
The Python Library Reference
Release 3.13.1

Guido van Rossum and the Python development team

January 01, 2025

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3
1.1 Notes on availability . 3

1.1.1 WebAssembly platforms . 4
1.1.2 Mobile platforms . 4

2 Built-in Functions 7

3 Built-in Constants 35
3.1 Constants added by the site module . 36

4 Built-in Types 37
4.1 Truth Value Testing . 37
4.2 Boolean Operations — and, or, not . 37
4.3 Comparisons . 38
4.4 Numeric Types — int, float, complex . 38

4.4.1 Bitwise Operations on Integer Types . 40
4.4.2 Additional Methods on Integer Types . 40
4.4.3 Additional Methods on Float . 42
4.4.4 Hashing of numeric types . 43

4.5 Boolean Type - bool . 45
4.6 Iterator Types . 45

4.6.1 Generator Types . 46
4.7 Sequence Types — list, tuple, range . 46

4.7.1 Common Sequence Operations . 46
4.7.2 Immutable Sequence Types . 48
4.7.3 Mutable Sequence Types . 48
4.7.4 Lists . 49
4.7.5 Tuples . 49
4.7.6 Ranges . 50

4.8 Text Sequence Type — str . 51
4.8.1 String Methods . 52
4.8.2 printf-style String Formatting . 61

4.9 Binary Sequence Types — bytes, bytearray, memoryview 63
4.9.1 Bytes Objects . 63
4.9.2 Bytearray Objects . 64
4.9.3 Bytes and Bytearray Operations . 65
4.9.4 printf-style Bytes Formatting . 76
4.9.5 Memory Views . 78

4.10 Set Types — set, frozenset . 85
4.11 Mapping Types — dict . 87

4.11.1 Dictionary view objects . 91
4.12 Context Manager Types . 92
4.13 Type Annotation Types — Generic Alias, Union . 93

4.13.1 Generic Alias Type . 93

i

4.13.2 Union Type . 97
4.14 Other Built-in Types . 99

4.14.1 Modules . 99
4.14.2 Classes and Class Instances . 99
4.14.3 Functions . 99
4.14.4 Methods . 99
4.14.5 Code Objects . 100
4.14.6 Type Objects . 100
4.14.7 The Null Object . 100
4.14.8 The Ellipsis Object . 100
4.14.9 The NotImplemented Object . 100
4.14.10 Internal Objects . 101

4.15 Special Attributes . 101
4.16 Integer string conversion length limitation . 101

4.16.1 Affected APIs . 102
4.16.2 Configuring the limit . 102
4.16.3 Recommended configuration . 103

5 Built-in Exceptions 105
5.1 Exception context . 105
5.2 Inheriting from built-in exceptions . 106
5.3 Base classes . 106
5.4 Concrete exceptions . 107

5.4.1 OS exceptions . 112
5.5 Warnings . 113
5.6 Exception groups . 114
5.7 Exception hierarchy . 116

6 Text Processing Services 119
6.1 string—Common string operations . 119

6.1.1 String constants . 119
6.1.2 Custom String Formatting . 120
6.1.3 Format String Syntax . 121
6.1.4 Template strings . 128
6.1.5 Helper functions . 130

6.2 re—Regular expression operations . 130
6.2.1 Regular Expression Syntax . 131
6.2.2 Module Contents . 137
6.2.3 Regular Expression Objects . 143
6.2.4 Match Objects . 145
6.2.5 Regular Expression Examples . 148

6.3 difflib—Helpers for computing deltas . 153
6.3.1 SequenceMatcher Objects . 157
6.3.2 SequenceMatcher Examples . 160
6.3.3 Differ Objects . 161
6.3.4 Differ Example . 161
6.3.5 A command-line interface to difflib . 162
6.3.6 ndiff example . 163

6.4 textwrap— Text wrapping and filling . 165
6.5 unicodedata—Unicode Database . 169
6.6 stringprep— Internet String Preparation . 171
6.7 readline—GNU readline interface . 172

6.7.1 Init file . 173
6.7.2 Line buffer . 173
6.7.3 History file . 173
6.7.4 History list . 174
6.7.5 Startup hooks . 174
6.7.6 Completion . 175

ii

6.7.7 Example . 175
6.8 rlcompleter—Completion function for GNU readline . 177

7 Binary Data Services 179
7.1 struct— Interpret bytes as packed binary data . 179

7.1.1 Functions and Exceptions . 179
7.1.2 Format Strings . 180
7.1.3 Applications . 184
7.1.4 Classes . 185

7.2 codecs—Codec registry and base classes . 186
7.2.1 Codec Base Classes . 189
7.2.2 Encodings and Unicode . 195
7.2.3 Standard Encodings . 197
7.2.4 Python Specific Encodings . 199
7.2.5 encodings.idna— Internationalized Domain Names in Applications 201
7.2.6 encodings.mbcs—Windows ANSI codepage . 202
7.2.7 encodings.utf_8_sig—UTF-8 codec with BOM signature 202

8 Data Types 203
8.1 datetime— Basic date and time types . 203

8.1.1 Aware and Naive Objects . 203
8.1.2 Constants . 204
8.1.3 Available Types . 204
8.1.4 timedelta Objects . 205
8.1.5 date Objects . 208
8.1.6 datetime Objects . 213
8.1.7 time Objects . 225
8.1.8 tzinfo Objects . 228
8.1.9 timezone Objects . 235
8.1.10 strftime() and strptime() Behavior . 236

8.2 zoneinfo— IANA time zone support . 240
8.2.1 Using ZoneInfo . 240
8.2.2 Data sources . 241
8.2.3 The ZoneInfo class . 242
8.2.4 Functions . 244
8.2.5 Globals . 244
8.2.6 Exceptions and warnings . 245

8.3 calendar—General calendar-related functions . 245
8.3.1 Command-Line Usage . 251

8.4 collections—Container datatypes . 252
8.4.1 ChainMap objects . 253
8.4.2 Counter objects . 255
8.4.3 deque objects . 259
8.4.4 defaultdict objects . 262
8.4.5 namedtuple() Factory Function for Tuples with Named Fields 264
8.4.6 OrderedDict objects . 267
8.4.7 UserDict objects . 269
8.4.8 UserList objects . 270
8.4.9 UserString objects . 270

8.5 collections.abc—Abstract Base Classes for Containers . 270
8.5.1 Collections Abstract Base Classes . 272
8.5.2 Collections Abstract Base Classes – Detailed Descriptions 273
8.5.3 Examples and Recipes . 275

8.6 heapq—Heap queue algorithm . 276
8.6.1 Basic Examples . 277
8.6.2 Priority Queue Implementation Notes . 277
8.6.3 Theory . 278

8.7 bisect—Array bisection algorithm . 279

iii

8.7.1 Performance Notes . 281
8.7.2 Searching Sorted Lists . 281
8.7.3 Examples . 282

8.8 array— Efficient arrays of numeric values . 283
8.9 weakref—Weak references . 286

8.9.1 Weak Reference Objects . 290
8.9.2 Example . 291
8.9.3 Finalizer Objects . 291
8.9.4 Comparing finalizers with __del__() methods . 292

8.10 types—Dynamic type creation and names for built-in types . 293
8.10.1 Dynamic Type Creation . 294
8.10.2 Standard Interpreter Types . 295
8.10.3 Additional Utility Classes and Functions . 299
8.10.4 Coroutine Utility Functions . 299

8.11 copy— Shallow and deep copy operations . 300
8.12 pprint—Data pretty printer . 301

8.12.1 Functions . 301
8.12.2 PrettyPrinter Objects . 302
8.12.3 Example . 304

8.13 reprlib—Alternate repr() implementation . 307
8.13.1 Repr Objects . 308
8.13.2 Subclassing Repr Objects . 309

8.14 enum— Support for enumerations . 310
8.14.1 Module Contents . 311
8.14.2 Data Types . 312
8.14.3 Utilities and Decorators . 323
8.14.4 Notes . 325

8.15 graphlib— Functionality to operate with graph-like structures 325
8.15.1 Exceptions . 327

9 Numeric and Mathematical Modules 329
9.1 numbers—Numeric abstract base classes . 329

9.1.1 The numeric tower . 329
9.1.2 Notes for type implementers . 330

9.2 math—Mathematical functions . 332
9.2.1 Number-theoretic functions . 333
9.2.2 Floating point arithmetic . 334
9.2.3 Floating point manipulation functions . 335
9.2.4 Power, exponential and logarithmic functions . 337
9.2.5 Summation and product functions . 338
9.2.6 Angular conversion . 339
9.2.7 Trigonometric functions . 339
9.2.8 Hyperbolic functions . 339
9.2.9 Special functions . 340
9.2.10 Constants . 340

9.3 cmath—Mathematical functions for complex numbers . 341
9.3.1 Conversions to and from polar coordinates . 342
9.3.2 Power and logarithmic functions . 342
9.3.3 Trigonometric functions . 343
9.3.4 Hyperbolic functions . 343
9.3.5 Classification functions . 343
9.3.6 Constants . 344

9.4 decimal—Decimal fixed-point and floating-point arithmetic 345
9.4.1 Quick-start Tutorial . 346
9.4.2 Decimal objects . 349
9.4.3 Context objects . 357
9.4.4 Constants . 363
9.4.5 Rounding modes . 363

iv

9.4.6 Signals . 364
9.4.7 Floating-Point Notes . 365
9.4.8 Working with threads . 367
9.4.9 Recipes . 367
9.4.10 Decimal FAQ . 370

9.5 fractions—Rational numbers . 373
9.6 random—Generate pseudo-random numbers . 377

9.6.1 Bookkeeping functions . 377
9.6.2 Functions for bytes . 378
9.6.3 Functions for integers . 378
9.6.4 Functions for sequences . 378
9.6.5 Discrete distributions . 380
9.6.6 Real-valued distributions . 380
9.6.7 Alternative Generator . 381
9.6.8 Notes on Reproducibility . 382
9.6.9 Examples . 382
9.6.10 Recipes . 384
9.6.11 Command-line usage . 385
9.6.12 Command-line example . 386

9.7 statistics—Mathematical statistics functions . 386
9.7.1 Averages and measures of central location . 387
9.7.2 Measures of spread . 387
9.7.3 Statistics for relations between two inputs . 388
9.7.4 Function details . 388
9.7.5 Exceptions . 397
9.7.6 NormalDist objects . 397
9.7.7 Examples and Recipes . 399

10 Functional Programming Modules 403
10.1 itertools— Functions creating iterators for efficient looping 403

10.1.1 Itertool Functions . 405
10.1.2 Itertools Recipes . 415

10.2 functools—Higher-order functions and operations on callable objects 420
10.2.1 partial Objects . 430

10.3 operator— Standard operators as functions . 430
10.3.1 Mapping Operators to Functions . 435
10.3.2 In-place Operators . 436

11 File and Directory Access 439
11.1 pathlib—Object-oriented filesystem paths . 439

11.1.1 Basic use . 440
11.1.2 Exceptions . 441
11.1.3 Pure paths . 441
11.1.4 Concrete paths . 450
11.1.5 Pattern language . 461
11.1.6 Comparison to the glob module . 462
11.1.7 Comparison to the os and os.path modules . 462

11.2 os.path—Common pathname manipulations . 464
11.3 stat— Interpreting stat() results . 470
11.4 filecmp— File and Directory Comparisons . 476

11.4.1 The dircmp class . 477
11.5 tempfile—Generate temporary files and directories . 478

11.5.1 Examples . 482
11.5.2 Deprecated functions and variables . 483

11.6 glob—Unix style pathname pattern expansion . 484
11.6.1 Examples . 485

11.7 fnmatch—Unix filename pattern matching . 486
11.8 linecache—Random access to text lines . 487

v

11.9 shutil—High-level file operations . 488
11.9.1 Directory and files operations . 488
11.9.2 Archiving operations . 494
11.9.3 Querying the size of the output terminal . 497

12 Data Persistence 499
12.1 pickle— Python object serialization . 499

12.1.1 Relationship to other Python modules . 499
12.1.2 Data stream format . 500
12.1.3 Module Interface . 501
12.1.4 What can be pickled and unpickled? . 504
12.1.5 Pickling Class Instances . 505
12.1.6 Custom Reduction for Types, Functions, and Other Objects 511
12.1.7 Out-of-band Buffers . 511
12.1.8 Restricting Globals . 513
12.1.9 Performance . 514
12.1.10 Examples . 514

12.2 copyreg—Register pickle support functions . 515
12.2.1 Example . 515

12.3 shelve— Python object persistence . 516
12.3.1 Restrictions . 517
12.3.2 Example . 518

12.4 marshal— Internal Python object serialization . 518
12.5 dbm— Interfaces to Unix “databases” . 520

12.5.1 dbm.sqlite3— SQLite backend for dbm . 522
12.5.2 dbm.gnu—GNU database manager . 522
12.5.3 dbm.ndbm—New Database Manager . 524
12.5.4 dbm.dumb— Portable DBM implementation . 525

12.6 sqlite3—DB-API 2.0 interface for SQLite databases . 526
12.6.1 Tutorial . 526
12.6.2 Reference . 528
12.6.3 How-to guides . 549
12.6.4 Explanation . 556

13 Data Compression and Archiving 559
13.1 zlib—Compression compatible with gzip . 559
13.2 gzip— Support for gzip files . 562

13.2.1 Examples of usage . 565
13.2.2 Command Line Interface . 565

13.3 bz2— Support for bzip2 compression . 566
13.3.1 (De)compression of files . 566
13.3.2 Incremental (de)compression . 568
13.3.3 One-shot (de)compression . 569
13.3.4 Examples of usage . 569

13.4 lzma—Compression using the LZMA algorithm . 570
13.4.1 Reading and writing compressed files . 571
13.4.2 Compressing and decompressing data in memory . 572
13.4.3 Miscellaneous . 574
13.4.4 Specifying custom filter chains . 574
13.4.5 Examples . 575

13.5 zipfile—Work with ZIP archives . 576
13.5.1 ZipFile Objects . 577
13.5.2 Path Objects . 582
13.5.3 PyZipFile Objects . 583
13.5.4 ZipInfo Objects . 584
13.5.5 Command-Line Interface . 586
13.5.6 Decompression pitfalls . 586

13.6 tarfile—Read and write tar archive files . 587

vi

13.6.1 TarFile Objects . 591
13.6.2 TarInfo Objects . 594
13.6.3 Extraction filters . 597
13.6.4 Command-Line Interface . 600
13.6.5 Examples . 601
13.6.6 Supported tar formats . 602
13.6.7 Unicode issues . 602

14 File Formats 605
14.1 csv—CSV File Reading and Writing . 605

14.1.1 Module Contents . 605
14.1.2 Dialects and Formatting Parameters . 609
14.1.3 Reader Objects . 610
14.1.4 Writer Objects . 610
14.1.5 Examples . 611

14.2 configparser—Configuration file parser . 612
14.2.1 Quick Start . 613
14.2.2 Supported Datatypes . 614
14.2.3 Fallback Values . 615
14.2.4 Supported INI File Structure . 615
14.2.5 Unnamed Sections . 617
14.2.6 Interpolation of values . 617
14.2.7 Mapping Protocol Access . 618
14.2.8 Customizing Parser Behaviour . 619
14.2.9 Legacy API Examples . 623
14.2.10 ConfigParser Objects . 625
14.2.11 RawConfigParser Objects . 629
14.2.12 Exceptions . 630

14.3 tomllib— Parse TOML files . 630
14.3.1 Examples . 631
14.3.2 Conversion Table . 632

14.4 netrc— netrc file processing . 632
14.4.1 netrc Objects . 633

14.5 plistlib—Generate and parse Apple .plist files . 633
14.5.1 Examples . 635

15 Cryptographic Services 637
15.1 hashlib— Secure hashes and message digests . 637

15.1.1 Hash algorithms . 637
15.1.2 Usage . 638
15.1.3 Constructors . 638
15.1.4 Attributes . 639
15.1.5 Hash Objects . 639
15.1.6 SHAKE variable length digests . 640
15.1.7 File hashing . 640
15.1.8 Key derivation . 641
15.1.9 BLAKE2 . 641

15.2 hmac—Keyed-Hashing for Message Authentication . 648
15.3 secrets—Generate secure random numbers for managing secrets 650

15.3.1 Random numbers . 650
15.3.2 Generating tokens . 650
15.3.3 Other functions . 651
15.3.4 Recipes and best practices . 651

16 Generic Operating System Services 653
16.1 os—Miscellaneous operating system interfaces . 653

16.1.1 File Names, Command Line Arguments, and Environment Variables 654
16.1.2 Python UTF-8 Mode . 654
16.1.3 Process Parameters . 655

vii

16.1.4 File Object Creation . 662
16.1.5 File Descriptor Operations . 662
16.1.6 Files and Directories . 675
16.1.7 Process Management . 701
16.1.8 Interface to the scheduler . 714
16.1.9 Miscellaneous System Information . 716
16.1.10 Random numbers . 717

16.2 io—Core tools for working with streams . 719
16.2.1 Overview . 719
16.2.2 Text Encoding . 720
16.2.3 High-level Module Interface . 720
16.2.4 Class hierarchy . 721
16.2.5 Performance . 731

16.3 time— Time access and conversions . 732
16.3.1 Functions . 733
16.3.2 Clock ID Constants . 741
16.3.3 Timezone Constants . 743

16.4 logging— Logging facility for Python . 743
16.4.1 Logger Objects . 745
16.4.2 Logging Levels . 749
16.4.3 Handler Objects . 750
16.4.4 Formatter Objects . 752
16.4.5 Filter Objects . 753
16.4.6 LogRecord Objects . 754
16.4.7 LogRecord attributes . 755
16.4.8 LoggerAdapter Objects . 757
16.4.9 Thread Safety . 757
16.4.10 Module-Level Functions . 757
16.4.11 Module-Level Attributes . 761
16.4.12 Integration with the warnings module . 762

16.5 logging.config— Logging configuration . 762
16.5.1 Configuration functions . 763
16.5.2 Security considerations . 765
16.5.3 Configuration dictionary schema . 765
16.5.4 Configuration file format . 772

16.6 logging.handlers— Logging handlers . 774
16.6.1 StreamHandler . 775
16.6.2 FileHandler . 775
16.6.3 NullHandler . 776
16.6.4 WatchedFileHandler . 776
16.6.5 BaseRotatingHandler . 777
16.6.6 RotatingFileHandler . 778
16.6.7 TimedRotatingFileHandler . 778
16.6.8 SocketHandler . 780
16.6.9 DatagramHandler . 781
16.6.10 SysLogHandler . 781
16.6.11 NTEventLogHandler . 783
16.6.12 SMTPHandler . 784
16.6.13 MemoryHandler . 784
16.6.14 HTTPHandler . 785
16.6.15 QueueHandler . 786
16.6.16 QueueListener . 787

16.7 platform—Access to underlying platform’s identifying data 788
16.7.1 Cross Platform . 788
16.7.2 Java Platform . 790
16.7.3 Windows Platform . 790
16.7.4 macOS Platform . 791
16.7.5 iOS Platform . 791

viii

16.7.6 Unix Platforms . 791
16.7.7 Linux Platforms . 791
16.7.8 Android Platform . 792

16.8 errno— Standard errno system symbols . 792
16.9 ctypes—A foreign function library for Python . 798

16.9.1 ctypes tutorial . 799
16.9.2 ctypes reference . 817

17 Command Line Interface Libraries 833
17.1 argparse— Parser for command-line options, arguments and subcommands 833

17.1.1 ArgumentParser objects . 834
17.1.2 The add_argument() method . 841
17.1.3 The parse_args() method . 851
17.1.4 Other utilities . 854
17.1.5 Exceptions . 863

17.2 optparse— Parser for command line options . 877
17.2.1 Choosing an argument parsing library . 877
17.2.2 Introduction . 878
17.2.3 Background . 879
17.2.4 Tutorial . 881
17.2.5 Reference Guide . 888
17.2.6 Option Callbacks . 897
17.2.7 Extending optparse . 901
17.2.8 Exceptions . 904

17.3 getpass— Portable password input . 904
17.4 fileinput— Iterate over lines from multiple input streams . 905
17.5 curses— Terminal handling for character-cell displays . 907

17.5.1 Functions . 908
17.5.2 Window Objects . 914
17.5.3 Constants . 921

17.6 curses.textpad— Text input widget for curses programs . 932
17.6.1 Textbox objects . 932

17.7 curses.ascii—Utilities for ASCII characters . 933
17.8 curses.panel—A panel stack extension for curses . 937

17.8.1 Functions . 937
17.8.2 Panel Objects . 937

18 Concurrent Execution 939
18.1 threading— Thread-based parallelism . 939

18.1.1 Thread-Local Data . 942
18.1.2 Thread Objects . 942
18.1.3 Lock Objects . 945
18.1.4 RLock Objects . 946
18.1.5 Condition Objects . 947
18.1.6 Semaphore Objects . 949
18.1.7 Event Objects . 950
18.1.8 Timer Objects . 951
18.1.9 Barrier Objects . 951
18.1.10 Using locks, conditions, and semaphores in the with statement 952

18.2 multiprocessing— Process-based parallelism . 953
18.2.1 Introduction . 953
18.2.2 Reference . 960
18.2.3 Programming guidelines . 988
18.2.4 Examples . 991

18.3 multiprocessing.shared_memory— Shared memory for direct access across processes . . . 997
18.4 The concurrent package . 1003
18.5 concurrent.futures— Launching parallel tasks . 1003

18.5.1 Executor Objects . 1003

ix

18.5.2 ThreadPoolExecutor . 1004
18.5.3 ProcessPoolExecutor . 1006
18.5.4 Future Objects . 1008
18.5.5 Module Functions . 1009
18.5.6 Exception classes . 1010

18.6 subprocess— Subprocess management . 1010
18.6.1 Using the subprocessModule . 1010
18.6.2 Security Considerations . 1019
18.6.3 Popen Objects . 1019
18.6.4 Windows Popen Helpers . 1021
18.6.5 Older high-level API . 1024
18.6.6 Replacing Older Functions with the subprocessModule 1025
18.6.7 Legacy Shell Invocation Functions . 1028
18.6.8 Notes . 1029

18.7 sched— Event scheduler . 1030
18.7.1 Scheduler Objects . 1031

18.8 queue—A synchronized queue class . 1032
18.8.1 Queue Objects . 1033
18.8.2 SimpleQueue Objects . 1034

18.9 contextvars—Context Variables . 1035
18.9.1 Context Variables . 1035
18.9.2 Manual Context Management . 1036
18.9.3 asyncio support . 1038

18.10 _thread— Low-level threading API . 1039

19 Networking and Interprocess Communication 1043
19.1 asyncio—Asynchronous I/O . 1043

19.1.1 Runners . 1044
19.1.2 Coroutines and Tasks . 1046
19.1.3 Streams . 1065
19.1.4 Synchronization Primitives . 1073
19.1.5 Subprocesses . 1078
19.1.6 Queues . 1083
19.1.7 Exceptions . 1086
19.1.8 Event Loop . 1087
19.1.9 Futures . 1110
19.1.10 Transports and Protocols . 1113
19.1.11 Policies . 1127
19.1.12 Platform Support . 1130
19.1.13 Extending . 1132
19.1.14 High-level API Index . 1133
19.1.15 Low-level API Index . 1135
19.1.16 Developing with asyncio . 1139

19.2 socket— Low-level networking interface . 1142
19.2.1 Socket families . 1143
19.2.2 Module contents . 1146
19.2.3 Socket Objects . 1159
19.2.4 Notes on socket timeouts . 1166
19.2.5 Example . 1166

19.3 ssl— TLS/SSL wrapper for socket objects . 1170
19.3.1 Functions, Constants, and Exceptions . 1171
19.3.2 SSL Sockets . 1182
19.3.3 SSL Contexts . 1186
19.3.4 Certificates . 1195
19.3.5 Examples . 1197
19.3.6 Notes on non-blocking sockets . 1200
19.3.7 Memory BIO Support . 1201
19.3.8 SSL session . 1203

x

19.3.9 Security considerations . 1203
19.3.10 TLS 1.3 . 1204

19.4 select—Waiting for I/O completion . 1205
19.4.1 /dev/poll Polling Objects . 1207
19.4.2 Edge and Level Trigger Polling (epoll) Objects . 1208
19.4.3 Polling Objects . 1209
19.4.4 Kqueue Objects . 1210
19.4.5 Kevent Objects . 1210

19.5 selectors—High-level I/O multiplexing . 1212
19.5.1 Introduction . 1212
19.5.2 Classes . 1212
19.5.3 Examples . 1215

19.6 signal— Set handlers for asynchronous events . 1215
19.6.1 General rules . 1215
19.6.2 Module contents . 1216
19.6.3 Examples . 1223
19.6.4 Note on SIGPIPE . 1223
19.6.5 Note on Signal Handlers and Exceptions . 1224

19.7 mmap—Memory-mapped file support . 1225
19.7.1 MADV_* Constants . 1229
19.7.2 MAP_* Constants . 1229

20 Internet Data Handling 1231
20.1 email—An email and MIME handling package . 1231

20.1.1 email.message: Representing an email message . 1232
20.1.2 email.parser: Parsing email messages . 1240
20.1.3 email.generator: Generating MIME documents . 1243
20.1.4 email.policy: Policy Objects . 1246
20.1.5 email.errors: Exception and Defect classes . 1252
20.1.6 email.headerregistry: Custom Header Objects . 1254
20.1.7 email.contentmanager: Managing MIME Content 1259
20.1.8 email: Examples . 1261
20.1.9 email.message.Message: Representing an email message using the compat32 API . 1268
20.1.10 email.mime: Creating email and MIME objects from scratch 1276
20.1.11 email.header: Internationalized headers . 1279
20.1.12 email.charset: Representing character sets . 1281
20.1.13 email.encoders: Encoders . 1283
20.1.14 email.utils: Miscellaneous utilities . 1284
20.1.15 email.iterators: Iterators . 1286

20.2 json— JSON encoder and decoder . 1287
20.2.1 Basic Usage . 1290
20.2.2 Encoders and Decoders . 1292
20.2.3 Exceptions . 1294
20.2.4 Standard Compliance and Interoperability . 1294
20.2.5 Command Line Interface . 1296

20.3 mailbox—Manipulate mailboxes in various formats . 1297
20.3.1 Mailbox objects . 1297
20.3.2 Message objects . 1306
20.3.3 Exceptions . 1314
20.3.4 Examples . 1315

20.4 mimetypes—Map filenames to MIME types . 1316
20.4.1 MimeTypes Objects . 1318

20.5 base64— Base16, Base32, Base64, Base85 Data Encodings . 1319
20.5.1 Security Considerations . 1322

20.6 binascii—Convert between binary and ASCII . 1322
20.7 quopri— Encode and decode MIME quoted-printable data . 1324

21 Structured Markup Processing Tools 1327

xi

21.1 html—HyperText Markup Language support . 1327
21.2 html.parser— Simple HTML and XHTML parser . 1327

21.2.1 Example HTML Parser Application . 1328
21.2.2 HTMLParserMethods . 1328
21.2.3 Examples . 1330

21.3 html.entities—Definitions of HTML general entities . 1332
21.4 XML Processing Modules . 1332

21.4.1 XML vulnerabilities . 1333
21.4.2 The defusedxml Package . 1334

21.5 xml.etree.ElementTree— The ElementTree XML API . 1334
21.5.1 Tutorial . 1334
21.5.2 XPath support . 1339
21.5.3 Reference . 1341
21.5.4 XInclude support . 1344
21.5.5 Reference . 1345

21.6 xml.dom— The Document Object Model API . 1353
21.6.1 Module Contents . 1354
21.6.2 Objects in the DOM . 1355
21.6.3 Conformance . 1362

21.7 xml.dom.minidom—Minimal DOM implementation . 1363
21.7.1 DOM Objects . 1365
21.7.2 DOM Example . 1366
21.7.3 minidom and the DOM standard . 1367

21.8 xml.dom.pulldom— Support for building partial DOM trees 1367
21.8.1 DOMEventStream Objects . 1369

21.9 xml.sax— Support for SAX2 parsers . 1369
21.9.1 SAXException Objects . 1371

21.10 xml.sax.handler— Base classes for SAX handlers . 1371
21.10.1 ContentHandler Objects . 1373
21.10.2 DTDHandler Objects . 1375
21.10.3 EntityResolver Objects . 1375
21.10.4 ErrorHandler Objects . 1375
21.10.5 LexicalHandler Objects . 1376

21.11 xml.sax.saxutils— SAX Utilities . 1376
21.12 xml.sax.xmlreader— Interface for XML parsers . 1377

21.12.1 XMLReader Objects . 1378
21.12.2 IncrementalParser Objects . 1379
21.12.3 Locator Objects . 1380
21.12.4 InputSource Objects . 1380
21.12.5 The Attributes Interface . 1381
21.12.6 The AttributesNS Interface . 1381

21.13 xml.parsers.expat— Fast XML parsing using Expat . 1381
21.13.1 XMLParser Objects . 1382
21.13.2 ExpatError Exceptions . 1387
21.13.3 Example . 1387
21.13.4 Content Model Descriptions . 1388
21.13.5 Expat error constants . 1388

22 Internet Protocols and Support 1393
22.1 webbrowser—Convenient web-browser controller . 1393

22.1.1 Browser Controller Objects . 1395
22.2 wsgiref—WSGI Utilities and Reference Implementation . 1396

22.2.1 wsgiref.util – WSGI environment utilities . 1396
22.2.2 wsgiref.headers – WSGI response header tools . 1398
22.2.3 wsgiref.simple_server – a simple WSGI HTTP server 1399
22.2.4 wsgiref.validate—WSGI conformance checker 1400
22.2.5 wsgiref.handlers – server/gateway base classes . 1401
22.2.6 wsgiref.types – WSGI types for static type checking 1404

xii

22.2.7 Examples . 1404
22.3 urllib—URL handling modules . 1406
22.4 urllib.request— Extensible library for opening URLs . 1406

22.4.1 Request Objects . 1411
22.4.2 OpenerDirector Objects . 1413
22.4.3 BaseHandler Objects . 1414
22.4.4 HTTPRedirectHandler Objects . 1415
22.4.5 HTTPCookieProcessor Objects . 1416
22.4.6 ProxyHandler Objects . 1416
22.4.7 HTTPPasswordMgr Objects . 1416
22.4.8 HTTPPasswordMgrWithPriorAuth Objects . 1416
22.4.9 AbstractBasicAuthHandler Objects . 1417
22.4.10 HTTPBasicAuthHandler Objects . 1417
22.4.11 ProxyBasicAuthHandler Objects . 1417
22.4.12 AbstractDigestAuthHandler Objects . 1417
22.4.13 HTTPDigestAuthHandler Objects . 1417
22.4.14 ProxyDigestAuthHandler Objects . 1417
22.4.15 HTTPHandler Objects . 1417
22.4.16 HTTPSHandler Objects . 1417
22.4.17 FileHandler Objects . 1417
22.4.18 DataHandler Objects . 1418
22.4.19 FTPHandler Objects . 1418
22.4.20 CacheFTPHandler Objects . 1418
22.4.21 UnknownHandler Objects . 1418
22.4.22 HTTPErrorProcessor Objects . 1418
22.4.23 Examples . 1418
22.4.24 Legacy interface . 1421
22.4.25 urllib.request Restrictions . 1423

22.5 urllib.response—Response classes used by urllib . 1424
22.6 urllib.parse— Parse URLs into components . 1424

22.6.1 URL Parsing . 1425
22.6.2 URL parsing security . 1429
22.6.3 Parsing ASCII Encoded Bytes . 1430
22.6.4 Structured Parse Results . 1430
22.6.5 URL Quoting . 1431

22.7 urllib.error— Exception classes raised by urllib.request . 1433
22.8 urllib.robotparser— Parser for robots.txt . 1434
22.9 http—HTTP modules . 1435

22.9.1 HTTP status codes . 1436
22.9.2 HTTP status category . 1437
22.9.3 HTTP methods . 1438

22.10 http.client—HTTP protocol client . 1438
22.10.1 HTTPConnection Objects . 1441
22.10.2 HTTPResponse Objects . 1443
22.10.3 Examples . 1444
22.10.4 HTTPMessage Objects . 1446

22.11 ftplib— FTP protocol client . 1446
22.11.1 Reference . 1446

22.12 poplib— POP3 protocol client . 1452
22.12.1 POP3 Objects . 1454
22.12.2 POP3 Example . 1455

22.13 imaplib— IMAP4 protocol client . 1455
22.13.1 IMAP4 Objects . 1457
22.13.2 IMAP4 Example . 1462

22.14 smtplib— SMTP protocol client . 1462
22.14.1 SMTP Objects . 1464
22.14.2 SMTP Example . 1468

22.15 uuid—UUID objects according to RFC 4122 . 1469

xiii

22.15.1 Command-Line Usage . 1472
22.15.2 Example . 1472
22.15.3 Command-Line Example . 1473

22.16 socketserver—A framework for network servers . 1473
22.16.1 Server Creation Notes . 1474
22.16.2 Server Objects . 1475
22.16.3 Request Handler Objects . 1477
22.16.4 Examples . 1478

22.17 http.server—HTTP servers . 1481
22.17.1 Security Considerations . 1487

22.18 http.cookies—HTTP state management . 1488
22.18.1 Cookie Objects . 1488
22.18.2 Morsel Objects . 1489
22.18.3 Example . 1490

22.19 http.cookiejar—Cookie handling for HTTP clients . 1491
22.19.1 CookieJar and FileCookieJar Objects . 1493
22.19.2 FileCookieJar subclasses and co-operation with web browsers 1494
22.19.3 CookiePolicy Objects . 1495
22.19.4 DefaultCookiePolicy Objects . 1496
22.19.5 Cookie Objects . 1498
22.19.6 Examples . 1499

22.20 xmlrpc—XMLRPC server and client modules . 1499
22.21 xmlrpc.client—XML-RPC client access . 1500

22.21.1 ServerProxy Objects . 1501
22.21.2 DateTime Objects . 1502
22.21.3 Binary Objects . 1503
22.21.4 Fault Objects . 1504
22.21.5 ProtocolError Objects . 1504
22.21.6 MultiCall Objects . 1505
22.21.7 Convenience Functions . 1506
22.21.8 Example of Client Usage . 1506
22.21.9 Example of Client and Server Usage . 1507

22.22 xmlrpc.server— Basic XML-RPC servers . 1507
22.22.1 SimpleXMLRPCServer Objects . 1508
22.22.2 CGIXMLRPCRequestHandler . 1511
22.22.3 Documenting XMLRPC server . 1512
22.22.4 DocXMLRPCServer Objects . 1512
22.22.5 DocCGIXMLRPCRequestHandler . 1513

22.23 ipaddress— IPv4/IPv6 manipulation library . 1513
22.23.1 Convenience factory functions . 1513
22.23.2 IP Addresses . 1514
22.23.3 IP Network definitions . 1518
22.23.4 Interface objects . 1524
22.23.5 Other Module Level Functions . 1525
22.23.6 Custom Exceptions . 1526

23 Multimedia Services 1527
23.1 wave—Read and write WAV files . 1527

23.1.1 Wave_read Objects . 1527
23.1.2 Wave_write Objects . 1528

23.2 colorsys—Conversions between color systems . 1530

24 Internationalization 1531
24.1 gettext—Multilingual internationalization services . 1531

24.1.1 GNU gettext API . 1531
24.1.2 Class-based API . 1532
24.1.3 Internationalizing your programs and modules . 1536
24.1.4 Acknowledgements . 1538

xiv

24.2 locale— Internationalization services . 1539
24.2.1 Background, details, hints, tips and caveats . 1546
24.2.2 For extension writers and programs that embed Python 1546
24.2.3 Access to message catalogs . 1546

25 Program Frameworks 1547
25.1 turtle— Turtle graphics . 1547

25.1.1 Introduction . 1547
25.1.2 Get started . 1547
25.1.3 Tutorial . 1548
25.1.4 How to… . 1549
25.1.5 Turtle graphics reference . 1551
25.1.6 Methods of RawTurtle/Turtle and corresponding functions 1553
25.1.7 Methods of TurtleScreen/Screen and corresponding functions 1570
25.1.8 Public classes . 1577
25.1.9 Explanation . 1578
25.1.10 Help and configuration . 1579
25.1.11 turtledemo—Demo scripts . 1581
25.1.12 Changes since Python 2.6 . 1582
25.1.13 Changes since Python 3.0 . 1582

25.2 cmd— Support for line-oriented command interpreters . 1583
25.2.1 Cmd Objects . 1583
25.2.2 Cmd Example . 1585

25.3 shlex— Simple lexical analysis . 1588
25.3.1 shlex Objects . 1589
25.3.2 Parsing Rules . 1591
25.3.3 Improved Compatibility with Shells . 1592

26 Graphical User Interfaces with Tk 1595
26.1 tkinter— Python interface to Tcl/Tk . 1595

26.1.1 Architecture . 1596
26.1.2 Tkinter Modules . 1596
26.1.3 Tkinter Life Preserver . 1598
26.1.4 Threading model . 1601
26.1.5 Handy Reference . 1602
26.1.6 File Handlers . 1607

26.2 tkinter.colorchooser—Color choosing dialog . 1608
26.3 tkinter.font— Tkinter font wrapper . 1608
26.4 Tkinter Dialogs . 1609

26.4.1 tkinter.simpledialog— Standard Tkinter input dialogs 1609
26.4.2 tkinter.filedialog— File selection dialogs . 1610
26.4.3 tkinter.commondialog—Dialog window templates 1612

26.5 tkinter.messagebox— Tkinter message prompts . 1612
26.6 tkinter.scrolledtext— Scrolled Text Widget . 1614
26.7 tkinter.dnd—Drag and drop support . 1615
26.8 tkinter.ttk— Tk themed widgets . 1616

26.8.1 Using Ttk . 1616
26.8.2 Ttk Widgets . 1616
26.8.3 Widget . 1617
26.8.4 Combobox . 1619
26.8.5 Spinbox . 1620
26.8.6 Notebook . 1621
26.8.7 Progressbar . 1623
26.8.8 Separator . 1623
26.8.9 Sizegrip . 1624
26.8.10 Treeview . 1624
26.8.11 Ttk Styling . 1629

26.9 IDLE . 1634

xv

26.9.1 Menus . 1634
26.9.2 Editing and Navigation . 1638
26.9.3 Startup and Code Execution . 1641
26.9.4 Help and Preferences . 1644
26.9.5 idlelib . 1645

27 Development Tools 1647
27.1 typing— Support for type hints . 1647

27.1.1 Specification for the Python Type System . 1648
27.1.2 Type aliases . 1648
27.1.3 NewType . 1648
27.1.4 Annotating callable objects . 1650
27.1.5 Generics . 1651
27.1.6 Annotating tuples . 1652
27.1.7 The type of class objects . 1653
27.1.8 Annotating generators and coroutines . 1653
27.1.9 User-defined generic types . 1654
27.1.10 The Any type . 1657
27.1.11 Nominal vs structural subtyping . 1658
27.1.12 Module contents . 1659
27.1.13 Deprecation Timeline of Major Features . 1699

27.2 pydoc—Documentation generator and online help system . 1699
27.3 Python Development Mode . 1700

27.3.1 Effects of the Python Development Mode . 1701
27.3.2 ResourceWarning Example . 1702
27.3.3 Bad file descriptor error example . 1703

27.4 doctest— Test interactive Python examples . 1703
27.4.1 Simple Usage: Checking Examples in Docstrings . 1705
27.4.2 Simple Usage: Checking Examples in a Text File . 1706
27.4.3 How It Works . 1707
27.4.4 Basic API . 1714
27.4.5 Unittest API . 1716
27.4.6 Advanced API . 1718
27.4.7 Debugging . 1722
27.4.8 Soapbox . 1725

27.5 unittest—Unit testing framework . 1726
27.5.1 Basic example . 1727
27.5.2 Command-Line Interface . 1728
27.5.3 Test Discovery . 1729
27.5.4 Organizing test code . 1731
27.5.5 Re-using old test code . 1732
27.5.6 Skipping tests and expected failures . 1733
27.5.7 Distinguishing test iterations using subtests . 1735
27.5.8 Classes and functions . 1736
27.5.9 Class and Module Fixtures . 1754
27.5.10 Signal Handling . 1756

27.6 unittest.mock—mock object library . 1757
27.6.1 Quick Guide . 1757
27.6.2 The Mock Class . 1759
27.6.3 The patchers . 1776
27.6.4 MagicMock and magic method support . 1785
27.6.5 Helpers . 1789
27.6.6 Order of precedence of side_effect, return_value and wraps 1796

27.7 unittest.mock— getting started . 1798
27.7.1 Using Mock . 1798
27.7.2 Patch Decorators . 1804
27.7.3 Further Examples . 1806

27.8 test—Regression tests package for Python . 1818

xvi

27.8.1 Writing Unit Tests for the test package . 1818
27.8.2 Running tests using the command-line interface . 1820

27.9 test.support—Utilities for the Python test suite . 1820
27.10 test.support.socket_helper—Utilities for socket tests 1829
27.11 test.support.script_helper—Utilities for the Python execution tests 1830
27.12 test.support.bytecode_helper— Support tools for testing correct bytecode generation . . 1831
27.13 test.support.threading_helper—Utilities for threading tests 1832
27.14 test.support.os_helper—Utilities for os tests . 1833
27.15 test.support.import_helper—Utilities for import tests 1834
27.16 test.support.warnings_helper—Utilities for warnings tests 1836

28 Debugging and Profiling 1839
28.1 Audit events table . 1839
28.2 bdb—Debugger framework . 1843
28.3 faulthandler—Dump the Python traceback . 1848

28.3.1 Dumping the traceback . 1848
28.3.2 Fault handler state . 1849
28.3.3 Dumping the tracebacks after a timeout . 1849
28.3.4 Dumping the traceback on a user signal . 1849
28.3.5 Issue with file descriptors . 1849
28.3.6 Example . 1850

28.4 pdb— The Python Debugger . 1850
28.4.1 Debugger Commands . 1853

28.5 The Python Profilers . 1859
28.5.1 Introduction to the profilers . 1859
28.5.2 Instant User’s Manual . 1859
28.5.3 profile and cProfileModule Reference . 1861
28.5.4 The Stats Class . 1863
28.5.5 What Is Deterministic Profiling? . 1865
28.5.6 Limitations . 1865
28.5.7 Calibration . 1866
28.5.8 Using a custom timer . 1866

28.6 timeit—Measure execution time of small code snippets . 1867
28.6.1 Basic Examples . 1867
28.6.2 Python Interface . 1867
28.6.3 Command-Line Interface . 1869
28.6.4 Examples . 1870

28.7 trace— Trace or track Python statement execution . 1872
28.7.1 Command-Line Usage . 1872
28.7.2 Programmatic Interface . 1873

28.8 tracemalloc— Trace memory allocations . 1874
28.8.1 Examples . 1875
28.8.2 API . 1879

29 Software Packaging and Distribution 1885
29.1 ensurepip— Bootstrapping the pip installer . 1885

29.1.1 Command line interface . 1885
29.1.2 Module API . 1886

29.2 venv—Creation of virtual environments . 1887
29.2.1 Creating virtual environments . 1887
29.2.2 How venvs work . 1889
29.2.3 API . 1890
29.2.4 An example of extending EnvBuilder . 1893

29.3 zipapp—Manage executable Python zip archives . 1896
29.3.1 Basic Example . 1897
29.3.2 Command-Line Interface . 1897
29.3.3 Python API . 1897
29.3.4 Examples . 1898

xvii

29.3.5 Specifying the Interpreter . 1899
29.3.6 Creating Standalone Applications with zipapp . 1899
29.3.7 The Python Zip Application Archive Format . 1900

30 Python Runtime Services 1901
30.1 sys— System-specific parameters and functions . 1901
30.2 sys.monitoring— Execution event monitoring . 1927

