to the stream before it blocked. This attribute is
available when using the buffered I/O classes from the io module.
exception ChildProcessError

Raised when an operation on a child process failed. Corresponds to errno ECHILD.

exception ConnectionError
A base class for connection-related issues.
Subclasses are BrokenPipeError, ConnectionAbortedError, ConnectionRefusedError and
ConnectionResetError.

exception BrokenPipeError

A subclass of ConnectionError, raised when trying to write on a pipe while the other end has been closed,
or trying to write on a socket which has been shutdown for writing. Corresponds to errno EPIPE and
ESHUTDOWN.

112 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.13.1

exception ConnectionAbortedError
A subclass of connectionError, raised when a connection attempt is aborted by the peer. Corresponds to
errno ECONNABORTED.

exception ConnectionRefusedError
A subclass of ConnectionError, raised when a connection attempt is refused by the peer. Corresponds to
errno ECONNREFUSED.

exception ConnectionResetError
A subclass of ConnectionError, raised when a connection is reset by the peer. Corresponds to errno
ECONNRESET.

exception FileExistsError

Raised when trying to create a file or directory which already exists. Corresponds to errno EEXIST.

exception FileNotFoundError

Raised when a file or directory is requested but doesn’t exist. Corresponds to errno ENOENT.

exception InterruptedError

Raised when a system call is interrupted by an incoming signal. Corresponds to errno EINTR.

Changed in version 3.5: Python now retries system calls when a syscall is interrupted by a signal, except if the
signal handler raises an exception (see PEP 475 for the rationale), instead of raising InterruptedError.

exception IsADirectoryError

Raised when a file operation (such as os. remove ()) is requested on a directory. Corresponds to errno
EISDIR.

exception NotADirectoryError

Raised when a directory operation (such as os. 1istdir ())is requested on something which is not a directory.
On most POSIX platforms, it may also be raised if an operation attempts to open or traverse a non-directory
file as if it were a directory. Corresponds to errno ENOTDIR.

exception PermissionError

Raised when trying to run an operation without the adequate access rights - for example filesystem permissions.
Corresponds to errno EACCES, EPERM, and ENOTCAPABLE.

Changed in version 3.11.1: WASI's ENOTCAPABLE is now mapped to PermissionError.

exception ProcessLookupError

Raised when a given process doesn’t exist. Corresponds to errno ESRCH.

exception TimeoutError

Raised when a system function timed out at the system level. Corresponds to errno ETIMEDOUT.

Added in version 3.3: All the above 0SError subclasses were added.

> See also

PEP 3151 - Reworking the OS and IO exception hierarchy

5.5 Warnings

The following exceptions are used as warning categories; see the Warning Categories documentation for more details.

exception Warning

Base class for warning categories.

5.5. Warnings 113

https://peps.python.org/pep-0475/
https://peps.python.org/pep-3151/

The Python Library Reference, Release 3.13.1

exception UserWarning

Base class for warnings generated by user code.

exception DeprecationWarning

Base class for warnings about deprecated features when those warnings are intended for other Python devel-
opers.

Ignored by the default warning filters, except in the __main__ module (PEP 565). Enabling the Python
Development Mode shows this warning.

The deprecation policy is described in PEP 387.

exception PendingDeprecationWarning

Base class for warnings about features which are obsolete and expected to be deprecated in the future, but are
not deprecated at the moment.

This class is rarely used as emitting a warning about a possible upcoming deprecation is unusual, and
DeprecationWarning is preferred for already active deprecations.

Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.
The deprecation policy is described in PEP 387.

exception SyntaxWarning

Base class for warnings about dubious syntax.

exception RuntimeWarning

Base class for warnings about dubious runtime behavior.

exception FutureWarning

Base class for warnings about deprecated features when those warnings are intended for end users of applica-
tions that are written in Python.

exception ImportWarning

Base class for warnings about probable mistakes in module imports.
Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.

exception UnicodeWarning

Base class for warnings related to Unicode.

exception EncodingWarning

Base class for warnings related to encodings.
See Opt-in Encoding Warning for details.

Added in version 3.10.

exception BytesWarning

Base class for warnings related to bytes and bytearray.

exception ResourceWarning

Base class for warnings related to resource usage.
Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.
Added in version 3.2.

5.6 Exception groups

The following are used when it is necessary to raise multiple unrelated exceptions. They are part of the exception
hierarchy so they can be handled with except like all other exceptions. In addition, they are recognised by except *,
which matches their subgroups based on the types of the contained exceptions.

114 Chapter 5. Built-in Exceptions

https://peps.python.org/pep-0565/
https://peps.python.org/pep-0387/
https://peps.python.org/pep-0387/

The Python Library Reference, Release 3.13.1

exception ExceptionGroup (msg, excs)

exception BaseExceptionGroup (msg, excs)

Both of these exception types wrap the exceptions in the sequence excs. The msg parameter must be a
string. The difference between the two classes is that BaseExceptionGroup extends BaseException
and it can wrap any exception, while ExceptionGroup extends Exception and it can only wrap sub-
classes of Exception. This design is so that except Exception catches an ExceptionGroup but not
BaseExceptionGroup.

The BaseExceptionGroup constructor returns an ExceptionGroup rather than a BaseExceptionGroup
if all contained exceptions are Except ion instances, so it can be used to make the selection automatic. The
ExceptionGroup constructor, on the other hand, raises a TypeError if any contained exception is not an
Except ion subclass.

message

The msg argument to the constructor. This is a read-only attribute.

exceptions

A tuple of the exceptions in the excs sequence given to the constructor. This is a read-only attribute.

subgroup (condition)

Returns an exception group that contains only the exceptions from the current group that match condition,
or None if the result is empty.

The condition can be an exception type or tuple of exception types, in which case each exception is
checked for a match using the same check that is used in an except clause. The condition can also be
a callable (other than a type object) that accepts an exception as its single argument and returns true for
the exceptions that should be in the subgroup.

The nesting structure of the current exception is preserved in the result, as are the values of its message,
_traceback__,_ _cause _,__context__and___notes__ fields. Empty nested groups are omit-
ted from the result.

The condition is checked for all exceptions in the nested exception group, including the top-level and any
nested exception groups. If the condition is true for such an exception group, it is included in the result
in full.

Added in version 3.13: condition can be any callable which is not a type object.

split (condition)
Like subgroup(},butreHHnSthepah‘(match, rest) where match is subgroup (condition)
and rest is the remaining non-matching part.
derive (excs)
Returns an exception group with the same message, but which wraps the exceptions in excs.
This method is used by subgroup () and split (), which are used in various contexts to break up an

exception group. A subclass needs to override it in order to make subgroup () and split () return
instances of the subclass rather than ExceptionGroup.

subgroup()andsplit()COpythe;ﬁtracebackgi,Afcausegi,gfcontextgiandggﬁotesgf
fields from the original exception group to the one returned by derive (), so these fields do not need to
be updated by derive ().

>>> class MyGroup (ExceptionGroup) :
def derive(self, excs):
return MyGroup (self.message, excs)

>>> e = MyGroup ("eg", [ValueError(l), TypeError(2)])
>>> e.add_note("a note")

>>> e.__context__ = Exception("context")

>>> e._ _cause__ = Exception("cause")

(continues on next page)

5.6. Exception groups 115

The

Python Library Reference, Release 3.13.1

5.7

The ¢

(continued from previous page)
>>> try:
raise e
except Exception as e:

exc = e

>>> match, rest = exc.split (ValueError)

>>> exc, exc._ _context_ , exc._ cause_ , exc._ notes_

(MyGroup ('eg', [ValueError(l), TypeError(2)]), Exception('context'),.
—Exception('cause'), ['a note'])

>>> match, match._ context_ , match._ cause_ , match._ notes_

(MyGroup ('eg', [ValueError(1l)]), Exception('context'), Exception('cause'),.
—['a note'])

>>> rest, rest._ context_ , rest._ cause_ , rest._ notes_

(MyGroup ('eg', [TypeError(2)]), Exception('context'), Exception('cause'), [
—'a note'])

>>> exc.__ _traceback__ is match.__ traceback_ is rest._ traceback_

True

Note that BaseExceptionGroup defines __new__ (), so subclasses that need a different constructor signa-
ture need to override that rather than __init__ (). For example, the following defines an exception group
subclass which accepts an exit_code and and constructs the group’s message from it.

e 7

class Errors (ExceptionGroup) :

def _ new_ (cls, errors, exit_code):
self = super().__new__ (Errors, f"exit code: {exit_code}", errors)
self.exit_code = exit_code

return self

def derive (self, excs):

return Errors(excs, self.exit_code)
.

J

Like ExceptionGroup, any subclass of BaseExcept i onGroup which is also a subclass of Exceptioncan
only wrap instances of Exception.

Added in version 3.11.

Exception hierarchy

lass hierarchy for built-in exceptions is:

Base

[TTTT

Exception
BaseExceptionGroup
GeneratorExit
KeyboardInterrupt
SystemExit
Exception
— ArithmeticError
— FloatingPointError
— overflowError
L— ZeroDivisionError
AssertionError
AttributeError
BufferError
EOFError
ExceptionGroup [BaseExceptionGroup]

TT1117T

ImportError

(continues on next page)

116

Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.13.1

(continued from previous page)

| L— ModuleNotFoundError
— LookupError
| — IndexError
| L KeyError
F—— MemoryError
F—— NameError
| L— UnboundLocalError
F47 OSError
BlockingIOError
ChildProcessError
ConnectionError
— BrokenPipeError
— ConnectionAbortedError
— ConnectionRefusedError
L— ConnectionResetError
FileExistsError
FileNotFoundError
InterruptedError
IsADirectoryError
NotADirectoryError
PermissionError
ProcessLookupError

[TTTTTTT 11T

TimeoutError
ReferenceError
RuntimeError

F—— NotImplementedError

— PythonFinalizationError

L— RecursionError
StopAsynclteration
Stoplteration
SyntaxError

L— IndentationError

L— TabError

SystemError
TypeError
ValueError

L— UnicodeError
— UnicodeDecodeError
— UnicodeEncodeError
L— UnicodeTranslateError

- rrrrrr—ir

Warning

BytesWarning
DeprecationWarning
EncodingWarning
FutureWarning
ImportWarning
PendingDeprecationWarning
ResourceWarning
RuntimeWarning
SyntaxWarning
UnicodeWarning

[TTTTTTTTTT

UserWarning

5.7. Exception hierarchy 117

The Python Library Reference, Release 3.13.1

118 Chapter 5. Built-in Exceptions

CHAPTER
SIX

TEXT PROCESSING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations and other text process-
ing services.

The codecs module described under Binary Data Services is also highly relevant to text processing. In addition, see
the documentation for Python’s built-in string type in Text Sequence Type — str.

6.1 string — Common string operations

Source code: Lib/string.py

> See also
Text Sequence Type — str

String Methods

6.1.1 String constants
The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercaseand ascii_uppercase constants described below. This value
is not locale-dependent.

string.ascii_lowercase
The lowercase letters 'abcdefghijklmnopgrstuvwxyz'. This value is not locale-dependent and will not
change.

string.ascii_uppercase
The uppercase letters ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'. This value is not locale-dependent and will not
change.

string.digits
The string '0123456789"'.

string.hexdigits
Thesnjng '0123456789abcdefABCDEF .

string.octdigits
The string '01234567"'.

string.punctuation

String of ASCII characters which are considered punctuation characters in the C locale: ! "#$%&"' () *+, -./
;<=>2Q@ N1 {]

119

https://github.com/python/cpython/tree/3.13/Lib/string.py

The Python Library Reference, Release 3.13.1

string.printable

String of ASCII characters which are considered printable. This is a combination of digits,
ascii_letters, punctuation, and whitespace.

string.whitespace

A string containing all ASCII characters that are considered whitespace. This includes the characters space,
tab, linefeed, return, formfeed, and vertical tab.

6.1.2 Custom String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via the
format () method described in PEP 3101. The Formatter class in the st ring module allows you to create and
customize your own string formatting behaviors using the same implementation as the built-in format () method.

class string.Formatter

The Formatter class has the following public methods:

format (format_string, /, *args, **kwargs)

The primary API method. It takes a format string and an arbitrary set of positional and keyword argu-
ments. It is just a wrapper that calls vformat ().

Changed in version 3.7: A format string argument is now positional-only.

vformat (format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases where you
want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dictionary
as individual arguments using the *args and **kwargs syntax. vformat () does the work of breaking
up the format string into character data and replacement fields. It calls the various methods described
below.

In addition, the Format ter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string)

Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec, con-
version). This is used by vformat () to break the string into either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement
field. If there is no literal text (which can happen if two replacement fields occur consecutively), then
literal_text will be a zero-length string. If there is no replacement field, then the values of field_name,
format_spec and conversion will be None.

get_field (field_name, args, kwargs)
Given field name as returned by parse () (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such as
“O[name]” or “label.title”. args and kwargs are as passed in to vformat (). The return value used_key
has the same meaning as the key parameter to get_value ().

get_value (key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer,
it represents the index of the positional argument in args; if it is a string, then it represents a named
argument in kwargs.

The args parameter is set to the list of positional arguments to vformat (), and the kwargs parameter is
set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause get_value () to be called with a key argument
of 0. The name attribute will be looked up after get_ value () returns by calling the built-in getattr ()
function.

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError should
be raised.

120 Chapter 6. Text Processing Services

https://peps.python.org/pep-3101/
https://peps.python.org/pep-3101/

The Python Library Reference, Release 3.13.1

check_unused_args (used_args, args, kwargs)

Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The set
of unused args can be calculated from these parameters. check_unused_args () is assumed to raise
an exception if the check fails.

format_field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that subclasses
can override it.

convert_field (value, conversion)

Converts the value (returned by get_field()) given a conversion type (as in the tuple returned by the
parse () method). The default version understands ‘s’ (str), T’ (repr) and ‘@’ (ascii) conversion types.

6.1.3 Format String Syntax

The str. format () method and the Formatter class share the same syntax for format strings (although in the
case of Formatter, subclasses can define their own format string syntax). The syntax is related to that of formatted
string literals, but it is less sophisticated and, in particular, does not support arbitrary expressions.

Format strings contain “replacement fields” surrounded by curly braces { }. Anything that is not contained in braces
is considered literal text, which is copied unchanged to the output. If you need to include a brace character in the
literal text, it can be escaped by doubling: {{ and } }.

The grammar for a replacement field is as follows:

replacement_field = "{" [field_name] ["!" conversion] [":" format_spec] "}"

field_name arg_name ("." attribute_name | "[" element_index "]")*
[identifier | digit+]

identifier

arg_name

attribute_name

element_index digit+ | index_string

index_string

<any source character except "]"> +

conversion Mmoo omgmo | owguw

format_spec = format-spec:format_spec

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to be
formatted and inserted into the output instead of the replacement field. The field_name is optionally followed by a
conversion field, which is preceded by an exclamation point ' ! ', and a format_spec, which is preceded by a colon
': '. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it refers to
a positional argument, and if it’s a keyword, it refers to a named keyword argument. An arg_name is treated as a
number if acallto st r. isdecimal () onthe string would return true. If the numerical arg_names in a format string
are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers 0, 1, 2, ... will be automatically
inserted in that order. Because arg_name is not quote-delimited, it is not possible to specify arbitrary dictionary keys
(e.g., the strings '10"' or ' : -] ") within a format string. The arg_name can be followed by any number of index or
attribute expressions. An expression of the form ' .name' selects the named attribute using getattr (), while an
expression of the form ' [index] ' does an index lookup using __getitem__ ().

Changed in version 3.1: The positional argument specifiers can be omitted for str. format (), so "{} {}'.
format (a, b) isequivalentto '{0} {1}'.format(a, b)

Changed in version 3.4: The positional argument specifiers can be omitted for Formatter.

Some simple format string examples:

6.1. string — Common string operations 121

The Python Library Reference, Release 3.13.1

"First, thou shalt count to " # References first positional argument

"Bring me a " # Implicitly references the first positional.
—argument

"From to " # Same as "From {0} to {1}"

"My quest is " # References keyword argument 'name'

"Weight in tons " # 'weight' attribute of first positional arg
"Units destroyed: " # First element of keyword argument 'players'.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done by the
__format__ () method of the value itself. However, in some cases it is desirable to force a type to be formatted as a
string, overriding its own definition of formatting. By converting the value to a string before calling __ format__ (),
the normal formatting logic is bypassed.

Three conversion flags are currently supported: ' !'s' which calls st~ () on the value, ' ! r' which calls repr () and
"la"' which calls ascii ().

Some examples:

"Harold's a clever " # Calls str() on the argument first
"Bring out the holy " # Calls repr () on the argument first
"More " # Calls ascii () on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field
width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-
language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields may contain
a field name, conversion flag and format specification, but deeper nesting is not allowed. The replacement fields
within the format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a
value to be dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individ-
ual values are presented (see Format String Syntax and f-strings). They can also be passed directly to the built-in
format () function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

A general convention is that an empty format specification produces the same result as if you had called str () on
the value. A non-empty format specification typically modifies the result.

The general form of a standard format specifier is:

format_spec = [[fill]lalign] [sign] ["z"]["#"]["0"] [width] [grouping_option] ["." precision] |
fill = <any character>

align — 'l<l| | ">" I n_mn | nmAm

Sign :: n + n | n_mn I n n

width = digit+

grouping_option = merm

precision = digit+

type ::= llbl‘ | "c" I lldll | "e'l ‘ IIE" | "f'l ‘ IIF" | "g'l ‘ llGll | "nll ‘ lloll | "S"

If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults to a space

99 (99

if omitted. It is not possible to use a literal curly brace (”{” or “}”) as the fill character in a formatted string literal

122 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

or when using the st r. format () method. However, it is possible to insert a curly brace with a nested replacement
field. This limitation doesn’t affect the format () function.

The meaning of the various alignment options is as follows:

Op- Meaning
tion

<" Forces the field to be left-aligned within the available space (this is the default for most objects).

'>' Forces the field to be right-aligned within the available space (this is the default for numbers).

=' Forces the padding to be placed after the sign (if any) but before the digits. This is used for printing fields
in the form “+000000120’. This alignment option is only valid for numeric types, excluding complex. It
becomes the default for numbers when ‘0’ immediately precedes the field width.

'~ Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so
that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning
tion

040 indicates that a sign should be used for both positive as well as negative numbers.
0=0 indicates that a sign should be used only for negative numbers (this is the default behavior).
space indicates that a leading space should be used on positive numbers, and a minus sign on negative numbers.

The 'z ' option coerces negative zero floating-point values to positive zero after rounding to the format precision.
This option is only valid for floating-point presentation types.

Changed in version 3.11: Added the 'z ' option (see also PEP 682).

The '#' option causes the “alternate form” to be used for the conversion. The alternate form is defined differently
for different types. This option is only valid for integer, float and complex types. For integers, when binary, octal, or
hexadecimal output is used, this option adds the respective prefix '0b"', '0o"', '0x ', or ' 0X' to the output value. For
float and complex the alternate form causes the result of the conversion to always contain a decimal-point character,
even if no digits follow it. Normally, a decimal-point character appears in the result of these conversions only if a
digit follows it. In addition, for 'g' and 'G' conversions, trailing zeros are not removed from the result.

The ', ' option signals the use of a comma for a thousands separator for floating-point presentation types and for
integer presentation type 'd'. For other presentation types, this option is an error. For a locale aware separator, use
the 'n' integer presentation type instead.

Changed in version 3.1: Added the ', ' option (see also PEP 378).

The ' _' option signals the use of an underscore for a thousands separator for floating-point presentation types and for
integer presentation type 'd'. For integer presentation types 'b', 'o', 'x', and 'X', underscores will be inserted
every 4 digits. For other presentation types, specifying this option is an error.

Changed in version 3.6: Added the '_' option (see also PEP 515).

width is a decimal integer defining the minimum total field width, including any prefixes, separators, and other for-
matting characters. If not specified, then the field width will be determined by the content.

When no explicit alignment is given, preceding the width field by a zero (' 0') character enables sign-aware zero-
padding for numeric types, excluding complex. This is equivalent to a fill character of '0' with an alignment type
of '='.

Changed in version 3.10: Preceding the width field by '0' no longer affects the default alignment for strings.

The precision is a decimal integer indicating how many digits should be displayed after the decimal point for pre-
sentation types 'f£' and 'F', or before and after the decimal point for presentation types 'g' or 'G'. For string

6.1. string — Common string operations 123

https://peps.python.org/pep-0682/
https://peps.python.org/pep-0378/
https://peps.python.org/pep-0515/

The Python Library Reference, Release 3.13.1

presentation types the field indicates the maximum field size - in other words, how many characters will be used from
the field content. The precision is not allowed for integer presentation types.

Finally, the fype determines how the data should be presented.

The available string presentation types are:

Type Meaning

Ug0 String format. This is the default type for strings and may be omitted.
None Thesameas 's".

The available integer presentation types are:

Type Meaning

'b' Binary format. Outputs the number in base 2.

'c' Character. Converts the integer to the corresponding unicode character before printing.

'd' Decimal Integer. Outputs the number in base 10.

'o' Octal format. Outputs the number in base 8.

'x' Hex format. Outputs the number in base 16, using lower-case letters for the digits above 9.

'x' Hex format. Outputs the number in base 16, using upper-case letters for the digits above 9.
In case '# ' is specified, the prefix ' 0x' will be upper-cased to ' 0x' as well.

'n' Number. This is the same as 'd', except that it uses the current locale setting to insert the
appropriate number separator characters.

None The same as 'd"'.

In addition to the above presentation types, integers can be formatted with the floating-point presentation types listed
below (except 'n' and None). When doing so, f1oat () is used to convert the integer to a floating-point number
before formatting.

The available presentation types for f1oat and Decimal values are:

124 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

Type Meaning

'e' Scientific notation. For a given precision p, formats the number in scientific notation with
the letter ‘€’ separating the coefficient from the exponent. The coefficient has one digit before
and p digits after the decimal point, for a total of p + 1 significant digits. With no precision
given, uses a precision of 6 digits after the decimal point for 7#1oat, and shows all coefficient
digits for becimal. If p=0, the decimal point is omitted unless the # option is used.

'E' Scientific notation. Same as 'e' except it uses an upper case ‘E’ as the separator character.

'£' Fixed-point notation. For a given precision p, formats the number as a decimal number with
exactly p digits following the decimal point. With no precision given, uses a precision of
6 digits after the decimal point for float, and uses a precision large enough to show all
coefficient digits for becimal. If p=0, the decimal point is omitted unless the # option is
used.

"' Fixed-point notation. Same as ' £ ', but converts nan to NAN and inf to INF.

'g' General format. For a given precision p >= 1, this rounds the number to p significant digits
and then formats the result in either fixed-point format or in scientific notation, depending on
its magnitude. A precision of 0 is treated as equivalent to a precision of 1.

The precise rules are as follows: suppose that the result formatted with presentation type 'e'
and precision p—1 would have exponent exp. Then, if m <= exp < p, where m is -4 for
floats and -6 for Decimal s, the number is formatted with presentation type ' £' and precision
p-1-exp. Otherwise, the number is formatted with presentation type 'e' and precision p-1.
In both cases insignificant trailing zeros are removed from the significand, and the decimal
point is also removed if there are no remaining digits following it, unless the '#' option is
used.

With no precision given, uses a precision of 6 significant digits for F1oat. For Decimal, the
coefficient of the result is formed from the coefficient digits of the value; scientific notation is
used for values smaller than 1e-6 in absolute value and values where the place value of the
least significant digit is larger than 1, and fixed-point notation is used otherwise.

Positive and negative infinity, positive and negative zero, and nans, are formatted as inf, -inf,
0, —0 and nan respectively, regardless of the precision.

'G"' General format. Same as 'g' except switches to 'E' if the number gets too large. The
representations of infinity and NaN are uppercased, too.

'n' Number. This is the same as 'g', except that it uses the current locale setting to insert the
appropriate number separator characters.

's' Percentage. Multiplies the number by 100 and displays in fixed (' £') format, followed by a
percent sign.

None For rioat thisislike the 'g' type, except that when fixed-point notation is used to format the
result, it always includes at least one digit past the decimal point, and switches to the scientific
notation when exp >= p - 1. When the precision is not specified, the latter will be as large
as needed to represent the given value faithfully.

For pecimal, this is the same as either 'g' or 'G' depending on the value of context.
capitals for the current decimal context.
The overall effect is to match the output of st () as altered by the other format modifiers.

The result should be correctly rounded to a given precision p of digits after the decimal point. The rounding mode
for f1oat matches that of the round () builtin. For Decimal, the rounding mode of the current context will be
used.

The available presentation types for complex are the same as those for r1oat ('%"' is not allowed). Both the real
and imaginary components of a complex number are formatted as floating-point numbers, according to the specified
presentation type. They are separated by the mandatory sign of the imaginary part, the latter being terminated by
a j suffix. If the presentation type is missing, the result will match the output of st r () (complex numbers with a
non-zero real part are also surrounded by parentheses), possibly altered by other format modifiers.

6.1. string — Common string operations 125

The Python Library Reference, Release 3.13.1

Format examples
This section contains examples of the st r. format () syntax and comparison with the old $-formatting.

In most of the cases the syntax is similar to the old %-formatting, with the addition of the { } and with : used instead
of %. For example, '$03.2f"' can be translated to ' { : 03.2f}".

The new format syntax also supports new and different options, shown in the following examples.

Accessing arguments by position:

>>> '{0}, {1}, {2}'.format ('a', 'b', 'c'")

'a, b, c'

>>> '/}, {}, {}'.format('a', 'b', 'c') # 3.1+ only

'a, b, c'

>>> '{2}, {1}, {0}'.format('a', 'b', 'c')

'e, b, a'

>>> '"{2}, {1}, {0}'.format (*'abc') # unpacking argument sequence

'c, b, a'

>>> '"{0}{1}{0}'.format ('abra', 'cad') # arguments' indices can be repeated
'abracadabra’

Accessing arguments by name:

>>> 'Coordinates: {latitude}, {longitude}'.format (latitude='37.24N', longitude='-
—115.81W")

'Coordinates: 37.24N, -115.81W'

>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}

>>> 'Coordinates: {latitude}, {longitude}'.format (**coord)

'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

>>> c = 3-5]
>>> ('The complex number {0} is formed from the real part {0.real} '
'and the imaginary part {0.imag}.').format (c)

'The complex number (3-57j) is formed from the real part 3.0 and the imaginary part.
—=5.0."
>>> class Point:
def _ _init__ (self, x, y):
self.x, self.y = x, y
def @ str (self):
return 'Point ({self.x}, {self.y})"'.format (self=self)

>>> str(Point (4, 2))
'Point (4, 2)'

Accessing arguments’ items:

>>> coord = (3, 5)
>>> 'X: {0[0]}; Y: {0[1]}'.format (coord)
'X: 3; Y: 5!

Replacing %s and $r:

>>> "repr () shows quotes: {!/r}; str() doesn't: {!s}".format ('testl', 'test2')
"repr () shows quotes: 'testl'; str() doesn't: test2"

Aligning the text and specifying a width:

126 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

>>> '{:<30}'.format ('left aligned')

'left aligned U

>>> ' {:>30}"'.format ('right aligned')

! right aligned'

>>> '/:730}" format ('centered')

! centered !

>>> ' /:4730)" format ('centered') # use '*' as a fill char

'***********Centered***********'

Replacing $+£, $-f, and % £ and specifying a sign:

>>> '"{:+f}; {:+f}"'.format (3.14, -3.14) # show it always

'+3.140000; -3.140000"

>>> '"{: f}; {: f}'.format(3.14, -3.14) # show a space for positive numbers

' 3.140000; -3.140000"

>>> "{:-f}; {:-f}'".format(3.14, -3.14) # show only the minus —-- same as '{:f};
—{:f}'

'3.140000; —-3.140000'"

Replacing %x and %o and converting the value to different bases:

>>> # format also supports binary numbers

>>> "int: {0:d}; hex: {0:x}; oct: {0:0}; Dbin: {0:b}".format (42)
'int: 42; hex: 2a; oct: 52; bin: 101010°'

>>> # with 0x, 0o, or 0Ob as prefix:

>>> "int: {0:d}; hex: {0:#x}; oct: {0:#0}; Dbin: {0:#b}".format (42)
'int: 42; hex: 0Ox2a; oct: 0052; bin: 0b101010"'

Using the comma as a thousands separator:

>>> ' {:, }'".format (1234567890)
'1,234,567,890"

Expressing a percentage:

>>> points = 19
>>> total = 22
>>> 'Correct answers: {:.2%}'.format (points/total)

'Correct answers: 86.36%'

Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12, 15, 58)
>>> '{:%Y-%m—-%d $H:%$M:%S}'.format (d)

'2010-07-04 12:15:58"

Nesting arguments and more complex examples:

>>> for align, text in zip('<">', ['left', 'center', 'right']):
'{0:{fill}{ali }16}".format (text, fill=align, align=align)

'left<<<<<!
' AN centert AN
'>>>>>>>>>>>right!’
>>>

>>> octets = [192,
>>> ' {:02X}{:02X}{:0

}'.format (*octets)

(continues on next page)

6.1. string — Common string operations 127

The Python Library Reference, Release 3.13.1

(continued from previous page)

'COA80001"
>>> int(_, 16)
3232235521

>>>

>>> width = 5
>>> for num in range(5,12):

R O W 0 J o U

= e

for base in 'dXob':

print ('{0: }'.format (num, base=base, width=width), end=' ")
print ()
5 5 101
6 6 110
7 7 111
8 10 1000
9 11 1001
A 12 1010
B 13 1011

6.1.4 Template strings

Template strings provide simpler string substitutions as described in PEP 292. A primary use case for template
strings is for internationalization (i18n) since in that context, the simpler syntax and functionality makes it easier to
translate than other built-in string formatting facilities in Python. As an example of a library built on template strings
for 118n, see the flufl.i18n package.

Template strings support $-based substitutions, using the following rules:

e $$ is an escape; it is replaced with a single .

e Sidentifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier™" is restricted to any case-insensitive ASCII alphanumeric string (including underscores) that
starts with an underscore or ASCII letter. The first non-identifier character after the $ character terminates
this placeholder specification.

e ${identifier} is equivalent to $identifier. It is required when valid identifier characters follow the
placeholder but are not part of the placeholder, such as "${noun}ification™".

Any other appearance of $ in the string will result in a ValueError being raised.

The st ring module provides a Template class that implements these rules. The methods of Template are:

class string.Template (template)

The constructor takes a single argument which is the template string.

substitute (mapping={}, /, **kwds)

Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When both mapping and kwds are given and there are duplicates, the
placeholders from kwds take precedence.

safe_substitute (mapping={}, /, **kwds)

Like substitute (), except thatif placeholders are missing from mapping and kwds, instead of raising a
KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute (), any other appearances of the $ will simply return $ instead of raising ValueError.

While other exceptions may still occur, this method is called “safe” because it always tries to return
a usable string instead of raising an exception. In another sense, safe_substitute () may be any-
thing other than safe, since it will silently ignore malformed templates containing dangling delimiters,
unmatched braces, or placeholders that are not valid Python identifiers.

128

Chapter 6. Text Processing Services

https://peps.python.org/pep-0292/
https://flufli18n.readthedocs.io/en/latest/

The Python Library Reference, Release 3.13.1

is_wvalid()

Returns false if the template has invalid placeholders that will cause substitute () to raise
ValueError.

Added in version 3.11.

get_identifiers()

Returns a list of the valid identifiers in the template, in the order they first appear, ignoring any invalid
identifiers.

Added in version 3.11.
Template instances also provide one public data attribute:

template

This is the object passed to the constructor’s template argument. In general, you shouldn’t change it, but
read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template ('S$Swho likes S$what')

>>> s.substitute (who="'tim', what='kung pao')
'tim likes kung pao'

>>> d = dict (who="tim")

>>> Template ('Give $Swho $100') .substitute (d)
Traceback (most recent call last):

ValueError: Invalid placeholder in string: line 1, col 11
>>> Template ('Swho likes Swhat') .substitute (d)
Traceback (most recent call last):

KeyError: 'what'
>>> Template ('Swho likes S$what') .safe_substitute (d)
'tim likes S$Swhat'

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

o delimiter - This is the literal string describing a placeholder introducing delimiter. The default value is $. Note
that this should not be a regular expression, as the implementation will call re.escape () on this string as
needed. Note further that you cannot change the delimiter after class creation (i.e. a different delimiter must
be set in the subclass’s class namespace).

idpattern - This is the regular expression describing the pattern for non-braced placeholders. The default value
is the regular expression (?a:[_a-z][_a-z0-9]*). If this is given and braceidpattern is None this pattern
will also apply to braced placeholders.

© Note
Since default flags is re . IGNORECASE, pattern [a-z] can match with some non-ASCII characters. That’s

why we use the local a flag here.

Changed in version 3.7: braceidpattern can be used to define separate patterns used inside and outside the
braces.

braceidpattern — This is like idpattern but describes the pattern for braced placeholders. Defaults to None
which means to fall back to idpattern (i.e. the same pattern is used both inside and outside braces). If given,
this allows you to define different patterns for braced and unbraced placeholders.

Added in version 3.7.

6.1. string — Common string operations 129

The Python Library Reference, Release 3.13.1

« flags — The regular expression flags that will be applied when compiling the regular expression used for recog-
nizing substitutions. The default value is re . IGNORECASE. Note that re . VERBOSE will always be added to
the flags, so custom idpatterns must follow conventions for verbose regular expressions.

Added in version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you
do this, the value must be a regular expression object with four named capturing groups. The capturing groups
correspond to the rules given above, along with the invalid placeholder rule:

« escaped - This group matches the escape sequence, e.g. $$, in the default pattern.

« named - This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

e braced - This group matches the brace enclosed placeholder name; it should not include either the delimiter
or braces in the capturing group.

« invalid - This group matches any other delimiter pattern (usually a single delimiter), and it should appear last
in the regular expression.

The methods on this class will raise valueError if the pattern matches the template without one of these named
groups matching.

6.1.5 Helper functions

string.capwords (s, sep=None)

Split the argument into words using str.split (), capitalize each word using str.capitalize (), and
join the capitalized words using st r. join (). If the optional second argument sep is absent or None, runs of
whitespace characters are replaced by a single space and leading and trailing whitespace are removed, otherwise
sep is used to split and join the words.

6.2 re — Regular expression operations

Source code: Lib/re/

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings (st r) as well as 8-bit strings (bytes). However,
Unicode strings and 8-bit strings cannot be mixed: that is, you cannot match a Unicode string with a bytes pattern
or vice-versa; similarly, when asking for a substitution, the replacement string must be of the same type as both the
pattern and the search string.

Regular expressions use the backslash character (' \ ') to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write '\\\\' as the pattern
string, because the regular expression must be \ \, and each backslash must be expressed as \ \ inside a regular Python
string literal. Also, please note that any invalid escape sequences in Python’s usage of the backslash in string literals
now generate a SyntaxWarning and in the future this will become a SyntaxError. This behaviour will happen
even if it is a valid escape sequence for a regular expression.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with 'r'. So r"\n" is a two-character string containing '\ ' and 'n"', while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

It is important to note that most regular expression operations are available as module-level functions and methods
on compiled regular expressions. The functions are shortcuts that don’t require you to compile a regex object first, but
miss some fine-tuning parameters.

130 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.13/Lib/re/

The Python Library Reference, Release 3.13.1

> See also

The third-party regex module, which has an API compatible with the standard library re module, but offers
additional functionality and a more thorough Unicode support.

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,
which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string
pq will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and
B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book [Frie09], or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like 'A', 'a', or
'0', are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
S0 last matches the string ' Last '. (In the rest of this section, we’ll write RE’sin this special style, usually
without quotes, and strings to be matched 'in single quotes'.)

Some characters, like ' | ' or ' (', are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted.

Repetition operators or quantifiers (*, +, ?, {m, n}, etc) cannot be directly nested. This avoids ambiguity with the
non-greedy modifier suffix 2, and with other modifiers in other implementations. To apply a second repetition to an
inner repetition, parentheses may be used. For example, the expression (?:a{6}) * matches any multiple of six 'a"'
characters.

The special characters are:

(Dot.) In the default mode, this matches any character except a newline. If the boTALL flag has been specified,
this matches any character including a newline. (?s:.) matches any character regardless of flags.

(Caret.) Matches the start of the string, and in UL 771 INE mode also matches immediately after each newline.

Matches the end of the string or just before the newline at the end of the string, and in UL 777 1NE mode also
matches before a newline. foo matches both ‘foo’ and “foobar’, while the regular expression foo$ matches
only ‘foo’. More interestingly, searching for foo.$ in 'fool\nfoo2\n' matches f002’ normally, but ‘fool’
in MULTILINE mode; searching for a single $ in ' foo\n"' will find two (empty) matches: one just before the
newline, and one at the end of the string.

Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
ab* will match @, ‘ab’, or @’ followed by any number of ‘b’s.

Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘@’ followed by
any non-zero number of ‘b’s; it will not match just @’.

Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. ab? will match either ‘@’ or ‘ab’.
*2, 42, 22

The '*', '+', and '2' quantifiers are all greedy; they match as much text as possible. Sometimes this be-
haviour isn’'t desired; if the RE <. *> is matched against '<a> b <c>"', it will match the entire string, and

6.2. re — Regular expression operations 131

https://pypi.org/project/regex/

The Python Library Reference, Release 3.13.1

not just '<a>'. Adding 2 after the quantifier makes it perform the match in non-greedy or minimal fashion;
as few characters as possible will be matched. Using the RE <. * 2> will match only '<a>".

*t, 44, 2+

{m}

Like the '*', '+', and '?' quantifiers, those where '+"' is appended also match as many times as possible.
However, unlike the true greedy quantifiers, these do not allow back-tracking when the expression following it
fails to match. These are known as possessive quantifiers. For example, a*a will match 'aaaa’' because the
a* will match all 4 'a's, but, when the final 'a' is encountered, the expression is backtracked so that in the
end the a* ends up matching 3 'a's total, and the fourth 'a' is matched by the final 'a'. However, when
a*+a is used to match 'aaaa', the a*+ will match all 4 'a', but when the final 'a' fails to find any more
characters to match, the expression cannot be backtracked and will thus fail to match. x*+, x++ and x 2+ are
equivalent to (?>x*), (?>x+) and (2>x?) correspondingly.

Added in version 3.11.

Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not
to match. For example, a{6} will match exactly six 'a' characters, but not five.

{m,n}

Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For example, a{3, 5} will match from 3 to 5 'a' characters. Omitting m specifies
a lower bound of zero, and omitting n specifies an infinite upper bound. As an example, a{4, }b will match
'aaaab' or a thousand 'a' characters followed by a 'b"', but not 'aaab'. The comma may not be omitted
or the modifier would be confused with the previously described form.

{m,n}?

Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as few
repetitions as possible. This is the non-greedy version of the previous quantifier. For example, on the 6-
character string 'aaaaaa',a{3, 5} willmatch 5 'a' characters, while a { 3, 5} ? will only match 3 characters.

{m,n}+

[1

Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible without establishing any backtracking points. This is the possessive version of the
quantifier above. For example, on the 6-character string 'aaaaaa’', a{3,5}+aa attempt to match 5 'a"
characters, then, requiring 2 more 'a's, will need more characters than available and thus fail, while a{3,
5}aa will match with a{3, 5} capturing 5, then 4 ' a's by backtracking and then the final 2 'a's are matched
by the final aa in the pattern. x{m, n}+ is equivalent to (?>x{m, n}).

Added in version 3.11.

Either escapes special characters (permitting you to match characters like '*', ' 2', and so forth), or signals
a special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it’s highly
recommended that you use raw strings for all but the simplest expressions.

Used to indicate a set of characters. In a set:
o Characters can be listed individually, e.g. [amk] will match 'a', 'm"', or 'k"'.

» Ranges of characters can be indicated by giving two characters and separating them by a ' - ', for example
[a—z] will match any lowercase ASCII letter, [0-5] [0-9] will match all the two-digits numbers from
00 to 59, and [0-9A-Fa-f] will match any hexadecimal digit. If - is escaped (e.g. [a\-z]) or if it’s
placed as the first or last character (e.g. [-a] or [a-]), it will match a literal '-'.

« Special characters lose their special meaning inside sets. For example, [(+*)] will match any of the
literal characters ' (', '+', "*',or ') '.

132

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

 Character classes such as \w or \ s (defined below) are also accepted inside a set, although the characters
they match depend on the flags used.

o Characters that are not within a range can be matched by complementing the set. If the first character of
the set is '~ ', all the characters that are not in the set will be matched. For example, [~5] will match
any character except '5"', and [~~] will match any character except ' ~'. ~ has no special meaning if
it’s not the first character in the set.

o To match a literal '] ' inside a set, precede it with a backslash, or place it at the beginning of the set.
For example, both [() [\1{}] and [] () [{}] will match a right bracket, as well as left bracket, braces,
and parentheses.

« Support of nested sets and set operations as in Unicode Technical Standard #18 might be added in the
future. This would change the syntax, so to facilitate this change a FutureWarning will be raised in
ambiguous cases for the time being. That includes sets starting with a literal ' [' or containing literal
character sequences '—-', '&&', "~~',and ' | | '. To avoid a warning escape them with a backslash.

Changed in version 3.7: Futureliarning is raised if a character set contains constructs that will change
semantically in the future.

a|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An
arbitrary number of REs can be separated by the ' | ' in this way. This can be used inside groups (see below)
as well. As the target string is scanned, REs separated by ' | ' are tried from left to right. When one pattern
completely matches, that branch is accepted. This means that once A matches, B will not be tested further,
even if it would produce a longer overall match. In other words, the ' | ' operator is never greedy. To match a
literal ' | ', use \ |, or enclose it inside a character class, asin [|].

Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string
with the \number special sequence, described below. To match the literals ' (* or ') ', use \ (or \), or
enclose them inside a character class: [(1, [)].

(?...)
This is an extension notation (a ' ?' followinga ' (' is not meaningful otherwise). The first character after the
' 2 ' determines what the meaning and further syntax of the construct is. Extensions usually do not create a new
group; (?P<name>. ..) is the only exception to this rule. Following are the currently supported extensions.
(?ailmsux)

(One or more letters from the set 'a', 'i', 'L', 'm', 's', 'u', 'x'.) The group matches the empty string;
the letters set the corresponding flags for the entire regular expression:

e re.A (ASCII-only matching)
e re. I (ignore case)

o re. L (locale dependent)

e re.M (multi-line)

e re. S (dot matches all)

o re. U (Unicode matching)

e re.X (verbose)

(The flags are described in Module Contents.) This is useful if you wish to include the flags as part of the regular
expression, instead of passing a flag argument to the re.compile () function. Flags should be used first in
the expression string.

Changed in version 3.11: This construction can only be used at the start of the expression.

A non-capturing version of regular parentheses. Matches whatever regular expression is inside the parentheses,
but the substring matched by the group cannot be retrieved after performing a match or referenced later in the
pattern.

6.2. re — Regular expression operations 133

https://unicode.org/reports/tr18/

The Python Library Reference, Release 3.13.1

(?ailmsux—-imsx:...)

(?>..

(Zero or more letters from the set 'a', 'i', 'L', 'm", 's', 'u', 'x"', optionally followed by '-' followed
by one or more letters fromthe 'i', 'm', 's', 'x"'.) The letters set or remove the corresponding flags for the
part of the expression:

o re.A (ASCII-only matching)
e re. T (ignore case)
o re. L (locale dependent)
e re.M (multi-line)
e re. S (dot matches all)
e re.U (Unicode matching)
e re.X (verbose)
(The flags are described in Module Contents.)

The letters 'a', 'L' and 'u' are mutually exclusive when used as inline flags, so they can’t be combined
or follow '-'. Instead, when one of them appears in an inline group, it overrides the matching mode in the
enclosing group. In Unicode patterns (?a:...) switches to ASCII-only matching, and (?2u:...) switches
to Unicode matching (default). In bytes patterns (?L:...) switches to locale dependent matching, and (?
a:...) switches to ASCII-only matching (default). This override is only in effect for the narrow inline group,
and the original matching mode is restored outside of the group.

Added in version 3.6.

Changed in version 3.7: The letters 'a', 'L' and 'u' also can be used in a group.

)

ttempts to match . .. as if it was a separate regular expression, and if successful, continues to match the
rest of the pattern following it. If the subsequent pattern fails to match, the stack can only be unwound to a
point before the (?>...) because once exited, the expression, known as an atomic group, has thrown away

all stack points within itself. Thus, (?>.*) . would never match anything because first the . * would match
all characters possible, then, having nothing left to match, the final . would fail to match. Since there are no
stack points saved in the Atomic Group, and there is no stack point before it, the entire expression would thus
fail to match.

Added in version 3.11.

(?P<name>...)

Similar to regular parentheses, but the substring matched by the group is accessible via the symbolic group
name name. Group names must be valid Python identifiers, and in byt es patterns they can only contain bytes
in the ASCII range. Each group name must be defined only once within a regular expression. A symbolic
group is also a numbered group, just as if the group were not named.

Named groups can be referenced in three contexts. If the pattern is (?P<quote>['"]) .*? (?P=quote)
(i.e. matching a string quoted with either single or double quotes):

Context of reference to group “quote” Ways to reference it

in the same pattern itself
e (?P=quote) (as shown)

.\1

when processing match object m
e m.group ('quote')

e m.end ('quote"') (etc.)

in a string passed to the repl argument of re . sub
&P pratg oot e \g<quote>

e \g<1>
e \1

134

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

Changed in version 3.12: In bytes patterns, group name can only contain bytes in the ASCII range (b'\
x00'-b'"\x7£").

(?P=name)

A backreference to a named group; it matches whatever text was matched by the earlier group named name.

(?#...)
A comment; the contents of the parentheses are simply ignored.

(?=...)
Matches if . . . matches next, but doesn’t consume any of the string. This is called a lookahead assertion. For
example, Isaac (?=Asimov) will match 'Isaac ' only if it’s followed by 'Asimov'.

(?!'...)
Matches if . . . doesn’t match next. This is a negative lookahead assertion. For example, Isaac (?!Asimov)
will match 'Isaac ' only if it’s not followed by 'Asimov'.

(?<=...)
Matches if the current position in the string is preceded by a match for . . . that ends at the current position.
This is called a positive lookbehind assertion. (?<=abc) def will find a match in 'abcdef ', since the look-
behind will back up 3 characters and check if the contained pattern matches. The contained pattern must only
match strings of some fixed length, meaning that abc or a |b are allowed, but a* and a{3, 4} are not. Note
that patterns which start with positive lookbehind assertions will not match at the beginning of the string being
searched; you will most likely want to use the search () function rather than the match () function:
>>> import re
>>> m = re.search (' (?<=abc)def', 'abcdef')
>>> m.group (0)
'def’
This example looks for a word following a hyphen:
>>> m = re.search(r' (?<=-)\w+', 'spam-egg')
>>> m.group (0)
] egg Al

Changed in version 3.5: Added support for group references of fixed length.

(?<!...)

Matches if the current position in the string is not preceded by a match for This is called a negative
lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of
the string being searched.

(? (id/name) yes—pattern|no-pattern)

Will try to match with yes—pattern if the group with given id or name exists, and with no-pattern if
it doesn’t. no-pattern is optional and can be omitted. For example, (<) ? (\w+@\w+ (2:\.\w+)+) (?
(1)>1$) is a poor email matching pattern, which will match with '<user@host.com>' as well as
'user@host.com', but not with '<user@host.com' nor 'user@host.com>"'.

Changed in version 3.12: Group id can only contain ASCII digits. In bytes patterns, group name can only
contain bytes in the ASCII range (b'\x00'-b'\x7£").

The special sequences consist of '\ ' and a character from the list below. If the ordinary character is not an ASCII
digit or an ASCII letter, then the resulting RE will match the second character. For example, \ $ matches the character

|l $ |l .

\number
Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
(.+) \1matches 'the the'or '55 55',butnot 'thethe' (note the space after the group). This special
sequence can only be used to match one of the first 99 groups. If the first digit of number is 0, or number is
3 octal digits long, it will not be interpreted as a group match, but as the character with octal value number.
Inside the ' [' and '] ' of a character class, all numeric escapes are treated as characters.

6.2. re — Regular expression operations 135

The Python Library Reference, Release 3.13.1

\a

\b

\B

\d

\D

\s

Matches only at the start of the string.

Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of word
characters. Note that formally, \b is defined as the boundary between a \w and a \w character (or vice versa),
or between \w and the beginning or end of the string. This means that r'\bat\b"' matches 'at', 'at.",
"(at)',and 'as at ay' butnot 'attempt' or 'atlas'.

The default word characters in Unicode (str) patterns are Unicode alphanumerics and the underscore, but this
can be changed by using the 25¢171 flag. Word boundaries are determined by the current locale if the LOCALE
flag is used.

© Note

Inside a character range, \b represents the backspace character, for compatibility with Python’s string
literals.

Matches the empty string, but only when it is not at the beginning or end of a word. This means that r'at\B'
matches 'athens', 'atom', 'attorney', butnot 'at', 'at."', or 'at!'. \B is the opposite of \b, so
word characters in Unicode (str) patterns are Unicode alphanumerics or the underscore, although this can be
changed by using the 2s5c 171 flag. Word boundaries are determined by the current locale if the LocALE flag is
used.

© Note

Note that \ B does not match an empty string, which differs from RE implementations in other programming
languages such as Perl. This behavior is kept for compatibility reasons.

For Unicode (str) patterns:
Matches any Unicode decimal digit (that is, any character in Unicode character category [Nd]). This
includes [0-91, and also many other digit characters.

Matches [0-9] if the Asc1T flag is used.

For 8-bit (bytes) patterns:
Matches any decimal digit in the ASCII character set; this is equivalent to [0-9].

Matches any character which is not a decimal digit. This is the opposite of \d.

Matches [~0-9] if the Asc1T flag is used.

For Unicode (str) patterns:
Matches Unicode whitespace characters (as defined by st r. i sspace ()). Thisincludes [\t\n\r\f\
v1, and also many other characters, for example the non-breaking spaces mandated by typography rules
in many languages.

Matches [\t\n\r\£f\v] if the 25c1T flag is used.

For 8-bit (bytes) patterns:
Matches characters considered whitespace in the ASCII character set; this is equivalent to [\t\n\r\

f\v].
\s
Matches any character which is not a whitespace character. This is the opposite of \s.
Matches [~ \t\n\r\f\v] if the ascrT flag is used.
136 Chapter 6. Text Processing Services

https://www.unicode.org/versions/Unicode15.0.0/ch04.pdf#G134153

The Python Library Reference, Release 3.13.1

\w
For Unicode (str) patterns:
Matches Unicode word characters; this includes all Unicode alphanumeric characters (as defined by st r.
isalnum()), as well as the underscore (_).
Matches [a-zA-70-9_] if the 25C17 flag is used.
For 8-bit (bytes) patterns:
Matches characters considered alphanumeric in the ASCII character set; this is equivalent to
[a-zA-20-9_]. If the LocALE flag is used, matches characters considered alphanumeric in the current
locale and the underscore.
\W
Matches any character which is not a word character. This is the opposite of \w. By default, matches non-
underscore (_) characters for which str.isalnum () returns False.
Matches [~a-zA-70-9_] if the A5¢c17 flag is used.
If the LocaLE flag is used, matches characters which are neither alphanumeric in the current locale nor the
underscore.
\z

Matches only at the end of the string.

Most of the escape sequences supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\N \r \t \u
\U \v \x ARY

(Note that \b is used to represent word boundaries, and means “backspace” only inside character classes.)

"\u', '\U', and '\N' escape sequences are only recognized in Unicode (str) patterns. In bytes patterns they are
errors. Unknown escapes of ASCII letters are reserved for future use and treated as errors.

Octal escapes are included in a limited form. If the first digit is a O, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits
in length.

Changed in version 3.3: The '\u' and '\U' escape sequences have been added.
Changed in version 3.6: Unknown escapes consisting of '\ ' and an ASCII letter now are errors.

Changed in version 3.8: The '\N{name} ' escape sequence has been added. As in string literals, it expands to the
named Unicode character (e.g. '\N{EM DASH}").

6.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

Flags

Changed in version 3.6: Flag constants are now instances of RegexF1ag, which is a subclass of enum. IntFlag.

class re.RegexFlag

An enum. IntFlag class containing the regex options listed below.
Added in version 3.11: -addedto __all_

re.A

6.2. re — Regular expression operations 137

The Python Library Reference, Release 3.13.1

re.ASCII

Make \w, \W, \b, \B, \d, \D, \'s and \s perform ASCII-only matching instead of full Unicode matching.
This is only meaningful for Unicode (str) patterns, and is ignored for bytes patterns.

Corresponds to the inline flag (?a).

© Note

The U flag still exists for backward compatibility, but is redundant in Python 3 since matches are Unicode
by default for st r patterns, and Unicode matching isn’t allowed for bytes patterns. Un7CODE and the inline
flag (2?u) are similarly redundant.

re .DEBUG

Display debug information about compiled expression.
No corresponding inline flag.

re.I

re.IGNORECASE

Perform case-insensitive matching; expressions like [A-z] will also match lowercase letters. Full Unicode
matching (such as U matching ii) also works unless the 2sc 17 flag is used to disable non-ASCII matches. The
current locale does not change the effect of this flag unless the Locarr flag is also used.

Corresponds to the inline flag (?1i).

Note that when the Unicode patterns [a-z] or [A-z] are used in combination with the 7GNORECASE flag,
they will match the 52 ASCII letters and 4 additional non-ASCII letters: ‘I’ (U+0130, Latin capital letter I with
dot above), 1’ (U+0131, Latin small letter dotless 1), 1" (U+017F, Latin small letter long s) and ‘K’ (U+212A,
Kelvin sign). If the 2Asc11 flag is used, only letters ‘@’ to ‘z’ and ‘A’ to “Z’ are matched.

re.L

re.LOCALE
Make \w, \W, \b, \B and case-insensitive matching dependent on the current locale. This flag can be used
only with bytes patterns.

Corresponds to the inline flag (?L).

A\ Warning

This flag is discouraged; consider Unicode matching instead. The locale mechanism is very unreliable as
it only handles one “culture” at a time and only works with 8-bit locales. Unicode matching is enabled by
default for Unicode (str) patterns and it is able to handle different locales and languages.

Changed in version 3.6: LOCALE can be used only with bytes patterns and is not compatible with ASCII.

Changed in version 3.7: Compiled regular expression objects with the LocALE flag no longer depend on the
locale at compile time. Only the locale at matching time affects the result of matching.

re.M
re .MULTILINE

When specified, the pattern character '~ ' matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character '$' matches at the end of the string and
at the end of each line (immediately preceding each newline). By default, ' ~ ' matches only at the beginning
of the string, and '$"' only at the end of the string and immediately before the newline (if any) at the end of
the string.

Corresponds to the inline flag (?m) .

138 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

re .NOFLAG

Indicates no flag being applied, the value is 0. This flag may be used as a default value for a function keyword
argument or as a base value that will be conditionally ORed with other flags. Example of use as a default value:

def myfunc (text, flag=re.NOFLAG) :
return re.match(text, flag)

Added in version 3.11.

re.S

re.DOTALL
Make the '. ' special character match any character at all, including a newline; without this flag, '.' will
match anything except a newline.
Corresponds to the inline flag (?s).

re.U
re .UNICODE

In Python 3, Unicode characters are matched by default for st r patterns. This flag is therefore redundant with
no effect and is only kept for backward compatibility.

See ASCTT to restrict matching to ASCII characters instead.

re.X
re .VERBOSE

This flag allows you to write regular expressions that look nicer and are more readable by allowing you to
visually separate logical sections of the pattern and add comments. Whitespace within the pattern is ignored,
except when in a character class, or when preceded by an unescaped backslash, or within tokens like *?, (?:
or (?p<...>. Forexample, (2 : and * ? are not allowed. When a line contains a # that is not in a character
class and is not preceded by an unescaped backslash, all characters from the leftmost such # through the end
of the line are ignored.

This means that the two following regular expression objects that match a decimal number are functionally
equal:

a = re.compile(r"""\d + # the integral part

\. # the decimal point

\d * # some fractional digits""", re.X)
b = re.compile (r"\d+\.\d*")

Corresponds to the inline flag (?x) .

Functions

re.compile (pattern, flags=0)

Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match (), search () and other methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pattern)
result = prog.match(string)

is equivalent to

[result = re.match (pattern, string)

6.2. re — Regular expression operations 139

The Python Library Reference, Release 3.13.1

but using re. compile () and saving the resulting regular expression object for reuse is more efficient when
the expression will be used several times in a single program.

© Note

The compiled versions of the most recent patterns passed to re. compile () and the module-level match-
ing functions are cached, so programs that use only a few regular expressions at a time needn’t worry about
compiling regular expressions.

re.search (pattern, string, flags=0)

Scan through string looking for the first location where the regular expression pattern produces a match, and
return a corresponding Mat ch. Return None if no position in the string matches the pattern; note that this is
different from finding a zero-length match at some point in the string.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

re.match (pattern, string, flags=0)

If zero or more characters at the beginning of string match the regular expression pattern, return a corresponding
Match. Return None if the string does not match the pattern; note that this is different from a zero-length
match.

Note that even in MULTILINE mode, re.match () will only match at the beginning of the string and not at
the beginning of each line.

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

re. fullmatch (pattern, string, flags=0)

If the whole string matches the regular expression pattern, return a corresponding Mat ch. Return None if the
string does not match the pattern; note that this is different from a zero-length match.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

Added in version 3.4.

re.split (pattern, string, maxsplit=0, flags=0)

Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all
groups in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit splits
occur, and the remainder of the string is returned as the final element of the list.

-

>>> re.split (r'\W+', 'Words, words, words.')

['"Words', 'words', 'words', '']

>>> re.split(r' (\W+)', 'Words, words, words.')

['"Words', ', ', 'words', ', ', 'words', '.', '']

>>> re.split (r'\W+', 'Words, words, words.', maxsplit=1)
['"Words', 'words, words.']

>>> re.split('[a-f]+', '0a3B9', flags=re.IGNORECASE)
['o', '3', '9']

L

J

If there are capturing groups in the separator and it matches at the start of the string, the result will start with
an empty string. The same holds for the end of the string:

>>> re.split(r' (\W+)', '.. words. ..

[vl, l"‘V, 1

'words', ', ,

.words,

1 v

'words', R

That way, separator components are always found at the same relative indices within the result list.

Empty matches for the pattern split the string only when not adjacent to a previous empty match.

140

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

r N
>>> re.split(r'\b', 'Words, words, words.')

['*, 'Words', ', ', 'words', ', ', 'words', '.']

>>> re.split(r'\W*', '...words...'")

tvv, vv, 'wv, Y@, 'mY, Ve', VgV, VU ']

>>> re.split(r' (\W*)', '...words...")

[rr, too0, 'w', '', 'o', "', 'r', "', '4q', '', 's', ! vyt v, v

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

Changed in version 3.1: Added the optional flags argument.
Changed in version 3.7: Added support of splitting on a pattern that could match an empty string.

Deprecated since version 3.13: Passing maxsplit and flags as positional arguments is deprecated. In future
Python versions they will be keyword-only parameters.

re.findall (pattern, string, flags=0)

Return all non-overlapping matches of pattern in string, as a list of strings or tuples. The string is scanned
left-to-right, and matches are returned in the order found. Empty matches are included in the result.

The result depends on the number of capturing groups in the pattern. If there are no groups, return a list of
strings matching the whole pattern. If there is exactly one group, return a list of strings matching that group.
If multiple groups are present, return a list of tuples of strings matching the groups. Non-capturing groups do
not affect the form of the result.

>>> re.findall (r'\bf[a-z]*', 'which foot or hand fell fastest')

['foot', 'fell', 'fastest']
>>> re.findall (r' (\w+)=(\d+)"', 'set width=20 and height=10")
[("width', '20"'), ('height', '10')]

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re.finditer (pattern, string, flags=0)

Return an iferator yielding Mat ch objects over all non-overlapping matches for the RE pattern in string. The
string is scanned left-to-right, and matches are returned in the order found. Empty matches are included in the
result.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re. sub (pattern, repl, string, count=0, flags=0)

Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the
replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That is, \n is converted to a single newline character,
\r is converted to a carriage return, and so forth. Unknown escapes of ASCII letters are reserved for future
use and treated as errors. Other unknown escapes such as \ & are left alone. Backreferences, such as \ 6, are
replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(r'def\s+([a-zA-Z_][a—-zA-Z_0-9]1*)\s*\ (\s*\):"',
r'static PyObject*\npy_\1(void)\n{"',

'def myfunc():")

'static PyObject*\npy_myfunc (void) \n{'

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
Match argument, and returns the replacement string. For example:

6.2.

re — Regular expression operations 141

The Python Library Reference, Release 3.13.1

IS N

>>> def dashrepl (matchobj) :
if matchobj.group(0) == '-': return ' '
else: return '-'

>>> re.sub('-{1,2}', dashrepl, 'pro——--gram-files')

'pro-—gram files'

>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)
'Baked Beans & Spam'

L J

The pattern may be a string or a Pat tern.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be
a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern
are replaced only when not adjacent to a previous empty match, so sub ('x*', '-', 'abxd') returns
'—a-b--d-'.

In string-type repl arguments, in addition to the character escapes and backreferences described above, \
g<name> will use the substring matched by the group named name, as defined by the (?P<name>. . .) syntax.
\g<number> uses the corresponding group number; \g<2> is therefore equivalent to \ 2, but isn’t ambiguous
in a replacement such as \g<2>0. \20 would be interpreted as a reference to group 20, not a reference to
group 2 followed by the literal character '0'. The backreference \g<0> substitutes in the entire substring
matched by the RE.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

Changed in version 3.1: Added the optional flags argument.
Changed in version 3.5: Unmatched groups are replaced with an empty string.
Changed in version 3.6: Unknown escapes in pattern consisting of '\ ' and an ASCII letter now are errors.

Changed in version 3.7: Unknown escapes in repl consisting of '\ ' and an ASCII letter now are errors. Empty
matches for the pattern are replaced when adjacent to a previous non-empty match.

Changed in version 3.12: Group id can only contain ASCII digits. In byt es replacement strings, group name
can only contain bytes in the ASCII range (b'\x00'-b'\x7£f").

Deprecated since version 3.13: Passing count and flags as positional arguments is deprecated. In future Python
versions they will be keyword-only parameters.

re. subn (pattern, repl, string, count=0, flags=0)

Perform the same operation as sub (), but return a tuple (new_string, number_of_ subs_made).

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

re.escape (pattern)

Escape special characters in pattern. This is useful if you want to match an arbitrary literal string that may
have regular expression metacharacters in it. For example:

>>> print (re.escape ('https://www.python.org'))
https://www\.python\.org

>>> legal_chars = string.ascii_lowercase + string.digits + "!#S$%&'*+-."_ " |~:"
>>> print ('[]+"'" % re.escape(legal_chars))
[abcdefghijklmnopgrstuvwxyz0123456789 1 \#\SS\& '\ *\+\ -\ . *_"\[\~:]+

>>> OperatOrS . [I+Y, l7|, l*l, l/l, l**’]

>>> print ('|'.join (map (re.escape, sorted(operators, reverse=True))))
ARSI AN A A A

.

142

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

This function must not be used for the replacement string in sub () and subn (), only backslashes should be
escaped. For example:

>>> digits_re = r'\d+'

>>> sample = '/usr/sbin/sendmail - 0 errors, 12 warnings'

>>> print (re.sub(digits_re, digits_re.replace('\\', r'\\'), sample))
/usr/sbin/sendmail - \d+ errors, \d+ warnings

Changed in version 3.3: The ' _' character is no longer escaped.

Changed in version 3.7: Only characters that can have special meaning in a regular expression are escaped. As

aresult, "1, vy nrn o /e g r=r st and "t are no longer escaped.
re.purge ()

Clear the regular expression cache.

Exceptions

exception re.PatternError (msg, pattern=None, pos=None)

Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It
is never an error if a string contains no match for a pattern. The PatternError instance has the following
additional attributes:
msg
The unformatted error message.
pattern
The regular expression pattern.
pos
The index in pattern where compilation failed (may be None).
lineno
The line corresponding to pos (may be None).
colno
The column corresponding to pos (may be None).
Changed in version 3.5: Added additional attributes.

Changed in version 3.13: PatternError was originally named error; the latter is kept as an alias for back-
ward compatibility.

6.2.3 Regular Expression Objects

class re.Pattern
Compiled regular expression object returned by re. compile ().
Changed in version 3.9: re.Pattern supports [] to indicate a Unicode (str) or bytes pattern. See Generic
Alias Type.

Pattern.search (string[, pos[, endpos]])

Scan through string looking for the first location where this regular expression produces a match, and return a
corresponding Match. Return None if no position in the string matches the pattern; note that this is different
from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to 0.
This is not completely equivalent to slicing the string; the '~ ' pattern character matches at the real beginning
of the string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is endpos char-
acters long, so only the characters from pos to endpos - 1 will be searched for a match. If endpos is less than

6.2. re — Regular expression operations 143

The Python Library Reference, Release 3.13.1

pos, no match will be found; otherwise, if rx is a compiled regular expression object, rx.search (string,
0, 50) isequivalent to rx.search (string[:50], 0).

>>> pattern = re.compile ("d")

>>> pattern.search ("dog") # Match at index 0

<re.Match object; span=(0, 1), match='d'>

>>> pattern.search("dog", 1) # No match; search doesn't include the "d"

Pattern.match (string[, pas[, endpos]])

If zero or more characters at the beginning of string match this regular expression, return a corresponding
Match. Return None if the string does not match the pattern; note that this is different from a zero-length
match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o")
>>> pattern.match ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match ("dog", 1) # Match as "o" is the 2nd character of "dog".

<re.Match object; span=(1, 2), match='o'>

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

Pattern.fullmatch (string[, pos[, endpos]])

If the whole string matches this regular expression, return a corresponding Match. Return None if the string
does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o[gh]")

>>> pattern.fullmatch ("dog") # No match as "o" is not at the start of "dog
>>> pattern.fullmatch ("ogre") # No match as not the full string matches.
>>> pattern.fullmatch ("doggie", 1, 3) # Matches within given limits.
<re.Match object; span=(1, 3), match='og'>

Added in version 3.4.
Pattern.split (string, maxsplit=0)

Identical to the sp1it () function, using the compiled pattern.
Pattern.findall (string[, pos[, endpos]])

Similar to the findall () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for search ().

Pattern.finditer (string[, pos[, endpos]])

Similar to the finditer () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for search ().

Pattern.sub (repl, string, count=0)

Identical to the sub () function, using the compiled pattern.
Pattern.subn (repl, string, count=0)

Identical to the subn () function, using the compiled pattern.
Pattern.flags

The regex matching flags. This is a combination of the flags given to compile (), any (?...) inline flags in
the pattern, and implicit flags such as un7coDE if the pattern is a Unicode string.

Pattern.groups

The number of capturing groups in the pattern.

144 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

Pattern.groupindex

A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

Pattern.pattern

The pattern string from which the pattern object was compiled.

Changed in version 3.7: Added support of copy.copy () and copy.deepcopy (). Compiled regular expression
objects are considered atomic.

6.2.4 Match Objects

Match objects always have a boolean value of True. Since match () and search () return None when there is no
match, you can test whether there was a match with a simple i £ statement:

match = re.search(pattern, string)
if match:
process (match)

class re.Match

Match object returned by successful matches and searches.

Changed in version 3.9: re.Match supports [] to indicate a Unicode (str) or bytes match. See Generic Alias
Type.

Match.expand (template)

Return the string obtained by doing backslash substitution on the template string template, as done by the
sub () method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences
(\1, \2) and named backreferences (\g<1>, \g<name>) are replaced by the contents of the corresponding
group. The backreference \g<0> will be replaced by the entire match.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

Match.group ([group],])

Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments, groupl
defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
an IndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result is None. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

-

>>> m = re.match (r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group (0) # The entire match

'Isaac Newton'

>>> m.group (1) # The first parenthesized subgroup.
'Isaac’

>>> m.group (2) # The second parenthesized subgroup.
'Newton'

>>> m.group (1, 2) # Multiple arguments give us a tuple.

("Isaac', 'Newton')

If the regular expression uses the (?P<name>. . .) syntax, the groupN arguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattern, an TndexError
exception is raised.

A moderately complicated example:

6.2. re — Regular expression operations 145

The Python Library Reference, Release 3.13.1

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group ('first_name')

'Malcolm'

>>> m.group ('last_name')

'Reynolds’

Named groups can also be referred to by their index:

>>> m.group (1)
'Malcolm'
>>> m.group (2)
'Reynolds"’

.

If a group matches multiple times, only the last match is accessible:

-

>>> m = re.match(r" (..)+", "alb2c3") # Matches 3 times.
>>> m.group (1) # Returns only the last match.
lc3l

Match.__getitem__ (g)

This is identical to m.group (g) . This allows easier access to an individual group from a match:

-

>>> m = re.match (r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m[0] # The entire match

'Isaac Newton'

>>> m[1] # The first parenthesized subgroup.

'Isaac’

>>> m[2] # The second parenthesized subgroup.
'Newton'

.

Named groups are supported as well:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Isaac Newton")
>>> m['first_name']

'Isaac’

>>> m['last_name']

'Newton'

Added in version 3.6.

Match.groups (default=None)

Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The default argument is used for groups that did not participate in the match; it defaults to None.

For example:

>>> m = re.match (r" (\d+)\. (\d+)", "24.1632")
>>> m.groups ()
('24', '"1632")

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default to None unless the default argument is given:

>>> m = re.match (r" (\d+)\.?2 (\d+) 2", "24")

>>> m.groups () # Second group defaults to None.

('24', None)

>>> m.groups('0") # Now, the second group defaults to '0O'.
('24', IOI)

146 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

Match.groupdict (default=None)

Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The default
argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()
{'"first_name': 'Malcolm', 'last_name': 'Reynolds'}

Match.start ([group])

Match.end ([group])

Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning the
whole matched substring). Return -1 if group exists but did not contribute to the match. For a match object m,
and a group g that did contribute to the match, the substring matched by group g (equivalent to m.group (g))
is

[m.string[m.start(g):m.end(g)} }

Note that m. start (group) will equal m.end (group) if group matched a null string. For example, after m
= re.search('b(c?)', 'cba'),m.start (0) is 1, m.end(0) iS 2, m.start (1) and m.end (1) are
both 2, and m. start (2) raises an IndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search ("remove_this", email)
>>> emaill[:m.start ()] + email[m.end() :]

'tony@tiger.net'

Match. span ([group])
For a match m, return the 2-tuple (m.start (group), m.end(group)). Note that if group did not con-
tribute to the match, thisis (-1, -1). group defaults to zero, the entire match.

Match.pos
The value of pos which was passed to the search () or match () method of a regex object. This is the index
into the string at which the RE engine started looking for a match.

Match.endpos
The value of endpos which was passed to the search () or match () method of a regex object. This is the
index into the string beyond which the RE engine will not go.

Match.lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For example,
the expressions (a)b, ((a) (b)), and ((ab)) will have lastindex == 1 if applied to the string 'ab"’,
while the expression (a) (b) will have lastindex == 2, if applied to the same string.

Match.lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was
matched at all.

Match.re

The regular expression object whose match () or search () method produced this match instance.

Match.string

The string passed to match () or search ().

Changed in version 3.7: Added support of copy.copy () and copy.deepcopy (). Match objects are considered
atomic.

6.2. re — Regular expression operations 147

The Python Library Reference, Release 3.13.1

6.2.5 Regular Expression Examples
Checking for a Pair

In this example, we'll use the following helper function to display match objects a little more gracefully:

def displaymatch (match) :
if match is None:
return None

)

return '<Match: , groups=¢r>"' % (match.group (), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each

character representing a card, “a” for ace, “k” for king, “q” for queen, “j” for jack, “t” for 10, and “2” through “9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r""[a2-9tjgk] S™)

>>> displaymatch (valid.match ("akt5g")) # Valid.
"<Match: 'akt5q', groups=()>"

>>> displaymatch (valid.match ("aktbe")) # Invalid.
>>> displaymatch (valid.match ("akt")) # Invalid.
>>> displaymatch (valid.match ("727ak")) # Valid.
"<Match: '727ak', groups=()>"

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular expression,
one could use backreferences as such:

>>> pair = re.compile (r".*(.).*\1")

>>> displaymatch (pair.match ("717ak")) # Pair of 7s.
"<Match: '717', groups=('7',)>"

>>> displaymatch (pair.match ("718ak")) # No pairs.

>>> displaymatch (pair.match ("354aa")) # Pair of aces.
"<Match: '354aa', groups=('a',)>"

To find out what card the pair consists of, one could use the group () method of the match object in the following
manner:

>>> pair = re.compile(r".*(.).*\1")
>>> pair.match("717ak") .group (1)
'7'

Error because re.match() returns None, which doesn't have a group() method:
>>> pair.match("718ak") .group (1)
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
re.match(r".*(.).*\1", "718ak") .group (1)
AttributeError: 'NoneType' object has no attribute 'group'

>>> pair.match("354aa") .group (1)

!

Simulating scanf()

Python does not currently have an equivalent to scanf (). Regular expressions are generally more powerful, though
also more verbose, than scanf () format strings. The table below offers some more-or-less equivalent mappings
between scanf () format tokens and regular expressions.

148 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

scanf () Token Regular Expression

%C o

%$5¢ - (8§

5d [-+]2\d+

%e, $E, %, %9 [=+12 (\d+ (\.\d*) 2| \.\d+) ([eE] [-+]2\d+) ?
51 [~+12 (0 [xX] [\dA-Fa—f]+]0[0-7]*|\d+)

%0 [-+12[0-71+

$s \S+

su \d+

$x, X [-+12 (0[xX]) 2 [\dA-Fa-f]+

To extract the filename and numbers from a string like

[/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf () format like

[%s - %d errors, %d warnings

The equivalent regular expression would be

[(\S+) - (\d+) errors, (\d+) warnings

search() vs. match()

Python offers different primitive operations based on regular expressions:
e re.match () checks for a match only at the beginning of the string
e re.search () checks for a match anywhere in the string (this is what Perl does by default)
e re.fullmatch () checks for entire string to be a match

For example:

>>> re.match("c", "abcdef™) # No match

>>> re.search("c", "abcdef") # Match
<re.Match object; span=(2, 3), match='c'>

>>> re.fullmatch("p.*n", "python") # Match
<re.Match object; span=(0, 6), match="'python'>
>>> re.fullmatch("r.*n", "python") # No match

Regular expressions beginning with '~' can be used with search () to restrict the match at the beginning of the
string:

>>> re.match("c", "abcdef™) # No match
>>> re.search(""c", "abcdef") # No match
>>> re.search(""a", "abcdef") # Match

<re.Match object; span=(0, 1), match='a'>

Note however that in MULTILINE mode match () only matches at the beginning of the string, whereas using
search () with a regular expression beginning with '~ ' will match at the beginning of each line.

>>> re.match("X", "A\nB\nX", re.MULTILINE) # No match
>>> re.search(""X", "A\nB\nX", re.MULTILINE) # Match
<re.Match object; span=(4, 5), match='X"'>

6.2. re — Regular expression operations 149

The Python Library Reference, Release 3.13.1

Making a Phonebook

split () splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual

data into data structures that can be easily read and modified by Python as demonstrated in the following example
that creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split ("\n+", text)

>>> entries

['Ross McFluff: 834.345.1254 155 Elm Street',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way',
'Heather Albrecht: 548.326.4584 919 Park Place']

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the maxsplit
parameter of split () because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, maxsplit=3) for entry in entries]
[['Ross', 'McFluff', '834.345.1254', '155 Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584', '919 Park Place']]

The : 2 pattern matches the colon after the last name, so that it does not occur in the result list. With a maxsplit
of 4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, maxsplit=4) for entry in entries]
[['Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662', 'South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584', '919', 'Park Place']]

Text Munging

sub () replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates

using sub () with a function to “munge” text, or randomize the order of all the characters in each word of a sentence
except for the first and last characters:

>>> def repl (m):
inner_word = list (m.group(2))
random.shuffle (inner_word)
return m.group(l) + "".join(inner_word) + m.group (3)
>>> text = "Professor Abdolmalek, please report your absences promptly."
>>> re.sub (r" (\w) (\w+) (\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
>>> re.sub(r" (\w) (\w+) (\w) ", repl, text)

'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'

150 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

Finding all Adverbs

findall () matches all occurrences of a pattern, not just the first one as search () does. For example, if a writer
wanted to find all of the adverbs in some text, they might use findal1 () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall (r"\w+ly\b", text)
['carefully', 'quickly']

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer () is useful as it
provides Mat ch objects instead of strings. Continuing with the previous example, if a writer wanted to find all of the
adverbs and their positions in some text, they would use rinditer () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer (r"\w+ly\b", text):

print (' = 3 ' % (m.start (), m.end(), m.group(0)))
07-16: carefully

40-47: quickly

Raw String Notation

Raw string notation (r"text ") keeps regular expressions sane. Without it, every backslash ('\ ') in a regular ex-
pression would have to be prefixed with another one to escape it. For example, the two following lines of code are
functionally identical:

>>> re.match (r"\W(.)\1\w", " ff ")

<re.Match object; span=(0, 4), match=' ff '>
>>> re.match ("\\W(.)\\1\\w", " ££f ")
<re.Match object; span=(0, 4), match=' ff '>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string nota-
tion, this means r"\\". Without raw string notation, one must use "\\\\", making the following lines of code
functionally identical:

>>> re.match (r"\\", r"\\")

<re.Match object; span=(0, 1), match='\\'>
>>> re.match ("\\\\", r"\\")

<re.Match object; span=(0, 1), match="\\"'>

Writing a Tokenizer

A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in writing a
compiler or interpreter.

The text categories are specified with regular expressions. The technique is to combine those into a single master
regular expression and to loop over successive matches:

from typing import NamedTuple
import re

class Token (NamedTuple) :
type: str
value: str
line: int
column: int

(continues on next page)

6.2. re — Regular expression operations 151

https://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.13.1

(continued from previous page)

def tokenize (code) :

keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}
token_specification = [
("NUMBER', r'\d+(\.\d*)?"), # Integer or decimal number
("ASSIGN', r':="), # Assignment operator
('END', wle), # Statement terminator
('ID', r'[A-Za-z]+"), # Identifiers
('oP', r'[+\-*/1"), # Arithmetic operators
('"NEWLINE', r'\n'), # Line endings
('SKIP', r'[\tl+"), # Skip over spaces and tabs
("MISMATCH', r'.'"), # Any other character
]
tok_regex = '|'.join (' (?P<%$s5>%s)' % pair for pair in token_specification)

line_num = 1

line_start = 0

for mo in re.finditer (tok_regex, code):
kind = mo.lastgroup
value = mo.group ()

column = mo.start () - line_start
if kind == 'NUMBER':

value = float (value) if '.' in value else int (value)
elif kind == 'ID' and value in keywords:

kind = value

elif kind == 'NEWLINE':
line_start = mo.end()
line_num += 1

continue
elif kind == 'SKIP':
continue
elif kind == 'MISMATCH':
raise RuntimeError (f'{value!/r} unexpected on line {line_num}")

yield Token (kind, value, line_num, column)

statements = '''
IF gquantity THEN
total := total + price * quantity;
tax := price * 0.05;
ENDIF;

for token in tokenize (statements):
print (token)

The tokenizer produces the following output:

Token (type="IF', value='IF', line=2, column=4)

Token (type="'ID', value='quantity', line=2, column=7)

Token (type="'THEN', wvalue='THEN', line=2, column=16)

Token (type='ID', value='total', line=3, column=8)

Token (type="'ASSIGN', wvalue=':=', line=3, column=14)

Token (type='ID', value='total', line=3, column=17)

Token (type='OP', value='+', line=3, column=23)

Token (type="'ID', value='price', line=3, column=25)

Token (type='0OP', value='*', line=3, column=31)

Token (type='ID', value='quantity', line=3, column=33)

Token (type="'END', value=';', line=3, column=41)
(continues on next page)

152 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

(continued from previous page)
Token (type="ID', value='tax', line=4, column=38)
Token (type="ASSIGN', value=':=', line=4, column=12)
Token (type='ID', value='price', line=4, column=15)

Token (type="'NUMBER', wvalue=0.05, line=4, column=23)
Token (type="END', value=';', line=4, column=27)
Token (type="ENDIF', wvalue='ENDIF', line=5, column=4)

(
(
(
Token (type='OP', value='*', line=4, column=21)
(
(
(
Token (type="'END', value=';', line=5, column=9)

6.3 diff1ib — Helpers for computing deltas

Source code: Lib/difflib.py

This module provides classes and functions for comparing sequences. It can be used for example, for comparing files,
and can produce information about file differences in various formats, including HTML and context and unified diffs.
For comparing directories and files, see also, the i 1ecmp module.

class difflib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest
contiguous matching subsequence that contains no “junk” elements; these “junk” elements are ones that are
uninteresting in some sense, such as blank lines or whitespace. (Handling junk is an extension to the Ratcliff
and Obershelp algorithm.) The same idea is then applied recursively to the pieces of the sequences to the left
and to the right of the matching subsequence. This does not yield minimal edit sequences, but does tend to
yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior de-
pendent in a complicated way on how many elements the sequences have in common; best case time is linear.

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain se-
quence items as junk. The heuristic counts how many times each individual item appears in the sequence.
If an item’s duplicates (after the first one) account for more than 1% of the sequence and the sequence is
at least 200 items long, this item is marked as “popular” and is treated as junk for the purpose of sequence
matching. This heuristic can be turned off by setting the aut ojunk argument to False when creating the
SequenceMatcher.

Changed in version 3.2: Added the autojunk parameter.

class difflib.Differ

This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ uses sequenceMatcher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of a Di rfer delta begins with a two-letter code:

Code Meaning

'— ' line unique to sequence 1

"+ ' line unique to sequence 2
0 G line common to both sequences
"2 ' line not present in either input sequence

Lines beginning with ‘2’ attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain whitespace characters, such as spaces, tabs or
line breaks.

6.3. difflib — Helpers for computing deltas 153

https://github.com/python/cpython/tree/3.13/Lib/difflib.py

The Python Library Reference, Release 3.13.1

class difflib.HtmlDiff

This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can be
generated in either full or contextual difference mode.

The constructor for this class is:

__init__ (tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS_CHARACTER_JUNK)

Initializes instance of HtmIDiff.
tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped,
defaults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff () (used by Htm1Diff to
generate the side by side HTML differences). See ndiff () documentation for argument default values
and descriptions.

The following methods are public:

make_f£ile (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5, *, charset="utf-8’)

Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

context and numlines are both optional keyword arguments. Set context to True when contextual dif-
ferences are to be shown, else the default is False to show the full files. numlines defaults to 5. When
context is True numlines controls the number of context lines which surround the difference highlights.
When context is False numlines controls the number of lines which are shown before a difference high-
light when using the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next
difference highlight at the top of the browser without any leading context).

O Note
fromdesc and todesc are interpreted as unescaped HTML and should be properly escaped while re-

ceiving input from untrusted sources.

Changed in version 3.5: charset keyword-only argument was added. The default charset of HTML doc-
ument changed from '1S0-8859-1"'to 'utf-8".

make_table (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5)

Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make file () method.

difflib.context_diff (a, b, fromfile=", tofile=", fromfiledate=", tofiledate=", n=3, lineterm="\n")

Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by n which defaults to three.

By default, the diff control lines (those with *** or ——-) are created with a trailing newline. This is helpful so
that inputs created from io0. T0Base. readlines () resultin diffs that are suitable for use with i0. 70Base.
writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineferm argument to " " so that the output will be uniformly
newline free.

154

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

-

>>> import sys

>>> from difflib import *

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> sys.stdout.writelines (context_diff(sl, s2, fromfile='before.py',
tofile="after.py'))

***x before.py

—-—— after.py

K,k hkkhkhkkkhkhkkhkkkkxk
* %k 1,4 * Kk kK
! bacon
! eggs
! ham
guido
-— 1,4 ——-
! python
! eggy
! hamster

guido

See A command-line interface to difflib for a more detailed example.

difflib.get_close_matches (word, possibilities, n=3, cutoff=0.6)

Return a list of the best “good enough” matches. word is a sequence for which close matches are desired

(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be greater than 0.

Optional argument cutoff (default 0. 6) is a float in the range [0, 1]. Possibilities that don’t score at least that
similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

>>> get_close_matches ('appel', ['ape', 'apple', 'peach', 'puppy'l)
['apple', 'ape']

>>> import keyword

>>> get_close_matches ('wheel', keyword.kwlist)

['while']

>>> get_close_matches ('pineapple', keyword.kwlist)

[]

>>> get_close_matches ('accept', keyword.kwlist)

["except']

difflib.ndiff (a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK)

Compare a and b (lists of strings); return a Di £ fer-style delta (a generator generating the delta lines).
Optional keyword parameters linejunk and charjunk are filtering functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if not.
The default is None. There is also a module-level function 15_LINE JUNK (), which filters out lines without
visible characters, except for at most one pound character (' # ') — however the underlying SequenceMatcher
class does a dynamic analysis of which lines are so frequent as to constitute noise, and this usually works better
than using this function.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or false
if not. The default is module-level function 15 CHARACTER_JUNK (), which filters out whitespace characters

6.3. difflib — Helpers for computing deltas 155

The Python Library Reference, Release 3.13.1

(a blank or tab; it’s a bad idea to include newline in this!).

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
C. 'ore\ntree\nemu\n'.splitlines (keepends=True))
>>> print (''.join(diff), end="")

- one

2 A

+ ore

- two
- three

+ tree
+ emu

difflib.restore (sequence, which)

Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare () or ndiff (), extract lines originating from file 1 or 2
(parameter which), stripping off line prefixes.

Example:

P
>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),

C 'ore\ntree\nemu\n'.splitlines (keepends=True))

>>> diff = list(diff) # materialize the generated delta into a list
>>> print (''.Jjoin(restore(diff, 1)), end="")

one

two

three

>>> print (''.join (restore(diff, 2)), end="")

ore

tree

emu
L

difflib.unified_diff (a, b, fromfile=", tofile=", fromfiledate=", tofiledate=", n=3, lineterm="\n")

Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in an inline style (instead of separate before/after blocks). The number of context lines is
set by n which defaults to three.

By default, the diff control lines (those with ———, +++, or @Q) are created with a trailing newline. This is
helpful so that inputs created from io.70Base.readlines () result in diffs that are suitable for use with
io.IOBase.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The unified diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

p
>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> sys.stdout.writelines (unified_diff(sl, s2, fromfile='before.py', tofile=
—'after.py'))

——— before.py

+++ after.py

@@ -1,4 +1,4 qa

(continues on next page)

156

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

(continued from previous page)
-bacon
-eggs
—ham
+python

+teggy
t+hamster

guido

See A command-line interface to difflib for a more detailed example.

difflib.diff_bytes (dfunc, a, b, fromfile=b", tofile=b", fromfiledate=b", tofiledate=b", n=3, lineterm=b’\n’)
Compare a and b (lists of bytes objects) using dfunc; yield a sequence of delta lines (also bytes) in the format
returned by dfunc. dfunc must be a callable, typically either unified diff () or context_diff ().

Allows you to compare data with unknown or inconsistent encoding. All inputs except n must be bytes objects,
not str. Works by losslessly converting all inputs (except n) to str, and calling dfunc (a, b, fromfile,
tofile, fromfiledate, tofiledate, n, lineterm). The output of dfunc is then converted back
to bytes, so the delta lines that you receive have the same unknown/inconsistent encodings as a and b.

Added in version 3.5.

difflib.IS_LINE_JUNK (line)
Return True for ignorable lines. The line line is ignorable if /ine is blank or contains a single ' #', otherwise
it is not ignorable. Used as a default for parameter linejunk in ndi £ () in older versions.
difflib.IS_CHARACTER_JUNK (ch)

Return True for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

> See also

Pattern Matching: The Gestalt Approach
Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was published in Dr.
Dobb’s Journal in July, 1988.

6.3.1 SequenceMatcher Objects
The sequenceMatcher class has this constructor:

class difflib.SequenceMatcher (isjunk=None, a=", b=", autojunk=True)
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk is equivalent
to passing lambda x: False;in other words, no elements are ignored. For example, pass:

Elambda X: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

The optional argument autojunk can be used to disable the automatic junk heuristic.
Changed in version 3.2: Added the autojunk parameter.

SequenceMatcher objects get three data attributes: bjunk is the set of elements of b for which isjunk is True;
bpopular is the set of non-junk elements considered popular by the heuristic (if it is not disabled); b2 is a dict
mapping the remaining elements of b to a list of positions where they occur. All three are reset whenever b is
reset with set_seqgs () or set_seq2 ().

Added in version 3.2: The bjunk and bpopular attributes.

6.3. difflib — Helpers for computing deltas 157

https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970
https://www.drdobbs.com/
https://www.drdobbs.com/

The Python Library Reference, Release 3.13.1

SequenceMatcher objects have the following methods:

set_seqgs (a, b)

Set the two sequences to be compared.
SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequences, use set_seg2 () to set the commonly used sequence once
and call set_seqg? () repeatedly, once for each of the other sequences.
set_seql (a)

Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)

Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo=0, ahi=None, blo=0, bhi=None)
Find longest matching block in a[alo:ahi] and b[blo:bhi].

If isjunk was omitted or None, find_longest_match () returns (i, 3, k) suchthata[i:i+k] is
equal to b[j:j+k], where alo <= i <= i+k <= ahi and blo <= j <= j+k <= bhi. For all
(i', 3', k') meeting those conditions, the additional conditions k >= k', i <= i',andif i ==
i', 3§ <= j' are also met. In other words, of all maximal matching blocks, return one that starts earliest
in a, and of all those maximal matching blocks that start earliest in a, return the one that starts earliest
in b.

>>> s = SequenceMatcher (None, " abcd", "abcd abcd")
>>> s.find_longest_match (0, 5, 0, 9)
Match (a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ' abcd' from
matching the ' abcd' at the tail end of the second sequence directly. Instead only the 'abcd' can
match, and matches the leftmost 'abcd' in the second sequence:

>>> s = SequenceMatcher (lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match (a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).
This method returns a named tuple Match (a, b, size).
Changed in version 3.9: Added default arguments.

get_matching blocks ()

Return list of triples describing non-overlapping matching subsequences. Each triple is of the form (i,
j, n),and means that a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). Itis the only triple withn ==
0.If (i, 3, n)and (i', j', n') are adjacent triples in the list, and the second is not the last triple
in the list, then i+n < i' or j+n < j';in other words, adjacent triples always describe non-adjacent
equal blocks.

>>> s = SequenceMatcher (None, "abxcd", "abcd")
>>> s.get_matching_blocks ()
[Match (a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

158

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

get_opcodes ()

Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, i2,
j1, 32). The first tuple has i1 == j1 == 0, and remaining tuples have i/ equal to the i2 from the
preceding tuple, and, likewise, j/ equal to the previous j2.

The fag values are strings, with these meanings:

Value Meaning
'replace' a[il:i2] should be replaced by b[j1:32].
'delete’ al[i1:i2] should be deleted. Note that 51 == 72 in this case.
'insert' b[j1:52] should be inserted at a[i1:11]. Note that i1 == 12 in this case.
'equal' a[il:i2] == b[j1:j2] (the sub-sequences are equal).
For example:
>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, b)

>>> for tag, i1, i2, j1, j2 in s.get_opcodes|() :
print (' al : 1 ——> bl :] -——> ' format (

ce tag, 11, i2, j1, Jj2, alil:i2], b[jl:321))
delete af[0:1] ——> b[0:0] Igl! ==> 07U

equal afl:3] ——> b[0:2] 'ab' ——> 'ab'

replace al3:4] ——> b[2:3] 'x' ——> 'y!

equal ald4:6] ——> b[3:5] 'ed! ——> 'cd'

insert a[6:6] ——> b[5:6] vy ——> 'f!

get_grouped_opcodes (n=3)

Return a generator of groups with up to n lines of context.

Starting with the groups returned by get_opcodes (), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes ().

ratio ()

Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is
2.0*M/ T. Note that this is 1 . 0 if the sequences are identical, and 0. 0 if they have nothing in common.

This is expensive to compute if get_matching blocks () or get_opcodes () hasn’t already been
called, in which case you may want to try quick_ratio() or real_quick_ratio () first to get an
upper bound.

© Note

Caution: The result of a ratio () call may depend on the order of the arguments. For instance:

>>> SequenceMatcher (None, 'tide', 'diet').ratio()
0.25
>>> SequenceMatcher (None, 'diet', 'tide').ratio()
0.5

quick_ratio ()

Return an upper bound on ratio () relatively quickly.

6.3. difflib — Helpers for computing deltas 159

The Python Library Reference, Release 3.13.1

real_quick_ratio ()

Return an upper bound on ratio () very quickly.

The three methods that return the ratio of matching to total characters can give different results due to differing levels
of approximation, although quick_ratio() and real quick_ratio () are always at least as large as ratio ():

N

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio()

0.75

>>> s.quick_ratio()

0.75

>>> s.real quick_ratio()

1.0

6.3.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk”:

>>> s = SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio () returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio () value
over 0.6 means the sequences are close matches:

>>> print (round(s.ratio(), 3))
0.866

If you’re only interested in where the sequences match, get_matching blocks () is handy:

>>> for block in s.get_matching blocks():

.. print ("al] and b[] match for elements" % block)
al[0] and b[0] match for 8 elements
al[8] and b[1l7] match for 21 elements

[29] and b[38] match for 0 elements

(o))

J

Note that the last tuple returned by get_matching blocks () is always adummy, (len(a), len(b), 0),and
this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes ():

>>> for opcode in s.get_opcodes () :
.. print (" al g 1 bl g 1" % opcode)
equal af[0:8] b[0:8]

insert af[8:8] b[8:17]

equal af8:29] b[17:38]

> See also

e The get close matches () function in this module which shows how simple code building on
SequenceMatcher can be used to do useful work.

» Simple version control recipe for a small application built with SequenceMatcher.

160 Chapter 6. Text Processing Services

https://code.activestate.com/recipes/576729-simple-version-control/

The Python Library Reference, Release 3.13.1

6.3.3 Differ Objects

Note that Di rrer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Re-
stricting synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a
longer diff.

The Di ffer class has this constructor:

class difflib.Differ (linejunk=None, charjunk=None)
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

These junk-filtering functions speed up matching to find differences and do not cause any differing lines or
characters to be ignored. Read the description of the find longest_match () method’s isjunk parameter
for an explanation.

Differ objects are used (deltas generated) via a single method:

compare (a, b)

Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from the readlines () method of file-like objects. The delta generated also consists of
newline-terminated strings, ready to be printed as-is via the writelines () method of a file-like object.

6.3.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from the readlines () method of file-like objects):

>>> textl = ''' 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
5 """ .splitlines (keepends=True)
>>> len (textl)
4
>>> text1[0] [-1]
[\nv
>>> text2 = ''' 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.
""" .splitlines (keepends=True)

Next we instantiate a Differ object:

[>>> d = Differ() }

Note that when instantiating a Di £ fer object we may pass functions to filter out line and character “junk.” See the
Differ () constructor for details.

Finally, we compare the two:

[>>> result = list (d.compare (textl, text2)) }

result is a list of strings, so let’s pretty-print it:

6.3. difflib — Helpers for computing deltas 161

The Python Library Reference, Release 3.13.1

>>> from pprint import pprint
>>> pprint (result)
Lo 1. Beautiful is better than ugly.\n',

2. Explicit is better than implicit.\n',
V= 3. Simple is better than complex.\n',
3

'+ Simple is better than complex.\n',

' ++\n',

V= 4. Complex is better than complicated.\n',
l? A e /\\nl’

'+ 4. Complicated is better than complex.\n',
' ++++ “\n',

LS 5. Flat is better than nested.\n']

As a single multi-line string it looks like this:

>>> import sys
>>> sys.stdout.writelines (result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.
= 3. Simple is better than complex.

3. Simple is better than complex.
? ++
= 4. Complex is better than complicated.
B N A
+ 4. Complicated is better than complex.
? ++++ ~
+ 5. Flat is better than nested.

6.3.5 A command-line interface to difflib

This example shows how to use difflib to create a di £ £-like utility.

""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

mn

import sys, os, difflib, argparse
from datetime import datetime, timezone

def file _mtime (path):
t = datetime.fromtimestamp (os.stat (path) .st_mtime,
timezone.utc)
return t.astimezone () .isoformat ()

def main() :

parser = argparse.ArgumentParser ()
parser.add_argument ('-c', action='store_ true', default=False,
help='Produce a context format diff (default) ')
parser.add_argument ('-u', action='store_ true', default=False,
help='Produce a unified format diff')
parser.add_argument ('-m', action='store true', default=False,
(continues on next page)

162 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

(continued from previous page)
help='Produce HTML side by side diff '
'(can use —-c¢c and -1 in conjunction) ')

parser.add_argument ('-n', action='store_true', default=False,

help='Produce a ndiff format diff')
parser.add_argument ('-1', '--lines', type=int, default=3,

help='Set number of context lines (default 3)"')
parser.add_argument ('fromfile')
parser.add_argument ('tofile')
options = parser.parse_args()

n = options.lines
fromfile = options.fromfile
tofile = options.tofile

fromdate = file_mtime (fromfile)
todate = file_mtime (tofile)
with open (fromfile) as ff:
fromlines = ff.readlines|()
with open(tofile) as tf:
tolines = tf.readlines|()

if options.u:
diff = difflib.unified_diff (fromlines, tolines, fromfile, tofile, fromdate,
— todate, n=n)
elif options.n:
diff = difflib.ndiff (fromlines, tolines)
elif options.m:
diff = difflib.HtmlDiff () .make_file (fromlines,tolines, fromfile,tofile,
—context=options.c,numlines=n)
else:
diff = difflib.context_diff (fromlines, tolines, fromfile, tofile, fromdate,
— todate, n=n)

sys.stdout.writelines (diff)

v

if name == main__ ':

main ()

6.3.6 ndiff example

This example shows how to use di ff1ib.ndiff ().

"""ndiff [-q] filel file2
or
ndiff (-rl | -r2) < ndiff output > filel_ or file2

Print a human-friendly file difference report to stdout. Both inter-
and intra-line differences are noted. In the second form, recreate filel

(-rl) or file2 (-r2) on stdout, from an ndiff report on stdin.

In the first form, if -gq ("quiet") is not specified, the first two lines
of output are

—-: filel
+: fileZ

(continues on next page)

6.3. difflib — Helpers for computing deltas 163

The Python Library Reference, Release 3.13.1

(continued from previous page)

Each remaining line begins with a two-letter code:

W= W line unique to filel

"y o line unique to fileZ2

"o line common to both files

e line not present in either input file
Lines beginning with "? " attempt to guide the eye to intraline
differences, and were not present in either input file. These lines can be

confusing if the source files contain tab characters.

The first file can be recovered by retaining only lines that begin with
" " or "- ", and deleting those 2-character prefixes; use ndiff with -rl.

The second file can be recovered similarly, but by retaining only " " and
"+ " lines; use ndiff with -r2; or, on Unix, the second file can be

recovered by piping the output through

sed -n "/~[+] /s/"..//p"

mn

_ version_ =1, 7, 0

import difflib, sys

def fail (msg) :

out = sys.stderr.write
out (msg + "\n\n")

out (_ doc_)

return 0

open a file & return the file object; gripe and return 0 if it
couldn't be opened
def fopen (fname) :
try:
return open (fname)
except IOError as detail:
return fail ("couldn't open " + fname + ": " + str(detail))

open two files & spray the diff to stdout; return false iff a problem
def fcompare (flname, f2name):

f1 = fopen (flname)
f2 = fopen (f2name)
if not f1 or not f2:
return 0
a = fl.readlines(); fl.close()

o
Il

f2.readlines(); f2.close()
for line in difflib.ndiff(a, b):
print (line, end=' ")

return 1

crack args (sys.argv([l:] is normal) & compare;
return false iff a problem

(continues on next page)

164 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

def main(args) :
import getopt
try:

n

opts, args = getopt.getopt (args, "qgr:")
except getopt.error as detail:
return fail (str(detail))
noisy = 1
gseen = rseen = 0
for opt, val in opts:

if opt == "-g":
gseen = 1
noisy = 0

elif opt == "-r":
rseen = 1

whichfile = val
if gseen and rseen:
return fail ("can't specify both —-g and -r")
if rseen:
if args:
return fail("no args allowed with -r option")
if whichfile in ("1", "2"):
restore (whichfile)
return 1
return fail("-r value must be 1 or 2")
if len(args) != 2:
return fail ("need 2 filename args")
flname, f2name = args
if noisy:
print ('—-:"', flname)
print ('+:', f2name)
return fcompare (flname, f2name)

read ndiff output from stdin, and print filel (which=='1"') or
file2 (which=='2"') to stdout

def restore (which):
restored = difflib.restore(sys.stdin.readlines (), which)
sys.stdout.writelines (restored)

if name_ == '_ main_ ':

main(sys.argv[l:])

6.4 textwrap — Text wrapping and filling

Source code: Lib/textwrap.py

The textwrap module provides some convenience functions, as well as Textwrapper, the class that does all the
work. If you're just wrapping or filling one or two text strings, the convenience functions should be good enough;
otherwise, you should use an instance of Textlirapper for efficiency.

textwrap.wrap (text, width=70, *, initial_indent=", subsequent_indent=", expand_tabs=True,
replace_whitespace=True, fix_sentence_endings=False, break_long_words=True,
drop_whitespace=True, break_on_hyphens=True, tabsize=8, max_lines=None, placeholder="

[..])

Wraps the single paragraph in fext (a string) so every line is at most width characters long. Returns a list of

6.4. textwrap — Text wrapping and filling 165

https://github.com/python/cpython/tree/3.13/Lib/textwrap.py

The Python Library Reference, Release 3.13.1

output lines, without final newlines.
Optional keyword arguments correspond to the instance attributes of Textwrapper, documented below.

See the Textrapper.wrap () method for additional details on how wrap () behaves.

textwrap.£ill (text, width=70, *, initial_indent=", subsequent_indent=", expand_tabs=True,

replace_whitespace=True, fix_sentence_endings=False, break_long_words=True,
drop_whitespace=True, break_on_hyphens=True, tabsize=8, max_lines=None, placeholder="
[..])
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph. £i11 () is
shorthand for

["\n".join(wrap(text, L.L))

In particular, 7111 () accepts exactly the same keyword arguments as wrap ().

textwrap.shorten (text, width, *, fix_sentence_endings=False, break_long_words=True,

break_on_hyphens=True, placeholder="]...]’)
Collapse and truncate the given fext to fit in the given width.
First the whitespace in text is collapsed (all whitespace is replaced by single spaces). If the result fits in the

width, it is returned. Otherwise, enough words are dropped from the end so that the remaining words plus the
placeholder fit within width:

>>> textwrap.shorten("Hello world!", width=12)

'Hello world!'

>>> textwrap.shorten("Hello world!", width=11)

'Hello [...]'

>>> textwrap.shorten("Hello world", width=10, placeholder="...")
'Hello...'

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below. Note
that the whitespace is collapsed before the text is passed to the Textwrapper £i11 () function, so changing
the value of tabsize, expand tabs, drop_whitespace,and replace_whitespace will have no effect.

Added in version 3.4.

textwrap.dedent (fext)

Remove any common leading whitespace from every line in zext.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello" are considered to have no common leading whitespace.

Lines containing only whitespace are ignored in the input and normalized to a single newline character in the
output.

For example:

def test():
end first line with \ to avoid the empty line!
s = lvv\
hello
world
print (repr(s)) # prints ' hello\n world\n U
print (repr (dedent (s))) # prints 'hello\n world\n'

166

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

textwrap.indent (text, prefix, predicate=None)

Add prefix to the beginning of selected lines in fexz.
Lines are separated by calling text.splitlines (True).
By default, prefix is added to all lines that do not consist solely of whitespace (including any line endings).

For example:

>>> s = 'hello\n\n \nworld'
>>> indent (s, ' ")
' hello\n\n \n world'

The optional predicate argument can be used to control which lines are indented. For example, it is easy to add
prefix to even empty and whitespace-only lines:

>>> print (indent (s, '+ ', lambda line: True))
+ hello

+
+
+ world

Added in version 3.3.

wrap (), £i11 () and shorten () work by creating a TextWrapper instance and calling a single method on it.
That instance is not reused, so for applications that process many text strings using wrap () and/or £i11 (), it may
be more efficient to create your own Textlirapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long words
be broken if necessary, unless TextiWrapper.break_long words is set to false.
class textwrap.TextWrapper (**kwargs)

The Textwrapper constructor accepts a number of optional keyword arguments. Each keyword argument
corresponds to an instance attribute, so for example

[wrapper = TextWrapper (initial indent="* ")

is the same as

wrapper = TextWrapper ()
wrapper.initial_ indent = "* "

You can reuse the same Textlirapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The Textwrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer than width, TextWrapper guarantees that no output line will be longer than width
characters.

expand_tabs
(default: True) If true, then all tab characters in fext will be expanded to spaces using the expandtabs ()
method of fext.

tabsize
(default: 8) If expand tabs is true, then all tab characters in fext will be expanded to zero or more
spaces, depending on the current column and the given tab size.

Added in version 3.3.

6.4. textwrap — Text wrapping and filling 167

The Python Library Reference, Release 3.13.1

replace_whitespace

(default: True) If true, after tab expansion but before wrapping, the wrap () method will replace each
whitespace character with a single space. The whitespace characters replaced are as follows: tab, newline,
vertical tab, formfeed, and carriage return (' \t\n\v\f\r").

© Note

If expand tabsisfalse and replace whitespace is true, each tab character will be replaced by
a single space, which is not the same as tab expansion.

O Note

If replace_whitespace is false, newlines may appear in the middle of a line and cause strange
output. For this reason, text should be split into paragraphs (using str.splitlines () or similar)
which are wrapped separately.

drop_whitespace
(default: True) If true, whitespace at the beginning and ending of every line (after wrapping but before

indenting) is dropped. Whitespace at the beginning of the paragraph, however, is not dropped if non-
whitespace follows it. If whitespace being dropped takes up an entire line, the whole line is dropped.

initial_indent
(default: ' ') String that will be prepended to the first line of wrapped output. Counts towards the length
of the first line. The empty string is not indented.

subsequent_indent
(default: ' ') String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

fix_sentence_endings

(default: False) If true, Textwrapper attempts to detect sentence endings and ensure that sentences
are always separated by exactly two spaces. This is generally desired for text in a monospaced font.
However, the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a
lowercase letter followed by one of '. ', " ! ', or ' 2", possibly followed by one of '™ ' or "' ", followed
by a space. One problem with this algorithm is that it is unable to detect the difference between “Dr.” in

[[...] Dr. Frankenstein's monster [...] }
and “Spot.” in
[[...] See Spot. See Spot run [...]]

fix_sentence_endingsBfﬁbebyddhuk

Since the sentence detection algorithm relies on string.lowercase for the definition of “lowercase
letter”, and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break_long_words

(default: True) If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines may be longer than
width. (Long words will be put on a line by themselves, in order to minimize the amount by which
width is exceeded.)

break_on_hyphens

(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in com-
pound words, as it is customary in English. If false, only whitespaces will be considered as potentially

168 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

good places for line breaks, but you need to set break_long words to false if you want truly insecable
words. Default behaviour in previous versions was to always allow breaking hyphenated words.

max_lines

(default: None) If not None, then the output will contain at most max_lines lines, with placeholder
appearing at the end of the output.

Added in version 3.4.
placeholder
(default: * [...]1") String that will appear at the end of the output text if it has been truncated.

Added in version 3.4.
TextWrapper also provides some public methods, analogous to the module-level convenience functions:

wrap (fext)

Wraps the single paragraph in fext (a string) so every line is at most width characters long. All wrapping
options are taken from instance attributes of the TextWrapper instance. Returns a list of output lines,
without final newlines. If the wrapped output has no content, the returned list is empty.

£il1 (text)

Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph.

6.5 unicodedata — Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties for all
Unicode characters. The data contained in this database is compiled from the UCD version 15.1.0.

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode Character
Database”. It defines the following functions:

unicodedata.lookup (name)

Look up character by name. If a character with the given name is found, return the corresponding character.
If not found, KeyError is raised.

Changed in version 3.3: Support for name aliases' and named sequences’ has been added.

unicodedata.name (chr[, default])

Returns the name assigned to the character chr as a string. If no name is defined, default is returned, or, if not
given, ValueError is raised.

unicodedata.decimal (Chr[, default])

Returns the decimal value assigned to the character chr as integer. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.digit (Chr[, default])
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.numeric (chr[, default])
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.category (chr)

Returns the general category assigned to the character chr as string.

! https://www.unicode.org/Public/15.1.0/ucd/NameAliases. txt
2 https://www.unicode.org/Public/15.1.0/ucd/NamedSequences. txt

6.5. unicodedata — Unicode Database 169

https://www.unicode.org/Public/15.1.0/ucd
https://www.unicode.org/reports/tr44/
https://www.unicode.org/reports/tr44/
https://www.unicode.org/Public/15.1.0/ucd/NameAliases.txt
https://www.unicode.org/Public/15.1.0/ucd/NamedSequences.txt

The Python Library Reference, Release 3.13.1

unicodedata.bidirectional (chr)
Returns the bidirectional class assigned to the character chr as string. If no such value is defined, an empty
string is returned.

unicodedata.combining (chr)
Returns the canonical combining class assigned to the character chr as integer. Returns 0 if no combining class
is defined.

unicodedata.east_asian_width (chr)

Returns the east asian width assigned to the character chr as string.

unicodedata.mirrored (chr)
Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has been
identified as a “mirrored” character in bidirectional text, 0 otherwise.

unicodedata.decomposition (chr)
Returns the character decomposition mapping assigned to the character chr as string. An empty string is
returned in case no such mapping is defined.

unicodedata.normalize (form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’, ‘NFD’,
and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of
canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in vari-
ous way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be
expressed as the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form
C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility char-
acters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition,
followed by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining char-
acters and the other doesn’t, they may not compare equal.

unicodedata.is_normalized (form, unistr)

Return whether the Unicode string unistr is in the normal form form. Valid values for form are ‘NFC’, ‘NFKC’,
‘NFD’, and ‘NFKD’.

Added in version 3.8.
In addition, the module exposes the following constant:

unicodedata.unidata_version

The version of the Unicode database used in this module.

unicodedata.ued_3_2_0

This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA).

Examples:

>>> import unicodedata
>>> unicodedata.lookup ('LEFT CURLY BRACKET')
(continues on next page)

170 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

e
>>> unicodedata.name ('/")
'SOLIDUS'
>>> unicodedata.decimal ('9")
9
>>> unicodedata.decimal ('a'")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: not a decimal

>>> unicodedata.category ('A") # 'L'etter, 'u'ppercase

lLul

>>> unicodedata.bidirectional ('\u0660') # 'A'rabic, 'N'umber
IANI

6.6 stringprep — Internet String Preparation

Source code: Lib/stringprep.py

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications for
“equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it should
be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only identifications
consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC
defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of the st ringprep procedure are part of the profile. One example of a st ringprep profile is
nameprep, Which is used for internationalized domain names.

The module st ringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself was
generated using the mkstringprep. py utility.

As aresult, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC: sets
and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns True if the
parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the associated
value. Below is a list of all functions available in the module.

stringprep.in_table_al (code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table_bl (code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

stringprep.map_table_b2 (code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_table_b3 (code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normalization).

stringprep.in_table_cl1 (code)
Determine whether code is in tableC.1.1 (ASCII space characters).

stringprep.in_table_c12 (code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table_cl1l_cl2 (code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

6.6. stringprep — Internet String Preparation 171

https://github.com/python/cpython/tree/3.13/Lib/stringprep.py
https://datatracker.ietf.org/doc/html/rfc3454.html
https://datatracker.ietf.org/doc/html/rfc3454.html

The Python Library Reference, Release 3.13.1

stringprep.in_table_c21 (code)

Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table_c22 (code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

stringprep.in_table_c21_c22 (code)

Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

stringprep.in_table_c3 (code)

Determine whether code is in tableC.3 (Private use).

stringprep.in_table_c4 (code)

Determine whether code is in tableC.4 (Non-character code points).

stringprep.in_table_c5 (code)

Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table_c6 (code)

Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table_c7 (code)

Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table_c8 (code)

Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in_table_c9 (code)

Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table_d1 (code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in_table_d2 (code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.7 readline — GNU readline interface

The readline module defines a number of functions to facilitate completion and reading/writing of history files
from the Python interpreter. This module can be used directly, or via the r1completer module, which supports
completion of Python identifiers at the interactive prompt. Settings made using this module affect the behaviour of
both the interpreter’s interactive prompt and the prompts offered by the built-in i nput () function.

Readline keybindings may be configured via an initialization file, typically . inputrc in your home directory. See
Readline Init File in the GNU Readline manual for information about the format and allowable constructs of that file,
and the capabilities of the Readline library in general.

Availability: not Android, not i0S, not WASI.

This module is not supported on mobile platforms or WebAssembly platforms.

© Note

The underlying Readline library API may be implemented by the editline (1ibedit) library instead of GNU
readline. On macOS the readline module detects which library is being used at run time.

The configuration file for editline is different from that of GNU readline. If you programmatically load
configuration strings you can use backend to determine which library is being used.

172 Chapter 6. Text Processing Services

https://tiswww.cwru.edu/php/chet/readline/rluserman.html#Readline-Init-File

The Python Library Reference, Release 3.13.1

If you use editline/libedit readline emulation on macOS, the initialization file located in your home direc-
tory is named .editrc. For example, the following content in ~/.editrc will turn ON vi keybindings and
TAB completion:

python:bind -v
python:bind "I rl_complete

Also note that different libraries may use different history file formats. When switching the underlying library,
existing history files may become unusable.

readline.backend

The name of the underlying Readline library being used, either "readline" or "editline".

Added in version 3.13.

6.7.1 Init file

The following functions relate to the init file and user configuration:

readline.parse_and_bind (string)
Execute the init line provided in the string argument. This calls r1_parse_and_bind () in the underlying
library.

readline.read_init_f£file ([ﬁlename])

Execute a readline initialization file. The default filename is the last filename used. This calls
rl_read_init_file () in the underlying library.

6.7.2 Line buffer

The following functions operate on the line buffer:

readline.get_line_buffer ()

Return the current contents of the line buffer (r1_line_buffer in the underlying library).

readline.insert_text (string)
Insert text into the line buffer at the cursor position. This calls r1_insert_text () in the underlying library,
but ignores the return value.

readline.redisplay ()

Change what’s displayed on the screen to reflect the current contents of the line buffer. This calls
rl_redisplay () in the underlying library.

6.7.3 History file

The following functions operate on a history file:

readline.read_history file([ﬁlename])
Load a readline history file, and append it to the history list. The default filename is ~/ .history. This calls
read_history () in the underlying library.

readline.write_history file([ﬁlename])
Save the history list to a readline history file, overwriting any existing file. The default filename is ~/ .history.
This calls write_history () in the underlying library.

readline.append_history_file (nelements[, filename])

Append the last nelements items of history to a file. The default filename is ~/.history. The file must
already exist. This calls append_history () in the underlying library. This function only exists if Python
was compiled for a version of the library that supports it.

Added in version 3.5.

6.7. readline — GNU readline interface 173

The Python Library Reference, Release 3.13.1

readline.get_history_length()
readline.set_history_length (length)

Set or return the desired number of lines to save in the history file. The write history file () function
uses this value to truncate the history file, by calling history_truncate_file () in the underlying library.
Negative values imply unlimited history file size.

6.7.4 History list
The following functions operate on a global history list:

readline.clear_history ()
Clear the current history. This calls clear_history () in the underlying library. The Python function only
exists if Python was compiled for a version of the library that supports it.
readline.get_current_history length ()
Return the number of items currently in the history. (This is different from get_history_length (), which
returns the maximum number of lines that will be written to a history file.)
readline.get_history_ item (index)
Return the current contents of history item at index. The item index is one-based. This calls history_get ()
in the underlying library.
readline.remove_history_item (pos)
Remove history item specified by its position from the history. The position is zero-based. This calls
remove_history () in the underlying library.
readline.replace_history_item (pos, line)
Replace history item specified by its position with line. The position is zero-based. This calls
replace_history_entry () in the underlying library.
readline.add_history (line)
Append line to the history buffer, as if it was the last line typed. This calls add_history () in the underlying
library.
readline.set_auto_history (enabled)
Enable or disable automatic calls to add_history () when reading input via readline. The enabled argument
should be a Boolean value that when true, enables auto history, and that when false, disables auto history.

Added in version 3.6.

CPython implementation detail: Auto history is enabled by default, and changes to this do not persist across
multiple sessions.

6.7.5 Startup hooks

readline.set_startup_hook ([function])

Set or remove the function invoked by the r1_startup_hook callback of the underlying library. If function
is specified, it will be used as the new hook function; if omitted or None, any function already installed is
removed. The hook is called with no arguments just before readline prints the first prompt.

readline.set_pre_input_hook ([function])

Set or remove the function invoked by the r1_pre_input_hook callback of the underlying library. If function
is specified, it will be used as the new hook function; if omitted or None, any function already installed is
removed. The hook is called with no arguments after the first prompt has been printed and just before readline
starts reading input characters. This function only exists if Python was compiled for a version of the library
that supports it.

174 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

6.7.6 Completion

The following functions relate to implementing a custom word completion function. This is typically operated by the
Tab key, and can suggest and automatically complete a word being typed. By default, Readline is set up to be used by
rlcompleter to complete Python identifiers for the interactive interpreter. If the readline module is to be used
with a custom completer, a different set of word delimiters should be set.

readline.set_completer([jhncﬁon])
Set or remove the completer function. If function is specified, it will be used as the new completer function;
if omitted or None, any completer function already installed is removed. The completer function is called as
function (text, state), for state in 0, 1, 2, ..., until it returns a non-string value. It should return the
next possible completion starting with fext.

The installed completer function 1is invoked by the entry_func callback passed to
rl_completion_matches () in the underlying library. The text string comes from the first parame-
ter to the r1_attempted_completion_function callback of the underlying library.

readline.get_completer ()

Get the completer function, or None if no completer function has been set.

readline.get_completion_type ()

Get the type of completion being attempted. This returns the r1_completion_type variable in the under-
lying library as an integer.

readline.get_begidx ()

readline.get_endidx ()
Get the beginning or ending index of the completion scope. These indexes are the start and end arguments
passed to the r1_attempted_completion_function callback of the underlying library. The values may
be different in the same input editing scenario based on the underlying C readline implementation. Ex: libedit
is known to behave differently than libreadline.

readline.set_completer_delims (string)
readline.get_completer_delims ()
Set or get the word delimiters for completion. These determine the start of the word to be considered for

completion (the completion scope). These functions access the r1_completer word break_characters
variable in the underlying library.

readline.set_completion_display_matches_hook ([function])

Set or remove the completion display function. If function is specified, it will be used as the new completion
display function; if omitted or None, any completion display function already installed is removed. This sets or
clears the r1_completion_display_matches_hook callback in the underlying library. The completion
display function is called as function (substitution, [matches], longest_match_length) once
each time matches need to be displayed.

6.7.7 Example

The following example demonstrates how to use the readline module’s history reading and writing functions to
automatically load and save a history file named .python_history from the user’s home directory. The code
below would normally be executed automatically during interactive sessions from the user’s PYTHONSTARTUP file.

import atexit
import os
import readline

histfile = os.path.join(os.path.expanduser ("~"), ".python_history")
try:
readline.read_history_file(histfile)
default history len is -1 (infinite), which may grow unruly
readline.set_history_length(1000)
except FileNotFoundError:
(continues on next page)

6.7. readline — GNU readline interface 175

The Python Library Reference, Release 3.13.1

(continued from previous page)

pass

atexit.register (readline.write_history_ file, histfile)

This code is actually automatically run when Python is run in interactive mode (see Readline configuration).

The following example achieves the same goal but supports concurrent interactive sessions, by only appending the
new history.

import atexit

import os

import readline

histfile = os.path.join(os.path.expanduser ("~"), ".python history")

try:

readline.read_history_file(histfile)

h_len = readline.get_current_history_length ()
except FileNotFoundError:

open (histfile, 'wb').close()

h_len = 0

def save (prev_h_len, histfile):
new_h_len = readline.get_current_history_length ()
readline.set_history_length (1000)
readline.append_history_file(new_h_len - prev_h_len, histfile)
atexit.register(save, h_len, histfile)

The following example extends the code. InteractiveConsole class to support history save/restore.

import atexit
import code
import os
import readline

class HistoryConsole (code.InteractiveConsole) :

def _ init_ (self, locals=None, filename="<console>",
histfile=os.path.expanduser ("~/.console-history")):
code.InteractiveConsole.__init__ (self, locals, filename)

self.init_history(histfile)

def init_history(self, histfile):
readline.parse_and_bind("tab: complete")
if hasattr(readline, "read history_file"):
try:
readline.read_history_file(histfile)
except FileNotFoundError:
pass
atexit.register(self.save_history, histfile)

def save_history(self, histfile):
readline.set_history_length(1000)
readline.write_history_file (histfile)

176 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

6.8 rlcompleter — Completion function for GNU readline

Source code: Lib/rlcompleter.py

The rlcompleter module defines a completion function suitable to be passed to set_completer () in the
readline module.

When this module is imported on a Unix platform with the readline module available, an instance of the
Completer class is automatically created and its complete () method is set as the readline completer. The method
provides completion of valid Python identifiers and keywords.

Example:

>>> import rlcompleter

>>> import readline

>>> readline.parse_and_bind("tab: complete™)
>>> readline. <TAB PRESSED>

readline._ _doc_ readline.get_line_buffer(readline.read_init_file(
readline._ file readline.insert_text (readline.set_completer (
readline._ _name_ readline.parse_and_bind(

>>> readline.

The rlcompleter module is designed for use with Python’s interactive mode. Unless Python is run with the -3
option, the module is automatically imported and configured (see Readline configuration).

On platforms without readline, the Completer class defined by this module can still be used for custom purposes.

class rlcompleter.Completer

Completer objects have the following method:

complete (fext, state)

Return the next possible completion for fext.

When called by the readline module, this method is called successively with state == 0, 1, 2,
. . . until the method returns None.

If called for fext that doesn’t include a period character (' . '), it will complete from names currently
definedin __main__, builtins and keywords (as defined by the keyword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (functions will
not be evaluated, but it can generate calls to __getattr__ ()) up to the last part, and find matches for
the rest via the dir () function. Any exception raised during the evaluation of the expression is caught,
silenced and None is returned.

6.8. rlcompleter — Completion function for GNU readline 177

https://github.com/python/cpython/tree/3.13/Lib/rlcompleter.py

The Python Library Reference, Release 3.13.1

178 Chapter 6. Text Processing Services

CHAPTER
SEVEN

BINARY DATA SERVICES

The modules described in this chapter provide some basic services operations for manipulation of binary data. Other
operations on binary data, specifically in relation to file formats and network protocols, are described in the relevant
sections.

Some libraries described under 7ext Processing Services also work with either ASCII-compatible binary formats (for
example, re) or all binary data (for example, difr1ib).

In addition, see the documentation for Python’s built-in binary data types in Binary Sequence Types — bytes, bytearray,
memoryview.

7.1 struct — Interpret bytes as packed binary data

Source code: Lib/struct.py

This module converts between Python values and C structs represented as Python bytes objects. Compact format
strings describe the intended conversions to/from Python values. The module’s functions and objects can be used for
two largely distinct applications, data exchange with external sources (files or network connections), or data transfer
between the Python application and the C layer.

© Note

When no prefix character is given, native mode is the default. It packs or unpacks data based on the platform
and compiler on which the Python interpreter was built. The result of packing a given C struct includes pad
bytes which maintain proper alignment for the C types involved; similarly, alignment is taken into account when
unpacking. In contrast, when communicating data between external sources, the programmer is responsible for
defining byte ordering and padding between elements. See Byte Order, Size, and Alignment for details.

Several st ruct functions (and methods of st ruct) take a buffer argument. This refers to objects that implement the
bufferobjects and provide either a readable or read-writable buffer. The most common types used for that purpose are
bytesand bytearray, but many other types that can be viewed as an array of bytes implement the buffer protocol,
so that they can be read/filled without additional copying from a bytes object.

7.1.1 Functions and Exceptions
The module defines the following exception and functions:

exception struct.error

Exception raised on various occasions; argument is a string describing what is wrong.

struct.pack (format, vi, v2,...)

Return a bytes object containing the values vI, v2, ... packed according to the format string format. The
arguments must match the values required by the format exactly.

179

https://github.com/python/cpython/tree/3.13/Lib/struct.py

The Python Library Reference, Release 3.13.1

struct.pack_into (format, buffer, offset, vi, v2, ...)
Pack the values v, v2, ... according to the format string format and write the packed bytes into the writable
buffer buffer starting at position offser. Note that offset is a required argument.

struct .unpack (format, buffer)

Unpack from the buffer buffer (presumably packed by pack (format, ...))according to the format string
format. The result is a tuple even if it contains exactly one item. The buffer’s size in bytes must match the size
required by the format, as reflected by calcsize ().

struct .unpack_£rom (format, /, buffer, offset=0)

Unpack from buffer starting at position offset, according to the format string format. The result is a tuple even
if it contains exactly one item. The buffer’s size in bytes, starting at position offset, must be at least the size
required by the format, as reflected by calcsize ().

struct.iter_unpack (format, buffer)

Iteratively unpack from the buffer buffer according to the format string format. This function returns an iterator
which will read equally sized chunks from the buffer until all its contents have been consumed. The buffer’s
size in bytes must be a multiple of the size required by the format, as reflected by caicsize ().

Each iteration yields a tuple as specified by the format string.
Added in version 3.4.

struct.calcsize (format)

Return the size of the struct (and hence of the bytes object produced by pack (format, ...))corresponding
to the format string format.

7.1.2 Format Strings

Format strings describe the data layout when packing and unpacking data. They are built up from format characters,
which specify the type of data being packed/unpacked. In addition, special characters control the byte order, size and
alignment. Each format string consists of an optional prefix character which describes the overall properties of the
data and one or more format characters which describe the actual data values and padding.

Byte Order, Size, and Alighment

By default, C types are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler). This behavior is chosen so that the bytes of
a packed struct correspond exactly to the memory layout of the corresponding C struct. Whether to use native byte
ordering and padding or standard formats depends on the application.

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character Byte order Size Alignment
Q@ native native native

= native standard none

< little-endian standard none

> big-endian standard none

}

network (= big-endian) standard none

If the first character is not one of these, '@ ' is assumed.

© Note

The number 1023 (0x3ff in hexadecimal) has the following byte representations:

e 03 £f in big-endian (>)

180 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.13.1

e £f 03 in little-endian (<)

Python example:

>>> import struct

>>> struct.pack('>h', 1023)
b'\x03\xff'

>>> struct.pack('<h', 1023)
b'\xff\x03"

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86, AMD64 (x86-
64), and Apple M1 are little-endian; IBM z and many legacy architectures are big-endian. Use sys.byteorder to
check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

Note the difference between '@' and '=': both use native byte order, but the size and alignment of the latter is
standardized.

The form ' ! ' represents the network byte order which is always big-endian as defined in IETF RFC 1700.
There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of '<' or '>"'.
Notes:

(1) Padding is only automatically added between successive structure members. No padding is added at the be-
ginning or the end of the encoded struct.

5 6

(2) No padding is added when using non-native size and alignment, e.g. with ‘<’, °>’, =", and ‘!’.

(3) To align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types. The ‘Standard size’ column refers to the size of the packed value in bytes when using standard size; that
is, when the format string starts with one of '<', '>', ' I'' or '='. When using native size, the size of the packed
value is platform-dependent.

7.1. struct — Interpret bytes as packed binary data 181

https://datatracker.ietf.org/doc/html/rfc1700

The Python Library Reference, Release 3.13.1

Format C Type Python type Standard size Notes
x pad byte no value @)
@ char bytes of length 1 1

b signed char integer 1 (D), 2)
B unsigned char integer 1 2)
? _Bool bool 1 (D)
h short integer 2 2)
H unsigned short integer 2 2)
i int integer 4 2)
I unsigned int integer 4 2)
1 long integer 4 2)
jin unsigned long integer 4 2)
q long long integer 8 2)
Q unsigned long long integer 8 2)
n ssize_t integer 3)
N size_t integer 3)
e (6) float 2 @
£ float float 4 %)
d double float 8 4)
s char[] bytes ©))
P char[] bytes (8)
P void* integer ®))

Changed in version 3.3: Added support for the 'n' and 'N' formats.

Changed in version 3.6: Added support for the 'e' format.

Notes:

(D

2)

3)

“4)

&)

(6)

(7
®)

The ' 2' conversion code corresponds to the _Bool type defined by C standards since C99. In standard mode,
it is represented by one byte.

When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer has a
__index__ () method then that method is called to convert the argument to an integer before packing.

Changed in version 3.2: Added use of the __index__ () method for non-integers.

The 'n' and 'N' conversion codes are only available for the native size (selected as the default or with the
'@ byte order character). For the standard size, you can use whichever of the other integer formats fits your
application.

Forthe 'f£', 'd' and 'e' conversion codes, the packed representation uses the IEEE 754 binary32, binary64
or binaryl6 format (for '£', 'd' or 'e' respectively), regardless of the floating-point format used by the
platform.

The 'p' format character is only available for the native byte ordering (selected as the default or with the '@
byte order character). The byte order character '=" chooses to use little- or big-endian ordering based on the
host system. The struct module does not interpret this as native ordering, so the 'p' format is not available.

The IEEE 754 binary16 “half precision” type was introduced in the 2008 revision of the IEEE 754 standard. It
has a sign bit, a 5-bit exponent and 11-bit precision (with 10 bits explicitly stored), and can represent numbers
between approximately 6.1e-05 and 6.5e+04 at full precision. This type is not widely supported by C
compilers: on a typical machine, an unsigned short can be used for storage, but not for math operations. See
the Wikipedia page on the half-precision floating-point format for more information.

When packing, 'x' inserts one NUL byte.

The 'p' format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed
number of bytes, given by the count. The first byte stored is the length of the string, or 255, whichever is
smaller. The bytes of the string follow. If the string passed in to pack () is too long (longer than the count
minus 1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1, it

182

Chapter 7. Binary Data Services

https://en.wikipedia.org/wiki/IEEE_754-2008_revision
https://en.wikipedia.org/wiki/Half-precision_floating-point_format

The Python Library Reference, Release 3.13.1

is padded with null bytes so that exactly count bytes in all are used. Note that for unpack (), the 'p' format
character consumes count bytes, but that the string returned can never contain more than 255 bytes.

(9) For the 's' format character, the count is interpreted as the length of the bytes, not a repeat count like for the
other format characters; for example, ' 10s' means a single 10-byte string mapping to or from a single Python
byte string, while ' 10c' means 10 separate one byte character elements (e.g., cccccccccc) mapping to or
from ten different Python byte objects. (See Examples for a concrete demonstration of the difference.) If a
count is not given, it defaults to 1. For packing, the string is truncated or padded with null bytes as appropriate
to make it fit. For unpacking, the resulting bytes object always has exactly the specified number of bytes. As
a special case, ' 0s' means a single, empty string (while ' 0c' means 0 characters).

A format character may be preceded by an integral repeat count. For example, the format string ' 4h ' means exactly
the same as 'hhhh'.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

When packing a value x using one of the integer formats ('b', 'B', 'h', 'H', "i', 'I', '1', 'L', 'q"', 'Q"), if
x is outside the valid range for that format then st ruct.error is raised.

Changed in version 3.1: Previously, some of the integer formats wrapped out-of-range values and raised
Deprecationliarning instead of struct.error

For the '2' format character, the return value is either True or False. When packing, the truth value of the
argument object is used. Either 0 or 1 in the native or standard bool representation will be packed, and any non-zero
value will be True when unpacking.

Examples
© Note
Native byte order examples (designated by the '@ ' format prefix or lack of any prefix character) may not match

what the reader’s machine produces as that depends on the platform and compiler.

Pack and unpack integers of three different sizes, using big endian ordering:

>>> from struct import *

>>> pack (">bhl", 1, 2, 3)
b'\x01\x00\x02\x00\x00\x00\x03"

>>> unpack ('>bhl', b'\x01\x00\x02\x00\x00\x00\x03")
(1, 2, 3)

>>> calcsize('>bhl")

7

Attempt to pack an integer which is too large for the defined field:

>>> pack (">h", 99999)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

struct.error: 'h' format requires -32768 <= number <= 32767

Demonstrate the difference between 's' and 'c' format characters:

>>> pack ("@ccc", b'l', b'2', b'3")
b'123"

>>> pack ("@3s", b'123")

b'123"

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

7.1. struct — Interpret bytes as packed binary data 183

The Python Library Reference, Release 3.13.1

>>> record = b'raymond \x32\x12\x08\x01\x08"'
>>> name, serialnum, school, gradelevel = unpack('<10sHHb', record)

>>> from collections import namedtuple

>>> Student = namedtuple ('Student', 'name serialnum school gradelevel')
>>> Student._make (unpack ('<10sHHb', record))

Student (name=b'raymond ', serialnum=4658, school=264, gradelevel=8)

J

The ordering of format characters may have an impact on size in native mode since padding is implicit. In standard
mode, the user is responsible for inserting any desired padding. Note in the first pack call below that three NUL
bytes were added after the packed '#' to align the following integer on a four-byte boundary. In this example, the
output was produced on a little endian machine:

>>> pack('@ci', b'#', 0x12131415)
b'#\x00\x00\x00\x15\x14\x13\x12"
>>> pack('@ic', 0x12131415, b'#")
b'\x15\x14\x13\x12#"'

>>> calcsize('@ci')

8

>>> calcsize('@ic")

5

J

The following format '11h01' results in two pad bytes being added at the end, assuming the platform’s longs are
aligned on 4-byte boundaries:

>>> pack('@l1h0O1', 1, 2, 3)
b'\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00"

> See also

Module array
Packed binary storage of homogeneous data.

Module json
JSON encoder and decoder.

Module pickle
Python object serialization.

7.1.3 Applications

Two main applications for the st ruct module exist, data interchange between Python and C code within an ap-
plication or another application compiled using the same compiler (native formats), and data interchange between
applications using agreed upon data layout (standard formats). Generally speaking, the format strings constructed
for these two domains are distinct.

Native Formats

When constructing format strings which mimic native layouts, the compiler and machine architecture determine byte
ordering and padding. In such cases, the @ format character should be used to specify native byte ordering and data
sizes. Internal pad bytes are normally inserted automatically. It is possible that a zero-repeat format code will be
needed at the end of a format string to round up to the correct byte boundary for proper alignment of consecutive
chunks of data.

Consider these two simple examples (on a 64-bit, little-endian machine):

>>> calcsize('@lhl")

24
(continues on next page)

184 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> calcsize('@l1lh")
18

Data is not padded to an 8-byte boundary at the end of the second format string without the use of extra padding. A
zero-repeat format code solves that problem:

>>> calcsize('@11h01")
24

The 'x' format code can be used to specify the repeat, but for native formats it is better to use a zero-repeat format
like '01°".

By default, native byte ordering and alignment is used, but it is better to be explicit and use the '@ ' prefix character.

Standard Formats

When exchanging data beyond your process such as networking or storage, be precise. Specify the exact byte order,
size, and alignment. Do not assume they match the native order of a particular machine. For example, network byte
order is big-endian, while many popular CPUs are little-endian. By defining this explicitly, the user need not care
about the specifics of the platform their code is running on. The first character should typically be < or > (or !).
Padding is the responsibility of the programmer. The zero-repeat format character won't work. Instead, the user
must explicitly add 'x' pad bytes where needed. Revisiting the examples from the previous section, we have:

>>> calcsize ('<gh6xqg')

24

>>> pack ('<gh6xqgq', 1, 2, 3) == pack('@lhl', 1, 2, 3)
True

>>> calcsize('@l1lh")

18

>>> pack('@llh', 1, 2, 3) == pack('<qgh', 1, 2, 3)
True

>>> calcsize ('<qggh6x')

24

>>> calcsize ('@11h01")

24

>>> pack ('@11h01', 1, 2, 3) == pack('<ggheox', 1, 2, 3)
True

J

The above results (executed on a 64-bit machine) aren’t guaranteed to match when executed on different machines.
For example, the examples below were executed on a 32-bit machine:

>>> calcsize ('<qgh6x')

24

>>> calcsize ('@11h01")

12

>>> pack ('@l1h01', 1, 2, 3) == pack('<ggheox', 1, 2, 3)
False

7.1.4 Classes

The st ruct module also defines the following type:

class struct.Struct (format)

Return a new Struct object which writes and reads binary data according to the format string format. Creating
a Struct object once and calling its methods is more efficient than calling module-level functions with the
same format since the format string is only compiled once.

7.1. struct — Interpret bytes as packed binary data 185

The Python Library Reference, Release 3.13.1

© Note

The compiled versions of the most recent format strings passed to the module-level functions are cached,
so programs that use only a few format strings needn’t worry about reusing a single St ruct instance.

Compiled Struct objects support the following methods and attributes:
pack (vI,v2,...)
Identical to the pack () function, using the compiled format. (1en (result) will equal size.)
pack_into (buffer, offset, vi, v2, ...)
Identical to the pack_into () function, using the compiled format.
unpack (buffer)

Identical to the unpack () function, using the compiled format. The buffer’s size in bytes must equal

size.

unpack_£from (buffer, offset=0)

Identical to the unpack_ from () function, using the compiled format. The buffer’s size in bytes, starting
at position offset, must be at least si ze.

iter_unpack (buffer)

Identical to the i ter unpack () function, using the compiled format. The buffer’s size in bytes must be
a multiple of size.

Added in version 3.4.

format

The format string used to construct this Struct object.
Changed in version 3.7: The format string type is now st r instead of bytes.
size

The calculated size of the struct (and hence of the bytes object produced by the pack () method) corre-
sponding to format.

Changed in version 3.13: The repr() of structs has changed. It is now:

>>> Struct ('i'")
Struct ('i'")

7.2 codecs — Codec registry and base classes

Source code: Lib/codecs.py

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry, which manages the codec and error handling lookup process. Most standard codecs
are fext encodings, which encode text to bytes (and decode bytes to text), but there are also codecs provided that
encode text to text, and bytes to bytes. Custom codecs may encode and decode between arbitrary types, but some
module features are restricted to be used specifically with fext encodings or with codecs that encode to bytes.

The module defines the following functions for encoding and decoding with any codec:

codecs .encode (0bj, encoding=utf-8’, errors=’strict’)
Encodes obj using the codec registered for encoding.
Errors may be given to set the desired error handling scheme. The default error handler is ' st rict ' meaning

that encoding errors raise ValueError (or a more codec specific subclass, such as UnicodeEncodeError).
Refer to Codec Base Classes for more information on codec error handling.

186 Chapter 7. Binary Data Services

https://github.com/python/cpython/tree/3.13/Lib/codecs.py

The Python Library Reference, Release 3.13.1

codecs .decode (0bj, encoding="utf-8’, errors='strict’)
Decodes obj using the codec registered for encoding.
Errors may be given to set the desired error handling scheme. The default error handler is 'strict ' meaning

that decoding errors raise ValueError (or a more codec specific subclass, such as UnicodeDecodeError).
Refer to Codec Base Classes for more information on codec error handling.

The full details for each codec can also be looked up directly:

codecs . lookup (encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined below.
Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is

scanned. If no codecrnfo object is found, a LookupError is raised. Otherwise, the CodecInfo object is
stored in the cache and returned to the caller.

class codecs.CodecInfo (encode, decode, streamreader=None, streamwriter=None, incrementalencoder=None,
incrementaldecoder=None, name=None)

Codec details when looking up the codec registry. The constructor arguments are stored in attributes of the
same name:

name

The name of the encoding.

encode

decode
The stateless encoding and decoding functions. These must be functions or methods which have the
same interface as the encode () and decode () methods of Codec instances (see Codec Interface). The
functions or methods are expected to work in a stateless mode.

incrementalencoder

incrementaldecoder

Incremental encoder and decoder classes or factory functions. These have to provide the interface de-
fined by the base classes IncrementalEncoder and IncrementalDecoder, respectively. Incremen-
tal codecs can maintain state.

streamwriter
streamreader

Stream writer and reader classes or factory functions. These have to provide the interface defined by the
base classes St reamliriter and St reamReader, respectively. Stream codecs can maintain state.

To simplify access to the various codec components, the module provides these additional functions which use
lookup () for the codec lookup:

codecs .getencoder (encoding)

Look up the codec for the given encoding and return its encoder function.
Raises a LookupError in case the encoding cannot be found.

codecs.getdecoder (encoding)

Look up the codec for the given encoding and return its decoder function.
Raises a LookupError in case the encoding cannot be found.

codecs.getincrementalencoder (encoding)

Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder.

7.2. codecs — Codec registry and base classes 187

The Python Library Reference, Release 3.13.1

codecs.getincrementaldecoder (encoding)

Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder.

codecs.getreader (encoding)
Look up the codec for the given encoding and return its St reamReader class or factory function.
Raises a LookupError in case the encoding cannot be found.

codecs.getwriter (encoding)

Look up the codec for the given encoding and return its St reamivriter class or factory function.
Raises a L.ookupError in case the encoding cannot be found.
Custom codecs are made available by registering a suitable codec search function:

codecs.register (search_function)

Register a codec search function. Search functions are expected to take one argument, being the encoding
name in all lower case letters with hyphens and spaces converted to underscores, and return a CodecInfo
object. In case a search function cannot find a given encoding, it should return None.

Changed in version 3.9: Hyphens and spaces are converted to underscore.

codecs.unregister (search_function)
Unregister a codec search function and clear the registry’s cache. If the search function is not registered, do
nothing.
Added in version 3.10.

While the builtin open () and the associated i o module are the recommended approach for working with encoded
text files, this module provides additional utility functions and classes that allow the use of a wider range of codecs
when working with binary files:

codecs . open (filename, mode="r’, encoding=None, errors='strict’, buffering=-1)

Open an encoded file using the given mode and return an instance of StreamReaderliriter, providing
transparent encoding/decoding. The default file mode is ' r ', meaning to open the file in read mode.

O Note

If encoding is not None, then the underlying encoded files are always opened in binary mode. No automatic
conversion of '\n"' is done on reading and writing. The mode argument may be any binary mode acceptable
to the built-in open () function; the 'b' is automatically added.

encoding specifies the encoding which is to be used for the file. Any encoding that encodes to and decodes
from bytes is allowed, and the data types supported by the file methods depend on the codec used.

errors may be given to define the error handling. It defaults to 'strict' which causes a ValueError to be
raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open () function. It defaults to -1 which means that the
default buffer size will be used.

Changed in version 3.11: The 'U' mode has been removed.

codecs.EncodedFile (file, data_encoding, file_encoding=None, errors='strict’)
Return a St reamRecoder instance, a wrapped version of file which provides transparent transcoding. The
original file is closed when the wrapped version is closed.

Data written to the wrapped file is decoded according to the given data_encoding and then written to the original
file as bytes using file_encoding. Bytes read from the original file are decoded according to file_encoding, and
the result is encoded using data_encoding.

If file_encoding is not given, it defaults to data_encoding.

188 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.13.1

errors may be given to define the error handling. It defaults to 'strict', which causes valueError to be
raised in case an encoding error occurs.

codecs.iterencode (iferator, encoding, errors=’strict’, **kwargs)
Uses an incremental encoder to iteratively encode the input provided by iterator. This function is a generator.
The errors argument (as well as any other keyword argument) is passed through to the incremental encoder.