30.2.1 Tool identifiers . 1927
30.2.2 Events . 1928
30.2.3 Turning events on and off . 1930
30.2.4 Registering callback functions . 1930

30.3 sysconfig— Provide access to Python’s configuration information 1931
30.3.1 Configuration variables . 1931
30.3.2 Installation paths . 1932
30.3.3 User scheme . 1933
30.3.4 Home scheme . 1933
30.3.5 Prefix scheme . 1934
30.3.6 Installation path functions . 1935
30.3.7 Other functions . 1936
30.3.8 Using sysconfig as a script . 1936

30.4 builtins— Built-in objects . 1937
30.5 __main__— Top-level code environment . 1938

30.5.1 __name__ == '__main__' . 1938
30.5.2 __main__.py in Python Packages . 1940
30.5.3 import __main__ . 1941

30.6 warnings—Warning control . 1943
30.6.1 Warning Categories . 1943
30.6.2 The Warnings Filter . 1944
30.6.3 Temporarily Suppressing Warnings . 1946
30.6.4 Testing Warnings . 1947
30.6.5 Updating Code For New Versions of Dependencies . 1947
30.6.6 Available Functions . 1947
30.6.7 Available Context Managers . 1949

30.7 dataclasses—Data Classes . 1950
30.7.1 Module contents . 1951
30.7.2 Post-init processing . 1957
30.7.3 Class variables . 1957
30.7.4 Init-only variables . 1957
30.7.5 Frozen instances . 1958
30.7.6 Inheritance . 1958
30.7.7 Re-ordering of keyword-only parameters in __init__() 1958
30.7.8 Default factory functions . 1959
30.7.9 Mutable default values . 1959
30.7.10 Descriptor-typed fields . 1960

30.8 contextlib—Utilities for with-statement contexts . 1961
30.8.1 Utilities . 1961
30.8.2 Examples and Recipes . 1970
30.8.3 Single use, reusable and reentrant context managers . 1973

30.9 abc—Abstract Base Classes . 1975
30.10 atexit— Exit handlers . 1980

30.10.1 atexit Example . 1981
30.11 traceback— Print or retrieve a stack traceback . 1982

30.11.1 Module-Level Functions . 1982
30.11.2 TracebackException Objects . 1984
30.11.3 StackSummary Objects . 1986
30.11.4 FrameSummary Objects . 1987
30.11.5 Examples of Using the Module-Level Functions . 1987
30.11.6 Examples of Using TracebackException . 1990

xviii

30.12 __future__— Future statement definitions . 1991
30.12.1 Module Contents . 1992

30.13 gc—Garbage Collector interface . 1993
30.14 inspect— Inspect live objects . 1996

30.14.1 Types and members . 1997
30.14.2 Retrieving source code . 2001
30.14.3 Introspecting callables with the Signature object . 2002
30.14.4 Classes and functions . 2007
30.14.5 The interpreter stack . 2009
30.14.6 Fetching attributes statically . 2011
30.14.7 Current State of Generators, Coroutines, and Asynchronous Generators 2012
30.14.8 Code Objects Bit Flags . 2013
30.14.9 Buffer flags . 2014
30.14.10Command Line Interface . 2015

30.15 site— Site-specific configuration hook . 2015
30.15.1 sitecustomize . 2016
30.15.2 usercustomize . 2017
30.15.3 Readline configuration . 2017
30.15.4 Module contents . 2017
30.15.5 Command Line Interface . 2018

31 Custom Python Interpreters 2019
31.1 code— Interpreter base classes . 2019

31.1.1 Interactive Interpreter Objects . 2020
31.1.2 Interactive Console Objects . 2020

31.2 codeop—Compile Python code . 2021

32 Importing Modules 2023
32.1 zipimport— Import modules from Zip archives . 2023

32.1.1 zipimporter Objects . 2024
32.1.2 Examples . 2025

32.2 pkgutil— Package extension utility . 2025
32.3 modulefinder— Find modules used by a script . 2028

32.3.1 Example usage of ModuleFinder . 2028
32.4 runpy— Locating and executing Python modules . 2029
32.5 importlib— The implementation of import . 2032

32.5.1 Introduction . 2032
32.5.2 Functions . 2033
32.5.3 importlib.abc – Abstract base classes related to import 2034
32.5.4 importlib.machinery – Importers and path hooks 2040
32.5.5 importlib.util – Utility code for importers . 2046
32.5.6 Examples . 2049

32.6 importlib.resources – Package resource reading, opening and access 2051
32.6.1 Functional API . 2052

32.7 importlib.resources.abc – Abstract base classes for resources 2054
32.8 importlib.metadata – Accessing package metadata . 2056

32.8.1 Overview . 2057
32.8.2 Functional API . 2058
32.8.3 Distributions . 2061
32.8.4 Distribution Discovery . 2062
32.8.5 Extending the search algorithm . 2062

32.9 The initialization of the sys.path module search path . 2064
32.9.1 Virtual environments . 2064
32.9.2 _pth files . 2065
32.9.3 Embedded Python . 2065

33 Python Language Services 2067
33.1 ast—Abstract Syntax Trees . 2067

33.1.1 Abstract Grammar . 2067

xix

33.1.2 Node classes . 2070
33.1.3 ast Helpers . 2099
33.1.4 Compiler Flags . 2103
33.1.5 Command-Line Usage . 2104

33.2 symtable—Access to the compiler’s symbol tables . 2104
33.2.1 Generating Symbol Tables . 2104
33.2.2 Examining Symbol Tables . 2105
33.2.3 Command-Line Usage . 2108

33.3 token—Constants used with Python parse trees . 2108
33.4 keyword— Testing for Python keywords . 2112
33.5 tokenize— Tokenizer for Python source . 2112

33.5.1 Tokenizing Input . 2113
33.5.2 Command-Line Usage . 2114
33.5.3 Examples . 2114

33.6 tabnanny—Detection of ambiguous indentation . 2116
33.7 pyclbr— Python module browser support . 2117

33.7.1 Function Objects . 2117
33.7.2 Class Objects . 2118

33.8 py_compile—Compile Python source files . 2119
33.8.1 Command-Line Interface . 2120

33.9 compileall— Byte-compile Python libraries . 2120
33.9.1 Command-line use . 2120
33.9.2 Public functions . 2122

33.10 dis—Disassembler for Python bytecode . 2124
33.10.1 Command-line interface . 2125
33.10.2 Bytecode analysis . 2125
33.10.3 Analysis functions . 2126
33.10.4 Python Bytecode Instructions . 2129
33.10.5 Opcode collections . 2145

33.11 pickletools— Tools for pickle developers . 2146
33.11.1 Command line usage . 2146
33.11.2 Programmatic Interface . 2147

34 MS Windows Specific Services 2149
34.1 msvcrt—Useful routines from the MS VC++ runtime . 2149

34.1.1 File Operations . 2149
34.1.2 Console I/O . 2150
34.1.3 Other Functions . 2150

34.2 winreg—Windows registry access . 2151
34.2.1 Functions . 2152
34.2.2 Constants . 2157
34.2.3 Registry Handle Objects . 2159

34.3 winsound— Sound-playing interface for Windows . 2160

35 Unix Specific Services 2163
35.1 posix— The most common POSIX system calls . 2163

35.1.1 Large File Support . 2163
35.1.2 Notable Module Contents . 2163

35.2 pwd— The password database . 2164
35.3 grp— The group database . 2165
35.4 termios— POSIX style tty control . 2165

35.4.1 Example . 2166
35.5 tty— Terminal control functions . 2167
35.6 pty— Pseudo-terminal utilities . 2168

35.6.1 Example . 2169
35.7 fcntl— The fcntl and ioctl system calls . 2169
35.8 resource—Resource usage information . 2172

35.8.1 Resource Limits . 2172

xx

35.8.2 Resource Usage . 2175
35.9 syslog—Unix syslog library routines . 2176

35.9.1 Examples . 2178

36 Modules command-line interface (CLI) 2181

37 Superseded Modules 2183
37.1 getopt—C-style parser for command line options . 2183

38 Removed Modules 2187
38.1 aifc—Read and write AIFF and AIFC files . 2187
38.2 asynchat—Asynchronous socket command/response handler 2187
38.3 asyncore—Asynchronous socket handler . 2187
38.4 audioop—Manipulate raw audio data . 2187
38.5 cgi—Common Gateway Interface support . 2188
38.6 cgitb— Traceback manager for CGI scripts . 2188
38.7 chunk—Read IFF chunked data . 2188
38.8 crypt— Function to check Unix passwords . 2188
38.9 distutils— Building and installing Python modules . 2188
38.10 imghdr—Determine the type of an image . 2188
38.11 imp—Access the import internals . 2189
38.12 mailcap—Mailcap file handling . 2189
38.13 msilib—Read and write Microsoft Installer files . 2189
38.14 nis— Interface to Sun’s NIS (Yellow Pages) . 2189
38.15 nntplib—NNTP protocol client . 2189
38.16 ossaudiodev—Access to OSS-compatible audio devices . 2189
38.17 pipes— Interface to shell pipelines . 2190
38.18 smtpd— SMTP Server . 2190
38.19 sndhdr—Determine type of sound file . 2190
38.20 spwd— The shadow password database . 2190
38.21 sunau—Read and write Sun AU files . 2190
38.22 telnetlib— Telnet client . 2190
38.23 uu— Encode and decode uuencode files . 2191
38.24 xdrlib— Encode and decode XDR data . 2191

39 Security Considerations 2193

A Glossary 2195

B About this documentation 2213
B.1 Contributors to the Python documentation . 2213

C History and License 2215
C.1 History of the software . 2215
C.2 Terms and conditions for accessing or otherwise using Python . 2216

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.13.1 2216
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 2217
C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1 2217
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 2218
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.13.1 DOCUMEN-

TATION . 2219
C.3 Licenses and Acknowledgements for Incorporated Software . 2219

C.3.1 Mersenne Twister . 2219
C.3.2 Sockets . 2220
C.3.3 Asynchronous socket services . 2221
C.3.4 Cookie management . 2221
C.3.5 Execution tracing . 2221
C.3.6 UUencode and UUdecode functions . 2222
C.3.7 XML Remote Procedure Calls . 2223

xxi

C.3.8 test_epoll . 2223
C.3.9 Select kqueue . 2224
C.3.10 SipHash24 . 2224
C.3.11 strtod and dtoa . 2225
C.3.12 OpenSSL . 2225
C.3.13 expat . 2228
C.3.14 libffi . 2229
C.3.15 zlib . 2229
C.3.16 cfuhash . 2230
C.3.17 libmpdec . 2230
C.3.18 W3C C14N test suite . 2231
C.3.19 mimalloc . 2232
C.3.20 asyncio . 2232
C.3.21 Global Unbounded Sequences (GUS) . 2232

D Copyright 2235

Bibliography 2237

Python Module Index 2239

Index 2243

xxii

The Python Library Reference, Release 3.13.1

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that
are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well asmodules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for theWindows platform usually include the entire standard library and often also includemany
additional components. For Unix-like operating systems Python is normally provided as a collection of packages,
so it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the
optional components.

In addition to the standard library, there is an active collection of hundreds of thousands of components (from in-
dividual programs and modules to packages and entire application development frameworks), available from the
Python Package Index.

CONTENTS 1

https://pypi.org

The Python Library Reference, Release 3.13.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like
the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the
core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and exceptions, and
finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual),
or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see module random) and read a section or two. Regardless
of the order in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the
remainder of the manual assumes familiarity with this material.

Let the show begin!

1.1 Notes on availability

• An “Availability: Unix” note means that this function is commonly found on Unix systems. It does not make
any claims about its existence on a specific operating system.

• If not separately noted, all functions that claim “Availability: Unix” are supported onmacOS, iOS and Android,
all of which build on a Unix core.

• If an availability note contains both a minimum Kernel version and a minimum libc version, then both condi-
tions must hold. For example a feature with note Availability: Linux >= 3.17 with glibc >= 2.27 requires both
Linux 3.17 or newer and glibc 2.27 or newer.

3

The Python Library Reference, Release 3.13.1

1.1.1 WebAssembly platforms

The WebAssembly platforms wasm32-emscripten (Emscripten) and wasm32-wasi (WASI) provide a subset of
POSIX APIs. WebAssembly runtimes and browsers are sandboxed and have limited access to the host and external
resources. Any Python standard library module that uses processes, threading, networking, signals, or other forms
of inter-process communication (IPC), is either not available or may not work as on other Unix-like systems. File
I/O, file system, and Unix permission-related functions are restricted, too. Emscripten does not permit blocking I/O.
Other blocking operations like sleep() block the browser event loop.

The properties and behavior of Python on WebAssembly platforms depend on the Emscripten-SDK or WASI-SDK
version, WASM runtimes (browser, NodeJS, wasmtime), and Python build time flags. WebAssembly, Emscripten,
and WASI are evolving standards; some features like networking may be supported in the future.

For Python in the browser, users should consider Pyodide or PyScript. PyScript is built on top of Pyodide, which
itself is built on top of CPython and Emscripten. Pyodide provides access to browsers’ JavaScript and DOM APIs
as well as limited networking capabilities with JavaScript’s XMLHttpRequest and Fetch APIs.

• Process-relatedAPIs are not available or always fail with an error. That includes APIs that spawn new processes
(fork(), execve()), wait for processes (waitpid()), send signals (kill()), or otherwise interact with
processes. The subprocess is importable but does not work.

• The socket module is available, but is limited and behaves differently from other platforms. On Emscripten,
sockets are always non-blocking and require additional JavaScript code and helpers on the server to proxy
TCP through WebSockets; see Emscripten Networking for more information. WASI snapshot preview 1 only
permits sockets from an existing file descriptor.

• Some functions are stubs that either don’t do anything and always return hardcoded values.

• Functions related to file descriptors, file permissions, file ownership, and links are limited and don’t support
some operations. For example, WASI does not permit symlinks with absolute file names.

1.1.2 Mobile platforms

Android and iOS are, in most respects, POSIX operating systems. File I/O, socket handling, and threading all behave
as they would on any POSIX operating system. However, there are several major differences:

• Mobile platforms can only use Python in “embedded” mode. There is no Python REPL, and no ability to use
separate executables such as python or pip. To add Python code to your mobile app, you must use the Python
embedding API. For more details, see using-android and using-ios.

• Subprocesses:

– On Android, creating subprocesses is possible but officially unsupported. In particular, Android does not
support any part of the System V IPC API, so multiprocessing is not available.

– An iOS app cannot use any form of subprocessing, multiprocessing, or inter-process communication. If
an iOS app attempts to create a subprocess, the process creating the subprocess will either lock up, or
crash. An iOS app has no visibility of other applications that are running, nor any ability to communicate
with other running applications, outside of the iOS-specific APIs that exist for this purpose.

• Mobile apps have limited access to modify system resources (such as the system clock). These resources will
often be readable, but attempts to modify those resources will usually fail.

• Console input and output:

– On Android, the native stdout and stderr are not connected to anything, so Python installs its own
streams which redirect messages to the system log. These can be seen under the tags python.stdout
and python.stderr respectively.

– iOS apps have a limited concept of console output. stdout and stderr exist, and content written to
stdout and stderr will be visible in logs when running in Xcode, but this content won’t be recorded
in the system log. If a user who has installed your app provides their app logs as a diagnostic aid, they
will not include any detail written to stdout or stderr.

– Mobile apps have no usable stdin at all. While apps can display an on-screen keyboard, this is a software
feature, not something that is attached to stdin.

4 Chapter 1. Introduction

https://webassembly.org/
https://emscripten.org/
https://wasi.dev/
https://emscripten.org/
https://wasi.dev/
https://wasmtime.dev/
https://pyodide.org/
https://pyscript.net/
https://emscripten.org/docs/porting/networking.html
https://issuetracker.google.com/issues/128554619#comment4

The Python Library Reference, Release 3.13.1

As a result, Python modules that involve console manipulation (such as curses and readline) are not
available on mobile platforms.

1.1. Notes on availability 5

The Python Library Reference, Release 3.13.1

6 Chapter 1. Introduction

CHAPTER

TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed
here in alphabetical order.

Built-in Functions

A
abs()

aiter()

all()

anext()

any()

ascii()

B
bin()

bool()

breakpoint()

bytearray()

bytes()

C
callable()

chr()

classmethod()

compile()

complex()

D
delattr()

dict()

dir()

divmod()

E
enumerate()

eval()

exec()

F
filter()

float()

format()

frozenset()

G
getattr()

globals()

H
hasattr()

hash()

help()

hex()

I
id()

input()

int()

isinstance()

issubclass()

iter()

L
len()

list()

locals()

M
map()

max()

memoryview()

min()

N
next()

O
object()

oct()

open()

ord()

P
pow()

print()

property()

R
range()

repr()

reversed()

round()

S
set()

setattr()

slice()

sorted()

staticmethod()

str()

sum()

super()

T
tuple()

type()

V
vars()

Z
zip()

_
__import__()

abs(x)
Return the absolute value of a number. The argument may be an integer, a floating-point number, or an object
implementing __abs__(). If the argument is a complex number, its magnitude is returned.

7

The Python Library Reference, Release 3.13.1

aiter(async_iterable)
Return an asynchronous iterator for an asynchronous iterable. Equivalent to calling x.__aiter__().

Note: Unlike iter(), aiter() has no 2-argument variant.

Added in version 3.10.

all(iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all(iterable):

for element in iterable:

if not element:

return False

return True

awaitable anext(async_iterator)
awaitable anext(async_iterator, default)

When awaited, return the next item from the given asynchronous iterator, or default if given and the iterator is
exhausted.

This is the async variant of the next() builtin, and behaves similarly.

This calls the __anext__() method of async_iterator, returning an awaitable. Awaiting this returns
the next value of the iterator. If default is given, it is returned if the iterator is exhausted, otherwise
StopAsyncIteration is raised.

Added in version 3.10.

any(iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):

for element in iterable:

if element:

return True

return False

ascii(object)

As repr(), return a string containing a printable representation of an object, but escape the non-ASCII char-
acters in the string returned by repr() using \x, \u, or \U escapes. This generates a string similar to that
returned by repr() in Python 2.

bin(x)

Convert an integer number to a binary string prefixed with “0b”. The result is a valid Python expression. If x
is not a Python int object, it has to define an __index__() method that returns an integer. Some examples:

>>> bin(3)

'0b11'

>>> bin(-10)

'-0b1010'

If the prefix “0b” is desired or not, you can use either of the following ways.

>>> format(14, '#b'), format(14, 'b')

('0b1110', '1110')

>>> f'{14:#b}', f'{14:b}'

('0b1110', '1110')

See also format() for more information.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

class bool(object=False, /)
Return a Boolean value, i.e. one of True or False. The argument is converted using the standard truth testing
procedure. If the argument is false or omitted, this returns False; otherwise, it returns True. The bool
class is a subclass of int (see Numeric Types — int, float, complex). It cannot be subclassed further. Its only
instances are False and True (see Boolean Type - bool).

Changed in version 3.7: The parameter is now positional-only.

breakpoint(*args, **kws)

This function drops you into the debugger at the call site. Specifically, it calls sys.breakpointhook(),
passing args and kws straight through. By default, sys.breakpointhook() calls pdb.set_trace()
expecting no arguments. In this case, it is purely a convenience function so you don’t have to explicitly import
pdb or type as much code to enter the debugger. However, sys.breakpointhook() can be set to some
other function and breakpoint() will automatically call that, allowing you to drop into the debugger of
choice. If sys.breakpointhook() is not accessible, this function will raise RuntimeError.

By default, the behavior of breakpoint() can be changed with the PYTHONBREAKPOINT environment vari-
able. See sys.breakpointhook() for usage details.

Note that this is not guaranteed if sys.breakpointhook() has been replaced.

Raises an auditing event builtins.breakpoint with argument breakpointhook.

Added in version 3.7.

class bytearray(source=b”)
class bytearray(source, encoding)
class bytearray(source, encoding, errors)

Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as
most methods that the bytes type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

• If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray() then
converts the string to bytes using str.encode().

• If it is an integer, the array will have that size and will be initialized with null bytes.

• If it is an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

• If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size 0 is created.

See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes(source=b”)
class bytes(source, encoding)
class bytes(source, encoding, errors)

Return a new “bytes” object which is an immutable sequence of integers in the range 0 <= x < 256. bytes
is an immutable version of bytearray – it has the same non-mutating methods and the same indexing and
slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray().

Bytes objects can also be created with literals, see strings.

See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes Objects, and Bytes and Bytearray Op-
erations.

9

The Python Library Reference, Release 3.13.1

callable(object)
Return True if the object argument appears callable, False if not. If this returns True, it is still possible that
a call fails, but if it is False, calling object will never succeed. Note that classes are callable (calling a class
returns a new instance); instances are callable if their class has a __call__() method.

Added in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr(i)
Return the string representing a character whose Unicode code point is the integer i. For example, chr(97)
returns the string 'a', while chr(8364) returns the string '€'. This is the inverse of ord().

The valid range for the argument is from 0 through 1,114,111 (0x10FFFF in base 16). ValueError will be
raised if i is outside that range.

@classmethod

Transform a method into a class method.

A classmethod receives the class as an implicit first argument, just like an instancemethod receives the instance.
To declare a class method, use this idiom:

class C:

@classmethod

def f(cls, arg1, arg2): ...

The @classmethod form is a function decorator – see function for details.

A class method can be called either on the class (such as C.f()) or on an instance (such as C().f()). The
instance is ignored except for its class. If a class method is called for a derived class, the derived class object
is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod() in this
section. For more information on class methods, see types.

Changed in version 3.9: Class methods can now wrap other descriptors such as property().

Changed in version 3.10: Class methods now inherit the method attributes (__module__, __name__,
__qualname__, __doc__ and __annotations__) and have a new __wrapped__ attribute.

Deprecated since version 3.11, removed in version 3.13: Class methods can no longer wrap other descriptors
such as property().

compile(source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by exec() or eval(). source
can either be a normal string, a byte string, or an AST object. Refer to the ast module documentation for
information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn’t read from a file ('<string>' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists of a
sequence of statements, 'eval' if it consists of a single expression, or 'single' if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which compiler options should be activated and which
future features should be allowed. If neither is present (or both are zero) the code is compiled with the same
flags that affect the code that is calling compile(). If the flags argument is given and dont_inherit is not (or is
zero) then the compiler options and the future statements specified by the flags argument are used in addition
to those that would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it – the
flags (future features and compiler options) in the surrounding code are ignored.

Compiler options and future statements are specified by bits which can be bitwise ORed together to specify
multiple options. The bitfield required to specify a given future feature can be found as the compiler_flag
attribute on the _Feature instance in the __future__module. Compiler flags can be found in astmodule,
with PyCF_ prefix.

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the
optimization level of the interpreter as given by -O options. Explicit levels are 0 (no optimization; __debug__
is true), 1 (asserts are removed, __debug__ is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and ValueError if the source contains
null bytes.

If you want to parse Python code into its AST representation, see ast.parse().

Raises an auditing event compile with arguments source and filename. This event may also be raised by
implicit compilation.

Note

When compiling a string with multi-line code in 'single' or 'eval' mode, input must be terminated
by at least one newline character. This is to facilitate detection of incomplete and complete statements in
the code module.

Warning

It is possible to crash the Python interpreter with a sufficiently large/complex string when compiling to an
AST object due to stack depth limitations in Python’s AST compiler.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also, input in 'exec' mode does not
have to end in a newline anymore. Added the optimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

Added in version 3.8: ast.PyCF_ALLOW_TOP_LEVEL_AWAIT can now be passed in flags to enable support
for top-level await, async for, and async with.

class complex(number=0, /)
class complex(string, /)
class complex(real=0, imag=0)

Convert a single string or number to a complex number, or create a complex number from real and imaginary
parts.

Examples:

>>> complex('+1.23')

(1.23+0j)

>>> complex('-4.5j')

-4.5j

>>> complex('-1.23+4.5j')

(-1.23+4.5j)

>>> complex('\t(-1.23+4.5J)\n')

(-1.23+4.5j)

>>> complex('-Infinity+NaNj')

(-inf+nanj)

>>> complex(1.23)

(1.23+0j)

>>> complex(imag=-4.5)

-4.5j

>>> complex(-1.23, 4.5)

(-1.23+4.5j)

11

The Python Library Reference, Release 3.13.1

If the argument is a string, it must contain either a real part (in the same format as for float()) or an
imaginary part (in the same format but with a 'j' or 'J' suffix), or both real and imaginary parts (the sign of
the imaginary part is mandatory in this case). The string can optionally be surrounded by whitespaces and the
round parentheses '(' and ')', which are ignored. The string must not contain whitespace between '+', '-',
the 'j' or 'J' suffix, and the decimal number. For example, complex('1+2j') is fine, but complex('1
+ 2j') raises ValueError. More precisely, the input must conform to the complexvalue production rule
in the following grammar, after parentheses and leading and trailing whitespace characters are removed:

complexvalue ::= floatvalue |

floatvalue ("j" | "J") |

floatvalue sign absfloatvalue ("j" | "J")

If the argument is a number, the constructor serves as a numeric conversion like int and float. For a general
Python object x, complex(x) delegates to x.__complex__(). If __complex__() is not defined then it
falls back to __float__(). If __float__() is not defined then it falls back to __index__().

If two arguments are provided or keyword arguments are used, each argument may be any numeric type
(including complex). If both arguments are real numbers, return a complex number with the real component
real and the imaginary component imag. If both arguments are complex numbers, return a complex number
with the real component real.real-imag.imag and the imaginary component real.imag+imag.real.
If one of arguments is a real number, only its real component is used in the above expressions.

If all arguments are omitted, returns 0j.

The complex type is described in Numeric Types — int, float, complex.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

Changed in version 3.8: Falls back to __index__() if __complex__() and __float__() are not defined.

delattr(object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
example, delattr(x, 'foobar') is equivalent to del x.foobar. name need not be a Python identifier
(see setattr()).

class dict(**kwarg)
class dict(mapping, **kwarg)
class dict(iterable, **kwarg)

Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.

For other containers see the built-in list, set, and tuple classes, as well as the collections module.

dir()

dir(object)
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a
list of valid attributes for that object.

If the object has a method named __dir__(), this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__() or __getattribute__() function to cus-
tomize the way dir() reports their attributes.

If the object does not provide __dir__(), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete and
may be inaccurate when the object has a custom __getattr__().

The default dir()mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

• If the object is a module object, the list contains the names of the module’s attributes.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

• If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

• Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir() # show the names in the module namespace

['__builtins__', '__name__', 'struct']

>>> dir(struct) # show the names in the struct module

['Struct', '__all__', '__builtins__', '__cached__', '__doc__', '__file__',

'__initializing__', '__loader__', '__name__', '__package__',

'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',

'unpack', 'unpack_from']

>>> class Shape:

... def __dir__(self):

... return ['area', 'perimeter', 'location']

...

>>> s = Shape()

>>> dir(s)

['area', 'location', 'perimeter']

Note

Because dir() is supplied primarily as a convenience for use at an interactive prompt, it tries to supply an
interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and
its detailed behavior may change across releases. For example, metaclass attributes are not in the result list
when the argument is a class.

divmod(a, b)
Take two (non-complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % b). For floating-point numbers the result is (q,
a % b), where q is usually math.floor(a / b) but may be 1 less than that. In any case q * b + a % b

is very close to a, if a % b is non-zero it has the same sign as b, and 0 <= abs(a % b) < abs(b).

enumerate(iterable, start=0)
Return an enumerate object. iterable must be a sequence, an iterator, or some other object which supports
iteration. The __next__() method of the iterator returned by enumerate() returns a tuple containing a
count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']

>>> list(enumerate(seasons))

[(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]

>>> list(enumerate(seasons, start=1))

[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate(iterable, start=0):

n = start

for elem in iterable:

yield n, elem

n += 1

eval(source, / , globals=None, locals=None)

13

The Python Library Reference, Release 3.13.1

Parameters

• source (str | code object) – A Python expression.

• globals (dict | None) – The global namespace (default: None).

• locals (mapping | None) – The local namespace (default: None).

Returns
The result of the evaluated expression.

Raises
Syntax errors are reported as exceptions.

Warning

This function executes arbitrary code. Calling it with user-supplied input may lead to security vulnerabil-
ities.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition
list) using the globals and locals mappings as global and local namespace. If the globals dictionary is present
and does not contain a value for the key __builtins__, a reference to the dictionary of the built-in module
builtins is inserted under that key before expression is parsed. That way you can control what builtins are
available to the executed code by inserting your own __builtins__ dictionary into globals before passing
it to eval(). If the locals mapping is omitted it defaults to the globals dictionary. If both mappings are
omitted, the expression is executed with the globals and locals in the environment where eval() is called.
Note, eval() will only have access to the nested scopes (non-locals) in the enclosing environment if they are
already referenced in the scope that is calling eval() (e.g. via a nonlocal statement).

Example:

>>> x = 1

>>> eval('x+1')

2

This function can also be used to execute arbitrary code objects (such as those created by compile()). In this
case, pass a code object instead of a string. If the code object has been compiled with 'exec' as the mode
argument, eval()’s return value will be None.

Hints: dynamic execution of statements is supported by the exec() function. The globals() and locals()
functions return the current global and local dictionary, respectively, which may be useful to pass around for
use by eval() or exec().

If the given source is a string, then leading and trailing spaces and tabs are stripped.

See ast.literal_eval() for a function that can safely evaluate strings with expressions containing only
literals.

Raises an auditing event exec with the code object as the argument. Code compilation events may also be
raised.

Changed in version 3.13: The globals and locals arguments can now be passed as keywords.

Changed in version 3.13: The semantics of the default locals namespace have been adjusted as described for
the locals() builtin.

exec(source, / , globals=None, locals=None, *, closure=None)

Warning

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

This function executes arbitrary code. Calling it with user-supplied input may lead to security vulnerabil-
ities.

This function supports dynamic execution of Python code. source must be either a string or a code object. If
it is a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error
occurs).1 If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to be
valid as file input (see the section file-input in the Reference Manual). Be aware that the nonlocal, yield,
and return statements may not be used outside of function definitions even within the context of code passed
to the exec() function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary (and not a subclass of dictionary), which will be used for both the global and
the local variables. If globals and locals are given, they are used for the global and local variables, respectively.
If provided, locals can be any mapping object. Remember that at the module level, globals and locals are the
same dictionary.

Note

When exec gets two separate objects as globals and locals, the code will be executed as if it were embedded
in a class definition. This means functions and classes defined in the executed code will not be able to
access variables assigned at the top level (as the “top level” variables are treated as class variables in a class
definition).

If the globals dictionary does not contain a value for the key __builtins__, a reference to the dictionary of
the built-in module builtins is inserted under that key. That way you can control what builtins are available
to the executed code by inserting your own __builtins__ dictionary into globals before passing it to exec().

The closure argument specifies a closure–a tuple of cellvars. It’s only valid when the object is a code object
containing free (closure) variables. The length of the tuple must exactly match the length of the code object’s
co_freevars attribute.

Raises an auditing event exec with the code object as the argument. Code compilation events may also be
raised.

Note

The built-in functions globals() and locals() return the current global and local namespace, respec-
tively, which may be useful to pass around for use as the second and third argument to exec().

Note

The default locals act as described for function locals() below. Pass an explicit locals dictionary if you
need to see effects of the code on locals after function exec() returns.

Changed in version 3.11: Added the closure parameter.

Changed in version 3.13: The globals and locals arguments can now be passed as keywords.

Changed in version 3.13: The semantics of the default locals namespace have been adjusted as described for
the locals() builtin.

1 Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

15

The Python Library Reference, Release 3.13.1

filter(function, iterable)
Construct an iterator from those elements of iterable for which function is true. iterable may be either a
sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter(function, iterable) is equivalent to the generator expression (item for item

in iterable if function(item)) if function is not None and (item for item in iterable if

item) if function is None.

See itertools.filterfalse() for the complementary function that returns elements of iterable for which
function is false.

class float(number=0.0, /)
class float(string, /)

Return a floating-point number constructed from a number or a string.

Examples:

>>> float('+1.23')

1.23

>>> float(' -12345\n')

-12345.0

>>> float('1e-003')

0.001

>>> float('+1E6')

1000000.0

>>> float('-Infinity')

-inf

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional sign may be '+' or '-'; a '+' sign has no effect on the value produced.
The argument may also be a string representing a NaN (not-a-number), or positive or negative infinity. More
precisely, the input must conform to the floatvalue production rule in the following grammar, after leading
and trailing whitespace characters are removed:

sign ::= "+" | "-"

infinity ::= "Infinity" | "inf"

nan ::= "nan"

digit ::= <a Unicode decimal digit, i.e. characters in Unicode general category Nd>

digitpart ::= digit (["_"] digit)*

number ::= [digitpart] "." digitpart | digitpart ["."]

exponent ::= ("e" | "E") [sign] digitpart

floatnumber ::= number [exponent]

absfloatvalue ::= floatnumber | infinity | nan

floatvalue ::= [sign] absfloatvalue

Case is not significant, so, for example, “inf”, “Inf”, “INFINITY”, and “iNfINity” are all acceptable spellings
for positive infinity.

Otherwise, if the argument is an integer or a floating-point number, a floating-point number with the same
value (within Python’s floating-point precision) is returned. If the argument is outside the range of a Python
float, an OverflowError will be raised.

For a general Python object x, float(x) delegates to x.__float__(). If __float__() is not defined then
it falls back to __index__().

If no argument is given, 0.0 is returned.

The float type is described in Numeric Types — int, float, complex.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

16 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

Changed in version 3.7: The parameter is now positional-only.

Changed in version 3.8: Falls back to __index__() if __float__() is not defined.

format(value, format_spec=”)
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of for-
mat_spec will depend on the type of the value argument; however, there is a standard formatting syntax that is
used by most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling str(value).

A call to format(value, format_spec) is translated to type(value).__format__(value,

format_spec) which bypasses the instance dictionary when searching for the value’s __format__()

method. A TypeError exception is raised if the method search reaches object and the format_spec is
non-empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object().__format__(format_spec) raises TypeError if format_spec is not
an empty string.

class frozenset(iterable=set())
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in class.
See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, list, tuple, and dict classes, as well as the collections
module.

getattr(object, name)
getattr(object, name, default)

Return the value of the named attribute of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr(x, 'foobar')

is equivalent to x.foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised. name need not be a Python identifier (see setattr()).

Note

Since private name mangling happens at compilation time, one must manually mangle a private attribute’s
(attributes with two leading underscores) name in order to retrieve it with getattr().

globals()

Return the dictionary implementing the current module namespace. For code within functions, this is set when
the function is defined and remains the same regardless of where the function is called.

hasattr(object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr(object, name) and seeing whether it
raises an AttributeError or not.)

hash(object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

Note

For objects with custom __hash__() methods, note that hash() truncates the return value based on the
bit width of the host machine.

help()

17

The Python Library Reference, Release 3.13.1

help(request)
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

Note that if a slash(/) appears in the parameter list of a function when invoking help(), it means that the
parameters prior to the slash are positional-only. For more info, see the FAQ entry on positional-only param-
eters.

This function is added to the built-in namespace by the site module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables are
now more comprehensive and consistent.

hex(x)
Convert an integer number to a lowercase hexadecimal string prefixed with “0x”. If x is not a Python int
object, it has to define an __index__() method that returns an integer. Some examples:

>>> hex(255)

'0xff'

>>> hex(-42)

'-0x2a'

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or not, you
can use either of the following ways:

>>> '%#x' % 255, '%x' % 255, '%X' % 255

('0xff', 'ff', 'FF')

>>> format(255, '#x'), format(255, 'x'), format(255, 'X')

('0xff', 'ff', 'FF')

>>> f'{255:#x}', f'{255:x}', f'{255:X}'

('0xff', 'ff', 'FF')

See also format() for more information.

See also int() for converting a hexadecimal string to an integer using a base of 16.

Note

To obtain a hexadecimal string representation for a float, use the float.hex() method.

id(object)

Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id() value.

CPython implementation detail: This is the address of the object in memory.

Raises an auditing event builtins.id with argument id.

input()

input(prompt)
If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is
read, EOFError is raised. Example:

>>> s = input('--> ')

--> Monty Python's Flying Circus

>>> s

"Monty Python's Flying Circus"

18 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

If the readline module was loaded, then input() will use it to provide elaborate line editing and history
features.

Raises an auditing event builtins.input with argument prompt before reading input

Raises an auditing event builtins.input/result with the result after successfully reading input.

class int(number=0, /)
class int(string, / , base=10)

Return an integer object constructed from a number or a string, or return 0 if no arguments are given.

Examples:

>>> int(123.45)

123

>>> int('123')

123

>>> int(' -12_345\n')

-12345

>>> int('FACE', 16)

64206

>>> int('0xface', 0)

64206

>>> int('01110011', base=2)

115

If the argument defines __int__(), int(x) returns x.__int__(). If the argument defines __index__(),
it returns x.__index__(). If the argument defines __trunc__(), it returns x.__trunc__(). For floating-
point numbers, this truncates towards zero.

If the argument is not a number or if base is given, then it must be a string, bytes, or bytearray instance
representing an integer in radix base. Optionally, the string can be preceded by + or - (with no space in
between), have leading zeros, be surrounded by whitespace, and have single underscores interspersed between
digits.

A base-n integer string contains digits, each representing a value from 0 to n-1. The values 0–9 can be repre-
sented by any Unicode decimal digit. The values 10–35 can be represented by a to z (or A to Z). The default
base is 10. The allowed bases are 0 and 2–36. Base-2, -8, and -16 strings can be optionally prefixed with
0b/0B, 0o/0O, or 0x/0X, as with integer literals in code. For base 0, the string is interpreted in a similar way
to an integer literal in code, in that the actual base is 2, 8, 10, or 16 as determined by the prefix. Base 0 also
disallows leading zeros: int('010', 0) is not legal, while int('010') and int('010', 8) are.

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.__index__method,
that method is called to obtain an integer for the base. Previous versions used base.__int__ instead of
base.__index__.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

Changed in version 3.7: The first parameter is now positional-only.

Changed in version 3.8: Falls back to __index__() if __int__() is not defined.

Changed in version 3.11: The delegation to __trunc__() is deprecated.

Changed in version 3.11: int string inputs and string representations can be limited to help avoid denial of
service attacks. A ValueError is raised when the limit is exceeded while converting a string to an int or
when converting an int into a string would exceed the limit. See the integer string conversion length limitation
documentation.

19

The Python Library Reference, Release 3.13.1

isinstance(object, classinfo)
Return True if the object argument is an instance of the classinfo argument, or of a (direct, indirect, or virtual)
subclass thereof. If object is not an object of the given type, the function always returns False. If classinfo is a
tuple of type objects (or recursively, other such tuples) or a Union Type of multiple types, return True if object
is an instance of any of the types. If classinfo is not a type or tuple of types and such tuples, a TypeError
exception is raised. TypeError may not be raised for an invalid type if an earlier check succeeds.

Changed in version 3.10: classinfo can be a Union Type.

issubclass(class, classinfo)
Return True if class is a subclass (direct, indirect, or virtual) of classinfo. A class is considered a subclass of
itself. classinfo may be a tuple of class objects (or recursively, other such tuples) or a Union Type, in which
case return True if class is a subclass of any entry in classinfo. In any other case, a TypeError exception is
raised.

Changed in version 3.10: classinfo can be a Union Type.

iter(object)
iter(object, sentinel)

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iterable
protocol (the __iter__() method), or it must support the sequence protocol (the __getitem__() method
with integer arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If
the second argument, sentinel, is given, then object must be a callable object. The iterator created in this case
will call object with no arguments for each call to its __next__() method; if the value returned is equal to
sentinel, StopIteration will be raised, otherwise the value will be returned.

See also Iterator Types.

One useful application of the second form of iter() is to build a block-reader. For example, reading fixed-
width blocks from a binary database file until the end of file is reached:

from functools import partial

with open('mydata.db', 'rb') as f:

for block in iter(partial(f.read, 64), b''):

process_block(block)

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes,
tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

CPython implementation detail: len raises OverflowError on lengths larger than sys.maxsize, such
as range(2 ** 100).

class list

class list(iterable)
Rather than being a function, list is actually a mutable sequence type, as documented in Lists and Sequence
Types — list, tuple, range.

locals()

Return a mapping object representing the current local symbol table, with variable names as the
keys, and their currently bound references as the values.

At module scope, as well as when using exec() or eval() with a single namespace, this function
returns the same namespace as globals().

At class scope, it returns the namespace that will be passed to the metaclass constructor.

When using exec() or eval() with separate local and global arguments, it returns the local
namespace passed in to the function call.

In all of the above cases, each call to locals() in a given frame of execution will return the
same mapping object. Changes made through the mapping object returned from locals() will

20 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

be visible as assigned, reassigned, or deleted local variables, and assigning, reassigning, or deleting
local variables will immediately affect the contents of the returned mapping object.

In an optimized scope (including functions, generators, and coroutines), each call to locals()

instead returns a fresh dictionary containing the current bindings of the function’s local variables
and any nonlocal cell references. In this case, name binding changes made via the returned dict
are not written back to the corresponding local variables or nonlocal cell references, and assigning,
reassigning, or deleting local variables and nonlocal cell references does not affect the contents of
previously returned dictionaries.

Calling locals() as part of a comprehension in a function, generator, or coroutine is equivalent to
calling it in the containing scope, except that the comprehension’s initialised iteration variables will
be included. In other scopes, it behaves as if the comprehension were running as a nested function.

Calling locals() as part of a generator expression is equivalent to calling it in a nested generator
function.

Changed in version 3.12: The behaviour of locals() in a comprehension has been updated as described in
PEP 709.

Changed in version 3.13: As part of PEP 667, the semantics of mutating the mapping objects returned from
this function are now defined. The behavior in optimized scopes is now as described above. Aside from being
defined, the behaviour in other scopes remains unchanged from previous versions.

map(function, iterable, *iterables)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterables
arguments are passed, function must take that many arguments and is applied to the items from all iterables
in parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where
the function inputs are already arranged into argument tuples, see itertools.starmap().

max(iterable, *, key=None)
max(iterable, *, default, key=None)
max(arg1, arg2, *args, key=None)

Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is returned. If
two or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for list.sort(). The default argument specifies an object to return if the provided iterable is
empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with other sort-
stability preserving tools such as sorted(iterable, key=keyfunc, reverse=True)[0] and heapq.
nlargest(1, iterable, key=keyfunc).

Changed in version 3.4: Added the default keyword-only parameter.

Changed in version 3.8: The key can be None.

class memoryview(object)
Return a “memory view” object created from the given argument. See Memory Views for more information.

min(iterable, *, key=None)
min(iterable, *, default, key=None)
min(arg1, arg2, *args, key=None)

Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned.
If two or more positional arguments are provided, the smallest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for list.sort(). The default argument specifies an object to return if the provided iterable is
empty. If the iterable is empty and default is not provided, a ValueError is raised.

21

https://peps.python.org/pep-0709/
https://peps.python.org/pep-0667/

The Python Library Reference, Release 3.13.1

If multiple items are minimal, the function returns the first one encountered. This is consistent with other sort-
stability preserving tools such as sorted(iterable, key=keyfunc)[0] and heapq.nsmallest(1,

iterable, key=keyfunc).

Changed in version 3.4: Added the default keyword-only parameter.

Changed in version 3.8: The key can be None.

next(iterator)
next(iterator, default)

Retrieve the next item from the iterator by calling its __next__() method. If default is given, it is returned
if the iterator is exhausted, otherwise StopIteration is raised.

class object

This is the ultimate base class of all other classes. It has methods that are common to all instances of Python
classes. When the constructor is called, it returns a new featureless object. The constructor does not accept
any arguments.