This function requires that the codec accept text st r objects to encode. Therefore it does not support bytes-
to-bytes encoders such as base64_codec.

codecs.iterdecode (iferator, encoding, errors='strict’, **kwargs)
Uses an incremental decoder to iteratively decode the input provided by iferator. This function is a generator.
The errors argument (as well as any other keyword argument) is passed through to the incremental decoder.

This function requires that the codec accept byt es objects to decode. Therefore it does not support text-to-text
encoders such as rot_13, although rot_13 may be used equivalently with iterencode ().

The module also provides the following constants which are useful for reading and writing to platform dependent
files:

codecs .BOM

codecs .BOM_BE
codecs .BOM_LE
codecs.BOM_UTF8
codecs.BOM_UTF16
codecs.BOM_UTF16_BE
codecs.BOM_UTF16_LE
codecs.BOM_UTF32
codecs .BOM_UTF32_BE
codecs.BOM_UTF32_LE

These constants define various byte sequences, being Unicode byte order marks (BOMs) for several encodings.
They are used in UTF-16 and UTF-32 data streams to indicate the byte order used, and in UTF-8 as a Unicode
signature. BOM_UTF16 is either BoM_UTF16_BE or BoM_UTF16_LE depending on the platform’s native byte
order, BOM is an alias for BoM _UTF16, BoM LE for BoM _UTF16_LE and BoM_BE for BoM _UTF16_BE. The
others represent the BOM in UTF-8 and UTF-32 encodings.

7.2.1 Codec Base Classes

The codecs module defines a set of base classes which define the interfaces for working with codec objects, and can
also be used as the basis for custom codec implementations.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols. Codec authors also need to define how the codec will handle encoding and decoding
errors.

Error Handlers

To simplify and standardize error handling, codecs may implement different error handling schemes by accepting the
errors string argument:

>>> 'German B, A#'.encode(encoding='ascii', errors='backslashreplace')
b'German \\xdf, \\u266c’
>>> 'German B, A'.encode(encoding='ascii', errors='xmlcharrefreplace')
b'German ß, ♬"'

The following error handlers can be used with all Python Standard Encodings codecs:

7.2. codecs — Codec registry and base classes 189

The Python Library Reference, Release 3.13.1

| Value | Meaning
'strict! Raise UnicodeError (or a subclass), this is the default. Implemented in
strict_errors().
'ignore' Ignore the malformed data and continue without further notice. Implemented in
ignore_errors ().
'replace' Replace with a replacement marker. On encoding, use 2 (ASCII character). On

'backslashreplace' | Replace with backslashed escape sequences. On encoding, use hexadecimal form of

'surrogateescape’ On decoding, replace byte with individual surrogate code ranging from U+DC80 to

decoding, use @ (U+FFFD, the official REPLACEMENT CHARACTER).
Implemented in replace_errors().

Unicode code point with formats \xhh \uxxxx \Uxxxxxxxx. On decoding, use
hexadecimal form of byte value with format \ xhh. Implemented in
backslashreplace_errors().

U+DCFF. This code will then be turned back into the same byte when the
'surrogateescape' error handler is used when encoding the data. (See PEP
383 for more.)

The following error handlers are only applicable to encoding (within rext encodings):

Value Meaning

'xmlcharref Replace with XML/HTML numeric character reference, which is a decimal form of Unicode

code point with format &#num; . Implemented In xmlcharrefreplace errors ().

'namereplac' Replace with \N{. . .} escape sequences, what appears in the braces is the Name property from

Unicode Character Database. Implemented in namereplace_errors ().

In addition, the following error handler is specific to the given codecs:

Value Codecs Meaning

'surrog utf-8, utf-16, utf-32, utf- Allow encoding and decoding surrogate code point (U+D800 - U+DFFF) as

16-be, utf-16-le, utf-32- normal code point. Otherwise these codecs treat the presence of surrogate
be, utf-32-le code point in st r as an error.

Added in version 3.1: The 'surrogateescape' and 'surrogatepass' error handlers.

Changed in version 3.4: The 'surrogatepass' error handler now works with utf-16* and utf-32* codecs.

Added in version 3.5: The 'namereplace’ error handler.

Changed in version 3.5: The 'backslashreplace' error handler now works with decoding and translating.

The set of allowed values can be extended by registering a new named error handler:

codecs.register_error (name, error_handler)

Register the error handling function error_handler under the name name. The error_handler argument will be
called during encoding and decoding in case of an error, when name is specified as the errors parameter.

For encoding, error_handler will be called with a UnicodeEncodeError instance, which contains informa-
tion about the location of the error. The error handler must either raise this or a different exception, or return
a tuple with a replacement for the unencodable part of the input and a position where encoding should con-
tinue. The replacement may be either st r or bytes. If the replacement is bytes, the encoder will simply copy
them into the output buffer. If the replacement is a string, the encoder will encode the replacement. Encoding
continues on original input at the specified position. Negative position values will be treated as being relative
to the end of the input string. If the resulting position is out of bound an TndexError will be raised.

Decoding and translating works similarly, except UnicodeDecodeErroror UnicodeTranslateError will
be passed to the handler and that the replacement from the error handler will be put into the output directly.

190

Chapter 7. Binary Data Services

https://peps.python.org/pep-0383/
https://peps.python.org/pep-0383/

The Python Library Reference, Release 3.13.1

Previously registered error handlers (including the standard error handlers) can be looked up by name:

codecs.lookup_error (name)

Return the error handler previously registered under the name name.
Raises a LookupError in case the handler cannot be found.
The following standard error handlers are also made available as module level functions:

codecs.strict_errors (exception)

Implements the 'strict' error handling.
Each encoding or decoding error raises a UnicodeError.

codecs.ignore_errors(aﬂzpﬁon)

Implements the 'ignore' error handling.
Malformed data is ignored; encoding or decoding is continued without further notice.

codecs.replace_errors (exception)

Implements the 'replace' error handling.

Substitutes 2 (ASCII character) for encoding errors or @ (U+FFFD, the official REPLACEMENT CHAR-
ACTER) for decoding errors.

codecs.backslashreplace_errors (exception)

Implements the 'backslashreplace’ error handling.

Malformed data is replaced by a backslashed escape sequence. On encoding, use the hexadecimal form of
Unicode code point with formats \xhh \uxxxx \Uxxxxxxxx. On decoding, use the hexadecimal form of
byte value with format \xhh.

Changed in version 3.5: Works with decoding and translating.

codecs.xmlcharrefreplace_errors (exception)

Implements the 'xmlcharrefreplace’ error handling (for encoding within text encoding only).

The unencodable character is replaced by an appropriate XML/HTML numeric character reference, which is
a decimal form of Unicode code point with format & #num; .

codecs.namereplace_errors(aw?pﬁon)

Implements the 'namereplace' error handling (for encoding within fext encoding only).

The unencodable character is replaced by a \N{ . . . } escape sequence. The set of characters that appear in
the braces is the Name property from Unicode Character Database. For example, the German lowercase letter
's ' will be converted to byte sequence \N{LATIN SMALL LETTER SHARP S}.

Added in version 3.5.

Stateless Encoding and Decoding

The base codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

class codecs.Codec

encode (input, errors=>strict’)

Encodes the object input and returns a tuple (output object, length consumed). For instance, fext encoding
converts a string object to a bytes object using a particular character set encoding (e.g., cp1252 or
is0-8859-1).

The errors argument defines the error handling to apply. It defaults to 'strict ' handling.

The method may not store state in the Codec instance. Use St reamiriter for codecs which have to
keep state in order to make encoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object
type in this situation.

7.2. codecs — Codec registry and base classes 191

The Python Library Reference, Release 3.13.1

decode (input, errors=>strict’)

Decodes the object input and returns a tuple (output object, length consumed). For instance, for a rext
encoding, decoding converts a bytes object encoded using a particular character set encoding to a string
object.

For text encodings and bytes-to-bytes codecs, input must be a bytes object or one which provides the
read-only buffer interface — for example, buffer objects and memory mapped files.

The errors argument defines the error handling to apply. It defaults to 'strict ' handling.

The method may not store state in the Codec instance. Use St reamReader for codecs which have to
keep state in order to make decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object
type in this situation.

Incremental Encoding and Decoding

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental en-
coding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder function,
but with multiple calls to the encode ()/decode () method of the incremental encoder/decoder. The incremental
encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode ()/decode () method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

The IncrementalEncoder class is used for encoding an input in multiple steps. It defines the following methods
which every incremental encoder must define in order to be compatible with the Python codec registry.
class codecs.IncrementalEncoder (errors=strict’)

Constructor for an TncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providing the errors keyword
argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the TncrementalEncoder
object.
encode (object, final=False)
Encodes object (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call to encode () final must be true (the default is false).
reset ()
Reset the encoder to the initial state. The output is discarded: call .encode (object, final=True),
passing an empty byte or text string if necessary, to reset the encoder and to get the output.
getstate ()
Return the current state of the encoder which must be an integer. The implementation should make sure
that 0 is the most common state. (States that are more complicated than integers can be converted into
an integer by marshaling/pickling the state and encoding the bytes of the resulting string into an integer.)
setstate (sfate)

Set the state of the encoder to state. state must be an encoder state returned by getstate ().

192 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.13.1

IncrementalDecoder Objects

The TncrementalDecoder class is used for decoding an input in multiple steps. It defines the following methods
which every incremental decoder must define in order to be compatible with the Python codec registry.
class codecs.IncrementalDecoder (errors=Sstrict’)

Constructor for an TncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providing the errors keyword
argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the TncrementalbDecoder
object.

decode (object, final=False)

Decodes object (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call to decode () final must be true (the default is false). If final is true the
decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g. because of
incomplete byte sequences at the end of the input) it must initiate error handling just like in the stateless
case (which might raise an exception).

reset ()

Reset the decoder to the initial state.

getstate ()

Return the current state of the decoder. This must be a tuple with two items, the first must be the
buffer containing the still undecoded input. The second must be an integer and can be additional state
info. (The implementation should make sure that 0 is the most common additional state info.) If this
additional state info is 0 it must be possible to set the decoder to the state which has no input buffered
and 0 as the additional state info, so that feeding the previously buffered input to the decoder returns it
to the previous state without producing any output. (Additional state info that is more complicated than
integers can be converted into an integer by marshaling/pickling the info and encoding the bytes of the
resulting string into an integer.)

setstate (stare)

Set the state of the decoder to state. state must be a decoder state returned by getstate ().

Stream Encoding and Decoding

The st reamiriterand St reamReader classes provide generic working interfaces which can be used to implement
new encoding submodules very easily. See encodings.utf_8 for an example of how this is done.

StreamWriter Objects

The St reamiriter class is a subclass of Codec and defines the following methods which every stream writer must
define in order to be compatible with the Python codec registry.

class codecs.StreamWriter (stream, errors=’strict’)

Constructor for a St reamiriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for writing text or binary data, as appropriate for the
specific codec.

The St reamwriter may implement different error handling schemes by providing the errors keyword argu-
ment. See Error Handlers for the standard error handlers the underlying stream codec may support.

7.2. codecs — Codec registry and base classes 193

The Python Library Reference, Release 3.13.1

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamivrit er object.

write (object)

Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated iterable of strings to the stream (possibly by reusing the write () method).
Infinite or very large iterables are not supported. The standard bytes-to-bytes codecs do not support this
method.

reset ()
Resets the codec buffers used for keeping internal state.

Calling this method should ensure that the data on the output is put into a clean state that allows appending
of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the St reamiriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects

The st reamrReader class is a subclass of Codec and defines the following methods which every stream reader must
define in order to be compatible with the Python codec registry.

class codecs.StreamReader (stream, errors='strict’)

Constructor for a St reamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for reading text or binary data, as appropriate for the
specific codec.

The st reamrReader may implement different error handling schemes by providing the errors keyword argu-
ment. See Error Handlers for the standard error handlers the underlying stream codec may support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamReader object.

The set of allowed values for the errors argument can be extended with register_error().
read (size=-1, chars=-1, firstline=False)
Decodes data from the stream and returns the resulting object.

The chars argument indicates the number of decoded code points or bytes to return. The read () method
will never return more data than requested, but it might return less, if there is not enough available.

The size argument indicates the approximate maximum number of encoded bytes or code points to read
for decoding. The decoder can modify this setting as appropriate. The default value -1 indicates to read
and decode as much as possible. This parameter is intended to prevent having to decode huge files in one
step.

The firstline flag indicates that it would be sufficient to only return the first line, if there are decoding
errors on later lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed
within the definition of the encoding and the given size, e.g. if optional encoding endings or state markers
are available on the stream, these should be read too.

readline (size=None, keepends=True)

Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s read () method.

194

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.13.1

If keepends is false line-endings will be stripped from the lines returned.

readlines (sizehint=None, keepends=True)

Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decode () method and are included in the list entries
if keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read () method.

reset ()

Resets the codec buffers used for keeping internal state.

Note that no stream repositioning should take place. This method is primarily intended to be able to
recover from decoding errors.

In addition to the above methods, the St reamkReader must also inherit all other methods and attributes from the
underlying stream.

StreamReaderWriter Objects

The st reamReaderiiriter is a convenience class that allows wrapping streams which work in both read and write
modes.

The design is such that one can use the factory functions returned by the 1 ookup () function to construct the instance.

class codecs.StreamReaderWriter (stream, Reader, Writer, errors=>strict’)

Creates a StreamReaderliriter instance. stream must be a file-like object. Reader and Writer must be
factory functions or classes providing the 5t reamReader and St reamiriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

StreamReadeririter instances define the combined interfaces of StreamReader and St reamiriter classes.
They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The St reamRecoder translates data from one encoding to another, which is sometimes useful when dealing with
different encoding environments.

The design is such that one can use the factory functions returned by the 10okup () function to construct the instance.

class codecs.StreamRecoder (stream, encode, decode, Reader, Writer, errors='strict’)

Creates a St reamRecoder instance which implements a two-way conversion: encode and decode work on
the frontend — the data visible to code calling read () and write (), while Reader and Writer work on the
backend — the data in stream.

You can use these objects to do transparent transcodings, e.g., from Latin-1 to UTF-8 and back.
The stream argument must be a file-like object.

The encode and decode arguments must adhere to the Codec interface. Reader and Writer must be factory
functions or classes providing objects of the St reamReader and St reamiiriter interface respectively.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of St reamReader and St reamwriter classes. They
inherit all other methods and attributes from the underlying stream.

7.2.2 Encodings and Unicode

Strings are stored internally as sequences of code points in range U+0000-U+10FFFF. (See PEP 393 for more details
about the implementation.) Once a string object is used outside of CPU and memory, endianness and how these arrays
are stored as bytes become an issue. As with other codecs, serialising a string into a sequence of bytes is known as

7.2. codecs — Codec registry and base classes 195

https://peps.python.org/pep-0393/

The Python Library Reference, Release 3.13.1

encoding, and recreating the string from the sequence of bytes is known as decoding. There are a variety of different
text serialisation codecs, which are collectivity referred to as text encodings.

The simplest text encoding (called 'latin-1"' or 'iso-8859-1") maps the code points 0-255 to the bytes 0x0-
0xf £, which means that a string object that contains code points above U+00FF can’t be encoded with this codec.
Doing so will raise a UnicodeEncodeError that looks like the following (although the details of the error mes-
sage may differ): UnicodeEncodeError: 'latin-1' codec can't encode character '\ul234' in
position 3: ordinal not in range (256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all Unicode
code points and how these code points are mapped to the bytes 0x0-0xf £. To see how this is done simply open e.g.
encodings/cp1252.py (which is an encoding that is used primarily on Windows). There’s a string constant with
256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 1114112 code points defined in Unicode. A simple and straight-
forward way that can store each Unicode code point, is to store each code point as four consecutive bytes. There are
two possibilities: store the bytes in big endian or in little endian order. These two encodings are called UTF-32-BE
and UTF-32-LE respectively. Their disadvantage is that if e.g. you use UTF-32-BE on a little endian machine you
will always have to swap bytes on encoding and decoding. UTF-32 avoids this problem: bytes will always be in
natural endianness. When these bytes are read by a CPU with a different endianness, then bytes have to be swapped
though. To be able to detect the endianness of a UTF-16 or UTF-32 byte sequence, there’s the so called BOM
(“Byte Order Mark™). This is the Unicode character u+FEFF. This character can be prepended to every UTF-16 or
UTF-32 byte sequence. The byte swapped version of this character (0xFFFE) is an illegal character that may not
appear in a Unicode text. So when the first character in a UTF-16 or UTF-32 byte sequence appears to be a U+FFFE
the bytes have to be swapped on decoding. Unfortunately the character U+FEFF had a second purpose as a ZERO
WIDTH NO-BREAK SPACE: a character that has no width and doesn’t allow a word to be split. It can e.g. be used to
give hints to a ligature algorithm. With Unicode 4.0 using U+FEFF as a ZERO WIDTH NO-BREAK SPACE has been
deprecated (with U+2060 (WORD JOINER) assuming this role). Nevertheless Unicode software still must be able
to handle U+FEFF in both roles: as a BOM it’s a device to determine the storage layout of the encoded bytes, and
vanishes once the byte sequence has been decoded into a string; as a ZERO WIDTH NO-BREAK SPACE it’s a normal
character that will be decoded like any other.

There’s another encoding that is able to encode the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists
of two parts: marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to
four 1 bits followed by a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when
concatenated give the Unicode character):

Range Encoding

U-00000000 ... U-=0000007F OXXXXXXX

U-00000080 ... U-000007FF 110xxxxx 10XXXXXX

U-00000800 ... U-0000FFFF 1110xxxx 10xxxxxx 10XXXXXX
U-00010000 ... U-0010FFFF 11110xxx 10xxxxxx 10xxxxxx 10XXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded string (even if it’s the
first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a string.
Each charmap encoding can decode any random byte sequence. However that’s not possible with UTF-8, as UTF-8
byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the reliability with which a
UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python calls "ut £-8-sig") for its
Notepad program: Before any of the Unicode characters is written to the file, a UTF-8 encoded BOM (which looks
like this as a byte sequence: Oxef, 0xbb, 0xbf) is written. As it’s rather improbable that any charmap encoded file
starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS

RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

196 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.13.1

in is0-8859-1), this increases the probability that a ut £-8-sig encoding can be correctly guessed from the byte
sequence. So here the BOM is not used to be able to determine the byte order used for generating the byte sequence,
but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write Oxe £, Oxbb, 0xbf
as the first three bytes to the file. On decoding ut £-8-sig will skip those three bytes if they appear as the first three
bytes in the file. In UTF-8, the use of the BOM is discouraged and should generally be avoided.

7.2.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases; therefore,
e.g. 'utf-8"' is a valid alias for the 'utf_8"' codec.

CPython implementation detail: Some common encodings can bypass the codecs lookup machinery to improve
performance. These optimization opportunities are only recognized by CPython for a limited set of (case insensitive)
aliases: utf-8, utf8, latin-1, latin1, is0-8859-1, is08859-1, mbcs (Windows only), ascii, us-ascii, utf-16, utf16, utf-
32, utf32, and the same using underscores instead of dashes. Using alternative aliases for these encodings may result
in slower execution.

Changed in version 3.6: Optimization opportunity recognized for us-ascii.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

o an ISO 8859 codeset

« a Microsoft Windows code page, which is typically derived from an 8859 codeset, but replaces control char-
acters with additional graphic characters

« an IBM EBCDIC code page
« an IBM PC code page, which is ASCII compatible

Codec | Aliases | Languages
ascii 646, us-ascii English
big5 big5-tw, csbig5 Traditional Chinese
big5hkscs big5-hkscs, hkscs Traditional Chinese
cp037 IBM037, IBM039 English
cp273 273, IBM273, csIBM273 German
Added in version 3.4.
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, IBM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP- | Western Europe
CH, IBM500
cp720 Arabic
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBM855 Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
cp856 Hebrew
cp857 857, IBM&57 Turkish
cp858 858, IBM858 Western Europe
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM&62 Hebrew
cp863 863, IBM&63 Canadian

continues on next page

7.2. codecs — Codec registry and base classes

197

The Python Library Reference, Release 3.13.1

Table 1 - continued from previous page

Codec Aliases \ Languages
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Norwegian
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji, | Japanese
windows-31]j
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional Chinese
cpl006 Urdu
cpl026 ibm1026 Turkish
cpl125 1125, ibm1125, cp866u, ruscii Ukrainian
Added in version 3.4.
cpl140 ibm1140 Western Europe
cpl250 windows-1250 Central and Eastern Europe
cpl251 windows-1251 Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
cpl252 windows-1252 Western Europe
cpl253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows-1256 Arabic
cpl257 windows-1257 Baltic languages
cpl258 windows-1258 Vietnamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ks c- | Korean
5601, ks_c-5601-1987, ksx1001,
ks_x-1001
gb2312 chinese, csis058gb231280, euc- | Simplified Chinese
cn, eucen, eucgb2312-cn, gb2312-
1980, gb2312-80, iso-ir-58
gbk 936, cp936, ms936 Unified Chinese
gb18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gb-2312 Simplified Chinese
1502022 _jp ¢sis02022jp, 1502022jp, is0-2022- | Japanese
Jp
1502022 _jp_1 1502022jp-1, is0-2022-jp-1 Japanese

i502022_jp_2
i502022_jp_2004

1502022_jp_3
1502022_jp_ext
1502022 _Kkr

latin_1

is08859_2
is08859_3
1508859_4
1508859_5

i502022jp-2, is0-2022-jp-2

1502022jp-2004,
2004

1502022 jp-3, is0-2022-jp-3
1502022 jp-ext, is0-2022-jp-ext
csis02022kr, 1s02022kr, is0-2022-
kr

1S0-8859-1, is08859-1,
cp819, latin, latinl, L1
is0-8859-2, latin2, L2
150-8859-3, latin3, L3
150-8859-4, latin4, L4
1s0-8859-5, cyrillic

150-2022-jp-

8859,

Japanese, Korean, Simplified Chi-
nese, Western Europe, Greek
Japanese

Japanese
Japanese
Korean

Western Europe

Central and Eastern Europe
Esperanto, Maltese

Baltic languages

Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian

continues on next page

198

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.13.1

Table 1 - continued from previous page

Codec | Aliases | Languages
1508859_6 150-8859-6, arabic Arabic
1508859 _7 is0-8859-7, greek, greek8 Greek
1508859_8 150-8859-8, hebrew Hebrew
i508859_9 is0-8859-9, latin5, L5 Turkish
1508859_10 is0-8859-10, latin6, L6 Nordic languages
1508859_11 1s0-8859-11, thai Thai languages
1508859 _13 150-8859-13, latin7, L7 Baltic languages
1508859_14 150-8859-14, latin&, L8 Celtic languages
1508859_15 150-8859-15, latin9, L9 Western Europe
1508859_16 180-8859-16, latin10, L10 South-Eastern Europe
johab cpl361, ms1361 Korean
koi8 r Russian
koi8_t Tajik

Added in version 3.5.
koi8_u UKkrainian
kz1048 kz_1048, strk1048_2002, k1048 | Kazakh

Added in version 3.5.

mac_cyrillic maccyrillic Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2, maccentraleurope, | Central and Eastern Europe
mac_centeuro
mac_roman macroman, macintosh Western Europe
mac_turkish macturkish Turkish
ptcpl54 csptepl54, pt154, cpl54, cyrillic- | Kazakh
asian
shift_jis csshiftjis, shiftjis, sjis, s_jis Japanese
shift_jis 2004 shiftjis2004, sjis_2004, sjis2004 Japanese
shift_jisx0213 shiftjisx0213, sjisx0213, | Japanese
s_jisx0213
utf 32 U32, utf32 all languages
utf_32 be UTF-32BE all languages
utf_32 le UTF-32LE all languages
utf_16 Ul16, utf16 all languages
utf_16_be UTF-16BE all languages
utf_16_le UTF-16LE all languages
utf 7 U7, unicode-1-1-utf-7 all languages
utf_8 U8, UTF, utf8, cp65001 all languages
utf_8_sig all languages

Changed in version 3.4: The utf-16* and utf-32* encoders no longer allow surrogate code points (U+D800—U+DFFF)
to be encoded. The utf-32* decoders no longer decode byte sequences that correspond to surrogate code points.

Changed in version 3.8: cp65001 is now an alias to ut £_8.

7.2.4 Python Specific Encodings

A number of predefined codecs are specific to Python, so their codec names have no meaning outside Python. These
are listed in the tables below based on the expected input and output types (note that while text encodings are the
most common use case for codecs, the underlying codec infrastructure supports arbitrary data transforms rather than
just text encodings). For asymmetric codecs, the stated meaning describes the encoding direction.

7.2. codecs — Codec registry and base classes 199

The Python Library Reference, Release 3.13.1

Text Encodings

The following codecs provide st r to bytes encoding and bytes-like object to st r decoding, similar to the Unicode
text encodings.

| Codec | Aliases Meaning |

idna Implement RFC 3490, see
also encodings.idna. Only
errors="strict' is supported.
mbcs ansi, dbcs Windows only: Encode the
operand according to the ANSI
codepage (CP_ACP).

oem Windows only: Encode the
operand according to the OEM
codepage (CP_OEMCP).

Added in version 3.6.

palmos Encoding of PalmOS 3.5.

punycode Implement RFC 3492. Stateful
codecs are not supported.

raw_unicode_escape Latin-1 encoding with \uxxxx

and \Uxxxxxxxx for other code
points. Existing backslashes are
not escaped in any way. It is used
in the Python pickle protocol.
undefined Raise an exception for all conver-
sions, even empty strings. The er-
ror handler is ignored.
unicode_escape Encoding suitable as the contents
of a Unicode literal in ASCII-
encoded Python source code, ex-
cept that quotes are not escaped.
Decode from Latin-1 source code.
Beware that Python source code
actually uses UTF-8 by default.

Changed in version 3.8: “unicode_internal” codec is removed.

Binary Transforms

The following codecs provide binary transforms: bytes-like object to bytes mappings. They are not supported by
bytes.decode () (which only produces st r output).

200 Chapter 7. Binary Data Services

https://datatracker.ietf.org/doc/html/rfc3490.html
https://datatracker.ietf.org/doc/html/rfc3492.html

The Python Library Reference, Release 3.13.1

| Codec Aliases | Meaning | Encoder / decoder |
base64_codec' | base64, Convert the operand to multiline MIME base64 (the base64.
base_64 result always includes a trailing '\n"). encodebytes () /
Changed in version 3.4: accepts any bytes-like object base64.
as input for encoding and decoding decodebytes ()
bz2_codec bz2 Compress the operand using bz2. bz2.compress ()
[/ bz2.
decompress ()
hex_codec hex Convert the operand to hexadecimal representation, binascii.
with two digits per byte. b2a_hex () /
binascii.
a’lb_hex ()
quopri_codec quopri, Convert the operand to MIME quoted printable. quopri.
quotedprint- encode () with
able, quotetabs=True
quoted_printa / quopri.
decode ()
uu_codec uu Convert the operand using uuencode.
zlib_codec zip, zlib Compress the operand using gzip. z1ib.
compress()/
z1ib.
decompress ()

Added in version 3.2: Restoration of the binary transforms.

Changed in version 3.4: Restoration of the aliases for the binary transforms.

Text Transforms

The following codec provides a text transform: a st r to st r mapping. It is not supported by st r. encode () (which
only produces bytes output).

Codec
rot_13

Aliases | Meaning \

rotl3 \ Return the Caesar-cypher encryption of the operand. \

Added in version 3.2: Restoration of the rot_ 13 text transform.

Changed in version 3.4: Restoration of the rot13 alias.

7.2.5 encodings.idna — Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode encoding and
stringprep.

If you need the IDNA 2008 standard from RFC 5891 and RFC 5895, use the third-party idna module.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name containing
non-ASCII characters (such as www.Alliancefrancaise.nu) is converted into an ASCII-compatible encoding
(ACE, such as www.xn--alliancefranaise-npb.nu). The ACE form of the domain name is then used in all
places where arbitrary characters are not allowed by the protocol, such as DNS queries, HTTP Host fields, and so on.
This conversion is carried out in the application; if possible invisible to the user: The application should transparently
convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before presenting
them to the user.

! In addition to bytes-like objects, *base64_codec" also accepts ASCII-only instances of st r for decoding

7.2. codecs — Codec registry and base classes 201

https://datatracker.ietf.org/doc/html/rfc3490.html
https://datatracker.ietf.org/doc/html/rfc3492.html
https://datatracker.ietf.org/doc/html/rfc5891.html
https://datatracker.ietf.org/doc/html/rfc5895.html
https://pypi.org/project/idna/

The Python Library Reference, Release 3.13.1

Python supports this conversion in several ways: the idna codec performs conversion between Unicode and ACE,
separating an input string into labels based on the separator characters defined in section 3.1 of RFC 3490 and
converting each label to ACE as required, and conversely separating an input byte string into labels based on the .
separator and converting any ACE labels found into unicode. Furthermore, the socket module transparently con-
verts Unicode host names to ACE, so that applications need not be concerned about converting host names themselves
when they pass them to the socket module. On top of that, modules that have host names as function parameters,
such as http.client and ftplib, accept Unicode host names (http.client then also transparently sends an
IDNA hostname in the Host field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: applications wishing to present such host names to the user should decode them to Unicode.

The module encodings. idna also implements the nameprep procedure, which performs certain normalizations
on host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The
nameprep functions can be used directly if desired.

encodings.idna.nameprep (label)

Return the nameprepped version of label. The implementation currently assumes query strings, so
AllowUnassigned is true.

encodings.idna.ToASCII (label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode (label)

Convert a label to Unicode, as specified in RFC 3490.

7.2.6 encodings.mbcs — Windows ANSI codepage
This module implements the ANSI codepage (CP_ACP).
Availability: Windows.

Changed in version 3.2: Before 3.2, the errors argument was ignored; 'replace' was always used to encode, and
"ignore' to decode.

Changed in version 3.3: Support any error handler.

7.2.7 encodings.utf_8_sig — UTF-8 codec with BOM signature

This module implements a variant of the UTF-8 codec. On encoding, a UTF-8 encoded BOM will be prepended to
the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte stream). On
decoding, an optional UTF-8 encoded BOM at the start of the data will be skipped.

202 Chapter 7. Binary Data Services

https://datatracker.ietf.org/doc/html/rfc3490.html#section-3.1
https://datatracker.ietf.org/doc/html/rfc3490.html
https://datatracker.ietf.org/doc/html/rfc3490.html

CHAPTER
EIGHT

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-type
arrays, heap queues, double-ended queues, and enumerations.

Python also provides some built-in data types, in particular, dict, 1ist, set and frozenset, and tuple. The
str class is used to hold Unicode strings, and the bytes and bytearray classes are used to hold binary data.

The following modules are documented in this chapter:

8.1 datetime — Basic date and time types

Source code: Lib/datetime.py

The datetime module supplies classes for manipulating dates and times.

While date and time arithmetic is supported, the focus of the implementation is on efficient attribute extraction for
output formatting and manipulation.

© Tip

Skip to the format codes.

> See also

Module calendar
General calendar related functions.

Module time
Time access and conversions.

Module zoneinfo
Concrete time zones representing the IANA time zone database.

Package dateutil
Third-party library with expanded time zone and parsing support.

Package DateType
Third-party library that introduces distinct static types to e.g. allow static type checkers to differentiate
between naive and aware datetimes.

8.1.1 Aware and Naive Objects

Date and time objects may be categorized as “aware” or “naive” depending on whether or not they include time zone
information.

203

https://github.com/python/cpython/tree/3.13/Lib/datetime.py
https://dateutil.readthedocs.io/en/stable/
https://pypi.org/project/DateType/

The Python Library Reference, Release 3.13.1

With sufficient knowledge of applicable algorithmic and political time adjustments, such as time zone and daylight
saving time information, an aware object can locate itself relative to other aware objects. An aware object represents
a specific moment in time that is not open to interpretation. !

A naive object does not contain enough information to unambiguously locate itself relative to other date/time objects.
Whether a naive object represents Coordinated Universal Time (UTC), local time, or time in some other time zone
is purely up to the program, just like it is up to the program whether a particular number represents metres, miles, or
mass. Naive objects are easy to understand and to work with, at the cost of ignoring some aspects of reality.

For applications requiring aware objects, datetime and time objects have an optional time zone information at-
tribute, tzinfo, that can be set to an instance of a subclass of the abstract tzinfo class. These tzinfo objects
capture information about the offset from UTC time, the time zone name, and whether daylight saving time is in
effect.

Only one concrete t zinfo class, the t imezone class, is supplied by the dat et ime module. The t imezone class can
represent simple time zones with fixed offsets from UTC, such as UTC itself or North American EST and EDT time
zones. Supporting time zones at deeper levels of detail is up to the application. The rules for time adjustment across
the world are more political than rational, change frequently, and there is no standard suitable for every application
aside from UTC.

8.1.2 Constants

The datetime module exports the following constants:

datetime .MINYEAR

The smallest year number allowed in a date or datet ime object. MINYEAR s 1.

datetime .MAXYEAR

The largest year number allowed in a date or datetime object. MAXYEAR is 9999.

datetime.UTC

Alias for the UTC time zone singleton datetime. timezone. utc.

Added in version 3.11.

8.1.3 Available Types

class datetime.date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes: year, month, and day.
class datetime.time
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds.
(There is no notion of “leap seconds” here.) Attributes: hour, minute, second, microsecond,and tzinfo.
class datetime.datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second, microsecond,
and tzinfo.
class datetime.timedelta

A duration expressing the difference between two datet ime or date instances to microsecond resolution.

class datetime.tzinfo
An abstract base class for time zone information objects. These are used by the datet ime and t ime classes
to provide a customizable notion of time adjustment (for example, to account for time zone and/or daylight
saving time).

class datetime.timezone

A class that implements the ¢ zinfo abstract base class as a fixed offset from the UTC.

Added in version 3.2.

LIf, that is, we ignore the effects of Relativity

204 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

Objects of these types are immutable.

Subclass relationships:

object
timedelta
tzinfo
timezone
time
date
datetime

Common Properties
The date, datetime, time, and timezone types share these common features:
« Objects of these types are immutable.
« Objects of these types are hashable, meaning that they can be used as dictionary keys.

» Objects of these types support efficient pickling via the pickle module.

Determining if an Object is Aware or Naive
Objects of the date type are always naive.
An object of type t ime or datetime may be aware or naive.
A datetime object d is aware if both of the following hold:
1. d.tzinfo is not None
2. d.tzinfo.utcoffset (d) does not return None
Otherwise, d is naive.
A time object t is aware if both of the following hold:
I. t.tzinfo is not None
2. t.tzinfo.utcoffset (None) does not return None.
Otherwise, t is naive.

The distinction between aware and naive doesn’t apply to ¢ imedelta objects.

8.1.4 timedelta Objects
A timedelta object represents a duration, the difference between two datet ime or date instances.

class datetime.timedelta (days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0,
weeks=0)

All arguments are optional and default to 0. Arguments may be integers or floats, and may be positive or
negative.

Only days, seconds and microseconds are stored internally. Arguments are converted to those units:
« A millisecond is converted to 1000 microseconds.
» A minute is converted to 60 seconds.
« An hour is converted to 3600 seconds.
o A week is converted to 7 days.
and days, seconds and microseconds are then normalized so that the representation is unique, with

e 0 <= microseconds < 1000000

8.1. datetime — Basic date and time types 205

The Python Library Reference, Release 3.13.1

e 0 <= seconds < 3600*24 (the number of seconds in one day)
e —999999999 <= days <= 999999999

The following example illustrates how any arguments besides days, seconds and microseconds are “merged”
and normalized into those three resulting attributes:

>>> from datetime import timedelta
>>> delta = timedelta (

days=50,

seconds=27,

microseconds=10,

milliseconds=29000,

minutes=5,

hours=8,

weeks=2

)

>>> # Only days, seconds, and microseconds remain
>>> delta
datetime.timedelta (days=64, seconds=29156, microseconds=10)

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from
all arguments are combined and their sum is rounded to the nearest microsecond using round-half-to-even
tiebreaker. If no argument is a float, the conversion and normalization processes are exact (no information is
lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.

Note that normalization of negative values may be surprising at first. For example:

>>> from datetime import timedelta

>>> d = timedelta (microseconds=-1)

>>> (d.days, d.seconds, d.microseconds)
(=1, 86399, 999999)

Class attributes:

timedelta.min

The most negative t imedelta object, timedelta (-999999999).

timedelta.max

The most positive timedelta object, timedelta (days=999999999, hours=23, minutes=59,
seconds=59, microseconds=999999).

timedelta.resolution

The smallest possible difference between non-equal timedelta objects, timedelta (microseconds=1).

Note that, because of normalization, t imedelta.max is greater than -t imedelta.min. -timedelta.max is not
representable as a t imedelta object.

Instance attributes (read-only):

timedelta.days
Between -999,999,999 and 999,999,999 inclusive.

timedelta.seconds

Between 0 and 86,399 inclusive.

%" Caution

It is a somewhat common bug for code to unintentionally use this attribute when it is actually intended to
geta total_ seconds () value instead:

206 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

>>> duration
(130, 3813)

11235813.0

>>> from datetime import timedelta
timedelta (seconds=11235813)
>>> duration.days,

duration.seconds

>>> duration.total_seconds ()

timedelta.microseconds

Between 0 and 999,999 inclusive.

Supported operations:

Operation Result
tl = t2 + t3 Sum of t2 and t3. Afterwardst1 — t2 == t3andtl - t3 == t2aretrue. (1)
tl = t2 - t3 Difference of t2 and t3. Afterwards t1 == t2 - t3 and t2 == t1 + t3 are

tl = t2 * i or tl
=1 * t2

tl = t2 * £ or tl
= f * t2

true. (1)(6)

Delta multiplied by an integer. Afterwards t1 // i == t2is true, provided i !=
0.

Ingeneral, t1 * 1 == t1 * (i-1) + tlistrue. (1)

Delta multiplied by a float. The result is rounded to the nearest multiple of
timedelta.resolution using round-half-to-even.

£f=1t2/ t3 Division (3) of overall duration t2 by interval unit t 3. Returns a f1oat object.

tl = t2 / £ or tl Delta divided by a float or an int. The result is rounded to the nearest multiple of

=t2 /i timedelta.resolution using round-half-to-even.

tl = t2 // i or t1 The floor is computed and the remainder (if any) is thrown away. In the second case,

=t2 // t3 an integer is returned. (3)

£l = t2 % t3 The remainder is computed as a ¢ imedelta object. (3)

g, r = divmod(t1, Computes the quotient and the remainder: g = t1 // t2(B3)andr = t1 % t2.

t2) q is an integer and r is a t imedelta object.

+t1 Returns a t imede1ta object with the same value. (2)

-t1 Equivalent to timedelta(-tl.days, -tl.seconds, -tl.microseconds),
andtot1 * -1.(1)4)

abs (t) Equivalent to +t when t.days >= 0, and to -t when t .days < 0. (2)

str(t) Returns a string in the form [D day[s], 1[H]H:MM:SS[.UUUUUU], where D is
negative for negative t. (5)

repr (t) Returns a string representation of the t imedelta object as a constructor call with
canonical attribute values.

Notes:

(1) This is exact but may overflow.

(2) This is exact and cannot overflow.

(3) Division by zero raises ZeroDivisionError.

(4) -timedelta.max is not representable as a t imedelta object.

(5) String representations of timedelta objects are normalized similarly to their internal representation. This
leads to somewhat unusual results for negative timedeltas. For example:

>>> timedelta (hours=-5)

datetime.timedelta (days=-1,

>>> print (_)

-1 day,

19:00:00

seconds=68400)

(6) The expression t2 - t3 will always be equal to the expression t2 + (-t3) except when t3 is equal to
timedelta.max; in that case the former will produce a result while the latter will overflow.

8.1. datetime — Basic date and time types

207

The Python Library Reference, Release 3.13.1

In addition to the operations listed above, t imedelta objects support certain additions and subtractions with date
and datet ime objects (see below).

Changed in version 3.2: Floor division and true division of a timedelta object by another timedelta object
are now supported, as are remainder operations and the divmod () function. True division and multiplication of a
timedelta object by a f1oat object are now supported.

timedelta objects support equality and order comparisons.
In Boolean contexts, a t imedelta object is considered to be true if and only if it isn’t equal to t imedelta (0).
Instance methods:

timedelta.total_seconds ()

Return the total number of seconds contained in the duration. Equivalent to td /
timedelta (seconds=1). For interval units other than seconds, use the division form directly (e.g.
td / timedelta (microseconds=1)).

Note that for very large time intervals (greater than 270 years on most platforms) this method will lose mi-
crosecond accuracy.

Added in version 3.2.

Examples of usage: timedelta

An additional example of normalization:

>>> # Components of another_year add up to exactly 365 days

>>> from datetime import timedelta

>>> year = timedelta (days=365)

>>> another_year = timedelta (weeks=40, days=84, hours=23,
minutes=50, seconds=600)

>>> year == another_year

True

>>> year.total_ seconds ()

31536000.0

Examples of ¢ imedelta arithmetic:

>>> from datetime import timedelta
>>> year = timedelta (days=365)

>>> ten_years = 10 * year

>>> ten_years

datetime.timedelta (days=3650)

>>> ten_years.days // 365

10

>>> nine_years = ten_years - year
>>> nine_years

datetime.timedelta (days=3285)

>>> three_years = nine_years // 3
>>> three_years, three_years.days // 365
(datetime.timedelta (days=1095), 3)

8.1.5 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions.

January 1 of year 1 is called day number 1, January 2 of year 1 is called day number 2, and so on.”

2 This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and Reingold’s book Calendrical Calculations, where it’s the
base calendar for all computations. See the book for algorithms for converting between proleptic Gregorian ordinals and many other calendar
systems.

208 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

class datetime.date (year, month, day)

All arguments are required. Arguments must be integers, in the following ranges:
e MINYEAR <= year <= MAXYEAR
e 1 <= month <= 12
e 1 <= day <= number of days in the given month and year
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod date.today ()
Return the current local date.

This is equivalent to date. fromtimestamp (time.time ()).

classmethod date.fromtimestamp (fimestamp)

Return the local date corresponding to the POSIX timestamp, such as is returned by t ime. time ().

This may raise OverflowError, if the timestamp is out of the range of values supported by the platform
C localtime () function, and OSError on localtime () failure. It’s common for this to be restricted to
years from 1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion of
a timestamp, leap seconds are ignored by fromtimestamp ().

Changed in version 3.3: Raise OverflowError instead of valueError if the timestamp is out of the range
of values supported by the platform C localtime () function. Raise 0SError instead of ValueError on
localtime () failure.

classmethod date.fromordinal (ordinal)

Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1.

ValueError is raised unless 1 <= ordinal <= date.max.toordinal (). For any date d, date.
fromordinal (d.toordinal ()) == d.

classmethod date.fromisoformat(daugjﬁhg)

Return a dat e corresponding to a date_string given in any valid ISO 8601 format, with the following exceptions:
1. Reduced precision dates are not currently supported (YYYY-MM, YYYY).
2. Extended date representations are not currently supported (+YYYYYY-MM-DD).
3. Ordinal dates are not currently supported (YYYY-000).

Examples:

p
>>> from datetime import date

>>> date.fromisoformat ('2019-12-04")
datetime.date (2019, 12, 4)

>>> date.fromisoformat ('20191204")
datetime.date (2019, 12, 4)

>>> date.fromisoformat ('2021-WO01-1")
datetime.date (2021, 1, 4)

L

Added in version 3.7.
Changed in version 3.11: Previously, this method only supported the format YYYY-MM-DD.

classmethod date.fromisocalendar (year, week, day)

Return a date corresponding to the ISO calendar date specified by year, week and day. This is the inverse of
the function date. isocalendar().

Added in version 3.8.

Class attributes:

8.1. datetime — Basic date and time types 209

The Python Library Reference, Release 3.13.1

date.min

The earliest representable date, date (MINYEAR, 1, 1).

date.max

The latest representable date, date (MAXYEAR, 12, 31).

date.resolution

The smallest possible difference between non-equal date objects, t imedelta (days=1).

Instance attributes (read-only):

date.year

Between MINYEAR and MAXYEAR inclusive.

date.month

Between 1 and 12 inclusive.

date.day

Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result

date2 = datel + timedelta date2 will be timedelta.days days after datel.
ey

date2 = datel - timedelta Computes date2 suchthatdate2 + timedelta ==
datel. (2)

timedelta = datel - date2 3)

Equality comparison. (4)

datel == date2
datel != date2

Order comparison. (5)

datel < date2
datel > date2
datel <= date?2
datel >= date?2

Notes:

(D

2)
3)

“4)

®)

date2 is moved forward in time if timedelta.days > 0, or backward if timedelta.days < 0. After-
ward date2 - datel == timedelta.days. timedelta.seconds and timedelta.microseconds
are ignored. OverflowError is raised if date2.year would be smaller than MINYEAR or larger than
MAXYEAR.

timedelta.seconds and timedelta.microseconds are ignored

This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and
date2 + timedelta == datel after.

date objects are equal if they represent the same date.

date objects that are not also dat et ime instances are never equal to dat et ime objects, even if they represent
the same date.

datel is considered less than date2 when datel precedes date? in time. In other words, datel < date2 if
and only if datel.toordinal () < date2.toordinal ().

Order comparison between a date object that is not also a datet ime instance and a datet ime object raises
TypeError.

210

Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

Changed in version 3.13: Comparison between datet ime object and an instance of the date subclass that is not
a datetime subclass no longer converts the latter to date, ignoring the time part and the time zone. The default
behavior can be changed by overriding the special comparison methods in subclasses.

In Boolean contexts, all date objects are considered to be true.
Instance methods:

date.replace (year=self.year, month=self.month, day=self.day)

Return a date with the same value, except for those parameters given new values by whichever keyword argu-
ments are specified.

Example:

>>> from datetime import date
>>> d = date (2002, 12, 31)
>>> d.replace (day=26)
datetime.date (2002, 12, 206)

date objects are also supported by generic function copy . replace ().

date.timetuple ()

Return a t ime. st ruct_time such as returned by t ime. localtime ().
The hours, minutes and seconds are 0, and the DST flag is -1.

d.timetuple () is equivalent to:

[time.struct_time((d.year, d.month, d.day, 0, 0, 0, d.weekday(), yday, -1)) }

where yday = d.toordinal() - date(d.year, 1, 1).toordinal() + 1 is the day number
within the current year starting with 1 for January 1st.

date.toordinal ()

Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any date
Owectd,date.fromordinal(d.toordinal()) ==

date.weekday ()

Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date (2002,
12, 4).weekday () == 2, a Wednesday. See also isoweekday ().

date.isoweekday ()

Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date (2002,
12, 4).isoweekday () == 3,aVVédneﬁkw.SeeaBOWNeekday(),isocalendar(L

date.isocalendar ()
Return a named tuple object with three components: year, week and weekday.
The ISO calendar is a widely used variant of the Gregorian calendar.’

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday. The
first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This is called
week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004:

>>> from datetime import date

>>> date (2003, 12, 29) .isocalendar ()
datetime.IsoCalendarDate (year=2004, week=1, weekday=1)
>>> date (2004, 1, 4).isocalendar ()
datetime.IsoCalendarDate (year=2004, week=1, weekday=7)

3 See R. H. van Gent’s guide to the mathematics of the ISO 8601 calendar for a good explanation.

8.1. datetime — Basic date and time types 211

https://web.archive.org/web/20220531051136/https://webspace.science.uu.nl/~gent0113/calendar/isocalendar.htm

The Python Library Reference, Release 3.13.1

Changed in version 3.9: Result changed from a tuple to a named tuple.

date.isoformat ()

Return a string representing the date in ISO 8601 format, YYYY-MM-DD:

>>> from datetime import date
>>> date (2002, 12, 4).isoformat ()
'2002-12-04"

date.__str__ ()

For a date d, str (d) is equivalent to d.isoformat ().

date.ctime ()

Return a string representing the date:

>>> from datetime import date
>>> date (2002, 12, 4).ctime ()
'Wed Dec 4 00:00:00 2002"'

d.ctime () is equivalent to:

[time.ctime(time.mktime(d.timetuple()))

on platforms where the native C ctime () function (which time.ctime () invokes, but which date.
ctime () does not invoke) conforms to the C standard.
date.strftime (format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to hours,
minutes or seconds will see 0 values. See also strftime() and strptime() Behavior and date.isoformat ().
date.__ format__(format)

Same as date.strftime (). This makes it possible to specify a format string for a date object in format-
ted string literals and when using str. format (). See also strftime() and strptime() Behavior and date.
isoformat ().

Examples of Usage: date

Example of counting days to an event:

>>> import time
>>> from datetime import date
>>> today = date.today ()
>>> today
datetime.date (2007, 12, 5)
>>> today == date.fromtimestamp (time.time ())
True
>>> my_birthday = date(today.year, 6, 24)
>>> if my birthday < today:
my_birthday = my_birthday.replace(year=today.year + 1)

>>> my_birthday

datetime.date (2008, 6, 24)

>>> time_to_birthday = abs (my_birthday - today)
>>> time_to_birthday.days

202

More examples of working with date:

212 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

>>> from datetime import date

>>> d = date.fromordinal (730920) # 730920th day after 1. 1. 0001
>>> d

datetime.date (2002, 3, 11)

>>> # Methods related to formatting string output
>>> d.isoformat ()

'2002-03-11"

>>> d.strftime ("%d/Sm/%y")
'11/03/02"

>>> d.strftime ("%A . 3B %Y")

'Monday 11. March 2002'

>>> d.ctime ()

'Mon Mar 11 00:00:00 2002"'

>>> 'The is {0: }, the is {0:%B}.'.format (d, "day", "month")
'The day is 11, the month is March.'

>>> # Methods for to extracting 'components' under different calendars
>>> t = d.timetuple ()
>>> for i in t:

print (1)
2002 # year
3 # month
11 # day
0
0
0
0 # weekday (0 = Monday)
70 # 70th day in the year
=1
>>> ic = d.isocalendar ()
>>> for i in ic:
print (i)
2002 # ISO year
11 # ISO week number
1 # ISO day number (1 = Monday)

>>> # A date object is immutable; all operations produce a new object
>>> d.replace(year=2005)
datetime.date (2005, 3, 11)

8.1.6 datetime Objects

A datetime object is a single object containing all the information from a date object and a t ime object.

Like a date object, datetime assumes the current Gregorian calendar extended in both directions; like a time

object, datet ime assumes there are exactly 3600%24 seconds in every day.

Constructor:

class datetime.datetime (year, month, day, hour=0, minute=0, second=0, microsecond=0, tzinfo=None, ¥,

fold=0)

The year, month and day arguments are required. fzinfo may be None, or an instance of a t zinfo subclass.

The remaining arguments must be integers in the following ranges:
e MINYEAR <= year <= MAXYEAR,
e 1 <= month <= 12,

e 1 <= day <= number of days in the given month and year,

8.1. datetime — Basic date and time types

213

The Python Library Reference, Release 3.13.1

e 0 <= hour < 24,
e 0 <= minute < 60,
¢ 0 <= second < 60,
e 0 <= microsecond < 1000000,
e fold in [0, 1].
If an argument outside those ranges is given, ValueError is raised.
Changed in version 3.6: Added the fold parameter.
Other constructors, all class methods:

classmethod datetime.today ()

Return the current local date and time, with t zinfo None.

Equivalent to:

[datetime .fromtimestamp (time.time ())

See also now (), fromtimestamp ().
This method is functionally equivalent to now (), but without a t z parameter.

classmethod datetime.now (fz=None)

Return the current local date and time.

If optional argument 7z is None or not specified, this is like today (), but, if possible, supplies more precision
than can be gotten from going through a time.time () timestamp (for example, this may be possible on
platforms supplying the C gettimeofday () function).

If #z is not None, it must be an instance of a t zinfo subclass, and the current date and time are converted to
t7’s time zone.

This function is preferred over today () and utcnow ().

O Note

Subsequent calls to datetime.now () may return the same instant depending on the precision of the
underlying clock.

classmethod datetime.utcnow ()

Return the current UTC date and time, with t zinfo None.

This is like now (), but returns the current UTC date and time, as a naive datet ime object. An aware current
UTC datetime can be obtained by calling datetime.now (timezone.utc). See also now ().

A\ Warning

Because naive datetime objects are treated by many datet ime methods as local times, it is preferred
to use aware datetimes to represent times in UTC. As such, the recommended way to create an object
representing the current time in UTC is by calling datetime.now (timezone.utc).

Deprecated since version 3.12: Use datetime.now () with UTC instead.

classmethod datetime.fromtimestamp (fimestamp, tz=None)

Return the local date and time corresponding to the POSIX timestamp, such as is returned by t ime. t ime ().
If optional argument #z is None or not specified, the timestamp is converted to the platform’s local date and
time, and the returned datet ime object is naive.

If #z is not None, it must be an instance of a t z i n fo subclass, and the timestamp is converted to #z’s time zone.

214 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

fromtimestamp () may raise OverflowError, if the timestamp is out of the range of values supported
by the platform C localtime () or gmtime () functions, and OSError on localtime () or gmtime ()
failure. It’s common for this to be restricted to years in 1970 through 2038. Note that on non-POSIX systems
that include leap seconds in their notion of a timestamp, leap seconds are ignored by fromt imestamp (), and
then it’s possible to have two timestamps differing by a second that yield identical datet ime objects. This
method is preferred over utcrromtimestamp ().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the range
of values supported by the platform C localtime () or gmtime () functions. Raise 0SError instead of
ValueErroron localtime () or gmtime () failure.

Changed in version 3.6: fromtimestamp () may return instances with fold setto 1.

classmethod datetime.utcfromtimestamp (timestamp)
Return the UTC datet ime corresponding to the POSIX timestamp, with ¢ zinfo None. (The resulting object
is naive.)

This may raise OverflowError, if the timestamp is out of the range of values supported by the platform C
gmtime () function, and OSError on gmtime () failure. It’s common for this to be restricted to years in 1970
through 2038.

To get an aware datet ime object, call fromtimestamp ():

[datetime .fromtimestamp (timestamp, timezone.utc)

On the POSIX compliant platforms, it is equivalent to the following expression:

Edatetime(1970, 1, 1, tzinfo=timezone.utc) + timedelta (seconds=timestamp) }

except the latter formula always supports the full years range: between MINYEAR and MAXYEAR inclusive.

A\ Warning

Because naive datetime objects are treated by many datet ime methods as local times, it is preferred
to use aware datetimes to represent times in UTC. As such, the recommended way to create an ob-
ject representing a specific timestamp in UTC is by calling datetime. fromtimestamp (timestamp,

tz=timezone.utc).

Changed in version 3.3: Raise OverflowError instead of valueError if the timestamp is out of the range
of values supported by the platform C gmtime () function. Raise 0SError instead of ValueError on
gmtime () failure.

Deprecated since version 3.12: Use datetime. fromtimestamp () with UTC instead.

classmethod datetime.fromordinal (ordinal)
Return the datet ime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal
1. ValueError is raised unless 1 <= ordinal <= datetime.max.toordinal (). The hour, minute,
second and microsecond of the result are all 0, and tzinfo is None.

classmethod datetime.combine (date, time, tZinfo=time.tzinfo)

Return a new datet ime object whose date components are equal to the given date object’s, and whose time
components are equal to the given time object’s. If the fzinfo argument is provided, its value is used to set
the tzinfo attribute of the result, otherwise the ¢t zinfo attribute of the fime argument is used. If the date
argument is a datet ime object, its time components and ¢ zinfo attributes are ignored.

For any datet ime object d, d == datetime.combine (d.date(), d.time(), d.tzinfo).
Changed in version 3.6: Added the fzinfo argument.

classmethod datetime.fromisoformat (date_string)

Return a datet ime corresponding to a date_string in any valid ISO 8601 format, with the following exceptions:

1. Time zone offsets may have fractional seconds.

8.1. datetime — Basic date and time types 215

The Python Library Reference, Release 3.13.1

2. The T separator may be replaced by any single unicode character.

3. Fractional hours and minutes are not supported.

4. Reduced precision dates are not currently supported (YYYY-MM, YYYY).

5. Extended date representations are not currently supported (+YYYYYY-MM-DD).
6. Ordinal dates are not currently supported (YYYY-000).

Examples:

-

>>> from datetime import datetime
>>> datetime.fromisoformat ('2011-11-04")
datetime.datetime (2011, 11, 4, 0, 0)
>>> datetime.fromisoformat ('20111104")
datetime.datetime (2011, 11, 4, 0, 0)
>>> datetime.fromisoformat ('2011-11-04T00:05:23")
datetime.datetime (2011, 11, 4, 0, 5, 23)
>>> datetime.fromisoformat ('2011-11-04T00:05:232")
datetime.datetime (2011, 11, 4, 0, 5, 23, tzinfo=datetime.timezone.utc)
>>> datetime.fromisoformat ('20111104T000523")
datetime.datetime (2011, 11, 4, 0, 5, 23)
>>> datetime.fromisoformat ('2011-WO01-2T00:05:23.283")
datetime.datetime (2011, 1, 4, 0, 5, 23, 283000)
>>> datetime.fromisoformat ('2011-11-04 00:05:23.283")
datetime.datetime (20121, 11, 4, 0, 5, 23, 283000)
>>> datetime.fromisoformat ('2011-11-04 00:05:23.283+00:00")
datetime.datetime (2011, 11, 4, 0, 5, 23, 283000, tzinfo=datetime.timezone.utc)
>>> datetime.fromisoformat ('2011-11-04T00:05:23+04:00")
datetime.datetime (2011, 11, 4, 0, 5, 23,

tzinfo=datetime.timezone (datetime.timedelta (seconds=14400)))

Added in version 3.7.

Changed in version 3.11: Previously, this method only supported formats that could be emitted by date.
isoformat () Or datetime.isoformat ().

classmethod datetime.fromisocalendar (year, week, day)

Return a datet ime corresponding to the ISO calendar date specified by year, week and day. The non-date
components of the datetime are populated with their normal default values. This is the inverse of the function
datetime.isocalendar ().

Added in version 3.8.

classmethod datetime.strptime (date_string, format)

Return a datet ime corresponding to date_string, parsed according to format.

If format does not contain microseconds or time zone information, this is equivalent to:

[datetime(*(time.strptime(date_string, format) [0:6]))

1

valueError is raised if the date_string and format can’t be parsed by t ime. st rpot ime () or if it returns a
value which isn’t a time tuple. See also strftime() and strptime() Behavior and datetime. fromisoformat ().

Changed in version 3.13: If format specifies a day of month without a year a DeprecationWarning is now
emitted. This is to avoid a quadrennial leap year bug in code seeking to parse only a month and day as the
default year used in absence of one in the format is not a leap year. Such format values may raise an error as
of Python 3.15. The workaround is to always include a year in your format. If parsing date_string values that
do not have a year, explicitly add a year that is a leap year before parsing:

>>> from datetime import datetime
>>> date_string = "02/29"

(continues on next page)

216

Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)
>>> when = datetime.strptime (f"{date_string/;1984", "Sm/%d;%Y") # Avoids leap.
—year bug.
>>> when.strftime ("%B)

'February 29'

Class attributes:

datetime.min

The earliest representable datetime, datetime (MINYEAR, 1, 1, tzinfo=None).

datetime.max

The latest representable datetime, datetime (MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

datetime.resolution
The smallest possible difference between non-equal datet ime objects, timedelta (microseconds=1).
Instance attributes (read-only):
datetime.year
Between MINYEAR and MAXYEAR inclusive.
datetime.month
Between 1 and 12 inclusive.
datetime.day
Between 1 and the number of days in the given month of the given year.
datetime.hour
In range (24).
datetime.minute
In range (60).
datetime.second
In range (60).
datetime.microsecond
In range (1000000).
datetime.tzinfo
The object passed as the #zinfo argument to the datet ime constructor, or None if none was passed.

datetime. fold

In [0, 17. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs when
clocks are rolled back at the end of daylight saving time or when the UTC offset for the current zone is decreased
for political reasons.) The values 0 and 1 represent, respectively, the earlier and later of the two moments with
the same wall time representation.

Added in version 3.6.

Supported operations:

8.1. datetime — Basic date and time types 217

The Python Library Reference, Release 3.13.1

Operation Result
datetime2 = datetimel + timedelta @8
datetime2 = datetimel - timedelta 2)
timedelta = datetimel - datetime2 3)

Equality comparison. (4)

datetimel == datetime2

datetimel != datetime2

Order comparison. (5)

datetimel < datetime2

datetimel > datetime2

datetimel <= datetime?2

datetimel >= datetime?2

(D

2

3)

4)

(&)

datetime?2 is a duration of t imedelta removed from datet imel, moving forward in time if t imedelta.
days > 0, or backward if timedelta.days < 0. The result has the same tzinfo attribute as the
input datetime, and datetime2 - datetimel == timedelta after. OverflowError is raised if
datetime2.year would be smaller than ¥7NYEAR or larger than MaxvEAR. Note that no time zone ad-
justments are done even if the input is an aware object.

Computes the datetime2 suchthatdatetime2 + timedelta == datetimel. Asforaddition, the result
has the same ¢ zinfo attribute as the input datetime, and no time zone adjustments are done even if the input
is aware.

Subtraction of a datet ime from a datet ime is defined only if both operands are naive, or if both are aware.
If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same ¢ z i n o attribute, the t z i nfo attributes are ignored, and
the result is a t imedelta object t such that datetime2 + t == datetimel. No time zone adjustments
are done in this case.

If both are aware and have different tzinfo attributes, a-b acts as if a and b were first converted
to naive UTC datetimes. The result iS (a.replace (tzinfo=None) - a.utcoffset()) - (b.
replace (tzinfo=None) - b.utcoffset ()) except that the implementation never overflows.

datetime objects are equal if they represent the same date and time, taking into account the time zone.
Naive and aware datet ime objects are never equal.

If both comparands are aware, and have the same tzinfo attribute, the tzinfo and fold attributes are
ignored and the base datetimes are compared. If both comparands are aware and have different tzinfo
attributes, the comparison acts as comparands were first converted to UTC datetimes except that the imple-
mentation never overflows. datet ime instances in a repeated interval are never equal to datet ime instances
in other time zone.

datetimel is considered less than datetime2 when datetimel precedes datetime?2 in time, taking into account the
time zone.

Order comparison between naive and aware datet ime objects raises T'ypeError.

If both comparands are aware, and have the same tzinfo attribute, the tzinfo and fold attributes are
ignored and the base datetimes are compared. If both comparands are aware and have different czinfo
attributes, the comparison acts as comparands were first converted to UTC datetimes except that the imple-
mentation never overflows.

Changed in version 3.3: Equality comparisons between aware and naive dat et ime instances don’t raise TypeError.

Changed in version 3.13: Comparison between datet ime object and an instance of the date subclass that is not
a datetime subclass no longer converts the latter to date, ignoring the time part and the time zone. The default
behavior can be changed by overriding the special comparison methods in subclasses.

218

Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

Instance methods:

datetime.date ()

Return date object with same year, month and day.

datetime.time ()

Return t i me object with same hour, minute, second, microsecond and fold. t zinfois None. See also method
timetz ().

Changed in version 3.6: The fold value is copied to the returned t ime object.

datetime.timetz ()

Return t i me object with same hour, minute, second, microsecond, fold, and tzinfo attributes. See also method
time ().

Changed in version 3.6: The fold value is copied to the returned t i me object.

datetime.replace (year=self.year, month=self.month, day=self.day, hour=self.hour, minute=self.minute,

second=self.second, microsecond=self.microsecond, tzinfo=self.tzinfo, *, fold=0)

Return a datetime with the same attributes, except for those attributes given new values by whichever keyword
arguments are specified. Note that t zinfo=None can be specified to create a naive datetime from an aware
datetime with no conversion of date and time data.

datetime objects are also supported by generic function copy. replace ().

Changed in version 3.6: Added the fold parameter.

datetime.astimezone (tz=None)

Return a datet ime object with new t zinfo attribute #z, adjusting the date and time data so the result is the
same UTC time as self, but in #z’s local time.

If provided, #z must be an instance of a t zinfo subclass, and its utcoffset () and dst () methods must not
return None. If self is naive, it is presumed to represent time in the system time zone.

If called without arguments (or with t z=None) the system local time zone is assumed for the target time zone.
The .tzinfo attribute of the converted datetime instance will be set to an instance of timezone with the
zone name and offset obtained from the OS.

If self.tzinfois#z, self.astimezone (tz) is equal to self: no adjustment of date or time data is per-
formed. Else the result is local time in the time zone #z, representing the same UTC time as self: after astz
= dt.astimezone(tz), astz — astz.utcoffset () will have the same date and time data as dt -
dt.utcoffset ().

If you merely want to attach a t imezone object #z to a datetime drf without adjustment of date and time data,
use dt . replace (tzinfo=tz). If you merely want to remove the t imezone object from an aware datetime
dt without conversion of date and time data, use dt . replace (tzinfo=None).

Note that the default t zinfo. fromutc () method can be overridden in a t zinfo subclass to affect the result
returned by astimezone (). Ignoring error cases, ast imezone () acts like:

-

L

def astimezone (self, tz):
if self.tzinfo is tz:
return self
Convert self to UTC, and attach the new timezone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
Convert from UTC to tz's local time.
return tz.fromutc (utc)

Changed in version 3.3: 7z now can be omitted.

Changed in version 3.6: The astimezone () method can now be called on naive instances that are presumed
to represent system local time.

8.1. datetime — Basic date and time types 219

The Python Library Reference, Release 3.13.1

datetime.utcoffset ()

If tzinfo is None, returns None, else returns self.tzinfo.utcoffset (self), and raises an exception
if the latter doesn’t return None or a t imedel t a object with magnitude less than one day.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

datetime.dst ()

If tzinfo is None, returns None, else returns self.tzinfo.dst (self), and raises an exception if the
latter doesn’t return None or a t imedelta object with magnitude less than one day.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

datetime.tzname ()

If tzinfo is None, returns None, else returns self.tzinfo.tzname (self), raises an exception if the
latter doesn’t return None or a string object,

datetime.timetuple ()

RBHHHZltime.structftimeSuChasreanmibytime.localtime(%

d.timetuple () is equivalent to:

time.struct_time((d.year, d.month, d.day,
d.hour, d.minute, d.second,
d.weekday (), yday, dst))

where yday = d.toordinal() - date(d.year, 1, 1).toordinal() + 1 is the day number
within the current year starting with 1 for January 1st. The tm isdst flag of the result is set according
to the dst () method: tzinfois None or dst () returns None, tm_isdst issetto —1;else if dst () returns
a non-zero value, tm_isdst is set to 1; else tm_isdst is set to 0.

datetime.utctimetuple ()

If datetime instance d is naive, this is the same as d.timetuple () except that tm isdst is forced to O
regardless of what d.dst () returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset (),and a t ime. st ruct_time for
the normalized time is returned. tm_isdst is forced to 0. Note that an OverflowError may be raised if
d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a year boundary.

'\ Warning

Because naive datetime objects are treated by many datetime methods as local times, it is preferred
to use aware datetimes to represent times in UTC; as a result, using datetime.utctimetuple ()
may give misleading results. If you have a naive datetime representing UTC, use datetime.
replace (tzinfo=timezone.utc) to make it aware, at which point you can use datetime.
timetuple ().

datetime.toordinal ()

Return the proleptic Gregorian ordinal of the date. The same as self.date () .toordinal ().

datetime.timestamp ()

Return POSIX timestamp corresponding to the datet ime instance. The return value is a f1oat similar to
that returned by time. time ().

Naive datetime instances are assumed to represent local time and this method relies on the platform
C mktime () function to perform the conversion. Since datetime supports wider range of values than
mktime () on many platforms, this method may raise OverflowError or OSError for times far in the
past or far in the future.

For aware datet ime instances, the return value is computed as:

220 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

[(dt - datetime (1970, 1, 1, tzinfo=timezone.utc)) .total_seconds ()]

Added in version 3.3.

Changed in version 3.6: The timestamp () method uses the fol1d attribute to disambiguate the times during
a repeated interval.

p
© Note

There is no method to obtain the POSIX timestamp directly from a naive datet ime instance representing
UTC time. If your application uses this convention and your system time zone is not set to UTC, you can
obtain the POSIX timestamp by supplying t zinfo=timezone.utc:

[timestamp = dt.replace(tzinfo=timezone.utc) .timestamp () }

or by calculating the timestamp directly:

[timestamp = (dt - datetime (1970, 1, 1)) / timedelta (seconds=1) }
N\ J

datetime.weekday ()

Return the day of the week as an integer, where Monday is O and Sunday is 6. The same as self.date () .
weekday (). See also isoweekday ().

datetime.isoweekday ()

Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as self.date () .
isoweekday (). See also weekday (), isocalendar ().

datetime.isocalendar ()

Return a named tuple with three components: year, week and weekday. The same as self.date() .
isocalendar ().

datetime.isoformat (sep="T", timespec=auto’)

Return a string representing the date and time in ISO 8601 format:
e YYYY-MM-DDTHH:MM:SS.ffffff,if microsecondisnot(
e YYYY-MM-DDTHH:MM:SS, if microsecondis 0
If utcofrfset () does not return None, a string is appended, giving the UTC offset:
e YYYY-MM-DDTHH:MM:SS.fEfffff+HH:MM[:SS[.f£££££]],if microsecondisnotO
e YYYY-MM-DDTHH:MM:SS+HH:MM[:SS[.f£f££f£f]],if microsecondis(

Examples:

>>> from datetime import datetime, timezone

>>> datetime (2019, 5, 18, 15, 17, 8, 132263) .isoformat ()
'2019-05-18T15:17:08.132263"

>>> datetime (2019, 5, 18, 15, 17, tzinfo=timezone.utc) .isoformat ()
'2019-05-18T15:17:00+00:00"

The optional argument sep (default ' T') is a one-character separator, placed between the date and time portions
of the result. For example:

p
>>> from datetime import tzinfo, timedelta, datetime

>>> class TZ (tzinfo) :
"""A time zone with an arbitrary, constant -06:39 offset."""
def utcoffset (self, dt):
return timedelta (hours=-6, minutes=-39)

(continues on next page)

8.1.

datetime — Basic date and time types 221

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> datetime (2002, 12, 25, tzinfo=TZ()) .isoformat (' ")
'2002-12-25 00:00:00-06:39"
>>> datetime (2009, 11, 27, microsecond=100, tzinfo=TZ()) .isoformat ()

'2009-11-27T00:00:00.000100-06:39"

The optional argument tfimespec specifies the number of additional components of the time to include (the
default is 'auto'). It can be one of the following:

e 'auto': Same as 'seconds"' if microsecondis 0, same as 'microseconds’' otherwise.
e 'hours"': Include the hour in the two-digit HH format.

e 'minutes': Include hour and minute in HH : MM format.

e 'seconds': Include hour, minute, and second in HH:MM: SS format.

e 'milliseconds': Include full time, but truncate fractional second part to milliseconds. HH:MM: SS.
sss format.

e 'microseconds': Include full time in HH:MM: SS. f£f £ ff format.

© Note

Excluded time components are truncated, not rounded.

valueError will be raised on an invalid timespec argument:

>>> from datetime import datetime

>>> datetime.now () .isoformat (timespec="minutes"')
'2002-12-25T00:00"

>>> dt = datetime (2015, 1, 1, 12, 30, 59, 0)

>>> dt.isoformat (timespec="'microseconds"')
'2015-01-01T12:30:59.000000"

. J

Changed in version 3.6: Added the timespec parameter.

()
For a datetime instance d, str (d) is equivalent to d.isoformat (' ').

datetime.__str

datetime.ctime ()

Return a string representing the date and time:

>>> from datetime import datetime
>>> datetime (2002, 12, 4, 20, 30, 40).ctime()
'Wed Dec 4 20:30:40 2002"'

The output string will not include time zone information, regardless of whether the input is aware or naive.

d.ctime () is equivalent to:

[time.ctime(time.mktime(d.timetuple()))

on platforms where the native C ctime () function (which time.ctime () invokes, but which datetime.
ctime () does not invoke) conforms to the C standard.
datetime.strftime (format)

Return a string representing the date and time, controlled by an explicit format string. See also strftime() and
strptime() Behavior and datetime.isoformat ().

222 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

datetime._ format_ (format)

Same as datetime.strftime (). This makes it possible to specify a format string for a datet ime object
in formatted string literals and when using str. format (). See also strftime() and strptime() Behavior and
datetime.isoformat ().

Examples of Usage: datetime

Examples of working with datet ime objects:

>>> from datetime import datetime, date, time, timezone

>>> # Using datetime.combine ()

>>> d = date (2005, 7, 14)

>>> t = time (12, 30)

>>> datetime.combine (d, t)
datetime.datetime (2005, 7, 14, 12, 30)

>>> # Using datetime.now ()

>>> datetime.now ()

datetime.datetime (2007, 12, 6, 16, 29, 43, 79043) # GMT +1

>>> datetime.now (timezone.utc)

datetime.datetime (2007, 12, 6, 15, 29, 43, 79060, tzinfo=datetime.timezone.utc)

>>> # Using datetime.strptime ()

>>> dt = datetime.strptime ("21/11/06 16:30", "2d/%m/Sy $%H:%M")
>>> dt

datetime.datetime (2006, 11, 21, 16, 30)

>>> # Using datetime.timetuple () to get tuple of all attributes
>>> tt = dt.timetuple ()
>>> for it in tt:

print (it)
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1lst January
-1 # dst - method tzinfo.dst () returned None

>>> # Date in ISO format
>>> ic = dt.isocalendar ()
>>> for it in ic:

print (it)
2006 # ISO year
47 # ISO week
2 # ISO weekday

>>> # Formatting a datetime

>>> dt.strftime ("$A, $d. %B %Y $I:%M%p")
'Tuesday, 21. November 2006 04:30PM'
>>> 'The {1} is {0:%d}, the {2} is {0:%B}, the {3} is {0:%I:%M%p}."'.format (dt, "day

(‘}", "month", "time")
'The day is 21, the month is November, the time is 04:30PM.'

8.1. datetime — Basic date and time types 223

The Python Library Reference, Release 3.13.1

The example below defines a t zinfo subclass capturing time zone information for Kabul, Afghanistan, which used
+4 UTC until 1945 and then +4:30 UTC thereafter:

from datetime import timedelta, datetime, tzinfo, timezone

class KabulTz (tzinfo) :
Kabul used +4 until 1945, when they moved to +4:30
UTC_MOVE_DATE = datetime (1944, 12, 31, 20, tzinfo=timezone.utc)

def utcoffset (self, dt):
if dt.year < 1945:
return timedelta (hours=4)
elif (1945, 1, 1, 0, 0) <= dt.timetuple()[:5] < (1945, 1, 1, 0, 30):
An ambiguous ("imaginary'") half-hour range representing
a 'fold' in time due to the shift from +4 to +4:30.
If dt falls in the imaginary range, use fold to decide how
to resolve. See PEP495.
return timedelta (hours=4, minutes= (30 if dt.fold else 0))
else:
return timedelta (hours=4, minutes=30)

def fromutc(self, dt):
Follow same validations as in datetime.tzinfo
if not isinstance(dt, datetime) :
raise TypeError ("fromutc() requires a datetime argument")
if dt.tzinfo is not self:
raise ValueError("dt.tzinfo is not self")

A custom implementation is required for fromutc as

the input to this function is a datetime with utc values

but with a tzinfo set to self.

See datetime.astimezone or fromtimestamp.

if dt.replace(tzinfo=timezone.utc) >= self.UTC_MOVE_DATE:
return dt + timedelta (hours=4, minutes=30)

else:
return dt + timedelta (hours=4)

def dst(self, dt):
Kabul does not observe daylight saving time.
return timedelta (0)

def tzname (self, dt):
if dt >= self.UTC_MOVE_DATE:
return "+04:30"
return "+04"

Usage of KabulTz from above:

>>> tzl = KabulTz ()

>>> # Datetime before the change

>>> dtl = datetime (1900, 11, 21, 16, 30, tzinfo=tzl)
>>> print (dtl.utcoffset ())

4:00:00

>>> # Datetime after the change
>>> dt2 = datetime (2006, 6, 14, 13, 0, tzinfo=tzl)
>>> print (dt2.utcoffset())
(continues on next page)

224 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)
4:30:00

>>> # Convert datetime to another time zone

>>> dt3 = dt2.astimezone (timezone.utc)

>>> dt3

datetime.datetime (2006, 6, 14, 8, 30, tzinfo=datetime.timezone.utc)
>>> dt2

datetime.datetime (2006, 6, 14, 13, 0, tzinfo=KabulTz())

>>> dt2 == dt3

True

8.1.7 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

class datetime.time (hour=0, minute=0, second=0, microsecond=0, tzinfo=None, *, fold=0)

All arguments are optional. fzinfo may be None, or an instance of a ¢ z i nfo subclass. The remaining arguments
must be integers in the following ranges:

e 0 <= hour < 24,

e 0 <= minute < 60,

e 0 <= second < 60,

e 0 <= microsecond < 1000000,
e fold in [0, 1].

If an argument outside those ranges is given, ValueError is raised. All default to O except #zinfo, which
defaults to None.

Class attributes:
time.min

The earliest representable ¢ ime, time (0, 0, 0, 0).
time.max

The latest representable t ime, time (23, 59, 59, 999999).
time.resolution

The smallest possible difference between non-equal ¢ i me objects, t imedelta (microseconds=1), although
note that arithmetic on ¢ ime objects is not supported.

Instance attributes (read-only):
time.hour

In range (24).
time.minute

In range (60).
time.second

In range (60).
time.microsecond

In range (1000000).
time.tzinfo

The object passed as the tzinfo argument to the ¢ ime constructor, or None if none was passed.

8.1. datetime — Basic date and time types 225

The Python Library Reference, Release 3.13.1

time.fold

In [0, 17. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs when
clocks are rolled back at the end of daylight saving time or when the UTC offset for the current zone is decreased
for political reasons.) The values 0 and 1 represent, respectively, the earlier and later of the two moments with

the same wall time representation.

Added in version 3.6.

t ime objects support equality and order comparisons, where a is considered less than b when a precedes b in time.

Naive and aware time objects are never equal. Order comparison between naive and aware time objects raises

TypeError

If both comparands are aware, and have the same t zinfo attribute, the t zinfo and £fold attributes are ignored and
the base times are compared. If both comparands are aware and have different t zinfo attributes, the comparands
are first adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()).

Changed in version 3.3: Equality comparisons between aware and naive t i me instances don’t raise TypeError.

In Boolean contexts, a ¢ ime object is always considered to be true.

Changed in version 3.5: Before Python 3.5, a t ime object was considered to be false if it represented midnight in
UTC. This behavior was considered obscure and error-prone and has been removed in Python 3.5. See bpo-13936

for full details.
Other constructor:

classmethod time.fromisoformat (fime_string)

Return a t ime corresponding to a time_string in any valid ISO 8601 format, with the following exceptions:

1. Time zone offsets may have fractional seconds.

2. The leading T, normally required in cases where there may be ambiguity between a date and a time, is

not required.

3. Fractional seconds may have any number of digits (anything beyond 6 will be truncated).

4. Fractional hours and minutes are not supported.

Examples:

>>> from datetime import time

>>> time.fromisoformat ('04:23:01")
datetime.time (4, 23, 1)

>>> time.fromisoformat ('T04:23:01")
datetime.time (4, 23, 1)

>>> time.fromisoformat ('T042301")
datetime.time (4, 23, 1)

>>> time.fromisoformat ('04:23:01.000384")
datetime.time (4, 23, 1, 384)

>>> time.fromisoformat ('04:23:01,000384")
datetime.time (4, 23, 1, 384)

>>> time.fromisoformat ('04:23:01+04:00")

—~timedelta (seconds=14400)))
>>> time.fromisoformat ('04:23:012")

>>> time.fromisoformat ('04:23:01+00:00")

L

datetime.time (4, 23, 1, tzinfo=datetime.timezone (datetime.

datetime.time (4, 23, 1, tzinfo=datetime.timezone.utc)

datetime.time (4, 23, 1, tzinfo=datetime.timezone.utc)

Added in version 3.7.

Changed in version 3.11: Previously, this method only supported formats that could be emitted by time.

isoformat ().

Instance methods:

226

Chapter 8. Data Types

https://bugs.python.org/issue?@action=redirect&bpo=13936

The Python Library Reference, Release 3.13.1

time.replace (hour=self.hour, minute=self.minute, second=self.second, microsecond=self.microsecond,
tzinfo=self.tzinfo, *, fold=0)

Return a t ime with the same value, except for those attributes given new values by whichever keyword argu-
ments are specified. Note that t zinfo=None can be specified to create a naive time from an aware t ime,
without conversion of the time data.

t ime objects are also supported by generic function copy . replace ().
Changed in version 3.6: Added the fold parameter.

time.isoformat (fimespec=auto’)

Return a string representing the time in ISO 8601 format, one of:
e HH:MM:SS.ffffff, if microsecondis not0
e HH:MM:SS, if microsecondis O
e HH:MM:SS.ffffff+HH:MM[:SS[.ffffff]], if utcorfset () does not return None
e HH:MM:SS+HH:MM[:SS[.fff£fff]],if microsecondisQand utcoffset () does not return None

The optional argument fimespec specifies the number of additional components of the time to include (the
default is 'auto'). It can be one of the following:

e 'auto': Same as 'seconds' if microsecondis 0, same as 'microseconds' otherwise.
e 'hours': Include the hour in the two-digit HH format.

e 'minutes': Include hour and minute in HH : MM format.

e 'seconds': Include hour, minute, and second in HH:MM: SS format.

e 'milliseconds': Include full time, but truncate fractional second part to milliseconds. HH:MM: SS.
sss format.

e 'microseconds': Include full time in HH:MM: SS. f££ £ £ £ format.

© Note

Excluded time components are truncated, not rounded.

valueError will be raised on an invalid timespec argument.

Example:

>>> from datetime import time

>>> time (hour=12, minute=34, second=56, microsecond=123456) .isoformat (timespec=
—'minutes')

'12:34"

>>> dt = time (hour=12, minute=34, second=56, microsecond=0)

>>> dt.isoformat (timespec="microseconds"')

'12:34:56.000000"

>>> dt.isoformat (timespec="'auto')

'12:34:56"

L J

Changed in version 3.6: Added the fimespec parameter.
time.__str

()
For a time t, str (t) is equivalent to t . isoformat ().

time.strftime (format)

Return a string representing the time, controlled by an explicit format string. See also strftime() and strptime()
Behavior and time. isoformat ().

8.1. datetime — Basic date and time types 227

The Python Library Reference, Release 3.13.1

time._ format__ (format)

Same as time.strftime (). This makes it possible to specify a format string for a ¢ ime object in format-
ted string literals and when using str. format (). See also strftime() and strptime() Behavior and time.
isoformat ().

time.utcoffset ()

If tzinfois None, returns None, else returns self.tzinfo.utcoffset (None), and raises an exception
if the latter doesn’t return None or a t imedelta object with magnitude less than one day.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

time.dst ()

If tzinfo is None, returns None, else returns self.tzinfo.dst (None), and raises an exception if the
latter doesn’t return None, or a t imedelta object with magnitude less than one day.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

time.tzname ()

If tzinfois None, returns None, else returns self.tzinfo.tzname (None), Or raises an exception if the
latter doesn’t return None or a string object.

Examples of Usage: time

Examples of working with a t i me object:

>>> from datetime import time, tzinfo, timedelta
>>> class TZ1l (tzinfo):
def utcoffset (self, dt):
return timedelta (hours=1)
def dst (self, dt):
return timedelta (0)
def tzname (self,dt):
return "+01:00"
def _ repr_ (self):
return f"{self. class__ . name__ }()"
>>> t = time (12, 10, 30, tzinfo=TZ1())
>>> t
datetime.time (12, 10, 30, tzinfo=TZ1())
>>> t.isoformat ()
'12:10:30+01:00"
>>> t.dst ()
datetime.timedelta (0)
>>> t.tzname ()
'+01:00"
>>> t.strftime ("%$H:%M:%S $Z2")
'12:10:30 +01:00'"'
>>> 'The is {:%H:%M}.".format ("time", t)
'The time is 12:10."

8.1.8 tzinfo Objects

class datetime.tzinfo

This is an abstract base class, meaning that this class should not be instantiated directly. Define a subclass of
tzinfo to capture information about a particular time zone.

An instance of (a concrete subclass of) tzinfo can be passed to the constructors for datetime and time
objects. The latter objects view their attributes as being in local time, and the ¢ z i n o object supports methods
revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative to a date or
time object passed to them.

228 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

You need to derive a concrete subclass, and (at least) supply implementations of the standard ¢ z i n fo methods
needed by the datet ime methods you use. The datetime module provides timezone, a simple concrete
subclass of tzinfo which can represent time zones with fixed offset from UTC such as UTC itself or North
American EST and EDT.

Special requirement for pickling: A tzinfo subclass must have an __init__ () method that can be called
with no arguments, otherwise it can be pickled but possibly not unpickled again. This is a technical requirement
that may be relaxed in the future.

A concrete subclass of tzinfo may need to implement the following methods. Exactly which methods are
needed depends on the uses made of aware datet ime objects. If in doubt, simply implement all of them.

tzinfo.utcoffset (df)

Return offset of local time from UTC, as a t imedelta object that is positive east of UTC. If local time is
west of UTC, this should be negative.

This represents the rotal offset from UTC; for example, if a tzinfo object represents both time zone
and DST adjustments, utcoffset () should return their sum. If the UTC offset isn’t known, return
None. Else the value returned must be a timedelta object strictly between -timedelta (hours=24)
and timedelta (hours=24) (the magnitude of the offset must be less than one day). Most implementations
of utcorrset () will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst (dt) # daylight-aware class

If utcoffset () does not return None, dst () should not return None either.
The default implementation of utcoffset () raises Not ImplementedError.
Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

tzinfo.dst (df)

Return the daylight saving time (DST) adjustment, as a t imedelta object or None if DST information isn’t
known.

Return timedelta (0) if DST is not in effect. If DST is in effect, return the offset as a t imedelta object
(see utcorrset () for details). Note that DST offset, if applicable, has already been added to the UTC offset
returned by utcoffset (), so there’s no need to consult dst () unless you're interested in obtaining DST info
separately. For example, datetime.timetuple () callsits tzinfo attribute’s dst () method to determine
how the tm_isdst flag should be set, and tzinfo. fromutc () calls dst () to account for DST changes
when crossing time zones.

An instance #z of a tzinfo subclass that models both standard and daylight times must be consistent in this

sense:
tz.utcoffset (dt) - tz.dst (dt)
must return the same result for every datetime df with dt .tzinfo == tz. For sane tzinfo subclasses,

this expression yields the time zone’s “standard offset”, which should not depend on the date or the time, but
only on geographic location. The implementation of datetime.astimezone () relies on this, but cannot
detect violations; it’s the programmer’s responsibility to ensure it. If a tzinfo subclass cannot guarantee
this, it may be able to override the default implementation of tzinfo. fromutc () to work correctly with
astimezone () regardless.

Most implementations of dst () will probably look like one of these two:

def dst (self, dt):
a fixed-offset class: doesn't account for DST
return timedelta (0)

or:

8.1. datetime — Basic date and time types 229

The Python Library Reference, Release 3.13.1

rdef dst (self, dt):
Code to set dston and dstoff to the time zone's DST
transition times based on the input dt.year, and expressed
in standard local time.

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta (hours=1)

else:
return timedelta (0)

The default implementation of dst () raises Not ImplementedError.
Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

tzinfo.tzname (dt)

Return the time zone name corresponding to the datet ime object dt, as a string. Nothing about string names is
defined by the datet ime module, and there’s no requirement that it mean anything in particular. For example,
"GMT", "UTC", "-500", "-5:00", "EDT", "US/Eastern", "America/New York" are all valid replies.
Return None if a string name isn't known. Note that this is a method rather than a fixed string primarily
because some tzinfo subclasses will wish to return different names depending on the specific value of dt
passed, especially if the ¢ zinfo class is accounting for daylight time.

The default implementation of tzname () raises Not ImplementedError.

These methods are called by a datetime or time object, in response to their methods of the same names. A
datet ime object passes itself as the argument, and a t i me object passes None as the argument. A ¢ zinrfo subclass’s
methods should therefore be prepared to accept a drf argument of None, or of class datet ime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None is
appropriate if the class wishes to say that time objects don’t participate in the tzinfo protocols. It may be more
useful for utcoffset (None) to return the standard UTC offset, as there is no other convention for discovering the
standard offset.

When a datetime object is passed in response to a datetime method, dt.tzinfo is the same object as self.
tzinfo methods can rely on this, unless user code calls tzinfo methods directly. The intent is that the tzinfo
methods interpret dt as being in local time, and not need worry about objects in other time zones.

There is one more ¢ zinfo method that a subclass may wish to override:

tzinfo.fromute (df)

This is called from the default datetime.astimezone () implementation. When called from that, dt.
tzinfo is self, and df’s date and time data are to be viewed as expressing a UTC time. The purpose of
fromutc () is to adjust the date and time data, returning an equivalent datetime in self’s local time.

Most t zinfo subclasses should be able to inherit the default rromutc () implementation without problems.
It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard and daylight
time, and the latter even if the DST transition times differ in different years. An example of a time zone the
default fromutc () implementation may not handle correctly in all cases is one where the standard offset
(from UTC) depends on the specific date and time passed, which can happen for political reasons. The default
implementations of astimezone () and fromutc () may not produce the result you want if the result is one
of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the default fromutc () implementation acts like:

def fromutc(self, dt):
raise ValueError error if dt.tzinfo is not self
dtoff = dt.utcoffset ()
dtdst = dt.dst ()
raise ValueError if dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self's standard offset
if delta:

(continues on next page)

230 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

dt += delta # convert to standard local time
dtdst = dt.dst ()
raise ValueError if dtdst is None
if dtdst:
return dt + dtdst
else:
return dt

In the following tzinfo_examples.py file there are some examples of zinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta (0)
HOUR = timedelta (hours=1)
SECOND = timedelta (seconds=1)

A class capturing the platform's idea of local time.
(May result in wrong values on historical times in

timezones where UTC offset and/or the DST rules had
changed in the past.)

import time as _time

STDOFFSET = timedelta (seconds = —_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta(seconds = —_time.altzone)
else:

DSTOFFSET = STDOFFSET

DSTDIFF = DSTOFFSET - STDOFFSET

class LocalTimezone (tzinfo) :

def fromutc(self, dt):
assert dt.tzinfo is self
stamp = (dt - datetime (1970, 1, 1, tzinfo=self)) // SECOND
args = _time.localtime (stamp) [:6]
dst_diff = DSTDIFF // SECOND
Detect fold
fold = (args == _time.localtime (stamp - dst_diff))
return datetime (*args, microsecond=dt.microsecond,
tzinfo=self, fold=fold)

def utcoffset (self, dt):
if self._isdst (dt):
return DSTOFFSET
else:
return STDOFFSET

def dst(self, dt):
if self. isdst(dt):
return DSTDIFF
else:
return ZERO

def tzname (self, dt):
return _time.tzname[self._ isdst (dt)]
(continues on next page)

8.1. datetime — Basic date and time types 231

The Python Library Reference, Release 3.13.1

(continued from previous page)

def _isdst(self, dt):
tt = (dt.year, dt.month, dt.day,
dt .hour, dt.minute, dt.second,
dt .weekday (), 0, 0)
stamp = _time.mktime (tt)
tt = _time.localtime (stamp)
return tt.tm isdst > 0

Local = LocalTimezone ()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after (dt) :
days_to_go = 6 — dt.weekday ()
if days_to_go:
dt += timedelta (days_to_go)
return dt

US DST Rules

#

#

This is a simplified (i.e., wrong for a few cases) set of rules for US

DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):

http://www.twinsun.com/tz/tz-1ink.htm

https://sourceforge.net/projects/pytz/ (might not be up-to-date)

#

#

#

In the US, since 2007, DST starts at 2am (standard time) on the second
Sunday in March, which is the first Sunday on or after Mar 8.
DSTSTART_2007 = datetime(l, 3, 8, 2)
and ends at 2am (DST time) on the first Sunday of Nov.
DSTEND_2007 = datetime(l, 11, 1, 2)
From 1987 to 2006, DST used to start at 2am (standard time) on the first
Sunday in April and to end at 2am (DST time) on the last
Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime (1, 4, 1, 2)
DSTEND_1987_2006 = datetime (1, 10, 25, 2)
From 1967 to 1986, DST used to start at 2am (standard time) on the last
Sunday in April (the one on or after April 24) and to end at 2am (DST time)
on the last Sunday of October, which is the first Sunday
on or after Oct 25.
DSTSTART_1967_1986 = datetime(l, 4, 24, 2)
DSTEND_1967_1986 = DSTEND_1987_2006

def us_dst_range (year) :
Find start and end times for US DST. For years before 1967, return
start = end for no DST.
if 2006 < year:
dststart, dstend = DSTSTART_2007, DSTEND_2007
elif 1986 < year < 2007:
dststart, dstend = DSTSTART_1987_2006, DSTEND_1987_2006
elif 1966 < year < 1987:
dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986
else:

(continues on next page)

232 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

return (datetime (year, 1, 1),) * 2
start = first_sunday_on_or_after (dststart.replace (year=year))

end = first_sunday_on_or_after (dstend.replace (year=year))
return start, end

class USTimeZone (tzinfo) :

def _ init__ (self, hours, reprname, stdname, dstname) :
self.stdoffset = timedelta (hours=hours)
self.reprname = reprname
self.stdname = stdname
self.dstname = dstname

def _ repr_ (self):
return self.reprname

def tzname (self, dt):
if self.dst (dt):
return self.dstname
else:
return self.stdname

def utcoffset (self, dt):
return self.stdoffset + self.dst (dt)

def dst(self, dt):

if dt is None or dt.tzinfo is None:
An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc () implementation (called by the default astimezone ()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

start, end = us_dst_range (dt.year)

Can't compare naive to aware objects, so strip the timezone from

dt first.

dt = dt.replace (tzinfo=None)

if start + HOUR <= dt < end - HOUR:
DST is in effect.
return HOUR

if end - HOUR <= dt < end:
Fold (an ambiguous hour): use dt.fold to disambiguate.
return ZERO if dt.fold else HOUR

if start <= dt < start + HOUR:
Gap (a non-existent hour): reverse the fold rule.
return HOUR if dt.fold else ZERO

DST is off.

return ZERO

def fromutc(self, dt):
assert dt.tzinfo is self
start, end = us_dst_range (dt.year)
start = start.replace(tzinfo=self)
end = end.replace (tzinfo=self)

(continues on next page)

8.1. datetime — Basic date and time types 233

The Python Library Reference, Release 3.13.1

(continued from previous page)

std_time = dt + self.stdoffset
dst_time = std_time + HOUR
if end <= dst_time < end + HOUR:
Repeated hour
return std_time.replace(fold=1)
if std_time < start or dst_time >= end:
Standard time
return std_time
if start <= std_time < end - HOUR:
Daylight saving time
return dst_time

Eastern = USTimeZone (-5, "Eastern", "EST", "EDT")
6, "Central", "CST", "CDT")
7, "Mountain", "MST", "MDT")
8, "Pacific", "PST", "PDT")

Mountain = USTimeZone (—

Pacific = USTimeZone

(
Central = USTimeZone (
(
(

Note that there are unavoidable subtleties twice per year in a tzinfo subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT begins
the minute after 1:59 (EST) on the second Sunday in March, and ends the minute after 1:59 (EDT) on the first Sunday
in November:

UTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM O:MM 1:MM 2:MM 3:MM
EDT 23:MM O:MM 1:MM 2:MM 3:MM 4:MM

start 22:MM 23:MM O:MM 1:MM 3:MM 4:MM

end 23:MM O:MM 1:MM 1:MM 2:MM 3:MM

J

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM
doesn’t really make sense on that day, so astimezone (Eastern) won't deliver a result with hour == 2 on the
day DST begins. For example, at the Spring forward transition of 2016, we get:

>>> from datetime import datetime, timezone
>>> from tzinfo_examples import HOUR, Eastern
>>> u0 = datetime (2016, 3, 13, 5, tzinfo=timezone.utc)
>>> for i in range (4):
u = u0 + i*HOUR
t = u.astimezone (Eastern)
print (u.time (), 'UTC ="', t.time(), t.tzname())

05:00:00 UTC = 00:00:00 EST
06:00:00 UTC = 01:00:00 EST
07:00:00 UTC = 03:00:00 EDT
08:00:00 UTC = 04:00:00 EDT

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unambigu-
ously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the day
daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again. Local
times of the form 1:MM are ambiguous. ast imezone () mimics the local clock’s behavior by mapping two adjacent
UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM and 6:MM both
map to 1:MM when converted to Eastern, but earlier times have the ro1d attribute set to O and the later times have
it set to 1. For example, at the Fall back transition of 2016, we get:

234 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

>>> u0 = datetime (2016, 11, 6, 4, tzinfo=timezone.utc)
>>> for i in range (4):
u = u0 + i*HOUR
t = u.astimezone (Eastern)
print (u.time(), 'UTIC =', t.time(), t.tzname(), t.fold)

04:00:00 UTC = 00:00:00 EDT
05:00:00 UTC = 01:00:00 EDT
06:00:00 UTC = 01:00:00 EST
07:00:00 UTIC = 02:00:00 EST

o = O O

Note that the datet ime instances that differ only by the value of the fo1d attribute are considered equal in com-
parisons.

Applications that can’t bear wall-time ambiguities should explicitly check the value of the fo1d attribute or avoid
using hybrid ¢ zinfo subclasses; there are no ambiguities when using ¢t imezone, or any other fixed-offset t zinfo
subclass (such as a class representing only EST (fixed offset -5 hours), or only EDT (fixed offset -4 hours)).

> See also

zoneinfo
The datetime module has a basic timezone class (for handling arbitrary fixed offsets from
UTC) and its t imezone. utc attribute (a UTC timezone instance).

zoneinfo brings the JANA time zone database (also known as the Olson database) to Python,
and its usage is recommended.

TANA time zone database
The Time Zone Database (often called tz, tzdata or zoneinfo) contains code and data that represent the
history of local time for many representative locations around the globe. It is updated periodically to
reflect changes made by political bodies to time zone boundaries, UTC offsets, and daylight-saving rules.

8.1.9 timezone Objects

The ¢ imezone class is a subclass of ¢ zinfo, each instance of which represents a time zone defined by a fixed offset
from UTC.

Objects of this class cannot be used to represent time zone information in the locations where different offsets are
used in different days of the year or where historical changes have been made to civil time.

class datetime.timezone (offset, name=None)

The offset argument must be specified as a t imedelta object representing the difference between the local
time and UTC. It must be strictly between -t imedelta (hours=24) and timedelta (hours=24), other-
wise ValueError is raised.

The name argument is optional. If specified it must be a string that will be used as the value returned by the
datetime.tzname () method.

Added in version 3.2.
Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

timezone.utcoffset (df)

Return the fixed value specified when the ¢ imezone instance is constructed.

The dt argument is ignored. The return value is a t imedelta instance equal to the difference between the
local time and UTC.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

8.1. datetime — Basic date and time types 235

https://www.iana.org/time-zones

The Python Library Reference, Release 3.13.1

timezone.tzname (df)

Return the fixed value specified when the ¢ imezone instance is constructed.

If name is not provided in the constructor, the name returned by t zname (dt) is generated from the value of
the of fset as follows. If offser is timedelta (0), the name is “UTC”, otherwise it is a string in the format
UTC+HH: MM, where * is the sign of offset, HH and MM are two digits of offset.hours and offset.
minutes respectively.

Changed in version 3.6: Name generated from offset=timedelta (0) is now plain 'UTC', not
'UTC+00:00".

timezone.dst (df)

Always returns None.

timezone.fromutc (df)

Return dt + offset. The dr argument must be an aware datet ime instance, with tzinfo set to self.
Class attributes:

timezone.utc

The UTC time zone, t imezone (timedelta (0)).

8.1.10 strftime () and strptime () Behavior

date, datetime, and t ime objects all support a strftime (format) method, to create a string representing the
time under the control of an explicit format string.

Conversely, the datetime.strptime () class method creates a datet ime object from a string representing a date
and time and a corresponding format string.

The table below provides a high-level comparison of strftime () versus strptime ():

strftime strptime

Usage Convert object to a string according to a Parse a string into a datet ime object given a corre-
given format sponding format

Type of Instance method Class method

method

Method of date; datetime; time datetime

Signature strftime (format) strptime (date_string, format)

strftime () and strptime () Format Codes

These methods accept format codes that can be used to parse and format dates:

>>> datetime.strptime ('31/01/22 23:59:59.999999"',
. '8d/%m/%y $H:%M:%S.)
datetime.datetime (2022, 1, 31, 23, 59, 59, 999999)
>>> _.strftime (' b %Y, %I:%M3p')

'Mon 31 Jan 2022, 11:59pPM'

The following is a list of all the format codes that the 1989 C standard requires, and these work on all platforms with
a standard C implementation.

236 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

Directive Meaning Example Notes
%a Weekday as locale’s ab- @8
breviated name. Sun, Mon, ... Sat
(en_US);
So, Mo, ..., Sa (de_DE)
SA Weekday as locale’s full (D)
fame. Sunday, Monday, ...,
Saturday (en_US);
Sonntag, Montag, ...,
Samstag (de_DE)
Sw Weekday as a decimal O0,1,...,6
number, where 0 is Sun-
day and 6 is Saturday.
%d Day of the month as 01,02, ...,31)
a zero-padded decimal
number.
b Month as locale’s abbrevi- (1)
ated name. Jan, Feb, ..., Dec
(en_US);
Jan, Feb, ..., Dez
(de_DE)
3B Month as locale’s full @))]
name.
January, February, ...,
December (en_US);
Januar, Februar, ...,
Dezember (de_DE)
$m Month as a zero-padded 01,02, ..., 12 ©)
decimal number.
Sy Year without century as 00, 01, ..., 99 ©)]
a zero-padded decimal
number.
SY Year with century as a 0001, 0002, ..., 2013, (2)
decimal number. 2014, ..., 9998, 9999
$H Hour (24-hour clock) as 00,01, ..., 23 ©)]
a zero-padded decimal
number.
$1 Hour (12-hour clock) as 01,02, ..., 12 ©)]
a zero-padded decimal
number.
Sp Locale’s equivalent of ei- D, 3)
ther AM or PM. AM. PM (en_US);
am, pm (de_DE)
M Minute as a zero-padded 00, 01, ..., 59)
decimal number.
%S Second as a zero-padded 00, 01, ..., 59 @), 9
decimal number.
Sf Microsecond as a decimal 000000, 000001, ..., (5)
number, zero-padded to 6 999999
digits.
8.1. datetime — Basic daterand dimertypesr]] +1030, 4063415, - 237
(empty string if the object 030712.345216
is naive).
%7 Time zone name (empty (empty), UTC, GMT (6)

The Python Library Reference, Release 3.13.1

Several additional directives not required by the C89 standard are included for convenience. These parameters all
correspond to ISO 8601 date values.

Di- Meaning Example Notes

rec-

tive

%G ISO 8601 year with century representing the year that contains 0001, 0002, ..., 2013, 2014, ..., (8)
the greater part of the ISO week (3V). 9998, 9999

Su ISO 8601 weekday as a decimal number where 1 is Monday. 1,2,...,7

SV ISO 8601 week as a decimal number with Monday as the first 01, 02, ..., 53 (8),
day of the week. Week 01 is the week containing Jan 4. ©)]

$:z UTC offset in the form +HH:MM[:SS[.£f£££££]] (empty (empty), +00:00, -04:00, +10:30, (6)
string if the object is naive). +06:34:15, -03:07:12.345216

These may not be available on all platforms when used with the st r7time () method. The ISO 8601 year and ISO
8601 week directives are not interchangeable with the year and week number directives above. Calling st rptime ()
with incomplete or ambiguous ISO 8601 directives will raise a ValueError.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime () function, and platform variations are common. To see the full set of format codes supported on your
platform, consult the st rrtime (3) documentation. There are also differences between platforms in handling of
unsupported format specifiers.

Added in version 3.6: %G, u and %V were added.

Added in version 3.12: % : z was added.

Technical Detail

Broadly speaking, d.strftime (fmt) acts like the time module’s time.strftime (fmt, d.timetuple())
although not all objects support a t imetuple () method.

Forthe datetime. st rptime () class method, the default valueis 1900-01-01T00:00:00.000: any components
not specified in the format string will be pulled from the default value.*

Using datetime.strptime (date_string, format) is equivalent to:

[datetime (* (time.strptime (date_string, format) [0:6]))

except when the format includes sub-second components or time zone offset information, which are supported in
datetime.strptime but are discarded by time.strptime.

For t ime objects, the format codes for year, month, and day should not be used, as t ime objects have no such values.
If they’re used anyway, 1900 is substituted for the year, and 1 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as date
objects have no such values. If they’re used anyway, 0 is substituted for them.

For the same reason, handling of format strings containing Unicode code points that can’t be represented in the
charset of the current locale is also platform-dependent. On some platforms such code points are preserved intact in
the output, while on others st rftime may raise UnicodeError or return an empty string instead.

Notes:

(1) Because the format depends on the current locale, care should be taken when making assumptions about the
output value. Field orderings will vary (for example, “month/day/year” versus “day/month/year”), and the
output may contain non-ASCII characters.

(2) The strptime () method can parse years in the full [1, 9999] range, but years < 1000 must be zero-filled to
4-digit width.

Changed in version 3.2: In previous versions, st rftime () method was restricted to years >= 1900.

4 Passing datetime.strptime ('Feb 29', '$b 3d') will fail since 1900 is not a leap year.

238 Chapter 8. Data Types

https://manpages.debian.org/strftime(3)

The Python Library Reference, Release 3.13.1

Changed in version 3.3: In version 3.2, st rft ime () method was restricted to years >= 1000.

(3) When used with the st rpt ime () method, the $p directive only affects the output hour field if the %1 directive
is used to parse the hour.

(4) Unlike the t ime module, the datetime module does not support leap seconds.

(5) When used with the st rptime () method, the % £ directive accepts from one to six digits and zero pads on
the right. %£ is an extension to the set of format characters in the C standard (but implemented separately in
datetime objects, and therefore always available).

(6) For a naive object, the %z, %: z and $z format codes are replaced by empty strings.
For an aware object:

%z

utcoffset () is transformed into a string of the form +tHHMM[SS[.£f£f££££]], where HH is a 2-digit
string giving the number of UTC offset hours, MM is a 2-digit string giving the number of UTC offset
minutes, SS is a 2-digit string giving the number of UTC offset seconds and f££££f is a 6-digit string
giving the number of UTC offset microseconds. The £ £ £ £ ff part is omitted when the offset is a whole
number of seconds and both the f£ffff and the ss part is omitted when the offset is a whole number
of minutes. For example, if utcoffset () returns timedelta (hours=-3, minutes=-30), %z is
replaced with the string '-0330".

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

Changed in version 3.7: When the %z directive is provided to the st rptime () method, the UTC offsets can
have a colon as a separator between hours, minutes and seconds. For example, '+01:00:00" will be parsed
as an offset of one hour. In addition, providing 'z is identical to '+00:00".

%$:z
Behaves exactly as %z, but has a colon separator added between hours, minutes and seconds.
$Z

In strrtime (), %2 is replaced by an empty string if ¢ zname () returns None; otherwise %z is replaced
by the returned value, which must be a string.

strptime () only accepts certain values for %2:
1. any value in time.tzname for your machine’s locale
2. the hard-coded values UTC and GMT

So someone living in Japan may have JsT, UTC, and GMT as valid values, but probably not EST. It will
raise ValueError for invalid values.

Changed in version 3.2: When the %z directive is provided to the st rpt ime () method, an aware datetime
object will be produced. The tzinfo of the result will be set to a t i mezone instance.

(7) When used with the st rpt ime () method, $U and %W are only used in calculations when the day of the week
and the calendar year (%Y) are specified.

(8) Similar to %U and %W, %V is only used in calculations when the day of the week and the ISO year (3G) are
specified in a st rpt ime () format string. Also note that $G and %Y are not interchangeable.

(9) When used with the strptime () method, the leading zero is optional for formats $d, $m, %H, %I, %M, %S,
%9, U, W, and V. Format %y does require a leading zero.

(10) When parsing a month and day using st rptime (), always include a year in the format. If the value you need
to parse lacks a year, append an explicit dummy leap year. Otherwise your code will raise an exception when
it encounters leap day because the default year used by the parser is not a leap year. Users run into this bug
every four years...

>>> month_day = "02/29"
>>> datetime.strptime (f" {month_day};1984", "%m/%d;%Y") # No leap year bug.
datetime.datetime (1984, 2, 29, 0, 0)

8.1. datetime — Basic date and time types 239

The Python Library Reference, Release 3.13.1

Deprecated since version 3.13, will be removed in version 3.15: strptime () calls using a format string
containing a day of month without a year now emit a DeprecationWarning. In3.15 or later we may change
this into an error or change the default year to a leap year. See gh-70647.

8.2 zoneinfo — IANA time zone support

Added in version 3.9.

Source code: Lib/zoneinfo

The zoneinfo module provides a concrete time zone implementation to support the IJANA time zone database as
originally specified in PEP 615. By default, zoneinfo uses the system’s time zone data if available; if no system
time zone data is available, the library will fall back to using the first-party tzdata package available on PyPI.

> See also

Module: datetime
Provides the t ime and datet ime types with which the Zone 7nfo class is designed to be used.

Package tzdata
First-party package maintained by the CPython core developers to supply time zone data via PyPI.

Availability: not WASI.

This module does not work or is not available on WebAssembly. See WebAssembly platforms for more information.

8.2.1 Using zonelInfo

ZoneInfoisaconcrete implementation of the datetime. t zinfo abstract base class, and is intended to be attached
to tzinfo, either via the constructor, the datetime.replace method or datetime.astimezone:

>>> from zoneinfo import ZonelInfo
>>> from datetime import datetime, timedelta

>>> dt = datetime (2020, 10, 31, 12, tzinfo=ZonelInfo ("America/Los_Angeles"))
>>> print (dt)
2020-10-31 12:00:00-07:00

>>> dt.tzname ()
'PDT!

J

Datetimes constructed in this way are compatible with datetime arithmetic and handle daylight saving time transitions
with no further intervention:

>>> dt_add = dt + timedelta (days=1)

>>> print (dt_add)
2020-11-01 12:00:00-08:00

>>> dt_add.tzname ()
'PST'

J

These time zones also support the rold attribute introduced in PEP 495. During offset transitions which induce
ambiguous times (such as a daylight saving time to standard time transition), the offset from before the transition is
used when fold=0, and the offset after the transition is used when fold=1, for example:

240 Chapter 8. Data Types

https://github.com/python/cpython/issues/70647
https://github.com/python/cpython/tree/3.13/Lib/zoneinfo
https://peps.python.org/pep-0615/
https://pypi.org/project/tzdata/
https://pypi.org/project/tzdata/
https://peps.python.org/pep-0495/

The Python Library Reference, Release 3.13.1

>>> dt = datetime (2020, 11, 1, 1, tzinfo=ZonelInfo ("America/Los_Angeles"))
>>> print (dt)
2020-11-01 01:00:00-07:00

>>> print (dt.replace (fold=1))
2020-11-01 01:00:00-08:00

When converting from another time zone, the fold will be set to the correct value:

>>> from datetime import timezone
>>> LOS_ANGELES = ZoneInfo ("America/Los_Angeles")
>>> dt_utc = datetime (2020, 11, 1, 8, tzinfo=timezone.utc)

>>> # Before the PDT -> PST transition
>>> print (dt_utc.astimezone (LOS_ANGELES))
2020-11-01 01:00:00-07:00

>>> # After the PDT —-> PST transition
>>> print ((dt_utc + timedelta (hours=1)) .astimezone (LOS_ANGELES))
2020-11-01 01:00:00-08:00

8.2.2 Data sources

The zoneinfo module does not directly provide time zone data, and instead pulls time zone information from
the system time zone database or the first-party PyPI package tzdata, if available. Some systems, including notably
Windows systems, do not have an IANA database available, and so for projects targeting cross-platform compatibility
that require time zone data, it is recommended to declare a dependency on tzdata. If neither system data nor tzdata
are available, all calls to ZoneTnfo will raise ZoneInfoNotFoundError.

Configuring the data sources

When zZoneInfo (key) is called, the constructor first searches the directories specified in 7zpATH for a file matching
key, and on failure looks for a match in the tzdata package. This behavior can be configured in three ways:

1. The default 7zPATH when not otherwise specified can be configured at compile time.
2. TzPATH can be configured using an environment variable.

3. At runtime, the search path can be manipulated using the reset_tzpath () function.

Compile-time configuration

The default 7zrATH includes several common deployment locations for the time zone database (except on Win-
dows, where there are no “well-known” locations for time zone data). On POSIX systems, downstream distribu-
tors and those building Python from source who know where their system time zone data is deployed may change
the default time zone path by specifying the compile-time option TZPATH (or, more likely, the configure flag
—-with-tzpath), which should be a string delimited by os.pathsep.

On all platforms, the configured value is available as the TZPATH key in sysconfig.get_config var().

Environment configuration

When initializing 7ZPATH (either at import time or whenever reset_tzpath () is called with no arguments), the
zoneinfo module will use the environment variable PYTHONTZPATH, if it exists, to set the search path.

PYTHONTZPATH

This is an os.pathsep-separated string containing the time zone search path to use. It must consist of
only absolute rather than relative paths. Relative components specified in PYTHONTZPATH will not be used,
but otherwise the behavior when a relative path is specified is implementation-defined; CPython will raise

8.2. zoneinfo — |IANA time zone support 241

https://pypi.org/project/tzdata/

The Python Library Reference, Release 3.13.1

InvalidTZPathlWarning, but other implementations are free to silently ignore the erroneous component or
raise an exception.

To set the system to ignore the system data and use the tzdata package instead, set PYTHONTZPATH="".

Runtime configuration

The TZ search path can also be configured at runtime using the reset_tzpath () function. This is generally not
an advisable operation, though it is reasonable to use it in test functions that require the use of a specific time zone
path (or require disabling access to the system time zones).

8.2.3 The zoneInfo class

class zoneinfo.ZoneInfo (key)

A concrete datetime. t zinfo subclass that represents an IANA time zone specified by the string key. Calls
to the primary constructor will always return objects that compare identically; put another way, barring cache
invalidation via ZoneInfo.clear cache (), for all values of key, the following assertion will always be

true:
a = Zonelnfo (key)
b = ZoneInfo (key)

assert a is b

key must be in the form of a relative, normalized POSIX path, with no up-level references. The constructor
will raise ValueError if a non-conforming key is passed.

If no file matching key is found, the constructor will raise ZoneInfoNotFoundError.
The zoneInfo class has two alternate constructors:

classmethod Zonelnfo.from_f£file (fobj, /, key=None)

Constructs a ZoneInfo object from a file-like object returning bytes (e.g. a file opened in binary mode or an
io.BytesIO object). Unlike the primary constructor, this always constructs a new object.

The key parameter sets the name of the zone for the purposes of __str__ () and __repr__ ().
Objects created via this constructor cannot be pickled (see pickling).

classmethod ZoneInfo.no_cache (key)

An alternate constructor that bypasses the constructor’s cache. It is identical to the primary constructor, but
returns a new object on each call. This is most likely to be useful for testing or demonstration purposes, but it
can also be used to create a system with a different cache invalidation strategy.

Objects created via this constructor will also bypass the cache of a deserializing process when unpickled.

%" Caution

Using this constructor may change the semantics of your datetimes in surprising ways, only use it if you
know that you need to.

The following class methods are also available:

classmethod ZonelInfo.clear_cache (*, only_keys=None)
A method for invalidating the cache on the ZoneInfo class. If no arguments are passed, all caches are inval-
idated and the next call to the primary constructor for each key will return a new instance.

If an iterable of key names is passed to the only_keys parameter, only the specified keys will be removed
from the cache. Keys passed to only_keys but not found in the cache are ignored.

242 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

A\ Warning

Invoking this function may change the semantics of datetimes using ZoneInfo in surprising ways; this
modifies module state and thus may have wide-ranging effects. Only use it if you know that you need to.

The class has one attribute:

Zonelnfo.key

This is a read-only attribute that returns the value of key passed to the constructor, which should be a lookup
key in the IANA time zone database (e.g. America/New_York, Europe/Paris or Asia/Tokyo).

For zones constructed from file without specifying a key parameter, this will be set to None.

© Note

Although it is a somewhat common practice to expose these to end users, these values are designed to be
primary keys for representing the relevant zones and not necessarily user-facing elements. Projects like
CLDR (the Unicode Common Locale Data Repository) can be used to get more user-friendly strings from
these keys.

String representations

The string representation returned when calling st r on a ZoneInfo object defaults to using the ZoneInfo. key
attribute (see the note on usage in the attribute documentation):

>>> zone = ZonelInfo ("Pacific/Kwajalein")
>>> str (zone)

'Pacific/Kwajalein'

>>> dt = datetime (2020, 4, 1, 3, 15, tzinfo=zone)
>>> f£"/dt.isoformat () [/{dt.tzinfo /1"
'2020-04-01T03:15:00+12:00 [Pacific/Kwajalein]'

For objects constructed from a file without specifying a key parameter, str falls back to calling repr ().
ZoneInfo’s repr is implementation-defined and not necessarily stable between versions, but it is guaranteed not to
be a valid ZoneInfo key.

Pickle serialization

Rather than serializing all transition data, ZoneInfo objects are serialized by key, and Zone Info objects constructed
from files (even those with a value for key specified) cannot be pickled.

The behavior of a zoneInfo file depends on how it was constructed:

1. ZonelInfo (key): When constructed with the primary constructor, a ZoneInfo object is serialized by key,
and when deserialized, the deserializing process uses the primary and thus it is expected that these are expected
to be the same object as other references to the same time zone. For example, if europe_berlin_pkl isa
string containing a pickle constructed from ZoneInfo ("Europe/Berlin"), one would expect the following
behavior:

>>> a = ZonelInfo ("Europe/Berlin")
>>> b = pickle.loads (europe_berlin_pkl)
>>> a is b

True

2. ZoneInfo.no_cache (key): When constructed from the cache-bypassing constructor, the ZoneInfo ob-
ject is also serialized by key, but when deserialized, the deserializing process uses the cache bypassing
constructor. If europe_berlin pkl_nc is a string containing a pickle constructed from ZoneInfo.
no_cache ("Europe/Berlin"), one would expect the following behavior:

8.2. zoneinfo — |IANA time zone support 243

The Python Library Reference, Release 3.13.1

>>> a = ZonelInfo ("Europe/Berlin")
>>> b = pickle.loads (europe_berlin_pkl_nc)
>>> a is b

False

ZonelInfo.from_file(fobj, /, key=None): When constructed from afile, the Zone Info object raises
an exception on pickling. If an end user wants to pickle a ZoneInfo constructed from a file, it is recommended
that they use a wrapper type or a custom serialization function: either serializing by key or storing the contents
of the file object and serializing that.

This method of serialization requires that the time zone data for the required key be available on both the serializing
and deserializing side, similar to the way that references to classes and functions are expected to exist in both the
serializing and deserializing environments. It also means that no guarantees are made about the consistency of results
when unpickling a ZoneInfo pickled in an environment with a different version of the time zone data.

8.2.4 Functions

zoneinfo.available_timezones ()

Get a set containing all the valid keys for IANA time zones available anywhere on the time zone path. This is
recalculated on every call to the function.

This function only includes canonical zone names and does not include “special” zones such as those under the
posix/ and right/ directories, or the posixrules zone.

%* Caution

This function may open a large number of files, as the best way to determine if a file on the time zone path
is a valid time zone is to read the “magic string” at the beginning.

O Note

These values are not designed to be exposed to end-users; for user facing elements, applications should use
something like CLDR (the Unicode Common Locale Data Repository) to get more user-friendly strings.
See also the cautionary note on ZoneInfo.key.

zoneinfo.reset_tzpath (fo=None)

Sets or resets the time zone search path (7zprATH) for the module. When called with no arguments, 7Z2PATH
is set to the default value.

Calling reset_tzpath will not invalidate the Zone Inro cache, and so calls to the primary ZoneInfo con-
structor will only use the new TZPATH in the case of a cache miss.

The to parameter must be a sequence of strings or os.PathlLike and not a string, all of which must be
absolute paths. valueError will be raised if something other than an absolute path is passed.

8.2.5 Globals

zoneinfo.TZPATH

A read-only sequence representing the time zone search path — when constructing a ZoneInfo from a key,
the key is joined to each entry in the TzZPATH, and the first file found is used.

TZPATH may contain only absolute paths, never relative paths, regardless of how it is configured.

The object that zoneinfo.TZPATH points to may change in response to a call to reset_tzpath (), so it
is recommended to use zoneinfo.TZPATH rather than importing TZPATH from zoneinfo or assigning a
long-lived variable to zoneinfo.TZPATH.

For more information on configuring the time zone search path, see Configuring the data sources.

244

Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

8.2.6 Exceptions and warnings

exception zoneinfo.ZoneInfoNotFoundError

Raised when construction of a ZoneTnfo object fails because the specified key could not be found on the
system. This is a subclass of KeyError.

exception zoneinfo.InvalidTZPathWarning

Raised when pPyTHONTZPATH contains an invalid component that will be filtered out, such as a relative path.

8.3 calendar — General calendar-related functions

Source code: Lib/calendar.py

This module allows you to output calendars like the Unix cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the last
(the European convention). Use set firstweekday () to set the first day of the week to Sunday (6) or to any other
weekday. Parameters that specify dates are given as integers. For related functionality, see also the datetime and
t ime modules.

The functions and classes defined in this module use an idealized calendar, the current Gregorian calendar extended
indefinitely in both directions. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and
Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all computations. Zero and negative years
are interpreted as prescribed by the ISO 8601 standard. Year O is 1 BC, year -1 is 2 BC, and so on.
class calendar.Calendar (firstweekday=0)
Creates a Calendar object. firstweekday is an integer specifying the first day of the week. MONDAY is 0 (the
default), SUNDAY is 6.

A calendar object provides several methods that can be used for preparing the calendar data for formatting.
This class doesn’t do any formatting itself. This is the job of subclasses.

Calendar instances have the following methods:

iterweekdays ()
Return an iterator for the week day numbers that will be used for one week. The first value from the
iterator will be the same as the value of the ri rstweekday property.

itermonthdates (year, month)

Return an iterator for the month month (1-12) in the year year. This iterator will return all days (as
datetime.date objects) for the month and all days before the start of the month or after the end of
the month that are required to get a complete week.

itermonthdays (year, month)

Return an iterator for the month month in the year year similar to i t ermonthdates (), but not restricted
by the datetime.date range. Days returned will simply be day of the month numbers. For the days
outside of the specified month, the day number is 0.

itermonthdays2 (year, month)

Return an iterator for the month month in the year year similar to i termonthdates (), but not restricted
by the datetime.date range. Days returned will be tuples consisting of a day of the month number
and a week day number.

itermonthdays3 (year, month)

Return an iterator for the month month in the year year similar to i termonthdates (), but not restricted
by the datetime.date range. Days returned will be tuples consisting of a year, a month and a day of
the month numbers.

Added in version 3.7.

8.3. calendar — General calendar-related functions 245

https://github.com/python/cpython/tree/3.13/Lib/calendar.py

The Python Library Reference, Release 3.13.1

itermonthdays4 (year, month)

Return an iterator for the month month in the year year similar to i t ermonthdates (), but not restricted
by the datet ime.date range. Days returned will be tuples consisting of a year, a month, a day of the
month, and a day of the week numbers.

Added in version 3.7.

monthdatescalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime.date objects.

monthdays2calendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven tuples
of day numbers and weekday numbers.

monthdayscalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven day
numbers.

yeardatescalendar (year, width=3)

Return the data for the specified year ready for formatting. The return value is a list of month rows. Each
month row contains up to width months (defaulting to 3). Each month contains between 4 and 6 weeks
and each week contains 1-7 days. Days are datet ime.date objects.

yeardays2calendar (year, width=3)

Return the data for the specified year ready for formatting (similar to yeardatescalendar ()). Entries
in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this month are
zero.

yeardayscalendar (year, width=3)

Return the data for the specified year ready for formatting (similar to yeardatescalendar ()). Entries
in the week lists are day numbers. Day numbers outside this month are zero.

class calendar.TextCalendar (firstweekday=0)

This class can be used to generate plain text calendars.
TextCalendar instances have the following methods:

formatweek (theweek, w=0)
Return a single week in a string with no newline. If w is provided, it specifies the width of the date
columns, which are centered. Depends on the first weekday as specified in the constructor or set by the
setfirstweekday () method.

formatmonth (theyear, themonth, w=0, [=0)
Return a month’s calendar in a multi-line string. If wis provided, it specifies the width of the date columns,
which are centered. If [is given, it specifies the number of lines that each week will use. Depends on the
first weekday as specified in the constructor or set by the set firstweekday () method.

prmonth (theyear, themonth, w=0, [=0)
Print a month’s calendar as returned by formatmonth ().

formatyear (theyear, w=2, I=1, c=6, m=3)

Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, [, and ¢
are for date column width, lines per week, and number of spaces between month columns, respectively.
Depends on the first weekday as specified in the constructor or set by the set firstweekday () method.
The earliest year for which a calendar can be generated is platform-dependent.

pryear (theyear, w=2, I=1, c=6, m=3)

Print the calendar for an entire year as returned by formatyear ().

246

Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

class calendar.HTMLCalendar (firstweekday=0)

This class can be used to generate HTML calendars.
HTMLCalendar instances have the following methods:

formatmonth (theyear, themonth, withyear=True)
Return a month’s calendar as an HTML table. If withyear is true the year will be included in the header,
otherwise just the month name will be used.

formatyear (theyear, width=3)
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of months per
row.

formatyearpage (theyear, width=3, css='"calendar.css’, encoding=None)

Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number of
months per row. css is the name for the cascading style sheet to be used. None can be passed if no style
sheet should be used. encoding specifies the encoding to be used for the output (defaulting to the system
default encoding).

formatmonthname (theyear, themonth, withyear=True)

Return a month name as an HTML table row. If withyear is true the year will be included in the row,
otherwise just the month name will be used.

HTMLCalendar has the following attributes you can override to customize the CSS classes used by the calen-

dar:
cssclasses
A list of CSS classes used for each weekday. The default class list is:
[cssclasses = ["mon", "tue", "wed", "thu", "fri", "sat", "sun"] }

more styles can be added for each day:

an HJ

cssclasses = ["mon text-bold", "tue", "wed", "thu", "fri", "sat", "sun red }

Note that the length of this list must be seven items.
cssclass_noday
The CSS class for a weekday occurring in the previous or coming month.
Added in version 3.7.
cssclasses_weekday head
A list of CSS classes used for weekday names in the header row. The default is the same as cssclasses.
Added in version 3.7.
cssclass_month_head
The month’s head CSS class (used by formatmonthname ()). The default value is "month™".
Added in version 3.7.
cssclass_month
The CSS class for the whole month’s table (used by formatmonth ()). The default value is "month".
Added in version 3.7.
cssclass_year
The CSS class for the whole year’s table of tables (used by formatyear ()). The default value is "year".
Added in version 3.7.

8.3. calendar — General calendar-related functions 247

The Python Library Reference, Release 3.13.1

cssclass_year_ head
The CSS class for the table head for the whole year (used by formatyear ()). The default value is
n ye ar n .

Added in version 3.7.

Note that although the naming for the above described class attributes is singular (e.g. cssclass_month
cssclass_noday), one can replace the single CSS class with a space separated list of CSS classes, for ex-
ample:

["textfbold text-red"

Here is an example how HTMLCalendar can be customized:

class CustomHTMLCal (calendar.HTMLCalendar) :
cssclasses = [style + " text-nowrap" for style in
calendar.HTMLCalendar.cssclasses]

cssclass_month_head "text—-center month—-head"

cssclass_month = "text-center month"

cssclass_year = "text-italic lead"
.

class calendar.LocaleTextCalendar (firstweekday=0, locale=None)
This subclass of TextCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale.

class calendar.LocaleHTMLCalendar (firstweekday=0, locale=None)

This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale.

© Note

The constructor, formatweekday () and formatmonthname () methods of these two classes temporarily
change the Lc_TIME locale to the given locale. Because the current locale is a process-wide setting, they are
not thread-safe.

For simple text calendars this module provides the following functions.

calendar.setfirstweekday (weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For example, to set the first
weekday to Sunday:

import calendar
calendar.setfirstweekday (calendar.SUNDAY)

calendar. firstweekday ()

Returns the current setting for the weekday to start each week.

calendar.isleap (year)

Returns True if year is a leap year, otherwise False.

calendar.leapdays (y/, y2)
Returns the number of leap years in the range from y/ to y2 (exclusive), where y/ and y2 are years.

This function works for ranges spanning a century change.

calendar.weekday (year, month, day)
Returns the day of the week (0 is Monday) for year (1970-...), month (1-12), day (1-31).

248 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

calendar .weekheader (n)

Return a header containing abbreviated weekday names. 7 specifies the width in characters for one weekday.

calendar.monthrange (year, month)

Returns weekday of first day of the month and number of days in month, for the specified year and month.

calendar.monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month are
represented by zeros. Each week begins with Monday unless set by set firstweekday ().
calendar.prmonth (theyear, themonth, w=0, [=0)
Prints a month’s calendar as returned by month ().

calendar .month (theyear, themonth, w=0, [=0)
Returns a month’s calendar in a multi-line string using the formatmonth () of the TextCalendar class.

calendar.precal (year, w=0, [=0, c=6, m=3)
Prints the calendar for an entire year as returned by calendar ().

calendar.calendar (year, w=2, =1, c=6, m=3)
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear () of the
TextCalendar class.

calendar.timegm (fuple)

An unrelated but handy function that takes a time tuple such as returned by the gmt ime () function in the
time module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In fact, t ime. gmt ime () and t imegm () are each others’ inverse.

The calendar module exports the following data attributes:

calendar.day_name

A sequence that represents the days of the week in the current locale, where Monday is day number 0.

>>> import calendar
>>> list (calendar.day_name)
['"Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']

calendar.day_abbr

A sequence that represents the abbreviated days of the week in the current locale, where Mon is day number
0.

>>> import calendar
>>> list (calendar.day_abbr)
['"Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

calendar .MONDAY

calendar.TUESDAY

calendar .WEDNESDAY
calendar.THURSDAY

calendar.FRIDAY

calendar.SATURDAY

calendar.SUNDAY

Aliases for the days of the week, where MONDAY is 0 and SUNDAY is 6.

Added in version 3.12.

class calendar.Day

Enumeration defining days of the week as integer constants. The members of this enumeration are exported
to the module scope as MONDAY through SUNDAY.

Added in version 3.12.

8.3. calendar — General calendar-related functions 249

The Python Library Reference, Release 3.13.1

calendar.month_name

A sequence that represents the months of the year in the current locale. This follows normal convention of
January being month number 1, so it has a length of 13 and month_name [0] is the empty string.

>>> import calendar
>>> list (calendar.month_name)
'March',

'November',

['", 'January', 'February', 'April', 'June’', 'August’',

'October’',

'May', 'July’',

— "'September’', 'December']

calendar.month_abbr
A sequence that represents the abbreviated months of the year in the current locale. This follows normal
convention of January being month number 1, so it has a length of 13 and month_abbr[0] is the empty
string.

>>> import calendar

>>> list (calendar.month_abbr)

[v 4
'
=7

'Jan', 'Feb',

'Dec']

'Mar',

'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov

calendar
calendar
calendar
calendar
calendar
calendar
calendar

calendar

calendar.
.OCTOBER

.NOVEMBER
.DECEMBER

calendar
calendar

calendar

.JANUARY
.FEBRUARY
.MARCH
.APRIL
.MAY
.JUNE
.JULY
.AUGUST

SEPTEMBER

Aliases for the months of the year, where JANUARY is 1 and DECEMBER is 12.
Added in version 3.12.

class calendar.Month

Enumeration defining months of the year as integer constants. The members of this enumeration are exported
to the module scope as JANUARY through DECEMBER.

Added in version 3.12.
The calendar module defines the following exceptions:

exception calendar.IllegalMonthError(monM)

A subclass of ValueError, raised when the given month number is outside of the range 1-12 (inclusive).

month

The invalid month number.

exception calendar.IllegalWeekdayError (weekday)

A subclass of ValueError, raised when the given weekday number is outside of the range 0-6 (inclusive).

weekday

The invalid weekday number.

> See also

250 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

Module datetime
Object-oriented interface to dates and times with similar functionality to the ¢ ime module.

Module time
Low-level time related functions.

8.3.1 Command-Line Usage
Added in version 2.5.

The calendar module can be executed as a script from the command line to interactively print a calendar.

python -m calendar [-h] [-L LOCALE] [-e ENCODING] [-t {text,html}]
[-w WIDTH] [-1 LINES] [-s SPACING] [-m MONTHS] [-c CSS]
[-f FIRST_WEEKDAY] [year] [month]

For example, to print a calendar for the year 2000:

$ python -m calendar 2000

2000
January February March
Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
1 2 1 2 3 4 5 6 1 2 3 4 5
3 4 5 6 7 8 9 7 8 910 11 12 13 6 7 8 9 10 11 12
10 11 12 13 14 15 16 14 15 16 17 18 19 20 13 14 15 16 17 18 19
17 18 19 20 21 22 23 21 22 23 24 25 26 27 20 21 22 23 24 25 26
24 25 26 27 28 29 30 28 29 27 28 29 30 31
31
April May June
Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
1 2 1 2 3 4 5 6 17 1 2 3 4
3 4 5 6 7 8 9 8 9 10 11 12 13 14 5 6 7 8 9 10 11
10 11 12 13 14 15 16 15 16 17 18 19 20 21 12 13 14 15 16 17 18
17 18 19 20 21 22 23 22 23 24 25 26 27 28 19 20 21 22 23 24 25
24 25 26 27 28 29 30 29 30 31 26 27 28 29 30
July August September
Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
1 2 1 2 3 4 5 6 1 2 3
3 4 5 6 7 8 9 7 8 910 11 12 13 4 5 6 7 8 910
10 11 12 13 14 15 16 14 15 16 17 18 19 20 11 12 13 14 15 16 17
17 18 19 20 21 22 23 21 22 23 24 25 26 27 18 19 20 21 22 23 24
24 25 26 27 28 29 30 28 29 30 31 25 26 27 28 29 30
31
October November December
Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
1 1 2 3 4 5 1 2 3
2 3 4 5 6 7 8 6 7 8 9 10 11 12 4 5 6 7 8 910
9 10 11 12 13 14 15 13 14 15 16 17 18 19 11 12 13 14 15 16 17
16 17 18 19 20 21 22 20 21 22 23 24 25 26 18 19 20 21 22 23 24
23 24 25 26 27 28 29 27 28 29 30 25 26 27 28 29 30 31
30 31

The following options are accepted:

8.3. calendar — General calendar-related functions 251

The Python Library Reference, Release 3.13.1

--help, -h

Show the help message and exit.
—-locale LOCALE, -L LOCALE

The locale to use for month and weekday names. Defaults to English.
——encoding ENCODING, -—e ENCODING

The encoding to use for output. ——encoding is required if ——Iocale is set.
——type {text,html}, -t {text,html}

Print the calendar to the terminal as text, or as an HTML document.

——first-weekday FIRST_WEEKDAY, —f FIRST_WEEKDAY
The weekday to start each week. Must be a number between 0 (Monday) and 6 (Sunday). Defaults to 0.

Added in version 3.13.
year
The year to print the calendar for. Defaults to the current year.

month

The month of the specified year to print the calendar for. Must be a number between 1 and 12, and may only
be used in text mode. Defaults to printing a calendar for the full year.

Text-mode options:

——width WIDTH, -w WIDTH

The width of the date column in terminal columns. The date is printed centred in the column. Any value lower
than 2 is ignored. Defaults to 2.

—-lines LINES, -1 LINES

The number of lines for each week in terminal rows. The date is printed top-aligned. Any value lower than 1
is ignored. Defaults to 1.

—-spacing SPACING, -s SPACING

The space between months in columns. Any value lower than 2 is ignored. Defaults to 6.

——months MONTHS, -m MONTHS

The number of months printed per row. Defaults to 3.
HTML-mode options:

—-—css CSS, —-c CSS

The path of a CSS stylesheet to use for the calendar. This must either be relative to the generated HTML, or
an absolute HTTP or file:/// URL.

8.4 collections — Container datatypes

Source code: Lib/collections/__init__.py

This module implements specialized container datatypes providing alternatives to Python’s general purpose built-in
containers, dict, 1ist, set,and tuple.

252 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.13/Lib/collections/__init__.py

The Python Library Reference, Release 3.13.1

namedtuple () factory function for creating tuple subclasses with named fields

deque list-like container with fast appends and pops on either end
ChainMap dict-like class for creating a single view of multiple mappings
Counter dict subclass for counting hashable objects

OrderedDict dict subclass that remembers the order entries were added
defaultdict dict subclass that calls a factory function to supply missing values

UserDict wrapper around dictionary objects for easier dict subclassing
UserList wrapper around list objects for easier list subclassing
UserString wrapper around string objects for easier string subclassing

8.4.1 chainMap Objects
Added in version 3.3.

A ChainMap class is provided for quickly linking a number of mappings so they can be treated as a single unit. It is
often much faster than creating a new dictionary and running multiple update () calls.

The class can be used to simulate nested scopes and is useful in templating.

class collections.ChainMap (*maps)
A ChainMap groups multiple dicts or other mappings together to create a single, updateable view. If no maps
are specified, a single empty dictionary is provided so that a new chain always has at least one mapping.

The underlying mappings are stored in a list. That list is public and can be accessed or updated using the maps
attribute. There is no other state.

Lookups search the underlying mappings successively until a key is found. In contrast, writes, updates, and
deletions only operate on the first mapping.

A ChainMap incorporates the underlying mappings by reference. So, if one of the underlying mappings gets
updated, those changes will be reflected in ChainMap.

All of the usual dictionary methods are supported. In addition, there is a maps attribute, a method for creating
new subcontexts, and a property for accessing all but the first mapping:

maps

A user updateable list of mappings. The list is ordered from first-searched to last-searched. It is the only
stored state and can be modified to change which mappings are searched. The list should always contain
at least one mapping.

new_child (m=None, **kwargs)

Returns a new ChainMap containing a new map followed by all of the maps in the current instance. If m
is specified, it becomes the new map at the front of the list of mappings; if not specified, an empty dict is
used, so that a call to d.new_child () is equivalent to: ChainMap ({}, *d.maps). If any keyword
arguments are specified, they update passed map or new empty dict. This method is used for creating
subcontexts that can be updated without altering values in any of the parent mappings.

Changed in version 3.4: The optional m parameter was added.
Changed in version 3.10: Keyword arguments support was added.

parents

Property returning a new ChainlMap containing all of the maps in the current instance except the first one.
This is useful for skipping the first map in the search. Use cases are similar to those for the nonlocal
keyword used in nested scopes. The use cases also parallel those for the built-in super () function. A
reference to d.parents is equivalent to: ChainMap (*d.maps[1:]).

Note, the iteration order of a ChainMap is determined by scanning the mappings last to first:

>>> baseline = {'music': 'bach', 'art': 'rembrandt'}
>>> adjustments = {'art': 'van gogh', 'opera': 'carmen'}

(continues on next page)

8.4. collections — Container datatypes 253

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> list (ChainMap (adjustments, baseline))
['music', 'art', 'opera'l]

This gives the same ordering as a series of dict.update () calls starting with the last mapping:

>>> combined = baseline.copy ()
>>> combined.update (adjustments)
>>> list (combined)

['music', 'art', 'opera']

Changed in version 3.9: Added support for | and | = operators, specified in PEP 584.

> See also

o The MultiContext class in the Enthought CodeTools package has options to support writing to any mapping
in the chain.

o Django’s Context class for templating is a read-only chain of mappings. It also features pushing and popping
of contexts similar to the new_child () method and the parent s property.

o The Nested Contexts recipe has options to control whether writes and other mutations apply only to the
first mapping or to any mapping in the chain.

» A greatly simplified read-only version of Chainmap.

ChainMap Examples and Recipes
This section shows various approaches to working with chained maps.

Example of simulating Python’s internal lookup chain:

import builtins
pylookup = ChainMap (locals (), globals (), vars(builtins))

Example of letting user specified command-line arguments take precedence over environment variables which in turn
take precedence over default values:

import os, argparse
defaults = {'color': 'red', 'user': 'guest'}

parser = argparse.ArgumentParser ()
parser.add_argument ('-u', '—-user')
parser.add_argument ('-c', '—--color')
namespace = parser.parse_args ()

command_line_args = {k: v for k, v in vars(namespace) .items() if v is not None}

combined = ChainMap (command_line_args, os.environ, defaults)
print (combined['color'])
print (combined['user'])

Example patterns for using the ChainMap class to simulate nested contexts:

c = ChainMap () # Create root context

d = c.new_child() # Create nested child context

e = c.new_child() # Child of ¢, independent from d

e.maps[0] # Current context dictionary -- like Python's locals()
e.maps[—1] # Root context —- like Python's globals ()

(continues on next page)

254 Chapter 8. Data Types

https://peps.python.org/pep-0584/
https://github.com/enthought/codetools/blob/4.0.0/codetools/contexts/multi_context.py
https://github.com/enthought/codetools
https://github.com/django/django/blob/main/django/template/context.py
https://code.activestate.com/recipes/577434-nested-contexts-a-chain-of-mapping-objects/
https://code.activestate.com/recipes/305268/

The Python Library Reference, Release 3.13.1

(continued from previous page)

e.parents # Enclosing context chain —-- like Python's nonlocals
di'x'] =1 # Set value in current context

dl'x"] # Get first key in the chain of contexts

del d['x"'] # Delete from current context

list (d) # All nested values

k in d # Check all nested values

len (d) # Number of nested values

d.items () # All nested items

dict (d) # Flatten into a regular dictionary

J

The chainMap class only makes updates (writes and deletions) to the first mapping in the chain while lookups will
search the full chain. However, if deep writes and deletions are desired, it is easy to make a subclass that updates
keys found deeper in the chain:

class DeepChainMap (ChainMap) :
'Variant of ChainMap that allows direct updates to inner scopes'

def _ setitem_ (self, key, value):
for mapping in self.maps:
if key in mapping:

mappinglkey] = value
return
self.maps[0] [key] = value

def _ delitem__ (self, key):
for mapping in self.maps:
if key in mapping:
del mappinglkey]
return
raise KeyError (key)

>>> d = DeepChainMap ({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})
>>> d['lion'] = 'orange' # update an existing key two levels down

>>> d['snake'] = 'red' # new keys get added to the topmost dict

>>> del d['elephant'] # remove an existing key one level down

>>> d # display result

DeepChainMap ({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})

8.4.2 counter oObjects

A counter tool is provided to support convenient and rapid tallies. For example:

>>> # Tally occurrences of words in a list

>>> cnt = Counter ()

>>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:
cnt [word] += 1

>>> cnt
Counter ({'blue': 3, 'red': 2, 'green': 1})

>>> # Find the ten most common words in Hamlet
>>> import re
>>> words = re.findall (r'\w+', open('hamlet.txt').read().lower())
>>> Counter (words) .most_common (10)
[('"the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
(continues on next page)

8.4. collections — Container datatypes 255

The Python Library Reference, Release 3.13.1

(continued from previous page)

{ ('you', 554), ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]

class collections.Counter ([iterable-or-mapping])

A Counter is a dict subclass for counting hashable objects. It is a collection where elements are stored as
dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any integer value
including zero or negative counts. The Counter class is similar to bags or multisets in other languages.