Note

object instances do not have __dict__ attributes, so you can’t assign arbitrary attributes to an instance
of object.

oct(x)
Convert an integer number to an octal string prefixed with “0o”. The result is a valid Python expression. If x
is not a Python int object, it has to define an __index__() method that returns an integer. For example:

>>> oct(8)

'0o10'

>>> oct(-56)

'-0o70'

If you want to convert an integer number to an octal string either with the prefix “0o” or not, you can use either
of the following ways.

>>> '%#o' % 10, '%o' % 10

('0o12', '12')

>>> format(10, '#o'), format(10, 'o')

('0o12', '12')

>>> f'{10:#o}', f'{10:o}'

('0o12', '12')

See also format() for more information.

open(file, mode=’r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)
Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised. See
tut-files for more examples of how to use this function.

file is a path-like object giving the pathname (absolute or relative to the current working directory) of the file
to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed
when the returned I/O object is closed unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to 'r' which means
open for reading in text mode. Other common values are 'w' for writing (truncating the file if it already exists),
'x' for exclusive creation, and 'a' for appending (which on some Unix systems, means that all writes append
to the end of the file regardless of the current seek position). In text mode, if encoding is not specified the
encoding used is platform-dependent: locale.getencoding() is called to get the current locale encoding.
(For reading and writing raw bytes use binary mode and leave encoding unspecified.) The available modes are:

22 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

Character Meaning

'r' open for reading (default)
'w' open for writing, truncating the file first
'x' open for exclusive creation, failing if the file already exists
'a' open for writing, appending to the end of file if it exists
'b' binary mode
't' text mode (default)
'+' open for updating (reading and writing)

The default mode is 'r' (open for reading text, a synonym of 'rt'). Modes 'w+' and 'w+b' open and
truncate the file. Modes 'r+' and 'r+b' open the file with no truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including 'b' in the mode argument) return contents as bytes objects without any decoding. In text mode
(the default, or when 't' is included in the mode argument), the contents of the file are returned as str, the
bytes having been first decoded using a platform-dependent encoding or using the specified encoding if given.

Note

Python doesn’t depend on the underlying operating system’s notion of text files; all the processing is done
by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed in
binary mode), 1 to select line buffering (only usable when writing in text mode), and an integer > 1 to indicate
the size in bytes of a fixed-size chunk buffer. Note that specifying a buffer size this way applies for binary
buffered I/O, but TextIOWrapper (i.e., files opened with mode='r+') would have another buffering. To
disable buffering in TextIOWrapper, consider using the write_through flag for io.TextIOWrapper.
reconfigure(). When no buffering argument is given, the default buffering policy works as follows:

• Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io.DEFAULT_BUFFER_SIZE. On
many systems, the buffer will typically be 4096 or 8192 bytes long.

• “Interactive” text files (files for which isatty() returns True) use line buffering. Other text files use
the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text
mode. The default encoding is platform dependent (whatever locale.getencoding() returns), but any
text encoding supported by Python can be used. See the codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot
be used in binary mode. A variety of standard error handlers are available (listed under Error Handlers),
though any error handling name that has been registered with codecs.register_error() is also valid.
The standard names include:

• 'strict' to raise a ValueError exception if there is an encoding error. The default value of None
has the same effect.

• 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.

• 'replace' causes a replacement marker (such as '?') to be inserted where there is malformed data.

• 'surrogateescape' will represent any incorrect bytes as low surrogate code units ranging from
U+DC80 to U+DCFF. These surrogate code units will then be turned back into the same bytes when
the surrogateescape error handler is used when writing data. This is useful for processing files in an
unknown encoding.

• 'xmlcharrefreplace' is only supported when writing to a file. Characters not supported by the
encoding are replaced with the appropriate XML character reference &#nnn;.

• 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.

23

The Python Library Reference, Release 3.13.1

• 'namereplace' (also only supported when writing) replaces unsupported characters with \N{...}

escape sequences.

newline determines how to parse newline characters from the stream. It can be None, '', '\n', '\r', and
'\r\n'. It works as follows:

• When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in
the input can end in '\n', '\r', or '\r\n', and these are translated into '\n' before being returned
to the caller. If it is '', universal newlines mode is enabled, but line endings are returned to the caller
untranslated. If it has any of the other legal values, input lines are only terminated by the given string,
and the line ending is returned to the caller untranslated.

• When writing output to the stream, if newline is None, any '\n' characters written are translated to
the system default line separator, os.linesep. If newline is '' or '\n', no translation takes place. If
newline is any of the other legal values, any '\n' characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will be
kept open when the file is closed. If a filename is given closefd must be True (the default); otherwise, an error
will be raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os.open
as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os.open() function to open a file relative to a given
directory:

>>> import os

>>> dir_fd = os.open('somedir', os.O_RDONLY)

>>> def opener(path, flags):

... return os.open(path, flags, dir_fd=dir_fd)

...

>>> with open('spamspam.txt', 'w', opener=opener) as f:

... print('This will be written to somedir/spamspam.txt', file=f)

...

>>> os.close(dir_fd) # don't leak a file descriptor

The type of file object returned by the open() function depends on the mode. When open() is used to open
a file in a text mode ('w', 'r', 'wt', 'rt', etc.), it returns a subclass of io.TextIOBase (specifically io.
TextIOWrapper). When used to open a file in a binary mode with buffering, the returned class is a subclass
of io.BufferedIOBase. The exact class varies: in read binary mode, it returns an io.BufferedReader;
in write binary and append binary modes, it returns an io.BufferedWriter, and in read/write mode, it
returns an io.BufferedRandom. When buffering is disabled, the raw stream, a subclass of io.RawIOBase,
io.FileIO, is returned.

See also the file handling modules, such as fileinput, io (where open() is declared), os, os.path,
tempfile, and shutil.

Raises an auditing event open with arguments path, mode, flags.

The mode and flags arguments may have been modified or inferred from the original call.

Changed in version 3.3:

• The opener parameter was added.

• The 'x' mode was added.

• IOError used to be raised, it is now an alias of OSError.

• FileExistsError is now raised if the file opened in exclusive creation mode ('x') already exists.

Changed in version 3.4:

• The file is now non-inheritable.

24 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

Changed in version 3.5:

• If the system call is interrupted and the signal handler does not raise an exception, the function now retries
the system call instead of raising an InterruptedError exception (see PEP 475 for the rationale).

• The 'namereplace' error handler was added.

Changed in version 3.6:

• Support added to accept objects implementing os.PathLike.

• OnWindows, opening a console buffer may return a subclass of io.RawIOBase other than io.FileIO.

Changed in version 3.11: The 'U' mode has been removed.

ord(c)
Given a string representing one Unicode character, return an integer representing the Unicode code point of
that character. For example, ord('a') returns the integer 97 and ord('€') (Euro sign) returns 8364. This
is the inverse of chr().

pow(base, exp, mod=None)
Return base to the power exp; if mod is present, return base to the power exp, modulo mod (computed more
efficiently than pow(base, exp) % mod). The two-argument form pow(base, exp) is equivalent to using
the power operator: base**exp.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, pow(10, 2) returns 100, but pow(10, -2) returns 0.01. For a negative base of type int
or float and a non-integral exponent, a complex result is delivered. For example, pow(-9, 0.5) returns a
value close to 3j. Whereas, for a negative base of type int or float with an integral exponent, a float result
is delivered. For example, pow(-9, 2.0) returns 81.0.

For int operands base and exp, if mod is present, mod must also be of integer type and mod must be nonzero.
If mod is present and exp is negative, base must be relatively prime to mod. In that case, pow(inv_base,
-exp, mod) is returned, where inv_base is an inverse to base modulo mod.

Here’s an example of computing an inverse for 38 modulo 97:

>>> pow(38, -1, mod=97)

23

>>> 23 * 38 % 97 == 1

True

Changed in version 3.8: For int operands, the three-argument form of pow now allows the second argument
to be negative, permitting computation of modular inverses.

Changed in version 3.8: Allow keyword arguments. Formerly, only positional arguments were supported.

print(*objects, sep=’ ’, end=’\n’, file=None, flush=False)
Print objects to the text stream file, separated by sep and followed by end. sep, end, file, and flush, if present,
must be given as keyword arguments.

All non-keyword arguments are converted to strings like str() does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no objects are given, print() will just write end.

The file argument must be an object with a write(string) method; if it is not present or None, sys.
stdout will be used. Since printed arguments are converted to text strings, print() cannot be used with
binary mode file objects. For these, use file.write(...) instead.

Output buffering is usually determined by file. However, if flush is true, the stream is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

25

https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.13.1

class property(fget=None, fset=None, fdel=None, doc=None)
Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a function
for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:

def __init__(self):

self._x = None

def getx(self):

return self._x

def setx(self, value):

self._x = value

def delx(self):

del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

If c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter, and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget’s docstring
(if it exists). This makes it possible to create read-only properties easily using property() as a decorator:

class Parrot:

def __init__(self):

self._voltage = 100000

@property

def voltage(self):

"""Get the current voltage."""

return self._voltage

The @property decorator turns the voltage()method into a “getter” for a read-only attribute with the same
name, and it sets the docstring for voltage to “Get the current voltage.”

@getter

@setter

@deleter

A property object has getter, setter, and deleter methods usable as decorators that create a copy
of the property with the corresponding accessor function set to the decorated function. This is best
explained with an example:

class C:

def __init__(self):

self._x = None

@property

def x(self):

"""I'm the 'x' property."""

return self._x

@x.setter

(continues on next page)

26 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

(continued from previous page)

def x(self, value):

self._x = value

@x.deleter

def x(self):

del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same
name as the original property (x in this case.)

The returned property object also has the attributes fget, fset, and fdel corresponding to the con-
structor arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

__name__

Attribute holding the name of the property. The name of the property can be changed at runtime.

Added in version 3.13.

class range(stop)

class range(start, stop, step=1)
Rather than being a function, range is actually an immutable sequence type, as documented in Ranges and
Sequence Types — list, tuple, range.

repr(object)
Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval(); otherwise,
the representation is a string enclosed in angle brackets that contains the name of the type of the object together
with additional information often including the name and address of the object. A class can control what
this function returns for its instances by defining a __repr__() method. If sys.displayhook() is not
accessible, this function will raise RuntimeError.

This class has a custom representation that can be evaluated:

class Person:

def __init__(self, name, age):

self.name = name

self.age = age

def __repr__(self):

return f"Person('{self.name}', {self.age})"

reversed(seq)
Return a reverse iterator. seq must be an object which has a __reversed__() method or supports the se-
quence protocol (the __len__() method and the __getitem__() method with integer arguments starting
at 0).

round(number, ndigits=None)
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it returns
the nearest integer to its input.

For the built-in types supporting round(), values are rounded to the closest multiple of 10 to the power
minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example,
both round(0.5) and round(-0.5) are 0, and round(1.5) is 2). Any integer value is valid for ndigits
(positive, zero, or negative). The return value is an integer if ndigits is omitted or None. Otherwise, the return
value has the same type as number.

For a general Python object number, round delegates to number.__round__.

27

The Python Library Reference, Release 3.13.1

Note

The behavior of round() for floats can be surprising: for example, round(2.675, 2) gives 2.67 instead
of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal fractions can’t be
represented exactly as a float. See tut-fp-issues for more information.

class set

class set(iterable)
Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set and
Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, list, tuple, and dict classes, as well as the
collections module.

setattr(object, name, value)
This is the counterpart of getattr(). The arguments are an object, a string, and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr(x, 'foobar', 123) is equivalent to x.foobar = 123.

name need not be a Python identifier as defined in identifiers unless the object chooses to enforce that, for
example in a custom __getattribute__() or via __slots__. An attribute whose name is not an identifier
will not be accessible using the dot notation, but is accessible through getattr() etc..

Note

Since private name mangling happens at compilation time, one must manually mangle a private attribute’s
(attributes with two leading underscores) name in order to set it with setattr().

class slice(stop)
class slice(start, stop, step=None)

Return a slice object representing the set of indices specified by range(start, stop, step). The start
and step arguments default to None.

start

stop

step

Slice objects have read-only data attributes start, stop, and step which merely return the argument
values (or their default). They have no other explicit functionality; however, they are used by NumPy
and other third-party packages.

Slice objects are also generated when extended indexing syntax is used. For example: a[start:stop:step]
or a[start:stop, i]. See itertools.islice() for an alternate version that returns an iterator.

Changed in version 3.12: Slice objects are now hashable (provided start, stop, and step are hashable).

sorted(iterable, / , *, key=None, reverse=False)
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each element in iterable
(for example, key=str.lower). The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.

Use functools.cmp_to_key() to convert an old-style cmp function to a key function.

28 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.1

The built-in sorted() function is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

The sort algorithm uses only < comparisons between items. While defining an __lt__() method will suffice
for sorting, PEP 8 recommends that all six rich comparisons be implemented. This will help avoid bugs when
using the same data with other ordering tools such as max() that rely on a different underlying method. Im-
plementing all six comparisons also helps avoid confusion for mixed type comparisons which can call reflected
the __gt__() method.

For sorting examples and a brief sorting tutorial, see sortinghowto.

@staticmethod

Transform a method into a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:

@staticmethod

def f(arg1, arg2, argN): ...

The @staticmethod form is a function decorator – see function for details.

A static method can be called either on the class (such as C.f()) or on an instance (such as C().f()).
Moreover, the static method descriptor is also callable, so it can be used in the class definition (such as f()).

Static methods in Python are similar to those found in Java or C++. Also, see classmethod() for a variant
that is useful for creating alternate class constructors.

Like all decorators, it is also possible to call staticmethod as a regular function and do something with its
result. This is needed in some cases where you need a reference to a function from a class body and you want
to avoid the automatic transformation to instance method. For these cases, use this idiom:

def regular_function():

...

class C:

method = staticmethod(regular_function)

For more information on static methods, see types.

Changed in version 3.10: Static methods now inherit the method attributes (__module__, __name__,
__qualname__, __doc__ and __annotations__), have a new __wrapped__ attribute, and are now
callable as regular functions.

class str(object=”)
class str(object=b” , encoding=’utf-8’, errors=’strict’)

Return a str version of object. See str() for details.

str is the built-in string class. For general information about strings, see Text Sequence Type — str.

sum(iterable, / , start=0)
Sums start and the items of an iterable from left to right and returns the total. The iterable’s items are normally
numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum(). The preferred, fast way to concatenate a sequence of
strings is by calling ''.join(sequence). To add floating-point values with extended precision, see math.
fsum(). To concatenate a series of iterables, consider using itertools.chain().

Changed in version 3.8: The start parameter can be specified as a keyword argument.

Changed in version 3.12: Summation of floats switched to an algorithm that gives higher accuracy and better
commutativity on most builds.

class super

29

https://peps.python.org/pep-0008/

The Python Library Reference, Release 3.13.1

class super(type, object_or_type=None)
Return a proxy object that delegates method calls to a parent or sibling class of type. This is useful for accessing
inherited methods that have been overridden in a class.

The object_or_type determines the method resolution order to be searched. The search starts from the class
right after the type.

For example, if __mro__ of object_or_type is D -> B -> C -> A -> object and the value of type is B,
then super() searches C -> A -> object.

The __mro__ attribute of the class corresponding to object_or_type lists the method resolution search order
used by both getattr() and super(). The attribute is dynamic and can change whenever the inheritance
hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance(obj, type) must be true. If the second argument is a type, issubclass(type2, type)

must be true (this is useful for classmethods).

When called directly within an ordinary method of a class, both arguments may be omitted (“zero-argument
super()”). In this case, type will be the enclosing class, and obj will be the first argument of the immediately
enclosing function (typically self). (This means that zero-argument super() will not work as expected
within nested functions, including generator expressions, which implicitly create nested functions.)

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This
use case is unique to Python and is not found in statically compiled languages or languages that only support
single inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes im-
plement the same method. Good design dictates that such implementations have the same calling signature in
every case (because the order of calls is determined at runtime, because that order adapts to changes in the
class hierarchy, and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):

def method(self, arg):

super().method(arg) # This does the same thing as:

super(C, self).method(arg)

In addition to method lookups, super() also works for attribute lookups. One possible use case for this is
calling descriptors in a parent or sibling class.

Note that super() is implemented as part of the binding process for explicit dotted attribute lookups such as
super().__getitem__(name). It does so by implementing its own __getattribute__() method for
searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly, super()
is undefined for implicit lookups using statements or operators such as super()[name].

Also note that, aside from the zero argument form, super() is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument form
only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve the class
being defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super(), see guide to using super().

class tuple

class tuple(iterable)

Rather than being a function, tuple is actually an immutable sequence type, as documented in Tuples and
Sequence Types — list, tuple, range.

class type(object)

30 Chapter 2. Built-in Functions

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.13.1

class type(name, bases, dict, **kwds)
With one argument, return the type of an object. The return value is a type object and generally the same object
as returned by object.__class__.

The isinstance() built-in function is recommended for testing the type of an object, because it takes sub-
classes into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class statement.
The name string is the class name and becomes the __name__ attribute. The bases tuple contains the base
classes and becomes the __bases__ attribute; if empty, object, the ultimate base of all classes, is added.
The dict dictionary contains attribute and method definitions for the class body; it may be copied or wrapped
before becoming the __dict__ attribute. The following two statements create identical type objects:

>>> class X:

... a = 1

...

>>> X = type('X', (), dict(a=1))

See also:

• Documentation on attributes and methods on classes.

• Type Objects

Keyword arguments provided to the three argument form are passed to the appropriate metaclass machinery
(usually __init_subclass__()) in the same way that keywords in a class definition (besides metaclass)
would.

See also class-customization.

Changed in version 3.6: Subclasses of type which don’t override type.__new__ may no longer use the
one-argument form to get the type of an object.

vars()

vars(object)
Return the __dict__ attribute for a module, class, instance, or any other object with a __dict__ attribute.

Objects such as modules and instances have an updateable __dict__ attribute; however, other objects may
have write restrictions on their __dict__ attributes (for example, classes use a types.MappingProxyType
to prevent direct dictionary updates).

Without an argument, vars() acts like locals().

A TypeError exception is raised if an object is specified but it doesn’t have a __dict__ attribute (for example,
if its class defines the __slots__ attribute).

Changed in version 3.13: The result of calling this function without an argument has been updated as described
for the locals() builtin.

zip(*iterables, strict=False)
Iterate over several iterables in parallel, producing tuples with an item from each one.

Example:

>>> for item in zip([1, 2, 3], ['sugar', 'spice', 'everything nice']):

... print(item)

...

(1, 'sugar')

(2, 'spice')

(3, 'everything nice')

More formally: zip() returns an iterator of tuples, where the i-th tuple contains the i-th element from each
of the argument iterables.

31

The Python Library Reference, Release 3.13.1

Another way to think of zip() is that it turns rows into columns, and columns into rows. This is similar to
transposing a matrix.

zip() is lazy: The elements won’t be processed until the iterable is iterated on, e.g. by a for loop or by
wrapping in a list.

One thing to consider is that the iterables passed to zip() could have different lengths; sometimes by de-
sign, and sometimes because of a bug in the code that prepared these iterables. Python offers three different
approaches to dealing with this issue:

• By default, zip() stops when the shortest iterable is exhausted. It will ignore the remaining items in the
longer iterables, cutting off the result to the length of the shortest iterable:

>>> list(zip(range(3), ['fee', 'fi', 'fo', 'fum']))

[(0, 'fee'), (1, 'fi'), (2, 'fo')]

• zip() is often used in cases where the iterables are assumed to be of equal length. In such cases, it’s
recommended to use the strict=True option. Its output is the same as regular zip():

>>> list(zip(('a', 'b', 'c'), (1, 2, 3), strict=True))

[('a', 1), ('b', 2), ('c', 3)]

Unlike the default behavior, it raises a ValueError if one iterable is exhausted before the others:

>>> for item in zip(range(3), ['fee', 'fi', 'fo', 'fum'], strict=True):

... print(item)

...

(0, 'fee')

(1, 'fi')

(2, 'fo')

Traceback (most recent call last):

...

ValueError: zip() argument 2 is longer than argument 1

Without the strict=True argument, any bug that results in iterables of different lengths will be silenced,
possibly manifesting as a hard-to-find bug in another part of the program.

• Shorter iterables can be padded with a constant value to make all the iterables have the same length. This
is done by itertools.zip_longest().

Edge cases: With a single iterable argument, zip() returns an iterator of 1-tuples. With no arguments, it
returns an empty iterator.

Tips and tricks:

• The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clus-
tering a data series into n-length groups using zip(*[iter(s)]*n, strict=True). This repeats the
same iterator n times so that each output tuple has the result of n calls to the iterator. This has the effect
of dividing the input into n-length chunks.

• zip() in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>> y = [4, 5, 6]

>>> list(zip(x, y))

[(1, 4), (2, 5), (3, 6)]

>>> x2, y2 = zip(*zip(x, y))

>>> x == list(x2) and y == list(y2)

True

Changed in version 3.10: Added the strict argument.

32 Chapter 2. Built-in Functions

https://en.wikipedia.org/wiki/Transpose

The Python Library Reference, Release 3.13.1

__import__(name, globals=None, locals=None, fromlist=(), level=0)

Note

This is an advanced function that is not needed in everyday Python programming, unlike importlib.
import_module().

This function is invoked by the import statement. It can be replaced (by importing the builtins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but doing
so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain the same goals
and does not cause issues with code which assumes the default import implementation is in use. Direct use of
__import__() is also discouraged in favor of importlib.import_module().

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at
all and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. 0 (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the
module calling __import__() (see PEP 328 for the details).

When the name variable is of the form package.module, normally, the top-level package (the name up till
the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is
given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

spam = __import__('spam', globals(), locals(), [], 0)

The statement import spam.ham results in this call:

spam = __import__('spam.ham', globals(), locals(), [], 0)

Note how __import__() returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus results in

_temp = __import__('spam.ham', globals(), locals(), ['eggs', 'sausage'], 0)

eggs = _temp.eggs

saus = _temp.sausage

Here, the spam.ham module is returned from __import__(). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.

import_module().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the default value
to 0).

Changed in version 3.9: When the command line options -E or -I are being used, the environment variable
PYTHONCASEOK is now ignored.

33

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0328/

The Python Library Reference, Release 3.13.1

34 Chapter 2. Built-in Functions

CHAPTER

THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False

The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

True

The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None

An object frequently used to represent the absence of a value, as when default arguments are not passed to
a function. Assignments to None are illegal and raise a SyntaxError. None is the sole instance of the
NoneType type.

NotImplemented

A special value which should be returned by the binary special methods (e.g. __eq__(), __lt__(),
__add__(), __rsub__(), etc.) to indicate that the operation is not implemented with respect to the other
type; may be returned by the in-place binary special methods (e.g. __imul__(), __iand__(), etc.) for the
same purpose. It should not be evaluated in a boolean context. NotImplemented is the sole instance of the
types.NotImplementedType type.

Note

When a binary (or in-place) method returns NotImplemented the interpreter will try the reflected
operation on the other type (or some other fallback, depending on the operator). If all attempts
return NotImplemented, the interpreter will raise an appropriate exception. Incorrectly returning
NotImplemented will result in a misleading error message or the NotImplemented value being re-
turned to Python code.

See Implementing the arithmetic operations for examples.

Note

NotImplementedError and NotImplemented are not interchangeable, even though they have similar
names and purposes. See NotImplementedError for details on when to use it.

Changed in version 3.9: Evaluating NotImplemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of
Python.

Ellipsis

The same as the ellipsis literal “...”. Special value used mostly in conjunction with extended slicing syntax
for user-defined container data types. Ellipsis is the sole instance of the types.EllipsisType type.

__debug__

This constant is true if Python was not started with an -O option. See also the assert statement.

35

The Python Library Reference, Release 3.13.1

Note

The names None, False, True and __debug__ cannot be reassigned (assignments to them, even as an attribute
name, raise SyntaxError), so they can be considered “true” constants.

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the -S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not
be used in programs.

quit(code=None)

exit(code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called,
raise SystemExit with the specified exit code.

help

Object that when printed, prints the message “Type help() for interactive help, or help(object) for help about
object.”, and when called, acts as described elsewhere.

copyright

credits

Objects that when printed or called, print the text of copyright or credits, respectively.

license

Object that when printed, prints the message “Type license() to see the full license text”, and when called,
displays the full license text in a pager-like fashion (one screen at a time).

36 Chapter 3. Built-in Constants

CHAPTER

FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.

The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and don’t
return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared for
equality, tested for truth value, and converted to a string (with the repr() function or the slightly different str()
function). The latter function is implicitly used when an object is written by the print() function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean operations
below.

By default, an object is considered true unless its class defines either a __bool__()method that returns False or a
__len__()method that returns zero, when called with the object.1 Here are most of the built-in objects considered
false:

• constants defined to be false: None and False

• zero of any numeric type: 0, 0.0, 0j, Decimal(0), Fraction(0, 1)

• empty sequences and collections: '', (), [], {}, set(), range(0)

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for
true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their
operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes

x or y if x is true, then x, else y (1)
x and y if x is false, then x, else y (2)
not x if x is false, then True, else False (3)

Notes:

(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is false.

(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

1 Additional information on these special methods may be found in the Python Reference Manual (customization).

37

The Python Library Reference, Release 3.13.1

(3) not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b), and
a == not b is a syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x < y

and y <= z, except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is found
to be false).

This table summarizes the comparison operations:

Operation Meaning

< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
!= not equal
is object identity
is not negated object identity

Objects of different types, except different numeric types, never compare equal. The == operator is always defined
but for some object types (for example, class objects) is equivalent to is. The <, <=, > and >= operators are only
defined where they make sense; for example, they raise a TypeError exception when one of the arguments is a
complex number.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq__() method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object, unless
the class defines enough of the methods __lt__(), __le__(), __gt__(), and __ge__() (in general, __lt__()
and __eq__() are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects and
never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported by types that are iterable or
implement the __contains__() method.

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating-point numbers, and complex numbers. In addition, Booleans
are a subtype of integers. Integers have unlimited precision. Floating-point numbers are usually implemented using
double in C; information about the precision and internal representation of floating-point numbers for the machine
on which your program is running is available in sys.float_info. Complex numbers have a real and imaginary
part, which are each a floating-point number. To extract these parts from a complex number z, use z.real and
z.imag. (The standard library includes the additional numeric types fractions.Fraction, for rationals, and
decimal.Decimal, for floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an exponent
sign yield floating-point numbers. Appending 'j' or 'J' to a numeric literal yields an imaginary number (a complex
number with a zero real part) which you can add to an integer or float to get a complex number with real and imaginary
parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point,

38 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

which is narrower than complex. A comparison between numbers of different types behaves as though the exact
values of those numbers were being compared.2

The constructors int(), float(), and complex() can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations (for priorities of the operations, see operator-
summary):

Operation Result Notes Full documen-
tation

x + y sum of x and y
x - y difference of x and y
x * y product of x and y
x / y quotient of x and y
x // y floored quotient of x and y (1)(2)
x % y remainder of x / y (2)
-x x negated
+x x unchanged
abs(x) absolute value or magnitude of x abs()

int(x) x converted to integer (3)(6) int()

float(x) x converted to floating point (4)(6) float()

complex(re,

im)

a complex number with real part re, imaginary part im. im de-
faults to zero.

(6) complex()

c.

conjugate()

conjugate of the complex number c

divmod(x, y) the pair (x // y, x % y) (2) divmod()

pow(x, y) x to the power y (5) pow()

x ** y x to the power y (5)

Notes:

(1) Also referred to as integer division. For operands of type int, the result has type int. For operands of type
float, the result has type float. In general, the result is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//2 is 0, (-1)//2 is -1, 1//(-2) is
-1, and (-1)//(-2) is 0.

(2) Not for complex numbers. Instead convert to floats using abs() if appropriate.

(3) Conversion from float to int truncates, discarding the fractional part. See functions math.floor() and
math.ceil() for alternative conversions.

(4) float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

(5) Python defines pow(0, 0) and 0 ** 0 to be 1, as is common for programming languages.

(6) The numeric literals accepted include the digits 0 to 9 or any Unicode equivalent (code points with the Nd
property).

See the Unicode Standard for a complete list of code points with the Nd property.

All numbers.Real types (int and float) also include the following operations:

Operation Result

math.trunc(x) x truncated to Integral
round(x[, n]) x rounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
math.floor(x) the greatest Integral <= x
math.ceil(x) the least Integral >= x

2 As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 39

https://unicode.org/Public/UNIDATA/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.13.1

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types

Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out
in two’s complement with an infinite number of sign bits.

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and -).

This table lists the bitwise operations sorted in ascending priority:

Operation Result Notes

x | y bitwise or of x and y (4)
x ^ y bitwise exclusive or of x and y (4)
x & y bitwise and of x and y (4)
x << n x shifted left by n bits (1)(2)
x >> n x shifted right by n bits (1)(3)
~x the bits of x inverted

Notes:

(1) Negative shift counts are illegal and cause a ValueError to be raised.

(2) A left shift by n bits is equivalent to multiplication by pow(2, n).

(3) A right shift by n bits is equivalent to floor division by pow(2, n).

(4) Performing these calculations with at least one extra sign extension bit in a finite two’s complement represen-
tation (a working bit-width of 1 + max(x.bit_length(), y.bit_length()) or more) is sufficient to
get the same result as if there were an infinite number of sign bits.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers.Integral abstract base class. In addition, it provides a few more methods:

int.bit_length()

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = -37

>>> bin(n)

'-0b100101'

>>> n.bit_length()

6

More precisely, if x is nonzero, then x.bit_length() is the unique positive integer k such that 2**(k-1)
<= abs(x) < 2**k. Equivalently, when abs(x) is small enough to have a correctly rounded logarithm,
then k = 1 + int(log(abs(x), 2)). If x is zero, then x.bit_length() returns 0.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) --> '-0b100101'

s = s.lstrip('-0b') # remove leading zeros and minus sign

return len(s) # len('100101') --> 6

Added in version 3.1.

int.bit_count()

Return the number of ones in the binary representation of the absolute value of the integer. This is also known
as the population count. Example:

40 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

>>> n = 19

>>> bin(n)

'0b10011'

>>> n.bit_count()

3

>>> (-n).bit_count()

3

Equivalent to:

def bit_count(self):

return bin(self).count("1")

Added in version 3.10.

int.to_bytes(length=1, byteorder=’big’, *, signed=False)
Return an array of bytes representing an integer.

>>> (1024).to_bytes(2, byteorder='big')

b'\x04\x00'

>>> (1024).to_bytes(10, byteorder='big')

b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'

>>> (-1024).to_bytes(10, byteorder='big', signed=True)

b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'

>>> x = 1000

>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')

b'\xe8\x03'

The integer is represented using length bytes, and defaults to 1. An OverflowError is raised if the integer is
not representable with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer, and defaults to "big". If
byteorder is "big", the most significant byte is at the beginning of the byte array. If byteorder is "little",
the most significant byte is at the end of the byte array.

The signed argument determines whether two’s complement is used to represent the integer. If signed is False
and a negative integer is given, an OverflowError is raised. The default value for signed is False.

The default values can be used to conveniently turn an integer into a single byte object:

>>> (65).to_bytes()

b'A'

However, when using the default arguments, don’t try to convert a value greater than 255 or you’ll get an
OverflowError.

Equivalent to:

def to_bytes(n, length=1, byteorder='big', signed=False):

if byteorder == 'little':

order = range(length)

elif byteorder == 'big':

order = reversed(range(length))

else:

raise ValueError("byteorder must be either 'little' or 'big'")

return bytes((n >> i*8) & 0xff for i in order)

Added in version 3.2.

Changed in version 3.11: Added default argument values for length and byteorder.

4.4. Numeric Types — int, float, complex 41

The Python Library Reference, Release 3.13.1

classmethod int.from_bytes(bytes, byteorder=’big’, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes(b'\x00\x10', byteorder='big')

16

>>> int.from_bytes(b'\x00\x10', byteorder='little')

4096

>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)

-1024

>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)

64512

>>> int.from_bytes([255, 0, 0], byteorder='big')

16711680

The argument bytes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer, and defaults to "big". If
byteorder is "big", the most significant byte is at the beginning of the byte array. If byteorder is "little",
the most significant byte is at the end of the byte array. To request the native byte order of the host system,
use sys.byteorder as the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer.

Equivalent to:

def from_bytes(bytes, byteorder='big', signed=False):

if byteorder == 'little':

little_ordered = list(bytes)

elif byteorder == 'big':

little_ordered = list(reversed(bytes))

else:

raise ValueError("byteorder must be either 'little' or 'big'")

n = sum(b << i*8 for i, b in enumerate(little_ordered))

if signed and little_ordered and (little_ordered[-1] & 0x80):

n -= 1 << 8*len(little_ordered)

return n

Added in version 3.2.

Changed in version 3.11: Added default argument value for byteorder.

int.as_integer_ratio()

Return a pair of integers whose ratio is equal to the original integer and has a positive denominator. The integer
ratio of integers (whole numbers) is always the integer as the numerator and 1 as the denominator.

Added in version 3.8.

int.is_integer()

Returns True. Exists for duck type compatibility with float.is_integer().

Added in version 3.12.

4.4.3 Additional Methods on Float

The float type implements the numbers.Real abstract base class. float also has the following additional methods.

float.as_integer_ratio()

Return a pair of integers whose ratio is exactly equal to the original float. The ratio is in lowest terms and has
a positive denominator. Raises OverflowError on infinities and a ValueError on NaNs.

42 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

float.is_integer()

Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).is_integer()

True

>>> (3.2).is_integer()

False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

float.hex()

Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading 0x and a trailing p and exponent.

classmethod float.fromhex(s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and
trailing whitespace.

Note that float.hex() is an instance method, while float.fromhex() is a class method.

A hexadecimal string takes the form:

[sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or -, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of float.hex() is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s %a format
character or Java’s Double.toHexString are accepted by float.fromhex().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number (3
+ 10./16 + 7./16**2) * 2.0**10, or 3740.0:

>>> float.fromhex('0x3.a7p10')

3740.0

Applying the reverse conversion to 3740.0 gives a different hexadecimal string representing the same number:

>>> float.hex(3740.0)

'0x1.d380000000000p+11'

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash(x) == hash(y) whenever x == y

(see the __hash__() method documentation for more details). For ease of implementation and efficiency across a
variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction) Python’s hash
for numeric types is based on a single mathematical function that’s defined for any rational number, and hence applies
to all instances of int and fractions.Fraction, and all finite instances of float and decimal.Decimal.
Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P is made available to
Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime used is P = 2**31 - 1 on machines with 32-bit C longs
and P = 2**61 - 1 on machines with 64-bit C longs.

Here are the rules in detail:

4.4. Numeric Types — int, float, complex 43

The Python Library Reference, Release 3.13.1

• If x = m / n is a nonnegative rational number and n is not divisible by P, define hash(x) as m *

invmod(n, P) % P, where invmod(n, P) gives the inverse of n modulo P.

• If x = m / n is a nonnegative rational number and n is divisible by P (but m is not) then n has no inverse mod-
ulo P and the rule above doesn’t apply; in this case define hash(x) to be the constant value sys.hash_info.
inf.

• If x = m / n is a negative rational number define hash(x) as -hash(-x). If the resulting hash is -1,
replace it with -2.

• The particular values sys.hash_info.inf and -sys.hash_info.inf are used as hash values for positive
infinity or negative infinity (respectively).

• For a complex number z, the hash values of the real and imaginary parts are combined by computing
hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo 2**sys.hash_info.

width so that it lies in range(-2**(sys.hash_info.width - 1), 2**(sys.hash_info.width -

1)). Again, if the result is -1, it’s replaced with -2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash
of a rational number, float, or complex:

import sys, math

def hash_fraction(m, n):

"""Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.

Equivalent to hash(fractions.Fraction(m, n)).

"""

P = sys.hash_info.modulus

Remove common factors of P. (Unnecessary if m and n already coprime.)

while m % P == n % P == 0:

m, n = m // P, n // P

if n % P == 0:

hash_value = sys.hash_info.inf

else:

Fermat's Little Theorem: pow(n, P-1, P) is 1, so

pow(n, P-2, P) gives the inverse of n modulo P.

hash_value = (abs(m) % P) * pow(n, P - 2, P) % P

if m < 0:

hash_value = -hash_value

if hash_value == -1:

hash_value = -2

return hash_value

def hash_float(x):

"""Compute the hash of a float x."""

if math.isnan(x):

return object.__hash__(x)

elif math.isinf(x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf

else:

return hash_fraction(*x.as_integer_ratio())

def hash_complex(z):

"""Compute the hash of a complex number z."""

(continues on next page)

44 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

hash_value = hash_float(z.real) + sys.hash_info.imag * hash_float(z.imag)

do a signed reduction modulo 2**sys.hash_info.width

M = 2**(sys.hash_info.width - 1)

hash_value = (hash_value & (M - 1)) - (hash_value & M)

if hash_value == -1:

hash_value = -2

return hash_value

4.5 Boolean Type - bool

Booleans represent truth values. The bool type has exactly two constant instances: True and False.

The built-in function bool() converts any value to a boolean, if the value can be interpreted as a truth value (see
section Truth Value Testing above).

For logical operations, use the boolean operators and, or and not. When applying the bitwise operators &, |, ^ to
two booleans, they return a bool equivalent to the logical operations “and”, “or”, “xor”. However, the logical operators
and, or and != should be preferred over &, | and ^.

Deprecated since version 3.12: The use of the bitwise inversion operator ~ is deprecated and will raise an error in
Python 3.16.

bool is a subclass of int (see Numeric Types — int, float, complex). In many numeric contexts, False and True
behave like the integers 0 and 1, respectively. However, relying on this is discouraged; explicitly convert using int()
instead.

4.6 Iterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iterable support:

container.__iter__()

Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for
those iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure
which supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of
the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter__()

Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C API.

iterator.__next__()

Return the next item from the iterator. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s __next__() method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5. Boolean Type - bool 45

The Python Library Reference, Release 3.13.1

4.6.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __iter__()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the __iter__() and __next__() methods. More information about generators can be found in the
documentation for the yield expression.

4.7 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for process-
ing of binary data and text strings are described in dedicated sections.

4.7.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.Sequence ABC is provided to make it easier to correctly implement these operations on cus-
tom sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and t are sequences of the same
type, n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation) and *
(repetition) operations have the same priority as the corresponding numeric operations.3

Operation Result Notes

x in s True if an item of s is equal to x, else False (1)
x not in s False if an item of s is equal to x, else True (1)
s + t the concatenation of s and t (6)(7)
s * n or n * s equivalent to adding s to itself n times (2)(7)
s[i] ith item of s, origin 0 (3)
s[i:j] slice of s from i to j (3)(4)
s[i:j:k] slice of s from i to j with step k (3)(5)
len(s) length of s
min(s) smallest item of s
max(s) largest item of s
s.index(x[, i[,

j]])

index of the first occurrence of x in s (at or after index i and before index
j)

(8)

s.count(x) total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically
by comparing corresponding elements. This means that to compare equal, every element must compare equal and the
two sequences must be of the same type and have the same length. (For full details see comparisons in the language
reference.)

Forward and reversed iterators over mutable sequences access values using an index. That index will continue to
march forward (or backward) even if the underlying sequence is mutated. The iterator terminates only when an
IndexError or a StopIteration is encountered (or when the index drops below zero).

Notes:

(1) While the in and not in operations are used only for simple containment testing in the general case, some
specialised sequences (such as str, bytes and bytearray) also use them for subsequence testing:

>>> "gg" in "eggs"

True

3 They must have since the parser can’t tell the type of the operands.

46 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

(2) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note that
items in the sequence s are not copied; they are referenced multiple times. This often haunts new Python
programmers; consider:

>>> lists = [[]] * 3

>>> lists

[[], [], []]

>>> lists[0].append(3)

>>> lists

[[3], [3], [3]]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
* 3 are references to this single empty list. Modifying any of the elements of lists modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]

>>> lists[0].append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> lists

[[3], [5], [7]]

Further explanation is available in the FAQ entry faq-multidimensional-list.

(3) If i or j is negative, the index is relative to the end of sequence s: len(s) + i or len(s) + j is substituted.
But note that -0 is still 0.

(4) The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j. If i or j is
greater than len(s), use len(s). If i is omitted or None, use 0. If j is omitted or None, use len(s). If i is
greater than or equal to j, the slice is empty.

(5) The slice of s from i to j with step k is defined as the sequence of items with index x = i + n*k such that
0 <= n < (j-i)/k. In other words, the indices are i, i+k, i+2*k, i+3*k and so on, stopping when j is
reached (but never including j). When k is positive, i and j are reduced to len(s) if they are greater. When k
is negative, i and j are reduced to len(s) - 1 if they are greater. If i or j are omitted or None, they become
“end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is treated like 1.

(6) Concatenating immutable sequences always results in a new object. This means that building up a sequence by
repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime
cost, you must switch to one of the alternatives below:

• if concatenating str objects, you can build a list and use str.join() at the end or else write to an
io.StringIO instance and retrieve its value when complete

• if concatenating bytes objects, you can similarly use bytes.join() or io.BytesIO, or you can do
in-place concatenation with a bytearray object. bytearray objects are mutable and have an efficient
overallocation mechanism

• if concatenating tuple objects, extend a list instead

• for other types, investigate the relevant class documentation

(7) Some sequence types (such as range) only support item sequences that follow specific patterns, and hence
don’t support sequence concatenation or repetition.

(8) index raises ValueError when x is not found in s. Not all implementations support passing the additional
arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra
arguments is roughly equivalent to using s[i:j].index(x), only without copying any data and with the
returned index being relative to the start of the sequence rather than the start of the slice.

4.7. Sequence Types — list, tuple, range 47

The Python Library Reference, Release 3.13.1

4.7.2 Immutable Sequence Types

The only operation that immutable sequence types generally implement that is not also implemented by mutable
sequence types is support for the hash() built-in.

This support allows immutable sequences, such as tuple instances, to be used as dict keys and stored in set and
frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.7.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The collections.abc.

MutableSequence ABC is provided to make it easier to correctly implement these operations on custom sequence
types.

In the table s is an instance of a mutable sequence type, t is any iterable object and x is an arbitrary object that meets
any type and value restrictions imposed by s (for example, bytearray only accepts integers that meet the value
restriction 0 <= x <= 255).

Operation Result Notes

s[i] = x item i of s is replaced by x
s[i:j] = t slice of s from i to j is replaced by the contents of the iterable t
del s[i:j] same as s[i:j] = []

s[i:j:k] = t the elements of s[i:j:k] are replaced by those of t (1)
del s[i:j:k] removes the elements of s[i:j:k] from the list
s.append(x) appends x to the end of the sequence (same as s[len(s):len(s)] = [x])
s.clear() removes all items from s (same as del s[:]) (5)
s.copy() creates a shallow copy of s (same as s[:]) (5)
s.extend(t) or s

+= t

extends s with the contents of t (for the most part the same as
s[len(s):len(s)] = t)

s *= n updates s with its contents repeated n times (6)
s.insert(i, x) inserts x into s at the index given by i (same as s[i:i] = [x])
s.pop() or s.

pop(i)

retrieves the item at i and also removes it from s (2)

s.remove(x) removes the first item from s where s[i] is equal to x (3)
s.reverse() reverses the items of s in place (4)

Notes:

(1) If k is not equal to 1, t must have the same length as the slice it is replacing.

(2) The optional argument i defaults to -1, so that by default the last item is removed and returned.

(3) remove() raises ValueError when x is not found in s.

(4) The reverse()methodmodifies the sequence in place for economy of space when reversing a large sequence.
To remind users that it operates by side effect, it does not return the reversed sequence.

(5) clear() and copy() are included for consistency with the interfaces of mutable containers that don’t
support slicing operations (such as dict and set). copy() is not part of the collections.abc.