Elements are counted from an iterable or initialized from another mapping (or counter):

>>> ¢ = Counter () # a new, empty counter

>>> ¢ = Counter('gallahad') # a new counter from an iterable
>>> ¢ = Counter({'red': 4, 'blue': 2}) # a new counter from a mapping
>>> ¢ = Counter (cats=4, dogs=38) # a new counter from keyword args

Counter objects have a dictionary interface except that they return a zero count for missing items instead of
raising a KeyError:

>>> ¢ = Counter(['eggs', 'ham'])

>>> c['bacon'] # count of a missing element is.
—~Zero

0

Setting a count to zero does not remove an element from a counter. Use del to remove it entirely:

>>> c['sausage'] = 0 # counter entry with a zero count
>>> del c|['sausage'] # del actually removes the entry

Added in version 3.1.

Changed in version 3.7: As a dict subclass, Counter inherited the capability to remember insertion order.
Math operations on Counter objects also preserve order. Results are ordered according to when an element is
first encountered in the left operand and then by the order encountered in the right operand.

Counter objects support additional methods beyond those available for all dictionaries:

elements ()

Return an iterator over elements repeating each as many times as its count. Elements are returned in the
order first encountered. If an element’s count is less than one, e lements () will ignore it.

>>> ¢ = Counter (a=4, b=2, c=0, d=-2)
>>> sorted(c.elements())
[lal, lal, lal, lal, lbl’ lblj

most_common ([n])

Return a list of the » most common elements and their counts from the most common to the least. If » is
omitted or None, most_common () returns all elements in the counter. Elements with equal counts are
ordered in the order first encountered:

>>> Counter ('abracadabra') .most_common (3)
[('a', 5), ('b', 2), ('r', 2)]

subtract ([iterable-or-mapping])

Elements are subtracted from an iterable or from another mapping (or counter). Like dict.update ()
but subtracts counts instead of replacing them. Both inputs and outputs may be zero or negative.

>>> c = Counter , c=0, d=-2)

>>> d = Counter ; c=3, d=4)

(
(
>>> c.subtract (d

a=4
a=1,
)

(continues on next page)

256 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> C
Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})

Added in version 3.2.

total ()

Compute the sum of the counts.

>>> ¢ = Counter (a=10, b=5, c=0)
>>> c.total ()
15

Added in version 3.10.

The usual dictionary methods are available for cCounter objects except for two which work differently for
counters.
fromkeys (iterable)

This class method is not implemented for Counter objects.

update ([iterable-or-mapping])
Elements are counted from an iterable or added-in from another mapping (or counter). Like dict.

update () but adds counts instead of replacing them. Also, the iterable is expected to be a sequence of
elements, not a sequence of (key, value) pairs.

Counters support rich comparison operators for equality, subset, and superset relationships: ==, !=, <, <=, >, >=.
All of those tests treat missing elements as having zero counts so that Counter (a=1) == Counter (a=1, b=0
returns true.

—

Changed in version 3.10: Rich comparison operations were added.

Changed in version 3.10: In equality tests, missing elements are treated as having zero counts. Formerly,
Counter (a=3) and Counter (a=3, b=0) were considered distinct.

Common patterns for working with Counter objects:

c.total () # total of all counts

c.clear () # reset all counts

list (c) # list unique elements

set (c) # convert to a set

dict (c) # convert to a regular dictionary

c.items () # access the (elem, cnt) pairs

Counter (dict (list_of_pairs)) # convert from a list of (elem, cnt) pairs
c.most_common () [:—n-1:-1] # n least common elements

+c # remove zero and negative counts

Several mathematical operations are provided for combining Counter objects to produce multisets (counters that
have counts greater than zero). Addition and subtraction combine counters by adding or subtracting the counts
of corresponding elements. Intersection and union return the minimum and maximum of corresponding counts.
Equality and inclusion compare corresponding counts. Each operation can accept inputs with signed counts, but the
output will exclude results with counts of zero or less.

>>> ¢ = Counter (a=3, b=1)
>>> d = Counter (a=1, b=2)

>>> ¢ + d # add two counters together: c[x] + d[x]
Counter({'a': 4, 'b': 3})

>>> ¢ - d # subtract (keeping only positive counts)
Counter({'a': 2})

>>> ¢ & d # intersection: min(c[x], d[x])

Counter({'a': 1, 'b': 1})
(continues on next page)

8.4. collections — Container datatypes 257

The Python Library Reference, Release 3.13.1

>>> ¢ | d

Counter({'a': 3, 'b': 2})
>>> ¢ ==

False

>>> ¢ <= d

False

union:

equality:

inclusion:

max (c[x], d[x])

clx] == d[x]

cl[x] <= d[x]

(continued from previous page)

Unary addition and subtraction are shortcuts for adding an empty counter or subtracting from an empty counter.

>>> ¢ = Counter (a=2, b=-4)
>>> +c

Counter ({'a': 2})

>>> —C

Counter ({'b': 4})

Added in version 3.3: Added support for unary plus, unary minus, and in-place multiset operations.

© Note

Counters were primarily designed to work with positive integers to represent running counts; however, care was
taken to not unnecessarily preclude use cases needing other types or negative values. To help with those use
cases, this section documents the minimum range and type restrictions.

o The counter class itself is a dictionary subclass with no restrictions on its keys and values. The values
are intended to be numbers representing counts, but you could store anything in the value field.

e The most_common () method requires only that the values be orderable.

« For in-place operations such as c [key] += 1, the value type need only support addition and subtraction.
So fractions, floats, and decimals would work and negative values are supported. The same is also true for
update () and subtract () which allow negative and zero values for both inputs and outputs.

« The multiset methods are designed only for use cases with positive values. The inputs may be negative or
zero, but only outputs with positive values are created. There are no type restrictions, but the value type
needs to support addition, subtraction, and comparison.

o The elements () method requires integer counts. It ignores zero and negative counts.

> See also

« Bag class in Smalltalk.

» Wikipedia entry for Multisets.

o C++ multisets tutorial with examples.

« For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer
Programming Volume II, Section 4.6.3, Exercise 19.

o To enumerate all distinct multisets of a given size over a given set of elements, see itertools.
combinations_with_replacement ():

map (Counter, combinations_with_replacement ('ABC',

—CC

2))

——> AA AB AC BB BC.

258

Chapter 8. Data Types

https://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
https://en.wikipedia.org/wiki/Multiset
http://www.java2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm

The Python Library Reference, Release 3.13.1

8.4.3 deque Objects

class collections.deque ([iterable[, maxlen]])
Returns a new deque object initialized left-to-right (using append ()) with data from iterable. 1f iterable is not
specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the deque
with approximately the same O(1) performance in either direction.

Though 1ist objects support similar operations, they are optimized for fast fixed-length operations and incur
O(n) memory movement costs for pop (0) and insert (0, v) operations which change both the size and
position of the underlying data representation.

If maxlen is not specified or is None, deques may grow to an arbitrary length. Otherwise, the deque is bounded
to the specified maximum length. Once a bounded length deque is full, when new items are added, a corre-
sponding number of items are discarded from the opposite end. Bounded length deques provide functionality
similar to the tail filter in Unix. They are also useful for tracking transactions and other pools of data where
only the most recent activity is of interest.

Deque objects support the following methods:
append (x)
Add x to the right side of the deque.
appendleft (x)
Add x to the left side of the deque.
clear ()
Remove all elements from the deque leaving it with length 0.
copy ()
Create a shallow copy of the deque.
Added in version 3.5.
count (X)
Count the number of deque elements equal to x.
Added in version 3.2.
extend (iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft (iferable)
Extend the left side of the deque by appending elements from iterable. Note, the series of left appends
results in reversing the order of elements in the iterable argument.

index (x|, start[, stop |])

Return the position of x in the deque (at or after index start and before index sfop). Returns the first
match or raises ValueError if not found.

Added in version 3.5.
insert (i, x)
Insert x into the deque at position i.
If the insertion would cause a bounded deque to grow beyond maxlen, an IndexError is raised.
Added in version 3.5.
pop ()

Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError.

8.4. collections — Container datatypes 259

The Python Library Reference, Release 3.13.1

popleft ()

Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError.

remove (value)

Remove the first occurrence of value. If not found, raises a ValueError.

reverse ()

Reverse the elements of the deque in-place and then return None.
Added in version 3.2.

rotate (n=1J)

Rotate the deque n steps to the right. If » is negative, rotate to the left.

When the deque is not empty, rotating one step to the right is equivalent to d. appendleft (d.pop ()),
and rotating one step to the left is equivalent to d . append (d.popleft ()).

Deque objects also provide one read-only attribute:

maxlen
Maximum size of a deque or None if unbounded.

Added in version 3.1.

In addition to the above, deques support iteration, pickling, len (d), reversed(d), copy.copy (d), copy.
deepcopy (d), membership testing with the in operator, and subscript references such as d[01] to access the first
element. Indexed access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

Starting in version 3.5, deques support __add__ (), _mul__(),and __imul__ ().

Example:

>>> from collections import deque

>>> d = deque('ghi') # make a new deque with three items
>>> for elem in d: # iterate over the deque's elements
print (elem.upper())

G

H

I

>>> d.append('J") # add a new entry to the right side
>>> d.appendleft ('f'") # add a new entry to the left side

>>> d # show the representation of the deque

deque(['f', 'g', 'h', 'i', '3'])

>>> d.pop () # return and remove the rightmost item
ljl

>>> d.popleft () # return and remove the leftmost item
lfl

>>> list (d) # list the contents of the deque

[Vg" Vh', ViV]

>>> d[0] # peek at leftmost item

lgl

>>> d[-1] # peek at rightmost item

lil

>>> list (reversed(d)) # list the contents of a deque in reverse
[li', lhl, lgl]

>>> 'h' in d # search the deque

True

>>> d.extend('Jjk1l'") # add multiple elements at once

(continues on next page)

260 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)
>>> d
deque(['g', 'h', 'i', '3', 'k', '1'])
>>> d.rotate (1) # right rotation
>>> d
deque(['1l', 'g', 'h', 'i', '3', 'k'l)
>>> d.rotate (-1) # left rotation
>>> d
deque(['g', 'h', 'i', '3', 'k', '1l'])

>>> deque (reversed(d)) # make a new deque in reverse order
deque (['l', 'k', 'j', 'i', 'h', 'g'])
>>> d.clear () # empty the deque
>>> d.pop () # cannot pop from an empty deque
Traceback (most recent call last):

File "<pyshell#6>", line 1, in -toplevel-

d.pop ()

IndexError: pop from an empty deque

>>> d.extendleft ('abc') # extendleft () reverses the input order
>>> d
deque (['c', 'b', 'a'l)

deque Recipes
This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the tai1 filter in Unix:

def tail (filename, n=10):
'Return the last n lines of a file'
with open(filename) as f:
return deque (f, n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right
and popping to the left:

def moving_average (iterable, n=3):
moving_average ([40, 30, 50, 46, 39, 44]) ——> 40.0 42.0 45.0 43.0
https://en.wikipedia.org/wiki/Moving_average
it = iter (iterable)
d = deque (itertools.islice(it, n-1))
d.appendleft (0)
s = sum(d)
for elem in it:
s += elem - d.popleft ()
d.append (elem)

yield s / n

J

A round-robin scheduler can be implemented with input iterators stored in a deque. Values are yielded from the
active iterator in position zero. If that iterator is exhausted, it can be removed with popleft (); otherwise, it can be
cycled back to the end with the rotate () method:

def roundrobin (*iterables) :
"roundrobin ('ABC', 'D', 'EF') -——> A D E B F C"
iterators = deque (map(iter, iterables))
while iterators:
try:

(continues on next page)

8.4. collections — Container datatypes 261

https://en.wikipedia.org/wiki/Round-robin_scheduling

The Python Library Reference, Release 3.13.1

(continued from previous page)
while True:
yield next (iterators[0])
iterators.rotate (-1)
except Stoplteration:
Remove an exhausted iterator.
iterators.popleft ()

The rotate () method provides a way to implement degue slicing and deletion. For example, a pure Python
implementation of del d[n] relies on the rotate () method to position elements to be popped:

def delete_nth(d, n):
d.rotate (—n)
d.popleft ()
d.rotate (n)

To implement deque slicing, use a similar approach applying rotate () to bring a target element to the left side
of the deque. Remove old entries with poplert (), add new entries with extend (), and then reverse the rotation.
With minor variations on that approach, it is easy to implement Forth style stack manipulations such as dup, drop,
swap,over,pick,rot,androll.

8.4.4 defaultdict objects

class collections.defaultdict (default factory=None, /[,])

Return a new dictionary-like object. defaultdict is a subclass of the built-in dict class. It overrides one
method and adds one writable instance variable. The remaining functionality is the same as for the dict class
and is not documented here.

The first argument provides the initial value for the default_rfactory attribute; it defaults to None. All
remaining arguments are treated the same as if they were passed to the dict constructor, including keyword
arguments.

defaultdict objects support the following method in addition to the standard dict operations:

_ _missing__ (key)

If the default_factory attribute is None, this raises a KeyError exception with the key as argument.

If default_factoryisnot None, itis called without arguments to provide a default value for the given
key, this value is inserted in the dictionary for the key, and returned.

If calling default_factory raises an exception this exception is propagated unchanged.

This method is called by the __getitem_ () method of the dict class when the requested key is not
found; whatever it returns or raises is then returned or raised by __getitem__ ().

Note that __missing () is not called for any operations besides __getitem__ (). This means that
get () will, like normal dictionaries, return None as a default rather than using default_rfactory.

defaultdict objects support the following instance variable:

default_factory

This attribute is used by the _ missing () method; it is initialized from the first argument to the
constructor, if present, or to None, if absent.

Changed in version 3.9: Added merge (|) and update (| =) operators, specified in PEP 584.

defaultdict Examples

Using 1ist asthe default_factory, it is easy to group a sequence of key-value pairs into a dictionary of lists:

262 Chapter 8. Data Types

https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.13.1

>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = defaultdict (list)
>>> for k, v in s:

d[k] .append (v)

>>> sorted(d.items ())
[('blue', [2, 41), ('red', [1]), ('yellow', [1, 31)]

J

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created
using the default_factory function which returns an empty 1ist. The 1ist.append () operation then attaches
the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the list for that
key) and the 1ist.append () operation adds another value to the list. This technique is simpler and faster than an
equivalent technique using dict.setdefault ():

>>> d = {}
>>> for k, v in s:
d.setdefault (k, []).append(v)

>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

Setting the default_factoryto int makes the defaultdict useful for counting (like a bag or multiset in other
languages):

>>> s

'mississippi’
>>> d = defaultdict (int)
>>> for k in s:

d[k] += 1

>>> sorted(d.items ())
[¢'i', 4), (‘m', 1), ('p', 2), ('s', 4)]

When a letter is first encountered, it is missing from the mapping, so the default_factory function calls int ()
to supply a default count of zero. The increment operation then builds up the count for each letter.

The function int () which always returns zero is just a special case of constant functions. A faster and more flexible
way to create constant functions is to use a lambda function which can supply any constant value (not just zero):

>>> def constant_factory(value) :
return lambda: value

>>> d = defaultdict (constant_factory ('<missing>"'))
>>> d.update (name='John', action='ran')
>>> ! to ''% d

'John ran to <missing>'

Setting the default_rfactory to set makes the defaultdict useful for building a dictionary of sets:

>>> s

[('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
>>> d = defaultdict (set)

>>> for k, v in s:

d[k].add (v)

>>> sorted(d.items())
[("blue', {2, 4}), ('red', {1, 3})]

8.4. collections — Container datatypes 263

The Python Library Reference, Release 3.13.1

8.4.5 namedtuple () Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code. They
can be used wherever regular tuples are used, and they add the ability to access fields by name instead of position
index.

collections.namedtuple (typename, field_names, *, rename=False, defaults=None, module=None)

Returns a new tuple subclass named typename. The new subclass is used to create tuple-like objects that have
fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass also have
a helpful docstring (with typename and field_names) and a helpful __repr__ () method which lists the tuple
contents in a name=value format.

The field names are a sequence of strings such as ['x', 'y']. Alternatively, field_names can be a single
string with each fieldname separated by whitespace and/or commas, for example 'x y' or 'x, y'.

Any valid Python identifier may be used for a fieldname except for names starting with an underscore. Valid
identifiers consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be a
keyword such as class, for, return, global, pass, or raise.

If rename is true, invalid fieldnames are automatically replaced with positional names. For example, ['abc',
'def', 'ghi', 'abc']isconvertedto ['abc', '_1', 'ghi', '_3'],eliminating the keyword def
and the duplicate fieldname abc.

defaults can be None or an iterable of default values. Since fields with a default value must come after any
fields without a default, the defaults are applied to the rightmost parameters. For example, if the fieldnames
are ['x', 'y', 'z'] and the defaults are (1, 2), then x will be a required argument, y will default to 1,
and z will default to 2.

If module is defined, the __module__ attribute of the named tuple is set to that value.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more
memory than regular tuples.

To support pickling, the named tuple class should be assigned to a variable that matches typename.
Changed in version 3.1: Added support for rename.

Changed in version 3.6: The verbose and rename parameters became keyword-only arguments.
Changed in version 3.6: Added the module parameter.

Changed in version 3.7: Removed the verbose parameter and the _source attribute.

Changed in version 3.7: Added the defaults parameter and the _field_defaults attribute.

>>> # Basic example

>>> Point = namedtuple('Point', ['x', 'yv'])

>>> p = Point (11, y=22) # instantiate with positional or keyword arguments
>>> p[0] + pl[l] # indexable like the plain tuple (11, 22)

33

>>> x, y =p # unpack like a regular tuple

>>> x, y

(11, 22)

>>> p.Xx + p.y # fields also accessible by name

33

>>> p # readable __repr._ with a name=value style

Point (x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sg1ite3 modules:

EmployeeRecord = namedtuple ('EmployeeRecord', 'name, age, title, department,.
—paygrade')

import csv

(continues on next page)

264 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

for emp in map (EmployeeRecord._make,
print (emp.name,

emp.title)

(continued from previous page)

csv.reader (open ("employees.csv", "rb"))):

import sqlite3

conn = sglite3.connect ('/companydata')

cursor = conn.cursor ()

cursor.execute ('SELECT name, age, title, department, paygrade FROM employees')

for emp in map (EmployeeRecord._make,
print (emp.name,

emp.title)

cursor.fetchall()) :

In addition to the methods inherited from tuples, named tuples support three additional methods and two attributes.

To prevent conflicts with field names, the method and attribute names start with an underscore.

classmethod somenamedtuple._make (iferable)

Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11, 22]
>>> Point._make (t)

Point (x=11, y=22)

somenamedtuple._asdict ()

Return a new dict which maps field names to their corresponding values:

>>> p = Point (x=11,
>>> p._asdict ()

{'x': 11, 'y':

y=22)

22}

Changed in version 3.1: Returns an OrderedDict instead of a regular dict.

Changed in version 3.8: Returns a regular dict instead of an Orderedpict. As of Python 3.7, regular dicts
are guaranteed to be ordered. If the extra features of Orderedpict are required, the suggested remediation

is to cast the result to the desired type: OrderedDict (nt._asdict ()).

somenamedtuple._replace (**kwargs)

Return a new instance of the named tuple replacing specified fields with new values:

>>> p = Point (x=11,
>>> p._replace (x=33)

Point (x=33, y=22)

y=22)

>>> for partnum, record in inventory.items () :

inventory|[partnum] = record._replace (price=newprices|[partnum], .

—timestamp=time.now())

Named tuples are also supported by generic function copy. replace ().
Changed in version 3.13: Raise TypeError instead of valueError for invalid keyword arguments.

somenamedtuple._fields

Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types from

existing named tuples.

>>> p._fields # view the field names

(Vs=Y, vyv)

>>> Color =
>>> Pixel = namedtuple('Pixel',
>>> Pixel (11, 22, 128, 255, 0)

Pixel (x=11, y=22, red=128,

namedtuple ('Color', 'red green blue')

Point._ fields + Color._fields)

green=255, blue=0)

8.4. collections — Container datatypes

265

The Python Library Reference, Release 3.13.1

somenamedtuple._field_defaults

Dictionary mapping field names to default values.

>>> Account = namedtuple ('Account', ['type', 'balance'], defaults=[0])
>>> Account._field_defaults

{'balance': 0}

>>> Account ('premium')

Account (type="premium', balance=0)

To retrieve a field whose name is stored in a string, use the getattr () function:

>>> getattr(p, 'x')
11

To convert a dictionary to a named tuple, use the double-star-operator (as described in tut-unpacking-arguments):

>> d = {'x': 11, 'y': 22}
>>> Point (**d)
Point (x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is how
to add a calculated field and a fixed-width print format:

>>> class Point (namedtuple ('Point', ['x', 'y'])):
__slots___ = ()
@property
def hypot (self):
return (self.x ** 2 + self.y ** 2) ** 0.5
def _ str_ (self):
. return 'Point: x= y= hypot= ' % (self.x, self.y, self.
—hypot)
>>> for p in Point (3, 4), Point (14, 5/7):
print (p)
Point: x= 3.000 y= 4.000 hypot= 5.000
Point: x=14.000 vy= 0.714 hypot=14.018

The subclass shown above sets __slots__ to an empty tuple. This helps keep memory requirements low by pre-
venting the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from the
_ fields attribute:

[>>> Point3D = namedtuple('Point3D', Point._fields + ('z',)) }

Docstrings can be customized by making direct assignments to the __doc___ fields:

>>> Book = namedtuple('Book', ['id', 'title', 'authors'])

>>> Book._ doc__ += ': Hardcover book in active collection'

>>> Book.id. doc_ = '13-digit ISBN'

>>> Book.title. doc_ = 'Title of first printing'

>>> Book.authors.__doc__ = 'List of authors sorted by last name'

Changed in version 3.5: Property docstrings became writeable.

#» See also

o See typing.NamedTuple for a way to add type hints for named tuples. It also provides an elegant notation
using the class keyword:

266 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

class Component (NamedTuple) :
part_number: int
weight: float
description: Optional[str] = None

e See types.SimpleNamespace () for a mutable namespace based on an underlying dictionary instead of
a tuple.

o The dataclasses module provides a decorator and functions for automatically adding generated special
methods to user-defined classes.

8.4.6 orderedpnict Objects

Ordered dictionaries are just like regular dictionaries but have some extra capabilities relating to ordering operations.
They have become less important now that the built-in dict class gained the ability to remember insertion order
(this new behavior became guaranteed in Python 3.7).

Some differences from dict still remain:
o Theregular dict was designed to be very good at mapping operations. Tracking insertion order was secondary.

o The orderedpict was designed to be good at reordering operations. Space efficiency, iteration speed, and
the performance of update operations were secondary.

e The orderedpict algorithm can handle frequent reordering operations better than dict. As shown in the
recipes below, this makes it suitable for implementing various kinds of LRU caches.

« The equality operation for OrderedDict checks for matching order.

A regular dict can emulate the order sensitive equality test withp == g and all(kl == k2 for ki1,
k2 in zip(p, Q)).

o The popitem () method of Orderednict has a different signature. It accepts an optional argument to specify
which item is popped.

A regular dict can emulate OrderedDict’s od.popitem (last=True) with d.popitem () which is guar-
anteed to pop the rightmost (last) item.

A regular dict can emulate OrderedDict’s od.popitem(last=False) with (k := next (iter(d)),
d.pop (k)) which will return and remove the leftmost (first) item if it exists.

e OrderedDict has amove_to_end () method to efficiently reposition an element to an endpoint.

A regular dict can emulate OrderedDict’s od.move_to_end (k, last=True) withd[k] = d.pop (k)
which will move the key and its associated value to the rightmost (last) position.

A regular dict does not have an efficient equivalent for OrderedDict’s od.move_to_end (k, last=False)
which moves the key and its associated value to the leftmost (first) position.

o Until Python 3.8, dict lackeda __reversed__ () method.
class collections.OrderedDict ([items])
Return an instance of a dict subclass that has methods specialized for rearranging dictionary order.
Added in version 3.1.

popitem (last=True)
The popitem () method for ordered dictionaries returns and removes a (key, value) pair. The pairs are
returned in LIFO order if last is true or FIFO (first-in, first-out) order if false.

move_to_end (key, last=True)

Move an existing key to either end of an ordered dictionary. The item is moved to the right end if last is
true (the default) or to the beginning if last is false. Raises keyError if the key does not exist:

8.4. collections — Container datatypes 267

The Python Library Reference, Release 3.13.1

>>> d = OrderedDict.fromkeys ('abcde')
>>> d.move_to_end('b")

>>> "' join (d)

'acdeb'

>>> d.move_to_end('b', last=False)
>>> "' _ Join(d)

'bacde’

Added in version 3.2.
In addition to the usual mapping methods, ordered dictionaries also support reverse iteration using reversed ().

Equality tests between OrderedDict objects are order-sensitive and are roughly equivalent to list (odl.
items ())==1ist (od2.items()).

Equality tests between OrderedDict objects and other Mapping objects are order-insensitive like regular dictio-
naries. This allows OrderedDict objects to be substituted anywhere a regular dictionary is used.

Changed in version 3.5: The items, keys, and values views of OrderedDict now support reverse iteration using

reversed().

Changed in version 3.6: With the acceptance of PEP 468, order is retained for keyword arguments passed to the
OrderedDict constructor and its update () method.

Changed in version 3.9: Added merge (|) and update (| =) operators, specified in PEP 584.

orderedDict Examples and Recipes

It is straightforward to create an ordered dictionary variant that remembers the order the keys were last inserted. If
a new entry overwrites an existing entry, the original insertion position is changed and moved to the end:

class LastUpdatedOrderedDict (OrderedDict) :
'Store items in the order the keys were last added'

def _ setitem__ (self, key, value):
super () ._ setitem__ (key, value)
self.move_to_end(key)

An OrderedDict would also be useful for implementing variants of functools.lru_cache():

from collections import OrderedDict
from time import time

class TimeBoundedLRU:

"LRU Cache that invalidates and refreshes old entries."

def _ init__ (self, func, maxsize=128, maxage=30) :
self.cache = OrderedDict () # { args : (timestamp, result)}
self.func = func
self.maxsize = maxsize

self.maxage = maxage

def _ call_(self, *args):
if args in self.cache:
self.cache.move_to_end(args)

timestamp, result = self.cachelargs]
if time () - timestamp <= self.maxage:
return result
result = self.func(*args)
self.cachelargs] = time (), result

(continues on next page)

268 Chapter 8. Data Types

https://peps.python.org/pep-0468/
https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.13.1

(continued from previous page)
if len(self.cache) > self.maxsize:

self.cache.popitem(last=False)
return result

class MultiHitLRUCache:

mn

mn

def

def

LRU cache that defers caching a result until
it has been requested multiple times.

To avoid flushing the LRU cache with one-time requests,
we don't cache until a request has been made more than once.

__init__ (self, func, maxsize=128, maxrequests=4096, cache_after=1):
self.requests = OrderedDict () # { uncached_key : request_count }
self.cache = OrderedDict () # { cached_key : function_result }
self.func = func

self.maxrequests = maxrequests # max number of uncached requests
self.maxsize = maxsize # max number of stored return values

self.cache_after = cache_after

__call_(self, *args):
if args in self.cache:
self.cache.move_to_end(args)
return self.cache[args]
result = self.func(*args)
self.requests[args] = self.requests.get (args, 0) + 1
if self.requests[args] <= self.cache_after:
self.requests.move_to_end(args)
if len(self.requests) > self.maxrequests:
self.requests.popitem(last=False)
else:
self.requests.pop(args, None)
self.cachel[args] = result
if len(self.cache) > self.maxsize:
self.cache.popitem(last=False)
return result

8.4.7 userDict Objects

The class, UserDict acts as a wrapper around dictionary objects. The need for this class has been partially supplanted
by the ability to subclass directly from dict; however, this class can be easier to work with because the underlying
dictionary is accessible as an attribute.

class collections.UserDict ([initialdata])

Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via the data attribute of UserDict instances. If initialdata is provided, dat a is initialized with its contents;
note that a reference to initialdata will not be kept, allowing it to be used for other purposes.

In addition to supporting the methods and operations of mappings, UserDict instances provide the following
attribute:

data

A real dictionary used to store the contents of the UserDict class.

8.4. collections — Container datatypes 269

The Python Library Reference, Release 3.13.1

8.4.8 userList objects

This class acts as a wrapper around list objects. It is a useful base class for your own list-like classes which can inherit
from them and override existing methods or add new ones. In this way, one can add new behaviors to lists.

The need for this class has been partially supplanted by the ability to subclass directly from 1 i st; however, this class
can be easier to work with because the underlying list is accessible as an attribute.
class collections.UserList([ﬁw])

Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data
attribute of Userrist instances. The instance’s contents are initially set to a copy of lisz, defaulting to the
empty list []. list can be any iterable, for example a real Python list or a UserList object.

In addition to supporting the methods and operations of mutable sequences, UserList instances provide the
following attribute:
data
A real 1ist object used to store the contents of the UserList class.
Subclassing requirements: Subclasses of UserrList are expected to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance

of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter,
which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class
will need to be overridden; please consult the sources for information about the methods which need to be provided
in that case.

8.4.9 Userstring objects

The class, UserString acts as a wrapper around string objects. The need for this class has been partially supplanted
by the ability to subclass directly from st r; however, this class can be easier to work with because the underlying
string is accessible as an attribute.

class collections.UserString (seq)

Class that simulates a string object. The instance’s content is kept in a regular string object, which is accessible
via the data attribute of UsersString instances. The instance’s contents are initially set to a copy of seq. The
seq argument can be any object which can be converted into a string using the built-in st () function.

In addition to supporting the methods and operations of strings, UserString instances provide the following
attribute:

data

A real st r object used to store the contents of the UserString class.

Changed in version 3.5: New methods _ getnewargs_ , _ rmod__, casefold, format_map,
isprintable, and maketrans.

8.5 collections.abc — Abstract Base Classes for Containers

Added in version 3.3: Formerly, this module was part of the collections module.

Source code: Lib/_collections_abc.py

This module provides abstract base classes that can be used to test whether a class provides a particular interface; for
example, whether it is hashable or whether it is a mapping.

An issubclass () or isinstance () test for an interface works in one of three ways.

1) A newly written class can inherit directly from one of the abstract base classes. The class must supply the required
abstract methods. The remaining mixin methods come from inheritance and can be overridden if desired. Other
methods may be added as needed:

270 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.13/Lib/_collections_abc.py

The Python Library Reference, Release 3.13.1

class C(Sequence) : Direct inheritance
def _ init_ (self):
def _ getitem_ (self, index):
def _ len_ (self):

def count (self, wvalue):

Extra method not required by the ABC
Required abstract method
Required abstract method

W OH W W

Optionally override a mixin method

>>> issubclass (C, Sequence)
True

>>> isinstance (C(), Sedquence)
True

2) Existing classes and built-in classes can be registered as “virtual subclasses” of the ABCs. Those classes should
define the full API including all of the abstract methods and all of the mixin methods. This lets users rely on
issubclass () or isinstance () tests to determine whether the full interface is supported. The exception to
this rule is for methods that are automatically inferred from the rest of the API:

class D: # No inheritance
def _ init_ (self): # Extra method not required by the ABC
def _ getitem__ (self, index): # Abstract method
def @ len_ (self): # Abstract method
def count (self, wvalue): # Mixin method
def index(self, wvalue): # Mixin method
Sequence.register (D) # Register instead of inherit

>>> issubclass (D, Sequence)
True

>>> isinstance (D (), Sequence)
True

In this example, class D does not need to define _ contains_ , __iter , and _ reversed__ because the
in-operator, the iteration logic, and the reversed () function automatically fall back to using _ getitem__ and
__len_

3) Some simple interfaces are directly recognizable by the presence of the required methods (unless those methods
have been set to None):

class E:
def iter (self):
def = next_ (self):

>>> issubclass (E, Iterable)
True
>>> isinstance(E(), Iterable)

True

J

Complex interfaces do not support this last technique because an interface is more than just the presence of method
names. Interfaces specify semantics and relationships between methods that cannot be inferred solely from the pres-
ence of specific method names. For example, knowing thata class supplies __getitem_ , len_ ,and__iter
is insufficient for distinguishing a Sequence from a Mapping.

Added in version 3.9: These abstract classes now support []. See Generic Alias Type and PEP 585.

8.5. collections.abc — Abstract Base Classes for Containers 271

https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.13.1

8.5.1 Collections Abstract Base Classes

The collections module offers the following ABCs:

ABC Inherits Abstract Methods Mixin Methods
from
Container’ __contains_
Hashable! __hash__
Tterable!? _ _iter_
Tterator! Iterable __next_ _ _iter_
Reversible! Iterable __reversed_
Generatorl Iterator send, throw close,__iter_ ,_ next_
Sized! _len_
callable! __call__
collection! Sized, __contains__,
Iterable, __iter_ ,_len_
Container
Sequence Reversible __getitem_ ,_ _len_ | __contains_ ,__iter_ ,
Collection __reversed_ , index, and count
MutableSequence | Sequence | __getitem Inherited Sequence methods and
__setitem_ , append, clear, reverse, extend, pop,
_ delitem_ , remove, and __iadd_
__len_ , insert
ByteString Sequence __getitem_,__len_ Inherited Sequence methods
Set Collection _ _contains_ , _le_, 1t , eq__, ne__,
__iter_ ,_ len_ _gt__, ge_ ,__and__, or__,
__sub__,_ xor_ ,and isdisjoint
MutableSet Set __contains__, Inherited set methods and clear, pop,
__iter_ ,__len_ , remove, _ _ior_ ,_ iand_ ,
add, discard __ixor_ ,and __isub___
Mapping Collection __getitem_ __contains__, keys, items, values,
__iter ,_ len_ get,__eq_ ,and __ne_
MutableMapping Mapping __getitem_ , Inherited Mapp i ng methods and pop,
_ _setitem_ , popitem, clear, update, and
__delitem_ , setdefault
_ _iter_ ,__len_
MappingView Sized __len
ItemsView MappingVie __contains_ ,_ iter_
Set
KeysView MappingVie __contains__ ,_ iter
Set
ValuesView MappingVie __contains__,__iter_
Collection
Awaitable! __await_
coroutine! Awaitable | send, throw close
AsyncIterablel __aiter_
AsyncIterator1 Asyncltera __anext_ __aiter_
AsyncGeneratorl Asyncltera asend, athrow aclose, _aiter_,_ _anext___
Bufferl _ _buffer_

! These ABCs override __ subclasshook__ () to support testing an interface by verifying the required methods are present and have not
been set to None. This only works for simple interfaces. More complex interfaces require registration or direct subclassing.
2 Checking isinstance (obj, Iterable) detects classes that are registered as Tterable or that have an __iter () method, but it

does not detect classes that iterate with the __getitem__ () method. The only reliable way to determine whether an object is iterable is to call
iter (obj).
272 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

8.5.2 Collections Abstract Base Classes - Detailed Descriptions

class collections.abc.Container

ABC for classes that provide the __contains__ () method.

class collections.abc.Hashable

ABC for classes that provide the __hash__ () method.

class collections.abc.Sized

ABC for classes that provide the __1en__ () method.

class collections.abc.Callable

ABC for classes that provide the __call_ () method.
See Annotating callable objects for details on how to use Callable in type annotations.

class collections.abc.Iterable
ABC for classes that provide the __iter () method.
Checking isinstance (obj, Iterable) detects classes that are registered as Iterable or that have an
__iter__ () method, but it does not detect classes that iterate with the __getitem__ () method. The only
reliable way to determine whether an object is iterable is to call iter (obj).

class collections.abc.Collection

ABC for sized iterable container classes.
Added in version 3.6.

class collections.abc.Iterator

ABC for classes that provide the _iter () and __next__ () methods. See also the definition of iterator.

class collections.abc.Reversible

ABC for iterable classes that also provide the __reversed__ () method.
Added in version 3.6.

class collections.abc.Generator
ABC for generator classes that implement the protocol defined in PEP 342 that extends iferators with the
send (), throw () and close () methods.
See Annotating generators and coroutines for details on using Generator in type annotations.

Added in version 3.5.

class collections.abc.Sequence
class collections.abc.MutableSequence
class collections.abc.ByteString

ABC:s for read-only and mutable sequences.

Implementation note: Some of the mixin methods, suchas __iter (), reversed__ () and index(),
make repeated calls to the underlying __getitem__ () method. Consequently, if _ getitem__ () is imple-
mented with constant access speed, the mixin methods will have linear performance; however, if the underlying
method is linear (as it would be with a linked list), the mixins will have quadratic performance and will likely

need to be overridden.

Changed in version 3.5: The index() method added support for stop and start arguments.

Deprecated since version 3.12, will be removed in version 3.14: The ByteString ABC has been deprecated.
For use in typing, prefer a union, like bytes | bytearray, or collections.abc.Buffer. For use as
an ABC, prefer Sequence or collections.abc.Buffer.

class collections.abc.Set

8.5. collections.abc — Abstract Base Classes for Containers 273

https://peps.python.org/pep-0342/

The Python Library Reference, Release 3.13.1

class collections.abc.MutableSet

ABC:s for read-only and mutable sefs.

class collections.abc.Mapping
class collections.abc.MutableMapping
ABC:s for read-only and mutable mappings.
class collections.abc.MappingView
class collections.abc.ItemsView
class collections.abc.KeysView
class collections.abc.ValuesView
ABCs for mapping, items, keys, and values views.
class collections.abc.Awaitable

ABC for awaitable objects, which can be used in await expressions. Custom implementations must provide
the _await__ () method.

Coroutine objects and instances of the Coroutine ABC are all instances of this ABC.

O Note

In CPython, generator-based coroutines (generators decorated with @t ypes. corout ine) are awaitables,
even though they do not have an __await__ () method. Using isinstance (gencoro, Awaitable)
for them will return False. Use inspect.isawaitable () to detect them.

Added in version 3.5.

class collections.abc.Coroutine

ABC for coroutine compatible classes. These implement the following methods, defined in coroutine-objects:
send (), throw(), and close (). Custom implementations must also implement _ _await__ (). All
Coroutine instances are also instances of Awaitable.

© Note

In CPython, generator-based coroutines (generators decorated with @t ypes. corout ine) are awaitables,
even though they do not have an __await__ () method. Using isinstance (gencoro, Coroutine)
for them will return False. Use inspect.isawaitable () to detect them.

See Annotating generators and coroutines for details on using Coroutine in type annotations. The variance
and order of type parameters correspond to those of Generator.

Added in version 3.5.

class collections.abc.AsyncIterable

ABC for classes that provide an __aiter__ method. See also the definition of asynchronous iterable.
Added in version 3.5.

class collections.abc.AsyncIterator

ABC for classes that provide __aiter_ and __anext__ methods. See also the definition of asynchronous
iterator.

Added in version 3.5.

class collections.abc.AsyncGenerator

ABC for asynchronous generator classes that implement the protocol defined in PEP 525 and PEP 492.
See Annotating generators and coroutines for details on using AsyncGenerator in type annotations.

Added in version 3.6.

274 Chapter 8. Data Types

https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/

The Python Library Reference, Release 3.13.1

clas

s collections.abc.Buffer

ABC for classes that provide the __buffer () method, implementing the buffer protocol. See PEP 688.
Added in version 3.12.

8.5.3 Examples and Recipes

ABC:s allow us to ask classes or instances if they provide particular functionality, for example:

size
if 1

= None
sinstance (myvar, collections.abc.Sized):
size = len (myvar)

Sever

al of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs. For

example, to write a class supporting the full set APL it is only necessary to supply the three underlying abstract
methods: __contains__ (), __iter (),and __len__ (). The ABC supplies the remaining methods such as

an

d__ () and isdisjoint ():

clas

sl =
s2 =
over

s ListBasedSet (collections.abc.Set) :
""" Alternate set implementation favoring space over speed

and not requiring the set elements to be hashable. '''
def _ init_ (self, iterable):

self.elements = 1lst = []

for value in iterable:

if value not in 1lst:
lst.append(value)

def _ iter_ (self):
return iter (self.elements)

def _ contains_ (self, wvalue):
return value in self.elements

def _ len_ (self):
return len(self.elements)

ListBasedSet ('abcdef ')
ListBasedSet ('defghi'")
lap = sl & s2 # The __and__ () method is supported automatically

Notes on using Set and MutableSet as a mixin:

(1

2

3)

s

Since some set operations create new sets, the default mixin methods need a way to create new instances
from an iterable. The class constructor is assumed to have a signature in the form ClassName (iterable).
That assumption is factored-out to an internal classmethod called _from iterable () which calls
cls(iterable) to produce a new set. If the Set mixin is being used in a class with a different construc-
tor signature, you will need to override _from_iterable () with a classmethod or regular method that can
construct new instances from an iterable argument.

To override the comparisons (presumably for speed, as the semantics are fixed), redefine _ le_ () and
__ge__ (), then the other operations will automatically follow suit.
The set mixin provides a _hash () method to compute a hash value for the set; however, _hash__ () isnot

defined because not all sets are hashable or immutable. To add set hashability using mixins, inherit from both
Set () and Hashable (), thendefine __hash__ = Set._hash.

See also

o OrderedSet recipe for an example built on MutablesSet.

8.5.

collections.abc — Abstract Base Classes for Containers 275

https://peps.python.org/pep-0688/
https://code.activestate.com/recipes/576694/

The Python Library Reference, Release 3.13.1

¢ For more about ABCs, see the abc module and PEP 3119.

8.6 heapg — Heap queue algorithm

Source code: Lib/heapq.py

This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are binary trees for which every parent node has a value less than or equal to any of its children. We refer to
this condition as the heap invariant.

This implementation uses arrays for which heap [k] <= heap[2*k+1] and heap[k] <= heap[2*k+2] for all
k, counting elements from zero. For the sake of comparison, non-existing elements are considered to be infinite. The
interesting property of a heap is that its smallest element is always the root, heap[0].

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes
the relationship between the index for a node and the indexes for its children slightly less obvious, but is more suitable
since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest (called a “min
heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap [0] is the smallest item,
and heap.sort () maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function heapify ().
The following functions are provided:

heapq.heappush (heap, item)

Push the value item onto the heap, maintaining the heap invariant.

heapq.heappop (heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty,
IndexError is raised. To access the smallest item without popping it, use heap[0].
heapq.heappushpop (heap, item)
Push item on the heap, then pop and return the smallest item from the heap. The combined action runs more
efficiently than heappush () followed by a separate call to heappop ().
heapg.heapify (x)
Transform list x into a heap, in-place, in linear time.

heapq.heapreplace (heap, item)

Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t change. If
the heap is empty, TndexError is raised.

This one step operation is more efficient than a heappop () followed by heappush () and can be more ap-
propriate when using a fixed-size heap. The pop/push combination always returns an element from the heap
and replaces it with item.

The value returned may be larger than the ifem added. If that isn’t desired, consider using heappushpop ()
instead. Its push/pop combination returns the smaller of the two values, leaving the larger value on the heap.

The module also offers three general purpose functions based on heaps.

heapq.merge (*iterables, key=None, reverse=False)

Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple
log files). Returns an iferator over the sorted values.

Similar to sorted (itertools.chain(*iterables)) but returns an iterable, does not pull the data into
memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).

Has two optional arguments which must be specified as keyword arguments.

276 Chapter 8. Data Types

https://peps.python.org/pep-3119/
https://github.com/python/cpython/tree/3.13/Lib/heapq.py

The Python Library Reference, Release 3.13.1

key specifies a key function of one argument that is used to extract a comparison key from each input element.
The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the input elements are merged as if each comparison were
reversed. To achieve behavior similar to sorted (itertools.chain (*iterables), reverse=True),
all iterables must be sorted from largest to smallest.

Changed in version 3.5: Added the optional key and reverse parameters.

heapq.nlargest (n, iterable, key=None)

Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies a
function of one argument that is used to extract a comparison key from each element in iterable (for example,
key=str.lower). Equivalent to: sorted (iterable, key=key, reverse=True) [:n].

heapq.nsmallest (n, iterable, key=None)

Return a list with the n smallest elements from the dataset defined by iterable. key, if provided, specifies a
function of one argument that is used to extract a comparison key from each element in iterable (for example,
key=str.lower). Equivalent to: sorted(iterable, key=key) [:n].

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use the sorted ()
function. Also, when n==1, it is more efficient to use the built-in min () and max () functions. If repeated usage of
these functions is required, consider turning the iterable into an actual heap.

8.6.1 Basic Examples

A heapsort can be implemented by pushing all values onto a heap and then popping off the smallest values one at a
time:

>>> def heapsort (iterable) :
h = []
for value in iterable:
heappush (h, value)
return [heappop (h) for i in range(len (h))]

>>> heapsort ([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
[OI 1/ 2/ 3! 4! 5/ 6/ 7! 8! 9]

This is similar to sorted (iterable), but unlike sorted (), this implementation is not stable.

Heap elements can be tuples. This is useful for assigning comparison values (such as task priorities) alongside the
main record being tracked:

>>> h = []

>>> heappush (h, 'write code'))
>>> heappush (h,
>>> heappush (h

>>> heappush (h,

~

, 'release product'))

, 'write spec'))

w = 39 Ou,
~

~

'create tests'))
>>> heappop (h)
(1, 'write spec')

8.6.2 Priority Queue Implementation Notes
A priority queue is common use for a heap, and it presents several implementation challenges:

« Sort stability: how do you get two tasks with equal priorities to be returned in the order they were originally
added?

o Tuple comparison breaks for (priority, task) pairs if the priorities are equal and the tasks do not have a default
comparison order.

« If the priority of a task changes, how do you move it to a new position in the heap?

« Or if a pending task needs to be deleted, how do you find it and remove it from the queue?

8.6. heapg — Heap queue algorithm 277

https://en.wikipedia.org/wiki/Heapsort
https://en.wikipedia.org/wiki/Priority_queue

The Python Library Reference, Release 3.13.1

A solution to the first two challenges is to store entries as 3-element list including the priority, an entry count, and
the task. The entry count serves as a tie-breaker so that two tasks with the same priority are returned in the order
they were added. And since no two entry counts are the same, the tuple comparison will never attempt to directly
compare two tasks.

Another solution to the problem of non-comparable tasks is to create a wrapper class that ignores the task item and
only compares the priority field:

from dataclasses import dataclass, field
from typing import Any

@dataclass (order=True)
class PrioritizedItem:
priority: int
item: Any=field (compare=False)

The remaining challenges revolve around finding a pending task and making changes to its priority or removing it
entirely. Finding a task can be done with a dictionary pointing to an entry in the queue.

Removing the entry or changing its priority is more difficult because it would break the heap structure invariants. So,
a possible solution is to mark the entry as removed and add a new entry with the revised priority:

pa = [] # list of entries arranged in a heap
entry_finder = {} # mapping of tasks to entries
REMOVED = '<removed-task>"' # placeholder for a removed task
counter = itertools.count () # unique sequence count

def add_task (task, priority=0):
'Add a new task or update the priority of an existing task'
if task in entry_finder:
remove_task (task)

count = next (counter)
entry = [priority, count, task]
entry_finder[task] = entry

heappush (pg, entry)

def remove_task (task):
'Mark an existing task as REMOVED. Raise KeyError if not found.'
entry = entry_finder.pop (task)
entry[-1] = REMOVED

def pop_task():
'Remove and return the lowest priority task. Raise KeyError if empty.'
while pg:
priority, count, task = heappop (pqg)
if task is not REMOVED:
del entry_finder[task]
return task
raise KeyError ('pop from an empty priority queue')

8.6.3 Theory

Heaps are arrays for which a [k] <= a[2*k+1]andalk] <= a[2*k+2] for all k, counting elements from 0. For
the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap is that
a[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers below
are k,not a[k]:

278 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell & is topping 2*k+1 and 2*k+2. In a usual binary tournament we see in sports, each cell
is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To
be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and
the rule becomes that a cell and the two cells it tops contain three different items, but the top cell “wins” over the two
topped cells.

If this heap invariant is protected at all time, index O is clearly the overall winner. The simplest algorithmic way to
remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above) into the 0 position,
and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This is clearly
logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the
inserted items are not “better” than the last 0°th element you extracted. This is especially useful in simulation contexts,
where the tree holds all incoming events, and the “win” condition means the smallest scheduled time. When an event
schedules other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a
heap is a good structure for implementing schedulers (this is what I used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs”
(which are pre-sorted sequences, whose size is usually related to the amount of CPU memory), followed by a merging
passes for these runs, which merging is often very cleverly organised'. It is very important that the initial sort produces
the longest runs possible. Tournaments are a good way to achieve that. If, using all the memory available to hold a
tournament, you replace and percolate items that happen to fit the current run, you’ll produce runs which are twice
the size of the memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the O’'th item on disk and get an input which may not fit in the current tournament (because
the value “wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed
memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly the
same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run.
Clever and quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to
keep a ‘heap’ module around. :-)

8.7 bisect — Array bisection algorithm

Source code: Lib/bisect.py

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over linear searches or
frequent resorting.

! The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking capa-
bilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to ensure (far
in advance) that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge). Some tapes
were even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite spectacular to
watch! From all times, sorting has always been a Great Art! :-)

8.7. bisect — Array bisection algorithm 279

https://github.com/python/cpython/tree/3.13/Lib/bisect.py

The Python Library Reference, Release 3.13.1

The module is called bisect because it uses a basic bisection algorithm to do its work. Unlike other bisection tools
that search for a specific value, the functions in this module are designed to locate an insertion point. Accordingly,
the functions never call an __eq__ () method to determine whether a value has been found. Instead, the functions

only call the 1t

() method and will return an insertion point between values in an array.

The following functions are provided:

bisect .bisect_left (a, X, lo=0, hi=len(a), *, key=None)

Locate the insertion point for x in a to maintain sorted order. The parameters lo and hi may be used to specify
a subset of the list which should be considered; by default the entire list is used. If x is already present in q,
the insertion point will be before (to the left of) any existing entries. The return value is suitable for use as the
first parameter to 1ist.insert () assuming that a is already sorted.

The returned insertion point ip partitions the array a into two slices such that a11 (elem < x for elem in
allo : ip]) is true for the left slice and all (elem >= x for elem in al[ip : hi]) is true for the
right slice.

key specifies a key function of one argument that is used to extract a comparison key from each element in the
array. To support searching complex records, the key function is not applied to the x value.

If key is None, the elements are compared directly and no key function is called.

Changed in version 3.10: Added the key parameter.

bisect .bisect_right (a, x, lo=0, hi=len(a), *, key=None)

bisect .bisect (a, x, lo=0, hi=len(a), *, key=None)

Similar to bisect_left (), but returns an insertion point which comes after (to the right of) any existing
entries of x in a.

The returned insertion point ip partitions the array a into two slices such that all (elem <= x for elem
in al[lo : ip]) is true for the left slice and all (elem > x for elem in a[ip : hil) is true for
the right slice.

Changed in version 3.10: Added the key parameter.

bisect.insort_left (a, X, lo=0, hi=len(a), *, key=None)

Insert x in a in sorted order.

This function first runs bisect_left () to locate an insertion point. Next, it runs the insert () method on
a to insert x at the appropriate position to maintain sort order.

To support inserting records in a table, the key function (if any) is applied to x for the search step but not for
the insertion step.

Keep in mind that the O(log n) search is dominated by the slow O(n) insertion step.

Changed in version 3.10: Added the key parameter.

bisect.insort_right (a, x, lo=0, hi=len(a), *, key=None)

bisect.insort (a, x, lo=0, hi=len(a), *, key=None)

Similar to insort_left (), butinserting x in a after any existing entries of x.

This function first runs bisect_right () to locate an insertion point. Next, it runs the insert () method
on a to insert x at the appropriate position to maintain sort order.

To support inserting records in a table, the key function (if any) is applied to x for the search step but not for
the insertion step.

Keep in mind that the O(log n) search is dominated by the slow O(n) insertion step.

Changed in version 3.10: Added the key parameter.

280

Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

8.7

.1 Performance Notes

When writing time sensitive code using bisect() and insort(), keep these thoughts in mind:

« Bisection is effective for searching ranges of values. For locating specific values, dictionaries are more perfor-
mant.

« The insort() functions are O(n) because the logarithmic search step is dominated by the linear time insertion
step.

o The search functions are stateless and discard key function results after they are used. Consequently, if the
search functions are used in a loop, the key function may be called again and again on the same array elements.
If the key function isn’t fast, consider wrapping it with functools.cache () to avoid duplicate computations.
Alternatively, consider searching an array of precomputed keys to locate the insertion point (as shown in the
examples section below).

See also

8.7
The

« Sorted Collections is a high performance module that uses bisect to managed sorted collections of data.

o The SortedCollection recipe uses bisect to build a full-featured collection class with straight-forward search
methods and support for a key-function. The keys are precomputed to save unnecessary calls to the key
function during searches.

.2 Searching Sorted Lists

above bisect functions are useful for finding insertion points but can be tricky or awkward to use for common

searching tasks. The following five functions show how to transform them into the standard lookups for sorted lists:

def

def

def

def

def

index (a, x):
'Locate the leftmost value exactly equal to x'
i = bisect_left (a, x)
if i != len(a) and al[i] == x:
return i
raise ValueError

find_1t (a, x):
'Find rightmost value less than x'
i = bisect_left (a, x)
if 1i:
return a[i-1]
raise ValueError

find_le(a, x):
'Find rightmost value less than or equal to x'
i = bisect_right (a, x)
if 1i:
return a[i-1]
raise ValueError

find_gt (a, x):
'Find leftmost value greater than x'
i = bisect_right (a, x)
if 1 != len(a):
return a[i]
raise ValueError

find_ge(a, x):
'Find leftmost item greater than or equal to x'

(continues on next page)

8.7.

bisect — Array bisection algorithm 281

https://grantjenks.com/docs/sortedcollections/
https://code.activestate.com/recipes/577197-sortedcollection/

The Python Library Reference, Release 3.13.1

(continued from previous page)
i = bisect_left (a, x)
if i != len(a):
return ali]
raise ValueError

8.7.3 Examples

The bisect () function can be useful for numeric table lookups. This example uses bisect () to look up a letter
grade for an exam score (say) based on a set of ordered numeric breakpoints: 90 and up is an ‘A’, 80 to 89 is a ‘B’,
and so on:

>>> def grade(score, breakpoints=[60, 70, 80, 90], grades='FDCBA'):
i = bisect (breakpoints, score)
return grades|[i]

>>> [grade (score) for score in [33, 99, 77, 70, 89, 90, 100]]
[IFI’ IAI’ VCl, lCl, lB', IAI, IAlJ

The bisect () and insort () functions also work with lists of tuples. The key argument can serve to extract the
field used for ordering records in a table:

>>> from collections import namedtuple
>>> from operator import attrgetter
>>> from bisect import bisect, insort
>>> from pprint import pprint

>>> Movie = namedtuple('Movie', ('name', 'released', 'director'))

>>> movies = [
Movie ('Jaws', 1975, 'Spielberg'),
Movie ('Titanic', 1997, 'Cameron'),
Movie ('The Birds', 1963, 'Hitchcock'),
Movie ('Aliens', 1986, 'Cameron')

>>> # Find the first movie released after 1960

>>> by_year = attrgetter('released')

>>> movies.sort (key=by_year)

>>> movies [bisect (movies, 1960, key=by_year)]

Movie (name='The Birds', released=1963, director='Hitchcock"')

>>> # Insert a movie while maintaining sort order

>>> romance = Movie ('Love Story', 1970, 'Hiller')

>>> insort (movies, romance, key=by_year)

>>> pprint (movies)

[Movie (name="'The Birds', released=1963, director='Hitchcock'),
Movie (name='Love Story', released=1970, director='Hiller'),
Movie (name='Jaws', released=1975, director='Spielberg'),
Movie (name='Aliens', released=1986, director='Cameron'),

Movie (name='Titanic', released=1997, director='Cameron')]

If the key function is expensive, it is possible to avoid repeated function calls by searching a list of precomputed keys
to find the index of a record:

>>> data = [('red', 5), ('blue', 1), ('yellow', 8), ('black', 0)]
>>> data.sort (key=lambda r: r[1]) # Or use operator.itemgetter(1).
(continues on next page)

282 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> keys = [r[l] for r in data] # Precompute a list of keys.
>>> data[bisect_left (keys, 0)]

('black', 0)

>>> datal[bisect_left (keys, 1)]

('blue', 1)

>>> datal[bisect_left (keys, 5)]

('red', 5)

>>> data([bisect_left (keys, 8)]

('yellow', 8)

8.8 array — Efficient arrays of nhumeric values

This module defines an object type which can compactly represent an array of basic values: characters, integers,
floating-point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a type code, which is a single
character. The following type codes are defined:

Type code C Type Python Type Minimum size in bytes Notes
50 signed char int 1

'B' unsigned char int 1

T wchar_t Unicode character 2)
‘w' Py_UCS4 Unicode character 4

'h' signed short int 2

"H' unsigned short int 2

n40 signed int int 2

T unsigned int int 2

1 signed long int 4

'L’ unsigned long int 4

1" signed long long int 8

ol unsigned long long int 8

0 float float 4

Al double float 8

Notes:
(1) It can be 16 bits or 32 bits depending on the platform.

Changed in version 3.9: array ('u') now uses wchar_t as C type instead of deprecated Py_UNICODE. This
change doesn’t affect its behavior because Py_UNICODE is alias of wchar_t since Python 3.3.

Deprecated since version 3.3, will be removed in version 3.16: Please migrate to 'w' typecode.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed through the array. i temsize attribute.

The module defines the following item:

array.typecodes

A string with all available type codes.
The module defines the following type:

class array.array (typecode[, initializer])

A new array whose items are restricted by typecode, and initialized from the optional initializer value, which
must be a bytes or bytearray object, a Unicode string, or iterable over elements of the appropriate type.

8.8. array — Efficient arrays of numeric values 283

The Python Library Reference, Release 3.13.1

If given a bytes or bytearray object, the initializer is passed to the new array’s frombytes () method;
if given a Unicode string, the initializer is passed to the fromunicode () method; otherwise, the initializer’s
iterator is passed to the extend () method to add initial items to the array.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication.
When using slice assignment, the assigned value must be an array object with the same type code; in all other
cases, TypeError is raised. Array objects also implement the buffer interface, and may be used wherever
bytes-like objects are supported.

Raises an auditing event array.__new___ with arguments typecode, initializer.

typecode

The typecode character used to create the array.

itemsize

The length in bytes of one array item in the internal representation.

append (x)

Append a new item with value x to the end of the array.

buffer info()

Return a tuple (address, length) giving the current memory address and the length in elements
of the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed
asarray.buffer_info () [1] * array.itemsize. This is occasionally useful when working with
low-level (and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioct1 ()
operations. The returned numbers are valid as long as the array exists and no length-changing operations
are applied to it.

© Note

When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This
method is maintained for backward compatibility and should be avoided in new code. The buffer
interface is documented in bufferobjects.

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size;
for other types of values, Runt imeError is raised. It is useful when reading data from a file written on
a machine with a different byte order.

count (x)

Return the number of occurrences of x in the array.

extend (iterable)
Append items from iterable to the end of the array. If iterable is another array, it must have exactly the
same type code; if not, TypeError will be raised. If iferable is not an array, it must be iterable and its
elements must be the right type to be appended to the array.

frombytes (buffer)
Appends items from the byres-like object, interpreting its content as an array of machine values (as if it
had been read from a file using the fromfile () method).
Added in version 3.2: fromstring () is renamed to frombytes () for clarity.

fromfile (f, n)

Read n items (as machine values) from the file object f and append them to the end of the array. If less
than » items are available, EOFError is raised, but the items that were available are still inserted into
the array.

284 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

fromlist (/ist)
Append items from the list. This is equivalentto for x in list: a.append (x) except that if there
is a type error, the array is unchanged.

fromunicode (s)
Extends this array with data from the given Unicode string. The array must have type code 'u' or 'w';
otherwise a ValueError is raised. Use array.frombytes (unicodestring.encode (enc)) to
append Unicode data to an array of some other type.

index (x[, start[, stop]])

Return the smallest i such that i is the index of the first occurrence of x in the array. The optional argu-
ments start and stop can be specified to search for x within a subsection of the array. Raise valueError
if x is not found.

Changed in version 3.10: Added optional start and stop parameters.

insert (i, x)

Insert a new item with value x in the array before position i. Negative values are treated as being relative
to the end of the array.

pop ([i])
Removes the item with the index i from the array and returns it. The optional argument defaults to -1,
so that by default the last item is removed and returned.

remove (X)

Remove the first occurrence of x from the array.

clear ()

Remove all elements from the array.
Added in version 3.13.

reverse ()

Reverse the order of the items in the array.

tobytes ()
Convert the array to an array of machine values and return the bytes representation (the same sequence
of bytes that would be written to a file by the tofile () method.)
Added in version 3.2: tostring () is renamed to tobytes () for clarity.

tofile (f)
Write all items (as machine values) to the file object f.

tolist ()
Convert the array to an ordinary list with the same items.

tounicode ()

Convert the array to a Unicode string. The array must have a type 'u' or 'w'; otherwise a ValueError
is raised. Use array.tobytes () .decode (enc) to obtain a Unicode string from an array of some
other type.

The string representation of array objects has the form array (typecode, initializer). The initializer is
omitted if the array is empty, otherwise it is a Unicode string if the fypecode is 'u' or 'w', otherwise it is a list of
numbers. The string representation is guaranteed to be able to be converted back to an array with the same type and
value using eval (), so long as the array class has been imported using from array import array. Variables
inf and nan must also be defined if it contains corresponding floating-point values. Examples:

array ('l")

array ('w', 'hello \u2641')

array('1l', [1, 2, 3, 4, 5])

array('d', [1.0, 2.0, 3.14, -inf, nan])

8.8. array — Efficient arrays of numeric values 285

The Python Library Reference, Release 3.13.1

> See also

Module struct
Packing and unpacking of heterogeneous binary data.

NumPy
The NumPy package defines another array type.

8.9 weakref — Weak references

Source code: Lib/weakref.py

The weakref module allows the Python programmer to create weak references to objects.
In the following, the term referent means the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a
referent are weak references, garbage collection is free to destroy the referent and reuse its memory for something
else. However, until the object is actually destroyed the weak reference may return the object even if there are no
strong references to it.

A primary use for weak references is to implement caches or mappings holding large objects, where it’s desired that
a large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a name with each. If you
used a Python dictionary to map names to images, or images to names, the image objects would remain alive just be-
cause they appeared as values or keys in the dictionaries. The WeakKeyDictionary and WeakValueDictionary
classes supplied by the weakref module are an alternative, using weak references to construct mappings that don’t
keep objects alive solely because they appear in the mapping objects. If, for example, an image object is a value in
a WeakValueDictionary, then when the last remaining references to that image object are the weak references
held by weak mappings, garbage collection can reclaim the object, and its corresponding entries in weak mappings
are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting up call-
back functions on the weak references that notify the weak dictionaries when a key or value has been reclaimed by
garbage collection. weakSet implements the set interface, but keeps weak references to its elements, just like a
WeakKeyDictionary does.

finalize provides a straight forward way to register a cleanup function to be called when an object is garbage
collected. This is simpler to use than setting up a callback function on a raw weak reference, since the module
automatically ensures that the finalizer remains alive until the object is collected.

Most programs should find that using one of these weak container types or finalizeis all they need - it’s not usually
necessary to create your own weak references directly. The low-level machinery is exposed by the weak re £ module
for the benefit of advanced uses.

Not all objects can be weakly referenced. Objects which support weak references include class instances, functions
written in Python (but not in C), instance methods, sets, frozensets, some file objects, generators, type objects, sockets,
arrays, deques, regular expression pattern objects, and code objects.

Changed in version 3.2: Added support for thread.lock, threading.Lock, and code objects.

Several built-in types such as 1ist and dict do not directly support weak references but can add support through
subclassing:

class Dict (dict):
pass

obj = Dict (red=1, green=2, blue=3) # this object is weak referenceable

286 Chapter 8. Data Types

https://numpy.org/
https://github.com/python/cpython/tree/3.13/Lib/weakref.py

The Python Library Reference, Release 3.13.1

CPython implementation detail: Other built-in types such as tuple and int do not support weak references even
when subclassed.

Extension types can easily be made to support weak references; see weakref-support.

When __slots__ are defined for a given type, weak reference support is disabled unlessa ' weakref__ ' string
is also present in the sequence of strings in the __slots__ declaration. See __slots__ documentation for details.

class weakref.ref (object[, callback])

Return a weak reference to object. The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will cause None to be returned.
If callback is provided and not None, and the returned weakref object is still alive, the callback will be called
when the object is about to be finalized; the weak reference object will be passed as the only parameter to the
callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an object’s __del__ () method.

Weak references are hashable if the object is hashable. They will maintain their hash value even after the object
was deleted. If hash () is called the first time only after the object was deleted, the call will raise TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references have
the same equality relationship as their referents (regardless of the callback). If either referent has been deleted,
the references are equal only if the reference objects are the same object.

This is a subclassable type rather than a factory function.

__callback___
This read-only attribute returns the callback currently associated to the weakref. If there is no callback
or if the referent of the weakref is no longer alive then this attribute will have value None.

Changed in version 3.4: Added the _ callback__ attribute.

weakref .proxy (object[, callback])

Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts instead of
requiring the explicit dereferencing used with weak reference objects. The returned object will have a type of
either ProxyType or CallableProxyType, depending on whether object is callable. Proxy objects are not
hashable regardless of the referent; this avoids a number of problems related to their fundamentally mutable
nature, and prevents their use as dictionary keys. callback is the same as the parameter of the same name to
the rer () function.

Accessing an attribute of the proxy object after the referent is garbage collected raises Re ferenceError.

Changed in version 3.8: Extended the operator support on proxy objects to include the matrix multiplication
operators @ and @=.
weakref .getweakrefcount (object)

Return the number of weak references and proxies which refer to object.

weakref .getweakrefs (object)

Return a list of all weak reference and proxy objects which refer to object.

class weakref.WeakKeyDictionary ([dict])

Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer
a strong reference to the key. This can be used to associate additional data with an object owned by other parts
of an application without adding attributes to those objects. This can be especially useful with objects that
override attribute accesses.

Note that when a key with equal value to an existing key (but not equal identity) is inserted into the dictionary,
it replaces the value but does not replace the existing key. Due to this, when the reference to the original key
is deleted, it also deletes the entry in the dictionary:

8.9. weakref — Weak references 287

The Python Library Reference, Release 3.13.1

L

>>> class T(str): pass

>>> k1, k2 = T(), T()

>>> d = weakref.WeakKeyDictionary ()
>>> df[kl] =1 # d = {kl: 1}

>>> d[k2] = 2 # d = {kl: 2}

>>> del kl # d = {}

A workaround would be to remove the key prior to reassignment:

-

>>> class T(str): pass

>>> k1, k2 = T(), T()

>>> d = weakref.WeakKeyDictionary ()

>>> df[kl] =1 # d = {kl: 1}

>>> del d[k1]

>>> d[k2] = 2 # d = {k2: 2}

>>> del k1 # d = {k2: 2}

L J

Changed in version 3.9: Added support for | and | = operators, as specified in PEP 584.

WeakKeyDictionary objects have an additional method that exposes the internal references directly. The refer-
ences are not guaranteed to be “live” at the time they are used, so the result of calling the references needs to be
checked before being used. This can be used to avoid creating references that will cause the garbage collector to
keep the keys around longer than needed.

WeakKeyDictionary.keyrefs ()
Return an iterable of the weak references to the keys.

class weakref.WeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong ref-
erence to the value exists any more.

Changed in version 3.9: Added support for | and | = operators, as specified in PEP 584.

WeakValueDictionary objects have an additional method that has the same issues as the ieakkeyDictionary.
keyrefs () method.
WeakValueDictionary.valuerefs ()

Return an iterable of the weak references to the values.

class weakref.WeakSet ([elements])

Set class that keeps weak references to its elements. An element will be discarded when no strong reference to
it exists any more.

class weakref.WeakMethod(nuﬁhod[,Caﬂback])

A custom rer subclass which simulates a weak reference to a bound method (i.e., a method defined on a class
and looked up on an instance). Since a bound method is ephemeral, a standard weak reference cannot keep
hold of it. weakMethod has special code to recreate the bound method until either the object or the original
function dies:

>>> class C:
def method(self):
print ("method called!")

>>> ¢ = C()

>>> r = weakref.ref (c.method)

>>> r ()

>>> r = weakref.WeakMethod (c.method)
>>> r ()

(continues on next page)

288 Chapter 8. Data Types

https://peps.python.org/pep-0584/
https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.13.1

(continued from previous page)
<bound method C.method of <__main__.C object at 0x7£fc859830220>>
>>> r() ()
method called!
>>> del c
>>> gc.collect ()
0
>>> r ()
>>>

callback is the same as the parameter of the same name to the rer () function.

Added in version 3.4.

class weakref.finalize (0bj, func, /, *args, **kwargs)

Return a callable finalizer object which will be called when obj is garbage collected. Unlike an ordinary weak
reference, a finalizer will always survive until the reference object is collected, greatly simplifying lifecycle
management.

A finalizer is considered alive until it is called (either explicitly or at garbage collection), and after that it is
dead. Calling a live finalizer returns the result of evaluating func (*arg, **kwargs), whereas calling a
dead finalizer returns None.

Exceptions raised by finalizer callbacks during garbage collection will be shown on the standard error output,
but cannot be propagated. They are handled in the same way as exceptions raised from an object’s __del_ ()
method or a weak reference’s callback.

When the program exits, each remaining live finalizer is called unless its atexi t attribute has been set to false.
They are called in reverse order of creation.

A finalizer will never invoke its callback during the later part of the interpreter shutdown when module globals
are liable to have been replaced by None.

__call__ ()

If self is alive then mark it as dead and return the result of calling func (*args, **kwargs). If self
is dead then return None.

detach ()

If self is alive then mark it as dead and return the tuple (obj, func, args, kwargs). If self is dead
then return None.

peek ()

If self is alive then return the tuple (obj, func, args, kwargs). If self is dead then return None.
alive

Property which is true if the finalizer is alive, false otherwise.
atexit

A writable boolean property which by default is true. When the program exits, it calls all remaining live
finalizers for which atexit is true. They are called in reverse order of creation.

© Note

It is important to ensure that func, args and kwargs do not own any references to obj, either directly or
indirectly, since otherwise obj will never be garbage collected. In particular, func should not be a bound
method of obj.

Added in version 3.4.

weakref .ReferenceType

The type object for weak references objects.

8.9. weakref — Weak references 289

The Python Library Reference, Release 3.13.1

weakref.ProxyType

The type object for proxies of objects which are not callable.

weakref.CallableProxyType
The type object for proxies of callable objects.

weakref.ProxyTypes

Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

> See also

PEP 205 - Weak References
The proposal and rationale for this feature, including links to earlier implementations and information about
similar features in other languages.

8.9.1 Weak Reference Objects

Weak reference objects have no methods and no attributes besides ref. callback . A weak reference object
allows the referent to be obtained, if it still exists, by calling it:

>>> import weakref
>>> class Object:
pass

>>> o = Object ()
>>> r

weakref.ref (o)
>>> 02 = r()
>>> o is 02

True

If the referent no longer exists, calling the reference object returns None:

>>> del o, o2
>>> print (r())

None

Testing that a weak reference object is still live should be done using the expression ref () is not None. Nor-
mally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o = r()
if o is None:
referent has been garbage collected
print ("Object has been deallocated; can't frobnicate.")
else:
print ("Object is still live!")

o.do_something_useful ()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before the weak reference is called; the idiom shown above is safe in threaded
applications as well as single-threaded applications.

Specialized versions of rer objects can be created through subclassing. This is used in the implementation of the
WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most useful
to associate additional information with a reference, but could also be used to insert additional processing on calls to
retrieve the referent.

290 Chapter 8. Data Types

https://peps.python.org/pep-0205/

The Python Library Reference, Release 3.13.1

This example shows how a subclass of ref can be used to store additional information about an object and affect the
value that’s returned when the referent is accessed:

import weakref

class ExtendedRef (weakref.ref):

def _ init_ (self, ob, callback=None, /, **annotations):
super () ._ _init__ (ob, callback)
self._counter = 0

for k, v in annotations.items() :
setattr(self, k, v)

def _ call_ (self):
"""Return a palir containing the referent and the number of
times the reference has been called.

mmn

ob = super().__call__ ()

if ob is not None:
self.__counter += 1
ob = (ob, self.__ _counter)

return ob

8.9.2 Example

This simple example shows how an application can use object IDs to retrieve objects that it has seen before. The IDs
of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects
can still be retrieved by ID if they do.

import weakref

_i1d20obj_dict = weakref.WeakValueDictionary ()

def remember (obj) :
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj (oid) :
return _id2obj_dict[oid]

8.9.3 Finalizer Objects

The main benefit of using finalize is that it makes it simple to register a callback without needing to preserve the
returned finalizer object. For instance

>>> import weakref
>>> class Object:
pass

>>> kenny = Object ()

>>> weakref.finalize (kenny, print, "You killed Kenny!")
<finalize object at ...; for 'Object' at ...>

>>> del kenny

You killed Kenny!

The finalizer can be called directly as well. However the finalizer will invoke the callback at most once.

8.9. weakref — Weak references 291

The Python Library Reference, Release 3.13.1

>>> def callback(x, y, z):
print ("CALLBACK")
return x + y + z

>>> obj = Object ()

>>> f = weakref.finalize(obj, callback, 1, 2, z=3)
>>> assert f.alive

>>> assert f() == 6
CALLBACK

>>> assert not f.alive
>>> f ()

>>> del obj

callback not called because finalizer dead
callback not called because finalizer dead

J

You can unregister a finalizer using its detach () method. This kills the finalizer and returns the arguments passed

to the constructor when it was created.

>>> obj = Object ()

>>> f = weakref.finalize(obj, callback, 1, 2, z=3)
>>> f.detach ()
(<...Object object .>, <function callback ...>, (1, 2),

>>> newobj, func, args, kwargs =

>>> assert not f.alive
>>> assert newobj is obj
>>> assert func(*args,

CALLBACK

**kwargs) == 6

Unless you set the atexit attribute to False, a finalizer will be called when the program exits if it is still alive. For

instance

>>> obj = Object ()

>>> weakref.finalize (obj, print, "obj dead or exiting")
<finalize object at ...; for 'Object' at ...>
>>> exit ()

obj dead or exiting

8.9.4 Comparing finalizers with __de1__ () methods

Suppose we want to create a class whose instances represent temporary directories. The directories should be deleted

with their contents when the first of the following events occurs:
« the object is garbage collected,
« the object’s remove () method is called, or
« the program exits.

We might try to implement the class usinga __del__ () method as follows:

class TempDir:
def init_ (self):
self.name = tempfile.mkdtemp ()

def remove (self):
if self.name is not None:
shutil.rmtree (self.name)
self.name = None

@property
def removed(self):

(continues on next page)

292

Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

return self.name is None

def = del_ (self):
self.remove ()

Starting with Python 3.4, _ del () methods no longer prevent reference cycles from being garbage collected, and
module globals are no longer forced to None during interpreter shutdown. So this code should work without any
issues on CPython.

However, handlingof __del () methods is notoriously implementation specific, since it depends on internal details
of the interpreter’s garbage collector implementation.

A more robust alternative can be to define a finalizer which only references the specific functions and objects that it
needs, rather than having access to the full state of the object:

class TempDir:
def _ init_ (self):
self.name = tempfile.mkdtemp ()
self._finalizer = weakref.finalize(self, shutil.rmtree, self.name)

def remove (self):
self._finalizer ()

@property
def removed(self):

return not self._finalizer.alive

J

Defined like this, our finalizer only receives a reference to the details it needs to clean up the directory appropriately.
If the object never gets garbage collected the finalizer will still be called at exit.

The other advantage of weakref based finalizers is that they can be used to register finalizers for classes where the
definition is controlled by a third party, such as running code when a module is unloaded:

import weakref, sys
def unloading _module () :

implicit reference to the module globals from the function body
weakref.finalize (sys.modules[name], unloading_module)

© Note

If you create a finalizer object in a daemonic thread just as the program exits then there is the possibility that
the finalizer does not get called at exit. However, in a daemonic thread atexit.register (), try:
finally: ... andwith: ... do not guarantee that cleanup occurs either.

8.10 types — Dynamic type creation and names for built-in types

Source code: Lib/types.py

This module defines utility functions to assist in dynamic creation of new types.

It also defines names for some object types that are used by the standard Python interpreter, but not exposed as
builtins like int or str are.

Finally, it provides some additional type-related utility classes and functions that are not fundamental enough to be
builtins.

8.10. types — Dynamic type creation and names for built-in types 293

https://github.com/python/cpython/tree/3.13/Lib/types.py

The Python Library Reference, Release 3.13.1

8.10.1 Dynamic Type Creation

types.new_class (name, bases=(), kwds=None, exec_body=None)

Creates a class object dynamically using the appropriate metaclass.

The first three arguments are the components that make up a class definition header: the class name, the base
classes (in order), the keyword arguments (such as metaclass).

The exec_body argument is a callback that is used to populate the freshly created class namespace. It should
accept the class namespace as its sole argument and update the namespace directly with the class contents. If
no callback is provided, it has the same effect as passing in lambda ns: None.

Added in version 3.3.

types.prepare_class (name, bases=(), kwds=None)

Calculates the appropriate metaclass and creates the class namespace.

The arguments are the components that make up a class definition header: the class name, the base classes (in
order) and the keyword arguments (such as metaclass).

The return value is a 3-tuple: metaclass, namespace, kwds

metaclass is the appropriate metaclass, namespace is the prepared class namespace and kwds is an updated
copy of the passed in kwds argument with any 'metaclass' entry removed. If no kwds argument is passed
in, this will be an empty dict.

Added in version 3.3.

Changed in version 3.6: The default value for the namespace element of the returned tuple has changed. Now
an insertion-order-preserving mapping is used when the metaclass does not have a__prepare_ method.

> See also

metaclasses

Full details of the class creation process supported by these functions

PEP 3115 - Metaclasses in Python 3000

Introduced the _ prepare_ namespace hook

types.resolve_bases (bases)

Resolve MRO entries dynamically as specified by PEP 560.

This function looks for items in bases that are not instances of ¢ ype, and returns a tuple where each such object
that has an _ mro_entries__ () method is replaced with an unpacked result of calling this method. If a
bases item is an instance of type, or it doesn’t have an __mro_entries__ () method, then it is included in
the return tuple unchanged.

Added in version 3.7.

types.get_original_bases (cls, /)

Return the tuple of objects originally given as the bases of cls before the _ mro_entries__ () method has
been called on any bases (following the mechanisms laid out in PEP 560). This is useful for introspecting
Generics.

For classes that have an __ _orig_bases__ attribute, this function returns the value of cls.
__orig_bases__. For classes without the __orig_bases__ attribute, cls.__bases__ is returned.

Examples:

from typing import TypeVar, Generic, NamedTuple, TypedDict

T = TypeVar ("T")
class Foo (Generic[T]):

(continues on next page)

294

Chapter 8. Data Types

https://peps.python.org/pep-3115/
https://peps.python.org/pep-0560/
https://peps.python.org/pep-0560/

The Python Library Reference, Release 3.13.1

(continued from previous page)

class Bar (Foo[int], float):

class Baz (list([str]):

Eggs = NamedTuple ("Eggs", [("a", int), ("b", str)])
Spam = TypedDict ("Spam", {"a": int, "b": str})
assert Bar. D s == (Foo, float)

assert get_original_bases (Bar) == (Foo[int], float)
assert Baz. bases == (list,)

assert get_original_bases (Baz) == (list[str],)
assert Eggs. Dbases == (tuple,)

assert get_original_bases (Eggs) == (NamedTuple,)
assert Spam._ bases == (dict,)

assert get_original_bases (Spam) == (TypedDict,)
assert int. Dbases == (object,)

assert get_original_bases (int) == (object,)

L

Added in version 3.12.

> See also

PEP 560 - Core support for typing module and generic types

8.10.2 Standard Interpreter Types

This module provides names for many of the types that are required to implement a Python interpreter. It deliberately
avoids including some of the types that arise only incidentally during processing such as the 1istiterator type.

Typical use of these names is for isinstance () or issubclass () checks.
If you instantiate any of these types, note that signatures may vary between Python versions.
Standard names are defined for the following types:

types.NoneType
The type of None.

Added in version 3.10.

types.FunctionType
types.LambdaType
The type of user-defined functions and functions created by 1ambda expressions.

Raises an auditing event function.__new__ with argument code.
The audit event only occurs for direct instantiation of function objects, and is not raised for normal compilation.

types.GeneratorType
The type of generator-iterator objects, created by generator functions.
types.CoroutineType

The type of coroutine objects, created by async def functions.

Added in version 3.5.

8.10. types — Dynamic type creation and names for built-in types 295

https://peps.python.org/pep-0560/

The Python Library Reference, Release 3.13.1

types.AsyncGeneratorType

The type of asynchronous generator-iterator objects, created by asynchronous generator functions.
Added in version 3.6.

class types.CodeType (**kwargs)
The type of code objects such as returned by compile ().

Raises an auditing event code.__new__ with arguments code, filename, name, argcount,
posonlyargcount, kwonlyargcount, nlocals, stacksize, flags.

Note that the audited arguments may not match the names or positions required by the initializer. The audit
event only occurs for direct instantiation of code objects, and is not raised for normal compilation.

types.CellType
The type for cell objects: such objects are used as containers for a function’s closure variables.

Added in version 3.8.

types.MethodType
The type of methods of user-defined class instances.

types.BuiltinFunctionType

types.BuiltinMethodType
The type of built-in functions like 71en () or sys.exit (), and methods of built-in classes. (Here, the term
“built-in” means “written in C”.)

types.WrapperDescriptorType

The type of methods of some built-in data types and base classes such as object.__init__ () or object.
1t ().

Added in version 3.7.

types.MethodWrapperType

The type of bound methods of some built-in data types and base classes. For example it is the type of
object ().__str__ .

Added in version 3.7.

types.NotImplementedType
The type of Not Implemented

Added in version 3.10.

types.MethodDescriptorType

The type of methods of some built-in data types such as st . join ().
Added in version 3.7.

types.ClassMethodDescriptorType

The type of unbound class methods of some built-in data types such as dict.__dict__ ['fromkeys'].
Added in version 3.7.

class types.ModuleType (name, doc=None)

The type of modules. The constructor takes the name of the module to be created and optionally its docstring.

e See also

Documentation on module objects
Provides details on the special attributes that can be found on instances of ModuleType.

296 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

importlib.util.module_ from spec ()
Modules created using the ModuleType constructor are created with many of their special attributes
unset or set to default values. module_from_spec () provides a more robust way of creating
ModuleType instances which ensures the various attributes are set appropriately.

types.EllipsisType
The type of E11ipsis.

Added in version 3.10.

class types.GenericAlias (f_origin, t_args)

The type of parameterized generics such as 1ist [int].

t_origin should be a non-parameterized generic class, such as 1ist, tuple or dict. t_args should be a
tuple (possibly of length 1) of types which parameterize t _origin:

(>>> from types import GenericAlias)
>>> list[int] == GenericAlias(list, (int,))

True

>>> dict[str, int] == GenericAlias(dict, (str, int))

True

A J

Added in version 3.9.

Changed in version 3.9.2: This type can now be subclassed.

e See also

Generic Alias Types
In-depth documentation on instances of types.GenericAlias

PEP 585 - Type Hinting Generics In Standard Collections
Introducing the types.GenericAlias class

class types.UnionType

The type of union type expressions.
Added in version 3.10.

class types.TracebackType (tb_next, th_frame, tb_lasti, tb_lineno)
The type of traceback objects such as found in sys.exception () . traceback_ .
See the language reference for details of the available attributes and operations, and guidance on creating
tracebacks dynamically.
types.FrameType
The type of frame objects such as found in tb. tb_frame if tb is a traceback object.

types.GetSetDescriptorType
The type of objects defined in extension modules with PyGet SetDef, such as FrameType.f_locals or

array.array.typecode. This type is used as descriptor for object attributes; it has the same purpose as
the property type, but for classes defined in extension modules.

types.MemberDescriptorType

The type of objects defined in extension modules with PyMemberDe £, suchas datetime.timedelta.days.
This type is used as descriptor for simple C data members which use standard conversion functions; it has the
same purpose as the property type, but for classes defined in extension modules.

8.10. types — Dynamic type creation and names for built-in types 297

https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.13.1

In addition, when a class is defined with a _ slots__ attribute, then for each slot, an instance of
MemberDescriptorType Will be added as an attribute on the class. This allows the slot to appear in the
class’s _ dict_ .

CPython implementation detail: In other implementations of Python, this type may be identical to
GetSetDescriptorType.

class types.MappingProxyType (mapping)

Read-only proxy of a mapping. It provides a dynamic view on the mapping’s entries, which means that when
the mapping changes, the view reflects these changes.

Added in version 3.3.

Changed in version 3.9: Updated to support the new union (|) operator from PEP 584, which simply delegates
to the underlying mapping.
key in proxy
Return True if the underlying mapping has a key key, else False.
proxy [key]
Return the item of the underlying mapping with key key. Raises a ke yErrorif keyis notin the underlying
mapping.
iter (proxy)
Return an iterator over the keys of the underlying mapping. This is a shortcut for iter (proxy.
keys ()).
len (proxy)
Return the number of items in the underlying mapping.

copy ()
Return a shallow copy of the underlying mapping.
get (key[, default])

Return the value for key if key is in the underlying mapping, else default. If default is not given, it defaults
to None, so that this method never raises a KeyError.

items ()
Return a new view of the underlying mapping’s items ((key, value) pairs).
keys ()
Return a new view of the underlying mapping’s keys.
values ()
Return a new view of the underlying mapping’s values.
reversed (proxy)
Return a reverse iterator over the keys of the underlying mapping.
Added in version 3.9.
hash (proxy)
Return a hash of the underlying mapping.
Added in version 3.12.

class types.CapsuleType

The type of capsule objects.
Added in version 3.13.

298

Chapter 8. Data Types

https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.13.1

8.10.3 Additional Utility Classes and Functions

class types.SimpleNamespace
A simple object subclass that provides attribute access to its namespace, as well as a meaningful repr.

Unlike object, with SimpleNamespace you can add and remove attributes.

SimpleNamespace objects may be initialized in the same way as dict: either with keyword arguments,
with a single positional argument, or with both. When initialized with keyword arguments, those are directly
added to the underlying namespace. Alternatively, when initialized with a positional argument, the underlying
namespace will be updated with key-value pairs from that argument (either a mapping object or an iterable
object producing key-value pairs). All such keys must be strings.

The type is roughly equivalent to the following code:

class SimpleNamespace:
def _ init__ (self, mapping_or_iterable=(), /, **kwargs):
self. dict .update (mapping_or_iterable)
self. dict .update (kwargs)

def _ repr (self):
items = (f"(k/}/=/{v " for k, v in self. dict__ .items())
return " ({})".format (type(self). name , ", ".join(items))

def _ _eqg (self, other):
if isinstance(self, SimpleNamespace) and isinstance (other, .
—~SimpleNamespace) :
return self. dict == other. dict
return NotImplemented

SimpleNamespace may be useful as a replacement for class NS: pass. However, for a structured record
type use namedtuple () instead.

SimpleNamespace objects are supported by copy. replace ().

Added in version 3.3.

Changed in version 3.9: Attribute order in the repr changed from alphabetical to insertion (like dict).
Changed in version 3.13: Added support for an optional positional argument.

types.DynamicClassAttribute (fget=None, fset=None, fdel=None, doc=None)
Route attribute access on a class to __getattr__.
This is a descriptor, used to define attributes that act differently when accessed through an instance and through

a class. Instance access remains normal, but access to an attribute through a class will be routed to the class’s
__getattr__ method; this is done by raising AttributeError.

This allows one to have properties active on an instance, and have virtual attributes on the class with the same
name (see enum. Enum for an example).

Added in version 3.4.

8.10.4 Coroutine Utility Functions

types.coroutine (gen_func)
This function transforms a generator function into a coroutine function which returns a generator-based corou-
tine. The generator-based coroutine is still a generator iterator, but is also considered to be a coroutine object
and is awaitable. However, it may not necessarily implement the __await__ () method.

If gen_func is a generator function, it will be modified in-place.

If gen_func is not a generator function, it will be wrapped. If it returns an instance of collections.abc.
Generator, the instance will be wrapped in an awaitable proxy object. All other types of objects will be
returned as is.

8.10. types — Dynamic type creation and names for built-in types 299

The Python Library Reference, Release 3.13.1

Added in version 3.5.

8.11 copy — Shallow and deep copy operations

Source code: Lib/copy.py

Assignment statements in Python do not copy objects, they create bindings between a target and an object. For
collections that are mutable or contain mutable items, a copy is sometimes needed so one can change one copy
without changing the other. This module provides generic shallow and deep copy operations (explained below).

Interface summary:

copy . copy (0bj)
Return a shallow copy of obj.

copy .deepcopy (obj[, memo])
Return a deep copy of oby.

copy .replace (0bj, /, **changes)
Creates a new object of the same type as obj, replacing fields with values from changes.

Added in version 3.13.

exception copy.Error

Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

« A shallow copy constructs a new compound object and then (to the extent possible) inserts references into it to
the objects found in the original.

» A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects found
in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

« Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause
a recursive loop.

« Because deep copy copies everything it may copy too much, such as data which is intended to be shared
between copies.

The deepcopy () function avoids these problems by:
« keeping a memo dictionary of objects already copied during the current copying pass; and
« letting user-defined classes override the copying operation or the set of components copied.

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, or any similar
types. It does “copy” functions and classes (shallow and deeply), by returning the original object unchanged; this is
compatible with the way these are treated by the pickle module.

Shallow copies of dictionaries can be made using dict.copy (), and of lists by assigning a slice of the entire list,
for example, copied_list = original_list[:].

Classes can use the same interfaces to control copying that they use to control pickling. See the description of module
pickle for information on these methods. In fact, the copy module uses the registered pickle functions from the
copyreg module.

In order for a class to define its own copy implementation, it can define special methods _ copy () and
__deepcopy__ ().

object.__copy__ (self)

Called to implement the shallow copy operation; no additional arguments are passed.

300 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.13/Lib/copy.py

The Python Library Reference, Release 3.13.1

object.__deepcopy__(self, memo)

Called to implement the deep copy operation; it is passed one argument, the memo dictionary. If the
__deepcopy___ implementation needs to make a deep copy of a component, it should call the deepcopy ()
function with the component as first argument and the memo dictionary as second argument. The memo dic-
tionary should be treated as an opaque object.

Function copy . replace () is more limited than copy () and deepcopy (), and only supports named tuples created
by namedtuple (), dataclasses, and other classes which define method _ replace ().

object.__replace__(self, /, **changes)

This method should create a new object of the same type, replacing fields with values from changes.

> See also

Module pickle
Discussion of the special methods used to support object state retrieval and restoration.

8.12 pprint — Data pretty printer

Source code: Lib/pprint.py

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be
used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets or classes are included,
as well as many other objects which are not representable as Python literals.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don’t
fit within the allowed width, adjustable by the width parameter defaulting to 80 characters.

Dictionaries are sorted by key before the display is computed.
Changed in version 3.9: Added support for pretty-printing t ypes. SimpleNamespace.

Changed in version 3.10: Added support for pretty-printing dataclasses.dataclass.

8.12.1 Functions
pprint .pp (object, stream=None, indent=1, width=80, depth=None, *, compact=False, sort_dicts=False,
underscore_numbers=False)

Prints the formatted representation of object, followed by a newline. This function may be used in the interactive
interpreter instead of the print () function for inspecting values. Tip: you can reassign print = pprint.
pp for use within a scope.

Parameters
» object - The object to be printed.

o stream (file-like object | None) — A file-like object to which the output will be written by
calling its write () method. If None (the default), sys. stdout is used.

e indent (int) - The amount of indentation added for each nesting level.

e width (int) — The desired maximum number of characters per line in the output. If a
structure cannot be formatted within the width constraint, a best effort will be made.

e depth (int | None) - The number of nesting levels which may be printed. If the data
structure being printed is too deep, the next contained level is replaced by If None
(the default), there is no constraint on the depth of the objects being formatted.

8.12. pprint — Data pretty printer 301

https://github.com/python/cpython/tree/3.13/Lib/pprint.py

The Python Library Reference, Release 3.13.1

e compact (bool) — Control the way long sequences are formatted. If False (the default),
each item of a sequence will be formatted on a separate line, otherwise as many items as
will fit within the width will be formatted on each output line.

e sort_dicts (bool) - If True, dictionaries will be formatted with their keys sorted,
otherwise they will be displayed in insertion order (the default).

e underscore_numbers (bool) - If True, integers will be formatted with the _ character
for a thousands separator, otherwise underscores are not displayed (the default).

s 2}

>>> import pprint

>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']
>>> stuff.insert (0, stuff)
>>> pprint.pp (stuff)
[<Recursion on list with id=...>,
'spam',
'eggs',
'lumberjack’,
'knights',
'ni']

Added in version 3.8.

pprint .pprint (object, stream=None, indent=1, width=80, depth=None, *, compact=False, sort_dicts=True,
underscore_numbers=False)

Alias for pp () with sort_dicts set to True by default, which would automatically sort the dictionaries” keys,
you might want to use pp () instead where it is False by default.

pprint .pformat (object, indent=I, width=80, depth=None, *, compact=False, sort_dicts=True,
underscore_numbers=False)

Return the formatted representation of object as a string. indent, width, depth, compact, sort_dicts and under-
score_numbers are passed to the PretctyPrinter constructor as formatting parameters and their meanings
are as described in the documentation above.

pprint.isreadable (object)

Determine if the formatted representation of object is “readable”, or can be used to reconstruct the value using
eval (). This always returns False for recursive objects.

>>> pprint.isreadable (stuff)
False

pprint.isrecursive (object)

Determine if object requires a recursive representation. This function is subject to the same limitations as noted
in saferepr () below and may raise an RecursionError if it fails to detect a recursive object.

pprint .saferepr (object)

Return a string representation of object, protected against recursion in some common data structures, namely
instances of dict, 1ist and tuple or subclasses whose __repr__ has not been overridden. If the repre-
sentation of object exposes a recursive entry, the recursive reference will be represented as <Recursion on
typename with id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr (stuff)
"[<Recursion on list with id=...>, 'spam', 'eggs', 'lumberjack', 'knights', 'ni

(_‘I]H

8.12.2 PrettyPrinter Objects

class pprint.PrettyPrinter (indent=1, width=80, depth=None, stream=None, *, compact=False,
sort_dicts=True, underscore_numbers=False)

302 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

Construct a PrettyPrinter instance.

Arguments have the same meaning as for pp (). Note that they are in a different order, and that sort_dicts
defaults to True.

>>> import pprint

>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']
>>> stuff.insert (0, stuff[:])
>>> pp pprint.PrettyPrinter (indent=4)

>>> pp.pprint (stuff)
[['"spam', 'eggs', 'lumberjack', 'knights', 'ni'],
'spam',
'eggs’,
'lumberjack’',
'knights',
'ni']
>>> pp
>>> pp.pprint (stuff)

= pprint.PrettyPrinter (width=41, compact=True)
[["spam', 'eggs', 'lumberjack',

'knights', 'ni'],
'spam', 'eggs', 'lumberjack', 'knights',

'ni']
>>> tup = ('spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead',
('parrot', ('fresh fruit',))))))))
>>> pp pprint.PrettyPrinter (depth=6)
>>> pp.pprint (tup)
("spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead', (...)))))))
. J

Changed in version 3.4: Added the compact parameter.

Changed in version 3.8: Added the sort_dicts parameter.

Changed in version 3.10: Added the underscore_numbers parameter.

Changed in version 3.11: No longer attempts to write to sys . stdout if it is None.
prettyPrinter instances have the following methods:

PrettyPrinter.pformat (object)
Return the formatted representation of object. This takes into account the options passed to the
PrettyPrinter constructor.
PrettyPrinter.pprint (object)
Print the formatted representation of object on the configured stream, followed by a newline.
The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since new PrettyPrinter objects don't need to be created.
PrettyPrinter.isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the
value using eval (). Note that this returns False for recursive objects. If the depth parameter of the
PrettyPrinter is set and the object is deeper than allowed, this returns False.
PrettyPrinter.isrecursive (object)
Determine if the object requires a recursive representation.
This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The default
implementation uses the internals of the saferepr () implementation.
PrettyPrinter.format (object, context, maxlevels, level)

Returns three values: the formatted version of object as a string, a flag indicating whether the result is readable,
and a flag indicating whether recursion was detected. The first argument is the object to be presented. The

8.12. pprint — Data pretty printer 303

The Python Library Reference, Release 3.13.1

second is a dictionary which contains the id () of objects that are part of the current presentation context
(direct and indirect containers for object that are affecting the presentation) as the keys; if an object needs to
be presented which is already represented in context, the third return value should be True. Recursive calls
to the format () method should add additional entries for containers to this dictionary. The third argument,
maxlevels, gives the requested limit to recursion; this will be 0 if there is no requested limit. This argument
should be passed unmodified to recursive calls. The fourth argument, level, gives the current level; recursive
calls should be passed a value less than that of the current call.

8.12.3 Example

To demonstrate several uses of the pp () function and its parameters, let’s fetch information about a project from

PyPI:

>>> import Jjson

>>> import pprint

>>> from urllib.request import urlopen

>>> with urlopen ('https://pypi.org/pypi/sampleproject/1.2.0/json') as resp:

project_info = json.load(resp) ['info']

In its basic form, pp () shows the whole object:

>>> pprint.pp(project_info)

{'author': 'The Python Packaging Authority',

'author_email': 'pypa-dev@googlegroups.com',

'bugtrack_url': None,

'classifiers': ['Development Status :: 3 - Alpha',
'Intended Audience :: Developers',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2°',
'Programming Language :: Python :: 2.6',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.2',
'Programming Language :: Python :: 3.3',
'Programming Language :: Python :: 3.4"',
'Topic :: Software Development :: Build Tools'],

'description': 'A sample Python project\n'
o __ \nu
l\nl
'This is the description file for the project.\n'
n\nu

'The file should use UTF-8 encoding and be written using '
'ReStructured Text. It\n'

'will be used to generate the project webpage on PyPI, and '
'should be written for\n'

'that purpose.\n'

v\nl

'Typical contents for this file would include an overview of

v

'the project, basic\n'

'usage examples, etc. Generally, including the project '
'changelog in here is not\n'

'a good idea, although a simple "What\'s New" section for the '
'most recent version\n'

'may be appropriate.',

'description_content_type': None,

'docs_url': None,

'download_url':

' UNKNOWN',

'downloads': {'last_day': -1, 'last_month': -1, 'last_week': -1},

(continues on next page)

304

Chapter 8. Data Types

https://pypi.org

The Python Library Reference, Release 3.13.1

'home_page':

(continued from previous page)

'https://github.com/pypa/sampleproject’,

'keywords': 'sample setuptools development',
'"license': 'MIT',
'maintainer': None,

'maintainer_email':

'name’:
'package_url':
'platform’':
'project_url':

'project_urls':

'release_url':

'requires_dist':
'requires_python':

'summary':
'version':

None,

'sampleproject’',

'https://pypi.org/project/sampleproject/’,

"UNKNOWN ',

'https://pypi.
{'Download':

org/project/sampleproject/"',
'UNKNOWN',

'Homepage': 'https://github.com/pypa/sampleproject’'},
'https://pypi.org/project/sampleproject/1.2.0/",
None,
None,

'A sample Python project',
'1.2.0'}

The result can be limited to a certain depth (ellipsis is used for deeper contents):

>>> pprint.pp (project_info,

{'author':
'author_email':
'bugtrack_url':
'classifiers':
'description':

'description_content_type':

'docs_url':
'download_url':
'downloads': {.

'home_page':

depth=1)

'The Python Packaging Authority',

'pypa—-dev@googlegroups.com',
None,

[oooly
'A sample Python project\n'

- \nl

l\nl

'This is the description file for the project.\n'
l\nl

'The file should use UTF-8 encoding and be written using '
'ReStructured Text. It\n'
'will be used to generate the project webpage on PyPI,
'should be written for\n'

and '

'that purpose.\n'

Y\nl

'Typical contents for this file would include an overview of '
'the project, basic\n'

'usage examples, etc. Generally, including the project '
'changelog in here is not\n'
although a simple "What\'s New" section for the '

'most recent version\n'

'a good idea,

'may be appropriate.’',
None,

None,

" UNKNOWN ',
oolip

'https://github.com/pypa/sampleproject’,

'keywords': 'sample setuptools development',
'license': 'MIT',
'maintainer': None,

'maintainer_email':

'name’:
'package_url':
'platform':
'project_url':

'project_urls':

None,

'sampleproject’',

'https://pypi.org/project/sampleproject/"',

' UNKNOWN ',

'https://pypi.org/project/sampleproject/’',
{...},

(continues on next page)

8.12. pprint — Data pretty printer

305

The Python Library Reference, Release 3.13.1

(continued from previous page)
'release_url': 'https://pypi.org/project/sampleproject/1.2.0/',
'requires_dist': None,
'requires_python': None,
'summary': 'A sample Python project',
'version': '1.2.0'}

Additionally, maximum character width can be suggested. If a long object cannot be split, the specified width will
be exceeded:

>>> pprint.pp(project_info, depth=1, width=60)

{'author': 'The Python Packaging Authority',
'author_email': 'pypa-dev@googlegroups.com',
'bugtrack_url': None,

'classifiers': [...],

'description': 'A sample Python project\n'
" — \nl
l\nl

'This is the description file for the '

'project.\n'

n\nu

'The file should use UTF-8 encoding and be '

'written using ReStructured Text. It\n'

'will be used to generate the project '

'webpage on PyPI, and should be written '

'for\n'

'that purpose.\n'

n\nu

'Typical contents for this file would '

'include an overview of the project, '

'basic\n'

'usage examples, etc. Generally, including '

'the project changelog in here is not\n'

'a good idea, although a simple "What\'s '

'New" section for the most recent version\n'

'may be appropriate.',
'description_content_type': None,

'docs_url': None,

'download_url': 'UNKNOWN',

'downloads': {...},

'home_page': 'https://github.com/pypa/sampleproject’,
'keywords': 'sample setuptools development',

'license': 'MIT',

'maintainer': None,

'maintainer_email': None,

'name': 'sampleproject',

'package_url': 'https://pypi.org/project/sampleproject/’',
'platform': 'UNKNOWN',

'project_url': 'https://pypi.org/project/sampleproject/"',
'project_urls': {...},

'release_url': 'https://pypil.org/project/sampleproject/1.2.0/",

'requires_dist': None,
'requires_python': None,

'summary': 'A sample Python project',
'version': '1.2.0'}

306 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

8.13 reprlib — Alternate repr () implementation

Source code: Lib/reprlib.py

The repr1ib module provides a means for producing object representations with limits on the size of the resulting
strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class reprlib.Repr (¥ maxlevel=6, maxtuple=6, maxlist=6, maxarray=>5, maxdict=4, maxset=0,
maxfrozenset=6, maxdeque=6, maxstring=30, maxlong=40, maxother=30, fillvalue="...",
indent=None)

Class which provides formatting services useful in implementing functions similar to the built-in repr () ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

The keyword arguments of the constructor can be used as a shortcut to set the attributes of the Repr instance.
Which means that the following initialization:

[aRepr = reprlib.Repr (maxlevel=3)

Is equivalent to:

aRepr = reprlib.Repr ()
aRepr.maxlevel = 3

See section Repr Objects for more information about Repr attributes.
Changed in version 3.12: Allow attributes to be set via keyword arguments.

reprlib.aRepr

This is an instance of Repr which is used to provide the repr () function described below. Changing the
attributes of this object will affect the size limits used by repr () and the Python debugger.

reprlib.repr (0bj)

This is the repr () method of aRepr. It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

In addition to size-limiting tools, the module also provides a decorator for detecting recursive calls to __repr__ ()
and substituting a placeholder string instead.

@reprlib.recursive_repr (fillvalue="..")
Decorator for __repr__ () methods to detect recursive calls within the same thread. If a recursive call is
made, the fillvalue is returned, otherwise, the usual __repr__ () call is made. For example:

>>> from reprlib import recursive_repr
>>> class MyList (list):
@recursive_repr ()
def _ repr__ (self):
return '<' + '|'.join(map(repr, self)) + '>'

>>> m = MyList ('abc')
>>> m.append (m)

>>> m.append('x")

>>> print (m)
<'a'|'b'"|'c'"|...|"'x">

Added in version 3.2.

8.13. reprlib — Alternate repr () implementation 307

https://github.com/python/cpython/tree/3.13/Lib/reprlib.py

The Python Library Reference, Release 3.13.1

8.13.1 Repr Objects

Repr instances provide several attributes which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.
Repr.fillvalue

This string is displayed for recursive references. It defaults to

Added in version 3.11.

Repr.maxlevel

Depth limit on the creation of recursive representations. The default is 6.

Repr.maxdict

Repr.maxlist

Repr.maxtuple

Repr.maxset

Repr.maxfrozenset

Repr .maxdeque

Repr.maxarray
Limits on the number of entries represented for the named object type. The default is 4 for maxdict, 5 for
maxarray, and 6 for the others.

Repr.maxlong
Maximum number of characters in the representation for an integer. Digits are dropped from the middle. The
default is 40.

Repr.maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation
of the string is used as the character source: if escape sequences are needed in the representation, these may
be mangled when the representation is shortened. The default is 30.

Repr.maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. It is applied in a similar manner as maxstring. The default is 20.

Repr.indent

If this attribute is set to None (the default), the output is formatted with no line breaks or indentation, like the
standard repr (). For example:

r>>> example = [
1, 'spam', {'a': 2, 'b': 'spam eggs', 'c': {3: 4.5, 6: []}}, 'ham']
>>> import reprlib
>>> aRepr = reprlib.Repr ()
>>> print (aRepr.repr (example))

[1, 'spam', {'a': 2, 'b': 'spam eggs', 'c': {3: 4.5, 6: []1}}, 'ham']

If indent is set to a string, each recursion level is placed on its own line, indented by that string:

>>> aRepr.indent = '——>'
>>> print (aRepr.repr (example))

[

==>1,

-—>'spam',

,,>{

-—>-—>"'a': 2,
-—>-—->'b': 'spam eggs',
==>==>Ug'3 {

——>-—->-->3: 4.5,

(continues on next page)

308 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

==>==2==>63 [,

=SS},

77>}r

——>'ham',

]

. J

Setting indent to a positive integer value behaves as if it was set to a string with that number of spaces:

p
>>> aRepr.indent = 4

>>> print (aRepr.repr (example))

[

1,
'spam',
{
'‘a': 2,
'b': 'spam eggs',
"eVs {4
3: 4.5,
6: [1,
by
y
'ham',

Added in version 3.12.

Repr . repr (0bj)
The equivalent to the built-in repr () that uses the formatting imposed by the instance.

Repr . reprl (obj, level)
Recursive implementation used by repr (). This uses the type of obj to determine which formatting method to

call, passing it obj and level. The type-specific methods should call repr1 () to perform recursive formatting,
with 1evel - 1 for the value of level in the recursive call.

Repr.repr_TYPE (0bj, level)
Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method name, TYPE is replaced by '_'.join (type (obj) .__name__ .split ()). Dispatch to these
methods is handled by repr1 (). Type-specific methods which need to recursively format a value should call
self.reprl (subobj, level - 1).

8.13.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr. repr1 () allows subclasses of Repr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

import reprlib
import sys

class MyRepr (reprlib.Repr) :

def repr_TextIOWrapper (self, obj, level):
if obj.name in {'<stdin>', '<stdout>', '<stderr>'}:
return obj.name
return repr (obj)

aRepr = MyRepr ()
print (aRepr.repr (sys.stdin)) # prints '<stdin>'

8.13. reprlib — Alternate repr () implementation 309

The Python Library Reference, Release 3.13.1

[<stdin>

8.14 enum — Support for enumerations

Added in version 3.4.

Source code: Lib/enum.py

/Important

This page contains the API reference information. For tutorial information and discussion of more advanced
topics, see

« Basic Tutorial

o Advanced Tutorial

¢ Enum Cookbook)

An enumeration:
« is a set of symbolic names (members) bound to unique values
« can be iterated over to return its canonical (i.e. non-alias) members in definition order
« uses call syntax to return members by value
« uses index syntax to return members by name

Enumerations are created either by using class syntax, or by using function-call syntax:

>>> from enum import Enum

>>> # class syntax
>>> class Color (Enum) :
RED = 1
GREEN = 2
BLUE = 3

>>> # functional syntax
>>> Color = Enum('Color', [('RED', 1), ('GREEN', 2), ('BLUE', 3)1])

Even though we can use class syntax to create Enums, Enums are not normal Python classes. See How are Enums
different? for more details.

© Note

Nomenclature
e The class Color is an enumeration (or enum)

e The attributes Color .RED, Color.GREEN, etc., are enumeration members (or members) and are function-
ally constants.

e The enum members have names and values (the name of Color.RED is RED, the value of Color.BLUE
is 3, etc.)

310 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.13/Lib/enum.py

The Python Library Reference, Release 3.13.1

8.14.1 Module Contents

EnumType

The type for Enum and its subclasses.
Enum

Base class for creating enumerated constants.
IntEnum

Base class for creating enumerated constants that are also subclasses of int. (Notes)
StrEnum

Base class for creating enumerated constants that are also subclasses of st r. (Notes)
Flag

Base class for creating enumerated constants that can be combined using the bitwise opera-
tions without losing their 7125 membership.

IntFlag

Base class for creating enumerated constants that can be combined using the bitwise operators
without losing their 7ntF1ag membership. IntF1ag members are also subclasses of int.
(Notes)

ReprEnum
Used by 7ntEnum, St rEnum, and TntFlag to keep the str () of the mixed-in type.
EnumCheck

An enumeration with the values CONTINUOUS, NAMED_FLAGS, and UNIQUE, for use with
verify () to ensure various constraints are met by a given enumeration.

FlagBoundary

An enumeration with the values STRICT, CONFORM, EJECT, and KEEP which allows for more
fine-grained control over how invalid values are dealt with in an enumeration.

EnumDict
A subclass of dict for use when subclassing EnumType.
auto

Instances are replaced with an appropriate value for Enum members. St rEnum defaults to
the lower-cased version of the member name, while other Enums default to 1 and increase
from there.

property ()

Allows Enum members to have attributes without conflicting with member names. The
value and name attributes are implemented this way.

unique ()

Enum class decorator that ensures only one name is bound to any one value.
verify ()

Enum class decorator that checks user-selectable constraints on an enumeration.
member ()

Make ob- a member. Can be used as a decorator.
nonmember ()

Do not make obj a member. Can be used as a decorator.

8.14. enum — Support for enumerations 311

The Python Library Reference, Release 3.13.1

global_enum/()

Modify the st r () and repr () of an enum to show its members as belonging to the module
instead of its class, and export the enum members to the global namespace.

show_flag _values ()
Return a list of all power-of-two integers contained in a flag.
Added in version 3.6: Flag, IntFlag, auto

Added in version 3.11: StrEnum, EnumCheck, ReprEnum, FlagBoundary, property, member, nonmember,
global_enum, show_flag_values

Added in version 3.13: EnumDict

8.14.2 Data Types

class enum.EnumType

EnumType is the metaclass for enum enumerations. It is possible to subclass EnumType — see Subclassing

EnumType for details.
EnumType is responsible for setting the correct _ repr_ (), _ str_ (), _ format_ (), and
__reduce__ () methods on the final enum, as well as creating the enum members, properly handling du-

plicates, providing iteration over the enum class, etc.

__call__ (cls, value, names=None, *, module=None, qualname=None, type=None, start=1I,
boundary=None)

This method is called in two different ways:
« to look up an existing member:

cls
The enum class being called.

value
The value to lookup.

« to use the c1s enum to create a new enum (only if the existing enum does not have any members):

cls
The enum class being called.

value
The name of the new Enum to create.

names
The names/values of the members for the new Enum.

module
The name of the module the new Enum is created in.

qualname
The actual location in the module where this Enum can be found.

type
A mix-in type for the new Enum.

start
The first integer value for the Enum (used by auto).

boundary
How to handle out-of-range values from bit operations (F1ag only).

312 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

__contains___ (cls, member)

Returns True if member belongs to the c1s:

>>> some_var = Color.RED

>>> some_var in Color

True

>>> Color.RED.value in Color
True

Changed in version 3.12: Before Python 3.12, a TypeError is raised if a non-Enum-member is used in a
containment check.

__dir__ (cls)

Returns ['_ class_ ', '__doc_ ', ' members_ ', ' module__ '] and the names of the
members in cls:

>>> dir (Color)

['BLUE', 'GREEN', 'RED', '_ class__', '_ contains__ ', '__doc__', '___
—getitem_ ', '__init_subclass_ ', '__iter_ ', '__len__ ', '_ _members_ ', '_
—_module__ ', '__name__ ', '_ _qualname__ ']

__getitem__ (cls, name)

Returns the Enum member in cls matching name, or raises a KeyError:

>>> Color['BLUE']
<Color.BLUE: 3>

__iter__ (cls)

Returns each member in cls in definition order:

>>> list (Color)
[<Color.RED: 1>, <Color.GREEN: 2>, <Color.BLUE: 3>]

__len__ (cls)

Returns the number of member in cls:

>>> len(Color)
3

__members_
Returns a mapping of every enum name to its member, including aliases
__reversed__ (cls)

Returns each member in cls in reverse definition order:

>>> list (reversed(Color))
[<Color.BLUE: 3>, <Color.GREEN: 2>, <Color.RED: 1>]

_add_alias_ ()

Adds a new name as an alias to an existing member. Raises a NameError if the name is already assigned
to a different member.

_add_value_alias_ ()

Adds a new value as an alias to an existing member. Raises a ValueError if the value is already linked
with a different member.

Added in version 3.11: Before 3.11 EnumType was called EnumMet a, which is still available as an alias.

8.14. enum — Support for enumerations 313

The Python Library Reference, Release 3.13.1

class enum.Enum

Enum is the base class for all enum enumerations.

name

The name used to define the Enum member:

>>> Color.BLUE.name
'BLUE'

value

The value given to the Enum member:

>>> Color.RED.value
1

Value of the member, can be setin___new

© Note

Enum member values

().

Member values can be anything: int, st r, etc. If the exact value is unimportant you may use auto
instances and an appropriate value will be chosen for you. See aut o for the details.

While mutable/unhashable values, such as dict, 1ist or a mutable dataclass, can be used,
they will have a quadratic performance impact during creation relative to the total number of muta-

ble/unhashable values in the enum.

hame

Name of the member.

value

Value of the member, can be setin___new

order

().

No longer used, kept for backward compatibility. (class attribute, removed during class creation).

ignore

ignore is only used during creation and is removed from the enumeration once creation is complete.

ignore is a list of names that will not become members, and whose names will also be removed from
the completed enumeration. See TimePeriod for an example.

_ dir__ (self)
Returns ['__class_ ', '__doc_ ', '__module_ ', 'name', 'value'] and any public
methods defined on self.__class__:
>>> from datetime import date
>>> class Weekday (Enum) :
MONDAY = 1
TUESDAY = 2
WEDNESDAY = 3
THURSDAY = 4
FRIDAY = 5
SATURDAY = 6
SUNDAY = 7
@classmethod
def today(cls):
print ('today is ! cls(date.today () .isoweekday ()) .name)

(continues on next page)

314

Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> dir (Weekday.SATURDAY)

['_class__ ', '__doc_', '"_egq ', '__hash__', '__module__', 'name', 'today

—', 'value']

_generate_next_value_ (name, start, count, last_values)

name
The name of the member being defined (e.g. ‘RED’).

start
The start value for the Enum; the default is 1.

count
The number of members currently defined, not including this one.

last_values
A list of the previous values.

A staticmethod that is used to determine the next value returned by auto:

>>> from enum import auto
>>> class PowersOfThree (Enum) :
@staticmethod
def _generate_next_value_ (name, start, count, last_values):
return 3 ** (count + 1)
FIRST = auto()
SECOND = auto ()

>>> PowersOfThree.SECOND.value
9

__init__ (self, *args, **kwds)

By default, does nothing. If multiple values are given in the member assignment, those values become
separate arguments to __init_ ;e.g.

>>> from enum import Enum
>>> class Weekday (Enum) :
MONDAY = 1, 'Mon'

Weekday.__init__ () would be called as Weekday.__init__ (self, 1, 'Mon')
__init_subclass__ (cls, **kwds)

A classmethod that is used to further configure subsequent subclasses. By default, does nothing.
missing (cls, value)

A classmethod for looking up values not found in cls. By default it does nothing, but can be overridden
to implement custom search behavior:

>>> from enum import StrEnum
>>> class Build (StrEnum) :
DEBUG = auto ()
OPTIMIZED = auto()
@classmethod
def _missing_(cls, value):
value = value.lower ()
for member in cls:
if member.value == value:
return member

(continues on next page)

8.14. enum — Support for enumerations 315

The Python Library Reference, Release 3.13.1

(continued from previous page)

return None

>>> Build.DEBUG.value
'debug!’

>>> Build ('deBUG')
<Build.DEBUG: 'debug'>

__new__ (cls, *args, **kwds)

By default, doesn’t exist. If specified, either in the enum class definition or in a mixin class (such as int),
all values given in the member assignment will be passed; e.g.

>>> from enum import Enum
>>> class MyIntEnum(int, Enum):
TWENTYSIX = 'la', 16

results in the call int ('1a', 16) and a value of 26 for the member.

© Note

When writing a custom __new
instead.

, do not use super () .__new__ — call the appropriate __new

__repr__ (self)

Returns the string used for repr() calls. By default, returns the Enum name, member name, and value, but
can be overridden:

>>> class OtherStyle (Enum) :
ALTERNATE = auto()
OTHER = auto ()
SOMETHING_ELSE = auto ()
def _ repr_ (self):

cls_name

self. class__ . name_
return f'{cls_name/}.{self.name /'

>>> OtherStyle.ALTERNATE, str (OtherStyle.ALTERNATE), f"{OtherStyle.
—ALTERNATE } "

(OtherStyle .ALTERNATE, 'OtherStyle.ALTERNATE', 'OtherStyle.ALTERNATE'")

__str__ (self)

Returns the string used for str() calls. By default, returns the Enum name and member name, but can be
overridden:

>>> class OtherStyle (Enum) :
ALTERNATE = auto ()
OTHER = auto ()
SOMETHING_ELSE = auto ()
def = str_ (self):
return f'{self.name}'

>>> OtherStyle.ALTERNATE, str (OtherStyle.ALTERNATE), f"{OtherStyle.
—ALTERNATE /"

(<OtherStyle.ALTERNATE: 1>, 'ALTERNATE', 'ALTERNATE')

_ format__ (self)

Returns the string used for format() and f-string calls. By default, returns st~ () return value, but
can be overridden:

316 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

>>> class OtherStyle (Enum) :
ALTERNATE = auto ()
OTHER = auto()
SOMETHING_ELSE = auto ()
def _ format__ (self, spec):
return f'{self.name /'

>>> OtherStyle.ALTERNATE, str (OtherStyle.ALTERNATE), f£"{OtherStyle.
—ALTERNATE } "
(<OtherStyle.ALTERNATE: 1>, 'OtherStyle.ALTERNATE', 'ALTERNATE')

© Note

Using auto with Enum results in integers of increasing value, starting with 1.

Changed in version 3.12: Added enum-dataclass-support

class enum.IntEnum

IntEnum is the same as Enum, but its members are also integers and can be used anywhere that an integer can be
used. If any integer operation is performed with an IntEnum member, the resulting value loses its enumeration
status.

p
>>> from enum import IntEnum

>>> class Number (IntEnum) :

ONE = 1
TWO = 2
THREE = 3

>>> Number.THREE
<Number.THREE: 3>

>>> Number.ONE + Number.TWO
3

>>> Number.THREE + 5

8

>>> Number.THREE == 3

True
. J

© Note

Using auto with IntEnum results in integers of increasing value, starting with 1.

Changed in version 3.11: __str__ () iSnow int.__str__ () to better support the replacement of existing
constants use-case. ___format__ () was already int.__ format__ () for that same reason.

class enum.StrEnum

StrEnum is the same as Enum, but its members are also strings and can be used in most of the same places
that a string can be used. The result of any string operation performed on or with a StrEnum member is not
part of the enumeration.

© Note

There are places in the stdlib that check for an exact st r instead of a st r subclass (i.e. type (unknown)
== str instead of isinstance (unknown, str)), and in those locations you will need to use
str (StrEnum.member).

8.14. enum — Support for enumerations 317

The Python Library Reference, Release 3.13.1

© Note

Using auto with St rEnum results in the lower-cased member name as the value.

© Note
__str_ () is str.__str__ () to better support the replacement of existing constants use-case.
_ format__ () islikewise str._ format__ () for that same reason.

Added in version 3.11.

class enum.Flag

Flag is the same as Enum, but its members support the bitwise operators & (AND), | (OR), ~ (XOR), and ~
(INVERT); the results of those operations are (aliases of) members of the enumeration.

__contains__ (self, value)

Returns True if value is in self:

>>> from enum import Flag, auto
>>> class Color (Flag) :

RED = auto ()

GREEN = auto ()

BLUE = auto()

>>> purple = Color.RED | Color.BLUE

>>> white = Color.RED | Color.GREEN | Color.BLUE
>>> Color.GREEN in purple

False

>>> Color.GREEN in white

True

>>> purple in white

True

>>> white in purple

False

__iter_ (self):

Returns all contained non-alias members:

>>> list (Color.RED)

[<Color.RED: 1>]

>>> list (purple)

[<Color.RED: 1>, <Color.BLUE: 4>]

Added in version 3.11.

len__ (self):

Returns number of members in flag:

>>> len (Color.GREEN)
1

>>> len (white)

3

Added in version 3.11.

_ _bool__ (self):

Returns True if any members in flag, False otherwise:

318

Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

>>> bool (Color.GREEN)
True

>>> bool (white)

True

>>> black = Color (0)
>>> bool (black)

False

__or__ (self, other)

Returns current flag binary or'ed with other:

>>> Color.RED | Color.GREEN
<Color.RED|GREEN: 3>

__and__ (self, other)

Returns current flag binary and’ed with other:

>>> purple & white
<Color.RED|BLUE: 5>

>>> purple & Color.GREEN
<Color: 0>

__xor__ (self, other)

Returns current flag binary xor'ed with other:

>>> purple ~ white
<Color.GREEN: 2>

>>> purple © Color.GREEN
<Color.RED|GREEN|BLUE: 7>

_ _invert_ (self):

Returns all the flags in fype(self) that are not in self:

>>> ~white

<Color: 0>

>>> ~purple
<Color.GREEN: 2>

>>> ~Color.RED
<Color.GREEN|BLUE: 6>

_numeric_repr_ ()

Function used to format any remaining unnamed numeric values. Default is the value’s repr; common
choices are hex () and oct ().

© Note

Using aut o with F1ag results in integers that are powers of two, starting with 1.

Changed in version 3.11: The repr() of zero-valued flags has changed. It is now::

>>> Color (0)
<Color: 0>

class enum.IntFlag

IntFlag is the same as F'1ag, but its members are also integers and can be used anywhere that an integer can
be used.

8.14. enum — Support for enumerations 319

The Python Library Reference, Release 3.13.1

-

>>> from enum import IntFlag, auto
>>> class Color (IntFlag) :

RED = auto ()

GREEN = auto ()

BLUE = auto()

>>> Color.RED & 2
<Color: 0>

>>> Color.RED | 2
<Color.RED|GREEN: 3>

If any integer operation is performed with an IntFlag member, the result is not an IntFlag:

-

L

>>> Color.RED + 2
3

If a F1ag operation is performed with an IntFlag member and:
o the result is a valid IntFlag: an IntFlag is returned
o the result is not a valid IntFlag: the result depends on the F1agBoundary setting

The repr () of unnamed zero-valued flags has changed. It is now:

>>> Color (0)
<Color: 0>

© Note

Using auto with IntFlag results in integers that are powers of two, starting with 1.

Changed in version 3.11: __str__ () isnow int.__str__ () to better support the replacement of existing
constants use-case. ___format__ () was already int.__ format__ () for that same reason.

Inversion of an TntF1lag now returns a positive value that is the union of all flags not in the given flag, rather
than a negative value. This matches the existing 7 1ag behavior.

class enum.ReprEnum

ReprEnum uses the repr () of Enum, but the st () of the mixed-in data type:
e int.__str__ () for TntEnumand IntFiag
e str. str () for sStrEnum

Inherit from ReprEnum to keep the str () / format () of the mixed-in data type instead of using the Enum-
default str ().

Added in version 3.11.

class enum.EnumCheck

EnumCheck contains the options used by the verify () decorator to ensure various constraints; failed con-
straints result in a ValueError.

UNIQUE
Ensure that each value has only one name:

>>> from enum import Enum, verify, UNIQUE
>>> Q@verify (UNIQUE)
class Color (Enum) :
RED = 1
GREEN = 2

(continues on next page)

320

Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

BLUE = 3
CRIMSON = 1
Traceback (most recent call last):

ValueError:

aliases found in <enum

'Color'>: CRIMSON —-> RED

CONTINUOUS

Ensure that there are no missing values between the lowest-valued member and the highest-valued mem-

ber:

>>> from enum import Enum,
>>> @verify (CONTINUOUS)
class Color (Enum) :
RED = 1
GREEN = 2
BLUE = 5
Traceback

ValueError: invalid enum

'Color':

verify, CONTINUOUS

(most recent call last):

missing values 3, 4

NAMED_FLAGS

Ensure that any flag groups/masks contain only named flags — useful when values are specified instead of

being generated by auto ():

>>> from enum import Flag,
>>> @verify (NAMED_FLAGS)
class Color (Flag) :

ValueError: invalid Flag

—combined values of 0x18

'Color':
[use enum.show_flag values (value)

verify, NAMED_FLAGS

RED = 1
GREEN = 2
BLUE = 4
WHITE = 15
000 NEON = 31
Traceback (most recent call last):

aliases WHITE and NEON are missing.
for details]

© Note

CONTINUOUS and NAMED_FLAGS are designed to work with integer-valued members.

Added in version 3.11.

class enum.FlagBoundary

FlagBoundary controls how out-of-range values are handled in F1ag and its subclasses.

STRICT

Out-of-range values cause a ValueError to be raised. This is the default for F1ag:

>>> from enum import Flag,
>>> class StrictFlag(Flag,

RED = auto()
GREEN = auto ()
BLUE = auto ()

STRICT, auto
boundary=STRICT) :

(continues on next page)

8.14. enum — Support for enumerations

321

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> StrictFlag(2**2 + 2**4)
Traceback (most recent call last):

ValueError: <flag 'StrictFlag'> invalid value 20
given Ob0O 10100
allowed 0bO 00111

CONFORM

Out-of-range values have invalid values removed, leaving a valid F1ag value:

>>> from enum import Flag, CONFORM, auto

>>> class ConformFlag(Flag, boundary=CONFORM) :
RED = auto()
GREEN = auto ()
BLUE = auto ()

>>> ConformFlag (2**2 + 2**4)
<ConformFlag.BLUE: 4>

EJECT

Out-of -range values lose their 71ag membership and revert to int.

>>> from enum import Flag, EJECT, auto
>>> class EjectFlag(Flag, boundary=EJECT) :
RED = auto ()
GREEN = auto()
BLUE = auto ()

>>> EjectFlag (2**2 + 2%*4)
20

KEEP
Out-of-range values are kept, and the 71 ag membership is kept. This is the default for TntFiag:

>>> from enum import Flag, KEEP, auto
>>> class KeepFlag(Flag, boundary=KEEP) :
RED = auto()
GREEN = auto ()
BLUE = auto ()

>>> KeepFlag (2**2 + 2**4)
<KeepFlag.BLUE|16: 20>

Added in version 3.11.

class enum.EnumDict

EnumbDict is a subclass of dict that is used as the namespace for defining enum classes (see prepare). It is
exposed to allow subclasses of EnumType with advanced behavior like having multiple values per member. It
should be called with the name of the enum class being created, otherwise private names and internal classes
will not be handled correctly.

Note that only the MutableMapping interface (__setitem__ () and update ()) is overridden. It may be
possible to bypass the checks using other dict operations like | =.

member_ names

A list of member names.

Added in version 3.13.

322 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

Supported __dunder__ names

__members___is a read-only ordered mapping of member_name:member items. It is only available on the class.

__new__ (), if specified, must create and return the enum members; it is also a very good idea to set the member’s
value appropriately. Once all the members are created it is no longer used.

Supported _sunder_ hames

e _add _alias_ () - adds a new name as an alias to an existing member.

e _add_value_alias_ () — adds anew value as an alias to an existing member.

e _name_ — name of the member

e value_ - value of the member; can be setin __new_

e _missing_ () — alookup function used when a value is not found; may be overridden

e _ignore_ — alist of names, either as a 1ist or a str, that will not be transformed into members, and will
be removed from the final class

e _order_ - no longer used, kept for backward compatibility (class attribute, removed during class creation)

e _generate next_value_ () —used to get an appropriate value for an enum member; may be overridden

O Note

For standard Enum classes the next value chosen is the highest value seen incremented by one.

For F1ag classes the next value chosen will be the next highest power-of-two.

o While _sunder_ names are generally reserved for the further development of the Znum class and can not be
used, some are explicitly allowed:

- _repr_*(e.g. _repr_html_), as used in [Python’s rich display

Added in version 3.6: _missing_,_order_, generate_next_value_

Added in version 3.7: _ignore_

Added in version 3.13: _add_alias_,_add_value_alias_, _repr_*

8.14.3 Utilities and Decorators

class enum.auto

auto can be used in place of a value. If used, the Enum machinery will call an Enum’s
_generate_next_value_ () to get an appropriate value. For Enum and IntEnum that appropriate value
will be the last value plus one; for F1ag and IntF1ag it will be the first power-of-two greater than the highest
value; for st rEnum it will be the lower-cased version of the member’s name. Care must be taken if mixing
auto() with manually specified values.

auto instances are only resolved when at the top level of an assignment:

FIRST = auto () will work (auto() is replaced with 1);

SECOND = auto(), -2 will work (auto is replaced with 2, so 2, -2 is used to create the SECOND
enum member;

THREE = [auto(), -3] will not work (<auto instance>, -3 is used to create the THREE enum
member)

8.14. enum — Support for enumerations 323

https://ipython.readthedocs.io/en/stable/config/integrating.html#rich-display

The Python Library Reference, Release 3.13.1

Changed in version 3.11.1: In prior versions, auto () had to be the only thing on the assignment line to work
properly.

_generate_next_value_ can be overridden to customize the values used by auto.

© Note

in 3.13 the default _generate_next_value_ will always return the highest member value incremented
by 1, and will fail if any member is an incompatible type.

@enum.property

A decorator similar to the built-in property, but specifically for enumerations. It allows member attributes to
have the same names as members themselves.

© Note

the property and the member must be defined in separate classes; for example, the value and name attributes
are defined in the Enum class, and Enum subclasses can define members with the names value and name.

Added in version 3.11.

@enum.unique

A class decorator specifically for enumerations. It searches an enumeration’s __members
aliases it finds; if any are found valueError is raised with the details:

, gathering any

>>> from enum import Enum, unique
>>> @Qunique
class Mistake (Enum) :
ONE 1
TWO 2
THREE = 3
FOUR = 3

Traceback (most recent call last):

ValueError: duplicate values found in <enum 'Mistake'>: FOUR -> THREE
.

@enum.verify

A class decorator specifically for enumerations. Members from EnumCheck are used to specify which
constraints should be checked on the decorated enumeration.

Added in version 3.11.

@enum.member

A decorator for use in enums: its target will become a member.
Added in version 3.11.

@enum.nonmember

A decorator for use in enums: its target will not become a member.
Added in version 3.11.

@enum.global_enum

A decorator to change the str () and repr () of an enum to show its members as belonging to the module
instead of its class. Should only be used when the enum members are exported to the module global namespace
(see re.RegexFlag for an example).

Added in version 3.11.

324 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

enum.show_flag_values(vahw)

Return a list of all power-of-two integers contained in a flag value.

Added in version 3.11.

8.14.4 Notes

IntEnum, St rEnum, and IntFlag

These three enum types are designed to be drop-in replacements for existing integer- and string-based
values; as such, they have extra limitations:

e _ str__ uses the value and not the name of the enum member

e _ format__, because it uses __str__, will also use the value of the enum member instead of

its name

If you do not need/want those limitations, you can either create your own base class by mixing in the
int or str type yourself:

-
>>> from enum import Enum

>>> class MyIntEnum(int, Enum):
pass

or you can reassign the appropriate st r (), etc., in your enum:

>>> from enum import Enum, IntEnum
>>> class MyIntEnum (IntEnum) :
__str_. = Enum.__ str__

8.15 graphlib — Functionality to operate with graph-like structures

Source code: Lib/graphlib.py

class graphlib.TopologicalSorter (graph=None)
Provides functionality to topologically sort a graph of hashable nodes.
A topological order is a linear ordering of the vertices in a graph such that for every directed edge u -> v from
vertex u to vertex v, vertex u comes before vertex v in the ordering. For instance, the vertices of the graph
may represent tasks to be performed, and the edges may represent constraints that one task must be performed
before another; in this example, a topological ordering is just a valid sequence for the tasks. A complete

topological ordering is possible if and only if the graph has no directed cycles, that is, if it is a directed acyclic
graph.

If the optional graph argument is provided it must be a dictionary representing a directed acyclic graph where
the keys are nodes and the values are iterables of all predecessors of that node in the graph (the nodes that have
edges that point to the value in the key). Additional nodes can be added to the graph using the add () method.

In the general case, the steps required to perform the sorting of a given graph are as follows:
« Create an instance of the TopologicalSorter with an optional initial graph.
» Add additional nodes to the graph.
o Call prepare () on the graph.

e While is_active () is True, iterate over the nodes returned by get_ready () and process them. Call
done () on each node as it finishes processing.

In case just an immediate sorting of the nodes in the graph is required and no parallelism is involved, the
convenience method TopologicalSorter.static_order () can be used directly:

8.15. graphlib — Functionality to operate with graph-like structures 325

https://github.com/python/cpython/tree/3.13/Lib/graphlib.py

The Python Library Reference, Release 3.13.1

-
>>> graph . {"DH: {"B", "C"}, "C": {"A"}, "B": {"A"}}
>>> ts = TopologicalSorter (graph)

>>> tuple(ts.static_order())

(lAl, lcl, IBI, IDI)

The class is designed to easily support parallel processing of the nodes as they become ready. For instance:

topological_sorter = TopologicalSorter ()

Add nodes to 'topological_ sorter'...

topological_sorter.prepare ()
while topological_sorter.is_active() :
for node in topological_sorter.get_ready () :
Worker threads or processes take nodes to work on off the
'task_queue' queue.
task_queue.put (node)

When the work for a node is done, workers put the node in
'finalized_tasks_queue' so we can get more nodes to work on.

The definition of 'is_active()' guarantees that, at this point, at
least one node has been placed on 'task_queue' that hasn't yet

been passed to 'done()', so this blocking 'get ()' must (eventually)
succeed. After calling 'done()', we loop back to call 'get_ready()'
again, so put newly freed nodes on 'task_queue' as soon as

HHOFH O R KR R W H

logically possible.
node = finalized_tasks_qgueue.get ()
topological_sorter.done (node)

.

add (node, *predecessors)

Add a new node and its predecessors to the graph. Both the node and all elements in predecessors must

be hashable.

If called multiple times with the same node argument, the set of dependencies will be the union of all

dependencies passed in.

It is possible to add a node with no dependencies (predecessors is not provided) or to provide a dependency
twice. If a node that has not been provided before is included among predecessors it will be automatically

added to the graph with no predecessors of its own.
Raises valueError if called after prepare ().

prepare ()

Mark the graph as finished and check for cycles in the graph. If any cycle is detected, CycleError will
be raised, but get_ready () can still be used to obtain as many nodes as possible until cycles block
more progress. After a call to this function, the graph cannot be modified, and therefore no more nodes

can be added using add ().

is_active()

Returns True if more progress can be made and False otherwise. Progress can be made if cy-
cles do not block the resolution and either there are still nodes ready that haven’t yet been returned

by TopologicalSorter.get_ready () or the number of nodes marked TopologicalSorter.
done () is less than the number that have been returned by TopologicalSorter.get_ready ().

The _ _bool__ () method of this class defers to this function, so instead of:

if ts.is_active():

it is possible to simply do:

326 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

if ts:

Raises valueError if called without calling prepare () previously.

done (*nodes)

Marks a set of nodes returned by TopologicalSorter.get_ready () as processed, unblocking any

successor of each node in nodes for being returned in the future by a call to TopologicalSorter.

get_ready ().

Raises valueError if any node in nodes has already been marked as processed by a previous call to

this method or if a node was not added to the graph by using TopologicalSorter.add (), if called

without calling prepare () or if node has not yet been returned by get_ready ().

get_ready ()

Returns a tuple with all the nodes that are ready. Initially it returns all nodes with no predecessors, and
once those are marked as processed by calling TopologicalSorter.done (), further calls will return

all new nodes that have all their predecessors already processed. Once no more progress can be made,

empty tuples are returned.
Raises valueError if called without calling prepare () previously.

static_order ()

Returns an iterator object which will iterate over nodes in a topological order. When using this method,

prepare () and done () should not be called. This method is equivalent to:

def static_order (self):
self.prepare ()
while self.is_active():
node_group = self.get_ready ()
yield from node_group
self.done (*node_group)

J

The particular order that is returned may depend on the specific order in which the items were inserted

in the graph. For example:

>>> ts = TopologicalSorter ()
>>> ts.add(3, 2, 1)

>>> ts.add (1, 0)

>>> print ([*ts.static_order()])
2, 0, 41, 3]

>>> ts2 = TopologicalSorter ()
>>> ts2.add(1l, 0)

>>> ts2.add(3, 2, 1)

>>> print ([*ts2.static_order()])
(0, 2, 1, 3]

J

This is due to the fact that “0” and “2” are in the same level in the graph (they would have been returned
in the same call to get_ready ()) and the order between them is determined by the order of insertion.

If any cycle is detected, CycleError will be raised.

Added in version 3.9.

8.15.1 Exceptions

The graph1ib module defines the following exception classes:

8.15. graphlib — Functionality to operate with graph-like structures

327

The Python Library Reference, Release 3.13.1

exception graphlib.CycleError

Subclass of ValueErrorraised by TopologicalSorter.prepare () if cycles exist in the working graph.
If multiple cycles exist, only one undefined choice among them will be reported and included in the exception.

The detected cycle can be accessed via the second element in the args attribute of the exception instance and
consists in a list of nodes, such that each node is, in the graph, an immediate predecessor of the next node in
the list. In the reported list, the first and the last node will be the same, to make it clear that it is cyclic.

328

Chapter 8. Data Types

CHAPTER
NINE

NUMERIC AND MATHEMATICAL MODULES

The modules described in this chapter provide numeric and math-related functions and data types. The numbers
module defines an abstract hierarchy of numeric types. The math and cmath modules contain various mathematical
functions for floating-point and complex numbers. The decimal module supports exact representations of decimal
numbers, using arbitrary precision arithmetic.

The following modules are documented in this chapter:

9.1 numbers — Numeric abstract base classes

Source code: Lib/numbers.py

The numbers module (PEP 3141) defines a hierarchy of numeric abstract base classes which progressively define
more operations. None of the types defined in this module are intended to be instantiated.
class numbers.Number

The root of the numeric hierarchy. If you just want to check if an argument x is a number, without caring what
kind, use isinstance (x, Number).

9.1.1 The numeric tower

class numbers.Complex

Subclasses of this type describe complex numbers and include the operations that work on the built-in complex
type. These are: conversions to complex and bool, real, imag, +, —, *, /, **, abs (), conjugate (), ==,
and !=. All except — and ! = are abstract.

real

Abstract. Retrieves the real component of this number.
imag
Abstract. Retrieves the imaginary component of this number.

abstractmethod conjugate ()

Abstract. Returns the complex conjugate. For example, (1+37) .conjugate () == (1-37).

class numbers.Real

To complex, Real adds the operations that work on real numbers.

In short, those are: a conversion to float, math.trunc (), round(), math.floor (), math.ceil (),
divmod (), //, %, <, <=, >, and >=.

Real also provides defaults for complex (), real, imag, and conjugate ().

class numbers.Rational

Subtypes Real and adds numerator and denominator properties. It also provides a default for F1oat ().

The numerator and denominator values should be instances of Tntegral and should be in lowest terms
with denominator positive.

329

https://github.com/python/cpython/tree/3.13/Lib/numbers.py
https://peps.python.org/pep-3141/

The Python Library Reference, Release 3.13.1

numerator

Abstract.

denominator

Abstract.

class numbers.Integral

Subtypes Rational and adds a conversion to int. Provides defaults for float (), numerator, and
denominator. Adds abstract methods for pow () with modulus and bit-string operations: <<, >>, &, *,

|’~'

9.1.2 Notes for type implementers

Implementers should be careful to make equal numbers equal and hash them to the same values. This may be subtle
if there are two different extensions of the real numbers. For example, fractions.Fractionimplements hash ()
as follows:

def _ hash (self):

if self.denominator == 1:
Get integers right.
return hash (self.numerator)

Expensive check, but definitely correct.

if self == float (self):
return hash (float (self))

else:
Use tuple's hash to avoid a high collision rate on
simple fractions.
return hash ((self.numerator, self.denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the
possibility of adding those. You can add MyFoo between Complex and Real with:

class MyFoo (Complex) :
MyFoo.register (Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation whose
author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there.
For subtypes of Tntegral, this means that __add__ () and __radd__ () should be defined as:

class MyIntegral (Integral) :

def _ add__ (self, other):
if isinstance (other, MyIntegral) :
return do_my_adding_stuff (self, other)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_adding_stuff (self, other)
else:
return NotImplemented

def _ radd__ (self, other):
if isinstance (other, MyIntegral):
return do_my_adding_stuff (other, self)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_ adding_stuff (other, self)
(continues on next page)

330 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

(continued from previous page)

elif isinstance (other, Integral):

return int (other) + int (self)
elif isinstance (other, Real):

return float (other) + float (self)
elif isinstance (other, Complex) :

return complex (other) + complex(self)
else:

return NotImplemented

There are 5 different cases for a mixed-type operation on subclasses of Complex. I'll refer to all of the above code
that doesn’t refer to MyIntegral and OtherTypeIKnowAbout as “boilerplate”. a will be an instance of A, which
is a subtype of Complex(a : A <: Complex),andb : B <: Complex. I'll consider a + b:

1. If A definesan __add__ () which accepts b, all is well.

2. If a falls back to the boilerplate code, and it were to return a value from __add__ (), we’d miss the possibil-
ity that B defines a more intelligent __radd__ (), so the boilerplate should return Not Implemented from
__add__ (). (Or A may not implement __add__ () atall.)

3. Then B’s __radd__ () gets a chance. If it accepts a, all is well.

4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default imple-
mentation should live.