MutableSequence ABC, but most concrete mutable sequence classes provide it.

Added in version 3.3: clear() and copy() methods.

(6) The value n is an integer, or an object implementing __index__(). Zero and negative values of n clear the
sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for s * n

under Common Sequence Operations.

48 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

4.7.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of
similarity will vary by application).

class list([iterable])
Lists may be constructed in several ways:

• Using a pair of square brackets to denote the empty list: []

• Using square brackets, separating items with commas: [a], [a, b, c]

• Using a list comprehension: [x for x in iterable]

• Using the type constructor: list() or list(iterable)

The constructor builds a list whose items are the same and in the same order as iterable’s items. iterablemay be
either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is
made and returned, similar to iterable[:]. For example, list('abc') returns ['a', 'b', 'c'] and
list((1, 2, 3)) returns [1, 2, 3]. If no argument is given, the constructor creates a new empty list,
[].

Many other operations also produce lists, including the sorted() built-in.

Lists implement all of the common andmutable sequence operations. Lists also provide the following additional
method:

sort(*, key=None, reverse=False)
This method sorts the list in place, using only < comparisons between items. Exceptions are not sup-
pressed - if any comparison operations fail, the entire sort operation will fail (and the list will likely be
left in a partially modified state).

sort() accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each list element
(for example, key=str.lower). The key corresponding to each item in the list is calculated once and
then used for the entire sorting process. The default value of Nonemeans that list items are sorted directly
without calculating a separate key value.

The functools.cmp_to_key() utility is available to convert a 2.x style cmp function to a key function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence. To
remind users that it operates by side effect, it does not return the sorted sequence (use sorted() to
explicitly request a new sorted list instance).

The sort()method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or
even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the
duration, and raises ValueError if it can detect that the list has been mutated during a sort.

4.7.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples pro-
duced by the enumerate() built-in). Tuples are also used for cases where an immutable sequence of homogeneous
data is needed (such as allowing storage in a set or dict instance).

class tuple([iterable])
Tuples may be constructed in a number of ways:

4.7. Sequence Types — list, tuple, range 49

The Python Library Reference, Release 3.13.1

• Using a pair of parentheses to denote the empty tuple: ()

• Using a trailing comma for a singleton tuple: a, or (a,)

• Separating items with commas: a, b, c or (a, b, c)

• Using the tuple() built-in: tuple() or tuple(iterable)

The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterablemay
be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it
is returned unchanged. For example, tuple('abc') returns ('a', 'b', 'c') and tuple([1, 2, 3]

) returns (1, 2, 3). If no argument is given, the constructor creates a new empty tuple, ().

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional,
except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, f(a, b,

c) is a function call with three arguments, while f((a, b, c)) is a function call with a 3-tuple as the sole
argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple() may be a more appropriate choice than a simple tuple object.

4.7.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific number
of times in for loops.

class range(stop)

class range(start, stop[, step])
The arguments to the range constructor must be integers (either built-in int or any object that implements
the __index__() special method). If the step argument is omitted, it defaults to 1. If the start argument is
omitted, it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formula r[i] = start + step*iwhere
i >= 0 and r[i] < stop.

For a negative step, the contents of the range are still determined by the formula r[i] = start + step*i,
but the constraints are i >= 0 and r[i] > stop.

A range object will be empty if r[0] does not meet the value constraint. Ranges do support negative indices,
but these are interpreted as indexing from the end of the sequence determined by the positive indices.

Ranges containing absolute values larger than sys.maxsize are permitted but some features (such as len())
may raise OverflowError.

Range examples:

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range(1, 11))

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> list(range(0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list(range(0, 10, 3))

[0, 3, 6, 9]

>>> list(range(0, -10, -1))

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

>>> list(range(0))

[]

>>> list(range(1, 0))

[]

50 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact
that range objects can only represent sequences that follow a strict pattern and repetition and concatenation
will usually violate that pattern).

start

The value of the start parameter (or 0 if the parameter was not supplied)

stop

The value of the stop parameter

step

The value of the step parameter (or 1 if the parameter was not supplied)

The advantage of the range type over a regular list or tuple is that a range object will always take the same
(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and step
values, calculating individual items and subranges as needed).

Range objects implement the collections.abc.SequenceABC, and provide features such as containment tests,
element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range(0, 20, 2)

>>> r

range(0, 20, 2)

>>> 11 in r

False

>>> 10 in r

True

>>> r.index(10)

5

>>> r[5]

10

>>> r[:5]

range(0, 10, 2)

>>> r[-1]

18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects are
considered equal if they represent the same sequence of values. (Note that two range objects that compare equal might
have different start, stop and step attributes, for example range(0) == range(2, 1, 3) or range(0, 3,

2) == range(0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test int objects for
membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘==’ and ‘!=’ to compare range objects based on the sequence of values they define
(instead of comparing based on object identity).

Added the start, stop and step attributes.

See also

• The linspace recipe shows how to implement a lazy version of range suitable for floating-point applications.

4.8 Text Sequence Type — str

Textual data in Python is handled with str objects, or strings. Strings are immutable sequences of Unicode code
points. String literals are written in a variety of ways:

• Single quotes: 'allows embedded "double" quotes'

4.8. Text Sequence Type — str 51

https://code.activestate.com/recipes/579000-equally-spaced-numbers-linspace/

The Python Library Reference, Release 3.13.1

• Double quotes: "allows embedded 'single' quotes"

• Triple quoted: '''Three single quotes''', """Three double quotes"""

Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly converted
to a single string literal. That is, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the r (“raw”)
prefix that disables most escape sequence processing.

Strings may also be created from other objects using the str constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty
string s, s[0] == s[0:1].

There is also no mutable string type, but str.join() or io.StringIO can be used to efficiently construct strings
from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again permitted
on string literals. It has no effect on the meaning of string literals and cannot be combined with the r prefix.

class str(object=”)

class str(object=b” , encoding=’utf-8’, errors=’strict’)
Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior
of str() depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given, str(object) returns type(object).__str__(object), which
is the “informal” or nicely printable string representation of object. For string objects, this is the string itself.
If object does not have a __str__() method, then str() falls back to returning repr(object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytes or bytearray).
In this case, if object is a bytes (or bytearray) object, then str(bytes, encoding, errors) is equiv-
alent to bytes.decode(encoding, errors). Otherwise, the bytes object underlying the buffer object is
obtained before calling bytes.decode(). See Binary Sequence Types — bytes, bytearray, memoryview and
bufferobjects for information on buffer objects.

Passing a bytes object to str()without the encoding or errors arguments falls under the first case of returning
the informal string representation (see also the -b command-line option to Python). For example:

>>> str(b'Zoot!')

"b'Zoot!'"

For more information on the str class and its methods, see Text Sequence Type — str and the String Methods
section below. To output formatted strings, see the f-strings and Format String Syntax sections. In addition,
see the Text Processing Services section.

4.8.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization
(see str.format(), Format String Syntax and Custom String Formatting) and the other based on C printf style
formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the
cases it can handle (printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide various
text related utilities (including regular expression support in the re module).

str.capitalize()

Return a copy of the string with its first character capitalized and the rest lowercased.

Changed in version 3.8: The first character is now put into titlecase rather than uppercase. This means that
characters like digraphs will only have their first letter capitalized, instead of the full character.

52 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

str.casefold()

Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions
in a string. For example, the German lowercase letter 'ß' is equivalent to "ss". Since it is already lowercase,
lower() would do nothing to 'ß'; casefold() converts it to "ss".

The casefolding algorithm is described in section 3.13 ‘Default Case Folding’ of the Unicode Standard.

Added in version 3.3.

str.center(width[, fillchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII
space). The original string is returned if width is less than or equal to len(s).

str.count(sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional argu-
ments start and end are interpreted as in slice notation.

If sub is empty, returns the number of empty strings between characters which is the length of the string plus
one.

str.encode(encoding=’utf-8’, errors=’strict’)
Return the string encoded to bytes.

encoding defaults to 'utf-8'; see Standard Encodings for possible values.

errors controls how encoding errors are handled. If 'strict' (the default), a UnicodeError

exception is raised. Other possible values are 'ignore', 'replace', 'xmlcharrefreplace',
'backslashreplace' and any other name registered via codecs.register_error(). See Error Han-
dlers for details.

For performance reasons, the value of errors is not checked for validity unless an encoding error actually occurs,
Python Development Mode is enabled or a debug build is used.

Changed in version 3.1: Added support for keyword arguments.

Changed in version 3.9: The value of the errors argument is now checked in Python Development Mode and in
debug mode.

str.endswith(suffix[, start[, end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

str.expandtabs(tabsize=8)
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the
current column and the given tab size. Tab positions occur every tabsize characters (default is 8, giving tab
positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string
is examined character by character. If the character is a tab (\t), one or more space characters are inserted in
the result until the current column is equal to the next tab position. (The tab character itself is not copied.) If
the character is a newline (\n) or return (\r), it is copied and the current column is reset to zero. Any other
character is copied unchanged and the current column is incremented by one regardless of how the character
is represented when printed.

>>> '01\t012\t0123\t01234'.expandtabs()

'01 012 0123 01234'

>>> '01\t012\t0123\t01234'.expandtabs(4)

'01 012 0123 01234'

str.find(sub[, start[, end]])
Return the lowest index in the string where substring sub is found within the slice s[start:end]. Optional
arguments start and end are interpreted as in slice notation. Return -1 if sub is not found.

4.8. Text Sequence Type — str 53

https://www.unicode.org/versions/Unicode15.1.0/ch03.pdf

The Python Library Reference, Release 3.13.1

Note

The find() method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> 'Py' in 'Python'

True

str.format(*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces {}. Each replacement field contains either the numeric index of a
positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement
field is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is {0}".format(1+2)

'The sum of 1 + 2 is 3'

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

Note

When formatting a number (int, float, complex, decimal.Decimal and subclasses) with the n type
(ex: '{:n}'.format(1234)), the function temporarily sets the LC_CTYPE locale to the LC_NUMERIC
locale to decode decimal_point and thousands_sep fields of localeconv() if they are non-ASCII
or longer than 1 byte, and the LC_NUMERIC locale is different than the LC_CTYPE locale. This temporary
change affects other threads.

Changed in version 3.7: When formatting a number with the n type, the function sets temporarily the
LC_CTYPE locale to the LC_NUMERIC locale in some cases.

str.format_map(mapping, /)
Similar to str.format(**mapping), except that mapping is used directly and not copied to a dict. This
is useful if for example mapping is a dict subclass:

>>> class Default(dict):

... def __missing__(self, key):

... return key

...

>>> '{name} was born in {country}'.format_map(Default(name='Guido'))

'Guido was born in country'

Added in version 3.2.

str.index(sub[, start[, end]])
Like find(), but raise ValueError when the substring is not found.

str.isalnum()

Return True if all characters in the string are alphanumeric and there is at least one character, False otherwise.
A character c is alphanumeric if one of the following returns True: c.isalpha(), c.isdecimal(), c.
isdigit(), or c.isnumeric().

str.isalpha()

Return True if all characters in the string are alphabetic and there is at least one character, False otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those
with general category property being one of “Lm”, “Lt”, “Lu”, “Ll”, or “Lo”. Note that this is different from the
Alphabetic property defined in the section 4.10 ‘Letters, Alphabetic, and Ideographic’ of the Unicode Standard.

54 Chapter 4. Built-in Types

https://www.unicode.org/versions/Unicode15.1.0/ch04.pdf

The Python Library Reference, Release 3.13.1

str.isascii()

Return True if the string is empty or all characters in the string are ASCII, False otherwise. ASCII characters
have code points in the range U+0000-U+007F.

Added in version 3.7.

str.isdecimal()

Return True if all characters in the string are decimal characters and there is at least one character, False
otherwise. Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”.

str.isdigit()

Return True if all characters in the string are digits and there is at least one character, False otherwise. Digits
include decimal characters and digits that need special handling, such as the compatibility superscript digits.
This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers. Formally, a
digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

str.isidentifier()

Return True if the string is a valid identifier according to the language definition, section identifiers.

keyword.iskeyword() can be used to test whether string s is a reserved identifier, such as def and class.

Example:

>>> from keyword import iskeyword

>>> 'hello'.isidentifier(), iskeyword('hello')

(True, False)

>>> 'def'.isidentifier(), iskeyword('def')

(True, True)

str.islower()

Return True if all cased characters4 in the string are lowercase and there is at least one cased character, False
otherwise.

str.isnumeric()

Return True if all characters in the string are numeric characters, and there is at least one character, False
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value
property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the
property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

str.isprintable()

Return True if all characters in the string are printable or the string is empty, False otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting
the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those
which should not be escaped when repr() is invoked on a string. It has no bearing on the handling of strings
written to sys.stdout or sys.stderr.)

str.isspace()

Return True if there are only whitespace characters in the string and there is at least one character, False
otherwise.

A character is whitespace if in the Unicode character database (see unicodedata), either its general category
is Zs (“Separator, space”), or its bidirectional class is one of WS, B, or S.

str.istitle()

Return True if the string is a titlecased string and there is at least one character, for example uppercase char-
acters may only follow uncased characters and lowercase characters only cased ones. Return False otherwise.

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “Ll” (Letter, lowercase), or “Lt” (Letter,
titlecase).

4.8. Text Sequence Type — str 55

The Python Library Reference, Release 3.13.1

str.isupper()

Return True if all cased charactersPage 55, 4 in the string are uppercase and there is at least one cased character,
False otherwise.

>>> 'BANANA'.isupper()

True

>>> 'banana'.isupper()

False

>>> 'baNana'.isupper()

False

>>> ' '.isupper()

False

str.join(iterable)
Return a string which is the concatenation of the strings in iterable. A TypeError will be raised if there
are any non-string values in iterable, including bytes objects. The separator between elements is the string
providing this method.

str.ljust(width[, fillchar])
Return the string left justified in a string of length width. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to len(s).

str.lower()

Return a copy of the string with all the cased charactersPage 55, 4 converted to lowercase.

The lowercasing algorithm used is described in section 3.13 ‘Default Case Folding’ of the Unicode Standard.

str.lstrip([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> ' spacious '.lstrip()

'spacious '

>>> 'www.example.com'.lstrip('cmowz.')

'example.com'

See str.removeprefix() for a method that will remove a single prefix string rather than all of a set of
characters. For example:

>>> 'Arthur: three!'.lstrip('Arthur: ')

'ee!'

>>> 'Arthur: three!'.removeprefix('Arthur: ')

'three!'

static str.maketrans(x[, y[, z]])
This static method returns a translation table usable for str.translate().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings
of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted
to ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character
in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string,
whose characters will be mapped to None in the result.

str.partition(sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings.

56 Chapter 4. Built-in Types

https://www.unicode.org/versions/Unicode15.1.0/ch03.pdf

The Python Library Reference, Release 3.13.1

str.removeprefix(prefix, /)
If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the
original string:

>>> 'TestHook'.removeprefix('Test')

'Hook'

>>> 'BaseTestCase'.removeprefix('Test')

'BaseTestCase'

Added in version 3.9.

str.removesuffix(suffix, /)
If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Oth-
erwise, return a copy of the original string:

>>> 'MiscTests'.removesuffix('Tests')

'Misc'

>>> 'TmpDirMixin'.removesuffix('Tests')

'TmpDirMixin'

Added in version 3.9.

str.replace(old, new, count=-1)
Return a copy of the string with all occurrences of substring old replaced by new. If count is given, only the
first count occurrences are replaced. If count is not specified or -1, then all occurrences are replaced.

Changed in version 3.13: count is now supported as a keyword argument.

str.rfind(sub[, start[, end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on fail-
ure.

str.rindex(sub[, start[, end]])
Like rfind() but raises ValueError when the substring sub is not found.

str.rjust(width[, fillchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to len(s).

str.rpartition(sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

str.rsplit(sep=None, maxsplit=-1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit() behaves like split() which is described in detail below.

str.rstrip([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> ' spacious '.rstrip()

' spacious'

>>> 'mississippi'.rstrip('ipz')

'mississ'

4.8. Text Sequence Type — str 57

The Python Library Reference, Release 3.13.1

See str.removesuffix() for a method that will remove a single suffix string rather than all of a set of
characters. For example:

>>> 'Monty Python'.rstrip(' Python')

'M'

>>> 'Monty Python'.removesuffix(' Python')

'Monty'

str.split(sep=None, maxsplit=-1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or -1, then
there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, '1,,2'.split(',') returns ['1', '', '2']). The sep argument may consist of multiple char-
acters as a single delimiter (to split with multiple delimiters, use re.split()). Splitting an empty string with
a specified separator returns [''].

For example:

>>> '1,2,3'.split(',')

['1', '2', '3']

>>> '1,2,3'.split(',', maxsplit=1)

['1', '2,3']

>>> '1,2,,3,'.split(',')

['1', '2', '', '3', '']

>>> '1<>2<>3<4'.split('<>')

['1', '2', '3<4']

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [].

For example:

>>> '1 2 3'.split()

['1', '2', '3']

>>> '1 2 3'.split(maxsplit=1)

['1', '2 3']

>>> ' 1 2 3 '.split()

['1', '2', '3']

str.splitlines(keepends=False)
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal
newlines.

58 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

Representation Description

\n Line Feed
\r Carriage Return
\r\n Carriage Return + Line Feed
\v or \x0b Line Tabulation
\f or \x0c Form Feed
\x1c File Separator
\x1d Group Separator
\x1e Record Separator
\x85 Next Line (C1 Control Code)
\u2028 Line Separator
\u2029 Paragraph Separator

Changed in version 3.2: \v and \f added to list of line boundaries.

For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines()

['ab c', '', 'de fg', 'kl']

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines(keepends=True)

['ab c\n', '\n', 'de fg\r', 'kl\r\n']

Unlike split() when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> "".splitlines()

[]

>>> "One line\n".splitlines()

['One line']

For comparison, split('\n') gives:

>>> ''.split('\n')

['']

>>> 'Two lines\n'.split('\n')

['Two lines', '']

str.startswith(prefix[, start[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to
look for. With optional start, test string beginning at that position. With optional end, stop comparing string
at that position.

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ' spacious '.strip()

'spacious'

>>> 'www.example.com'.strip('cmowz.')

'example'

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed
from the leading end until reaching a string character that is not contained in the set of characters in chars. A
similar action takes place on the trailing end. For example:

4.8. Text Sequence Type — str 59

The Python Library Reference, Release 3.13.1

>>> comment_string = '#....... Section 3.2.1 Issue #32'

>>> comment_string.strip('.#! ')

'Section 3.2.1 Issue #32'

str.swapcase()

Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is
not necessarily true that s.swapcase().swapcase() == s.

str.title()

Return a titlecased version of the string where words start with an uppercase character and the remaining
characters are lowercase.

For example:

>>> 'Hello world'.title()

'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they're bill's friends from the UK".title()

"They'Re Bill'S Friends From The Uk"

The string.capwords() function does not have this problem, as it splits words on spaces only.

Alternatively, a workaround for apostrophes can be constructed using regular expressions:

>>> import re

>>> def titlecase(s):

... return re.sub(r"[A-Za-z]+('[A-Za-z]+)?",

... lambda mo: mo.group(0).capitalize(),

... s)

...

>>> titlecase("they're bill's friends.")

"They're Bill's Friends."

str.translate(table)
Return a copy of the string in which each character has been mapped through the given translation table.
The table must be an object that implements indexing via __getitem__(), typically a mapping or sequence.
When indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a Unicode
ordinal or a string, to map the character to one or more other characters; return None, to delete the character
from the return string; or raise a LookupError exception, to map the character to itself.

You can use str.maketrans() to create a translation map from character-to-character mappings in different
formats.

See also the codecs module for a more flexible approach to custom character mappings.

str.upper()

Return a copy of the string with all the cased charactersPage 55, 4 converted to uppercase. Note that s.upper().
isupper() might be False if s contains uncased characters or if the Unicode category of the resulting
character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 ‘Default Case Folding’ of the Unicode Standard.

str.zfill(width)
Return a copy of the string left filled with ASCII '0' digits to make a string of length width. A leading sign
prefix ('+'/'-') is handled by inserting the padding after the sign character rather than before. The original
string is returned if width is less than or equal to len(s).

For example:

60 Chapter 4. Built-in Types

https://www.unicode.org/versions/Unicode15.1.0/ch03.pdf

The Python Library Reference, Release 3.13.1

>>> "42".zfill(5)

'00042'

>>> "-42".zfill(5)

'-0042'

4.8.2 printf-style String Formatting

Note

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). Using the newer formatted string literals, the str.
format() interface, or template strings may help avoid these errors. Each of these alternatives provides their
own trade-offs and benefits of simplicity, flexibility, and/or extensibility.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string formatting
or interpolation operator. Given format % values (where format is a string), % conversion specifications in format
are replaced with zero or more elements of values. The effect is similar to using the sprintf() function in the C
language. For example:

>>> print('%s has %d quote types.' % ('Python', 2))

Python has 2 quote types.

If format requires a single argument, valuesmay be a single non-tuple object.5 Otherwise, valuesmust be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '%' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).

3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as an '*' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a '.' (dot) followed by the precision. If specified as '*' (an asterisk), the actual
precision is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a
parenthesised mapping key into that dictionary inserted immediately after the '%' character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print('%(language)s has %(number)03d quote types.' %

... {'language': "Python", "number": 2})

Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

4.8. Text Sequence Type — str 61

The Python Library Reference, Release 3.13.1

Flag Meaning

'#' The value conversion will use the “alternate form” (where defined below).
'0' The conversion will be zero padded for numeric values.
'-' The converted value is left adjusted (overrides the '0' conversion if both are given).
' ' (a space) A blank should be left before a positive number (or empty string) produced by a signed conver-

sion.
'+' A sign character ('+' or '-') will precede the conversion (overrides a “space” flag).

A length modifier (h, l, or L) may be present, but is ignored as it is not necessary for Python – so e.g. %ld is identical
to %d.

The conversion types are:

Con-
version

Meaning Notes

'd' Signed integer decimal.
'i' Signed integer decimal.
'o' Signed octal value. (1)
'u' Obsolete type – it is identical to 'd'. (6)
'x' Signed hexadecimal (lowercase). (2)
'X' Signed hexadecimal (uppercase). (2)
'e' Floating-point exponential format (lowercase). (3)
'E' Floating-point exponential format (uppercase). (3)
'f' Floating-point decimal format. (3)
'F' Floating-point decimal format. (3)
'g' Floating-point format. Uses lowercase exponential format if exponent is less than -4 or not less

than precision, decimal format otherwise.
(4)

'G' Floating-point format. Uses uppercase exponential format if exponent is less than -4 or not
less than precision, decimal format otherwise.

(4)

'c' Single character (accepts integer or single character string).
'r' String (converts any Python object using repr()). (5)
's' String (converts any Python object using str()). (5)
'a' String (converts any Python object using ascii()). (5)
'%' No argument is converted, results in a '%' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier ('0o') to be inserted before the first digit.

(2) The alternate form causes a leading '0x' or '0X' (depending on whether the 'x' or 'X' format was used)
to be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

(5) If precision is N, the output is truncated to N characters.

(6) See PEP 237.

Since Python strings have an explicit length, %s conversions do not assume that '\0' is the end of the string.

Changed in version 3.1: %f conversions for numbers whose absolute value is over 1e50 are no longer replaced by %g
conversions.

62 Chapter 4. Built-in Types

https://peps.python.org/pep-0237/

The Python Library Reference, Release 3.13.1

4.9 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray. They are supported by
memoryview which uses the buffer protocol to access the memory of other binary objects without needing to make
a copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision
floating values.

4.9.1 Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII
text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and
are closely related to string objects in a variety of other ways.

class bytes([source[, encoding[, errors]]])
Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:

• Single quotes: b'still allows embedded "double" quotes'

• Double quotes: b"still allows embedded 'single' quotes"

• Triple quoted: b'''3 single quotes''', b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any
binary values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See
strings for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable
sequences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to violate
this restriction will trigger ValueError). This is done deliberately to emphasise that while many binary
formats include ASCII based elements and can be usefully manipulated with some text-oriented algorithms,
this is not generally the case for arbitrary binary data (blindly applying text processing algorithms to binary
data formats that are not ASCII compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:

• A zero-filled bytes object of a specified length: bytes(10)

• From an iterable of integers: bytes(range(20))

• Copying existing binary data via the buffer protocol: bytes(obj)

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytes type has an additional class method to read data in
that format:

classmethod fromhex(string)

This bytes class method returns a bytes object, decoding the given string object. The string must contain
two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytes.fromhex('2Ef0 F1f2 ')

b'.\xf0\xf1\xf2'

Changed in version 3.7: bytes.fromhex() now skips all ASCII whitespace in the string, not just
spaces.

A reverse conversion function exists to transform a bytes object into its hexadecimal representation.

hex([sep[, bytes_per_sep]])
Return a string object containing two hexadecimal digits for each byte in the instance.

4.9. Binary Sequence Types — bytes, bytearray, memoryview 63

The Python Library Reference, Release 3.13.1

>>> b'\xf0\xf1\xf2'.hex()

'f0f1f2'

If you want to make the hex string easier to read, you can specify a single character separator sep param-
eter to include in the output. By default, this separator will be included between each byte. A second
optional bytes_per_sep parameter controls the spacing. Positive values calculate the separator position
from the right, negative values from the left.

>>> value = b'\xf0\xf1\xf2'

>>> value.hex('-')

'f0-f1-f2'

>>> value.hex('_', 2)

'f0_f1f2'

>>> b'UUDDLRLRAB'.hex(' ', -4)

'55554444 4c524c52 4142'

Added in version 3.5.

Changed in version 3.8: bytes.hex() now supports optional sep and bytes_per_sep parameters to insert
separators between bytes in the hex output.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b[0] will be an integer, while
b[0:1] will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will
produce a string of length 1)

The representation of bytes objects uses the literal format (b'...') since it is often more useful than e.g.
bytes([46, 46, 46]). You can always convert a bytes object into a list of integers using list(b).

4.9.2 Bytearray Objects

bytearray objects are a mutable counterpart to bytes objects.

class bytearray([source[, encoding[, errors]]])
There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the con-
structor:

• Creating an empty instance: bytearray()

• Creating a zero-filled instance with a given length: bytearray(10)

• From an iterable of integers: bytearray(range(20))

• Copying existing binary data via the buffer protocol: bytearray(b'Hi!')

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common
bytes and bytearray operations described in Bytes and Bytearray Operations.

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytearray type has an additional class method to read data
in that format:

classmethod fromhex(string)
This bytearray class method returns bytearray object, decoding the given string object. The string
must contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytearray.fromhex('2Ef0 F1f2 ')

bytearray(b'.\xf0\xf1\xf2')

Changed in version 3.7: bytearray.fromhex() now skips all ASCII whitespace in the string, not just
spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation.

64 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

hex([sep[, bytes_per_sep]])
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> bytearray(b'\xf0\xf1\xf2').hex()

'f0f1f2'

Added in version 3.5.

Changed in version 3.8: Similar to bytes.hex(), bytearray.hex() now supports optional sep and
bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b[0] will be an integer,
while b[0:1]will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and slicing
will produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (bytearray(b'...')) since it is often more
useful than e.g. bytearray([46, 46, 46]). You can always convert a bytearray object into a list of integers
using list(b).

4.9.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands
of the same type, but with any bytes-like object. Due to this flexibility, they can be freely mixed in operations without
causing errors. However, the return type of the result may depend on the order of operands.

Note

The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on strings
don’t accept bytes as their arguments. For example, you have to write:

a = "abc"

b = a.replace("a", "f")

and:

a = b"abc"

b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be
avoided when working with arbitrary binary data. These restrictions are covered below.

Note

Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format may
lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.

bytes.count(sub[, start[, end]])
bytearray.count(sub[, start[, end]])

Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

If sub is empty, returns the number of empty slices between characters which is the length of the bytes object
plus one.

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.removeprefix(prefix, /)

4.9. Binary Sequence Types — bytes, bytearray, memoryview 65

The Python Library Reference, Release 3.13.1

bytearray.removeprefix(prefix, /)
If the binary data starts with the prefix string, return bytes[len(prefix):]. Otherwise, return a copy of
the original binary data:

>>> b'TestHook'.removeprefix(b'Test')

b'Hook'

>>> b'BaseTestCase'.removeprefix(b'Test')

b'BaseTestCase'

The prefix may be any bytes-like object.

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

Added in version 3.9.

bytes.removesuffix(suffix, /)
bytearray.removesuffix(suffix, /)

If the binary data ends with the suffix string and that suffix is not empty, return bytes[:-len(suffix)].
Otherwise, return a copy of the original binary data:

>>> b'MiscTests'.removesuffix(b'Tests')

b'Misc'

>>> b'TmpDirMixin'.removesuffix(b'Tests')

b'TmpDirMixin'

The suffix may be any bytes-like object.

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

Added in version 3.9.

bytes.decode(encoding=’utf-8’, errors=’strict’)
bytearray.decode(encoding=’utf-8’, errors=’strict’)

Return the bytes decoded to a str.

encoding defaults to 'utf-8'; see Standard Encodings for possible values.

errors controls how decoding errors are handled. If 'strict' (the default), a UnicodeError exception
is raised. Other possible values are 'ignore', 'replace', and any other name registered via codecs.
register_error(). See Error Handlers for details.

For performance reasons, the value of errors is not checked for validity unless a decoding error actually occurs,
Python Development Mode is enabled or a debug build is used.

Note

Passing the encoding argument to str allows decoding any bytes-like object directly, without needing to
make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.

66 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

Changed in version 3.9: The value of the errors argument is now checked in Python Development Mode and in
debug mode.

bytes.endswith(suffix[, start[, end]])
bytearray.endswith(suffix[, start[, end]])

Return True if the binary data ends with the specified suffix, otherwise return False. suffix can also be a tuple
of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing
at that position.

The suffix(es) to search for may be any bytes-like object.

bytes.find(sub[, start[, end]])
bytearray.find(sub[, start[, end]])

Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not
found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Note

The find() method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> b'Py' in b'Python'

True

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.index(sub[, start[, end]])
bytearray.index(sub[, start[, end]])

Like find(), but raise ValueError when the subsequence is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.join(iterable)

bytearray.join(iterable)
Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A
TypeErrorwill be raised if there are any values in iterable that are not bytes-like objects, including str objects.
The separator between elements is the contents of the bytes or bytearray object providing this method.

static bytes.maketrans(from, to)
static bytearray.maketrans(from, to)

This static method returns a translation table usable for bytes.translate() that will map each character
in from into the character at the same position in to; from and to must both be bytes-like objects and have the
same length.

Added in version 3.1.

bytes.partition(sep)
bytearray.partition(sep)

Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return
a 3-tuple containing a copy of the original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.

bytes.replace(old, new[, count])

4.9. Binary Sequence Types — bytes, bytearray, memoryview 67

The Python Library Reference, Release 3.13.1

bytearray.replace(old, new[, count])
Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced.

The subsequence to search for and its replacement may be any bytes-like object.

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rfind(sub[, start[, end]])
bytearray.rfind(sub[, start[, end]])

Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rindex(sub[, start[, end]])
bytearray.rindex(sub[, start[, end]])

Like rfind() but raises ValueError when the subsequence sub is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rpartition(sep)
bytearray.rpartition(sep)

Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return
a 3-tuple containing two empty bytes or bytearray objects, followed by a copy of the original sequence.

The separator to search for may be any bytes-like object.

bytes.startswith(prefix[, start[, end]])
bytearray.startswith(prefix[, start[, end]])

Return True if the binary data starts with the specified prefix, otherwise return False. prefix can also be
a tuple of prefixes to look for. With optional start, test beginning at that position. With optional end, stop
comparing at that position.

The prefix(es) to search for may be any bytes-like object.

bytes.translate(table, / , delete=b”)
bytearray.translate(table, / , delete=b”)

Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are
removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes
object of length 256.

You can use the bytes.maketrans() method to create a translation table.

Set the table argument to None for translations that only delete characters:

>>> b'read this short text'.translate(None, b'aeiou')

b'rd ths shrt txt'

Changed in version 3.6: delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII com-
patible binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that
all of the bytearray methods in this section do not operate in place, and instead produce new objects.

68 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

bytes.center(width[, fillbyte])
bytearray.center(width[, fillbyte])

Return a copy of the object centered in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For bytes objects, the original sequence is returned if width is less than or equal
to len(s).

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.ljust(width[, fillbyte])
bytearray.ljust(width[, fillbyte])

Return a copy of the object left justified in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if width is less than
or equal to len(s).

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.lstrip([chars])
bytearray.lstrip([chars])

Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> b' spacious '.lstrip()

b'spacious '

>>> b'www.example.com'.lstrip(b'cmowz.')

b'example.com'

The binary sequence of byte values to remove may be any bytes-like object. See removeprefix() for a
method that will remove a single prefix string rather than all of a set of characters. For example:

>>> b'Arthur: three!'.lstrip(b'Arthur: ')

b'ee!'

>>> b'Arthur: three!'.removeprefix(b'Arthur: ')

b'three!'

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rjust(width[, fillbyte])
bytearray.rjust(width[, fillbyte])

Return a copy of the object right justified in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if width is less than
or equal to len(s).

4.9. Binary Sequence Types — bytes, bytearray, memoryview 69

The Python Library Reference, Release 3.13.1

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rsplit(sep=None, maxsplit=-1)

bytearray.rsplit(sep=None, maxsplit=-1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is
given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or None, any subsequence
consisting solely of ASCII whitespace is a separator. Except for splitting from the right, rsplit() behaves
like split() which is described in detail below.

bytes.rstrip([chars])
bytearray.rstrip([chars])

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> b' spacious '.rstrip()

b' spacious'

>>> b'mississippi'.rstrip(b'ipz')

b'mississ'

The binary sequence of byte values to remove may be any bytes-like object. See removesuffix() for a
method that will remove a single suffix string rather than all of a set of characters. For example:

>>> b'Monty Python'.rstrip(b' Python')

b'M'

>>> b'Monty Python'.removesuffix(b' Python')

b'Monty'

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.split(sep=None, maxsplit=-1)
bytearray.split(sep=None, maxsplit=-1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is
given and non-negative, at mostmaxsplit splits are done (thus, the list will have at most maxsplit+1 elements).
If maxsplit is not specified or is -1, then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences
(for example, b'1,,2'.split(b',') returns [b'1', b'', b'2']). The sep argument may consist of a
multibyte sequence as a single delimiter. Splitting an empty sequence with a specified separator returns [b'']
or [bytearray(b'')] depending on the type of object being split. The sep argument may be any bytes-like
object.

For example:

>>> b'1,2,3'.split(b',')

[b'1', b'2', b'3']

>>> b'1,2,3'.split(b',', maxsplit=1)

[b'1', b'2,3']

(continues on next page)

70 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> b'1,2,,3,'.split(b',')

[b'1', b'2', b'', b'3', b'']

>>> b'1<>2<>3<4'.split(b'<>')

[b'1', b'2', b'3<4']

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutiveASCII whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the sequence
has leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consisting solely
of ASCII whitespace without a specified separator returns [].

For example:

>>> b'1 2 3'.split()

[b'1', b'2', b'3']

>>> b'1 2 3'.split(maxsplit=1)

[b'1', b'2 3']

>>> b' 1 2 3 '.split()

[b'1', b'2', b'3']

bytes.strip([chars])
bytearray.strip([chars])

Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a
binary sequence specifying the set of byte values to be removed - the name refers to the fact this method
is usually used with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> b' spacious '.strip()

b'spacious'

>>> b'www.example.com'.strip(b'cmowz.')

b'example'

The binary sequence of byte values to remove may be any bytes-like object.

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should
not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place,
and instead produce new objects.

bytes.capitalize()

bytearray.capitalize()

Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized
and the rest lowercased. Non-ASCII byte values are passed through unchanged.

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.expandtabs(tabsize=8)

4.9. Binary Sequence Types — bytes, bytearray, memoryview 71

The Python Library Reference, Release 3.13.1

bytearray.expandtabs(tabsize=8)
Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces,
depending on the current column and the given tab size. Tab positions occur every tabsize bytes (default is
8, giving tab positions at columns 0, 8, 16 and so on). To expand the sequence, the current column is set to
zero and the sequence is examined byte by byte. If the byte is an ASCII tab character (b'\t'), one or more
space characters are inserted in the result until the current column is equal to the next tab position. (The tab
character itself is not copied.) If the current byte is an ASCII newline (b'\n') or carriage return (b'\r'), it
is copied and the current column is reset to zero. Any other byte value is copied unchanged and the current
column is incremented by one regardless of how the byte value is represented when printed:

>>> b'01\t012\t0123\t01234'.expandtabs()

b'01 012 0123 01234'

>>> b'01\t012\t0123\t01234'.expandtabs(4)

b'01 012 0123 01234'

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.isalnum()

bytearray.isalnum()

Return True if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and the
sequence is not empty, False otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. ASCII decimal digits are those
byte values in the sequence b'0123456789'.

For example:

>>> b'ABCabc1'.isalnum()

True

>>> b'ABC abc1'.isalnum()

False

bytes.isalpha()

bytearray.isalpha()

Return True if all bytes in the sequence are alphabetic ASCII characters and the sequence is
not empty, False otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.

For example:

>>> b'ABCabc'.isalpha()

True

>>> b'ABCabc1'.isalpha()

False

bytes.isascii()

bytearray.isascii()

Return True if the sequence is empty or all bytes in the sequence are ASCII, False otherwise. ASCII bytes
are in the range 0-0x7F.

Added in version 3.7.

bytes.isdigit()

72 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

bytearray.isdigit()

Return True if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, False
otherwise. ASCII decimal digits are those byte values in the sequence b'0123456789'.

For example:

>>> b'1234'.isdigit()

True

>>> b'1.23'.isdigit()

False

bytes.islower()

bytearray.islower()

Return True if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII
characters, False otherwise.

For example:

>>> b'hello world'.islower()

True

>>> b'Hello world'.islower()

False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

bytes.isspace()

bytearray.isspace()

Return True if all bytes in the sequence are ASCII whitespace and the sequence is not empty, False otherwise.
ASCII whitespace characters are those byte values in the sequence b' \t\n\r\x0b\f' (space, tab, newline,
carriage return, vertical tab, form feed).

bytes.istitle()

bytearray.istitle()

Return True if the sequence is ASCII titlecase and the sequence is not empty, False otherwise. See bytes.
title() for more details on the definition of “titlecase”.

For example:

>>> b'Hello World'.istitle()

True

>>> b'Hello world'.istitle()

False

bytes.isupper()

bytearray.isupper()

Return True if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase
ASCII characters, False otherwise.

For example:

>>> b'HELLO WORLD'.isupper()

True

>>> b'Hello world'.isupper()

False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

bytes.lower()

4.9. Binary Sequence Types — bytes, bytearray, memoryview 73

The Python Library Reference, Release 3.13.1

bytearray.lower()

Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding low-
ercase counterpart.

For example:

>>> b'Hello World'.lower()

b'hello world'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.splitlines(keepends=False)

bytearray.splitlines(keepends=False)

Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the
universal newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends
is given and true.

For example:

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines()

[b'ab c', b'', b'de fg', b'kl']

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines(keepends=True)

[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

Unlike split() when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> b"".split(b'\n'), b"Two lines\n".split(b'\n')

([b''], [b'Two lines', b''])

>>> b"".splitlines(), b"One line\n".splitlines()

([], [b'One line'])

bytes.swapcase()

bytearray.swapcase()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding up-
percase counterpart and vice-versa.

For example:

>>> b'Hello World'.swapcase()

b'hELLO wORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Unlike str.swapcase(), it is always the case that bin.swapcase().swapcase() == bin for the binary
versions. Case conversions are symmetrical in ASCII, even though that is not generally true for arbitrary
Unicode code points.

Note

74 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.title()

bytearray.title()

Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and
the remaining characters are lowercase. Uncased byte values are left unmodified.

For example:

>>> b'Hello world'.title()

b'Hello World'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
All other byte values are uncased.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> b"they're bill's friends from the UK".title()

b"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re

>>> def titlecase(s):

... return re.sub(rb"[A-Za-z]+('[A-Za-z]+)?",

... lambda mo: mo.group(0)[0:1].upper() +

... mo.group(0)[1:].lower(),

... s)

...

>>> titlecase(b"they're bill's friends.")

b"They're Bill's Friends."

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.upper()

bytearray.upper()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding up-
percase counterpart.

For example:

>>> b'Hello World'.upper()

b'HELLO WORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

4.9. Binary Sequence Types — bytes, bytearray, memoryview 75

The Python Library Reference, Release 3.13.1

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.zfill(width)
bytearray.zfill(width)

Return a copy of the sequence left filled with ASCII b'0' digits to make a sequence of lengthwidth. A leading
sign prefix (b'+'/ b'-') is handled by inserting the padding after the sign character rather than before. For
bytes objects, the original sequence is returned if width is less than or equal to len(seq).

For example:

>>> b"42".zfill(5)

b'00042'

>>> b"-42".zfill(5)

b'-0042'

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

4.9.4 printf-style Bytes Formatting

Note

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such
as failing to display tuples and dictionaries correctly). If the value being printed may be a tuple or dictionary,
wrap it in a tuple.

Bytes objects (bytes/bytearray) have one unique built-in operation: the % operator (modulo). This is also known
as the bytes formatting or interpolation operator. Given format % values (where format is a bytes object), %
conversion specifications in format are replaced with zero or more elements of values. The effect is similar to using
the sprintf() in the C language.

If format requires a single argument, values may be a single non-tuple object.Page 61, 5 Otherwise, values must be a
tuple with exactly the number of items specified by the format bytes object, or a single mapping object (for example,
a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '%' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).

3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as an '*' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a '.' (dot) followed by the precision. If specified as '*' (an asterisk), the actual
precision is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).

7. Conversion type.

76 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include
a parenthesised mapping key into that dictionary inserted immediately after the '%' character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print(b'%(language)s has %(number)03d quote types.' %

... {b'language': b"Python", b"number": 2})

b'Python has 002 quote types.'

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag Meaning

'#' The value conversion will use the “alternate form” (where defined below).
'0' The conversion will be zero padded for numeric values.
'-' The converted value is left adjusted (overrides the '0' conversion if both are given).
' ' (a space) A blank should be left before a positive number (or empty string) produced by a signed conver-

sion.
'+' A sign character ('+' or '-') will precede the conversion (overrides a “space” flag).

A length modifier (h, l, or L) may be present, but is ignored as it is not necessary for Python – so e.g. %ld is identical
to %d.

The conversion types are:

Con-
version

Meaning Notes

'd' Signed integer decimal.
'i' Signed integer decimal.
'o' Signed octal value. (1)
'u' Obsolete type – it is identical to 'd'. (8)
'x' Signed hexadecimal (lowercase). (2)
'X' Signed hexadecimal (uppercase). (2)
'e' Floating-point exponential format (lowercase). (3)
'E' Floating-point exponential format (uppercase). (3)
'f' Floating-point decimal format. (3)
'F' Floating-point decimal format. (3)
'g' Floating-point format. Uses lowercase exponential format if exponent is less than -4 or not less

than precision, decimal format otherwise.
(4)

'G' Floating-point format. Uses uppercase exponential format if exponent is less than -4 or not
less than precision, decimal format otherwise.

(4)

'c' Single byte (accepts integer or single byte objects).
'b' Bytes (any object that follows the buffer protocol or has __bytes__()). (5)
's' 's' is an alias for 'b' and should only be used for Python2/3 code bases. (6)
'a' Bytes (converts any Python object using repr(obj).encode('ascii',

'backslashreplace')).
(5)

'r' 'r' is an alias for 'a' and should only be used for Python2/3 code bases. (7)
'%' No argument is converted, results in a '%' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier ('0o') to be inserted before the first digit.