5. If B <: A, Python tries B.__radd__ before A.__add__. This is ok, because it was implemented with
knowledge of 2, so it can handle those instances before delegating to Complex.

If A <: Complexand B <: Real without sharing any other knowledge, then the appropriate shared operation is
the one involving the built in complex, and both __radd__ () sland there, so a+b == b+a.

Because most of the operations on any given type will be very similar, it can be useful to define a helper function
which generates the forward and reverse instances of any given operator. For example, fractions.Fraction uses:

def _operator_fallbacks (monomorphic_operator, fallback_operator):
def forward(a, b):
if isinstance (b, (int, Fraction)):
return monomorphic_operator (a, b)
elif isinstance (b, float):
return fallback_operator (float (a), b)
elif isinstance (b, complex) :
return fallback_operator (complex(a), b)
else:
return NotImplemented

forward. + fallback_operator. name + ! u

forward. doc = monomorphic_operator. doc

def reverse (b, a):
if isinstance(a, Rational):
Includes ints.
return monomorphic_operator (a, b)
elif isinstance (a, Real):
return fallback_operator (float (a), float (b))
elif isinstance(a, Complex):
return fallback_operator (complex(a), complex (b))
else:
return NotImplemented

reverse. name = r' + fallback_operator. name + ' !

reverse. = monomorphic_operator. doc

return forward, reverse

(continues on next page)

9.1. numbers — Numeric abstract base classes 331

The Python Library Reference, Release 3.13.1

def _add(a, b):

mrrn mrrnmn
a+ b

(continued from previous page)

return Fraction (a.numerator * b.denominator +

b.numerator * a.denominator,

a.denominator * b.denominator)

__add__,

__radd__ = _operator_fallbacks (_add,

operator.add)

9.2 math — Mathematical functions

This module provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmath module
if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don’t is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the
first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values are

floats.

Number-theoretic functions
comb (n, k)

factorial (n)

gcd (*integers)

isgrt (n)
Ilcm(*integers)

perm(n, k)

Floating point arithmetic
ceil (x)

fabs (x)

floor (x)

fma (x, y, z)

fmod (x, y)

modf (x)

remainder (x, y)

trunc (x)

Floating point manipulation functions
copysign(x, y)

Number of ways to choose & items from »n items without repetition and wit

n factorial

Greatest common divisor of the integer arguments
Integer square root of a nonnegative integer n
Least common multiple of the integer arguments

Number of ways to choose & items from » items without repetition and wit

Ceiling of x, the smallest integer greater than or equal to x

Absolute value of x

Floor of x, the largest integer less than or equal to x
Fused multiply-add operation: (x * y) + z
Remainder of division x / vy

Fractional and integer parts of x

Remainder of x with respect to y

Integer part of x

Magnitude (absolute value) of x with the sign of y

frexp (x) Mantissa and exponent of x

isclose(a, b, rel_tol, abs_tol) Check if the values a and b are close to each other

isfinite (x) Check if x is neither an infinity nor a NaN

isinf (x) Check if x is a positive or negative infinity

isnan (x) Check if x is a NaN (not a number)

ldexp(x, 1i) x * (2**i), inverse of function frexp ()

nextafter(x, y, steps) Floating-point value steps steps after x towards y

ulp (x) Value of the least significant bit of x

Power, exponential and logarithmic functions

cbrt (x) Cube root of x

continues on

332 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

Table

1 - continued from previous page

exp (x)

exp2 (x)

expml (x)

log(x, base)
loglp (x)

log2 (x)

10910 (x)

pow (x, y)

sqrt (x)
Summation and product functions
dist (p, q)
fsum(iterable)
hypot (*coordinates)
prod(iterable, start)
sumprod (p, q)
Angular conversion
degrees (x)
radians (x)
Trigonometric functions
acos (x)

asin(x)

atan (x)

atan2 (y, x)

cos (x)

sin (x)

tan (x)

Hyperbolic functions
acosh (x)

asinh (x)

atanh (x)

cosh (x)

sinh (x)

tanh (x)

Special functions
erf (x)

erfc(x)

gamma (x)

lgamma (x)
Constants

pi

e

tau

inf

nan

e raised to the power x

2 raised to the power x

e raised to the power x, minus 1

Logarithm of x to the given base (e by default)
Natural logarithm of /+x (base e)

Base-2 logarithm of x

Base-10 logarithm of x

x raised to the power y

Square root of x

Euclidean distance between two points p and ¢ given as an iterable of coor
Sum of values in the input iterable

Euclidean norm of an iterable of coordinates

Product of elements in the input iterable with a start value

Sum of products from two iterables p and g

Convert angle x from radians to degrees
Convert angle x from degrees to radians

Arc cosine of x
Arc sine of x
Arc tangent of x
atan(y / x)
Cosine of x
Sine of x
Tangent of x

Inverse hyperbolic cosine of x
Inverse hyperbolic sine of x
Inverse hyperbolic tangent of x
Hyperbolic cosine of x
Hyperbolic sine of x
Hyperbolic tangent of x

Error function at x

Complementary error function at x

Gamma function at x

Natural logarithm of the absolute value of the Gamma function at x

m=3.141592...
e=2.718281...
T=2m=6.283185...
Positive infinity

“Not a number” (NaN)

9.2.1 Number-theoretic functions

math.comb (7, k)

Return the number of ways to choose k items from » items without repetition and without order.

Evaluateston! / (k! * (n - k)') whenk <= n and evaluates to zero when k > n.

Also called the binomial coefficient because it is equivalent to the coefficient of k-th term in polynomial ex-

pansion of (1 + x)™.

Raises TypeError if either of the arguments are not integers. Raises valueError if either of the arguments

are negative.

9.2. math — Mathematical functions

333

https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Gamma_function

The Python Library Reference, Release 3.13.1

Added in version 3.8.

math.factorial (n)

Return n factorial as an integer. Raises valueError if n is not integral or is negative.
Changed in version 3.10: Floats with integral values (like 5. 0) are no longer accepted.

math . ged (*integers)

Return the greatest common divisor of the specified integer arguments. If any of the arguments is nonzero,
then the returned value is the largest positive integer that is a divisor of all arguments. If all arguments are
zero, then the returned value is 0. gcd () without arguments returns 0.

Added in version 3.5.

Changed in version 3.9: Added support for an arbitrary number of arguments. Formerly, only two arguments
were supported.

math.isqrt (n)

Return the integer square root of the nonnegative integer n. This is the floor of the exact square root of n, or
equivalently the greatest integer a such that a? < n.

For some applications, it may be more convenient to have the least integer a such that n < a2, or in other words
the ceiling of the exact square root of n. For positive n, this can be computed usinga = 1 + isgrt(n -
1).

Added in version 3.8.

math.lem (*integers)

Return the least common multiple of the specified integer arguments. If all arguments are nonzero, then the
returned value is the smallest positive integer that is a multiple of all arguments. If any of the arguments is
zero, then the returned value is 0. 1cm () without arguments returns 1.

Added in version 3.9.

math.perm (n, k=None)

Return the number of ways to choose & items from n items without repetition and with order.
Evaluateston! / (n - k)! when k <= n and evaluates to zero when k > n.
If & is not specified or is None, then k defaults to n and the function returns n'!.

Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the arguments
are negative.

Added in version 3.8.

9.2.2 Floating point arithmetic

math.ceil (x)

Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to x.

__ceil__, which should return an Integral value.

math. fabs (x)

Return the absolute value of x.

math.floor (x)
Return the floor of x, the largest integer less than or equal to x. If x is not a float, delegates to x. __ floor__,
which should return an Integral value.

math. fma (X, y, 7)

Fused multiply-add operation. Return (x * y) + z, computed as though with infinite precision and range
followed by a single round to the £1oat format. This operation often provides better accuracy than the direct
expression (x * y) + z.

334 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

This function follows the specification of the fusedMultiplyAdd operation described in the IEEE 754 stan-
dard. The standard leaves one case implementation-defined, namely the result of fma (0, inf, nan) and
fma (inf, 0, nan). Inthese cases, math. fma returns a NaN, and does not raise any exception.

Added in version 3.13.

math. fmod (x, y)

Return fmod (%, vy), as defined by the platform C library. Note that the Python expression x % y may not
return the same result. The intent of the C standard is that fmod (x, y) be exactly (mathematically; to infinite
precision) equal to x — n*y for some integer n such that the result has the same sign as x and magnitude less
than abs (y) . Python’s x % vy returns a result with the sign of y instead, and may not be exactly computable for
float arguments. For example, fmod (-1e-100, 1e100) is -1e-100, but the result of Python’s -1e-100 %
1e1001is 1e100-1e-100, which cannot be represented exactly as a float, and rounds to the surprising 1e100.
For this reason, function fmod () is generally preferred when working with floats, while Python’s x % vy is
preferred when working with integers.

math.modf (x)

Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

Note that mod £ () has a different call/return pattern than its C equivalents: it takes a single argument and return
a pair of values, rather than returning its second return value through an ‘output parameter’ (there is no such
thing in Python).

math.remainder (x, y)

Return the IEEE 754-style remainder of x with respect to y. For finite x and finite nonzero y, this is the
difference x - n*y, where n is the closest integer to the exact value of the quotient x / y. If x / y is
exactly halfway between two consecutive integers, the nearest even integer is used for n. The remainder r =
remainder (x, y) thus always satisfies abs (r) <= 0.5 * abs(y).

Special cases follow IEEE 754: in particular, remainder (x, math.inf) is x for any finite x, and
remainder (x, 0) and remainder (math.inf, x) raise ValueError for any non-NaN x. If the result
of the remainder operation is zero, that zero will have the same sign as x.

On platforms using IEEE 754 binary floating point, the result of this operation is always exactly representable:
no rounding error is introduced.

Added in version 3.7.

math.trunc (x)

Return x with the fractional part removed, leaving the integer part. This rounds toward 0: t runc () is equiv-
alent to floor () for positive x, and equivalent to ceil () for negative x. If x is not a float, delegates to

x.__trunc__, which should return an Integral value.

Forthe ceil (), floor (),and modr () functions, note that all floating-point numbers of sufficiently large magnitude
are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the platform C double
type), in which case any float x with abs (x) >= 2**52 necessarily has no fractional bits.

9.2.3 Floating point manipulation functions

math.copysign (x, y)

Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed
Zeros, copysign (1.0, -0.0) returns -/.0.

math. frexp (x)

Return the mantissa and exponent of x as the pair (m, e). misafloatand eis an integer such that x == m *
2*xg exactly. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs (m) < 1. This is used to “pick apart”
the internal representation of a float in a portable way.

Note that frexp () has a different call/return pattern than its C equivalents: it takes a single argument and
return a pair of values, rather than returning its second return value through an ‘output parameter’ (there is no
such thing in Python).

9.2. math — Mathematical functions 335

The Python Library Reference, Release 3.13.1

math.isclose (a, b, *, rel_tol=1e-09, abs_tol=0.0)

Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to given absolute and relative toler-
ances. If no errors occur, the result will be: abs (a-b) <= max(rel_tol * max(abs(a), abs (b)),
abs_tol).

rel_tol is the relative tolerance - it is the maximum allowed difference between a and b, relative to the larger
absolute value of @ or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance
is 1e-09, which assures that the two values are the same within about 9 decimal digits. rel_fol must be
nonnegative and less than 1. 0.

abs_tol is the absolute tolerance; it defaults to 0.0 and it must be nonnegative. When comparing x to 0.0,
isclose(x, 0) is computed as abs (x) <= rel_tol * abs (x), which is False for any x and rel_tol
less than 1. 0. So add an appropriate positive abs_tol argument to the call.

The IEEE 754 special values of NaN, inf, and -inf will be handled according to IEEE rules. Specifically,
NaN is not considered close to any other value, including NaN. inf and —inf are only considered close to
themselves.

Added in version 3.5.

e See also

PEP 485 — A function for testing approximate equality

math.isfinite (X)

Return True if x is neither an infinity nor a NaN, and False otherwise. (Note that 0. 0 is considered finite.)

Added in version 3.2.

math.isinf (x)

Return True if x is a positive or negative infinity, and False otherwise.

math.isnan (Xx)

Return True if x is a NaN (not a number), and False otherwise.

math.ldexp (X, i)

Return x * (2**1i). This is essentially the inverse of function frexp ().

math.nextafter (x, y, steps=I)

Return the floating-point value steps steps after x towards y.
If x is equal to y, return y, unless steps is zero.
Examples:
e math.nextafter (x, math.inf) goes up: towards positive infinity.
e math.nextafter (x, -math.inf) goes down: towards minus infinity.
e math.nextafter (x, 0.0) goes towards zero.
e math.nextafter (x, math.copysign(math.inf, x)) goes away from zero.
See also math.ulp ().
Added in version 3.9.

Changed in version 3.12: Added the steps argument.

math.ulp (x)

Return the value of the least significant bit of the float x:

o If x is a NaN (not a number), return x.

336

Chapter 9. Numeric and Mathematical Modules

https://peps.python.org/pep-0485/

The Python Library Reference, Release 3.13.1

« If x is negative, return ulp (-x).
o If x is a positive infinity, return x.

« If x is equal to zero, return the smallest positive denormalized representable float (smaller than the min-
imum positive normalized float, sys. float_info.min).

o If x is equal to the largest positive representable float, return the value of the least significant bit of x,
such that the first float smaller than x is x — ulp (x).

» Otherwise (x is a positive finite number), return the value of the least significant bit of x, such that the
first float bigger than x is x + ulp (x).

ULP stands for “Unit in the Last Place”.
See also math.nextafter () and sys. float_info.epsilon

Added in version 3.9.

9.2.4 Power, exponential and logarithmic functions

math.cbrt (x)

Return the cube root of x.
Added in version 3.11.

math.exp (x)

Return e raised to the power x, where e = 2.718281... is the base of natural logarithms. This is usually more
accurate than math.e ** x or pow (math.e, x).

math.exp2 (x)
Return 2 raised to the power x.

Added in version 3.11.

math.expml (x)

Return e raised to the power x, minus 1. Here e is the base of natural logarithms. For small floats x, the
subtraction in exp (x) — 1 can result in a significant loss of precision; the expm? () function provides a way
to compute this quantity to full precision:

>>> from math import exp, expml

>>> exp(le-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expml (1e-5) # result accurate to full precision

1.0000050000166668e-05

Added in version 3.2.
math.log(x[,base])

With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base, calculated as 1og (x) /1og (base) .
math.loglp (x)

Return the natural logarithm of /+x (base e). The result is calculated in a way which is accurate for x near
Zero.

math.log2 (x)
Return the base-2 logarithm of x. This is usually more accurate than 1og (x, 2).

Added in version 3.3.

9.2. math — Mathematical functions 337

https://en.wikipedia.org/wiki/Loss_of_significance

The Python Library Reference, Release 3.13.1

@ See also

int.bit_length () returns the number of bits necessary to represent an integer in binary, excluding the
sign and leading zeros.

math.logl0 (x)

Return the base-10 logarithm of x. This is usually more accurate than 1og (x, 10).

math.pow (X, y)

Return x raised to the power y. Exceptional cases follow the IEEE 754 standard as far as possible. In particular,
pow (1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or a NaN. If both x and y are
finite, x is negative, and y is not an integer then pow (x, y) is undefined, and raises valueError.

Unlike the built-in ** operator, math.pow () converts both its arguments to type float. Use ** or the
built-in pow () function for computing exact integer powers.

Changed in version 3.11: The special cases pow (0.0, -inf) and pow(-0.0, -inf) were changed to
return inf instead of raising valueError, for consistency with IEEE 754.

math.sqgrt (x)
Return the square root of x.

9.2.5 Summation and product functions

math.dist (p, q)

Return the Euclidean distance between two points p and g, each given as a sequence (or iterable) of coordinates.
The two points must have the same dimension.

Roughly equivalent to:

[sqrt(sum((px - gx) ** 2.0 for px, gx in zip(p, 9)))

Added in version 3.8.

math. £sum (iterable)
Return an accurate floating-point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums.

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the rounding
mode is half-even. On some non-Windows builds, the underlying C library uses extended precision addition
and may occasionally double-round an intermediate sum causing it to be off in its least significant bit.

For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate floating-
point summation.

math.hypot (*coordinates)
Return the Euclidean norm, sqrt (sum (x**2 for x in coordinates)). Thisis the length of the vector
from the origin to the point given by the coordinates.

For a two dimensional point (x, v), this is equivalent to computing the hypotenuse of a right triangle using
the Pythagorean theorem, sqrt (x*x + y*y).

Changed in version 3.8: Added support for n-dimensional points. Formerly, only the two dimensional case was
supported.

Changed in version 3.10: Improved the algorithm’s accuracy so that the maximum error is under 1 ulp (unit in
the last place). More typically, the result is almost always correctly rounded to within 1/2 ulp.

math.prod (iterable, *, start=1I)

Calculate the product of all the elements in the input iterable. The default start value for the product is 1.

338 Chapter 9. Numeric and Mathematical Modules

https://code.activestate.com/recipes/393090-binary-floating-point-summation-accurate-to-full-p/
https://code.activestate.com/recipes/393090-binary-floating-point-summation-accurate-to-full-p/

The Python Library Reference, Release 3.13.1

When the iterable is empty, return the start value. This function is intended specifically for use with numeric
values and may reject non-numeric types.

Added in version 3.8.

math.sumprod (p, q)

Return the sum of products of values from two iterables p and q.
Raises valueError if the inputs do not have the same length.

Roughly equivalent to:

[sum(itertools.starmap(operator.mul, zip(p, g, strict=True)))

For float and mixed int/float inputs, the intermediate products and sums are computed with extended precision.

Added in version 3.12.

9.2.6 Angular conversion

math.degrees (x)

Convert angle x from radians to degrees.

math.radians (Xx)

Convert angle x from degrees to radians.

9.2.7 Trigonometric functions

math.acos (x)

Return the arc cosine of x, in radians. The result is between 0 and pi.

math.asin (x)

Return the arc sine of x, in radians. The result is between —pi /2 and pi/2.

math.atan (x)

Return the arc tangent of x, in radians. The result is between -pi/2 and pi/2.

math.atan2 (y, x)

Returnatan(y / x),inradians. The result is between -pi and pi. The vector in the plane from the origin to
point (x, y) makes this angle with the positive X axis. The point of atan2 () is that the signs of both inputs
are known to it, so it can compute the correct quadrant for the angle. For example, atan (1) and atan2 (1,
1) are both pi/4, but atan2 (-1, -1) is —3*pi/4.

math.cos (x)

Return the cosine of x radians.

math.sin (x)

Return the sine of x radians.

math.tan (x)

Return the tangent of x radians.

9.2.8 Hyperbolic functions
Hyperbolic functions are analogs of trigonometric functions that are based on hyperbolas instead of circles.

math.acosh (x)

Return the inverse hyperbolic cosine of x.

math.asinh (x)

Return the inverse hyperbolic sine of x.

9.2. math — Mathematical functions 339

https://en.wikipedia.org/wiki/Hyperbolic_functions

The Python Library Reference, Release 3.13.1

math.atanh (x)

Return the inverse hyperbolic tangent of x.

math.cosh (x)

Return the hyperbolic cosine of x.

math.sinh (x)

Return the hyperbolic sine of x.

math.tanh (x)
Return the hyperbolic tangent of x.

9.2.9 Special functions
math.erf (x)
Return the error function at x.

The err () function can be used to compute traditional statistical functions such as the cumulative standard
normal distribution:

def phi (x):
'"Cumulative distribution function for the standard normal distribution'’
return (1.0 + erf(x / sqrt(2.0))) / 2.0

Added in version 3.2.

math.erfec (x)

Return the complementary error function at x. The complementary error function is defined as 1.0 -
erf (x). Itis used for large values of x where a subtraction from one would cause a loss of significance.

Added in version 3.2.
math.gamma (Xx)

Return the Gamma function at x.

Added in version 3.2.

math.lgamma (X)

Return the natural logarithm of the absolute value of the Gamma function at x.

Added in version 3.2.

9.2.10 Constants

math.pi
The mathematical constant 7 = 3.141592..., to available precision.

math.e

The mathematical constant e = 2.718281..., to available precision.

math.tau

The mathematical constant 7 = 6.283185..., to available precision. Tau is a circle constant equal to 27, the
ratio of a circle’s circumference to its radius. To learn more about Tau, check out Vi Hart’s video Pi is (still)
Wrong, and start celebrating Tau day by eating twice as much pie!

Added in version 3.6.

math.inf
A floating-point positive infinity. (For negative infinity, use -math.inf.) Equivalent to the output of
float ('inf').

Added in version 3.5.

340 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Loss_of_significance
https://en.wikipedia.org/wiki/Gamma_function
https://www.youtube.com/watch?v=jG7vhMMXagQ
https://www.youtube.com/watch?v=jG7vhMMXagQ
https://tauday.com/

The Python Library Reference, Release 3.13.1

math.nan

A floating-point “not a number” (NaN) value. Equivalent to the output of float ('nan'). Due to the re-
quirements of the IEEE-754 standard, math.nan and float ('nan') are not considered to equal to any
other numeric value, including themselves. To check whether a number is a NaN, use the i snan () function
to test for NaNs instead of is or ==. Example:

s 2}

>>> import math

>>> math.nan == math.nan

False

>>> float('nan') == float('nan')
False

>>> math.isnan (math.nan)
True
>>> math.isnan(float ('nan'))

True

Added in version 3.5.
Changed in version 3.11: It is now always available.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C math
library functions. Behavior in exceptional cases follows Annex F of the C99 standard where appropriate. The current
implementation will raise ValueError for invalid operations like sqrt (-1.0) or log (0.0) (where C99 Annex
F recommends signaling invalid operation or divide-by-zero), and overflowError for results that overflow (for
example, exp (1000.0)). A NaN will not be returned from any of the functions above unless one or more of
the input arguments was a NaN; in that case, most functions will return a NaN, but (again following C99 Annex
F) there are some exceptions to this rule, for example pow (float ('nan'), 0.0) or hypot (float ('nan'),
float ('inf'")).

Note that Python makes no effort to distinguish signaling NaNs from quiet NaNs, and behavior for signaling NaNs
remains unspecified. Typical behavior is to treat all NaNs as though they were quiet.

> See also

Module cmath
Complex number versions of many of these functions.

9.3 cmath — Mathematical functions for complex humbers

This module provides access to mathematical functions for complex numbers. The functions in this module accept
integers, floating-point numbers or complex numbers as arguments. They will also accept any Python object that has
eithera _ complex_ () ora__ float__ () method: these methods are used to convert the object to a complex
or floating-point number, respectively, and the function is then applied to the result of the conversion.

© Note

For functions involving branch cuts, we have the problem of deciding how to define those functions on the cut
itself. Following Kahan’s “Branch cuts for complex elementary functions” paper, as well as Annex G of C99 and
later C standards, we use the sign of zero to distinguish one side of the branch cut from the other: for a branch
cut along (a portion of) the real axis we look at the sign of the imaginary part, while for a branch cut along the
imaginary axis we look at the sign of the real part.

For example, the cmath.sqgrt () function has a branch cut along the negative real axis. An argument of
complex (2.0, -0.0) is treated as though it lies below the branch cut, and so gives a result on the nega-
tive imaginary axis:

9.3. cmath — Mathematical functions for complex humbers 341

https://en.wikipedia.org/wiki/IEEE_754

The Python Library Reference, Release 3.13.1

>>> cmath.sgrt (complex(-2.0, -0.0))
-1.41421356237309517

But an argument of complex (-2.0, 0.0) is treated as though it lies above the branch cut:

>>> cmath.sqgrt (complex(-2.0, 0.0))
1.414213562373095175

9.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely deter-
mined by its real part z . real and its imaginary part z . imag.

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex number
z is defined by the modulus » and the phase angle phi. The modulus r is the distance from z to the origin, while the
phase phi is the counterclockwise angle, measured in radians, from the positive x-axis to the line segment that joins
the origin to z.

The following functions can be used to convert from the native rectangular coordinates to polar coordinates and back.

cmath.phase (x)
Return the phase of x (also known as the argument of x), as afloat. phase (x) isequivalenttomath.atan2 (x.
imag, x.real). The result lies in the range [-7, 7], and the branch cut for this operation lies along the
negative real axis. The sign of the result is the same as the sign of x. imag, even when x . imag is zero:

>>> phase (complex (-1.0, 0.0))
3.141592653589793

>>> phase (complex (-1.0, -0.0))
-3.141592653589793

© Note

The modulus (absolute value) of a complex number x can be computed using the built-in abs () function. There
is no separate cmath module function for this operation.

cmath.polar (x)
Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of x and
phi is the phase of x. polar (x) is equivalent to (abs (x), phase (x)).

cmath.rect (r, phi)

Return the complex number x with polar coordinates r and phi. Equivalent to complex (r * math.
cos (phi), r * math.sin(phi)).

9.3.2 Power and logarithmic functions

cmath.exp (X)

Return e raised to the power x, where e is the base of natural logarithms.

cmath.log(x[,base])
Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm of x.
There is one branch cut, from 0 along the negative real axis to -co.

cmath.logl0 (x)

Return the base-10 logarithm of x. This has the same branch cut as 1og ().

cmath.sqgrt (x)

Return the square root of x. This has the same branch cut as 1og ().

342 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

9.3.3 Trigonometric functions

cmath.acos (x)
Return the arc cosine of x. There are two branch cuts: One extends right from 1 along the real axis to co. The
other extends left from -1 along the real axis to -co.

cmath.asin (x)

Return the arc sine of x. This has the same branch cuts as acos ().

cmath.atan (x)

Return the arc tangent of x. There are two branch cuts: One extends from 1 j along the imaginary axis to «j.
The other extends from -1 5 along the imaginary axis to —co7.

cmath.cos (x)

Return the cosine of x.

cmath.sin (x)
Return the sine of x.

cmath.tan (x)

Return the tangent of x.

9.3.4 Hyperbolic functions

cmath.acosh (x)
Return the inverse hyperbolic cosine of x. There is one branch cut, extending left from 1 along the real axis to
-00,

cmath.asinh (x)
Return the inverse hyperbolic sine of x. There are two branch cuts: One extends from 17 along the imaginary
axis to «j. The other extends from -1 7 along the imaginary axis to —j.

cmath.atanh (x)
Return the inverse hyperbolic tangent of x. There are two branch cuts: One extends from 1 along the real axis
to «. The other extends from -1 along the real axis to —co.

cmath.cosh (x)

Return the hyperbolic cosine of x.

cmath.sinh (Xx)

Return the hyperbolic sine of x.

cmath.tanh (x)
Return the hyperbolic tangent of x.

9.3.5 Classification functions

cmath.isfinite (x)
Return True if both the real and imaginary parts of x are finite, and False otherwise.
Added in version 3.2.

cmath.isinf (x)

Return True if either the real or the imaginary part of x is an infinity, and False otherwise.

cmath.isnan (x)

Return True if either the real or the imaginary part of x is a NaN, and False otherwise.

9.3. cmath — Mathematical functions for complex humbers 343

The Python Library Reference, Release 3.13.1

cmath.isclose (a, b, *, rel_tol=1e-09, abs_tol=0.0)
Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to given absolute and relative toler-
ances. If no errors occur, the result will be: abs (a-b) <= max(rel_tol * max(abs(a), abs (b)),
abs_tol).

rel_tol is the relative tolerance - it is the maximum allowed difference between a and b, relative to the larger
absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance
is 1e-09, which assures that the two values are the same within about 9 decimal digits. rel_fol must be
nonnegative and less than 1. 0.

abs_tol is the absolute tolerance; it defaults to 0.0 and it must be nonnegative. When comparing x to 0.0,
isclose(x, 0) is computed as abs (x) <= rel_tol * abs(x), whichis False for any x and rel_tol
less than 1. 0. So add an appropriate positive abs_tol argument to the call.

The IEEE 754 special values of NaN, inf, and —-inf will be handled according to IEEE rules. Specifically,
NaN is not considered close to any other value, including NaN. inf and —-inf are only considered close to
themselves.

Added in version 3.5.

e See also

PEP 485 — A function for testing approximate equality

9.3.6 Constants

cmath.pi

The mathematical constant s, as a float.
cmath.e

The mathematical constant e, as a float.
cmath.tau

The mathematical constant z, as a float.
Added in version 3.6.
cmath.inf
Floating-point positive infinity. Equivalent to float ('inf"').
Added in version 3.6.

cmath.infj

Complex number with zero real part and positive infinity imaginary part. Equivalent to complex (0.0,
float ('inf')).

Added in version 3.6.

cmath.nan
A floating-point “not a number” (NaN) value. Equivalent to f1oat ('nan').
Added in version 3.6.

cmath.nanj
Complex number with zero real part and NaN imaginary part. Equivalent to complex (0.0,
float ('nan')).
Added in version 3.6.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two
modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They
would rather have math.sqgrt (-1) raise an exception than return a complex number. Also note that the functions

344 Chapter 9. Numeric and Mathematical Modules

https://peps.python.org/pep-0485/

The Python Library Reference, Release 3.13.1

defined in cmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlightenment.
For information of the proper choice of branch cuts for numerical purposes, a good reference should be the following:

> See also

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A.,
and Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

9.4 decimal — Decimal fixed-point and floating-point arithmetic

Source code: Lib/decimal.py

The decimal module provides support for fast correctly rounded decimal floating-point arithmetic. It offers several
advantages over the r1oat datatype:

Decimal “is based on a floating-point model which was designed with people in mind, and necessarily has
a paramount guiding principle - computers must provide an arithmetic that works in the same way as the
arithmetic that people learn at school.” — excerpt from the decimal arithmetic specification.

Decimal numbers can be represented exactly. In contrast, numbers like 1.1 and 2.2 do not have exact
representations in binary floating point. End users typically would not expect 1.1 + 2.2 to display as 3.
3000000000000003 as it does with binary floating point.

The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 + 0.1 - 0.3 is exactly
equal to zero. In binary floating point, the resultis 5.5511151231257827e-017. While near to zero, the dif-
ferences prevent reliable equality testing and differences can accumulate. For this reason, decimal is preferred
in accounting applications which have strict equality invariants.

The decimal module incorporates a notion of significant places so that 1.30 + 1.20is 2.50. The trailing
zero is kept to indicate significance. This is the customary presentation for monetary applications. For multi-
plication, the “schoolbook” approach uses all the figures in the multiplicands. For instance, 1.3 * 1.2 gives
1.56 while 1.30 * 1.20 gives 1.5600.

Unlike hardware based binary floating point, the decimal module has a user alterable precision (defaulting to
28 places) which can be as large as needed for a given problem:

>>> from decimal import *

>>> getcontext () .prec = 6

>>> Decimal (1) / Decimal (7)

Decimal ('0.142857")

>>> getcontext () .prec = 28

>>> Decimal (1) / Decimal (7)

Decimal ('0.1428571428571428571428571429")

Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts of
the standard. When needed, the programmer has full control over rounding and signal handling. This includes
an option to enforce exact arithmetic by using exceptions to block any inexact operations.

The decimal module was designed to support “without prejudice, both exact unrounded decimal arithmetic
(sometimes called fixed-point arithmetic) and rounded floating-point arithmetic.” — excerpt from the decimal
arithmetic specification.

9.4. decimal — Decimal fixed-point and floating-point arithmetic 345

https://github.com/python/cpython/tree/3.13/Lib/decimal.py

The Python Library Reference, Release 3.13.1

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance, the
coeflicient digits do not truncate trailing zeros. Decimals also include special values such as Infinity, -Infinity,
and NaN. The standard also differentiates —0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags indicat-
ing the results of operations, and trap enablers which determine whether signals are treated as exceptions. Round-
ing options include ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF_DOWN, ROUND_HALF_EVEN,
ROUND_HALF_UP, ROUND_UP, and ROUND_ 05UP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs of the
application, signals may be ignored, considered as informational, or treated as exceptions. The signals in the decimal
module are: Clamped, InvalidOperation, DivisionByZero, Inexact, Rounded, Subnormal, Overflow,
Underflowand FloatOperation

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if the trap
enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before monitoring a
calculation.

> See also

o IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

9.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with get context () and, if
necessary, setting new values for precision, rounding, or enabled traps:

>>> from decimal import *

>>> getcontext ()

Context (prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])

>>> getcontext () .prec = 7 # Set a new precision

J

Decimal instances can be constructed from integers, strings, floats, or tuples. Construction from an integer or a float
performs an exact conversion of the value of that integer or float. Decimal numbers include special values such as
NaN which stands for “Not a number”, positive and negative Infinity, and -0:

>>> getcontext () .prec = 28

>>> Decimal (10)

Decimal ('10")

>>> Decimal ('3.14")

Decimal ('3.14")

>>> Decimal (3.14)

Decimal ('3.140000000000000124344978758017532527446746826171875")
>>> Decimal ((0, (3, 1, 4), -2))

Decimal ('3.14")

>>> Decimal (str (2.0 ** 0.5))

Decimal ('1.4142135623730951")

>>> Decimal (2) ** Decimal('0.5")

Decimal ('1.414213562373095048801688724")
>>> Decimal ('NaN')

Decimal ('NaN"')

>>> Decimal ('-Infinity"')

Decimal ('-Infinity")

346 Chapter 9. Numeric and Mathematical Modules

https://speleotrove.com/decimal/decarith.html

The Python Library Reference, Release 3.13.1

If the FloatoOperation signal is trapped, accidental mixing of decimals and floats in constructors or ordering
comparisons raises an exception:

>>> C

getcontext ()

>>> c.traps[FloatOperation] = True
>>> Decimal (3.14)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal ('3.5'") < 3.7
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal ('3.5') == 3.5

True

Added in version 3.3.

The significance of a new Decimal is determined solely by the number of digits input. Context precision and rounding
only come into play during arithmetic operations.

>>> getcontext () .prec = 6

>>> Decimal ('3.0")

Decimal ('3.0")

>>> Decimal ('3.1415926535")

Decimal ('3.1415926535")

>>> Decimal ('3.1415926535') + Decimal ('2.7182818285")
Decimal ('5.85987")

>>> getcontext () .rounding = ROUND_UP

>>> Decimal ('3.1415926535') + Decimal ('2.7182818285")
Decimal ('5.85988")

If the internal limits of the C version are exceeded, constructing a decimal raises TnvalidOperation:

>>> Decimal ("1e€9999999999999999999")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]

Changed in version 3.3.

Decimals interact well with much of the rest of Python. Here is a small decimal floating-point flying circus:

>>> data = list (map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
>>> max (data)

Decimal ('9.25")

>>> min (data)

Decimal ('0.03")

>>> sorted(data)

[Decimal ('0.03'), Decimal('1.00'), Decimal('1.34"'"),
Decimal ('2.35'), Decimal('3.45'), Decimal('9.25")]
>>> sum(data)

Decimal ('19.29")

>>> a,b,c = data[:3]

>>> str(a)

'1.34"

>>> float (a)

1.34

>>> round(a, 1)

Decimal ('1.87"),

(continues on next page)

9.4. decimal — Decimal fixed-point and floating-point arithmetic 347

The Python Library Reference, Release 3.13.1

(continued from previous page)
Decimal('1.3")
>>> 1int (a)
1
>>> a * 5§
Decimal ('6.70")
>>> a * Db
Decimal ('2.5058")
>>> c % a
Decimal ('0.77")

And some mathematical functions are also available to Decimal:

>>> getcontext () .prec = 28

>>> Decimal (2) .sqgrt ()

Decimal ('1.414213562373095048801688724")
>>> Decimal (1) .exp ()

Decimal ('2.718281828459045235360287471")
>>> Decimal ('10") .1n ()

Decimal ('2.302585092994045684017991455")
>>> Decimal ('10") .1ogl0 ()

Decimal ('"1"'")

The quantize () method rounds a number to a fixed exponent. This method is useful for monetary applications
that often round results to a fixed number of places:

>>> Decimal ('7.325") .quantize (Decimal('.01"), rounding=ROUND_DOWN)
Decimal ('7.32")

>>> Decimal ('7.325") .quantize (Decimal ('1l."'), rounding=ROUND_UP)
Decimal('8")

As shown above, the getcontext () function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make an
alternate active, use the setcontext () function.

In accordance with the standard, the decima 1 module provides two ready to use standard contexts, BasicContext
and ExtendedContext. The former is especially useful for debugging because many of the traps are enabled:

>>> myothercontext = Context (prec=60, rounding=ROUND_HALF_DOWN)

>>> setcontext (myothercontext)

>>> Decimal (1) / Decimal (7)

Decimal ('0.142857142857142857142857142857142857142857142857142857142857")

>>> ExtendedContext

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=I[])

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal (7)

Decimal ('0.142857143")

>>> Decimal (42) / Decimal (0)

Decimal ('Infinity")

>>> setcontext (BasicContext)
>>> Decimal (42) / Decimal (0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-

(continues on next page)

348 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

(continued from previous page)

Decimal (42) / Decimal (0)
DivisionByZero: x / 0

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by using
the clear flags () method.

>>> setcontext (ExtendedContext)

>>> getcontext () .clear_flags()

>>> Decimal (355) / Decimal (113)

Decimal ('3.14159292")

>>> getcontext ()

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])

J

The flags entry shows that the rational approximation to pi was rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the t raps attribute of a context:

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal (0)

Decimal ('Infinity"')

>>> getcontext () .traps[DivisionByZero] = 1

>>> Decimal (1) / Decimal (0)

Traceback (most recent call last):

File "<pyshell#112>", line 1, in -toplevel-

Decimal (1) / Decimal (0)

DivisionByZero: x / 0

J

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted to Decimal with a single cast inside a loop. With context set and decimals created, the bulk of the
program manipulates the data no differently than with other Python numeric types.

9.4.2 Decimal objects

class decimal.Decimal (value="0’, context=None)
Construct a new Decimal object based from value.
value can be an integer, string, tuple, float, or another Decimal object. If no value is given, returns

Decimal ('0'). If value is a string, it should conform to the decimal numeric string syntax after leading
and trailing whitespace characters, as well as underscores throughout, are removed:

sign ci= " | T

digit ce= 'O | it o) Y2 | '3 | "4 | 'S5 | e | "7 | '8 | '9!
indicator = 'e' | 'E!

digits ::= digit [digit]...

decimal-part ::= digits '.' [digits] | ['.'] digits

exponent-part ::= indicator [sign] digits

infinity ::= 'Infinity' | 'Inf'

nan ::= 'NaN' [digits] | 'sNaN' [digits]

numeric-value ::= decimal-part [exponent-part] | infinity

numeric-string ::= [sign] numeric-value | [sign] nan

L J

Other Unicode decimal digits are also permitted where digit appears above. These include decimal digits
from various other alphabets (for example, Arabic-Indic and Devanagari digits) along with the fullwidth digits
"\uff10' ﬂuough "\uff19"'.

9.4. decimal — Decimal fixed-point and floating-point arithmetic 349

The Python Library Reference, Release 3.13.1

If value is a tuple, it should have three components, a sign (0 for positive or 1 for negative), a tuple of
digits, and an integer exponent. For example, Decimal ((0, (1, 4, 1, 4), -3)) returnsDecimal ('1.
4147').

If value is a float, the binary floating-point value is losslessly converted to its exact decimal equivalent.
This conversion can often require 53 or more digits of precision. For example, Decimal (float ('1.1"))
converts to Decimal ('1.100000000000000088817841970012523233890533447265625").

The context precision does not affect how many digits are stored. That is determined exclusively by the number
of digits in value. For example, Decimal ('3.00000") records all five zeros even if the context precision is
only three.

The purpose of the context argument is determining what to do if value is a malformed string. If the context
traps TnvalidOperation, an exception is raised; otherwise, the constructor returns a new Decimal with the
value of NaN.

Once constructed, Decimal objects are immutable.
Changed in version 3.2: The argument to the constructor is now permitted to be a f1oat instance.

Changed in version 3.3: float arguments raise an exception if the FloatOperation trap is set. By default
the trap is off.

Changed in version 3.6: Underscores are allowed for grouping, as with integral and floating-point literals in
code.

Decimal floating-point objects share many properties with the other built-in numeric types such as f1oat and
int. All of the usual math operations and special methods apply. Likewise, decimal objects can be copied,
pickled, printed, used as dictionary keys, used as set elements, compared, sorted, and coerced to another type
(such as float or int).

There are some small differences between arithmetic on Decimal objects and arithmetic on integers and floats.
When the remainder operator % is applied to Decimal objects, the sign of the result is the sign of the dividend
rather than the sign of the divisor:

>>> (=7) % 4

1

>>> Decimal (-7) % Decimal (4)
Decimal ('-3")

The integer division operator // behaves analogously, returning the integer part of the true quotient (truncating
towards zero) rather than its floor, so as to preserve the usual identity x == (x // y) * y + x % y:

>> -7 // 4

=2

>>> Decimal (-7) // Decimal (4)
Decimal ('-1")

The % and // operators implement the remainder and divide-integer operations (respectively) as de-
scribed in the specification.

Decimal objects cannot generally be combined with floats or instances of fractions.Fractioninarithmetic
operations: an attempt to add a Decimal to a float, for example, will raise a TypeError. However, it is
possible to use Python’s comparison operators to compare a Decimal instance x with another number y. This
avoids confusing results when doing equality comparisons between numbers of different types.

Changed in version 3.2: Mixed-type comparisons between Decimal instances and other numeric types are
now fully supported.

In addition to the standard numeric properties, decimal floating-point objects also have a number of specialized
methods:

adjusted ()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit

350

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

remains: Decimal ('321e+5") .adjusted () returns seven. Used for determining the position of the
most significant digit with respect to the decimal point.

as_integer_ratio()
Return a pair (n, d) of integers that represent the given Decimal instance as a fraction, in lowest terms
and with a positive denominator:

>>> Decimal ('-3.14") .as_integer_ratio()
(=157, 50)

The conversion is exact. Raise OverflowError on infinities and ValueError on NaNs.
Added in version 3.6.

as_tuple()
Return a named tuple representation of the number: DecimalTuple (sign, digits, exponent).

canonical ()

Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always
canonical, so this operation returns its argument unchanged.

compare (other, context=None)

Compare the values of two Decimal instances. compare () returns a Decimal instance, and if either
operand is a NaN then the result is a NaN:

a or b is a NaN ==> Decimal ('NaN'")
a <b ==> Decimal('—-1")
a ==>b ==> Decimal ('0")

a >b ==> Decimal ('1")

compare_signal (other, context=None)

This operation is identical to the compare () method, except that all NaNs signal. That is, if neither
operand is a signaling NaN then any quiet NaN operand is treated as though it were a signaling NaN.

compare_total (other, context=None)
Compare two operands using their abstract representation rather than their numerical value. Similar to
the compare () method, but the result gives a total ordering on Decimal instances. Two Decimal
instances with the same numeric value but different representations compare unequal in this ordering:

>>> Decimal ('12.0") .compare_total (Decimal ('12"))
Decimal ('-1")

Quiet and signaling NaNs are also included in the total ordering. The result of this function is
Decimal ('0") if both operands have the same representation, Decimal ('-1") if the first operand is
lower in the total order than the second, and Decimal ('1") if the first operand is higher in the total
order than the second operand. See the specification for details of the total order.

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

compare_total_mag (other, context=None)

Compare two operands using their abstract representation rather than their value as in
compare_total (), but ignoring the sign of each operand. x.compare_total_mag(y) is
equivalent to x. copy_abs () .compare_total (y.copy_abs ()).

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

conjugate ()

Just returns self, this method is only to comply with the Decimal Specification.

9.4. decimal — Decimal fixed-point and floating-point arithmetic 351

The Python Library Reference, Release 3.13.1

copy_abs ()
Return the absolute value of the argument. This operation is unaffected by the context and is quiet: no
flags are changed and no rounding is performed.

copy_negate ()
Return the negation of the argument. This operation is unaffected by the context and is quiet: no flags
are changed and no rounding is performed.

copy_sign (other, context=None)

Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For

example:
>>> Decimal ('2.3") .copy_sign(Decimal ('-1.5"))
Decimal ('-2.3")

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

exp (context=None)

Return the value of the (natural) exponential function e **x at the given number. The result is correctly
rounded using the ROUND_HALF_EVEN rounding mode.

>>> Decimal (1) .exp ()

Decimal ('2.718281828459045235360287471")

>>> Decimal (321) .exp ()

Decimal ('2.561702493119680037517373933E+139")

classmethod from_float (f)
Alternative constructor that only accepts instances of float or int.

Note Decimal.from_float(0.1) is not the same as Decimal('0.1'). Since 0.1 is
not exactly representable in binary floating point, the value is stored as the nearest repre-
sentable value which is 0x1.999999999999ap-4. That equivalent value in decimal is 0.
1000000000000000055511151231257827021181583404541015625.

O Note

From Python 3.2 onwards, a Decimal instance can also be constructed directly from a float.

>>> Decimal.from_float (0.1)

Decimal ('0.1000000000000000055511151231257827021181583404541015625")
>>> Decimal.from_ float (float ('nan'))

Decimal ('NaN')

>>> Decimal.from_ float (float ('inf'))

Decimal ('Infinity'")

>>> Decimal.from_float (float ('-1inf'"))

Decimal ('-Infinity")

Added in version 3.1.

£ma (other, third, context=None)

Fused multiply-add. Return self*other+third with no rounding of the intermediate product self *other.

>>> Decimal (2) .fma (3, 5)
Decimal ('11")

352 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

is_canonical ()
Return True if the argument is canonical and Fa 1 se otherwise. Currently, a Decima instance is always
canonical, so this operation always returns True.
is_finite()
Return True if the argument is a finite number, and False if the argument is an infinity or a NaN.
is_infinite()
Return True if the argument is either positive or negative infinity and 7alse otherwise.
is_nan()

Return 7rue if the argument is a (quiet or signaling) NaN and 7a1se otherwise.

is_normal (context=None)
Return True if the argument is a normal finite number. Return 7a 1 se if the argument is zero, subnormal,
infinite or a NaN.

is_gnan ()
Return True if the argument is a quiet NaN, and False otherwise.

is_signed()
Return True if the argument has a negative sign and False otherwise. Note that zeros and NaNs can
both carry signs.

is_snan()

Return True if the argument is a signaling NaN and Fa1se otherwise.

is_subnormal (context=None)

Return True if the argument is subnormal, and Fa1se otherwise.

is_zero ()

Return True if the argument is a (positive or negative) zero and False otherwise.

1n (context=None)
Return the natural (base e) logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

1og1l0 (context=None)
Return the base ten logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

logb (context=None)
For a nonzero number, return the adjusted exponent of its operand as a Decima instance. If the operand
is a zero then Decimal ('-Infinity"') is returned and the DivisionByZero flag is raised. If the
operand is an infinity then Decimal ('Infinity"') is returned.

logical_and (other, context=None)
logical_and () is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise and of the two operands.

logical_invert (context=None)

logical_ invert () is alogical operation. The result is the digit-wise inversion of the operand.

logical_or (other, context=None)
logical_or () is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise or of the two operands.

logical_xor (other, context=None)

logical_xor () is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise exclusive or of the two operands.

9.4.

decimal — Decimal fixed-point and floating-point arithmetic 353

The Python Library Reference, Release 3.13.1

max (other, context=None)

Likemax (self, other) except that the context rounding rule is applied before returning and that NaN
values are either signaled or ignored (depending on the context and whether they are signaling or quiet).

max_mag (other, context=None)

Similar to the max () method, but the comparison is done using the absolute values of the operands.

min (other, context=None)

Likemin (self, other) except that the context rounding rule is applied before returning and that NaN
values are either signaled or ignored (depending on the context and whether they are signaling or quiet).

min_mag (other, context=None)

Similar to the min () method, but the comparison is done using the absolute values of the operands.

next_minus (context=None)

Return the largest number representable in the given context (or in the current thread’s context if no
context is given) that is smaller than the given operand.

next_plus (context=None)

Return the smallest number representable in the given context (or in the current thread’s context if no
context is given) that is larger than the given operand.

next_toward (other, context=None)

If the two operands are unequal, return the number closest to the first operand in the direction of the
second operand. If both operands are numerically equal, return a copy of the first operand with the sign
set to be the same as the sign of the second operand.

normalize (context=None)

Used for producing canonical values of an equivalence class within either the current context or the
specified context.

This has the same semantics as the unary plus operation, except that if the final result is finite it is reduced
to its simplest form, with all trailing zeros removed and its sign preserved. That is, while the coefficient
is non-zero and a multiple of ten the coefficient is divided by ten and the exponent is incremented by 1.
Otherwise (the coefficient is zero) the exponent is set to 0. In all cases the sign is unchanged.

For example, Decimal ('32.100") andDecimal ('0.321000e+2") both normalize to the equivalent
value Decimal ('32.1").

Note that rounding is applied before reducing to simplest form.
In the latest versions of the specification, this operation is also known as reduce.

number_class (context=None)

Return a string describing the class of the operand. The returned value is one of the following ten strings.
e "-Infinity", indicating that the operand is negative infinity.
e "-Normal", indicating that the operand is a negative normal number.
e "—Subnormal", indicating that the operand is negative and subnormal.
e "—-Zero", indicating that the operand is a negative zero.
e "+Zero", indicating that the operand is a positive zero.
e "+Subnormal", indicating that the operand is positive and subnormal.
e "+Normal", indicating that the operand is a positive normal number.
e "+Infinity", indicating that the operand is positive infinity.
e "NaN", indicating that the operand is a quiet NaN (Not a Number).

e "sNaN", indicating that the operand is a signaling NaN.

354

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

quantize (exp, rounding=None, context=None)

Return a value equal to the first operand after rounding and having the exponent of the second operand.

>>> Decimal ('1.41421356") .quantize (Decimal ("1.000"))
Decimal ('1.414")

Unlike other operations, if the length of the coefficient after the quantize operation would be greater
than precision, then an TnvalidOperation is signaled. This guarantees that, unless there is an error
condition, the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact.

If the exponent of the second operand is larger than that of the first then rounding may be necessary.
In this case, the rounding mode is determined by the rounding argument if given, else by the given
context argument; if neither argument is given the rounding mode of the current thread’s context is
used.

An error is returned whenever the resulting exponent is greater than Emax or less than Etiny ().

radix ()
Return Decimal (10), the radix (base) in which the Decimal class does all its arithmetic. Included for
compatibility with the specification.

remainder_near (other, context=None)

Return the remainder from dividing self by other. This differs from self % other in that the sign of
the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self —
n * other where n is the integer nearest to the exact value of self / other, and if two integers are
equally near then the even one is chosen.

If the result is zero then its sign will be the sign of self.

>>> Decimal (18) .remainder_near (Decimal (10))
Decimal ('-2")

>>> Decimal (25) .remainder_near (Decimal (10))
Decimal ('5"'")

>>> Decimal (35) .remainder_near (Decimal (10))
Decimal ('-5")

rotate (other, context=None)

Return the result of rotating the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of
the second operand gives the number of places to rotate. If the second operand is positive then rotation
is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left
with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged.

same_quantum (other, context=None)

Test whether self and other have the same exponent or whether both are NaN.

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

scaleb (other, context=None)

Return the first operand with exponent adjusted by the second. Equivalently, return the first operand
multiplied by 10**other. The second operand must be an integer.

shift (other, context=None)

Return the result of shifting the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of
the second operand gives the number of places to shift. If the second operand is positive then the shift
is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and
exponent of the first operand are unchanged.

9.4. decimal — Decimal fixed-point and floating-point arithmetic 355

The Python Library Reference, Release 3.13.1

sqrt (context=None)

Return the square root of the argument to full precision.
to_eng_string (context=None)
Convert to a string, using engineering notation if an exponent is needed.

Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of
the decimal place and may require the addition of either one or two trailing zeros.

For example, this converts Decimal ('123E+1"') to Decimal ('1.23E+3").

to_integral (rounding=None, context=None)
Identical to the to_integral_ value () method. The to_integral name has been kept for compat-
ibility with older versions.
to_integral_exact (rounding=None, context=None)
Round to the nearest integer, signaling Tnexact or Rounded as appropriate if rounding occurs. The
rounding mode is determined by the rounding parameter if given, else by the given context. If
neither parameter is given then the rounding mode of the current context is used.
to_integral_value (rounding=None, context=None)
Round to the nearest integer without signaling Tnexact or Rounded. If given, applies rounding; other-
wise, uses the rounding method in either the supplied context or the current context.

Decimal numbers can be rounded using the round () function:

round (number)

round (number, ndigits)

If ndigits is not given or None, returns the nearest int to number, rounding ties to even, and ignor-
ing the rounding mode of the Decimal context. Raises OverflowError if number is an infinity or
ValueError if it is a (quiet or signaling) NaN.

If ndigits is an int, the context’s rounding mode is respected and a Decimal representing num-
ber rounded to the nearest multiple of Decimal ('1E-ndigits') is returned; in this case,
round (number, ndigits) is equivalent to self.quantize (Decimal ('1E-ndigits')). Re-
turns Decimal ('NaN') if number is a quiet NaN. Raises TnvalidOperation if number is an infinity,
a signaling NaN, or if the length of the coefficient after the quantize operation would be greater than the
current context’s precision. In other words, for the non-corner cases:

« if ndigits is positive, return number rounded to ndigits decimal places;
« if ndigits is zero, return number rounded to the nearest integer;
« if ndigits is negative, return number rounded to the nearest multiple of 10**abs (ndigits).

For example:

>>> from decimal import Decimal, getcontext, ROUND_DOWN
>>> getcontext () .rounding = ROUND_DOWN

>>> round (Decimal ('3.75")) # context rounding ignored
4

>>> round (Decimal ('3.5")) # round-ties-to-even

4

>>> round (Decimal ('3.75'"), 0) # uses the context rounding

Decimal ('3")

>>> round (Decimal ('3.75"), 1)
Decimal ('3.7")

>>> round (Decimal ('3.75"), -1)
Decimal ('OE+1")

356

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

Logical operands

The l1ogical_and(), logical_invert (), logical_or(),and logical_xor () methods expect their argu-
ments to be logical operands. A logical operand is a Decimal instance whose exponent and sign are both zero, and
whose digits are all either 0 or 1.

9.4.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine which
signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed using the get context () and setcontext ()
functions:
decimal.getcontext ()

Return the current context for the active thread.

decimal.setcontext (¢)

Set the current context for the active thread to c.
You can also use the with statement and the 1ocalcontext () function to temporarily change the active context.

decimal.localcontext (ctx=None, **kwargs)

Return a context manager that will set the current context for the active thread to a copy of czx on entry to the
with-statement and restore the previous context when exiting the with-statement. If no context is specified, a
copy of the current context is used. The kwargs argument is used to set the attributes of the new context.

For example, the following code sets the current decimal precision to 42 places, performs a calculation, and
then automatically restores the previous context:

from decimal import localcontext
with localcontext () as ctx:
ctx.prec = 42 # Perform a high precision calculation
s = calculate_something ()
s = +s # Round the final result back to the default precision
. J

Using keyword arguments, the code would be the following:

from decimal import localcontext

with localcontext (prec=42) as ctx:
s = calculate_something()
s = +s

Raises TypeError if kwargs supplies an attribute that Context doesn’t support. Raises either TypeError
or ValueError if kwargs supplies an invalid value for an attribute.

Changed in version 3.11: Iocalcontext () now supports setting context attributes through the use of key-
word arguments.

New contexts can also be created using the Context constructor described below. In addition, the module provides
three pre-made contexts:
class decimal.BasicContext

This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to RounD_HALF_UP. All flags are cleared. All traps are enabled (treated as exceptions) except
Inexact, Rounded, and Subnormal.

Because many of the traps are enabled, this context is useful for debugging.

9.4. decimal — Decimal fixed-point and floating-point arithmetic 357

The Python Library Reference, Release 3.13.1

class decimal .ExtendedContext

This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to RounD_HALF_EVEN. All flags are cleared. No traps are enabled (so that exceptions are not
raised during computations).

Because the traps are disabled, this context is useful for applications that prefer to have result value of NaN
or Infinity instead of raising exceptions. This allows an application to complete a run in the presence of
conditions that would otherwise halt the program.

class decimal .DefaultContext

This context is used by the Context constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts created by the context constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are
started has the effect of setting system-wide defaults. Changing the fields after threads have started is not
recommended as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are Context .prec=28, Context.rounding=ROUND_HALF_EVEN, and enabled traps
for overflow, InvalidOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created with the Context constructor.

class decimal.Context (prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None,

flags=None, traps=None)

Creates a new context. If a field is not specified or is None, the default values are copied from the
DefaultcContext. If the flags field is not specified or is None, all flags are cleared.

prec is an integer in the range [1, MAx_PREC] that sets the precision for arithmetic operations in the context.
The rounding option is one of the constants listed in the section Rounding Modes.

The traps and flags fields list any signals to be set. Generally, new contexts should only set traps and leave the
flags clear.

The Emin and Emax fields are integers specifying the outer limits allowable for exponents. Emin must be in
the range [MIN_EMIN, 0], Emax in the range [0, MAX EMAX].

The capitals field is either 0 or 1 (the default). If set to 1, exponents are printed with a capital E; otherwise, a
lowercase e is used: Decimal ('6.02e+23").

The clamp field is either 0 (the default) or 1. If set to 1, the exponent e of a Decimal instance representable in
this context is strictly limited to the range Emin - prec + 1 <= e <= Emax - prec + 1.If clampis0
then a weaker condition holds: the adjusted exponent of the Decimal instance is at most Emax. When clamp
is 1, a large normal number will, where possible, have its exponent reduced and a corresponding number of
zeros added to its coefficient, in order to fit the exponent constraints; this preserves the value of the number
but loses information about significant trailing zeros. For example:

>>> Context (prec=6, Emax=999, clamp=1).create_decimal('1.23e999")
Decimal ('"1.23000E+999")

A clamp value of 1 allows compatibility with the fixed-width decimal interchange formats specified in IEEE
754.

The context class defines several general purpose methods as well as a large number of methods for doing
arithmetic directly in a given context. In addition, for each of the Decimal methods described above (with the
exception of the adjusted () and as_tuple () methods) there is a corresponding Context method. For
example, fora Context instance C and Decimal instance x, C . exp (x) isequivalent to x . exp (context=C).
Each context method accepts a Python integer (an instance of int) anywhere that a Decimal instance is
accepted.

358

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

clear_flags()
Resets all of the flags to 0.

clear_traps ()

Resets all of the traps to 0.
Added in version 3.3.

copy ()
Return a duplicate of the context.

copy_decimal (num)

Return a copy of the Decimal instance num.

create_decimal (num)

Creates a new Decimal instance from num but using self as context. Unlike the Decimal constructor,
the context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application.
Another benefit is that rounding immediately eliminates unintended effects from digits beyond the current
precision. In the following example, using unrounded inputs means that adding zero to a sum can change
the result:

>>> getcontext () .prec = 3

>>> Decimal ('3.4445') + Decimal('1.0023")

Decimal ('4.45")

>>> Decimal ('3.4445') + Decimal (0) + Decimal('1.0023")
Decimal ('4.44")

This method implements the to-number operation of the IBM specification. If the argument is a string,
no leading or trailing whitespace or underscores are permitted.

create_decimal_from_float (f)

Creates a new Decimal instance from a float f but rounding using self as the context. Unlike the
Decimal. from_float () class method, the context precision, rounding method, flags, and traps are
applied to the conversion.

>>> context = Context (prec=5, rounding=ROUND_DOWN)
>>> context.create_decimal_ from_float (math.pi)
Decimal ('3.1415")

>>> context = Context (prec=5, traps=[Inexact])

>>> context.create_decimal_ from_ float (math.pi)
Traceback (most recent call last):

decimal.Inexact: None

Added in version 3.1.

Etiny ()
ReturnsavalueequaltoEmin - prec + 1 which isthe minimum exponent value for subnormal results.
When underflow occurs, the exponent is set to £t iny.
Etop ()
Returns a value equal to Emax - prec + 1.
The usual approach to working with decimals is to create Decimal instances and then apply arithmetic op-
erations which take place within the current context for the active thread. An alternative approach is to use
context methods for calculating within a specific context. The methods are similar to those for the Decimal
class and are only briefly recounted here.
abs (x)

Returns the absolute value of x.

9.4. decimal — Decimal fixed-point and floating-point arithmetic 359

The Python Library Reference, Release 3.13.1

add (x, y)

Return the sum of x and y.
canonical (x)

Returns the same Decimal object x.
compare (X, y)

Compares x and y numerically.
compare_signal (X, y)

Compares the values of the two operands numerically.
compare_total (X, y)

Compares two operands using their abstract representation.
compare_total_mag (X,)

Compares two operands using their abstract representation, ignoring sign.
copy_abs (x)

Returns a copy of x with the sign set to 0.
copy_negate (x)

Returns a copy of x with the sign inverted.
copy_sign (X, y)

Copies the sign from y to x.
divide (x, y)

Return x divided by y.
divide_int (x, y)

Return x divided by y, truncated to an integer.
divmod (X, y)

Divides two numbers and returns the integer part of the result.
exp (Xx)

Returns e ** x.
fma (x, y, 2)

Returns x multiplied by y, plus z.
is_canonical (x)

Returns True if x is canonical; otherwise returns False.
is_finite (x)

Returns True if x is finite; otherwise returns False.
is_infinite (x)

Returns True if x is infinite; otherwise returns False.
is_nan (x)

Returns True if x is a qNaN or sNaN; otherwise returns False.
is_normal (x)

Returns True if x is a normal number; otherwise returns False.
is_gnan (x)

Returns True if x is a quiet NaN; otherwise returns False.
is_signed (x)

Returns True if x is negative; otherwise returns False.

360 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

is_snan (x)

Returns True if x is a signaling NaN; otherwise returns False.
is_subnormal (x)

Returns True if x is subnormal; otherwise returns False.
is_zero (x)

Returns True if x is a zero; otherwise returns False.
1n (x)

Returns the natural (base e) logarithm of x.
logl0 (x)

Returns the base 10 logarithm of x.
logb (x)

Returns the exponent of the magnitude of the operand’s MSD.
logical_and (x, y)

Applies the logical operation and between each operand’s digits.
logical_invert (x)

Invert all the digits in x.
logical_or (x,)

Applies the logical operation or between each operand’s digits.
logical_xor (x,)

Applies the logical operation xor between each operand’s digits.
max (X, y)

Compares two values numerically and returns the maximum.
max_mag (X, y)

Compares the values numerically with their sign ignored.
min (X, y)

Compares two values numerically and returns the minimum.
min_mag (X, y)

Compares the values numerically with their sign ignored.
minus (x)

Minus corresponds to the unary prefix minus operator in Python.
multiply (X, y)

Return the product of x and y.
next_minus (X)

Returns the largest representable number smaller than x.
next_plus (x)

Returns the smallest representable number larger than x.
next_toward (x, y)

Returns the number closest to x, in direction towards y.
normalize (Xx)

Reduces x to its simplest form.
number_class (X)

Returns an indication of the class of x.

9.4.

decimal — Decimal fixed-point and floating-point arithmetic

361

The Python Library Reference, Release 3.13.1

plus (x)

Plus corresponds to the unary prefix plus operator in Python. This operation applies the context precision
and rounding, so it is rot an identity operation.

power (X, y, modulo=None)

Return x to the power of y, reduced modulo modulo if given.

With two arguments, compute x**y. If x is negative then y must be integral. The result will be inexact
unless vy is integral and the result is finite and can be expressed exactly in ‘precision’ digits. The rounding
mode of the context is used. Results are always correctly rounded in the Python version.

Decimal (0) ** Decimal (0) results in InvalidOperation, and if InvalidOperation is not
trapped, then results in Decimal ('NaN').

Changed in version 3.3: The C module computes power () in terms of the correctly rounded exp () and
1n () functions. The result is well-defined but only “almost always correctly rounded”.

With three arguments, compute (x**y) % modulo. For the three argument form, the following re-
strictions on the arguments hold:

« all three arguments must be integral

» y must be nonnegative

« at least one of x or y must be nonzero

e modulo must be nonzero and have at most ‘precision’ digits

The value resulting from Context.power (x, y, modulo) is equal to the value that would be ob-
tained by computing (x**y) % modulo with unbounded precision, but is computed more efficiently.
The exponent of the result is zero, regardless of the exponents of x, y and modulo. The result is always
exact.

quantize (x, y)
Returns a value equal to x (rounded), having the exponent of y.

radix ()

Just returns 10, as this is Decimal, :)
remainder (X, y)
Returns the remainder from integer division.
The sign of the result, if non-zero, is the same as that of the original dividend.

remainder_near (X, y)

Returns x - y * n, where n is the integer nearest the exact value of x / y (if the result is O then its
sign will be the sign of x).

rotate (X, y)

Returns a rotated copy of x, y times.

same_quantum (X, y)

Returns True if the two operands have the same exponent.
scaleb (x, y)

Returns the first operand after adding the second value its exp.
shift (x, y)

Returns a shifted copy of x, y times.
sgrt (x)

Square root of a non-negative number to context precision.

subtract (x, y)

Return the difference between x and y.

362

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

to_eng_string (x)

Convert to a string, using engineering notation if an exponent is needed.

Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of
the decimal place and may require the addition of either one or two trailing zeros.

to_integral_exact (x)

Rounds to an integer.

to_sci_string (x)

Converts a number to a string using scientific notation.

9.4.4 Constants

The constants in this section are only relevant for the C module. They are also included in the pure Python version

for compatibility.

32-bit 64-bit

425000000 999999999999999999
decimal .MAX PREC

425000000 999999999999999999
decimal .MAX EMAX

-425000000 =999999999999999999
decimal .MIN_EMIN

-849999999 -1999999999999999997

decimal .MIN_ETINY

decimal . HAVE_THREADS

The value is True. Deprecated, because Python now always has threads.

Deprecated since version 3.9.

decimal .HAVE_CONTEXTVAR

The default value is True. If Python is configured using the —--without-decimal-contextvar
option, the C version uses a thread-local rather than a coroutine-local context and the value is False. This

is slightly faster in some nested context scenarios.

Added in version 3.8.3.

9.4.5 Rounding modes
decimal .ROUND_CEILING
Round towards Infinity.
decimal .ROUND_DOWN
Round towards zero.
decimal .ROUND_FLOOR
Round towards —-Infinity.
decimal .ROUND_HALF_DOWN
Round to nearest with ties going towards zero.
decimal .ROUND_HALF_EVEN

Round to nearest with ties going to nearest even integer.

9.4. decimal — Decimal fixed-point and floating-point arithmetic

363

The Python Library Reference, Release 3.13.1

decimal .ROUND_HALF_UP

Round to nearest with ties going away from zero.

decimal .ROUND_UP

Round away from zero.

decimal .ROUND_O05UP

Round away from zero if last digit after rounding towards zero would have been 0 or 5; otherwise round towards
Zero.

9.4.6 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context trap
enabler.

The context flag is set whenever the condition is encountered. After the computation, flags may be checked for
informational purposes (for instance, to determine whether a computation was exact). After checking the flags, be
sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For
example, if the DivisionByZero trap is set, then a DivisionByZero exception is raised upon encountering the
condition.
class decimal.Clamped
Altered an exponent to fit representation constraints.
Typically, clamping occurs when an exponent falls outside the context’s Emin and Emax limits. If possible, the
exponent is reduced to fit by adding zeros to the coefficient.
class decimal.DecimalException

Base class for other signals and a subclass of ArithmeticError.

class decimal.DivisionByZero

Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is not
trapped, returns Infinity or -Infinity with the sign determined by the inputs to the calculation.

class decimal.Inexact

Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal flag
or trap is used to detect when results are inexact.

class decimal.InvalidOperation

An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trapped, returns NaN. Possible causes
include:

Infinity - Infinity
0 * Infinity
Infinity / Infinity
x 5 0

Infinity % x

sgqrt (-x) and x > 0
()

X ** (non-integer)
x ** Infinity

364 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

class decimal.Overflow
Numerical overflow.
Indicates the exponent is larger than Context . Emax after rounding has occurred. If not trapped, the result
depends on the rounding mode, either pulling inward to the largest representable finite number or rounding
outward to Infinity. In either case, Tnexact and Rounded are also signaled.

class decimal.Rounded
Rounding occurred though possibly no information was lost.
Signaled whenever rounding discards digits; even if those digits are zero (such as rounding 5.00 to 5.0). If
not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

class decimal.Subnormal
Exponent was lower than Emin prior to rounding.
Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

class decimal.Underflow

Numerical underflow with result rounded to zero.
Occurs when a subnormal result is pushed to zero by rounding. Inexact and Subnormal are also signaled.

class decimal .FloatOperation
Enable stricter semantics for mixing floats and Decimals.
If the signal is not trapped (default), mixing floats and Decimals is permitted in the Decimal constructor,
create_decimal () and all comparison operators. Both conversion and comparisons are exact. Any oc-

currence of a mixed operation is silently recorded by setting F1oatOperat ion in the context flags. Explicit
conversions with from float () or create_decimal_ from float () do not set the flag.

Otherwise (the signal is trapped), only equality comparisons and explicit conversions are silent. All other
mixed operations raise F'loatOperation.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError (exceptions.Exception)
DecimalException
Clamped
DivisionByZero (DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow (Inexact, Rounded)
Underflow (Inexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal

FloatOperation (DecimalException, exceptions.TypeError)

9.4.7 Floating-Point Notes
Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to represent 0.1 ex-
actly); however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities result-
ing in loss of significance. Knuth provides two instructive examples where rounded floating-point arithmetic with
insufficient precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
(continues on next page)

9.4. decimal — Decimal fixed-point and floating-point arithmetic 365

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> getcontext () .prec = 8

>>> u, v, w = Decimal(11111113), Decimal (-11111111), Decimal('7.51111111")
>>> (u + v) + w

Decimal ('9.5111111")

>>> u + (v + w)

Decimal ('10"'")

>>> u, v, w = Decimal (20000), Decimal (-6), Decimal ('6.0000003")
>>> (u*v) + (u*w)

Decimal ('0.01")

>>> u * (vtw)

Decimal ('0.0060000")

The decimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid loss
of significance:

>>> getcontext () .prec = 20

>>> u, v, w = Decimal (11111113), Decimal (-11111111), Decimal ('7.51111111")
>>> (u + v) + w

Decimal ('9.51111111")

>>> u + (Vv + W)

Decimal ('9.51111111")

>>>

>>> u, v, w = Decimal (20000), Decimal (-6), Decimal ('6.0000003")
>>> (u*v) + (u*w)

Decimal ('0.0060000")

>>> u * (v+w)

Decimal ('0.0060000")

Special values

The number system for the decimal module provides special values including NaN, sNaN, -Infinity, Infinity,
and two zeros, +0 and 0.

Infinities can be constructed directly with: Decimal ('Infinity'). Also, they can arise from dividing by zero
when the DivisionByZero signal is not trapped. Likewise, when the Overf1ow signal is not trapped, infinity can
result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large, inde-
terminate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the TnvalidOperation signal is trapped, raise an excep-
tion. For example, 0/0 returns NaN which means “not a number”. This variety of NaN is quiet and, once created,
will flow through other computations always resulting in another NaN. This behavior can be useful for a series of
computations that occasionally have missing inputs — it allows the calculation to proceed while flagging specific
results as invalid.

A variant is sNaN which signals rather than remaining quiet after every operation. This is a useful return value when
an invalid result needs to interrupt a calculation for special handling.

The behavior of Python’s comparison operators can be a little surprising where a NaN is involved. A test
for equality where one of the operands is a quiet or signaling NaN always returns False (even when doing
Decimal ('NaN')==Decimal ('NaN"')), while a test for inequality always returns True. An attempt to compare
two Decimals using any of the <, <=, > or >= operators will raise the TnvalidOperation signal if either operand
is a NaN, and return False if this signal is not trapped. Note that the General Decimal Arithmetic specification
does not specify the behavior of direct comparisons; these rules for comparisons involving a NaN were taken from
the IEEE 854 standard (see Table 3 in section 5.7). To ensure strict standards-compliance, use the compare () and
compare_signal () methods instead.