(2) The alternate form causes a leading '0x' or '0X' (depending on whether the 'x' or 'X' format was used)
to be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

4.9. Binary Sequence Types — bytes, bytearray, memoryview 77

The Python Library Reference, Release 3.13.1

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

(5) If precision is N, the output is truncated to N characters.

(6) b'%s' is deprecated, but will not be removed during the 3.x series.

(7) b'%r' is deprecated, but will not be removed during the 3.x series.

(8) See PEP 237.

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no
changes were made.

See also

PEP 461 - Adding % formatting to bytes and bytearray

Added in version 3.5.

4.9.5 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol
without copying.

class memoryview(object)
Create a memoryview that references object. object must support the buffer protocol. Built-in objects that
support the buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object. For many simple types such as bytes and bytearray, an element is a single byte, but other types
such as array.array may have bigger elements.

len(view) is equal to the length of tolist, which is the nested list representation of the view. If view.ndim
= 1, this is equal to the number of elements in the view.

Changed in version 3.12: If view.ndim == 0, len(view) now raises TypeError instead of returning 1.

The itemsize attribute will give you the number of bytes in a single element.

A memoryview supports slicing and indexing to expose its data. One-dimensional slicing will result in a
subview:

>>> v = memoryview(b'abcefg')

>>> v[1]

98

>>> v[-1]

103

>>> v[1:4]

<memory at 0x7f3ddc9f4350>

>>> bytes(v[1:4])

b'bce'

If format is one of the native format specifiers from the struct module, indexing with an integer or a tuple
of integers is also supported and returns a single element with the correct type. One-dimensional memoryviews
can be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with

78 Chapter 4. Built-in Types

https://peps.python.org/pep-0237/
https://peps.python.org/pep-0461/

The Python Library Reference, Release 3.13.1

tuples of exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can
be indexed with the empty tuple.

Here is an example with a non-byte format:

>>> import array

>>> a = array.array('l', [-11111111, 22222222, -33333333, 44444444])

>>> m = memoryview(a)

>>> m[0]

-11111111

>>> m[-1]

44444444

>>> m[::2].tolist()

[-11111111, -33333333]

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is
not allowed:

>>> data = bytearray(b'abcefg')

>>> v = memoryview(data)

>>> v.readonly

False

>>> v[0] = ord(b'z')

>>> data

bytearray(b'zbcefg')

>>> v[1:4] = b'123'

>>> data

bytearray(b'z123fg')

>>> v[2:3] = b'spam'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: memoryview assignment: lvalue and rvalue have different structures

>>> v[2:6] = b'spam'

>>> data

bytearray(b'z1spam')

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The
hash is defined as hash(m) == hash(m.tobytes()):

>>> v = memoryview(b'abcefg')

>>> hash(v) == hash(b'abcefg')

True

>>> hash(v[2:4]) == hash(b'ce')

True

>>> hash(v[::-2]) == hash(b'abcefg'[::-2])

True

Changed in version 3.3: One-dimensional memoryviews can now be sliced. One-dimensional memoryviews
with formats ‘B’, ‘b’ or ‘c’ are now hashable.

Changed in version 3.4: memoryview is now registered automatically with collections.abc.Sequence

Changed in version 3.5: memoryviews can now be indexed with tuple of integers.

memoryview has several methods:

__eq__(exporter)
Amemoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding
values are equal when the operands’ respective format codes are interpreted using struct syntax.

For the subset of struct format strings currently supported by tolist(), v and w are equal if v.
tolist() == w.tolist():

4.9. Binary Sequence Types — bytes, bytearray, memoryview 79

https://peps.python.org/pep-3118/

The Python Library Reference, Release 3.13.1

>>> import array

>>> a = array.array('I', [1, 2, 3, 4, 5])

>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.0])

>>> c = array.array('b', [5, 3, 1])

>>> x = memoryview(a)

>>> y = memoryview(b)

>>> x == a == y == b

True

>>> x.tolist() == a.tolist() == y.tolist() == b.tolist()

True

>>> z = y[::-2]

>>> z == c

True

>>> z.tolist() == c.tolist()

True

If either format string is not supported by the struct module, then the objects will always compare as
unequal (even if the format strings and buffer contents are identical):

>>> from ctypes import BigEndianStructure, c_long

>>> class BEPoint(BigEndianStructure):

... _fields_ = [("x", c_long), ("y", c_long)]

...

>>> point = BEPoint(100, 200)

>>> a = memoryview(point)

>>> b = memoryview(point)

>>> a == point

False

>>> a == b

False

Note that, as with floating-point numbers, v is w does not imply v == w for memoryview objects.

Changed in version 3.3: Previous versions compared the raw memory disregarding the item format and
the logical array structure.

tobytes(order=’C’)
Return the data in the buffer as a bytestring. This is equivalent to calling the bytes constructor on the
memoryview.

>>> m = memoryview(b"abc")

>>> m.tobytes()

b'abc'

>>> bytes(m)

b'abc'

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted
to bytes. tobytes() supports all format strings, including those that are not in struct module syntax.

Added in version 3.8: order can be {‘C’, ‘F’, ‘A’}. When order is ‘C’ or ‘F’, the data of the original array is
converted to C or Fortran order. For contiguous views, ‘A’ returns an exact copy of the physical memory.
In particular, in-memory Fortran order is preserved. For non-contiguous views, the data is converted to
C first. order=None is the same as order=’C’.

hex([sep[, bytes_per_sep]])
Return a string object containing two hexadecimal digits for each byte in the buffer.

>>> m = memoryview(b"abc")

>>> m.hex()

(continues on next page)

80 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

'616263'

Added in version 3.5.

Changed in version 3.8: Similar to bytes.hex(), memoryview.hex() now supports optional sep and
bytes_per_sep parameters to insert separators between bytes in the hex output.

tolist()

Return the data in the buffer as a list of elements.

>>> memoryview(b'abc').tolist()

[97, 98, 99]

>>> import array

>>> a = array.array('d', [1.1, 2.2, 3.3])

>>> m = memoryview(a)

>>> m.tolist()

[1.1, 2.2, 3.3]

Changed in version 3.3: tolist() now supports all single character native formats in struct module
syntax as well as multi-dimensional representations.

toreadonly()

Return a readonly version of the memoryview object. The original memoryview object is unchanged.

>>> m = memoryview(bytearray(b'abc'))

>>> mm = m.toreadonly()

>>> mm.tolist()

[97, 98, 99]

>>> mm[0] = 42

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: cannot modify read-only memory

>>> m[0] = 43

>>> mm.tolist()

[43, 98, 99]

Added in version 3.8.

release()

Release the underlying buffer exposed by thememoryview object. Many objects take special actions when
a view is held on them (for example, a bytearray would temporarily forbid resizing); therefore, calling
release() is handy to remove these restrictions (and free any dangling resources) as soon as possible.

After this method has been called, any further operation on the view raises a ValueError (except
release() itself which can be called multiple times):

>>> m = memoryview(b'abc')

>>> m.release()

>>> m[0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview(b'abc') as m:

... m[0]

...

97

(continues on next page)

4.9. Binary Sequence Types — bytes, bytearray, memoryview 81

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> m[0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: operation forbidden on released memoryview object

Added in version 3.2.

cast(format[, shape])
Cast a memoryview to a new format or shape. shape defaults to [byte_length//new_itemsize],
which means that the result view will be one-dimensional. The return value is a new memoryview, but
the buffer itself is not copied. Supported casts are 1D -> C-contiguous and C-contiguous -> 1D.

The destination format is restricted to a single element native format in struct syntax. One of the
formats must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the
original length. Note that all byte lengths may depend on the operating system.

Cast 1D/long to 1D/unsigned bytes:

>>> import array

>>> a = array.array('l', [1,2,3])

>>> x = memoryview(a)

>>> x.format

'l'

>>> x.itemsize

8

>>> len(x)

3

>>> x.nbytes

24

>>> y = x.cast('B')

>>> y.format

'B'

>>> y.itemsize

1

>>> len(y)

24

>>> y.nbytes

24

Cast 1D/unsigned bytes to 1D/char:

>>> b = bytearray(b'zyz')

>>> x = memoryview(b)

>>> x[0] = b'a'

Traceback (most recent call last):

...

TypeError: memoryview: invalid type for format 'B'

>>> y = x.cast('c')

>>> y[0] = b'a'

>>> b

bytearray(b'ayz')

Cast 1D/bytes to 3D/ints to 1D/signed char:

>>> import struct

>>> buf = struct.pack("i"*12, *list(range(12)))

>>> x = memoryview(buf)

>>> y = x.cast('i', shape=[2,2,3])

(continues on next page)

82 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> y.tolist()

[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]]]

>>> y.format

'i'

>>> y.itemsize

4

>>> len(y)

2

>>> y.nbytes

48

>>> z = y.cast('b')

>>> z.format

'b'

>>> z.itemsize

1

>>> len(z)

48

>>> z.nbytes

48

Cast 1D/unsigned long to 2D/unsigned long:

>>> buf = struct.pack("L"*6, *list(range(6)))

>>> x = memoryview(buf)

>>> y = x.cast('L', shape=[2,3])

>>> len(y)

2

>>> y.nbytes

48

>>> y.tolist()

[[0, 1, 2], [3, 4, 5]]

Added in version 3.3.

Changed in version 3.5: The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available:

obj

The underlying object of the memoryview:

>>> b = bytearray(b'xyz')

>>> m = memoryview(b)

>>> m.obj is b

True

Added in version 3.3.

nbytes

nbytes == product(shape) * itemsize == len(m.tobytes()). This is the amount of
space in bytes that the array would use in a contiguous representation. It is not necessarily equal to
len(m):

>>> import array

>>> a = array.array('i', [1,2,3,4,5])

>>> m = memoryview(a)

>>> len(m)

5

(continues on next page)

4.9. Binary Sequence Types — bytes, bytearray, memoryview 83

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> m.nbytes

20

>>> y = m[::2]

>>> len(y)

3

>>> y.nbytes

12

>>> len(y.tobytes())

12

Multi-dimensional arrays:

>>> import struct

>>> buf = struct.pack("d"*12, *[1.5*x for x in range(12)])

>>> x = memoryview(buf)

>>> y = x.cast('d', shape=[3,4])

>>> y.tolist()

[[0.0, 1.5, 3.0, 4.5], [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]]

>>> len(y)

3

>>> y.nbytes

96

Added in version 3.3.

readonly

A bool indicating whether the memory is read only.

format

A string containing the format (in struct module style) for each element in the view. A memoryview
can be created from exporters with arbitrary format strings, but some methods (e.g. tolist()) are
restricted to native single element formats.

Changed in version 3.3: format 'B' is now handled according to the struct module syntax. This means
that memoryview(b'abc')[0] == b'abc'[0] == 97.

itemsize

The size in bytes of each element of the memoryview:

>>> import array, struct

>>> m = memoryview(array.array('H', [32000, 32001, 32002]))

>>> m.itemsize

2

>>> m[0]

32000

>>> struct.calcsize('H') == m.itemsize

True

ndim

An integer indicating how many dimensions of a multi-dimensional array the memory represents.

shape

A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

strides

A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension
of the array.

84 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

suboffsets

Used internally for PIL-style arrays. The value is informational only.

c_contiguous

A bool indicating whether the memory is C-contiguous.

Added in version 3.3.

f_contiguous

A bool indicating whether the memory is Fortran contiguous.

Added in version 3.3.

contiguous

A bool indicating whether the memory is contiguous.

Added in version 3.3.

4.10 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing,
removing duplicates from a sequence, and computing mathematical operations such as intersection, union, differ-
ence, and symmetric difference. (For other containers see the built-in dict, list, and tuple classes, and the
collections module.)

Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add() and remove(). Since it is mutable, it has no hash value and cannot be used
as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: {'jack', 'sjoerd'}, in addition to the set constructor.

The constructors for both classes work the same:

class set([iterable])
class frozenset([iterable])

Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a
new empty set is returned.

Sets can be created by several means:

• Use a comma-separated list of elements within braces: {'jack', 'sjoerd'}

• Use a set comprehension: {c for c in 'abracadabra' if c not in 'abc'}

• Use the type constructor: set(), set('foobar'), set(['a', 'b', 'foo'])

Instances of set and frozenset provide the following operations:

len(s)

Return the number of elements in set s (cardinality of s).

x in s

Test x for membership in s.

4.10. Set Types — set, frozenset 85

The Python Library Reference, Release 3.13.1

x not in s

Test x for non-membership in s.

isdisjoint(other)

Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.

issubset(other)
set <= other

Test whether every element in the set is in other.

set < other

Test whether the set is a proper subset of other, that is, set <= other and set != other.

issuperset(other)
set >= other

Test whether every element in other is in the set.

set > other

Test whether the set is a proper superset of other, that is, set >= other and set != other.

union(*others)

set | other | ...

Return a new set with elements from the set and all others.

intersection(*others)
set & other & ...

Return a new set with elements common to the set and all others.

difference(*others)
set - other - ...

Return a new set with elements in the set that are not in the others.

symmetric_difference(other)
set ^ other

Return a new set with elements in either the set or other but not both.

copy()

Return a shallow copy of the set.

Note, the non-operator versions of union(), intersection(), difference(),
symmetric_difference(), issubset(), and issuperset() methods will accept any iterable as
an argument. In contrast, their operator based counterparts require their arguments to be sets. This precludes
error-prone constructions like set('abc') & 'cbs' in favor of the more readable set('abc').

intersection('cbs').

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the
first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if
and only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For ex-
ample, set('abc') == frozenset('abc') returns True and so does set('abc') in

set([frozenset('abc')]).

The subset and equality comparisons do not generalize to a total ordering function. For example, any two
nonempty disjoint sets are not equal and are not subsets of each other, so all of the following return False:
a<b, a==b, or a>b.

Since sets only define partial ordering (subset relationships), the output of the list.sort() method is un-
defined for lists of sets.

86 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset('ab') | set('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update(*others)
set |= other | ...

Update the set, adding elements from all others.

intersection_update(*others)

set &= other & ...

Update the set, keeping only elements found in it and all others.

difference_update(*others)

set -= other | ...

Update the set, removing elements found in others.

symmetric_difference_update(other)

set ^= other

Update the set, keeping only elements found in either set, but not in both.

add(elem)
Add element elem to the set.

remove(elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard(elem)
Remove element elem from the set if it is present.

pop()

Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear()

Remove all elements from the set.

Note, the non-operator versions of the update(), intersection_update(), difference_update(),
and symmetric_difference_update() methods will accept any iterable as an argument.

Note, the elem argument to the __contains__(), remove(), and discard() methods may be a set. To
support searching for an equivalent frozenset, a temporary one is created from elem.

4.11 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, the dictionary. (For other containers see the built-in list, set, and tuple classes, and
the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictio-
naries or other mutable types (that are compared by value rather than by object identity) may not be used as keys.
Values that compare equal (such as 1, 1.0, and True) can be used interchangeably to index the same dictionary
entry.

class dict(**kwargs)

class dict(mapping, **kwargs)

4.11. Mapping Types — dict 87

The Python Library Reference, Release 3.13.1

class dict(iterable, **kwargs)
Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword
arguments.

Dictionaries can be created by several means:

• Use a comma-separated list of key: value pairs within braces: {'jack': 4098, 'sjoerd':

4127} or {4098: 'jack', 4127: 'sjoerd'}

• Use a dict comprehension: {}, {x: x ** 2 for x in range(10)}

• Use the type constructor: dict(), dict([('foo', 100), ('bar', 200)]), dict(foo=100,
bar=200)

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it
defines a keys() method, a dictionary is created by calling __getitem__() on the argument with each
returned key from the method. Otherwise, the positional argument must be an iterable object. Each item in
the iterable must itself be an iterable with exactly two elements. The first element of each item becomes a key
in the new dictionary, and the second element the corresponding value. If a key occurs more than once, the
last value for that key becomes the corresponding value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created
from the positional argument. If a key being added is already present, the value from the keyword argument
replaces the value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2, "three":

3}:

>>> a = dict(one=1, two=2, three=3)

>>> b = {'one': 1, 'two': 2, 'three': 3}

>>> c = dict(zip(['one', 'two', 'three'], [1, 2, 3]))

>>> d = dict([('two', 2), ('one', 1), ('three', 3)])

>>> e = dict({'three': 3, 'one': 1, 'two': 2})

>>> f = dict({'one': 1, 'three': 3}, two=2)

>>> a == b == c == d == e == f

True

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers.
Otherwise, any valid keys can be used.

These are the operations that dictionaries support (and therefore, custom mapping types should support too):

list(d)

Return a list of all the keys used in the dictionary d.

len(d)

Return the number of items in the dictionary d.

d[key]

Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method __missing__() and key is not present, the d[key] operation
calls that method with the key key as argument. The d[key] operation then returns or raises what-
ever is returned or raised by the __missing__(key) call. No other operations or methods invoke
__missing__(). If __missing__() is not defined, KeyError is raised. __missing__() must be
a method; it cannot be an instance variable:

>>> class Counter(dict):

... def __missing__(self, key):

... return 0

...

>>> c = Counter()

>>> c['red']

(continues on next page)

88 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

0

>>> c['red'] += 1

>>> c['red']

1

The example above shows part of the implementation of collections.Counter. A different
__missing__ method is used by collections.defaultdict.

d[key] = value

Set d[key] to value.

del d[key]

Remove d[key] from d. Raises a KeyError if key is not in the map.

key in d

Return True if d has a key key, else False.

key not in d

Equivalent to not key in d.

iter(d)

Return an iterator over the keys of the dictionary. This is a shortcut for iter(d.keys()).

clear()

Remove all items from the dictionary.

copy()

Return a shallow copy of the dictionary.

classmethod fromkeys(iterable, value=None, /)
Create a new dictionary with keys from iterable and values set to value.

fromkeys() is a class method that returns a new dictionary. value defaults to None. All of the values
refer to just a single instance, so it generally doesn’t make sense for value to be a mutable object such as
an empty list. To get distinct values, use a dict comprehension instead.

get(key, default=None)
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None,
so that this method never raises a KeyError.

items()

Return a new view of the dictionary’s items ((key, value) pairs). See the documentation of view
objects.

keys()

Return a new view of the dictionary’s keys. See the documentation of view objects.

pop(key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and
key is not in the dictionary, a KeyError is raised.

popitem()

Remove and return a (key, value) pair from the dictionary. Pairs are returned in LIFO (last-in,
first-out) order.

popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem() raises a KeyError.

Changed in version 3.7: LIFO order is now guaranteed. In prior versions, popitem() would return an
arbitrary key/value pair.

4.11. Mapping Types — dict 89

The Python Library Reference, Release 3.13.1

reversed(d)

Return a reverse iterator over the keys of the dictionary. This is a shortcut for reversed(d.keys()).

Added in version 3.8.

setdefault(key, default=None)
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update() accepts either another object with a keys() method (in which case __getitem__() is
called with every key returned from the method) or an iterable of key/value pairs (as tuples or other
iterables of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update(red=1, blue=2).

values()

Return a new view of the dictionary’s values. See the documentation of view objects.

An equality comparison between one dict.values() view and another will always return False. This
also applies when comparing dict.values() to itself:

>>> d = {'a': 1}

>>> d.values() == d.values()

False

d | other

Create a new dictionary with the merged keys and values of d and other, which must both be dictionaries.
The values of other take priority when d and other share keys.

Added in version 3.9.

d |= other

Update the dictionary d with keys and values from other, which may be either a mapping or an iterable
of key/value pairs. The values of other take priority when d and other share keys.

Added in version 3.9.

Dictionaries compare equal if and only if they have the same (key, value) pairs (regardless of ordering).
Order comparisons (‘<’, ‘<=’, ‘>=’, ‘>’) raise TypeError.

Dictionaries preserve insertion order. Note that updating a key does not affect the order. Keys added after
deletion are inserted at the end.

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}

>>> d

{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list(d)

['one', 'two', 'three', 'four']

>>> list(d.values())

[1, 2, 3, 4]

>>> d["one"] = 42

>>> d

{'one': 42, 'two': 2, 'three': 3, 'four': 4}

>>> del d["two"]

>>> d["two"] = None

>>> d

{'one': 42, 'three': 3, 'four': 4, 'two': None}

Changed in version 3.7: Dictionary order is guaranteed to be insertion order. This behavior was an implemen-
tation detail of CPython from 3.6.

90 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

Dictionaries and dictionary views are reversible.

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}

>>> d

{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list(reversed(d))

['four', 'three', 'two', 'one']

>>> list(reversed(d.values()))

[4, 3, 2, 1]

>>> list(reversed(d.items()))

[('four', 4), ('three', 3), ('two', 2), ('one', 1)]

Changed in version 3.8: Dictionaries are now reversible.

See also

types.MappingProxyType can be used to create a read-only view of a dict.

4.11.1 Dictionary view objects

The objects returned by dict.keys(), dict.values() and dict.items() are view objects. They provide a
dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these
changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len(dictview)

Return the number of entries in the dictionary.

iter(dictview)

Return an iterator over the keys, values or items (represented as tuples of (key, value)) in the dictionary.

Keys and values are iterated over in insertion order. This allows the creation of (value, key) pairs using
zip(): pairs = zip(d.values(), d.keys()). Another way to create the same list is pairs = [(v,

k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a RuntimeError or fail to iterate
over all entries.

Changed in version 3.7: Dictionary order is guaranteed to be insertion order.

x in dictview

Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,
value) tuple).

reversed(dictview)

Return a reverse iterator over the keys, values or items of the dictionary. The view will be iterated in reverse
order of the insertion.

Changed in version 3.8: Dictionary views are now reversible.

dictview.mapping

Return a types.MappingProxyType that wraps the original dictionary to which the view refers.

Added in version 3.10.

Keys views are set-like since their entries are unique and hashable. Items views also have set-like operations since
the (key, value) pairs are unique and the keys are hashable. If all values in an items view are hashable as well, then the
items view can interoperate with other sets. (Values views are not treated as set-like since the entries are generally
not unique.) For set-like views, all of the operations defined for the abstract base class collections.abc.Set
are available (for example, ==, <, or ^). While using set operators, set-like views accept any iterable as the other
operand, unlike sets which only accept sets as the input.

4.11. Mapping Types — dict 91

The Python Library Reference, Release 3.13.1

An example of dictionary view usage:

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}

>>> keys = dishes.keys()

>>> values = dishes.values()

>>> # iteration

>>> n = 0

>>> for val in values:

... n += val

...

>>> print(n)

504

>>> # keys and values are iterated over in the same order (insertion order)

>>> list(keys)

['eggs', 'sausage', 'bacon', 'spam']

>>> list(values)

[2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes

>>> del dishes['eggs']

>>> del dishes['sausage']

>>> list(keys)

['bacon', 'spam']

>>> # set operations

>>> keys & {'eggs', 'bacon', 'salad'}

{'bacon'}

>>> keys ^ {'sausage', 'juice'} == {'juice', 'sausage', 'bacon', 'spam'}

True

>>> keys | ['juice', 'juice', 'juice'] == {'bacon', 'spam', 'juice'}

True

>>> # get back a read-only proxy for the original dictionary

>>> values.mapping

mappingproxy({'bacon': 1, 'spam': 500})

>>> values.mapping['spam']

500

4.12 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a contextmanager. This is implemented
using a pair of methods that allow user-defined classes to define a runtime context that is entered before the statement
body is executed and exited when the statement ends:

contextmanager.__enter__()

Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this context
manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __en-
ter__() to allow open() to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by decimal.

localcontext(). These managers set the active decimal context to a copy of the original decimal context
and then return the copy. This allows changes to be made to the current decimal context in the body of the
with statement without affecting code outside the with statement.

92 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

contextmanager.__exit__(exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be sup-
pressed. If an exception occurred while executing the body of the with statement, the arguments contain the
exception type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur during execution of this method
will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value
to indicate that the method completed successfully and does not want to suppress the raised exception. This
allows context management code to easily detect whether or not an __exit__() method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially
beyond their implementation of the context management protocol. See the contextlibmodule for some examples.

Python’s generators and the contextlib.contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the contextlib.contextmanager decorator, it will
return a context manager implementing the necessary __enter__() and __exit__() methods, rather than the
iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C
API. Extension types wanting to define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is
negligible.

4.13 Type Annotation Types — Generic Alias, Union

The core built-in types for type annotations are Generic Alias and Union.

4.13.1 Generic Alias Type

GenericAlias objects are generally created by subscripting a class. They aremost often used with container classes,
such as list or dict. For example, list[int] is a GenericAlias object created by subscripting the list class
with the argument int. GenericAlias objects are intended primarily for use with type annotations.

Note

It is generally only possible to subscript a class if the class implements the special method
__class_getitem__().

A GenericAlias object acts as a proxy for a generic type, implementing parameterized generics.

For a container class, the argument(s) supplied to a subscription of the class may indicate the type(s) of the elements
an object contains. For example, set[bytes] can be used in type annotations to signify a set in which all the
elements are of type bytes.

For a class which defines __class_getitem__() but is not a container, the argument(s) supplied to a subscription
of the class will often indicate the return type(s) of one or more methods defined on an object. For example, regular
expressions can be used on both the str data type and the bytes data type:

• If x = re.search('foo', 'foo'), x will be a re.Match object where the return values of x.group(0)
and x[0] will both be of type str. We can represent this kind of object in type annotations with the
GenericAlias re.Match[str].

• If y = re.search(b'bar', b'bar'), (note the b for bytes), y will also be an instance of re.Match,
but the return values of y.group(0) and y[0] will both be of type bytes. In type annotations, we would
represent this variety of re.Match objects with re.Match[bytes].

4.13. Type Annotation Types — Generic Alias, Union 93

The Python Library Reference, Release 3.13.1

GenericAlias objects are instances of the class types.GenericAlias, which can also be used to create
GenericAlias objects directly.

T[X, Y, ...]

Creates a GenericAlias representing a type T parameterized by types X, Y, and more depending on the T
used. For example, a function expecting a list containing float elements:

def average(values: list[float]) -> float:

return sum(values) / len(values)

Another example for mapping objects, using a dict, which is a generic type expecting two type parameters
representing the key type and the value type. In this example, the function expects a dict with keys of type
str and values of type int:

def send_post_request(url: str, body: dict[str, int]) -> None:

...

The builtin functions isinstance() and issubclass() do not accept GenericAlias types for their second
argument:

>>> isinstance([1, 2], list[str])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: isinstance() argument 2 cannot be a parameterized generic

The Python runtime does not enforce type annotations. This extends to generic types and their type parameters.
When creating a container object from a GenericAlias, the elements in the container are not checked against their
type. For example, the following code is discouraged, but will run without errors:

>>> t = list[str]

>>> t([1, 2, 3])

[1, 2, 3]

Furthermore, parameterized generics erase type parameters during object creation:

>>> t = list[str]

>>> type(t)

<class 'types.GenericAlias'>

>>> l = t()

>>> type(l)

<class 'list'>

Calling repr() or str() on a generic shows the parameterized type:

>>> repr(list[int])

'list[int]'

>>> str(list[int])

'list[int]'

The __getitem__() method of generic containers will raise an exception to disallow mistakes like
dict[str][str]:

>>> dict[str][str]

Traceback (most recent call last):

...

TypeError: dict[str] is not a generic class

94 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

However, such expressions are valid when type variables are used. The index must have as many elements as there
are type variable items in the GenericAlias object’s __args__.

>>> from typing import TypeVar

>>> Y = TypeVar('Y')

>>> dict[str, Y][int]

dict[str, int]

Standard Generic Classes

The following standard library classes support parameterized generics. This list is non-exhaustive.

• tuple

• list

• dict

• set

• frozenset

• type

• collections.deque

• collections.defaultdict

• collections.OrderedDict

• collections.Counter

• collections.ChainMap

• collections.abc.Awaitable

• collections.abc.Coroutine

• collections.abc.AsyncIterable

• collections.abc.AsyncIterator

• collections.abc.AsyncGenerator

• collections.abc.Iterable

• collections.abc.Iterator

• collections.abc.Generator

• collections.abc.Reversible

• collections.abc.Container

• collections.abc.Collection

• collections.abc.Callable

• collections.abc.Set

• collections.abc.MutableSet

• collections.abc.Mapping

• collections.abc.MutableMapping

• collections.abc.Sequence

• collections.abc.MutableSequence

• collections.abc.ByteString

• collections.abc.MappingView

4.13. Type Annotation Types — Generic Alias, Union 95

The Python Library Reference, Release 3.13.1

• collections.abc.KeysView

• collections.abc.ItemsView

• collections.abc.ValuesView

• contextlib.AbstractContextManager

• contextlib.AbstractAsyncContextManager

• dataclasses.Field

• functools.cached_property

• functools.partialmethod

• os.PathLike

• queue.LifoQueue

• queue.Queue

• queue.PriorityQueue

• queue.SimpleQueue

• re.Pattern

• re.Match

• shelve.BsdDbShelf

• shelve.DbfilenameShelf

• shelve.Shelf

• types.MappingProxyType

• weakref.WeakKeyDictionary

• weakref.WeakMethod

• weakref.WeakSet

• weakref.WeakValueDictionary

Special Attributes of GenericAlias objects

All parameterized generics implement special read-only attributes.

genericalias.__origin__

This attribute points at the non-parameterized generic class:

>>> list[int].__origin__

<class 'list'>

genericalias.__args__

This attribute is a tuple (possibly of length 1) of generic types passed to the original __class_getitem__()
of the generic class:

>>> dict[str, list[int]].__args__

(<class 'str'>, list[int])

genericalias.__parameters__

This attribute is a lazily computed tuple (possibly empty) of unique type variables found in __args__:

96 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

>>> from typing import TypeVar

>>> T = TypeVar('T')

>>> list[T].__parameters__

(~T,)

Note

A GenericAlias object with typing.ParamSpec parameters may not have correct __parameters__
after substitution because typing.ParamSpec is intended primarily for static type checking.

genericalias.__unpacked__

A boolean that is true if the alias has been unpacked using the * operator (see TypeVarTuple).

Added in version 3.11.

See also

PEP 484 - Type Hints
Introducing Python’s framework for type annotations.

PEP 585 - Type Hinting Generics In Standard Collections
Introducing the ability to natively parameterize standard-library classes, provided they implement the spe-
cial class method __class_getitem__().

Generics, user-defined generics and typing.Generic
Documentation on how to implement generic classes that can be parameterized at runtime and understood
by static type-checkers.

Added in version 3.9.

4.13.2 Union Type

A union object holds the value of the | (bitwise or) operation on multiple type objects. These types are intended
primarily for type annotations. The union type expression enables cleaner type hinting syntax compared to typing.
Union.

X | Y | ...

Defines a union object which holds types X, Y, and so forth. X | Y means either X or Y. It is equivalent to
typing.Union[X, Y]. For example, the following function expects an argument of type int or float:

def square(number: int | float) -> int | float:

return number ** 2

Note

The | operand cannot be used at runtime to define unions where one or more members is a forward ref-
erence. For example, int | "Foo", where "Foo" is a reference to a class not yet defined, will fail at
runtime. For unions which include forward references, present the whole expression as a string, e.g. "int
| Foo".

union_object == other

Union objects can be tested for equality with other union objects. Details:

• Unions of unions are flattened:

4.13. Type Annotation Types — Generic Alias, Union 97

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.13.1

(int | str) | float == int | str | float

• Redundant types are removed:

int | str | int == int | str

• When comparing unions, the order is ignored:

int | str == str | int

• It is compatible with typing.Union:

int | str == typing.Union[int, str]

• Optional types can be spelled as a union with None:

str | None == typing.Optional[str]

isinstance(obj, union_object)

issubclass(obj, union_object)

Calls to isinstance() and issubclass() are also supported with a union object:

>>> isinstance("", int | str)

True

However, parameterized generics in union objects cannot be checked:

>>> isinstance(1, int | list[int]) # short-circuit evaluation

True

>>> isinstance([1], int | list[int])

Traceback (most recent call last):

...

TypeError: isinstance() argument 2 cannot be a parameterized generic

The user-exposed type for the union object can be accessed from types.UnionType and used for isinstance()
checks. An object cannot be instantiated from the type:

>>> import types

>>> isinstance(int | str, types.UnionType)

True

>>> types.UnionType()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: cannot create 'types.UnionType' instances

Note

The __or__() method for type objects was added to support the syntax X | Y. If a metaclass implements
__or__(), the Union may override it:
>>> class M(type):

... def __or__(self, other):

... return "Hello"

...

>>> class C(metaclass=M):

... pass

...

98 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

>>> C | int

'Hello'

>>> int | C

int | C

See also

PEP 604 – PEP proposing the X | Y syntax and the Union type.

Added in version 3.10.

4.14 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.14.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a name
defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist, rather
it requires an (external) definition for a module named foo somewhere.)

A special attribute of every module is __dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the __dict__
attribute is not possible (you can write m.__dict__['a'] = 1, which defines m.a to be 1, but you can’t write
m.__dict__ = {}). Modifying __dict__ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys' (built-in)>. If loaded from a file, they
are written as <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>.

4.14.2 Classes and Class Instances

See objects and class for these.

4.14.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.14.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance method. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object: a
bound method (also called instance method) object. When called, it will add the self argument to the argument list.
Bound methods have two special read-only attributes: m.__self__ is the object on which the method operates, and
m.__func__ is the function implementing the method. Calling m(arg-1, arg-2, ..., arg-n) is completely
equivalent to calling m.__func__(m.__self__, arg-1, arg-2, ..., arg-n).

Like function objects, boundmethod objects support getting arbitrary attributes. However, sincemethod attributes are
actually stored on the underlying function object (method.__func__), setting method attributes on bound methods

4.14. Other Built-in Types 99

https://peps.python.org/pep-0604/

The Python Library Reference, Release 3.13.1

is disallowed. Attempting to set an attribute on a method results in an AttributeError being raised. In order to
set a method attribute, you need to explicitly set it on the underlying function object:

>>> class C:

... def method(self):

... pass

...

>>> c = C()

>>> c.method.whoami = 'my name is method' # can't set on the method

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'method' object has no attribute 'whoami'

>>> c.method.__func__.whoami = 'my name is method'

>>> c.method.whoami

'my name is method'

See instance-methods for more information.

4.14.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the built-in compile() function and can be extracted from function
objects through their __code__ attribute. See also the code module.

Accessing __code__ raises an auditing event object.__getattr__ with arguments obj and "__code__".

A code object can be executed or evaluated by passing it (instead of a source string) to the exec() or eval()
built-in functions.

See types for more information.

4.14.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function type(). There
are no special operations on types. The standard module types defines names for all standard built-in types.

Types are written like this: <class 'int'>.

4.14.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name). type(None)() produces the same singleton.

It is written as None.

4.14.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one ellipsis
object, named Ellipsis (a built-in name). type(Ellipsis)() produces the Ellipsis singleton.

It is written as Ellipsis or

4.14.9 The NotImplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types
they don’t support. See comparisons for more information. There is exactly one NotImplemented object.
type(NotImplemented)() produces the singleton instance.

It is written as NotImplemented.

100 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

4.14.10 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.15 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the dir() built-in function.

definition.__name__

The name of the class, function, method, descriptor, or generator instance.

definition.__qualname__

The qualified name of the class, function, method, descriptor, or generator instance.

Added in version 3.3.

definition.__module__

The name of the module in which a class or function was defined.

definition.__doc__

The documentation string of a class or function, or None if undefined.

definition.__type_params__

The type parameters of generic classes, functions, and type aliases. For classes and functions that are not
generic, this will be an empty tuple.

Added in version 3.12.

4.16 Integer string conversion length limitation

CPython has a global limit for converting between int and str to mitigate denial of service attacks. This limit
only applies to decimal or other non-power-of-two number bases. Hexadecimal, octal, and binary conversions are
unlimited. The limit can be configured.

The int type in CPython is an arbitrary length number stored in binary form (commonly known as a “bignum”).
There exists no algorithm that can convert a string to a binary integer or a binary integer to a string in linear time, unless
the base is a power of 2. Even the best known algorithms for base 10 have sub-quadratic complexity. Converting a
large value such as int('1' * 500_000) can take over a second on a fast CPU.

Limiting conversion size offers a practical way to avoid CVE 2020-10735.

The limit is applied to the number of digit characters in the input or output string when a non-linear conversion
algorithm would be involved. Underscores and the sign are not counted towards the limit.

When an operation would exceed the limit, a ValueError is raised:

>>> import sys

>>> sys.set_int_max_str_digits(4300) # Illustrative, this is the default.

>>> _ = int('2' * 5432)

Traceback (most recent call last):

...

ValueError: Exceeds the limit (4300 digits) for integer string conversion: value␣

↪→has 5432 digits; use sys.set_int_max_str_digits() to increase the limit

>>> i = int('2' * 4300)

>>> len(str(i))

4300

>>> i_squared = i*i

>>> len(str(i_squared))

Traceback (most recent call last):

...

(continues on next page)

4.15. Special Attributes 101

https://www.cve.org/CVERecord?id=CVE-2020-10735

The Python Library Reference, Release 3.13.1

(continued from previous page)

ValueError: Exceeds the limit (4300 digits) for integer string conversion; use sys.

↪→set_int_max_str_digits() to increase the limit

>>> len(hex(i_squared))

7144

>>> assert int(hex(i_squared), base=16) == i*i # Hexadecimal is unlimited.

The default limit is 4300 digits as provided in sys.int_info.default_max_str_digits. The lowest limit that
can be configured is 640 digits as provided in sys.int_info.str_digits_check_threshold.

Verification:

>>> import sys

>>> assert sys.int_info.default_max_str_digits == 4300, sys.int_info

>>> assert sys.int_info.str_digits_check_threshold == 640, sys.int_info

>>> msg = int('578966293710682886880994035146873798396722250538762761564'

... '9252925514383915483333812743580549779436104706260696366600'

... '571186405732').to_bytes(53, 'big')

...

Added in version 3.11.

4.16.1 Affected APIs

The limitation only applies to potentially slow conversions between int and str or bytes:

• int(string) with default base 10.

• int(string, base) for all bases that are not a power of 2.

• str(integer).

• repr(integer).

• any other string conversion to base 10, for example f"{integer}", "{}".format(integer), or b"%d"
% integer.

The limitations do not apply to functions with a linear algorithm:

• int(string, base) with base 2, 4, 8, 16, or 32.

• int.from_bytes() and int.to_bytes().

• hex(), oct(), bin().

• Format Specification Mini-Language for hex, octal, and binary numbers.

• str to float.

• str to decimal.Decimal.

4.16.2 Configuring the limit

Before Python starts up you can use an environment variable or an interpreter command line flag to configure the
limit:

• PYTHONINTMAXSTRDIGITS, e.g. PYTHONINTMAXSTRDIGITS=640 python3 to set the limit to 640 or
PYTHONINTMAXSTRDIGITS=0 python3 to disable the limitation.

• -X int_max_str_digits, e.g. python3 -X int_max_str_digits=640

• sys.flags.int_max_str_digits contains the value of PYTHONINTMAXSTRDIGITS or -X

int_max_str_digits. If both the env var and the -X option are set, the -X option takes precedence. A
value of -1 indicates that both were unset, thus a value of sys.int_info.default_max_str_digits
was used during initialization.

From code, you can inspect the current limit and set a new one using these sys APIs:

102 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.1

• sys.get_int_max_str_digits() and sys.set_int_max_str_digits() are a getter and setter for
the interpreter-wide limit. Subinterpreters have their own limit.

Information about the default and minimum can be found in sys.int_info:

• sys.int_info.default_max_str_digits is the compiled-in default limit.

• sys.int_info.str_digits_check_threshold is the lowest accepted value for the limit (other than 0
which disables it).

Added in version 3.11.

Caution

Setting a low limit can lead to problems. While rare, code exists that contains integer constants in decimal in
their source that exceed the minimum threshold. A consequence of setting the limit is that Python source code
containing decimal integer literals longer than the limit will encounter an error during parsing, usually at startup
time or import time or even at installation time - anytime an up to date .pyc does not already exist for the code.
A workaround for source that contains such large constants is to convert them to 0x hexadecimal form as it has
no limit.

Test your application thoroughly if you use a low limit. Ensure your tests run with the limit set early via the
environment or flag so that it applies during startup and even during any installation step that may invoke Python
to precompile .py sources to .pyc files.

4.16.3 Recommended configuration

The default sys.int_info.default_max_str_digits is expected to be reasonable for most applications. If
your application requires a different limit, set it from your main entry point using Python version agnostic code as
these APIs were added in security patch releases in versions before 3.12.

Example:

>>> import sys

>>> if hasattr(sys, "set_int_max_str_digits"):

... upper_bound = 68000

... lower_bound = 4004

... current_limit = sys.get_int_max_str_digits()

... if current_limit == 0 or current_limit > upper_bound:

... sys.set_int_max_str_digits(upper_bound)

... elif current_limit < lower_bound:

... sys.set_int_max_str_digits(lower_bound)

If you need to disable it entirely, set it to 0.

4.16. Integer string conversion length limitation 103

The Python Library Reference, Release 3.13.1

104 Chapter 4. Built-in Types

CHAPTER

FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. In a try statement with
an except clause that mentions a particular class, that clause also handles any exception classes derived from that
class (but not exception classes from which it is derived). Two exception classes that are not related via subclassing
are never equivalent, even if they have the same name.

The built-in exceptions listed in this chapter can be generated by the interpreter or built-in functions. Except where
mentioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple
of several items of information (e.g., an error code and a string explaining the code). The associated value is usually
passed as arguments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to derive new
exceptions from the Exception class or one of its subclasses, and not from BaseException. More information
on defining exceptions is available in the Python Tutorial under tut-userexceptions.

5.1 Exception context

Three attributes on exception objects provide information about the context in which the exception was raised:

BaseException.__context__

BaseException.__cause__

BaseException.__suppress_context__

When raising a new exception while another exception is already being handled, the new exception’s
__context__ attribute is automatically set to the handled exception. An exception may be handled when an
except or finally clause, or a with statement, is used.

This implicit exception context can be supplemented with an explicit cause by using from with raise:

raise new_exc from original_exc

The expression following frommust be an exception or None. It will be set as __cause__ on the raised excep-
tion. Setting __cause__ also implicitly sets the __suppress_context__ attribute to True, so that using
raise new_exc from None effectively replaces the old exception with the new one for display purposes
(e.g. converting KeyError to AttributeError), while leaving the old exception available in __context__
for introspection when debugging.

The default traceback display code shows these chained exceptions in addition to the traceback for the exception
itself. An explicitly chained exception in __cause__ is always shown when present. An implicitly chained
exception in __context__ is shown only if __cause__ is None and __suppress_context__ is false.

In either case, the exception itself is always shown after any chained exceptions so that the final line of the
traceback always shows the last exception that was raised.

105

The Python Library Reference, Release 3.13.1

5.2 Inheriting from built-in exceptions

User code can create subclasses that inherit from an exception type. It’s recommended to only subclass one exception
type at a time to avoid any possible conflicts between how the bases handle the args attribute, as well as due to
possible memory layout incompatibilities.

CPython implementation detail: Most built-in exceptions are implemented in C for efficiency, see: Ob-
jects/exceptions.c. Some have custom memory layouts which makes it impossible to create a subclass that inherits
from multiple exception types. The memory layout of a type is an implementation detail and might change between
Python versions, leading to new conflicts in the future. Therefore, it’s recommended to avoid subclassing multiple
exception types altogether.

5.3 Base classes

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException

The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for
that, use Exception). If str() is called on an instance of this class, the representation of the argument(s) to
the instance are returned, or the empty string when there were no arguments.

args

The tuple of arguments given to the exception constructor. Some built-in exceptions (like OSError)
expect a certain number of arguments and assign a special meaning to the elements of this tuple, while
others are usually called only with a single string giving an error message.

with_traceback(tb)
This method sets tb as the new traceback for the exception and returns the exception object. It was more
commonly used before the exception chaining features of PEP 3134 became available. The following ex-
ample shows how we can convert an instance of SomeException into an instance of OtherException
while preserving the traceback. Once raised, the current frame is pushed onto the traceback of the
OtherException, as would have happened to the traceback of the original SomeException had we
allowed it to propagate to the caller.

try:

...

except SomeException:

tb = sys.exception().__traceback__

raise OtherException(...).with_traceback(tb)

__traceback__

A writable field that holds the traceback object associated with this exception. See also: raise.

add_note(note)
Add the string note to the exception’s notes which appear in the standard traceback after the exception
string. A TypeError is raised if note is not a string.

Added in version 3.11.

__notes__

A list of the notes of this exception, which were added with add_note(). This attribute is created when
add_note() is called.

Added in version 3.11.

exception Exception

All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also
be derived from this class.

106 Chapter 5. Built-in Exceptions

https://github.com/python/cpython/tree/3.13/Objects/exceptions.c
https://github.com/python/cpython/tree/3.13/Objects/exceptions.c
https://peps.python.org/pep-3134/

The Python Library Reference, Release 3.13.1

exception ArithmeticError

The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError, FloatingPointError.

exception BufferError

Raised when a buffer related operation cannot be performed.

exception LookupError

The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by codecs.lookup().

5.4 Concrete exceptions

The following exceptions are the exceptions that are usually raised.

exception AssertionError

Raised when an assert statement fails.

exception AttributeError

Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not
support attribute references or attribute assignments at all, TypeError is raised.)

The name and obj attributes can be set using keyword-only arguments to the constructor. When set they
represent the name of the attribute that was attempted to be accessed and the object that was accessed for said
attribute, respectively.

Changed in version 3.10: Added the name and obj attributes.

exception EOFError

Raised when the input() function hits an end-of-file condition (EOF) without reading any data. (N.B.: the
io.IOBase.read() and io.IOBase.readline() methods return an empty string when they hit EOF.)

exception FloatingPointError

Not currently used.

exception GeneratorExit

Raised when a generator or coroutine is closed; see generator.close() and coroutine.close(). It
directly inherits from BaseException instead of Exception since it is technically not an error.

exception ImportError

Raised when the import statement has troubles trying to load a module. Also raised when the “from list” in
from ... import has a name that cannot be found.

The optional name and path keyword-only arguments set the corresponding attributes:

name

The name of the module that was attempted to be imported.

path

The path to any file which triggered the exception.

Changed in version 3.3: Added the name and path attributes.

exception ModuleNotFoundError

A subclass of ImportError which is raised by import when a module could not be located. It is also raised
when None is found in sys.modules.

Added in version 3.6.

exception IndexError

Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not an integer, TypeError is raised.)

5.4. Concrete exceptions 107

The Python Library Reference, Release 3.13.1

exception KeyError

Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt

Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check for
interrupts is made regularly. The exception inherits from BaseException so as to not be accidentally caught
by code that catches Exception and thus prevent the interpreter from exiting.

Note

Catching a KeyboardInterrupt requires special consideration. Because it can be raised at unpredictable
points, it may, in some circumstances, leave the running program in an inconsistent state. It is generally
best to allow KeyboardInterrupt to end the program as quickly as possible or avoid raising it entirely.
(See Note on Signal Handlers and Exceptions.)

exception MemoryError

Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that
because of the underlying memory management architecture (C’s malloc() function), the interpreter may
not always be able to completely recover from this situation; it nevertheless raises an exception so that a stack
traceback can be printed, in case a run-away program was the cause.

exception NameError

Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

The name attribute can be set using a keyword-only argument to the constructor. When set it represent the
name of the variable that was attempted to be accessed.

Changed in version 3.10: Added the name attribute.

exception NotImplementedError

This exception is derived from RuntimeError. In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method, or while the class is being developed
to indicate that the real implementation still needs to be added.

Note

It should not be used to indicate that an operator or method is not meant to be supported at all – in that
case either leave the operator / method undefined or, if a subclass, set it to None.

Note

NotImplementedError and NotImplemented are not interchangeable, even though they have similar
names and purposes. See NotImplemented for details on when to use it.

exception OSError([arg])
exception OSError(errno, strerror[, filename[, winerror[, filename2]]])

This exception is raised when a system function returns a system-related error, including I/O failures such as
“file not found” or “disk full” (not for illegal argument types or other incidental errors).

The second form of the constructor sets the corresponding attributes, described below. The attributes default to
None if not specified. For backwards compatibility, if three arguments are passed, the args attribute contains
only a 2-tuple of the first two constructor arguments.

108 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.13.1

The constructor often actually returns a subclass of OSError, as described in OS exceptions below. The par-
ticular subclass depends on the final errno value. This behaviour only occurs when constructing OSError
directly or via an alias, and is not inherited when subclassing.

errno

A numeric error code from the C variable errno.

winerror

Under Windows, this gives you the native Windows error code. The errno attribute is then an approxi-
mate translation, in POSIX terms, of that native error code.

Under Windows, if the winerror constructor argument is an integer, the errno attribute is determined
from the Windows error code, and the errno argument is ignored. On other platforms, the winerror
argument is ignored, and the winerror attribute does not exist.

strerror

The corresponding error message, as provided by the operating system. It is formatted by the C functions
perror() under POSIX, and FormatMessage() under Windows.

filename

filename2

For exceptions that involve a file system path (such as open() or os.unlink()), filename is the file
name passed to the function. For functions that involve two file system paths (such as os.rename()),
filename2 corresponds to the second file name passed to the function.

Changed in version 3.3: EnvironmentError, IOError, WindowsError, socket.error, select.
error and mmap.error have been merged into OSError, and the constructor may return a subclass.

Changed in version 3.4: The filename attribute is now the original file name passed to the function, instead
of the name encoded to or decoded from the filesystem encoding and error handler. Also, the filename2
constructor argument and attribute was added.

exception OverflowError

Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for integers
(which would rather raise MemoryError than give up). However, for historical reasons, OverflowError is
sometimes raised for integers that are outside a required range. Because of the lack of standardization of
floating-point exception handling in C, most floating-point operations are not checked.

exception PythonFinalizationError

This exception is derived from RuntimeError. It is raised when an operation is blocked during interpreter
shutdown also known as Python finalization.

Examples of operations which can be blocked with a PythonFinalizationError during the Python final-
ization:

• Creating a new Python thread.

• os.fork().

See also the sys.is_finalizing() function.

Added in version 3.13: Previously, a plain RuntimeError was raised.

exception RecursionError

This exception is derived from RuntimeError. It is raised when the interpreter detects that the maximum
recursion depth (see sys.getrecursionlimit()) is exceeded.

Added in version 3.5: Previously, a plain RuntimeError was raised.

exception ReferenceError

This exception is raised when a weak reference proxy, created by the weakref.proxy() function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weakref module.

5.4. Concrete exceptions 109

The Python Library Reference, Release 3.13.1

exception RuntimeError

Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a string
indicating what precisely went wrong.

exception StopIteration

Raised by built-in function next() and an iterator’s __next__() method to signal that there are no further
items produced by the iterator.

value

The exception object has a single attribute value, which is given as an argument when constructing the
exception, and defaults to None.

When a generator or coroutine function returns, a new StopIteration instance is raised, and the value
returned by the function is used as the value parameter to the constructor of the exception.

If a generator code directly or indirectly raises StopIteration, it is converted into a RuntimeError (re-
taining the StopIteration as the new exception’s cause).

Changed in version 3.3: Added value attribute and the ability for generator functions to use it to return a
value.

Changed in version 3.5: Introduced the RuntimeError transformation via from __future__ import

generator_stop, see PEP 479.

Changed in version 3.7: EnablePEP 479 for all code by default: a StopIteration error raised in a generator
is transformed into a RuntimeError.

exception StopAsyncIteration

Must be raised by __anext__() method of an asynchronous iterator object to stop the iteration.

Added in version 3.5.

exception SyntaxError(message, details)
Raised when the parser encounters a syntax error. This may occur in an import statement, in a call to the
built-in functions compile(), exec(), or eval(), or when reading the initial script or standard input (also
interactively).

The str() of the exception instance returns only the error message. Details is a tuple whose members are
also available as separate attributes.

filename

The name of the file the syntax error occurred in.

lineno

Which line number in the file the error occurred in. This is 1-indexed: the first line in the file has a
lineno of 1.

offset

The column in the line where the error occurred. This is 1-indexed: the first character in the line has an
offset of 1.

text

The source code text involved in the error.

end_lineno

Which line number in the file the error occurred ends in. This is 1-indexed: the first line in the file has a
lineno of 1.

end_offset

The column in the end line where the error occurred finishes. This is 1-indexed: the first character in the
line has an offset of 1.

For errors in f-string fields, themessage is prefixed by “f-string: ” and the offsets are offsets in a text constructed
from the replacement expression. For example, compiling f’Bad {a b} field’ results in this args attribute: (‘f-
string: …’, (‘’, 1, 2, ‘(a b)n’, 1, 5)).

110 Chapter 5. Built-in Exceptions

https://peps.python.org/pep-0479/
https://peps.python.org/pep-0479/

The Python Library Reference, Release 3.13.1

Changed in version 3.10: Added the end_lineno and end_offset attributes.

exception IndentationError

Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError

Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of
IndentationError.

exception SystemError

Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpreter (sys.version; it is also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

exception SystemExit

This exception is raised by the sys.exit() function. It inherits from BaseException instead of
Exception so that it is not accidentally caught by code that catches Exception. This allows the exception
to properly propagate up and cause the interpreter to exit. When it is not handled, the Python interpreter exits;
no stack traceback is printed. The constructor accepts the same optional argument passed to sys.exit(). If
the value is an integer, it specifies the system exit status (passed to C’s exit() function); if it is None, the exit
status is zero; if it has another type (such as a string), the object’s value is printed and the exit status is one.

A call to sys.exit() is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit() function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a call to os.fork()).

code

The exit status or error message that is passed to the constructor. (Defaults to None.)

exception TypeError

Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

This exception may be raised by user code to indicate that an attempted operation on an object is not sup-
ported, and is not meant to be. If an object is meant to support a given operation but has not yet provided an
implementation, NotImplementedError is the proper exception to raise.

Passing arguments of the wrong type (e.g. passing a list when an int is expected) should result in a
TypeError, but passing arguments with the wrong value (e.g. a number outside expected boundaries) should
result in a ValueError.

exception UnboundLocalError

Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclass of NameError.

exception UnicodeError

Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

UnicodeError has attributes that describe the encoding or decoding error. For example, err.object[err.
start:err.end] gives the particular invalid input that the codec failed on.

encoding

The name of the encoding that raised the error.

reason

A string describing the specific codec error.

5.4. Concrete exceptions 111

The Python Library Reference, Release 3.13.1

object

The object the codec was attempting to encode or decode.

start

The first index of invalid data in object.

end

The index after the last invalid data in object.

exception UnicodeEncodeError

Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError

Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError

Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError

Raised when an operation or function receives an argument that has the right type but an inappropriate value,
and the situation is not described by a more precise exception such as IndexError.

exception ZeroDivisionError

Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are kept for compatibility with previous versions; starting from Python 3.3, they are aliases
of OSError.

exception EnvironmentError

exception IOError

exception WindowsError

Only available on Windows.

5.4.1 OS exceptions

The following exceptions are subclasses of OSError, they get raised depending on the system error code.

exception BlockingIOError

Raised when an operation would block on an object (e.g. socket) set for non-blocking operation. Corresponds
to errno EAGAIN, EALREADY, EWOULDBLOCK and EINPROGRESS.

In addition to those of OSError, BlockingIOError can have one more attribute:

characters_written

An integer containing the number of characters written to the stream before it blocked. This attribute is
available when using the buffered I/O classes from the io module.

exception ChildProcessError

Raised when an operation on a child process failed. Corresponds to errno ECHILD.

exception ConnectionError

A base class for connection-related issues.

Subclasses are BrokenPipeError, ConnectionAbortedError, ConnectionRefusedError and
ConnectionResetError.

exception BrokenPipeError

A subclass of ConnectionError, raised when trying to write on a pipe while the other end has been closed,
or trying to write on a socket which has been shutdown for writing. Corresponds to errno EPIPE and
ESHUTDOWN.

112 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.13.1

exception ConnectionAbortedError

A subclass of ConnectionError, raised when a connection attempt is aborted by the peer. Corresponds to
errno ECONNABORTED.

exception ConnectionRefusedError

A subclass of ConnectionError, raised when a connection attempt is refused by the peer. Corresponds to
errno ECONNREFUSED.

exception ConnectionResetError

A subclass of ConnectionError, raised when a connection is reset by the peer. Corresponds to errno

ECONNRESET.

exception FileExistsError

Raised when trying to create a file or directory which already exists. Corresponds to errno EEXIST.

exception FileNotFoundError

Raised when a file or directory is requested but doesn’t exist. Corresponds to errno ENOENT.

exception InterruptedError

Raised when a system call is interrupted by an incoming signal. Corresponds to errno EINTR.

Changed in version 3.5: Python now retries system calls when a syscall is interrupted by a signal, except if the
signal handler raises an exception (see PEP 475 for the rationale), instead of raising InterruptedError.

exception IsADirectoryError

Raised when a file operation (such as os.remove()) is requested on a directory. Corresponds to errno

EISDIR.

exception NotADirectoryError

Raisedwhen a directory operation (such as os.listdir()) is requested on somethingwhich is not a directory.
On most POSIX platforms, it may also be raised if an operation attempts to open or traverse a non-directory
file as if it were a directory. Corresponds to errno ENOTDIR.

exception PermissionError

Raised when trying to run an operation without the adequate access rights - for example filesystem permissions.
Corresponds to errno EACCES, EPERM , and ENOTCAPABLE.

Changed in version 3.11.1: WASI’s ENOTCAPABLE is now mapped to PermissionError.

exception ProcessLookupError

Raised when a given process doesn’t exist. Corresponds to errno ESRCH.

exception TimeoutError

Raised when a system function timed out at the system level. Corresponds to errno ETIMEDOUT.

Added in version 3.3: All the above OSError subclasses were added.

See also

PEP 3151 - Reworking the OS and IO exception hierarchy

5.5 Warnings

The following exceptions are used as warning categories; see theWarning Categories documentation for more details.

exception Warning

Base class for warning categories.

5.5. Warnings 113

https://peps.python.org/pep-0475/
https://peps.python.org/pep-3151/

The Python Library Reference, Release 3.13.1

exception UserWarning

Base class for warnings generated by user code.

exception DeprecationWarning

Base class for warnings about deprecated features when those warnings are intended for other Python devel-
opers.

Ignored by the default warning filters, except in the __main__ module (PEP 565). Enabling the Python
Development Mode shows this warning.

The deprecation policy is described in PEP 387.

exception PendingDeprecationWarning

Base class for warnings about features which are obsolete and expected to be deprecated in the future, but are
not deprecated at the moment.

This class is rarely used as emitting a warning about a possible upcoming deprecation is unusual, and
DeprecationWarning is preferred for already active deprecations.

Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.

The deprecation policy is described in PEP 387.

exception SyntaxWarning

Base class for warnings about dubious syntax.

exception RuntimeWarning

Base class for warnings about dubious runtime behavior.

exception FutureWarning

Base class for warnings about deprecated features when those warnings are intended for end users of applica-
tions that are written in Python.

exception ImportWarning

Base class for warnings about probable mistakes in module imports.

Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.

exception UnicodeWarning

Base class for warnings related to Unicode.

exception EncodingWarning

Base class for warnings related to encodings.

See Opt-in EncodingWarning for details.

Added in version 3.10.

exception BytesWarning

Base class for warnings related to bytes and bytearray.

exception ResourceWarning

Base class for warnings related to resource usage.

Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.

Added in version 3.2.

5.6 Exception groups

The following are used when it is necessary to raise multiple unrelated exceptions. They are part of the exception
hierarchy so they can be handled with except like all other exceptions. In addition, they are recognised by except*,
which matches their subgroups based on the types of the contained exceptions.

114 Chapter 5. Built-in Exceptions

https://peps.python.org/pep-0565/
https://peps.python.org/pep-0387/
https://peps.python.org/pep-0387/

The Python Library Reference, Release 3.13.1

exception ExceptionGroup(msg, excs)

exception BaseExceptionGroup(msg, excs)
Both of these exception types wrap the exceptions in the sequence excs. The msg parameter must be a
string. The difference between the two classes is that BaseExceptionGroup extends BaseException
and it can wrap any exception, while ExceptionGroup extends Exception and it can only wrap sub-
classes of Exception. This design is so that except Exception catches an ExceptionGroup but not
BaseExceptionGroup.

The BaseExceptionGroup constructor returns an ExceptionGroup rather than a BaseExceptionGroup
if all contained exceptions are Exception instances, so it can be used to make the selection automatic. The
ExceptionGroup constructor, on the other hand, raises a TypeError if any contained exception is not an
Exception subclass.

message

The msg argument to the constructor. This is a read-only attribute.

exceptions

A tuple of the exceptions in the excs sequence given to the constructor. This is a read-only attribute.

subgroup(condition)

Returns an exception group that contains only the exceptions from the current group that match condition,
or None if the result is empty.

The condition can be an exception type or tuple of exception types, in which case each exception is
checked for a match using the same check that is used in an except clause. The condition can also be
a callable (other than a type object) that accepts an exception as its single argument and returns true for
the exceptions that should be in the subgroup.

The nesting structure of the current exception is preserved in the result, as are the values of its message,
__traceback__, __cause__, __context__ and __notes__ fields. Empty nested groups are omit-
ted from the result.

The condition is checked for all exceptions in the nested exception group, including the top-level and any
nested exception groups. If the condition is true for such an exception group, it is included in the result
in full.

Added in version 3.13: condition can be any callable which is not a type object.

split(condition)
Like subgroup(), but returns the pair (match, rest) where match is subgroup(condition)
and rest is the remaining non-matching part.

derive(excs)
Returns an exception group with the same message, but which wraps the exceptions in excs.

This method is used by subgroup() and split(), which are used in various contexts to break up an
exception group. A subclass needs to override it in order to make subgroup() and split() return
instances of the subclass rather than ExceptionGroup.

subgroup() and split() copy the __traceback__, __cause__, __context__ and __notes__
fields from the original exception group to the one returned by derive(), so these fields do not need to
be updated by derive().

>>> class MyGroup(ExceptionGroup):

... def derive(self, excs):

... return MyGroup(self.message, excs)

...

>>> e = MyGroup("eg", [ValueError(1), TypeError(2)])

>>> e.add_note("a note")

>>> e.__context__ = Exception("context")

>>> e.__cause__ = Exception("cause")

(continues on next page)

5.6. Exception groups 115

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> try:

... raise e

... except Exception as e:

... exc = e

...

>>> match, rest = exc.split(ValueError)

>>> exc, exc.__context__, exc.__cause__, exc.__notes__

(MyGroup('eg', [ValueError(1), TypeError(2)]), Exception('context'),␣

↪→Exception('cause'), ['a note'])

>>> match, match.__context__, match.__cause__, match.__notes__

(MyGroup('eg', [ValueError(1)]), Exception('context'), Exception('cause'),␣

↪→['a note'])

>>> rest, rest.__context__, rest.__cause__, rest.__notes__

(MyGroup('eg', [TypeError(2)]), Exception('context'), Exception('cause'), [

↪→'a note'])

>>> exc.__traceback__ is match.__traceback__ is rest.__traceback__

True

Note that BaseExceptionGroup defines __new__(), so subclasses that need a different constructor signa-
ture need to override that rather than __init__(). For example, the following defines an exception group
subclass which accepts an exit_code and and constructs the group’s message from it.

class Errors(ExceptionGroup):

def __new__(cls, errors, exit_code):

self = super().__new__(Errors, f"exit code: {exit_code}", errors)

self.exit_code = exit_code

return self

def derive(self, excs):

return Errors(excs, self.exit_code)

Like ExceptionGroup, any subclass of BaseExceptionGroup which is also a subclass of Exception can
only wrap instances of Exception.

Added in version 3.11.

5.7 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException

├── BaseExceptionGroup

├── GeneratorExit

├── KeyboardInterrupt

├── SystemExit

└── Exception

├── ArithmeticError

│ ├── FloatingPointError

│ ├── OverflowError

│ └── ZeroDivisionError

├── AssertionError

├── AttributeError

├── BufferError

├── EOFError

├── ExceptionGroup [BaseExceptionGroup]

├── ImportError

(continues on next page)

116 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.13.1

(continued from previous page)

│ └── ModuleNotFoundError

├── LookupError

│ ├── IndexError

│ └── KeyError

├── MemoryError

├── NameError

│ └── UnboundLocalError

├── OSError

│ ├── BlockingIOError

│ ├── ChildProcessError

│ ├── ConnectionError

│ │ ├── BrokenPipeError

│ │ ├── ConnectionAbortedError

│ │ ├── ConnectionRefusedError

│ │ └── ConnectionResetError

│ ├── FileExistsError

│ ├── FileNotFoundError

│ ├── InterruptedError

│ ├── IsADirectoryError

│ ├── NotADirectoryError

│ ├── PermissionError

│ ├── ProcessLookupError

│ └── TimeoutError

├── ReferenceError

├── RuntimeError

│ ├── NotImplementedError

│ ├── PythonFinalizationError

│ └── RecursionError

├── StopAsyncIteration

├── StopIteration

├── SyntaxError

│ └── IndentationError

│ └── TabError

├── SystemError

├── TypeError

├── ValueError

│ └── UnicodeError

│ ├── UnicodeDecodeError

│ ├── UnicodeEncodeError

│ └── UnicodeTranslateError

└── Warning

├── BytesWarning

├── DeprecationWarning

├── EncodingWarning

├── FutureWarning

├── ImportWarning

├── PendingDeprecationWarning

├── ResourceWarning

├── RuntimeWarning

├── SyntaxWarning

├── UnicodeWarning

└── UserWarning

5.7. Exception hierarchy 117

The Python Library Reference, Release 3.13.1

118 Chapter 5. Built-in Exceptions

CHAPTER

SIX

TEXT PROCESSING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations and other text process-
ing services.

The codecsmodule described under Binary Data Services is also highly relevant to text processing. In addition, see
the documentation for Python’s built-in string type in Text Sequence Type — str.

6.1 string— Common string operations

Source code: Lib/string.py

See also

Text Sequence Type — str

String Methods

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters

The concatenation of the ascii_lowercase and ascii_uppercase constants described below. This value
is not locale-dependent.

string.ascii_lowercase

The lowercase letters 'abcdefghijklmnopqrstuvwxyz'. This value is not locale-dependent and will not
change.

string.ascii_uppercase

The uppercase letters 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'. This value is not locale-dependent and will not
change.

string.digits

The string '0123456789'.

string.hexdigits

The string '0123456789abcdefABCDEF'.

string.octdigits

The string '01234567'.

string.punctuation

String of ASCII characters which are considered punctuation characters in the C locale: !"#$%&'()*+,-./
:;<=>?@[\]^_`{|}~.

119

https://github.com/python/cpython/tree/3.13/Lib/string.py

The Python Library Reference, Release 3.13.1

string.printable

String of ASCII characters which are considered printable. This is a combination of digits,
ascii_letters, punctuation, and whitespace.

string.whitespace

A string containing all ASCII characters that are considered whitespace. This includes the characters space,
tab, linefeed, return, formfeed, and vertical tab.

6.1.2 Custom String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via the
format() method described in PEP 3101. The Formatter class in the string module allows you to create and
customize your own string formatting behaviors using the same implementation as the built-in format() method.

class string.Formatter

The Formatter class has the following public methods:

format(format_string, / , *args, **kwargs)
The primary API method. It takes a format string and an arbitrary set of positional and keyword argu-
ments. It is just a wrapper that calls vformat().

Changed in version 3.7: A format string argument is now positional-only.

vformat(format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases where you
want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dictionary
as individual arguments using the *args and **kwargs syntax. vformat() does the work of breaking
up the format string into character data and replacement fields. It calls the various methods described
below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

parse(format_string)
Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec, con-
version). This is used by vformat() to break the string into either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement
field. If there is no literal text (which can happen if two replacement fields occur consecutively), then
literal_text will be a zero-length string. If there is no replacement field, then the values of field_name,
format_spec and conversion will be None.

get_field(field_name, args, kwargs)
Given field_name as returned by parse() (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such as
“0[name]” or “label.title”. args and kwargs are as passed in to vformat(). The return value used_key
has the same meaning as the key parameter to get_value().

get_value(key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer,
it represents the index of the positional argument in args; if it is a string, then it represents a named
argument in kwargs.

The args parameter is set to the list of positional arguments to vformat(), and the kwargs parameter is
set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause get_value() to be called with a key argument
of 0. The name attribute will be looked up after get_value() returns by calling the built-in getattr()
function.

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError should
be raised.

120 Chapter 6. Text Processing Services

https://peps.python.org/pep-3101/
https://peps.python.org/pep-3101/

The Python Library Reference, Release 3.13.1

check_unused_args(used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The set
of unused args can be calculated from these parameters. check_unused_args() is assumed to raise
an exception if the check fails.

format_field(value, format_spec)
format_field() simply calls the global format() built-in. The method is provided so that subclasses
can override it.

convert_field(value, conversion)
Converts the value (returned by get_field()) given a conversion type (as in the tuple returned by the
parse() method). The default version understands ‘s’ (str), ‘r’ (repr) and ‘a’ (ascii) conversion types.

6.1.3 Format String Syntax

The str.format() method and the Formatter class share the same syntax for format strings (although in the
case of Formatter, subclasses can define their own format string syntax). The syntax is related to that of formatted
string literals, but it is less sophisticated and, in particular, does not support arbitrary expressions.

Format strings contain “replacement fields” surrounded by curly braces {}. Anything that is not contained in braces
is considered literal text, which is copied unchanged to the output. If you need to include a brace character in the
literal text, it can be escaped by doubling: {{ and }}.

The grammar for a replacement field is as follows:

replacement_field ::= "{" [field_name] ["!" conversion] [":" format_spec] "}"

field_name ::= arg_name ("." attribute_name | "[" element_index "]")*

arg_name ::= [identifier | digit+]

attribute_name ::= identifier

element_index ::= digit+ | index_string

index_string ::= <any source character except "]"> +

conversion ::= "r" | "s" | "a"

format_spec ::= format-spec:format_spec

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to be
formatted and inserted into the output instead of the replacement field. The field_name is optionally followed by a
conversion field, which is preceded by an exclamation point '!', and a format_spec, which is preceded by a colon
':'. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it refers to
a positional argument, and if it’s a keyword, it refers to a named keyword argument. An arg_name is treated as a
number if a call to str.isdecimal() on the string would return true. If the numerical arg_names in a format string
are 0, 1, 2, … in sequence, they can all be omitted (not just some) and the numbers 0, 1, 2, … will be automatically
inserted in that order. Because arg_name is not quote-delimited, it is not possible to specify arbitrary dictionary keys
(e.g., the strings '10' or ':-]') within a format string. The arg_name can be followed by any number of index or
attribute expressions. An expression of the form '.name' selects the named attribute using getattr(), while an
expression of the form '[index]' does an index lookup using __getitem__().

Changed in version 3.1: The positional argument specifiers can be omitted for str.format(), so '{} {}'.

format(a, b) is equivalent to '{0} {1}'.format(a, b).

Changed in version 3.4: The positional argument specifiers can be omitted for Formatter.

Some simple format string examples:

6.1. string— Common string operations 121

The Python Library Reference, Release 3.13.1

"First, thou shalt count to {0}" # References first positional argument

"Bring me a {}" # Implicitly references the first positional␣

↪→argument

"From {} to {}" # Same as "From {0} to {1}"

"My quest is {name}" # References keyword argument 'name'

"Weight in tons {0.weight}" # 'weight' attribute of first positional arg

"Units destroyed: {players[0]}" # First element of keyword argument 'players'.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done by the
__format__()method of the value itself. However, in some cases it is desirable to force a type to be formatted as a
string, overriding its own definition of formatting. By converting the value to a string before calling __format__(),
the normal formatting logic is bypassed.

Three conversion flags are currently supported: '!s' which calls str() on the value, '!r' which calls repr() and
'!a' which calls ascii().

Some examples:

"Harold's a clever {0!s}" # Calls str() on the argument first

"Bring out the holy {name!r}" # Calls repr() on the argument first

"More {!a}" # Calls ascii() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field
width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-
language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields may contain
a field name, conversion flag and format specification, but deeper nesting is not allowed. The replacement fields
within the format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a
value to be dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individ-
ual values are presented (see Format String Syntax and f-strings). They can also be passed directly to the built-in
format() function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

A general convention is that an empty format specification produces the same result as if you had called str() on
the value. A non-empty format specification typically modifies the result.

The general form of a standard format specifier is:

format_spec ::= [[fill]align][sign]["z"]["#"]["0"][width][grouping_option]["." precision][type]

fill ::= <any character>

align ::= "<" | ">" | "=" | "^"

sign ::= "+" | "-" | " "

width ::= digit+

grouping_option ::= "_" | ","

precision ::= digit+

type ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"

If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults to a space
if omitted. It is not possible to use a literal curly brace (”{” or “}”) as the fill character in a formatted string literal

122 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

or when using the str.format() method. However, it is possible to insert a curly brace with a nested replacement
field. This limitation doesn’t affect the format() function.

The meaning of the various alignment options is as follows:

Op-
tion

Meaning

'<' Forces the field to be left-aligned within the available space (this is the default for most objects).
'>' Forces the field to be right-aligned within the available space (this is the default for numbers).
'=' Forces the padding to be placed after the sign (if any) but before the digits. This is used for printing fields

in the form ‘+000000120’. This alignment option is only valid for numeric types, excluding complex. It
becomes the default for numbers when ‘0’ immediately precedes the field width.

'^' Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so
that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op-
tion

Meaning

'+' indicates that a sign should be used for both positive as well as negative numbers.
'-' indicates that a sign should be used only for negative numbers (this is the default behavior).
space indicates that a leading space should be used on positive numbers, and a minus sign on negative numbers.

The 'z' option coerces negative zero floating-point values to positive zero after rounding to the format precision.
This option is only valid for floating-point presentation types.

Changed in version 3.11: Added the 'z' option (see also PEP 682).

The '#' option causes the “alternate form” to be used for the conversion. The alternate form is defined differently
for different types. This option is only valid for integer, float and complex types. For integers, when binary, octal, or
hexadecimal output is used, this option adds the respective prefix '0b', '0o', '0x', or '0X' to the output value. For
float and complex the alternate form causes the result of the conversion to always contain a decimal-point character,
even if no digits follow it. Normally, a decimal-point character appears in the result of these conversions only if a
digit follows it. In addition, for 'g' and 'G' conversions, trailing zeros are not removed from the result.

The ',' option signals the use of a comma for a thousands separator for floating-point presentation types and for
integer presentation type 'd'. For other presentation types, this option is an error. For a locale aware separator, use
the 'n' integer presentation type instead.

Changed in version 3.1: Added the ',' option (see also PEP 378).

The '_' option signals the use of an underscore for a thousands separator for floating-point presentation types and for
integer presentation type 'd'. For integer presentation types 'b', 'o', 'x', and 'X', underscores will be inserted
every 4 digits. For other presentation types, specifying this option is an error.

Changed in version 3.6: Added the '_' option (see also PEP 515).

width is a decimal integer defining the minimum total field width, including any prefixes, separators, and other for-
matting characters. If not specified, then the field width will be determined by the content.

When no explicit alignment is given, preceding the width field by a zero ('0') character enables sign-aware zero-
padding for numeric types, excluding complex. This is equivalent to a fill character of '0' with an alignment type
of '='.

Changed in version 3.10: Preceding the width field by '0' no longer affects the default alignment for strings.

The precision is a decimal integer indicating how many digits should be displayed after the decimal point for pre-
sentation types 'f' and 'F', or before and after the decimal point for presentation types 'g' or 'G'. For string

6.1. string— Common string operations 123

https://peps.python.org/pep-0682/
https://peps.python.org/pep-0378/
https://peps.python.org/pep-0515/

The Python Library Reference, Release 3.13.1

presentation types the field indicates the maximum field size - in other words, how many characters will be used from
the field content. The precision is not allowed for integer presentation types.

Finally, the type determines how the data should be presented.

The available string presentation types are:

Type Meaning

's' String format. This is the default type for strings and may be omitted.
None The same as 's'.

The available integer presentation types are:

Type Meaning

'b' Binary format. Outputs the number in base 2.
'c' Character. Converts the integer to the corresponding unicode character before printing.
'd' Decimal Integer. Outputs the number in base 10.
'o' Octal format. Outputs the number in base 8.
'x' Hex format. Outputs the number in base 16, using lower-case letters for the digits above 9.
'X' Hex format. Outputs the number in base 16, using upper-case letters for the digits above 9.

In case '#' is specified, the prefix '0x' will be upper-cased to '0X' as well.
'n' Number. This is the same as 'd', except that it uses the current locale setting to insert the

appropriate number separator characters.
None The same as 'd'.

In addition to the above presentation types, integers can be formatted with the floating-point presentation types listed
below (except 'n' and None). When doing so, float() is used to convert the integer to a floating-point number
before formatting.

The available presentation types for float and Decimal values are:

124 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

Type Meaning

'e' Scientific notation. For a given precision p, formats the number in scientific notation with
the letter ‘e’ separating the coefficient from the exponent. The coefficient has one digit before
and p digits after the decimal point, for a total of p + 1 significant digits. With no precision
given, uses a precision of 6 digits after the decimal point for float, and shows all coefficient
digits for Decimal. If p=0, the decimal point is omitted unless the # option is used.

'E' Scientific notation. Same as 'e' except it uses an upper case ‘E’ as the separator character.
'f' Fixed-point notation. For a given precision p, formats the number as a decimal number with

exactly p digits following the decimal point. With no precision given, uses a precision of
6 digits after the decimal point for float, and uses a precision large enough to show all
coefficient digits for Decimal. If p=0, the decimal point is omitted unless the # option is
used.

'F' Fixed-point notation. Same as 'f', but converts nan to NAN and inf to INF.
'g' General format. For a given precision p >= 1, this rounds the number to p significant digits

and then formats the result in either fixed-point format or in scientific notation, depending on
its magnitude. A precision of 0 is treated as equivalent to a precision of 1.
The precise rules are as follows: suppose that the result formatted with presentation type 'e'
and precision p-1 would have exponent exp. Then, if m <= exp < p, where m is -4 for
floats and -6 for Decimals, the number is formatted with presentation type 'f' and precision
p-1-exp. Otherwise, the number is formatted with presentation type 'e' and precision p-1.
In both cases insignificant trailing zeros are removed from the significand, and the decimal
point is also removed if there are no remaining digits following it, unless the '#' option is
used.
With no precision given, uses a precision of 6 significant digits for float. For Decimal, the
coefficient of the result is formed from the coefficient digits of the value; scientific notation is
used for values smaller than 1e-6 in absolute value and values where the place value of the
least significant digit is larger than 1, and fixed-point notation is used otherwise.
Positive and negative infinity, positive and negative zero, and nans, are formatted as inf, -inf,
0, -0 and nan respectively, regardless of the precision.

'G' General format. Same as 'g' except switches to 'E' if the number gets too large. The
representations of infinity and NaN are uppercased, too.

'n' Number. This is the same as 'g', except that it uses the current locale setting to insert the
appropriate number separator characters.

'%' Percentage. Multiplies the number by 100 and displays in fixed ('f') format, followed by a
percent sign.

None For float this is like the 'g' type, except that when fixed-point notation is used to format the
result, it always includes at least one digit past the decimal point, and switches to the scientific
notation when exp >= p - 1. When the precision is not specified, the latter will be as large
as needed to represent the given value faithfully.
For Decimal, this is the same as either 'g' or 'G' depending on the value of context.
capitals for the current decimal context.
The overall effect is to match the output of str() as altered by the other format modifiers.

The result should be correctly rounded to a given precision p of digits after the decimal point. The rounding mode
for float matches that of the round() builtin. For Decimal, the rounding mode of the current context will be
used.

The available presentation types for complex are the same as those for float ('%' is not allowed). Both the real
and imaginary components of a complex number are formatted as floating-point numbers, according to the specified
presentation type. They are separated by the mandatory sign of the imaginary part, the latter being terminated by
a j suffix. If the presentation type is missing, the result will match the output of str() (complex numbers with a
non-zero real part are also surrounded by parentheses), possibly altered by other format modifiers.

6.1. string— Common string operations 125

The Python Library Reference, Release 3.13.1

Format examples

This section contains examples of the str.format() syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old %-formatting, with the addition of the {} and with : used instead
of %. For example, '%03.2f' can be translated to '{:03.2f}'.

The new format syntax also supports new and different options, shown in the following examples.

Accessing arguments by position:

>>> '{0}, {1}, {2}'.format('a', 'b', 'c')

'a, b, c'

>>> '{}, {}, {}'.format('a', 'b', 'c') # 3.1+ only

'a, b, c'

>>> '{2}, {1}, {0}'.format('a', 'b', 'c')

'c, b, a'

>>> '{2}, {1}, {0}'.format(*'abc') # unpacking argument sequence

'c, b, a'

>>> '{0}{1}{0}'.format('abra', 'cad') # arguments' indices can be repeated

'abracadabra'

Accessing arguments by name:

>>> 'Coordinates: {latitude}, {longitude}'.format(latitude='37.24N', longitude='-

↪→115.81W')

'Coordinates: 37.24N, -115.81W'

>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}

>>> 'Coordinates: {latitude}, {longitude}'.format(**coord)

'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

>>> c = 3-5j

>>> ('The complex number {0} is formed from the real part {0.real} '

... 'and the imaginary part {0.imag}.').format(c)

'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part␣

↪→-5.0.'

>>> class Point:

... def __init__(self, x, y):

... self.x, self.y = x, y

... def __str__(self):

... return 'Point({self.x}, {self.y})'.format(self=self)

...

>>> str(Point(4, 2))

'Point(4, 2)'

Accessing arguments’ items:

>>> coord = (3, 5)

>>> 'X: {0[0]}; Y: {0[1]}'.format(coord)

'X: 3; Y: 5'

Replacing %s and %r:

>>> "repr() shows quotes: {!r}; str() doesn't: {!s}".format('test1', 'test2')

"repr() shows quotes: 'test1'; str() doesn't: test2"

Aligning the text and specifying a width:

126 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

>>> '{:<30}'.format('left aligned')

'left aligned '

>>> '{:>30}'.format('right aligned')

' right aligned'

>>> '{:^30}'.format('centered')

' centered '

>>> '{:*^30}'.format('centered') # use '*' as a fill char

'***********centered***********'

Replacing %+f, %-f, and % f and specifying a sign:

>>> '{:+f}; {:+f}'.format(3.14, -3.14) # show it always

'+3.140000; -3.140000'

>>> '{: f}; {: f}'.format(3.14, -3.14) # show a space for positive numbers

' 3.140000; -3.140000'

>>> '{:-f}; {:-f}'.format(3.14, -3.14) # show only the minus -- same as '{:f};

↪→{:f}'

'3.140000; -3.140000'

Replacing %x and %o and converting the value to different bases:

>>> # format also supports binary numbers

>>> "int: {0:d}; hex: {0:x}; oct: {0:o}; bin: {0:b}".format(42)

'int: 42; hex: 2a; oct: 52; bin: 101010'

>>> # with 0x, 0o, or 0b as prefix:

>>> "int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: {0:#b}".format(42)

'int: 42; hex: 0x2a; oct: 0o52; bin: 0b101010'

Using the comma as a thousands separator:

>>> '{:,}'.format(1234567890)

'1,234,567,890'

Expressing a percentage:

>>> points = 19

>>> total = 22

>>> 'Correct answers: {:.2%}'.format(points/total)

'Correct answers: 86.36%'

Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)

>>> '{:%Y-%m-%d %H:%M:%S}'.format(d)

'2010-07-04 12:15:58'

Nesting arguments and more complex examples:

>>> for align, text in zip('<^>', ['left', 'center', 'right']):

... '{0:{fill}{align}16}'.format(text, fill=align, align=align)

...

'left<<<<<<<<<<<<'

'^^^^^center^^^^^'

'>>>>>>>>>>>right'

>>>

>>> octets = [192, 168, 0, 1]

>>> '{:02X}{:02X}{:02X}{:02X}'.format(*octets)

(continues on next page)

6.1. string— Common string operations 127

The Python Library Reference, Release 3.13.1

(continued from previous page)

'C0A80001'

>>> int(_, 16)

3232235521

>>>

>>> width = 5

>>> for num in range(5,12):

... for base in 'dXob':

... print('{0:{width}{base}}'.format(num, base=base, width=width), end=' ')

... print()

...

5 5 5 101

6 6 6 110

7 7 7 111

8 8 10 1000

9 9 11 1001

10 A 12 1010

11 B 13 1011

6.1.4 Template strings

Template strings provide simpler string substitutions as described in PEP 292. A primary use case for template
strings is for internationalization (i18n) since in that context, the simpler syntax and functionality makes it easier to
translate than other built-in string formatting facilities in Python. As an example of a library built on template strings
for i18n, see the flufl.i18n package.

Template strings support $-based substitutions, using the following rules:

• $$ is an escape; it is replaced with a single $.

• $identifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier" is restricted to any case-insensitive ASCII alphanumeric string (including underscores) that
starts with an underscore or ASCII letter. The first non-identifier character after the $ character terminates
this placeholder specification.

• ${identifier} is equivalent to $identifier. It is required when valid identifier characters follow the
placeholder but are not part of the placeholder, such as "${noun}ification".

Any other appearance of $ in the string will result in a ValueError being raised.

The string module provides a Template class that implements these rules. The methods of Template are:

class string.Template(template)

The constructor takes a single argument which is the template string.

substitute(mapping={}, / , **kwds)
Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When both mapping and kwds are given and there are duplicates, the
placeholders from kwds take precedence.

safe_substitute(mapping={}, / , **kwds)
Like substitute(), except that if placeholders aremissing frommapping and kwds, instead of raising a
KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute(), any other appearances of the $ will simply return $ instead of raising ValueError.

While other exceptions may still occur, this method is called “safe” because it always tries to return
a usable string instead of raising an exception. In another sense, safe_substitute() may be any-
thing other than safe, since it will silently ignore malformed templates containing dangling delimiters,
unmatched braces, or placeholders that are not valid Python identifiers.

128 Chapter 6. Text Processing Services

https://peps.python.org/pep-0292/
https://flufli18n.readthedocs.io/en/latest/

The Python Library Reference, Release 3.13.1

is_valid()

Returns false if the template has invalid placeholders that will cause substitute() to raise
ValueError.

Added in version 3.11.

get_identifiers()

Returns a list of the valid identifiers in the template, in the order they first appear, ignoring any invalid
identifiers.

Added in version 3.11.

Template instances also provide one public data attribute:

template

This is the object passed to the constructor’s template argument. In general, you shouldn’t change it, but
read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template('$who likes $what')

>>> s.substitute(who='tim', what='kung pao')

'tim likes kung pao'

>>> d = dict(who='tim')

>>> Template('Give $who $100').substitute(d)

Traceback (most recent call last):

...

ValueError: Invalid placeholder in string: line 1, col 11

>>> Template('$who likes $what').substitute(d)

Traceback (most recent call last):

...

KeyError: 'what'

>>> Template('$who likes $what').safe_substitute(d)

'tim likes $what'

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

• delimiter – This is the literal string describing a placeholder introducing delimiter. The default value is $. Note
that this should not be a regular expression, as the implementation will call re.escape() on this string as
needed. Note further that you cannot change the delimiter after class creation (i.e. a different delimiter must
be set in the subclass’s class namespace).

• idpattern – This is the regular expression describing the pattern for non-braced placeholders. The default value
is the regular expression (?a:[_a-z][_a-z0-9]*). If this is given and braceidpattern is None this pattern
will also apply to braced placeholders.