366 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative zeros
are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with differing
precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized floating-
point representations, it is not immediately obvious that the following calculation returns a value equal to zero:

>>> 1 / Decimal ('Infinity"')
Decimal ('OE-1000026")

9.4.8 Working with threads

The getcontext () function accesses a different Context object for each thread. Having separate thread contexts
means that threads may make changes (such as getcontext () .prec=10) without interfering with other threads.

Likewise, the setcontext () function automatically assigns its target to the current thread.

If setcontext () hasnot been called before get context (), then get context () will automatically create a new
context for use in the current thread.

The new context is copied from a prototype context called DefaultContext. To control the defaults so that each thread
will use the same values throughout the application, directly modify the DefaultContext object. This should be done
before any threads are started so that there won’t be a race condition between threads calling get context (). For
example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy ()

DefaultContext.traps[InvalidOperation] = 1
setcontext (DefaultContext)

Afterwards, the threads can be started
tl.start ()
t2.start ()
t3.start ()

9.4.9 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work with the Decimal class:

def moneyfmt (value, places=2, curr='"', sep=',', dp='."',
pos='"', neg='-', trailneg='"):
"""Convert Decimal to a money formatted string.

places: required number of places after the decimal point

curr: optional currency symbol before the sign (may be blank)

sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)

only specify as blank when places is zero

pos: optional sign for positive numbers: '+', space or blank
neg: optional sign for negative numbers: '-', '(', space or blank
trailneg:optional trailing minus indicator: '-', ')', space or blank

>>> d = Decimal ('-1234567.8901")
>>> moneyfmt (d, curr='S")
'-$1,234,567.89"'

(continues on next page)

9.4. decimal — Decimal fixed-point and floating-point arithmetic 367

The

Python Library Reference, Release 3.13.1

def

(continued from previous page)
>>> moneyfmt (d, places=0, sep='.', dp='"', neg='"', trailneg='-"')
'1.234.568-"
>>> moneyfmt (d, curr='S', neg='(', trailneg="')"')
'($1,234,567.89) "'
>>> moneyfmt (Decimal (123456789), sep=' ")
'123 456 789.00'
>>> moneyfmt (Decimal ('-0.02"'), neg='<', trailneg='>")
'<0.02>"

mn

g = Decimal (10) ** -places # 2 places ——> '0.01'
sign, digits, exp = value.quantize (q) .as_tuple ()
result = []
digits = list (map(str, digits))
build, next = result.append, digits.pop
if sign:
build(trailnegq)
for i in range (places):
build(next () if digits else '0')
if places:

build (dp)
if not digits:

build('0")
i=0

while digits:
build (next ())

i+= 1
if i == 3 and digits:
i=0
build(sep)

build (curr)
build(neg if sign else pos)
return ''.join(reversed(result))

pi():
"""Compute Pi to the current precision.

>>> print (pi())
3.141592653589793238462643383

mn

getcontext () .prec += 2 # extra digits for intermediate steps

three = Decimal (3) # substitute "three=3.0" for regular floats
lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
while s != lasts:

lasts = s

n, na = n+na, na+8

d, da = d+da, da+32
t=(t *n) / d
s += €
getcontext () .prec —= 2
return +s # unary plus applies the new precision
def exp(x):
"""Return e raised to the power of x. Result type matches input type.
(continues on next page)
368 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

(contin
>>> print (exp (Decimal (1)))
2.718281828459045235360287471
>>> print (exp (Decimal (2)))
7.389056098930650227230427461
>>> print (exp (2.0))
7.38905609893
>>> print (exp (2+07))
(7.38905609893+037)

mn

getcontext () .prec += 2
i, lasts, s, fact, num = 0, 0, 1, 1, 1

while s != lasts:
lasts = s
i+=1

fact *= i

num *= x

s += num / fact
getcontext () .prec —= 2
return +s

def cos(x):
"""Return the cosine of x as measured in radians.

The Taylor series approximation works best for a small value of x.

-3

For larger values, first compute x = x % (2 * pi).
>>> print (cos (Decimal ('0.5")))
0.8775825618903727161162815826

>>> print (cos (0.5))

0.87758256189

>>> print (cos (0.5+07))
(0.87758256189+07)

mn

getcontext () .prec += 2

i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
while s != lasts:

lasts = s

i += 2

fact *= i * (i-1)

num *= x * x

sign *= -1

s += num / fact * sign
getcontext () .prec —= 2
return +s

def sin(x):
"""Return the sine of x as measured in radians.

The Taylor series approximation works best for a small value of x.

o

For larger values, first compute x = x % (2 * pi).

>>> print (sin (Decimal ('0.5")))
0.4794255386042030002732879352
>>> print (sin(0.5))

ued from previous page)

(continues on next page)

9.4. decimal — Decimal fixed-point and floating-point arithmetic

369

The Python Library Reference, Release 3.13.1

(continued from previous page)

0.479425538604
>>> print (sin(0.5+037))
(0.479425538604+037)

mn

getcontext () .prec += 2

i, lasts, s, fact, num, sign =1, 0, %, 1, x, 1
while s != lasts:

lasts = s

i+= 2

fact *= i * (i-1)

num *= x * x

sign *= -1

s += num / fact * sign
getcontext () .prec —= 2
return +s

9.4.10 Decimal FAQ

Q. It is cumbersome to type decimal.Decimal ('1234.5"). Is there a way to minimize typing when using the
interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal
>>> D('1.23') + D('3.45")
Decimal('4.68")

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded.
Others are not supposed to have excess digits and need to be validated. What methods should be used?

A.The quantize () method rounds to a fixed number of decimal places. If the Tnexact trap is set, it is also useful
for validation:

[>>> TWOPLACES = Decimal (10) ** -2 # same as Decimal ('0.01")

>>> # Round to two places
>>> Decimal ('3.214") .quantize (TWOPLACES)
Decimal ('3.21")

>>> # Validate that a number does not exceed two places
>>> Decimal ('3.21") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Decimal ('3.21")

>>> Decimal ('3.214") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Traceback (most recent call last):

Inexact: None

Q. Once I have valid two place inputs, how do I maintain that invariant throughout an application?

A. Some operations like addition, subtraction, and multiplication by an integer will automatically preserve fixed point.
Others operations, like division and non-integer multiplication, will change the number of decimal places and need
to be followed-up with a quantize () step:

>>> g = Decimal ('102.72") # Initial fixed-point values
>>> b = Decimal ('3.17")
(continues on next page)

370 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> a + b # Addition preserves fixed-point

Decimal ('105.89")

>>> a - b

Decimal ('99.55")

>>> a * 42 # So does integer multiplication

Decimal ('4314.24")

>>> (a * b).quantize (TWOPLACES) # Must quantize non-integer multiplication
Decimal ('325.62")

>>> (b / a).quantize (TWOPLACES) # And quantize division

Decimal ('0.03")

In developing fixed-point applications, it is convenient to define functions to handle the quantize () step:

>>> def mul (x, y, fp=TWOPLACES) :
return (x * y).quantize (fp)

>>> def div(x, y, fp=TWOPLACES) :
return (x / y).quantize (fp)

>>> mul (a, b) # Automatically preserve fixed-point
Decimal ('325.62")

>>> div (b, a)

Decimal ('0.03")

J

Q. There are many ways to express the same value. The numbers 200, 200.000, 2E2, and . 02E+4 all have the
same value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. The normalize () method maps all equivalent values to a single representative:

>>> values = map (Decimal, '200 200.000 2E2 .02E+4'.split())
>>> [v.normalize () for v in values]
[Decimal ('2E+2'), Decimal ('2E+2'), Decimal ('2E+2'), Decimal ('2E+2"'")]

Q. When does rounding occur in a computation?

A. Tt occurs after the computation. The philosophy of the decimal specification is that numbers are considered
exact and are created independent of the current context. They can even have greater precision than current context.
Computations process with those exact inputs and then rounding (or other context operations) is applied to the result
of the computation:

>>> getcontext () .prec = 5

>>> pi = Decimal ('3.1415926535") # More than 5 digits

>>> pi # All digits are retained

Decimal ('3.1415926535")

>>> pi + 0O # Rounded after an addition

Decimal ('3.1416")

>>> pi - Decimal ('0.00005") # Subtract unrounded numbers, then round
Decimal ('3.1415")

>>> pi + 0 — Decimal ('0.00005") . # Intermediate values are rounded

Decimal ('3.1416")

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential representation?

A. For some values, exponential notation is the only way to express the number of significant places in the coeffi-
cient. For example, expressing 5.0E+3 as 5000 keeps the value constant but cannot show the original’s two-place
significance.

If an application does not care about tracking significance, it is easy to remove the exponent and trailing zeroes, losing
significance, but keeping the value unchanged:

9.4. decimal — Decimal fixed-point and floating-point arithmetic 371

The Python Library Reference, Release 3.13.1

>>> def remove_exponent (d) :
return d.quantize (Decimal (1)) if d == d.to_integral() else d.normalize()

>>> remove_exponent (Decimal ('5E+3"))
Decimal ('5000")

Q. Is there a way to convert a regular float to a Decima1?

A. Yes, any binary floating-point number can be exactly expressed as a Decimal though an exact conversion may take
more precision than intuition would suggest:

>>> Decimal (math.pi)
Decimal ('3.141592653589793115997963468544185161590576171875")

Q. Within a complex calculation, how can I make sure that [haven’t gotten a spurious result because of insufficient
precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater precision
and with various rounding modes. Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there anything to
watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values. Only the
results are rounded. The advantage for inputs is that “what you type is what you get”. A disadvantage is that the
results can look odd if you forget that the inputs haven’t been rounded:

>>> getcontext () .prec = 3

>>> Decimal ('3.104") + Decimal('2.104")

Decimal ('5.21")

>>> Decimal ('3.104"') + Decimal('0.000'") + Decimal('2.104")
Decimal ('5.20")

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext () .prec = 3
>>> +Decimal ('1.23456789") # unary plus triggers rounding
Decimal ('1.23")

Alternatively, inputs can be rounded upon creation using the Context.create_decimal () method:

>>> Context (prec=5, rounding=ROUND_DOWN) .create_decimal ('1.2345678")
Decimal ('1.2345")

Q. Is the CPython implementation fast for large numbers?

A. Yes. In the CPython and PyPy3 implementations, the C/CFFI versions of the decimal module integrate the high
speed libmpdec library for arbitrary precision correctly rounded decimal floating-point arithmetic'. 1ibmpdec uses
Karatsuba multiplication for medium-sized numbers and the Number Theoretic Transform for very large numbers.

The context must be adapted for exact arbitrary precision arithmetic. Emin and Emax should always be set to the
maximum values, c1lamp should always be O (the default). Setting prec requires some care.

The easiest approach for trying out bignum arithmetic is to use the maximum value for prec as well*:

1

Added in version 3.3.
2

Changed in version 3.9: This approach now works for all exact results except for non-integer powers.

372 Chapter 9. Numeric and Mathematical Modules

https://www.bytereef.org/mpdecimal/doc/libmpdec/index.html
https://en.wikipedia.org/wiki/Karatsuba_algorithm
https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general)#Number-theoretic_transform

The Python Library Reference, Release 3.13.1

>>> setcontext (Context (prec=MAX_PREC, Emax=MAX_EMAX, Emin=MIN_EMIN))

>>> x = Decimal (2) ** 256

>>> x / 128

Decimal (
—'904625697166532776746648320380374280103671755200316906558262375061821325312")

For inexact results, MAX_PREC is far too large on 64-bit platforms and the available memory will be insufficient:

>>> Decimal (1) / 3

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

MemoryError

On systems with overallocation (e.g. Linux), a more sophisticated approach is to adjust prec to the amount of
available RAM. Suppose that you have 8GB of RAM and expect 10 simultaneous operands using a maximum of
500MB each:

>>> import sys
>>>
>>> # Maximum number of digits for a single operand using 500MB in 8-byte words
>>> # with 19 digits per word (4-byte and 9 digits for the 32-bit build) :
>>> maxdigits = 19 * ((500 * 1024**2) // 8)
>>>
>>> # Check that this works:
>>> ¢ = Context (prec=maxdigits, Emax=MAX_ EMAX, Emin=MIN_EMIN)
>>> c.traps[Inexact] = True
>>> setcontext (c)
>>>
>>> # Fill the available precision with nines:
>>> x = Decimal (0).logical_invert () * 9
>>> sys.getsizeof (x)
524288112
>>> x + 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.Inexact: [<class 'decimal.Inexact'>]

In general (and especially on systems without overallocation), it is recommended to estimate even tighter bounds and
set the Tnexact trap if all calculations are expected to be exact.

9.5 fractions — Rational numbers

Source code: Lib/fractions.py

The fractions module provides support for rational number arithmetic.
A Fraction instance can be constructed from a pair of integers, from another rational number, or from a string.

class fractions.Fraction (numerator=0, denominator=1)
class fractions.Fraction (other_fraction)

class fractions.Fraction (float)

class fractions.Fraction (decimal)

class fractions.Fraction (string)

The first version requires that numerator and denominator are instances of numbers.Rational and re-
turns a new Fraction instance with value numerator/denominator. If denominator is 0, it raises

9.5. fractions — Rational numbers 373

https://github.com/python/cpython/tree/3.13/Lib/fractions.py

The Python Library Reference, Release 3.13.1

a ZerobivisionError. The second version requires that other_fraction is an instance of numbers.
Rational and returns a Fraction instance with the same value. The next two versions accept either a
float oradecimal.Decimal instance, and return a Fract ion instance with exactly the same value. Note
that due to the usual issues with binary floating point (see tut-fp-issues), the argument to Fraction (1.1)
is not exactly equal to 11/10, and so Fraction(1.1) does nof return Fraction (11, 10) as one might
expect. (But see the documentation for the 1imit_denominator () method below.) The last version of the
constructor expects a string or unicode instance. The usual form for this instance is:

[[sign] numerator ['/' denominator]

where the optional sign may be either ‘+ or -’ and numerator and denominator (if present) are strings
of decimal digits (underscores may be used to delimit digits as with integral literals in code). In addition, any
string that represents a finite value and is accepted by the £1o0at constructor is also accepted by the Fraction
constructor. In either form the input string may also have leading and/or trailing whitespace. Here are some
examples:

>>> from fractions import Fraction
>>> Fraction (16, -10)

Fraction (-8, 5)

>>> Fraction (123)

Fraction (123, 1)

>>> Fraction ()

Fraction (0, 1)

>>> Fraction('3/7")

Fraction (3, 7)

>>> Fraction(' -3/7 ")

Fraction (-3, 7)

>>> Fraction('1.414213 \t\n')
Fraction (1414213, 1000000)

>>> Fraction('—-.125")

Fraction (-1, 8)

>>> Fraction('7e-6")
Fraction (7, 1000000)

>>> Fraction(2.25)

Fraction (9, 4)

>>> Fraction(1.1)
Fraction(2476979795053773, 2251799813685248)
>>> from decimal import Decimal
>>> Fraction (Decimal ('1.1"))
Fraction (11, 10)

The Fraction class inherits from the abstract base class numbers.Rational, and implements all of the
methods and operations from that class. Fract ion instances are hashable, and should be treated as immutable.
In addition, Fraction has the following properties and methods:

Changed in version 3.2: The Fraction constructor now accepts float and decimal.Decimal instances.

Changed in version 3.9: The math. gcd () function is now used to normalize the numerator and denominator.
math.gcd () always returns an int type. Previously, the GCD type depended on numerator and denominator.

Changed in version 3.11: Underscores are now permitted when creating a Fract ion instance from a string,
following PEP 515 rules.

Changed in version 3.11: Fraction implements __int__ now to satisfy typing.SupportsInt instance
checks.

Changed in version 3.12: Space is allowed around the slash for string inputs: Fraction('2 / 3').

Changed in version 3.12: Fract ion instances now support float-style formatting, with presentation types "e",
"E'l "f'l "F'l "g'l "G'l and 'l%ll".

374

Chapter 9. Numeric and Mathematical Modules

https://peps.python.org/pep-0515/

The Python Library Reference, Release 3.13.1

Changed in version 3.13: Formatting of Fraction instances without a presentation type now supports fill,
alignment, sign handling, minimum width and grouping.

numerator

Numerator of the Fraction in lowest term.
denominator

Denominator of the Fraction in lowest term.
as_integer_ratio()

Return a tuple of two integers, whose ratio is equal to the original Fraction. The ratio is in lowest terms
and has a positive denominator.

Added in version 3.8.

is_integer ()
Return True if the Fraction is an integer.
Added in version 3.12.

classmethod from_float (flf)

Alternative constructor which only accepts instances of float or numbers. Integral. Beware that
Fraction.from_float (0.3) is not the same value as Fraction (3, 10).

© Note

From Python 3.2 onwards, you can also construct a Fraction instance directly from a rloat.

classmethod from_decimal (dec)

Alternative constructor which only accepts instances of decimal.Decimal or numbers. Integral.

© Note

From Python 3.2 onwards, you can also construct a Fraction instance directly from a decimal.
Decimal instance.

limit_denominator (max_denominator=1000000)

Finds and returns the closest Fraction to self that has denominator at most max_denominator. This
method is useful for finding rational approximations to a given floating-point number:

>>> from fractions import Fraction
>>> Fraction('3.1415926535897932") .1imit_denominator (1000)
Fraction (355, 113)

or for recovering a rational number that’s represented as a float:

>>> from math import pi, cos

>>> Fraction (cos (pi/3))

Fraction (4503599627370497, 9007199254740992)
>>> Fraction (cos (pi/3)) .limit_denominator ()
Fraction (1, 2)

>>> Fraction(l.1).limit_denominator ()
Fraction (11, 10)

_ floor_ ()

Returns the greatest int <= self. This method can also be accessed through the math. flioor ()
function:

fractions — Rational numbers 375

The Python Library Reference, Release 3.13.1

>>> from math import floor
>>> floor (Fraction (355, 113))
3

__ceil_ ()
Returns the least int >= self. This method can also be accessed through the math.ceil () function.

__round__ ()
__round__ (ndigits)

The first version returns the nearest int to self, rounding half to even. The second version rounds
self to the nearest multiple of Fraction (1, 10**ndigits) (logically, if ndigits is negative),
again rounding half toward even. This method can also be accessed through the round () function.

__ format__ (format_spec, /)

Provides support for formatting of Fraction instances via the str. format () method, the format ()
built-in function, or Formatted string literals.

If the format_spec format specification string does not end with one of the presentation types 'e', 'E"',

"£','F', 'g', 'G' or '%' then formatting follows the general rules for fill, alignment, sign handling,
minimum width, and grouping as described in the format specification mini-language. The “alternate
form” flag ' #' is supported: if present, it forces the output string to always include an explicit denomi-
nator, even when the value being formatted is an exact integer. The zero-fill flag ' 0" is not supported.

If the format_spec format specification string ends with one of the presentation types 'e', 'E', "f"',
'F', 'g', 'G' or '%' then formatting follows the rules outlined for the rloat type in the Format
Specification Mini-Language section.

Here are some examples:

>>> from fractions import Fraction
>>> format (Fraction (103993, 33102), '_'")
'103_993/33_102"

>>> format (Fraction (1, 7), '.”+10")
YL/ T70 0

>>> format (Fraction (3, 1), ''")

130

>>> format (Fraction (3, 1), '#')

'3/1"

>>> format (Fraction (1, 7), '.40g'")
'0.1428571428571428571428571428571428571429"'
>>> format (Fraction('1234567.855"), '_.2f")

'1_234_567.86"

>>> f"/Fraction (355, 113) :*>20.6e/}"

PRx kA AAXX3,.141593e+00"

>>> old_price, new_price = 499, 672

>>> " price increase".format (Fraction (new_price, old_price) - 1)
'34.67% price increase'

> See also

Module numbers
The abstract base classes making up the numeric tower.

376 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

9.6 random — Generate pseudo-random numbers

Source code: Lib/random.py

This module implements pseudo-random number generators for various distributions.

For integers, there is uniform selection from a range. For sequences, there is uniform selection of a random element, a
function to generate a random permutation of a list in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential, gamma,
and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random (), which generates a random float uniformly in
the half-open range 0.0 <= X < 1.0. Python uses the Mersenne Twister as the core generator. It produces 53-bit
precision floats and has a period of 2#%19937-1. The underlying implementation in C is both fast and threadsafe.
The Mersenne Twister is one of the most extensively tested random number generators in existence. However, being
completely deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic purposes.

The functions supplied by this module are actually bound methods of a hidden instance of the random.Random
class. You can instantiate your own instances of Random to get generators that don’t share state.

Class Random can also be subclassed if you want to use a different basic generator of your own devising: see the
documentation on that class for more details.

The random module also provides the SystemRandom class which uses the system function os.urandom() to
generate random numbers from sources provided by the operating system.

A Warning

The pseudo-random generators of this module should not be used for security purposes. For security or crypto-
graphic uses, see the secrets module.

e See also

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-
random number generator”, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January
pp-3-30 1998.

Complementary-Multiply-with-Carry recipe for a compatible alternative random number generator with a long
period and comparatively simple update operations.

© Note

The global random number generator and instances of Random are thread-safe. However, in the free-threaded
build, concurrent calls to the global generator or to the same instance of Random may encounter contention and
poor performance. Consider using separate instances of Random per thread instead.

9.6.1 Bookkeeping functions
randomn. seed (a=None, version=2)
Initialize the random number generator.

If a is omitted or None, the current system time is used. If randomness sources are provided by the operating
system, they are used instead of the system time (see the os. urandom () function for details on availability).

If a is an int, it is used directly.

9.6. random — Generate pseudo-random numbers 377

https://github.com/python/cpython/tree/3.13/Lib/random.py
https://code.activestate.com/recipes/576707-long-period-random-number-generator/

The Python Library Reference, Release 3.13.1

With version 2 (the default), a st r, bytes, or bytearray object gets converted to an int and all of its bits
are used.

With version 1 (provided for reproducing random sequences from older versions of Python), the algorithm for
strand bytes generates a narrower range of seeds.

Changed in version 3.2: Moved to the version 2 scheme which uses all of the bits in a string seed.

Changed in version 3.11: The seed must be one of the following types: None, int, float, str, bytes, Or
bytearray.

random.getstate ()

Return an object capturing the current internal state of the generator. This object can be passed to setstate ()
to restore the state.

random. setstate (stare)

state should have been obtained from a previous call to getstate (), and setstate () restores the internal
state of the generator to what it was at the time getstate () was called.

9.6.2 Functions for bytes
random. randbytes (n)
Generate n random bytes.
This method should not be used for generating security tokens. Use secrets.token_bytes () instead.

Added in version 3.9.

9.6.3 Functions for integers

random. randrange (Stop)

random. randrange (start, stop[, step])

Return a randomly selected element from range (start, stop, step).

This is roughly equivalent to choice (range (start, stop, step)) butsupports arbitrarily large ranges
and is optimized for common cases.

The positional argument pattern matches the range () function.

Keyword arguments should not be used because they can be interpreted in unexpected ways. For example
randrange (start=100) is interpreted as randrange (0, 100, 1).

Changed in version 3.2: randrange () is more sophisticated about producing equally distributed values.
Formerly it used a style like int (random () *n) which could produce slightly uneven distributions.

Changed in version 3.12: Automatic conversion of non-integer types is no longer supported. Calls such as
randrange (10.0) and randrange (Fraction (10, 1)) now raise a TypeError.

random.randint (a, b)
Return a random integer N such that a <= N <= b. Alias for randrange (a, b+1).
random.getrandbits (k)

Returns a non-negative Python integer with k random bits. This method is supplied with the Mersenne Twister
generator and some other generators may also provide it as an optional part of the API. When available,
getrandbits () enables randrange () to handle arbitrarily large ranges.

Changed in version 3.9: This method now accepts zero for k.

9.6.4 Functions for sequences

random.choice (seq)

Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

378 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

random. choices (population, weights=None, *, cum_weights=None, k=1I)

Return a k sized list of elements chosen from the population with replacement. If the population is empty,
raises IndexError.

If a weights sequence is specified, selections are made according to the relative weights. Alternatively, if a
cum_weights sequence is given, the selections are made according to the cumulative weights (perhaps computed
using itertools.accumulate ()). For example, the relative weights [10, 5, 30, 5] are equivalent to
the cumulative weights [10, 15, 45, 50]. Internally, the relative weights are converted to cumulative
weights before making selections, so supplying the cumulative weights saves work.

If neither weights nor cum_weights are specified, selections are made with equal probability. If a weights
sequence is supplied, it must be the same length as the population sequence. Itis a TypeError to specify both
weights and cum_weights.

The weights or cum_weights can use any numeric type that interoperates with the r£1oat values returned by
random () (that includes integers, floats, and fractions but excludes decimals). Weights are assumed to be
non-negative and finite. A ValueError is raised if all weights are zero.

For a given seed, the choices () function with equal weighting typically produces a different sequence than
repeated calls to choice (). The algorithm used by choices () uses floating-point arithmetic for internal
consistency and speed. The algorithm used by choice () defaults to integer arithmetic with repeated selections
to avoid small biases from round-off error.

Added in version 3.6.
Changed in version 3.9: Raises a ValueError if all weights are zero.

random.shuffle (x)

Shuffle the sequence x in place.
To shuffle an immutable sequence and return a new shuffled list, use sample (x, k=len (x)) instead.

Note that even for small len (x), the total number of permutations of x can quickly grow larger than the
period of most random number generators. This implies that most permutations of a long sequence can never
be generated. For example, a sequence of length 2080 is the largest that can fit within the period of the
Mersenne Twister random number generator.

Changed in version 3.11: Removed the optional parameter random.

random. sample (population, k, *, counts=None)
Return a k length list of unique elements chosen from the population sequence. Used for random sampling
without replacement.

Returns a new list containing elements from the population while leaving the original population unchanged.
The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle
winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each
occurrence is a possible selection in the sample.

Repeated elements can be specified one at a time or with the optional keyword-only counts parameter.
For example, sample (['red', 'blue']l, counts=[4, 2], k=5) is equivalent to sample (['red',
'red', 'red', 'red', 'blue', 'blue'], k=5).

To choose a sample from a range of integers, use a range () object as an argument. This is especially fast and
space efficient for sampling from a large population: sample (range (10000000), k=60).

If the sample size is larger than the population size, a ValueError is raised.
Changed in version 3.9: Added the counts parameter.

Changed in version 3.11: The population must be a sequence. Automatic conversion of sets to lists is no longer
supported.

9.6. random — Generate pseudo-random numbers 379

The Python Library Reference, Release 3.13.1

9.6.5 Discrete distributions
The following function generates a discrete distribution.

random.binomialvariate (n=I, p=0.5)

Binomial distribution. Return the number of successes for n independent trials with the probability of success
in each trial being p:

Mathematically equivalent to:

[sum(random() < p for i in range(n)) }

The number of trials n should be a non-negative integer. The probability of success p should be between 0. 0
<= p <= 1.0. The result is an integer in the range 0 <= X <= n.

Added in version 3.12.

9.6.6 Real-valued distributions

The following functions generate specific real-valued distributions. Function parameters are named after the corre-
sponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations
can be found in any statistics text.

random.random ()

Return the next random floating-point number in the range 0.0 <= X < 1.0

random.uniform (a, b)
Return a random floating-point number N such that a <= N <= bfora <= bandb <= N <= aforb <

a.

The end-point value b may or may not be included in the range depending on floating-point rounding in the
expression a + (b—a) * random().

random.triangular (low, high, mode)
Return a random floating-point number N such that 1ow <= N <= high and with the specified mode between
those bounds. The low and high bounds default to zero and one. The mode argument defaults to the midpoint
between the bounds, giving a symmetric distribution.

random.betavariate (alpha, beta)
Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range
between 0 and 1.

random.expovariate (lambd=1.0)

Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter
would be called “lambda”, but that is a reserved word in Python.) Returned values range from O to positive
infinity if lambd is positive, and from negative infinity to O if lambd is negative.

Changed in version 3.12: Added the default value for 1ambd.

random.gammavariate (alpha, beta)

Gamma distribution. (Not the gamma function!) The shape and scale parameters, alpha and beta, must have
positive values. (Calling conventions vary and some sources define ‘beta’ as the inverse of the scale).

The probability distribution function is:

math.gamma (alpha) * beta ** alpha

random.gauss (mu=0.0, sigma=1.0)

Normal distribution, also called the Gaussian distribution. mu is the mean, and sigma is the standard deviation.
This is slightly faster than the normalvariate () function defined below.

380 Chapter 9. Numeric and Mathematical Modules

https://mathworld.wolfram.com/BinomialDistribution.html

The Python Library Reference, Release 3.13.1

Multithreading note: When two threads call this function simultaneously, it is possible that they will receive
the same return value. This can be avoided in three ways. 1) Have each thread use a different instance of the
random number generator. 2) Putlocks around all calls. 3) Use the slower, but thread-safe normalvariate ()
function instead.

Changed in version 3.11: mu and sigma now have default arguments.

random.lognormvariate (mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero.
random.normalvariate (mu=0.0, sigma=1.0)

Normal distribution. mu is the mean, and sigma is the standard deviation.
Changed in version 3.11: mu and sigma now have default arguments.

random.vonmisesvariate (mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter,
which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform
random angle over the range 0 to 2*pi.

random.paretovariate (alpha)

Pareto distribution. alpha is the shape parameter.

random.weibullvariate (alpha, beta)

Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

9.6.7 Alternative Generator

class random.Random ([seed])
Class that implements the default pseudo-random number generator used by the random module.

Changed in version 3.11: Formerly the seed could be any hashable object. Now it is limited to: None, int,
float, str, bytes, Or bytearray.

Subclasses of Random should override the following methods if they wish to make use of a different basic
generator:
seed (a=None, version=2)

Override this method in subclasses to customise the seed () behaviour of Random instances.

getstate ()

Override this method in subclasses to customise the getstate () behaviour of Random instances.

setstate (state)

Override this method in subclasses to customise the setstate () behaviour of Random instances.

random ()

Override this method in subclasses to customise the random () behaviour of Random instances.
Optionally, a custom generator subclass can also supply the following method:

getrandbits (k)

Override this method in subclasses to customise the get randbits () behaviour of Random instances.

class random.SystemRandom ([seed])

Class that uses the os.urandom () function for generating random numbers from sources provided by the
operating system. Not available on all systems. Does not rely on software state, and sequences are not repro-
ducible. Accordingly, the seed () method has no effect and is ignored. The getstate () and setstate ()
methods raise Not TmplementedError if called.

9.6. random — Generate pseudo-random numbers 381

The Python Library Reference, Release 3.13.1

9.6.8 Notes on Reproducibility

Sometimes it is useful to be able to reproduce the sequences given by a pseudo-random number generator. By reusing
a seed value, the same sequence should be reproducible from run to run as long as multiple threads are not running.

Most of the random module’s algorithms and seeding functions are subject to change across Python versions, but two
aspects are guaranteed not to change:

« If a new seeding method is added, then a backward compatible seeder will be offered.

o The generator’s random () method will continue to produce the same sequence when the compatible seeder
is given the same seed.

9.6.9 Examples

Basic examples:

>>> random () # Random float: 0.0 <= x < 1.0
0.37444887175646646

>>> uniform (2.5, 10.0) # Random float: 2.5 <= x <= 10.0
3.1800146073117523

>>> expovariate (1l / 5) # Interval between arrivals averaging 5.
—seconds
5.148957571865031

>>> randrange (10) # Integer from 0 to 9 inclusive

5

>>> randrange (0, 101, 2) # Even integer from 0 to 100 inclusive
26

>>> choice(['win', 'lose', 'draw']) # Single random element from a sequence
'draw'

>>> deck = 'ace two three four'.split ()

>>> shuffle (deck) # Shuffle a 1ist

>>> deck

['four', 'two', 'ace', 'three']

>>> sample([10, 20, 30, 40, 50], k=4) # Four samples without replacement
[40, 10, 50, 30]

Simulations:

>>> # Six roulette wheel spins (weighted sampling with replacement)
>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
['red', 'green', 'black', 'black', 'red', 'black']

>>> # Deal 20 cards without replacement from a deck
>>> # of 52 playing cards, and determine the proportion of cards

>>> # with a ten-value: ten, jack, queen, or king.

>>> deal = sample(['tens', 'low cards'], counts=[16, 36], k=20)
>>> deal.count ('tens') / 20

0.15

>>> # Estimate the probability of getting 5 or more heads from 7 spins
>>> # of a biased coin that settles on heads 60% of the time.
>>> sum(binomialvariate (n=7, p=0.6) >= 5 for i in range(10_000)) / 10_000

(continues on next page)

382 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

(continued from previous page)

0.4169

>>> # Probability of the median of 5 samples being in middle two quartiles
>>> def trial():
return 2_500 <= sorted(choices(range (10_000), k=5))[2] < 7_500

>>> sum(trial () for i in range (10_000)) / 10_000
0.7958

Example of statistical bootstrapping using resampling with replacement to estimate a confidence interval for the mean
of a sample:

https://www.thoughtco.com/example—of-bootstrapping—3126155
from statistics import fmean as mean
from random import choices

data = [41, 50, 29, 37, 81, 30, 73, 63, 20, 35, 68, 22, 60, 31, 95]

means = sorted (mean (choices(data, k=len(data))) for i in range (100))

print (f'The sample mean of {mean(data) :.1f} has a 90% confidence '
f'interval from {means[5]:.1f} to {means[94]:.1f}")

Example of a resampling permutation test to determine the statistical significance or p-value of an observed difference
between the effects of a drug versus a placebo:

Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
from statistics import fmean as mean
from random import shuffle

drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
observed_diff = mean(drug) - mean (placebo)

n = 10_000

count = 0

combined = drug + placebo

for i in range (n):
shuffle (combined)
new_diff = mean(combined[:len(drug)]) - mean(combined[len (drug) :])
count += (new_diff >= observed_diff)

print (f'{n} label reshufflings produced only {count} instances with a difference')

(
print (f'at least as extreme as the observed difference of {observed_diff:.1f}.")
print (f'The one-sided p-value of {count / n:.4f} leads us to reject the null')

(

print (f'hypothesis that there is no difference between the drug and the placebo.')

Simulation of arrival times and service deliveries for a multiserver queue:

from heapq import heapify, heapreplace
from random import expovariate, gauss
from statistics import mean, quantiles

average_arrival_interval = 5.6
average_service_time = 15.0
stdev_service_time = 3.5
num_servers = 3

waits = []
(continues on next page)

9.6. random — Generate pseudo-random numbers 383

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests
https://en.wikipedia.org/wiki/P-value

The Python Library Reference, Release 3.13.1

(continued from previous page)

arrival_time = 0.0
servers = [0.0] * num_servers # time when each server becomes available
heapify (servers)
for i in range(1_000_000) :

arrival_time += expovariate (1.0 / average_arrival_interval)

next_server_available = servers[0]

wait = max (0.0, next_server_available - arrival_time)

waits.append (wait)

service_duration = max (0.0, gauss (average_service_time, stdev_service_time))

service_completed = arrival_time + wait + service_duration

heapreplace (servers, service_completed)

print (f'Mean wait: {mean(waits) :.1f} Max wait: {max(waits):.1f}")

print ('Quartiles:', [round(qg, 1) for g in gquantiles (waits)])

> See also

Statistics for Hackers a video tutorial by Jake Vanderplas on statistical analysis using just a few fundamental
concepts including simulation, sampling, shuffling, and cross-validation.

Economics Simulation a simulation of a marketplace by Peter Norvig that shows effective use of many of the tools
and distributions provided by this module (gauss, uniform, sample, betavariate, choice, triangular, and randrange).

A Concrete Introduction to Probability (using Python) a tutorial by Peter Norvig covering the basics of probability
theory, how to write simulations, and how to perform data analysis using Python.

9.6.10 Recipes

These recipes show how to efficiently make random selections from the combinatoric iterators in the itertools
module:

def random_product (*args, repeat=1):
"Random selection from itertools.product (*args, **kwds)"
pools = [tuple(pool) for pool in args] * repeat
return tuple (map (random.choice, pools))

def random_permutation (iterable, r=None):

"Random selection from itertools.permutations (iterable, r)"
pool = tuple(iterable)
r = len(pool) if r is None else r

return tuple (random.sample (pool, r))

def random_combination (iterable, r):
"Random selection from itertools.combinations (iterable, r)"
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.sample (range(n), r))
return tuple(pool[i] for i in indices)

def random_combination_with_replacement (iterable, r):
"Choose r elements with replacement. Order the result to match the iterable."
Result will be in set (itertools.combinations_with_replacement (iterable, r)).
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.choices (range (n), k=r))

return tuple(pool[i] for i in indices)

384 Chapter 9. Numeric and Mathematical Modules

https://www.youtube.com/watch?v=Iq9DzN6mvYA
https://us.pycon.org/2016/speaker/profile/295/
https://nbviewer.org/url/norvig.com/ipython/Economics.ipynb
https://norvig.com/bio.html
https://nbviewer.org/url/norvig.com/ipython/Probability.ipynb
https://norvig.com/bio.html

The Python Library Reference, Release 3.13.1

The default random () returns multiples of 273 in the range 0.0 < x < 1.0. All such numbers are evenly spaced and
are exactly representable as Python floats. However, many other representable floats in that interval are not possible

selections. For example, 0.05954861408025609 isn’t an integer multiple of 2753,

The following recipe takes a different approach. All floats in the interval are possible selections. The mantissa comes
from a uniform distribution of integers in the range 2°? < mantissa < 2%°. The exponent comes from a geometric

distribution where exponents smaller than -53 occur half as often as the next larger exponent.

from random import Random
from math import ldexp

class FullRandom (Random) :
def random(self) :

mantissa = 0x10_0000_0000_0000 | self.getrandbits (52)
-53

exponent
x =0
while not x:
x = self.getrandbits (32)
exponent += x.bit_length() - 32
return ldexp (mantissa, exponent)

All real valued distributions in the class will use the new method:

>>> fr = FullRandom()
>>> fr.random ()
0.05954861408025609

>>> fr.expovariate (0.25)
8.87925541791544

The recipe is conceptually equivalent to an algorithm that chooses from all the multiples of 2~

n the range 0.0 <

x < 1.0. All such numbers are evenly spaced, but most have to be rounded down to the nearest representable Python

float. (The value 271974 is the smallest positive unnormalized float and is equal to math.ulp (0.0).)

#» See also

Generating Pseudo-random Floating-Point Values a paper by Allen B. Downey describing ways to generate more

fine-grained floats than normally generated by random ().

9.6.11 Command-line usage
Added in version 3.13.

The random module can be executed from the command line.

[python -m random [-h] [-c CHOICE [CHOICE ...] | -i N | -f N] [input

The following options are accepted:
-h, —--help
Show the help message and exit.
—c CHOICE [CHOICE ...]
——choice CHOICE [CHOICE ...]
Print a random choice, using choice ().
-i <N>
——integer <N>

Print a random integer between 1 and N inclusive, using randint ().

9.6. random — Generate pseudo-random numbers

385

https://allendowney.com/research/rand/downey07randfloat.pdf

The Python Library Reference, Release 3.13.1

-f <N>
——float <N>

Print a random floating-point number between 0 and N inclusive, using uniform().
If no options are given, the output depends on the input:
« String or multiple: same as ——choice.
« Integer: same as ——integer.

o Float: same as ——float.

9.6.12 Command-line example

Here are some examples of the random command-line interface:

$ # Choose one at random
$ python -m random egg bacon sausage spam "Lobster Thermidor aux crevettes with a.
—Mornay sauce"

Lobster Thermidor aux crevettes with a Mornay sauce

w

Random integer

v

python —-m random 6

o

Random floating-point number

w

python -m random 1.8
1.7080016272295635

$ # With explicit arguments
$ python -m random —--choice egg bacon sausage spam "Lobster Thermidor aux.
—crevettes with a Mornay sauce"

€99

$ python -m random --integer 6
3

$ python -m random —--float 1.8
1.5666339105010318

$ python -m random —--integer 6

$ python -m random —--float 6
3.1942323316565915

9.7 statistics — Mathematical statistics functions

Added in version 3.4.

Source code: Lib/statistics.py

This module provides functions for calculating mathematical statistics of numeric (Real-valued) data.

The module is not intended to be a competitor to third-party libraries such as NumPy, SciPy, or proprietary full-
featured statistics packages aimed at professional statisticians such as Minitab, SAS and Matlab. It is aimed at the
level of graphing and scientific calculators.

386 Chapter 9. Numeric and Mathematical Modules

https://github.com/python/cpython/tree/3.13/Lib/statistics.py
https://numpy.org
https://scipy.org/

The Python Library Reference, Release 3.13.1

Unless explicitly noted, these functions support int, float, Decimal and Fraction. Behaviour with other types
(whether in the numeric tower or not) is currently unsupported. Collections with a mix of types are also undefined
and implementation-dependent. If your input data consists of mixed types, you may be able to use map () to ensure
a consistent result, for example: map (float, input_data).

Some datasets use NaN (not a number) values to represent missing data. Since NaNs have unusual comparison
semantics, they cause surprising or undefined behaviors in the statistics functions that sort data or that count occur-
rences. The functions affected are median (), median_low (), median_high (), median_grouped (), mode (),
multimode (), and quantiles (). The NaN values should be stripped before calling these functions:

>>> from statistics import median
>>> from math import isnan
>>> from itertools import filterfalse

>>> data = [20.7, float('NaN'),19.2, 18.3, float('NaN'), 14.4]
>>> sorted (data) # This has surprising behavior

[20.7, nan, 14.4, 18.3, 19.2, nan]

>>> median (data) # This result is unexpected

16.35

>>> sum(map (isnan, data)) # Number of missing values

2

>>> clean = list (filterfalse(isnan, data)) # Strip NaN values

>>> clean
[20.7, 19.2, 18.3, 14.4]

>>> sorted(clean) # Sorting now works as expected

[14.4, 18.3, 19.2, 20.7]

>>> median (clean) # This result is now well defined
18.75

9.7.1 Averages and measures of central location

These functions calculate an average or typical value from a population or sample.

mean () Arithmetic mean (“average”) of data.

fmean () Fast, floating-point arithmetic mean, with optional weighting.
geometric_mean () Geometric mean of data.

harmonic_mean () Harmonic mean of data.

kde () Estimate the probability density distribution of the data.
kde_random () Random sampling from the PDF generated by kde().

median () Median (middle value) of data.

median_low () Low median of data.

median_high () High median of data.

median_grouped () Median (50th percentile) of grouped data.

mode () Single mode (most common value) of discrete or nominal data.
multimode () List of modes (most common values) of discrete or nominal data.
quantiles () Divide data into intervals with equal probability.

9.7.2 Measures of spread

These functions calculate a measure of how much the population or sample tends to deviate from the typical or
average values.

pstdev () Population standard deviation of data.
pvariance () Population variance of data.

stdev () Sample standard deviation of data.
variance () Sample variance of data.

9.7. statistics — Mathematical statistics functions 387

The Python Library Reference, Release 3.13.1

9.7.3 Statistics for relations between two inputs

These functions calculate statistics regarding relations between two inputs.

covariance () Sample covariance for two variables.
correlation() Pearson and Spearman’s correlation coefficients.
linear_regression() Slope and intercept for simple linear regression.

9.7.4 Function details

Note: The functions do not require the data given to them to be sorted. However, for reading convenience, most of
the examples show sorted sequences.

statistics.mean (data)

Return the sample arithmetic mean of data which can be a sequence or iterable.

The arithmetic mean is the sum of the data divided by the number of data points. It is commonly called “the
average”, although it is only one of many different mathematical averages. It is a measure of the central location
of the data.

If data is empty, StatisticsError will be raised.

Some examples of use:

p
>>> mean([1, 2, 3, 4, 41])

2.8
>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625

>>> from fractions import Fraction as F
>>> mean ([F (3, 7), F(1, 21), F(5, 3), F(1, 3)])
Fraction (13, 21)

>>> from decimal import Decimal as D
>>> mean ([D("0.5"), D("0.75"), D("0.625"), D("0.375")1)
Decimal ('0.5625")

L

© Note

The mean is strongly affected by outliers and is not necessarily a typical example of the data points. For a
more robust, although less efficient, measure of central tendency, see median ().

The sample mean gives an unbiased estimate of the true population mean, so that when taken on average
over all the possible samples, mean (sample) converges on the true mean of the entire population. If data
represents the entire population rather than a sample, then mean (data) is equivalent to calculating the
true population mean .

statistics.fmean (data, weights=None)

Convert data to floats and compute the arithmetic mean.

This runs faster than the mean () function and it always returns a f1oat. The data may be a sequence or
iterable. If the input dataset is empty, raises a StatisticsError.

>>> fmean([3.5, 4.0, 5.25])
4.25

Optional weighting is supported. For example, a professor assigns a grade for a course by weighting quizzes at
20%, homework at 20%, a midterm exam at 30%, and a final exam at 30%:

388

Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Outlier
https://en.wikipedia.org/wiki/Central_tendency

The Python Library Reference, Release 3.13.1

>>> grades = [85, 92, 83, 91]

>>> weights = [0.20, 0.20, 0.30, 0.30]
>>> fmean (grades, weights)

87.6

If weights is supplied, it must be the same length as the data or a valueError will be raised.
Added in version 3.8.
Changed in version 3.11: Added support for weights.

statistics.geometric_mean (data)

Convert data to floats and compute the geometric mean.

The geometric mean indicates the central tendency or typical value of the data using the product of the values
(as opposed to the arithmetic mean which uses their sum).

Raises a statisticsError if the input dataset is empty, if it contains a zero, or if it contains a negative
value. The data may be a sequence or iterable.

No special efforts are made to achieve exact results. (However, this may change in the future.)

>>> round(geometric_mean([54, 24, 36]), 1)
36.0

Added in version 3.8.

statistics.harmonic_mean (data, weights=None)
Return the harmonic mean of data, a sequence or iterable of real-valued numbers. If weights is omitted or
None, then equal weighting is assumed.

The harmonic mean is the reciprocal of the arithmetic mean () of the reciprocals of the data. For example,
the harmonic mean of three values a, b and ¢ will be equivalent to 3/ (1/a + 1/b + 1/c). If one of the
values is zero, the result will be zero.

The harmonic mean is a type of average, a measure of the central location of the data. It is often appropriate
when averaging ratios or rates, for example speeds.

Suppose a car travels 10 km at 40 km/hr, then another 10 km at 60 km/hr. What is the average speed?

>>> harmonic_mean ([40, 60])
48.0

Suppose a car travels 40 km/hr for 5 km, and when traffic clears, speeds-up to 60 km/hr for the remaining 30
km of the journey. What is the average speed?

>>> harmonic_mean ([40, 60], weights=[5, 30])
56.0

StatisticsError is raised if data is empty, any element is less than zero, or if the weighted sum isn’t
positive.

The current algorithm has an early-out when it encounters a zero in the input. This means that the subsequent
inputs are not tested for validity. (This behavior may change in the future.)

Added in version 3.6.
Changed in version 3.10: Added support for weights.

statistics.kde (data, h, kernel="normal’, *, cumulative=False)
Kernel Density Estimation (KDE): Create a continuous probability density function or cuamulative distribution
function from discrete samples.

The basic idea is to smooth the data using a kernel function. to help draw inferences about a population from
a sample.

9.7. statistics — Mathematical statistics functions 389

https://www.itm-conferences.org/articles/itmconf/pdf/2018/08/itmconf_sam2018_00037.pdf
https://en.wikipedia.org/wiki/Kernel_(statistics)

The Python Library Reference, Release 3.13.1

The degree of smoothing is controlled by the scaling parameter # which is called the bandwidth. Smaller values
emphasize local features while larger values give smoother results.

The kernel determines the relative weights of the sample data points. Generally, the choice of kernel shape
does not matter as much as the more influential bandwidth smoothing parameter.

Kernels that give some weight to every sample point include normal (gauss), logistic, and sigmoid.

Kernels that only give weight to sample points within the bandwidth include rectangular (uniform), triangular,
parabolic (epanechnikov), quartic (biweight), triweight, and cosine.

If cumulative is true, will return a cumulative distribution function.
A statisticsError will be raised if the data sequence is empty.

Wikipedia has an example where we can use kde () to generate and plot a probability density function esti-
mated from a small sample:

>>> sample = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
>>> f _hat = kde(sample, h=1.5)

>>> xarr = [1/100 for i in range (-750, 1100)]
>>> yarr = [f_hat (x) for x in xarr]

The points in xarr and yarr can be used to make a PDF plot:

Kernel density estimate
smoothed using a normal distribution
with a standard deviation of 1.5

0.14

-10 15

Added in version 3.13.

statistics.kde_random (data, h, kernel="normal’, *, seed=None)

Return a function that makes a random selection from the estimated probability density function produced by
kde (data, h, kernel).

Providing a seed allows reproducible selections. In the future, the values may change slightly as more accurate
kernel inverse CDF estimates are implemented. The seed may be an integer, float, str, or bytes.

A statisticsError will be raised if the data sequence is empty.

Continuing the example for kde (), we can use kde_random () to generate new random selections from an
estimated probability density function:

390

Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Kernel_density_estimation#Example

The Python Library Reference, Release 3.13.1

>>> data = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
>>> rand = kde_random(data, h=1.5, seed=8675309)
>>> new_selections = [rand() for i in range (10)]

>>> [round(x, 1) for x in new_selections]
[0.7, 6.2, 1.2, 6.9, 7.0, 1.8, 2.5, -0.5, -1.8, 5.6]

Added in version 3.13.

statistics.median (data)
Return the median (middle value) of numeric data, using the common “mean of middle two” method. If data
isempty, StatisticsError israised. data can be a sequence or iterable.

The median is a robust measure of central location and is less affected by the presence of outliers. When the
number of data points is odd, the middle data point is returned:

>>> median([1, 3, 5])
3

When the number of data points is even, the median is interpolated by taking the average of the two middle
values:

>>> median([1, 3, 5, 7])
4.0

This is suited for when your data is discrete, and you don’t mind that the median may not be an actual data
point.

If the data is ordinal (supports order operations) but not numeric (doesn’t support addition), consider using
median_low () Or median_high () instead.

statistics.median_low (data)
Return the low median of numeric data. If datais empty, StatisticsErrorisraised. data canbe a sequence
or iterable.

The low median is always a member of the data set. When the number of data points is odd, the middle value
is returned. When it is even, the smaller of the two middle values is returned.

>>> median_low ([1, 3, 5])

3

>>> median_low([1, 3, 5, 7])
3

Use the low median when your data are discrete and you prefer the median to be an actual data point rather
than interpolated.

statistics.median_high (data)
Return the high median of data. If data is empty, StatisticsError is raised. data can be a sequence or
iterable.

The high median is always a member of the data set. When the number of data points is odd, the middle value
is returned. When it is even, the larger of the two middle values is returned.

>>> median_high([1, 3, 51)

3

>>> median_high([1, 3, 5, 71)
5

Use the high median when your data are discrete and you prefer the median to be an actual data point rather
than interpolated.

9.7. statistics — Mathematical statistics functions 391

The Python Library Reference, Release 3.13.1

statistics.median_grouped (data, interval=1.0)

Estimates the median for numeric data that has been grouped or binned around the midpoints of consecutive,
fixed-width intervals.

The data can be any iterable of numeric data with each value being exactly the midpoint of a bin. At least one
value must be present.

The interval is the width of each bin.

For example, demographic information may have been summarized into consecutive ten-year age groups with
each group being represented by the 5-year midpoints of the intervals:

>>> from collections import Counter

>>> demographics = Counter ({
25: 172, # 20 to 30 years old
35: 484, # 30 to 40 years old
45: 387, # 40 to 50 years old
55: 22, # 50 to 60 years old
65: 6, # 60 to 70 years old

H)

J

The 50th percentile (median) is the 536th person out of the 1071 member cohort. That person is in the 30 to
40 year old age group.

The regular median () function would assume that everyone in the tricenarian age group was exactly 35 years
old. A more tenable assumption is that the 484 members of that age group are evenly distributed between 30
and 40. For that, we use median_grouped ():

>>> data = list (demographics.elements())

>>> median (data)

35

>>> round (median_grouped(data, interval=10), 1)
37.5

The caller is responsible for making sure the data points are separated by exact multiples of interval. This is
essential for getting a correct result. The function does not check this precondition.

Inputs may be any numeric type that can be coerced to a float during the interpolation step.

statistics.mode (data)

Return the single most common data point from discrete or nominal data. The mode (when it exists) is the
most typical value and serves as a measure of central location.

If there are multiple modes with the same frequency, returns the first one encountered in the data. If the
smallest or largest of those is desired instead, use min (multimode (data)) Orf max (multimode (data)).
If the input data is empty, StatisticsError is raised.

mode assumes discrete data and returns a single value. This is the standard treatment of the mode as commonly
taught in schools:

>>> mode ([1, 1, 2, 3, 3, 3, 3, 41])
3

The mode is unique in that it is the only statistic in this package that also applies to nominal (non-numeric)
data:

>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
'red'

Only hashable inputs are supported. To handle type set, consider casting to frozenset. To handle type
1ist, consider casting to tuple. For mixed or nested inputs, consider using this slower quadratic algorithm
that only depends on equality tests: max (data, key=data.count).

392

Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Data_binning

The Python Library Reference, Release 3.13.1

Changed in version 3.8: Now handles multimodal datasets by returning the first mode encountered. Formerly,
itraised StatisticsError when more than one mode was found.
statistics.multimode (data)

Return a list of the most frequently occurring values in the order they were first encountered in the data. Will
return more than one result if there are multiple modes or an empty list if the data is empty:

>>> multimode ('aabbbbccddddeeffffgg')
['b" 'd" lf']
>>> multimode ('")

(1

Added in version 3.8.

statistics.pstdev (data, mu=None)

Return the population standard deviation (the square root of the population variance). See pvariance () for
arguments and other details.

>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
0.986893273527251

statistics.pvariance(danhlnuzAbne)

Return the population variance of data, a non-empty sequence or iterable of real-valued numbers. Variance, or
second moment about the mean, is a measure of the variability (spread or dispersion) of data. A large variance
indicates that the data is spread out; a small variance indicates it is clustered closely around the mean.

If the optional second argument mu is given, it should be the population mean of the data. It can also be used
to compute the second moment around a point that is not the mean. If it is missing or None (the default), the
arithmetic mean is automatically calculated.

Use this function to calculate the variance from the entire population. To estimate the variance from a sample,
the variance () function is usually a better choice.

Raises statisticsError if data is empty.

Examples:

>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
>>> pvariance (data)

1.25

If you have already calculated the mean of your data, you can pass it as the optional second argument mu to
avoid recalculation:

>>> mu = mean (data)
>>> pvariance (data, mu)
1.25

Decimals and Fractions are supported:

>>> from decimal import Decimal as D
>>> pvariance ([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")1)
Decimal ('24.815")

>>> from fractions import Fraction as F
>>> pvariance ([F (L1, 4), F(5, 4), F(l, 2)1)
Fraction (13, 72)

9.7. statistics — Mathematical statistics functions 393

The Python Library Reference, Release 3.13.1

© Note

When called with the entire population, this gives the population variance 2. When called on a sample
instead, this is the biased sample variance s2, also known as variance with N degrees of freedom.

If you somehow know the true population mean p, you may use this function to calculate the variance of a
sample, giving the known population mean as the second argument. Provided the data points are a random
sample of the population, the result will be an unbiased estimate of the population variance.

statistics.stdev (data, xbar=None)

Return the sample standard deviation (the square root of the sample variance). See variance () for arguments
and other details.

>>> stdev ([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
1.0810874155219827

statistics.variance (data, xbar=None)

Return the sample variance of data, an iterable of at least two real-valued numbers. Variance, or second
moment about the mean, is a measure of the variability (spread or dispersion) of data. A large variance
indicates that the data is spread out; a small variance indicates it is clustered closely around the mean.

If the optional second argument xbar is given, it should be the sample mean of data. If it is missing or None
(the default), the mean is automatically calculated.

Use this function when your data is a sample from a population. To calculate the variance from the entire
population, see pvariance ().

Raises statisticsError if data has fewer than two values.

Examples:

>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>> variance (data)
1.3720238095238095

If you have already calculated the sample mean of your data, you can pass it as the optional second argument
xbar to avoid recalculation:

>>> m = mean (data)
>>> variance (data, m)
1.3720238095238095

This function does not attempt to verify that you have passed the actual mean as xbar. Using arbitrary values
for xbar can lead to invalid or impossible results.

Decimal and Fraction values are supported:

g
>>> from decimal import Decimal as D

>>> variance ([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")1])
Decimal ('31.01875")

>>> from fractions import Fraction as F
>>> variance ([F (1, 6), F(1, 2), F(5, 3)1)
Fraction (67, 108)

L

© Note

This is the sample variance s? with Bessel’s correction, also known as variance with N-1 degrees of freedom.

394

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

Provided that the data points are representative (e.g. independent and identically distributed), the result
should be an unbiased estimate of the true population variance.

If you somehow know the actual population mean p you should pass it to the pvariance () function as
the mu parameter to get the variance of a sample.

statistics.quantiles (data, *, n=4, method='exclusive’)

Divide data into n continuous intervals with equal probability. Returns a list of n - 1 cut points separating

the intervals.

Set n to 4 for quartiles (the default). Set n to 10 for deciles. Set n to 100 for percentiles which gives the 99
cuts points that separate data into 100 equal sized groups. Raises StatisticsError if nisnot least 1.

The data can be any iterable containing sample data. For meaningful results, the number of data points in data

should be larger than n. Raises statisticsError if there is not at least one data point.

The cut points are linearly interpolated from the two nearest data points. For example, if a cut point falls
one-third of the distance between two sample values, 100 and 112, the cut-point will evaluate to 104.

The method for computing quantiles can be varied depending on whether the data includes or excludes the
lowest and highest possible values from the population.

The default method is “exclusive” and is used for data sampled from a population that can have more extreme
values than found in the samples. The portion of the population falling below the i-th of m sorted data points

is computed as i /

percentiles: 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%.

(m + 1). Given nine sample values, the method sorts them and assigns the following

Setting the method to “inclusive” is used for describing population data or for samples that are known to include
the most extreme values from the population. The minimum value in data is treated as the Oth percentile and
the maximum value is treated as the 100th percentile. The portion of the population falling below the i-h of

m sorted data points is computed as (i - 1) /

(m - 1). Given 11 sample values, the method sorts them

and assigns the following percentiles: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%.

L

Decile cut points for empirically sampled data

>>> data = [105, 129, 87, 8¢, 111, 111, 89, 81, 108,
100, 75, 105, 103, 109, 76, 119, 99, 91,
106, 101, 84, 111, 74, 87, 86, 103, 103,
111, 75, 87, 102, 121, 111, 88, 89, 101,
103, 107, 101, 81, 109, 104]

>>> [round(g, 1) for g in quantiles(data, n=10)]

[81.0, 86.2, 89.0, 99.4, 102.5, 103.6, 106.0, 109.8,

92,

103,
106,
106,

110,
129,
86,
95,

111.0]

Added in version 3.8.

Changed in version 3.13: No longer raises an exception for an input with only a single data point. This allows
quantile estimates to be built up one sample point at a time becoming gradually more refined with each new

data point.

statistics.covariance(x,y,/)

Return the sample covariance of two inputs x and y. Covariance is a measure of the joint variability of two

inputs.

Both inputs must be of the same length (no less than two), otherwise StatisticsError is raised.

Examples:

g

>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
ey = [, 2, 3, 1, 2, 3, 1, 2, 3]
>>> covariance (x, V)

0.75

>>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]

>>> covariance (x, z)

(continues on next page)

9.7. statistics — Mathematical statistics functions

395

The Python Library Reference, Release 3.13.1

(continued from previous page)
-7.5
>>> covariance(z, X)
-7.5

Added in version 3.10.

statistics.correlation (x, Y, /, ¥, method="linear’)

Return the Pearson’s correlation coefficient for two inputs. Pearson’s correlation coefficient » takes values
between -1 and +1. It measures the strength and direction of a linear relationship.

If method is “ranked”, computes Spearman’s rank correlation coefficient for two inputs. The data is replaced
by ranks. Ties are averaged so that equal values receive the same rank. The resulting coefficient measures the
strength of a monotonic relationship.

Spearman’s correlation coefficient is appropriate for ordinal data or for continuous data that doesn’t meet the
linear proportion requirement for Pearson’s correlation coefficient.

Both inputs must be of the same length (no less than two), and need not to be constant, otherwise
StatisticsError is raised.

Example with Kepler’s laws of planetary motion:

s R
>>> # Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune

>>> orbital period = [88, 225, 365, 687, 4331, 10_756, 30_687, 60_190] #o
—days

>>> dist_from_sun = [58, 108, 150, 228, 778, 1_400, 2_900, 4_500] # million km

>>> # Show that a perfect monotonic relationship exists
>>> correlation(orbital_period, dist_from_sun, method='ranked')
1.0

>>> # Observe that a linear relationship is imperfect
>>> round(correlation (orbital_period, dist_from sun), 4)
0.9882

>>> # Demonstrate Kepler's third law: There is a linear correlation
>>> # between the square of the orbital period and the cube of the
>>> # distance from the sun.

>>> period_squared = [p * p for p in orbital_period]

>>> dist_cubed = [d * d * d for d in dist_from_sun]

>>> round(correlation (period_squared, dist_cubed), 4)

1.0

Added in version 3.10.

Changed in version 3.12: Added support for Spearman’s rank correlation coefficient.

statistics.linear_ regression (X, Y, /, ¥, proportional=False)

Return the slope and intercept of simple linear regression parameters estimated using ordinary least squares.
Simple linear regression describes the relationship between an independent variable x and a dependent variable
y in terms of this linear function:

y = slope * x + intercept + noise

where slope and intercept are the regression parameters that are estimated, and noise represents the
variability of the data that was not explained by the linear regression (it is equal to the difference between
predicted and actual values of the dependent variable).

Both inputs must be of the same length (no less than two), and the independent variable x cannot be constant;
otherwise a StatisticsError is raised.

396

Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Kepler's_laws_of_planetary_motion
https://en.wikipedia.org/wiki/Simple_linear_regression

The Python Library Reference, Release 3.13.1

For example, we can use the release dates of the Monty Python films to predict the cumulative number of
Monty Python films that would have been produced by 2019 assuming that they had kept the pace.

>>> year = [1971, 1975, 1979, 1982, 1983]

>>> films_total = [1, 2, 3, 4, 5]

>>> slope, intercept = linear_regression(year, films_total)
>>> round(slope * 2019 + intercept)

16

If proportional is true, the independent variable x and the dependent variable y are assumed to be directly
proportional. The data is fit to a line passing through the origin. Since the intercept will always be 0.0, the
underlying linear function simplifies to:

y = slope * x + noise

Continuing the example from correlation (), we look to see how well a model based on major planets can
predict the orbital distances for dwarf planets:

>>> model = linear_regression (period_squared, dist_cubed, proportional=True)
>>> slope = model.slope

>>> # Dwarf planets: Pluto, Eris, Makemake, Haumea, Ceres

>>> orbital_periods = [90_560, 204_199, 111 845, 103_410, 1_680] # days
>>> predicted_dist = [math.cbrt(slope * (p * p)) for p in orbital_ periods]
>>> list (map (round, predicted_dist))

[5912, 10166, 6806, 6459, 414]

>>> [5_906, 10_152, 6_796, 6_450, 414] # actual distance in million km
[5906, 10152, 6796, 6450, 414]

Added in version 3.10.

Changed in version 3.11: Added support for proportional.

9.7.5 Exceptions
A single exception is defined:

exception statistics.StatisticsError

Subclass of valueError for statistics-related exceptions.

9.7.6 NormalDist Objects

NormalDist is atool for creating and manipulating normal distributions of a random variable. It is a class that treats
the mean and standard deviation of data measurements as a single entity.

Normal distributions arise from the Central Limit Theorem and have a wide range of applications in statistics.

class statistics.NormalDist (mu=0.0, sigma=1.0)

Returns a new NormalDist object where mu represents the arithmetic mean and sigma represents the standard
deviation.

If sigma is negative, raises StatisticsError.
mean
A read-only property for the arithmetic mean of a normal distribution.
median
A read-only property for the median of a normal distribution.
mode

A read-only property for the mode of a normal distribution.

9.7. statistics — Mathematical statistics functions 397

https://en.wikipedia.org/wiki/Monty_Python#Films
http://www.stat.yale.edu/Courses/1997-98/101/ranvar.htm
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Mode_(statistics)

The Python Library Reference, Release 3.13.1

stdev

A read-only property for the standard deviation of a normal distribution.

variance
A read-only property for the variance of a normal distribution. Equal to the square of the standard
deviation.

classmethod from_samples (data)
Makes a normal distribution instance with mu and sigma parameters estimated from the data using
fmean () and stdev ().

The data can be any iterable and should consist of values that can be converted to type rloat. If data
does not contain at least two elements, raises StatisticsError because it takes at least one point to
estimate a central value and at least two points to estimate dispersion.

samples (n, *, seed=None)
Generates n random samples for a given mean and standard deviation. Returns a 1ist of f1oat values.

If seed is given, creates a new instance of the underlying random number generator. This is useful for
creating reproducible results, even in a multi-threading context.

Changed in version 3.13.

Switched to a faster algorithm. To reproduce samples from previous versions, use random. seed () and
random.gauss ().
pdf (x)

Using a probability density function (pdf), compute the relative likelihood that a random variable X will
be near the given value x. Mathematically, it is the limit of the ratio P (x <= X < x+dx) / dxasdx
approaches zero.

The relative likelihood is computed as the probability of a sample occurring in a narrow range divided
by the width of the range (hence the word “density”). Since the likelihood is relative to other points, its
value can be greater than 1. 0.

cdf (x)
Using a cumulative distribution function (cdf), compute the probability that a random variable X will be
less than or equal to x. Mathematically, it is written P (X <= x).

inv_cdf (p)
Compute the inverse cumulative distribution function, also known as the quantile function or the percent-
point function. Mathematically, it is written x : P (X <= x) = p.

Finds the value x of the random variable X such that the probability of the variable being less than or
equal to that value equals the given probability p.

overlap (other)
Measures the agreement between two normal probability distributions. Returns a value between 0.0 and
1.0 giving the overlapping area for the two probability density functions.

quantiles (n=4)
Divide the normal distribution into n continuous intervals with equal probability. Returns a list of (n - 1)
cut points separating the intervals.

Set n to 4 for quartiles (the default). Set n to 10 for deciles. Set n to 100 for percentiles which gives the
99 cuts points that separate the normal distribution into 100 equal sized groups.
zscore (X)

Compute the Standard Score describing x in terms of the number of standard deviations above or below
the mean of the normal distribution: (x - mean) / stdev.

Added in version 3.9.

Instances of NormalDist support addition, subtraction, multiplication and division by a constant. These
operations are used for translation and scaling. For example:

398

Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Quantile_function
https://web.archive.org/web/20190203145224/https://www.statisticshowto.datasciencecentral.com/inverse-distribution-function/
https://web.archive.org/web/20190203145224/https://www.statisticshowto.datasciencecentral.com/inverse-distribution-function/
https://www.rasch.org/rmt/rmt101r.htm
https://www.statisticshowto.com/probability-and-statistics/z-score/

The Python Library Reference, Release 3.13.1

>>> temperature_february = NormalDist (5, 2.5) # Celsius
>>> temperature_february * (9/5) + 32 # Fahrenheit
NormalDist (mu=41.0, sigma=4.5)

Dividing a constant by an instance of NormalDist is not supported because the result wouldn’t be normally
distributed.

Since normal distributions arise from additive effects of independent variables, it is possible to add and sub-
tract two independent normally distributed random variables represented as instances of NormalDist. For
example:

>>> birth weights = NormalDist.from_samples([2.5, 3.1, 2.1, 2.4, 2.7, 3.5])
>>> drug_effects = NormalDist (0.4, 0.15)

>>> combined = birth_weights + drug_effects

>>> round (combined.mean, 1)

3.1

>>> round (combined.stdev, 1)

0.5

. J

Added in version 3.8.

9.7.7 Examples and Recipes
Classic probability problems
NormalDist readily solves classic probability problems.

For example, given historical data for SAT exams showing that scores are normally distributed with a mean of 1060
and a standard deviation of 195, determine the percentage of students with test scores between 1100 and 1200, after
rounding to the nearest whole number:

>>> sat = NormalDist (1060, 195)

>>> fraction = sat.cdf (1200 + 0.5) - sat.cdf (1100 - 0.5)
>>> round(fraction * 100.0, 1)
18.4

Find the quartiles and deciles for the SAT scores:

>>> list (map(round, sat.quantiles()))

[928, 1060, 1192]

>>> list (map(round, sat.quantiles(n=10)))

[810, 896, 958, 1011, 1060, 1109, 1162, 1224, 1310]

Monte Carlo inputs for simulations

To estimate the distribution for a model that isn’t easy to solve analytically, NormalDist can generate input samples
for a Monte Carlo simulation:

>>> def model (x, y, z):
return (3*x + 7*x*y - 5*y) / (11 * z)

>>> n = 100_000

X = NormalDist (10, 2.5).samples(n, seed=3652260728)
>>> Y = NormalDist (15, 1.75) .samples(n, seed=4582495471)

Z = NormalDist (50, 1.25).samples(n, seed=6582483453)
>>> quantiles (map (model, X, Y, Z))
[1.4591308524824727, 1.8035946855390597, 2.175091447274739]

>>>

>>>

9.7. statistics — Mathematical statistics functions 399

https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
https://nces.ed.gov/programs/digest/d17/tables/dt17_226.40.asp
https://en.wikipedia.org/wiki/Quartile
https://en.wikipedia.org/wiki/Decile
https://en.wikipedia.org/wiki/Monte_Carlo_method

The Python Library Reference, Release 3.13.1

Approximating binomial distributions

Normal distributions can be used to approximate Binomial distributions when the sample size is large and when the
probability of a successful trial is near 50%.

For example, an open source conference has 750 attendees and two rooms with a 500 person capacity. There is a talk
about Python and another about Ruby. In previous conferences, 65% of the attendees preferred to listen to Python
talks. Assuming the population preferences haven’t changed, what is the probability that the Python room will stay
within its capacity limits?

>>> n = 750 # Sample size

>>> p = 0.65 # Preference for Python
>> g =1.0 - p # Preference for Ruby
>>> k = 500 # Room capacity

>>> # Approximation using the cumulative normal distribution
>>> from math import sqrt

>>> round(NormalDist (mu=n*p, sigma=sqgrt (n*p*q)).cdf(k + 0.5), 4)
0.8402

>>> # Exact solution using the cumulative binomial distribution

>>> from math import comb, fsum

>>> round(fsum(comb(n, r) * p**r * g**(n-r) for r in range(k+l)), 4)
0.8402

>>> # Approximation using a simulation

>>> from random import seed, binomialvariate

>>> seed (8675309)

>>> mean (binomialvariate(n, p) <= k for i in range (10_000))
0.8406

Naive bayesian classifier
Normal distributions commonly arise in machine learning problems.

Wikipedia has a nice example of a Naive Bayesian Classifier. The challenge is to predict a person’s gender from
measurements of normally distributed features including height, weight, and foot size.

We’re given a training dataset with measurements for eight people. The measurements are assumed to be normally
distributed, so we summarize the data with NormalDist:

>>> height_male = NormalDist.from_samples([6, 5.92, 5.58, 5.921])
>>> height_female = NormalDist.from_samples([5, 5.5, 5.42, 5.75])
>>> weight_male = NormalDist.from_samples([180, 190, 170, 165])
>>> weight_female = NormalDist.from_samples([100, 150, 130, 1501])
>>> foot_size_male = NormalDist.from_samples([12, 11, 12, 10])

>>> foot_size_female = NormalDist.from_samples([6, 8, 7, 9])

Next, we encounter a new person whose feature measurements are known but whose gender is unknown:

>>> ht = 6.0 # height
>>> wt = 130 # weight
>>> fs = 8 # foot size

J

Starting w