Note

Since default flags is re.IGNORECASE, pattern [a-z] can match with some non-ASCII characters. That’s
why we use the local a flag here.

Changed in version 3.7: braceidpattern can be used to define separate patterns used inside and outside the
braces.

• braceidpattern – This is like idpattern but describes the pattern for braced placeholders. Defaults to None

which means to fall back to idpattern (i.e. the same pattern is used both inside and outside braces). If given,
this allows you to define different patterns for braced and unbraced placeholders.

Added in version 3.7.

6.1. string— Common string operations 129

The Python Library Reference, Release 3.13.1

• flags – The regular expression flags that will be applied when compiling the regular expression used for recog-
nizing substitutions. The default value is re.IGNORECASE. Note that re.VERBOSE will always be added to
the flags, so custom idpatterns must follow conventions for verbose regular expressions.

Added in version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you
do this, the value must be a regular expression object with four named capturing groups. The capturing groups
correspond to the rules given above, along with the invalid placeholder rule:

• escaped – This group matches the escape sequence, e.g. $$, in the default pattern.

• named – This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

• braced – This group matches the brace enclosed placeholder name; it should not include either the delimiter
or braces in the capturing group.

• invalid – This group matches any other delimiter pattern (usually a single delimiter), and it should appear last
in the regular expression.

The methods on this class will raise ValueError if the pattern matches the template without one of these named
groups matching.

6.1.5 Helper functions

string.capwords(s, sep=None)
Split the argument into words using str.split(), capitalize each word using str.capitalize(), and
join the capitalized words using str.join(). If the optional second argument sep is absent or None, runs of
whitespace characters are replaced by a single space and leading and trailing whitespace are removed, otherwise
sep is used to split and join the words.

6.2 re— Regular expression operations

Source code: Lib/re/

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings (str) as well as 8-bit strings (bytes). However,
Unicode strings and 8-bit strings cannot be mixed: that is, you cannot match a Unicode string with a bytes pattern
or vice-versa; similarly, when asking for a substitution, the replacement string must be of the same type as both the
pattern and the search string.

Regular expressions use the backslash character ('\') to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write '\\\\' as the pattern
string, because the regular expression must be \\, and each backslash must be expressed as \\ inside a regular Python
string literal. Also, please note that any invalid escape sequences in Python’s usage of the backslash in string literals
now generate a SyntaxWarning and in the future this will become a SyntaxError. This behaviour will happen
even if it is a valid escape sequence for a regular expression.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with 'r'. So r"\n" is a two-character string containing '\' and 'n', while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

It is important to note that most regular expression operations are available as module-level functions and methods
on compiled regular expressions. The functions are shortcuts that don’t require you to compile a regex object first, but
miss some fine-tuning parameters.

130 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.13/Lib/re/

The Python Library Reference, Release 3.13.1

See also

The third-party regex module, which has an API compatible with the standard library re module, but offers
additional functionality and a more thorough Unicode support.

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,
which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string q matches B, the string
pq will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and
B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book [Frie09], or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like 'A', 'a', or
'0', are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so lastmatches the string 'last'. (In the rest of this section, we’ll write RE’s in this special style, usually
without quotes, and strings to be matched 'in single quotes'.)

Some characters, like '|' or '(', are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted.

Repetition operators or quantifiers (*, +, ?, {m,n}, etc) cannot be directly nested. This avoids ambiguity with the
non-greedy modifier suffix ?, and with other modifiers in other implementations. To apply a second repetition to an
inner repetition, parentheses may be used. For example, the expression (?:a{6})*matches any multiple of six 'a'
characters.

The special characters are:

.

(Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been specified,
this matches any character including a newline. (?s:.) matches any character regardless of flags.

^

(Caret.) Matches the start of the string, and in MULTILINEmode also matches immediately after each newline.

$

Matches the end of the string or just before the newline at the end of the string, and in MULTILINE mode also
matches before a newline. foo matches both ‘foo’ and ‘foobar’, while the regular expression foo$ matches
only ‘foo’. More interestingly, searching for foo.$ in 'foo1\nfoo2\n' matches ‘foo2’ normally, but ‘foo1’
in MULTILINE mode; searching for a single $ in 'foo\n' will find two (empty) matches: one just before the
newline, and one at the end of the string.

*

Causes the resulting RE tomatch 0 or more repetitions of the preceding RE, as many repetitions as are possible.
ab* will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

+

Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed by
any non-zero number of ‘b’s; it will not match just ‘a’.

?

Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

*?, +?, ??
The '*', '+', and '?' quantifiers are all greedy; they match as much text as possible. Sometimes this be-
haviour isn’t desired; if the RE <.*> is matched against '<a> b <c>', it will match the entire string, and

6.2. re— Regular expression operations 131

https://pypi.org/project/regex/

The Python Library Reference, Release 3.13.1

not just '<a>'. Adding ? after the quantifier makes it perform the match in non-greedy or minimal fashion;
as few characters as possible will be matched. Using the RE <.*?> will match only '<a>'.

*+, ++, ?+
Like the '*', '+', and '?' quantifiers, those where '+' is appended also match as many times as possible.
However, unlike the true greedy quantifiers, these do not allow back-tracking when the expression following it
fails to match. These are known as possessive quantifiers. For example, a*a will match 'aaaa' because the
a* will match all 4 'a's, but, when the final 'a' is encountered, the expression is backtracked so that in the
end the a* ends up matching 3 'a's total, and the fourth 'a' is matched by the final 'a'. However, when
a*+a is used to match 'aaaa', the a*+ will match all 4 'a', but when the final 'a' fails to find any more
characters to match, the expression cannot be backtracked and will thus fail to match. x*+, x++ and x?+ are
equivalent to (?>x*), (?>x+) and (?>x?) correspondingly.

Added in version 3.11.

{m}

Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not
to match. For example, a{6} will match exactly six 'a' characters, but not five.

{m,n}

Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For example, a{3,5} will match from 3 to 5 'a' characters. Omitting m specifies
a lower bound of zero, and omitting n specifies an infinite upper bound. As an example, a{4,}b will match
'aaaab' or a thousand 'a' characters followed by a 'b', but not 'aaab'. The comma may not be omitted
or the modifier would be confused with the previously described form.

{m,n}?

Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as few
repetitions as possible. This is the non-greedy version of the previous quantifier. For example, on the 6-
character string 'aaaaaa', a{3,5}will match 5 'a' characters, while a{3,5}?will only match 3 characters.

{m,n}+

Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible without establishing any backtracking points. This is the possessive version of the
quantifier above. For example, on the 6-character string 'aaaaaa', a{3,5}+aa attempt to match 5 'a'

characters, then, requiring 2 more 'a's, will need more characters than available and thus fail, while a{3,
5}aa will match with a{3,5} capturing 5, then 4 'a's by backtracking and then the final 2 'a's are matched
by the final aa in the pattern. x{m,n}+ is equivalent to (?>x{m,n}).

Added in version 3.11.

\

Either escapes special characters (permitting you to match characters like '*', '?', and so forth), or signals
a special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it’s highly
recommended that you use raw strings for all but the simplest expressions.

[]

Used to indicate a set of characters. In a set:

• Characters can be listed individually, e.g. [amk] will match 'a', 'm', or 'k'.

• Ranges of characters can be indicated by giving two characters and separating them by a '-', for example
[a-z] will match any lowercase ASCII letter, [0-5][0-9] will match all the two-digits numbers from
00 to 59, and [0-9A-Fa-f] will match any hexadecimal digit. If - is escaped (e.g. [a\-z]) or if it’s
placed as the first or last character (e.g. [-a] or [a-]), it will match a literal '-'.

• Special characters lose their special meaning inside sets. For example, [(+*)] will match any of the
literal characters '(', '+', '*', or ')'.

132 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

• Character classes such as \w or \S (defined below) are also accepted inside a set, although the characters
they match depend on the flags used.

• Characters that are not within a range can be matched by complementing the set. If the first character of
the set is '^', all the characters that are not in the set will be matched. For example, [^5] will match
any character except '5', and [^^] will match any character except '^'. ^ has no special meaning if
it’s not the first character in the set.

• To match a literal ']' inside a set, precede it with a backslash, or place it at the beginning of the set.
For example, both [()[\]{}] and []()[{}] will match a right bracket, as well as left bracket, braces,
and parentheses.

• Support of nested sets and set operations as in Unicode Technical Standard #18 might be added in the
future. This would change the syntax, so to facilitate this change a FutureWarning will be raised in
ambiguous cases for the time being. That includes sets starting with a literal '[' or containing literal
character sequences '--', '&&', '~~', and '||'. To avoid a warning escape them with a backslash.

Changed in version 3.7: FutureWarning is raised if a character set contains constructs that will change
semantically in the future.

|

A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An
arbitrary number of REs can be separated by the '|' in this way. This can be used inside groups (see below)
as well. As the target string is scanned, REs separated by '|' are tried from left to right. When one pattern
completely matches, that branch is accepted. This means that once A matches, B will not be tested further,
even if it would produce a longer overall match. In other words, the '|' operator is never greedy. To match a
literal '|', use \|, or enclose it inside a character class, as in [|].

(...)

Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string
with the \number special sequence, described below. To match the literals '(' or ')', use \(or \), or
enclose them inside a character class: [(], [)].

(?...)

This is an extension notation (a '?' following a '(' is not meaningful otherwise). The first character after the
'?' determines what the meaning and further syntax of the construct is. Extensions usually do not create a new
group; (?P<name>...) is the only exception to this rule. Following are the currently supported extensions.

(?aiLmsux)

(One or more letters from the set 'a', 'i', 'L', 'm', 's', 'u', 'x'.) The group matches the empty string;
the letters set the corresponding flags for the entire regular expression:

• re.A (ASCII-only matching)

• re.I (ignore case)

• re.L (locale dependent)

• re.M (multi-line)

• re.S (dot matches all)

• re.U (Unicode matching)

• re.X (verbose)

(The flags are described inModule Contents.) This is useful if you wish to include the flags as part of the regular
expression, instead of passing a flag argument to the re.compile() function. Flags should be used first in
the expression string.

Changed in version 3.11: This construction can only be used at the start of the expression.

(?:...)

A non-capturing version of regular parentheses. Matches whatever regular expression is inside the parentheses,
but the substring matched by the group cannot be retrieved after performing a match or referenced later in the
pattern.

6.2. re— Regular expression operations 133

https://unicode.org/reports/tr18/

The Python Library Reference, Release 3.13.1

(?aiLmsux-imsx:...)

(Zero or more letters from the set 'a', 'i', 'L', 'm', 's', 'u', 'x', optionally followed by '-' followed
by one or more letters from the 'i', 'm', 's', 'x'.) The letters set or remove the corresponding flags for the
part of the expression:

• re.A (ASCII-only matching)

• re.I (ignore case)

• re.L (locale dependent)

• re.M (multi-line)

• re.S (dot matches all)

• re.U (Unicode matching)

• re.X (verbose)

(The flags are described in Module Contents.)

The letters 'a', 'L' and 'u' are mutually exclusive when used as inline flags, so they can’t be combined
or follow '-'. Instead, when one of them appears in an inline group, it overrides the matching mode in the
enclosing group. In Unicode patterns (?a:...) switches to ASCII-only matching, and (?u:...) switches
to Unicode matching (default). In bytes patterns (?L:...) switches to locale dependent matching, and (?
a:...) switches to ASCII-only matching (default). This override is only in effect for the narrow inline group,
and the original matching mode is restored outside of the group.

Added in version 3.6.

Changed in version 3.7: The letters 'a', 'L' and 'u' also can be used in a group.

(?>...)

Attempts to match ... as if it was a separate regular expression, and if successful, continues to match the
rest of the pattern following it. If the subsequent pattern fails to match, the stack can only be unwound to a
point before the (?>...) because once exited, the expression, known as an atomic group, has thrown away
all stack points within itself. Thus, (?>.*). would never match anything because first the .* would match
all characters possible, then, having nothing left to match, the final . would fail to match. Since there are no
stack points saved in the Atomic Group, and there is no stack point before it, the entire expression would thus
fail to match.

Added in version 3.11.

(?P<name>...)

Similar to regular parentheses, but the substring matched by the group is accessible via the symbolic group
name name. Group names must be valid Python identifiers, and in bytes patterns they can only contain bytes
in the ASCII range. Each group name must be defined only once within a regular expression. A symbolic
group is also a numbered group, just as if the group were not named.

Named groups can be referenced in three contexts. If the pattern is (?P<quote>['"]).*?(?P=quote)
(i.e. matching a string quoted with either single or double quotes):

Context of reference to group “quote” Ways to reference it

in the same pattern itself
• (?P=quote) (as shown)
• \1

when processing match object m • m.group('quote')

• m.end('quote') (etc.)

in a string passed to the repl argument of re.sub()
• \g<quote>

• \g<1>

• \1

134 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

Changed in version 3.12: In bytes patterns, group name can only contain bytes in the ASCII range (b'\
x00'-b'\x7f').

(?P=name)

A backreference to a named group; it matches whatever text was matched by the earlier group named name.

(?#...)

A comment; the contents of the parentheses are simply ignored.

(?=...)

Matches if ... matches next, but doesn’t consume any of the string. This is called a lookahead assertion. For
example, Isaac (?=Asimov) will match 'Isaac ' only if it’s followed by 'Asimov'.

(?!...)

Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac (?!Asimov)

will match 'Isaac ' only if it’s not followed by 'Asimov'.

(?<=...)

Matches if the current position in the string is preceded by a match for ... that ends at the current position.
This is called a positive lookbehind assertion. (?<=abc)def will find a match in 'abcdef', since the look-
behind will back up 3 characters and check if the contained pattern matches. The contained pattern must only
match strings of some fixed length, meaning that abc or a|b are allowed, but a* and a{3,4} are not. Note
that patterns which start with positive lookbehind assertions will not match at the beginning of the string being
searched; you will most likely want to use the search() function rather than the match() function:

>>> import re

>>> m = re.search('(?<=abc)def', 'abcdef')

>>> m.group(0)

'def'

This example looks for a word following a hyphen:

>>> m = re.search(r'(?<=-)\w+', 'spam-egg')

>>> m.group(0)

'egg'

Changed in version 3.5: Added support for group references of fixed length.

(?<!...)

Matches if the current position in the string is not preceded by a match for This is called a negative
lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of
the string being searched.

(?(id/name)yes-pattern|no-pattern)

Will try to match with yes-pattern if the group with given id or name exists, and with no-pattern if
it doesn’t. no-pattern is optional and can be omitted. For example, (<)?(\w+@\w+(?:\.\w+)+)(?
(1)>|$) is a poor email matching pattern, which will match with '<user@host.com>' as well as
'user@host.com', but not with '<user@host.com' nor 'user@host.com>'.

Changed in version 3.12: Group id can only contain ASCII digits. In bytes patterns, group name can only
contain bytes in the ASCII range (b'\x00'-b'\x7f').

The special sequences consist of '\' and a character from the list below. If the ordinary character is not an ASCII
digit or an ASCII letter, then the resulting REwill match the second character. For example, \$matches the character
'$'.

\number

Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
(.+) \1matches 'the the' or '55 55', but not 'thethe' (note the space after the group). This special
sequence can only be used to match one of the first 99 groups. If the first digit of number is 0, or number is
3 octal digits long, it will not be interpreted as a group match, but as the character with octal value number.
Inside the '[' and ']' of a character class, all numeric escapes are treated as characters.

6.2. re— Regular expression operations 135

The Python Library Reference, Release 3.13.1

\A

Matches only at the start of the string.

\b

Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of word
characters. Note that formally, \b is defined as the boundary between a \w and a \W character (or vice versa),
or between \w and the beginning or end of the string. This means that r'\bat\b' matches 'at', 'at.',
'(at)', and 'as at ay' but not 'attempt' or 'atlas'.

The default word characters in Unicode (str) patterns are Unicode alphanumerics and the underscore, but this
can be changed by using the ASCII flag. Word boundaries are determined by the current locale if the LOCALE
flag is used.

Note

Inside a character range, \b represents the backspace character, for compatibility with Python’s string
literals.

\B

Matches the empty string, but only when it is not at the beginning or end of a word. This means that r'at\B'
matches 'athens', 'atom', 'attorney', but not 'at', 'at.', or 'at!'. \B is the opposite of \b, so
word characters in Unicode (str) patterns are Unicode alphanumerics or the underscore, although this can be
changed by using the ASCII flag. Word boundaries are determined by the current locale if the LOCALE flag is
used.

Note

Note that \B does notmatch an empty string, which differs fromRE implementations in other programming
languages such as Perl. This behavior is kept for compatibility reasons.

\d

For Unicode (str) patterns:
Matches any Unicode decimal digit (that is, any character in Unicode character category [Nd]). This
includes [0-9], and also many other digit characters.

Matches [0-9] if the ASCII flag is used.

For 8-bit (bytes) patterns:
Matches any decimal digit in the ASCII character set; this is equivalent to [0-9].

\D

Matches any character which is not a decimal digit. This is the opposite of \d.

Matches [^0-9] if the ASCII flag is used.

\s

For Unicode (str) patterns:
Matches Unicode whitespace characters (as defined by str.isspace()). This includes [\t\n\r\f\

v], and also many other characters, for example the non-breaking spaces mandated by typography rules
in many languages.

Matches [\t\n\r\f\v] if the ASCII flag is used.

For 8-bit (bytes) patterns:
Matches characters considered whitespace in the ASCII character set; this is equivalent to [\t\n\r\

f\v].

\S

Matches any character which is not a whitespace character. This is the opposite of \s.

Matches [^ \t\n\r\f\v] if the ASCII flag is used.

136 Chapter 6. Text Processing Services

https://www.unicode.org/versions/Unicode15.0.0/ch04.pdf#G134153

The Python Library Reference, Release 3.13.1

\w

For Unicode (str) patterns:
Matches Unicode word characters; this includes all Unicode alphanumeric characters (as defined by str.
isalnum()), as well as the underscore (_).

Matches [a-zA-Z0-9_] if the ASCII flag is used.

For 8-bit (bytes) patterns:
Matches characters considered alphanumeric in the ASCII character set; this is equivalent to
[a-zA-Z0-9_]. If the LOCALE flag is used, matches characters considered alphanumeric in the current
locale and the underscore.

\W

Matches any character which is not a word character. This is the opposite of \w. By default, matches non-
underscore (_) characters for which str.isalnum() returns False.

Matches [^a-zA-Z0-9_] if the ASCII flag is used.

If the LOCALE flag is used, matches characters which are neither alphanumeric in the current locale nor the
underscore.

\Z

Matches only at the end of the string.

Most of the escape sequences supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n

\N \r \t \u

\U \v \x \\

(Note that \b is used to represent word boundaries, and means “backspace” only inside character classes.)

'\u', '\U', and '\N' escape sequences are only recognized in Unicode (str) patterns. In bytes patterns they are
errors. Unknown escapes of ASCII letters are reserved for future use and treated as errors.

Octal escapes are included in a limited form. If the first digit is a 0, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits
in length.

Changed in version 3.3: The '\u' and '\U' escape sequences have been added.

Changed in version 3.6: Unknown escapes consisting of '\' and an ASCII letter now are errors.

Changed in version 3.8: The '\N{name}' escape sequence has been added. As in string literals, it expands to the
named Unicode character (e.g. '\N{EM DASH}').

6.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

Flags

Changed in version 3.6: Flag constants are now instances of RegexFlag, which is a subclass of enum.IntFlag.

class re.RegexFlag

An enum.IntFlag class containing the regex options listed below.

Added in version 3.11: - added to __all__

re.A

6.2. re— Regular expression operations 137

The Python Library Reference, Release 3.13.1

re.ASCII

Make \w, \W, \b, \B, \d, \D, \s and \S perform ASCII-only matching instead of full Unicode matching.
This is only meaningful for Unicode (str) patterns, and is ignored for bytes patterns.

Corresponds to the inline flag (?a).

Note

The U flag still exists for backward compatibility, but is redundant in Python 3 since matches are Unicode
by default for str patterns, and Unicode matching isn’t allowed for bytes patterns. UNICODE and the inline
flag (?u) are similarly redundant.

re.DEBUG

Display debug information about compiled expression.

No corresponding inline flag.

re.I

re.IGNORECASE

Perform case-insensitive matching; expressions like [A-Z] will also match lowercase letters. Full Unicode
matching (such as Ü matching ü) also works unless the ASCII flag is used to disable non-ASCII matches. The
current locale does not change the effect of this flag unless the LOCALE flag is also used.

Corresponds to the inline flag (?i).

Note that when the Unicode patterns [a-z] or [A-Z] are used in combination with the IGNORECASE flag,
they will match the 52 ASCII letters and 4 additional non-ASCII letters: ‘İ’ (U+0130, Latin capital letter I with
dot above), ‘ı’ (U+0131, Latin small letter dotless i), ‘ſ’ (U+017F, Latin small letter long s) and ‘K’ (U+212A,
Kelvin sign). If the ASCII flag is used, only letters ‘a’ to ‘z’ and ‘A’ to ‘Z’ are matched.

re.L

re.LOCALE

Make \w, \W, \b, \B and case-insensitive matching dependent on the current locale. This flag can be used
only with bytes patterns.

Corresponds to the inline flag (?L).

Warning

This flag is discouraged; consider Unicode matching instead. The locale mechanism is very unreliable as
it only handles one “culture” at a time and only works with 8-bit locales. Unicode matching is enabled by
default for Unicode (str) patterns and it is able to handle different locales and languages.

Changed in version 3.6: LOCALE can be used only with bytes patterns and is not compatible with ASCII.

Changed in version 3.7: Compiled regular expression objects with the LOCALE flag no longer depend on the
locale at compile time. Only the locale at matching time affects the result of matching.

re.M

re.MULTILINE

When specified, the pattern character '^' matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character '$' matches at the end of the string and
at the end of each line (immediately preceding each newline). By default, '^' matches only at the beginning
of the string, and '$' only at the end of the string and immediately before the newline (if any) at the end of
the string.

Corresponds to the inline flag (?m).

138 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

re.NOFLAG

Indicates no flag being applied, the value is 0. This flag may be used as a default value for a function keyword
argument or as a base value that will be conditionally ORed with other flags. Example of use as a default value:

def myfunc(text, flag=re.NOFLAG):

return re.match(text, flag)

Added in version 3.11.

re.S

re.DOTALL

Make the '.' special character match any character at all, including a newline; without this flag, '.' will
match anything except a newline.

Corresponds to the inline flag (?s).

re.U

re.UNICODE

In Python 3, Unicode characters are matched by default for str patterns. This flag is therefore redundant with
no effect and is only kept for backward compatibility.

See ASCII to restrict matching to ASCII characters instead.

re.X

re.VERBOSE

This flag allows you to write regular expressions that look nicer and are more readable by allowing you to
visually separate logical sections of the pattern and add comments. Whitespace within the pattern is ignored,
except when in a character class, or when preceded by an unescaped backslash, or within tokens like *?, (?:
or (?P<...>. For example, (? : and * ? are not allowed. When a line contains a # that is not in a character
class and is not preceded by an unescaped backslash, all characters from the leftmost such # through the end
of the line are ignored.

This means that the two following regular expression objects that match a decimal number are functionally
equal:

a = re.compile(r"""\d + # the integral part

\. # the decimal point

\d * # some fractional digits""", re.X)

b = re.compile(r"\d+\.\d*")

Corresponds to the inline flag (?x).

Functions

re.compile(pattern, flags=0)
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match(), search() and other methods, described below.

The expression’s behaviour can bemodified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

The sequence

prog = re.compile(pattern)

result = prog.match(string)

is equivalent to

result = re.match(pattern, string)

6.2. re— Regular expression operations 139

The Python Library Reference, Release 3.13.1

but using re.compile() and saving the resulting regular expression object for reuse is more efficient when
the expression will be used several times in a single program.

Note

The compiled versions of the most recent patterns passed to re.compile() and the module-level match-
ing functions are cached, so programs that use only a few regular expressions at a time needn’t worry about
compiling regular expressions.

re.search(pattern, string, flags=0)
Scan through string looking for the first location where the regular expression pattern produces a match, and
return a corresponding Match. Return None if no position in the string matches the pattern; note that this is
different from finding a zero-length match at some point in the string.

The expression’s behaviour can bemodified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

re.match(pattern, string, flags=0)
If zero ormore characters at the beginning of stringmatch the regular expression pattern, return a corresponding
Match. Return None if the string does not match the pattern; note that this is different from a zero-length
match.

Note that even in MULTILINE mode, re.match() will only match at the beginning of the string and not at
the beginning of each line.

If you want to locate a match anywhere in string, use search() instead (see also search() vs. match()).

The expression’s behaviour can bemodified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

re.fullmatch(pattern, string, flags=0)
If the whole string matches the regular expression pattern, return a corresponding Match. Return None if the
string does not match the pattern; note that this is different from a zero-length match.

The expression’s behaviour can bemodified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

Added in version 3.4.

re.split(pattern, string, maxsplit=0, flags=0)
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all
groups in the pattern are also returned as part of the resulting list. Ifmaxsplit is nonzero, at mostmaxsplit splits
occur, and the remainder of the string is returned as the final element of the list.

>>> re.split(r'\W+', 'Words, words, words.')

['Words', 'words', 'words', '']

>>> re.split(r'(\W+)', 'Words, words, words.')

['Words', ', ', 'words', ', ', 'words', '.', '']

>>> re.split(r'\W+', 'Words, words, words.', maxsplit=1)

['Words', 'words, words.']

>>> re.split('[a-f]+', '0a3B9', flags=re.IGNORECASE)

['0', '3', '9']

If there are capturing groups in the separator and it matches at the start of the string, the result will start with
an empty string. The same holds for the end of the string:

>>> re.split(r'(\W+)', '...words, words...')

['', '...', 'words', ', ', 'words', '...', '']

That way, separator components are always found at the same relative indices within the result list.

Empty matches for the pattern split the string only when not adjacent to a previous empty match.

140 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

>>> re.split(r'\b', 'Words, words, words.')

['', 'Words', ', ', 'words', ', ', 'words', '.']

>>> re.split(r'\W*', '...words...')

['', '', 'w', 'o', 'r', 'd', 's', '', '']

>>> re.split(r'(\W*)', '...words...')

['', '...', '', '', 'w', '', 'o', '', 'r', '', 'd', '', 's', '...', '', '', '']

The expression’s behaviour can bemodified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.7: Added support of splitting on a pattern that could match an empty string.

Deprecated since version 3.13: Passing maxsplit and flags as positional arguments is deprecated. In future
Python versions they will be keyword-only parameters.

re.findall(pattern, string, flags=0)
Return all non-overlapping matches of pattern in string, as a list of strings or tuples. The string is scanned
left-to-right, and matches are returned in the order found. Empty matches are included in the result.

The result depends on the number of capturing groups in the pattern. If there are no groups, return a list of
strings matching the whole pattern. If there is exactly one group, return a list of strings matching that group.
If multiple groups are present, return a list of tuples of strings matching the groups. Non-capturing groups do
not affect the form of the result.

>>> re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest')

['foot', 'fell', 'fastest']

>>> re.findall(r'(\w+)=(\d+)', 'set width=20 and height=10')

[('width', '20'), ('height', '10')]

The expression’s behaviour can bemodified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re.finditer(pattern, string, flags=0)
Return an iterator yielding Match objects over all non-overlapping matches for the RE pattern in string. The
string is scanned left-to-right, and matches are returned in the order found. Empty matches are included in the
result.

The expression’s behaviour can bemodified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re.sub(pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the
replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That is, \n is converted to a single newline character,
\r is converted to a carriage return, and so forth. Unknown escapes of ASCII letters are reserved for future
use and treated as errors. Other unknown escapes such as \& are left alone. Backreferences, such as \6, are
replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(r'def\s+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\):',

... r'static PyObject*\npy_\1(void)\n{',

... 'def myfunc():')

'static PyObject*\npy_myfunc(void)\n{'

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
Match argument, and returns the replacement string. For example:

6.2. re— Regular expression operations 141

The Python Library Reference, Release 3.13.1

>>> def dashrepl(matchobj):

... if matchobj.group(0) == '-': return ' '

... else: return '-'

...

>>> re.sub('-{1,2}', dashrepl, 'pro----gram-files')

'pro--gram files'

>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)

'Baked Beans & Spam'

The pattern may be a string or a Pattern.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be
a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern
are replaced only when not adjacent to a previous empty match, so sub('x*', '-', 'abxd') returns
'-a-b--d-'.

In string-type repl arguments, in addition to the character escapes and backreferences described above, \
g<name>will use the substring matched by the group named name, as defined by the (?P<name>...) syntax.
\g<number> uses the corresponding group number; \g<2> is therefore equivalent to \2, but isn’t ambiguous
in a replacement such as \g<2>0. \20 would be interpreted as a reference to group 20, not a reference to
group 2 followed by the literal character '0'. The backreference \g<0> substitutes in the entire substring
matched by the RE.

The expression’s behaviour can bemodified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

Changed in version 3.6: Unknown escapes in pattern consisting of '\' and an ASCII letter now are errors.

Changed in version 3.7: Unknown escapes in repl consisting of '\' and an ASCII letter now are errors. Empty
matches for the pattern are replaced when adjacent to a previous non-empty match.

Changed in version 3.12: Group id can only contain ASCII digits. In bytes replacement strings, group name
can only contain bytes in the ASCII range (b'\x00'-b'\x7f').

Deprecated since version 3.13: Passing count and flags as positional arguments is deprecated. In future Python
versions they will be keyword-only parameters.

re.subn(pattern, repl, string, count=0, flags=0)
Perform the same operation as sub(), but return a tuple (new_string, number_of_subs_made).

The expression’s behaviour can bemodified by specifying a flags value. Values can be any of the flags variables,
combined using bitwise OR (the | operator).

re.escape(pattern)
Escape special characters in pattern. This is useful if you want to match an arbitrary literal string that may
have regular expression metacharacters in it. For example:

>>> print(re.escape('https://www.python.org'))

https://www\.python\.org

>>> legal_chars = string.ascii_lowercase + string.digits + "!#$%&'*+-.^_`|~:"

>>> print('[%s]+' % re.escape(legal_chars))

[abcdefghijklmnopqrstuvwxyz0123456789!\#\$%\&'*\+\-\.\^_`\|\~:]+

>>> operators = ['+', '-', '*', '/', '**']

>>> print('|'.join(map(re.escape, sorted(operators, reverse=True))))

/|\-|\+|**|*

142 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

This function must not be used for the replacement string in sub() and subn(), only backslashes should be
escaped. For example:

>>> digits_re = r'\d+'

>>> sample = '/usr/sbin/sendmail - 0 errors, 12 warnings'

>>> print(re.sub(digits_re, digits_re.replace('\\', r'\\'), sample))

/usr/sbin/sendmail - \d+ errors, \d+ warnings

Changed in version 3.3: The '_' character is no longer escaped.

Changed in version 3.7: Only characters that can have special meaning in a regular expression are escaped. As
a result, '!', '"', '%', "'", ',', '/', ':', ';', '<', '=', '>', '@', and "`" are no longer escaped.

re.purge()

Clear the regular expression cache.

Exceptions

exception re.PatternError(msg, pattern=None, pos=None)
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It
is never an error if a string contains no match for a pattern. The PatternError instance has the following
additional attributes:

msg

The unformatted error message.

pattern

The regular expression pattern.

pos

The index in pattern where compilation failed (may be None).

lineno

The line corresponding to pos (may be None).

colno

The column corresponding to pos (may be None).

Changed in version 3.5: Added additional attributes.

Changed in version 3.13: PatternError was originally named error; the latter is kept as an alias for back-
ward compatibility.

6.2.3 Regular Expression Objects

class re.Pattern

Compiled regular expression object returned by re.compile().

Changed in version 3.9: re.Pattern supports [] to indicate a Unicode (str) or bytes pattern. See Generic
Alias Type.

Pattern.search(string[, pos[, endpos]])
Scan through string looking for the first location where this regular expression produces a match, and return a
corresponding Match. Return None if no position in the string matches the pattern; note that this is different
from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to 0.
This is not completely equivalent to slicing the string; the '^' pattern character matches at the real beginning
of the string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is endpos char-
acters long, so only the characters from pos to endpos - 1 will be searched for a match. If endpos is less than

6.2. re— Regular expression operations 143

The Python Library Reference, Release 3.13.1

pos, no match will be found; otherwise, if rx is a compiled regular expression object, rx.search(string,
0, 50) is equivalent to rx.search(string[:50], 0).

>>> pattern = re.compile("d")

>>> pattern.search("dog") # Match at index 0

<re.Match object; span=(0, 1), match='d'>

>>> pattern.search("dog", 1) # No match; search doesn't include the "d"

Pattern.match(string[, pos[, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding
Match. Return None if the string does not match the pattern; note that this is different from a zero-length
match.

The optional pos and endpos parameters have the same meaning as for the search() method.

>>> pattern = re.compile("o")

>>> pattern.match("dog") # No match as "o" is not at the start of "dog".

>>> pattern.match("dog", 1) # Match as "o" is the 2nd character of "dog".

<re.Match object; span=(1, 2), match='o'>

If you want to locate a match anywhere in string, use search() instead (see also search() vs. match()).

Pattern.fullmatch(string[, pos[, endpos]])
If the whole string matches this regular expression, return a corresponding Match. Return None if the string
does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search() method.

>>> pattern = re.compile("o[gh]")

>>> pattern.fullmatch("dog") # No match as "o" is not at the start of "dog

↪→".

>>> pattern.fullmatch("ogre") # No match as not the full string matches.

>>> pattern.fullmatch("doggie", 1, 3) # Matches within given limits.

<re.Match object; span=(1, 3), match='og'>

Added in version 3.4.

Pattern.split(string, maxsplit=0)
Identical to the split() function, using the compiled pattern.

Pattern.findall(string[, pos[, endpos]])
Similar to the findall() function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for search().

Pattern.finditer(string[, pos[, endpos]])
Similar to the finditer() function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for search().

Pattern.sub(repl, string, count=0)
Identical to the sub() function, using the compiled pattern.

Pattern.subn(repl, string, count=0)
Identical to the subn() function, using the compiled pattern.

Pattern.flags

The regex matching flags. This is a combination of the flags given to compile(), any (?...) inline flags in
the pattern, and implicit flags such as UNICODE if the pattern is a Unicode string.

Pattern.groups

The number of capturing groups in the pattern.

144 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

Pattern.groupindex

A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

Pattern.pattern

The pattern string from which the pattern object was compiled.

Changed in version 3.7: Added support of copy.copy() and copy.deepcopy(). Compiled regular expression
objects are considered atomic.

6.2.4 Match Objects

Match objects always have a boolean value of True. Since match() and search() return None when there is no
match, you can test whether there was a match with a simple if statement:

match = re.search(pattern, string)

if match:

process(match)

class re.Match

Match object returned by successful matches and searches.

Changed in version 3.9: re.Match supports [] to indicate a Unicode (str) or bytes match. See Generic Alias
Type.

Match.expand(template)
Return the string obtained by doing backslash substitution on the template string template, as done by the
sub() method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences
(\1, \2) and named backreferences (\g<1>, \g<name>) are replaced by the contents of the corresponding
group. The backreference \g<0> will be replaced by the entire match.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

Match.group([group1, ...])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments, group1
defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
an IndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result is None. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

>>> m = re.match(r"(\w+) (\w+)", "Isaac Newton, physicist")

>>> m.group(0) # The entire match

'Isaac Newton'

>>> m.group(1) # The first parenthesized subgroup.

'Isaac'

>>> m.group(2) # The second parenthesized subgroup.

'Newton'

>>> m.group(1, 2) # Multiple arguments give us a tuple.

('Isaac', 'Newton')

If the regular expression uses the (?P<name>...) syntax, the groupN arguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattern, an IndexError
exception is raised.

A moderately complicated example:

6.2. re— Regular expression operations 145

The Python Library Reference, Release 3.13.1

>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")

>>> m.group('first_name')

'Malcolm'

>>> m.group('last_name')

'Reynolds'

Named groups can also be referred to by their index:

>>> m.group(1)

'Malcolm'

>>> m.group(2)

'Reynolds'

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r"(..)+", "a1b2c3") # Matches 3 times.

>>> m.group(1) # Returns only the last match.

'c3'

Match.__getitem__(g)
This is identical to m.group(g). This allows easier access to an individual group from a match:

>>> m = re.match(r"(\w+) (\w+)", "Isaac Newton, physicist")

>>> m[0] # The entire match

'Isaac Newton'

>>> m[1] # The first parenthesized subgroup.

'Isaac'

>>> m[2] # The second parenthesized subgroup.

'Newton'

Named groups are supported as well:

>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Isaac Newton")

>>> m['first_name']

'Isaac'

>>> m['last_name']

'Newton'

Added in version 3.6.

Match.groups(default=None)
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The default argument is used for groups that did not participate in the match; it defaults to None.

For example:

>>> m = re.match(r"(\d+)\.(\d+)", "24.1632")

>>> m.groups()

('24', '1632')

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default to None unless the default argument is given:

>>> m = re.match(r"(\d+)\.?(\d+)?", "24")

>>> m.groups() # Second group defaults to None.

('24', None)

>>> m.groups('0') # Now, the second group defaults to '0'.

('24', '0')

146 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

Match.groupdict(default=None)
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The default
argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")

>>> m.groupdict()

{'first_name': 'Malcolm', 'last_name': 'Reynolds'}

Match.start([group])
Match.end([group])

Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning the
whole matched substring). Return -1 if group exists but did not contribute to the match. For a match objectm,
and a group g that did contribute to the match, the substring matched by group g (equivalent to m.group(g))
is

m.string[m.start(g):m.end(g)]

Note that m.start(group) will equal m.end(group) if group matched a null string. For example, after m
= re.search('b(c?)', 'cba'), m.start(0) is 1, m.end(0) is 2, m.start(1) and m.end(1) are
both 2, and m.start(2) raises an IndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"

>>> m = re.search("remove_this", email)

>>> email[:m.start()] + email[m.end():]

'tony@tiger.net'

Match.span([group])
For a match m, return the 2-tuple (m.start(group), m.end(group)). Note that if group did not con-
tribute to the match, this is (-1, -1). group defaults to zero, the entire match.

Match.pos

The value of pos which was passed to the search() or match() method of a regex object. This is the index
into the string at which the RE engine started looking for a match.

Match.endpos

The value of endpos which was passed to the search() or match() method of a regex object. This is the
index into the string beyond which the RE engine will not go.

Match.lastindex

The integer index of the last matched capturing group, or None if no group was matched at all. For example,
the expressions (a)b, ((a)(b)), and ((ab)) will have lastindex == 1 if applied to the string 'ab',
while the expression (a)(b) will have lastindex == 2, if applied to the same string.

Match.lastgroup

The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was
matched at all.

Match.re

The regular expression object whose match() or search() method produced this match instance.

Match.string

The string passed to match() or search().

Changed in version 3.7: Added support of copy.copy() and copy.deepcopy(). Match objects are considered
atomic.

6.2. re— Regular expression operations 147

The Python Library Reference, Release 3.13.1

6.2.5 Regular Expression Examples

Checking for a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch(match):

if match is None:

return None

return '<Match: %r, groups=%r>' % (match.group(), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each
character representing a card, “a” for ace, “k” for king, “q” for queen, “j” for jack, “t” for 10, and “2” through “9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r"^[a2-9tjqk]{5}$")

>>> displaymatch(valid.match("akt5q")) # Valid.

"<Match: 'akt5q', groups=()>"

>>> displaymatch(valid.match("akt5e")) # Invalid.

>>> displaymatch(valid.match("akt")) # Invalid.

>>> displaymatch(valid.match("727ak")) # Valid.

"<Match: '727ak', groups=()>"

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular expression,
one could use backreferences as such:

>>> pair = re.compile(r".*(.).*\1")

>>> displaymatch(pair.match("717ak")) # Pair of 7s.

"<Match: '717', groups=('7',)>"

>>> displaymatch(pair.match("718ak")) # No pairs.

>>> displaymatch(pair.match("354aa")) # Pair of aces.

"<Match: '354aa', groups=('a',)>"

To find out what card the pair consists of, one could use the group() method of the match object in the following
manner:

>>> pair = re.compile(r".*(.).*\1")

>>> pair.match("717ak").group(1)

'7'

Error because re.match() returns None, which doesn't have a group() method:

>>> pair.match("718ak").group(1)

Traceback (most recent call last):

File "<pyshell#23>", line 1, in <module>

re.match(r".*(.).*\1", "718ak").group(1)

AttributeError: 'NoneType' object has no attribute 'group'

>>> pair.match("354aa").group(1)

'a'

Simulating scanf()

Python does not currently have an equivalent to scanf(). Regular expressions are generally more powerful, though
also more verbose, than scanf() format strings. The table below offers some more-or-less equivalent mappings
between scanf() format tokens and regular expressions.

148 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

scanf() Token Regular Expression

%c .

%5c .{5}

%d [-+]?\d+

%e, %E, %f, %g [-+]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?

%i [-+]?(0[xX][\dA-Fa-f]+|0[0-7]*|\d+)

%o [-+]?[0-7]+

%s \S+

%u \d+

%x, %X [-+]?(0[xX])?[\dA-Fa-f]+

To extract the filename and numbers from a string like

/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be

(\S+) - (\d+) errors, (\d+) warnings

search() vs. match()

Python offers different primitive operations based on regular expressions:

• re.match() checks for a match only at the beginning of the string

• re.search() checks for a match anywhere in the string (this is what Perl does by default)

• re.fullmatch() checks for entire string to be a match

For example:

>>> re.match("c", "abcdef") # No match

>>> re.search("c", "abcdef") # Match

<re.Match object; span=(2, 3), match='c'>

>>> re.fullmatch("p.*n", "python") # Match

<re.Match object; span=(0, 6), match='python'>

>>> re.fullmatch("r.*n", "python") # No match

Regular expressions beginning with '^' can be used with search() to restrict the match at the beginning of the
string:

>>> re.match("c", "abcdef") # No match

>>> re.search("^c", "abcdef") # No match

>>> re.search("^a", "abcdef") # Match

<re.Match object; span=(0, 1), match='a'>

Note however that in MULTILINE mode match() only matches at the beginning of the string, whereas using
search() with a regular expression beginning with '^' will match at the beginning of each line.

>>> re.match("X", "A\nB\nX", re.MULTILINE) # No match

>>> re.search("^X", "A\nB\nX", re.MULTILINE) # Match

<re.Match object; span=(4, 5), match='X'>

6.2. re— Regular expression operations 149

The Python Library Reference, Release 3.13.1

Making a Phonebook

split() splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example
that creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street

...

... Ronald Heathmore: 892.345.3428 436 Finley Avenue

... Frank Burger: 925.541.7625 662 South Dogwood Way

...

...

... Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split("\n+", text)

>>> entries

['Ross McFluff: 834.345.1254 155 Elm Street',

'Ronald Heathmore: 892.345.3428 436 Finley Avenue',

'Frank Burger: 925.541.7625 662 South Dogwood Way',

'Heather Albrecht: 548.326.4584 919 Park Place']

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the maxsplit
parameter of split() because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, maxsplit=3) for entry in entries]

[['Ross', 'McFluff', '834.345.1254', '155 Elm Street'],

['Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'],

['Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],

['Heather', 'Albrecht', '548.326.4584', '919 Park Place']]

The :? pattern matches the colon after the last name, so that it does not occur in the result list. With a maxsplit
of 4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, maxsplit=4) for entry in entries]

[['Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],

['Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],

['Frank', 'Burger', '925.541.7625', '662', 'South Dogwood Way'],

['Heather', 'Albrecht', '548.326.4584', '919', 'Park Place']]

Text Munging

sub() replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
using sub() with a function to “munge” text, or randomize the order of all the characters in each word of a sentence
except for the first and last characters:

>>> def repl(m):

... inner_word = list(m.group(2))

... random.shuffle(inner_word)

... return m.group(1) + "".join(inner_word) + m.group(3)

...

>>> text = "Professor Abdolmalek, please report your absences promptly."

>>> re.sub(r"(\w)(\w+)(\w)", repl, text)

'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'

>>> re.sub(r"(\w)(\w+)(\w)", repl, text)

'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'

150 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

Finding all Adverbs

findall() matches all occurrences of a pattern, not just the first one as search() does. For example, if a writer
wanted to find all of the adverbs in some text, they might use findall() in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."

>>> re.findall(r"\w+ly\b", text)

['carefully', 'quickly']

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer() is useful as it
provides Match objects instead of strings. Continuing with the previous example, if a writer wanted to find all of the
adverbs and their positions in some text, they would use finditer() in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."

>>> for m in re.finditer(r"\w+ly\b", text):

... print('%02d-%02d: %s' % (m.start(), m.end(), m.group(0)))

07-16: carefully

40-47: quickly

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash ('\') in a regular ex-
pression would have to be prefixed with another one to escape it. For example, the two following lines of code are
functionally identical:

>>> re.match(r"\W(.)\1\W", " ff ")

<re.Match object; span=(0, 4), match=' ff '>

>>> re.match("\\W(.)\\1\\W", " ff ")

<re.Match object; span=(0, 4), match=' ff '>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string nota-
tion, this means r"\\". Without raw string notation, one must use "\\\\", making the following lines of code
functionally identical:

>>> re.match(r"\\", r"\\")

<re.Match object; span=(0, 1), match='\\'>

>>> re.match("\\\\", r"\\")

<re.Match object; span=(0, 1), match='\\'>

Writing a Tokenizer

A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in writing a
compiler or interpreter.

The text categories are specified with regular expressions. The technique is to combine those into a single master
regular expression and to loop over successive matches:

from typing import NamedTuple

import re

class Token(NamedTuple):

type: str

value: str

line: int

column: int

(continues on next page)

6.2. re— Regular expression operations 151

https://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.13.1

(continued from previous page)

def tokenize(code):

keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}

token_specification = [

('NUMBER', r'\d+(\.\d*)?'), # Integer or decimal number

('ASSIGN', r':='), # Assignment operator

('END', r';'), # Statement terminator

('ID', r'[A-Za-z]+'), # Identifiers

('OP', r'[+\-*/]'), # Arithmetic operators

('NEWLINE', r'\n'), # Line endings

('SKIP', r'[\t]+'), # Skip over spaces and tabs

('MISMATCH', r'.'), # Any other character

]

tok_regex = '|'.join('(?P<%s>%s)' % pair for pair in token_specification)

line_num = 1

line_start = 0

for mo in re.finditer(tok_regex, code):

kind = mo.lastgroup

value = mo.group()

column = mo.start() - line_start

if kind == 'NUMBER':

value = float(value) if '.' in value else int(value)

elif kind == 'ID' and value in keywords:

kind = value

elif kind == 'NEWLINE':

line_start = mo.end()

line_num += 1

continue

elif kind == 'SKIP':

continue

elif kind == 'MISMATCH':

raise RuntimeError(f'{value!r} unexpected on line {line_num}')

yield Token(kind, value, line_num, column)

statements = '''

IF quantity THEN

total := total + price * quantity;

tax := price * 0.05;

ENDIF;

'''

for token in tokenize(statements):

print(token)

The tokenizer produces the following output:

Token(type='IF', value='IF', line=2, column=4)

Token(type='ID', value='quantity', line=2, column=7)

Token(type='THEN', value='THEN', line=2, column=16)

Token(type='ID', value='total', line=3, column=8)

Token(type='ASSIGN', value=':=', line=3, column=14)

Token(type='ID', value='total', line=3, column=17)

Token(type='OP', value='+', line=3, column=23)

Token(type='ID', value='price', line=3, column=25)

Token(type='OP', value='*', line=3, column=31)

Token(type='ID', value='quantity', line=3, column=33)

Token(type='END', value=';', line=3, column=41)

(continues on next page)

152 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

Token(type='ID', value='tax', line=4, column=8)

Token(type='ASSIGN', value=':=', line=4, column=12)

Token(type='ID', value='price', line=4, column=15)

Token(type='OP', value='*', line=4, column=21)

Token(type='NUMBER', value=0.05, line=4, column=23)

Token(type='END', value=';', line=4, column=27)

Token(type='ENDIF', value='ENDIF', line=5, column=4)

Token(type='END', value=';', line=5, column=9)

6.3 difflib— Helpers for computing deltas

Source code: Lib/difflib.py

This module provides classes and functions for comparing sequences. It can be used for example, for comparing files,
and can produce information about file differences in various formats, including HTML and context and unified diffs.
For comparing directories and files, see also, the filecmp module.

class difflib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest
contiguous matching subsequence that contains no “junk” elements; these “junk” elements are ones that are
uninteresting in some sense, such as blank lines or whitespace. (Handling junk is an extension to the Ratcliff
and Obershelp algorithm.) The same idea is then applied recursively to the pieces of the sequences to the left
and to the right of the matching subsequence. This does not yield minimal edit sequences, but does tend to
yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior de-
pendent in a complicated way on how many elements the sequences have in common; best case time is linear.

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain se-
quence items as junk. The heuristic counts how many times each individual item appears in the sequence.
If an item’s duplicates (after the first one) account for more than 1% of the sequence and the sequence is
at least 200 items long, this item is marked as “popular” and is treated as junk for the purpose of sequence
matching. This heuristic can be turned off by setting the autojunk argument to False when creating the
SequenceMatcher.

Changed in version 3.2: Added the autojunk parameter.

class difflib.Differ

This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of a Differ delta begins with a two-letter code:

Code Meaning

'- ' line unique to sequence 1
'+ ' line unique to sequence 2
' ' line common to both sequences
'? ' line not present in either input sequence

Lines beginning with ‘?’ attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain whitespace characters, such as spaces, tabs or
line breaks.

6.3. difflib— Helpers for computing deltas 153

https://github.com/python/cpython/tree/3.13/Lib/difflib.py

The Python Library Reference, Release 3.13.1

class difflib.HtmlDiff

This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can be
generated in either full or contextual difference mode.

The constructor for this class is:

__init__(tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Initializes instance of HtmlDiff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped,
defaults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff() (used by HtmlDiff to
generate the side by side HTML differences). See ndiff() documentation for argument default values
and descriptions.

The following methods are public:

make_file(fromlines, tolines, fromdesc=” , todesc=” , context=False, numlines=5, *, charset=’utf-8’)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

context and numlines are both optional keyword arguments. Set context to True when contextual dif-
ferences are to be shown, else the default is False to show the full files. numlines defaults to 5. When
context is True numlines controls the number of context lines which surround the difference highlights.
When context is False numlines controls the number of lines which are shown before a difference high-
light when using the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next
difference highlight at the top of the browser without any leading context).

Note

fromdesc and todesc are interpreted as unescaped HTML and should be properly escaped while re-
ceiving input from untrusted sources.

Changed in version 3.5: charset keyword-only argument was added. The default charset of HTML doc-
ument changed from 'ISO-8859-1' to 'utf-8'.

make_table(fromlines, tolines, fromdesc=” , todesc=” , context=False, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file() method.

difflib.context_diff(a, b, fromfile=” , tofile=” , fromfiledate=” , tofiledate=” , n=3, lineterm=’\n’)
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by n which defaults to three.

By default, the diff control lines (those with *** or ---) are created with a trailing newline. This is helpful so
that inputs created from io.IOBase.readlines() result in diffs that are suitable for use with io.IOBase.
writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will be uniformly
newline free.

154 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> import sys

>>> from difflib import *

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> sys.stdout.writelines(context_diff(s1, s2, fromfile='before.py',

... tofile='after.py'))

*** before.py

--- after.py

*** 1,4 ****

! bacon

! eggs

! ham

guido

--- 1,4 ----

! python

! eggy

! hamster

guido

See A command-line interface to difflib for a more detailed example.

difflib.get_close_matches(word, possibilities, n=3, cutoff=0.6)
Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument n (default 3) is the maximum number of close matches to return; nmust be greater than 0.

Optional argument cutoff (default 0.6) is a float in the range [0, 1]. Possibilities that don’t score at least that
similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

>>> get_close_matches('appel', ['ape', 'apple', 'peach', 'puppy'])

['apple', 'ape']

>>> import keyword

>>> get_close_matches('wheel', keyword.kwlist)

['while']

>>> get_close_matches('pineapple', keyword.kwlist)

[]

>>> get_close_matches('accept', keyword.kwlist)

['except']

difflib.ndiff(a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Compare a and b (lists of strings); return a Differ-style delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are filtering functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if not.
The default is None. There is also a module-level function IS_LINE_JUNK(), which filters out lines without
visible characters, except for at most one pound character ('#') – however the underlying SequenceMatcher
class does a dynamic analysis of which lines are so frequent as to constitute noise, and this usually works better
than using this function.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or false
if not. The default is module-level function IS_CHARACTER_JUNK(), which filters out whitespace characters

6.3. difflib— Helpers for computing deltas 155

The Python Library Reference, Release 3.13.1

(a blank or tab; it’s a bad idea to include newline in this!).

>>> diff = ndiff('one\ntwo\nthree\n'.splitlines(keepends=True),

... 'ore\ntree\nemu\n'.splitlines(keepends=True))

>>> print(''.join(diff), end="")

- one

? ^

+ ore

? ^

- two

- three

? -

+ tree

+ emu

difflib.restore(sequence, which)
Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare() or ndiff(), extract lines originating from file 1 or 2
(parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff('one\ntwo\nthree\n'.splitlines(keepends=True),

... 'ore\ntree\nemu\n'.splitlines(keepends=True))

>>> diff = list(diff) # materialize the generated delta into a list

>>> print(''.join(restore(diff, 1)), end="")

one

two

three

>>> print(''.join(restore(diff, 2)), end="")

ore

tree

emu

difflib.unified_diff(a, b, fromfile=” , tofile=” , fromfiledate=” , tofiledate=” , n=3, lineterm=’\n’)
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in an inline style (instead of separate before/after blocks). The number of context lines is
set by n which defaults to three.

By default, the diff control lines (those with ---, +++, or @@) are created with a trailing newline. This is
helpful so that inputs created from io.IOBase.readlines() result in diffs that are suitable for use with
io.IOBase.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will be uniformly
newline free.

The unified diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> sys.stdout.writelines(unified_diff(s1, s2, fromfile='before.py', tofile=

↪→'after.py'))

--- before.py

+++ after.py

@@ -1,4 +1,4 @@

(continues on next page)

156 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

-bacon

-eggs

-ham

+python

+eggy

+hamster

guido

See A command-line interface to difflib for a more detailed example.

difflib.diff_bytes(dfunc, a, b, fromfile=b” , tofile=b” , fromfiledate=b” , tofiledate=b” , n=3, lineterm=b’\n’)
Compare a and b (lists of bytes objects) using dfunc; yield a sequence of delta lines (also bytes) in the format
returned by dfunc. dfunc must be a callable, typically either unified_diff() or context_diff().

Allows you to compare data with unknown or inconsistent encoding. All inputs except nmust be bytes objects,
not str. Works by losslessly converting all inputs (except n) to str, and calling dfunc(a, b, fromfile,

tofile, fromfiledate, tofiledate, n, lineterm). The output of dfunc is then converted back
to bytes, so the delta lines that you receive have the same unknown/inconsistent encodings as a and b.

Added in version 3.5.

difflib.IS_LINE_JUNK(line)
Return True for ignorable lines. The line line is ignorable if line is blank or contains a single '#', otherwise
it is not ignorable. Used as a default for parameter linejunk in ndiff() in older versions.

difflib.IS_CHARACTER_JUNK(ch)
Return True for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff().

See also

Pattern Matching: The Gestalt Approach
Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was published in Dr.
Dobb’s Journal in July, 1988.

6.3.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

class difflib.SequenceMatcher(isjunk=None, a=” , b=” , autojunk=True)
Optional argument isjunkmust be None (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk is equivalent
to passing lambda x: False; in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

The optional argument autojunk can be used to disable the automatic junk heuristic.

Changed in version 3.2: Added the autojunk parameter.

SequenceMatcher objects get three data attributes: bjunk is the set of elements of b for which isjunk is True;
bpopular is the set of non-junk elements considered popular by the heuristic (if it is not disabled); b2j is a dict
mapping the remaining elements of b to a list of positions where they occur. All three are reset whenever b is
reset with set_seqs() or set_seq2().

Added in version 3.2: The bjunk and bpopular attributes.

6.3. difflib— Helpers for computing deltas 157

https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970
https://www.drdobbs.com/
https://www.drdobbs.com/

The Python Library Reference, Release 3.13.1

SequenceMatcher objects have the following methods:

set_seqs(a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequences, use set_seq2() to set the commonly used sequence once
and call set_seq1() repeatedly, once for each of the other sequences.

set_seq1(a)

Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2(b)

Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match(alo=0, ahi=None, blo=0, bhi=None)
Find longest matching block in a[alo:ahi] and b[blo:bhi].

If isjunk was omitted or None, find_longest_match() returns (i, j, k) such that a[i:i+k] is
equal to b[j:j+k], where alo <= i <= i+k <= ahi and blo <= j <= j+k <= bhi. For all
(i', j', k') meeting those conditions, the additional conditions k >= k', i <= i', and if i ==

i', j <= j' are also met. In other words, of all maximal matching blocks, return one that starts earliest
in a, and of all those maximal matching blocks that start earliest in a, return the one that starts earliest
in b.

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")

>>> s.find_longest_match(0, 5, 0, 9)

Match(a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ' abcd' from
matching the ' abcd' at the tail end of the second sequence directly. Instead only the 'abcd' can
match, and matches the leftmost 'abcd' in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")

>>> s.find_longest_match(0, 5, 0, 9)

Match(a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).

This method returns a named tuple Match(a, b, size).

Changed in version 3.9: Added default arguments.

get_matching_blocks()

Return list of triples describing non-overlapping matching subsequences. Each triple is of the form (i,

j, n), and means that a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). It is the only triple with n ==

0. If (i, j, n) and (i', j', n') are adjacent triples in the list, and the second is not the last triple
in the list, then i+n < i' or j+n < j'; in other words, adjacent triples always describe non-adjacent
equal blocks.

>>> s = SequenceMatcher(None, "abxcd", "abcd")

>>> s.get_matching_blocks()

[Match(a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

158 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

get_opcodes()

Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, i2,

j1, j2). The first tuple has i1 == j1 == 0, and remaining tuples have i1 equal to the i2 from the
preceding tuple, and, likewise, j1 equal to the previous j2.

The tag values are strings, with these meanings:

Value Meaning

'replace' a[i1:i2] should be replaced by b[j1:j2].
'delete' a[i1:i2] should be deleted. Note that j1 == j2 in this case.
'insert' b[j1:j2] should be inserted at a[i1:i1]. Note that i1 == i2 in this case.
'equal' a[i1:i2] == b[j1:j2] (the sub-sequences are equal).

For example:

>>> a = "qabxcd"

>>> b = "abycdf"

>>> s = SequenceMatcher(None, a, b)

>>> for tag, i1, i2, j1, j2 in s.get_opcodes():

... print('{:7} a[{}:{}] --> b[{}:{}] {!r:>8} --> {!r}'.format(

... tag, i1, i2, j1, j2, a[i1:i2], b[j1:j2]))

delete a[0:1] --> b[0:0] 'q' --> ''

equal a[1:3] --> b[0:2] 'ab' --> 'ab'

replace a[3:4] --> b[2:3] 'x' --> 'y'

equal a[4:6] --> b[3:5] 'cd' --> 'cd'

insert a[6:6] --> b[5:6] '' --> 'f'

get_grouped_opcodes(n=3)
Return a generator of groups with up to n lines of context.

Starting with the groups returned by get_opcodes(), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes().

ratio()

Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is
2.0*M / T. Note that this is 1.0 if the sequences are identical, and 0.0 if they have nothing in common.

This is expensive to compute if get_matching_blocks() or get_opcodes() hasn’t already been
called, in which case you may want to try quick_ratio() or real_quick_ratio() first to get an
upper bound.

Note

Caution: The result of a ratio() call may depend on the order of the arguments. For instance:

>>> SequenceMatcher(None, 'tide', 'diet').ratio()

0.25

>>> SequenceMatcher(None, 'diet', 'tide').ratio()

0.5

quick_ratio()

Return an upper bound on ratio() relatively quickly.

6.3. difflib— Helpers for computing deltas 159

The Python Library Reference, Release 3.13.1

real_quick_ratio()

Return an upper bound on ratio() very quickly.

The three methods that return the ratio of matching to total characters can give different results due to differing levels
of approximation, although quick_ratio() and real_quick_ratio() are always at least as large as ratio():

>>> s = SequenceMatcher(None, "abcd", "bcde")

>>> s.ratio()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

6.3.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk”:

>>> s = SequenceMatcher(lambda x: x == " ",

... "private Thread currentThread;",

... "private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio() value
over 0.6 means the sequences are close matches:

>>> print(round(s.ratio(), 3))

0.866

If you’re only interested in where the sequences match, get_matching_blocks() is handy:

>>> for block in s.get_matching_blocks():

... print("a[%d] and b[%d] match for %d elements" % block)

a[0] and b[0] match for 8 elements

a[8] and b[17] match for 21 elements

a[29] and b[38] match for 0 elements

Note that the last tuple returned by get_matching_blocks() is always a dummy, (len(a), len(b), 0), and
this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes():

>>> for opcode in s.get_opcodes():

... print("%6s a[%d:%d] b[%d:%d]" % opcode)

equal a[0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:29] b[17:38]

See also

• The get_close_matches() function in this module which shows how simple code building on
SequenceMatcher can be used to do useful work.

• Simple version control recipe for a small application built with SequenceMatcher.

160 Chapter 6. Text Processing Services

https://code.activestate.com/recipes/576729-simple-version-control/

The Python Library Reference, Release 3.13.1

6.3.3 Differ Objects

Note that Differ-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Re-
stricting synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a
longer diff.

The Differ class has this constructor:

class difflib.Differ(linejunk=None, charjunk=None)
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

These junk-filtering functions speed up matching to find differences and do not cause any differing lines or
characters to be ignored. Read the description of the find_longest_match() method’s isjunk parameter
for an explanation.

Differ objects are used (deltas generated) via a single method:

compare(a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from the readlines() method of file-like objects. The delta generated also consists of
newline-terminated strings, ready to be printed as-is via the writelines()method of a file-like object.

6.3.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from the readlines() method of file-like objects):

>>> text1 = ''' 1. Beautiful is better than ugly.

... 2. Explicit is better than implicit.

... 3. Simple is better than complex.

... 4. Complex is better than complicated.

... '''.splitlines(keepends=True)

>>> len(text1)

4

>>> text1[0][-1]

'\n'

>>> text2 = ''' 1. Beautiful is better than ugly.

... 3. Simple is better than complex.

... 4. Complicated is better than complex.

... 5. Flat is better than nested.

... '''.splitlines(keepends=True)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating a Differ object we may pass functions to filter out line and character “junk.” See the
Differ() constructor for details.

Finally, we compare the two:

>>> result = list(d.compare(text1, text2))

result is a list of strings, so let’s pretty-print it:

6.3. difflib— Helpers for computing deltas 161

The Python Library Reference, Release 3.13.1

>>> from pprint import pprint

>>> pprint(result)

[' 1. Beautiful is better than ugly.\n',

'- 2. Explicit is better than implicit.\n',

'- 3. Simple is better than complex.\n',

'+ 3. Simple is better than complex.\n',

'? ++\n',

'- 4. Complex is better than complicated.\n',

'? ^ ---- ^\n',

'+ 4. Complicated is better than complex.\n',

'? ++++ ^ ^\n',

'+ 5. Flat is better than nested.\n']

As a single multi-line string it looks like this:

>>> import sys

>>> sys.stdout.writelines(result)

1. Beautiful is better than ugly.

- 2. Explicit is better than implicit.

- 3. Simple is better than complex.

+ 3. Simple is better than complex.

? ++

- 4. Complex is better than complicated.

? ^ ---- ^

+ 4. Complicated is better than complex.

? ++++ ^ ^

+ 5. Flat is better than nested.

6.3.5 A command-line interface to difflib

This example shows how to use difflib to create a diff-like utility.

""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.

* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

"""

import sys, os, difflib, argparse

from datetime import datetime, timezone

def file_mtime(path):

t = datetime.fromtimestamp(os.stat(path).st_mtime,

timezone.utc)

return t.astimezone().isoformat()

def main():

parser = argparse.ArgumentParser()

parser.add_argument('-c', action='store_true', default=False,

help='Produce a context format diff (default)')

parser.add_argument('-u', action='store_true', default=False,

help='Produce a unified format diff')

parser.add_argument('-m', action='store_true', default=False,

(continues on next page)

162 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

help='Produce HTML side by side diff '

'(can use -c and -l in conjunction)')

parser.add_argument('-n', action='store_true', default=False,

help='Produce a ndiff format diff')

parser.add_argument('-l', '--lines', type=int, default=3,

help='Set number of context lines (default 3)')

parser.add_argument('fromfile')

parser.add_argument('tofile')

options = parser.parse_args()

n = options.lines

fromfile = options.fromfile

tofile = options.tofile

fromdate = file_mtime(fromfile)

todate = file_mtime(tofile)

with open(fromfile) as ff:

fromlines = ff.readlines()

with open(tofile) as tf:

tolines = tf.readlines()

if options.u:

diff = difflib.unified_diff(fromlines, tolines, fromfile, tofile, fromdate,

↪→ todate, n=n)

elif options.n:

diff = difflib.ndiff(fromlines, tolines)

elif options.m:

diff = difflib.HtmlDiff().make_file(fromlines,tolines,fromfile,tofile,

↪→context=options.c,numlines=n)

else:

diff = difflib.context_diff(fromlines, tolines, fromfile, tofile, fromdate,

↪→ todate, n=n)

sys.stdout.writelines(diff)

if __name__ == '__main__':

main()

6.3.6 ndiff example

This example shows how to use difflib.ndiff().

"""ndiff [-q] file1 file2

or

ndiff (-r1 | -r2) < ndiff_output > file1_or_file2

Print a human-friendly file difference report to stdout. Both inter-

and intra-line differences are noted. In the second form, recreate file1

(-r1) or file2 (-r2) on stdout, from an ndiff report on stdin.

In the first form, if -q ("quiet") is not specified, the first two lines

of output are

-: file1

+: file2

(continues on next page)

6.3. difflib— Helpers for computing deltas 163

The Python Library Reference, Release 3.13.1

(continued from previous page)

Each remaining line begins with a two-letter code:

"- " line unique to file1

"+ " line unique to file2

" " line common to both files

"? " line not present in either input file

Lines beginning with "? " attempt to guide the eye to intraline

differences, and were not present in either input file. These lines can be

confusing if the source files contain tab characters.

The first file can be recovered by retaining only lines that begin with

" " or "- ", and deleting those 2-character prefixes; use ndiff with -r1.

The second file can be recovered similarly, but by retaining only " " and

"+ " lines; use ndiff with -r2; or, on Unix, the second file can be

recovered by piping the output through

sed -n '/^[+] /s/^..//p'

"""

__version__ = 1, 7, 0

import difflib, sys

def fail(msg):

out = sys.stderr.write

out(msg + "\n\n")

out(__doc__)

return 0

open a file & return the file object; gripe and return 0 if it

couldn't be opened

def fopen(fname):

try:

return open(fname)

except IOError as detail:

return fail("couldn't open " + fname + ": " + str(detail))

open two files & spray the diff to stdout; return false iff a problem

def fcompare(f1name, f2name):

f1 = fopen(f1name)

f2 = fopen(f2name)

if not f1 or not f2:

return 0

a = f1.readlines(); f1.close()

b = f2.readlines(); f2.close()

for line in difflib.ndiff(a, b):

print(line, end=' ')

return 1

crack args (sys.argv[1:] is normal) & compare;

return false iff a problem

(continues on next page)

164 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

def main(args):

import getopt

try:

opts, args = getopt.getopt(args, "qr:")

except getopt.error as detail:

return fail(str(detail))

noisy = 1

qseen = rseen = 0

for opt, val in opts:

if opt == "-q":

qseen = 1

noisy = 0

elif opt == "-r":

rseen = 1

whichfile = val

if qseen and rseen:

return fail("can't specify both -q and -r")

if rseen:

if args:

return fail("no args allowed with -r option")

if whichfile in ("1", "2"):

restore(whichfile)

return 1

return fail("-r value must be 1 or 2")

if len(args) != 2:

return fail("need 2 filename args")

f1name, f2name = args

if noisy:

print('-:', f1name)

print('+:', f2name)

return fcompare(f1name, f2name)

read ndiff output from stdin, and print file1 (which=='1') or

file2 (which=='2') to stdout

def restore(which):

restored = difflib.restore(sys.stdin.readlines(), which)

sys.stdout.writelines(restored)

if __name__ == '__main__':

main(sys.argv[1:])

6.4 textwrap— Text wrapping and filling

Source code: Lib/textwrap.py

The textwrap module provides some convenience functions, as well as TextWrapper, the class that does all the
work. If you’re just wrapping or filling one or two text strings, the convenience functions should be good enough;
otherwise, you should use an instance of TextWrapper for efficiency.

textwrap.wrap(text, width=70, *, initial_indent=” , subsequent_indent=” , expand_tabs=True,
replace_whitespace=True, fix_sentence_endings=False, break_long_words=True,
drop_whitespace=True, break_on_hyphens=True, tabsize=8, max_lines=None, placeholder=’
[...]’)

Wraps the single paragraph in text (a string) so every line is at most width characters long. Returns a list of

6.4. textwrap— Text wrapping and filling 165

https://github.com/python/cpython/tree/3.13/Lib/textwrap.py

The Python Library Reference, Release 3.13.1

output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.

See the TextWrapper.wrap() method for additional details on how wrap() behaves.

textwrap.fill(text, width=70, *, initial_indent=” , subsequent_indent=” , expand_tabs=True,
replace_whitespace=True, fix_sentence_endings=False, break_long_words=True,
drop_whitespace=True, break_on_hyphens=True, tabsize=8, max_lines=None, placeholder=’
[...]’)

Wraps the single paragraph in text, and returns a single string containing the wrapped paragraph. fill() is
shorthand for

"\n".join(wrap(text, ...))

In particular, fill() accepts exactly the same keyword arguments as wrap().

textwrap.shorten(text, width, *, fix_sentence_endings=False, break_long_words=True,
break_on_hyphens=True, placeholder=’ [...]’)

Collapse and truncate the given text to fit in the given width.

First the whitespace in text is collapsed (all whitespace is replaced by single spaces). If the result fits in the
width, it is returned. Otherwise, enough words are dropped from the end so that the remaining words plus the
placeholder fit within width:

>>> textwrap.shorten("Hello world!", width=12)

'Hello world!'

>>> textwrap.shorten("Hello world!", width=11)

'Hello [...]'

>>> textwrap.shorten("Hello world", width=10, placeholder="...")

'Hello...'

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below. Note
that the whitespace is collapsed before the text is passed to the TextWrapper fill() function, so changing
the value of tabsize, expand_tabs, drop_whitespace, and replace_whitespace will have no effect.

Added in version 3.4.

textwrap.dedent(text)

Remove any common leading whitespace from every line in text.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello" are considered to have no common leading whitespace.

Lines containing only whitespace are ignored in the input and normalized to a single newline character in the
output.

For example:

def test():

end first line with \ to avoid the empty line!

s = '''\

hello

world

'''

print(repr(s)) # prints ' hello\n world\n '

print(repr(dedent(s))) # prints 'hello\n world\n'

166 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

textwrap.indent(text, prefix, predicate=None)
Add prefix to the beginning of selected lines in text.

Lines are separated by calling text.splitlines(True).

By default, prefix is added to all lines that do not consist solely of whitespace (including any line endings).

For example:

>>> s = 'hello\n\n \nworld'

>>> indent(s, ' ')

' hello\n\n \n world'

The optional predicate argument can be used to control which lines are indented. For example, it is easy to add
prefix to even empty and whitespace-only lines:

>>> print(indent(s, '+ ', lambda line: True))

+ hello

+

+

+ world

Added in version 3.3.

wrap(), fill() and shorten() work by creating a TextWrapper instance and calling a single method on it.
That instance is not reused, so for applications that process many text strings using wrap() and/or fill(), it may
be more efficient to create your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long words
be broken if necessary, unless TextWrapper.break_long_words is set to false.

class textwrap.TextWrapper(**kwargs)
The TextWrapper constructor accepts a number of optional keyword arguments. Each keyword argument
corresponds to an instance attribute, so for example

wrapper = TextWrapper(initial_indent="* ")

is the same as

wrapper = TextWrapper()

wrapper.initial_indent = "* "

You can reuse the same TextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width

(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer than width, TextWrapper guarantees that no output line will be longer than width
characters.

expand_tabs

(default: True) If true, then all tab characters in text will be expanded to spaces using the expandtabs()
method of text.

tabsize

(default: 8) If expand_tabs is true, then all tab characters in text will be expanded to zero or more
spaces, depending on the current column and the given tab size.

Added in version 3.3.

6.4. textwrap— Text wrapping and filling 167

The Python Library Reference, Release 3.13.1

replace_whitespace

(default: True) If true, after tab expansion but before wrapping, the wrap() method will replace each
whitespace character with a single space. The whitespace characters replaced are as follows: tab, newline,
vertical tab, formfeed, and carriage return ('\t\n\v\f\r').

Note

If expand_tabs is false and replace_whitespace is true, each tab character will be replaced by
a single space, which is not the same as tab expansion.

Note

If replace_whitespace is false, newlines may appear in the middle of a line and cause strange
output. For this reason, text should be split into paragraphs (using str.splitlines() or similar)
which are wrapped separately.

drop_whitespace

(default: True) If true, whitespace at the beginning and ending of every line (after wrapping but before
indenting) is dropped. Whitespace at the beginning of the paragraph, however, is not dropped if non-
whitespace follows it. If whitespace being dropped takes up an entire line, the whole line is dropped.

initial_indent

(default: '') String that will be prepended to the first line of wrapped output. Counts towards the length
of the first line. The empty string is not indented.

subsequent_indent

(default: '') String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

fix_sentence_endings

(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences
are always separated by exactly two spaces. This is generally desired for text in a monospaced font.
However, the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a
lowercase letter followed by one of '.', '!', or '?', possibly followed by one of '"' or "'", followed
by a space. One problem with this algorithm is that it is unable to detect the difference between “Dr.” in

[...] Dr. Frankenstein's monster [...]

and “Spot.” in

[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for the definition of “lowercase
letter”, and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break_long_words

(default: True) If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines may be longer than
width. (Long words will be put on a line by themselves, in order to minimize the amount by which
width is exceeded.)

break_on_hyphens

(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in com-
pound words, as it is customary in English. If false, only whitespaces will be considered as potentially

168 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

good places for line breaks, but you need to set break_long_words to false if you want truly insecable
words. Default behaviour in previous versions was to always allow breaking hyphenated words.

max_lines

(default: None) If not None, then the output will contain at most max_lines lines, with placeholder
appearing at the end of the output.

Added in version 3.4.

placeholder

(default: ' [...]') String that will appear at the end of the output text if it has been truncated.

Added in version 3.4.

TextWrapper also provides some public methods, analogous to the module-level convenience functions:

wrap(text)

Wraps the single paragraph in text (a string) so every line is at most width characters long. All wrapping
options are taken from instance attributes of the TextWrapper instance. Returns a list of output lines,
without final newlines. If the wrapped output has no content, the returned list is empty.

fill(text)

Wraps the single paragraph in text, and returns a single string containing the wrapped paragraph.

6.5 unicodedata— Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties for all
Unicode characters. The data contained in this database is compiled from the UCD version 15.1.0.

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode Character
Database”. It defines the following functions:

unicodedata.lookup(name)
Look up character by name. If a character with the given name is found, return the corresponding character.
If not found, KeyError is raised.

Changed in version 3.3: Support for name aliases1 and named sequences2 has been added.

unicodedata.name(chr[, default])
Returns the name assigned to the character chr as a string. If no name is defined, default is returned, or, if not
given, ValueError is raised.

unicodedata.decimal(chr[, default])
Returns the decimal value assigned to the character chr as integer. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.digit(chr[, default])
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.numeric(chr[, default])
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.category(chr)
Returns the general category assigned to the character chr as string.

1 https://www.unicode.org/Public/15.1.0/ucd/NameAliases.txt
2 https://www.unicode.org/Public/15.1.0/ucd/NamedSequences.txt

6.5. unicodedata— Unicode Database 169

https://www.unicode.org/Public/15.1.0/ucd
https://www.unicode.org/reports/tr44/
https://www.unicode.org/reports/tr44/
https://www.unicode.org/Public/15.1.0/ucd/NameAliases.txt
https://www.unicode.org/Public/15.1.0/ucd/NamedSequences.txt

The Python Library Reference, Release 3.13.1

unicodedata.bidirectional(chr)
Returns the bidirectional class assigned to the character chr as string. If no such value is defined, an empty
string is returned.

unicodedata.combining(chr)
Returns the canonical combining class assigned to the character chr as integer. Returns 0 if no combining class
is defined.

unicodedata.east_asian_width(chr)

Returns the east asian width assigned to the character chr as string.

unicodedata.mirrored(chr)

Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has been
identified as a “mirrored” character in bidirectional text, 0 otherwise.

unicodedata.decomposition(chr)
Returns the character decomposition mapping assigned to the character chr as string. An empty string is
returned in case no such mapping is defined.

unicodedata.normalize(form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’, ‘NFD’,
and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of
canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in vari-
ous way. For example, the character U+00C7 (LATIN CAPITAL LETTER CWITH CEDILLA) can also be
expressed as the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form
C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility char-
acters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition,
followed by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining char-
acters and the other doesn’t, they may not compare equal.

unicodedata.is_normalized(form, unistr)
Return whether the Unicode string unistr is in the normal form form. Valid values for form are ‘NFC’, ‘NFKC’,
‘NFD’, and ‘NFKD’.

Added in version 3.8.

In addition, the module exposes the following constant:

unicodedata.unidata_version

The version of the Unicode database used in this module.

unicodedata.ucd_3_2_0

This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA).

Examples:

>>> import unicodedata

>>> unicodedata.lookup('LEFT CURLY BRACKET')

(continues on next page)

170 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

'{'

>>> unicodedata.name('/')

'SOLIDUS'

>>> unicodedata.decimal('9')

9

>>> unicodedata.decimal('a')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: not a decimal

>>> unicodedata.category('A') # 'L'etter, 'u'ppercase

'Lu'

>>> unicodedata.bidirectional('\u0660') # 'A'rabic, 'N'umber

'AN'

6.6 stringprep— Internet String Preparation

Source code: Lib/stringprep.py

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications for
“equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it should
be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only identifications
consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC
defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of the stringprep procedure are part of the profile. One example of a stringprep profile is
nameprep, which is used for internationalized domain names.

The module stringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself was
generated using the mkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC: sets
and mappings. For a set, stringprep provides the “characteristic function”, i.e. a function that returns True if the
parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the associated
value. Below is a list of all functions available in the module.

stringprep.in_table_a1(code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table_b1(code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

stringprep.map_table_b2(code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_table_b3(code)
Return themapped value for code according to tableB.3 (Mapping for case-folding used with no normalization).

stringprep.in_table_c11(code)
Determine whether code is in tableC.1.1 (ASCII space characters).

stringprep.in_table_c12(code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table_c11_c12(code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

6.6. stringprep— Internet String Preparation 171

https://github.com/python/cpython/tree/3.13/Lib/stringprep.py
https://datatracker.ietf.org/doc/html/rfc3454.html
https://datatracker.ietf.org/doc/html/rfc3454.html

The Python Library Reference, Release 3.13.1

stringprep.in_table_c21(code)
Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table_c22(code)

Determine whether code is in tableC.2.2 (Non-ASCII control characters).

stringprep.in_table_c21_c22(code)

Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

stringprep.in_table_c3(code)
Determine whether code is in tableC.3 (Private use).

stringprep.in_table_c4(code)
Determine whether code is in tableC.4 (Non-character code points).

stringprep.in_table_c5(code)
Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table_c6(code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table_c7(code)

Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table_c8(code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in_table_c9(code)
Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table_d1(code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in_table_d2(code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.7 readline— GNU readline interface

The readline module defines a number of functions to facilitate completion and reading/writing of history files
from the Python interpreter. This module can be used directly, or via the rlcompleter module, which supports
completion of Python identifiers at the interactive prompt. Settings made using this module affect the behaviour of
both the interpreter’s interactive prompt and the prompts offered by the built-in input() function.

Readline keybindings may be configured via an initialization file, typically .inputrc in your home directory. See
Readline Init File in the GNU Readline manual for information about the format and allowable constructs of that file,
and the capabilities of the Readline library in general.

Availability: not Android, not iOS, not WASI.

This module is not supported on mobile platforms orWebAssembly platforms.

Note

The underlying Readline library API may be implemented by the editline (libedit) library instead of GNU
readline. On macOS the readline module detects which library is being used at run time.

The configuration file for editline is different from that of GNU readline. If you programmatically load
configuration strings you can use backend to determine which library is being used.

172 Chapter 6. Text Processing Services

https://tiswww.cwru.edu/php/chet/readline/rluserman.html#Readline-Init-File

The Python Library Reference, Release 3.13.1

If you use editline/libedit readline emulation on macOS, the initialization file located in your home direc-
tory is named .editrc. For example, the following content in ~/.editrc will turn ON vi keybindings and
TAB completion:

python:bind -v

python:bind ^I rl_complete

Also note that different libraries may use different history file formats. When switching the underlying library,
existing history files may become unusable.

readline.backend

The name of the underlying Readline library being used, either "readline" or "editline".

Added in version 3.13.

6.7.1 Init file

The following functions relate to the init file and user configuration:

readline.parse_and_bind(string)
Execute the init line provided in the string argument. This calls rl_parse_and_bind() in the underlying
library.

readline.read_init_file([filename])
Execute a readline initialization file. The default filename is the last filename used. This calls
rl_read_init_file() in the underlying library.

6.7.2 Line buffer

The following functions operate on the line buffer:

readline.get_line_buffer()

Return the current contents of the line buffer (rl_line_buffer in the underlying library).

readline.insert_text(string)
Insert text into the line buffer at the cursor position. This calls rl_insert_text() in the underlying library,
but ignores the return value.

readline.redisplay()

Change what’s displayed on the screen to reflect the current contents of the line buffer. This calls
rl_redisplay() in the underlying library.

6.7.3 History file

The following functions operate on a history file:

readline.read_history_file([filename])
Load a readline history file, and append it to the history list. The default filename is ~/.history. This calls
read_history() in the underlying library.

readline.write_history_file([filename])
Save the history list to a readline history file, overwriting any existing file. The default filename is ~/.history.
This calls write_history() in the underlying library.

readline.append_history_file(nelements[, filename])
Append the last nelements items of history to a file. The default filename is ~/.history. The file must
already exist. This calls append_history() in the underlying library. This function only exists if Python
was compiled for a version of the library that supports it.

Added in version 3.5.

6.7. readline— GNU readline interface 173

The Python Library Reference, Release 3.13.1

readline.get_history_length()

readline.set_history_length(length)

Set or return the desired number of lines to save in the history file. The write_history_file() function
uses this value to truncate the history file, by calling history_truncate_file() in the underlying library.
Negative values imply unlimited history file size.

6.7.4 History list

The following functions operate on a global history list:

readline.clear_history()

Clear the current history. This calls clear_history() in the underlying library. The Python function only
exists if Python was compiled for a version of the library that supports it.

readline.get_current_history_length()

Return the number of items currently in the history. (This is different from get_history_length(), which
returns the maximum number of lines that will be written to a history file.)

readline.get_history_item(index)

Return the current contents of history item at index. The item index is one-based. This calls history_get()
in the underlying library.

readline.remove_history_item(pos)
Remove history item specified by its position from the history. The position is zero-based. This calls
remove_history() in the underlying library.

readline.replace_history_item(pos, line)
Replace history item specified by its position with line. The position is zero-based. This calls
replace_history_entry() in the underlying library.

readline.add_history(line)
Append line to the history buffer, as if it was the last line typed. This calls add_history() in the underlying
library.

readline.set_auto_history(enabled)
Enable or disable automatic calls to add_history() when reading input via readline. The enabled argument
should be a Boolean value that when true, enables auto history, and that when false, disables auto history.

Added in version 3.6.

CPython implementation detail: Auto history is enabled by default, and changes to this do not persist across
multiple sessions.

6.7.5 Startup hooks

readline.set_startup_hook([function])
Set or remove the function invoked by the rl_startup_hook callback of the underlying library. If function
is specified, it will be used as the new hook function; if omitted or None, any function already installed is
removed. The hook is called with no arguments just before readline prints the first prompt.

readline.set_pre_input_hook([function])
Set or remove the function invoked by the rl_pre_input_hook callback of the underlying library. If function
is specified, it will be used as the new hook function; if omitted or None, any function already installed is
removed. The hook is called with no arguments after the first prompt has been printed and just before readline
starts reading input characters. This function only exists if Python was compiled for a version of the library
that supports it.

174 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

6.7.6 Completion

The following functions relate to implementing a custom word completion function. This is typically operated by the
Tab key, and can suggest and automatically complete a word being typed. By default, Readline is set up to be used by
rlcompleter to complete Python identifiers for the interactive interpreter. If the readline module is to be used
with a custom completer, a different set of word delimiters should be set.

readline.set_completer([function])
Set or remove the completer function. If function is specified, it will be used as the new completer function;
if omitted or None, any completer function already installed is removed. The completer function is called as
function(text, state), for state in 0, 1, 2, …, until it returns a non-string value. It should return the
next possible completion starting with text.

The installed completer function is invoked by the entry_func callback passed to
rl_completion_matches() in the underlying library. The text string comes from the first parame-
ter to the rl_attempted_completion_function callback of the underlying library.

readline.get_completer()

Get the completer function, or None if no completer function has been set.

readline.get_completion_type()

Get the type of completion being attempted. This returns the rl_completion_type variable in the under-
lying library as an integer.

readline.get_begidx()

readline.get_endidx()

Get the beginning or ending index of the completion scope. These indexes are the start and end arguments
passed to the rl_attempted_completion_function callback of the underlying library. The values may
be different in the same input editing scenario based on the underlying C readline implementation. Ex: libedit
is known to behave differently than libreadline.

readline.set_completer_delims(string)
readline.get_completer_delims()

Set or get the word delimiters for completion. These determine the start of the word to be considered for
completion (the completion scope). These functions access the rl_completer_word_break_characters
variable in the underlying library.

readline.set_completion_display_matches_hook([function])
Set or remove the completion display function. If function is specified, it will be used as the new completion
display function; if omitted or None, any completion display function already installed is removed. This sets or
clears the rl_completion_display_matches_hook callback in the underlying library. The completion
display function is called as function(substitution, [matches], longest_match_length) once
each time matches need to be displayed.

6.7.7 Example

The following example demonstrates how to use the readline module’s history reading and writing functions to
automatically load and save a history file named .python_history from the user’s home directory. The code
below would normally be executed automatically during interactive sessions from the user’s PYTHONSTARTUP file.

import atexit

import os

import readline

histfile = os.path.join(os.path.expanduser("~"), ".python_history")

try:

readline.read_history_file(histfile)

default history len is -1 (infinite), which may grow unruly

readline.set_history_length(1000)

except FileNotFoundError:

(continues on next page)

6.7. readline— GNU readline interface 175

The Python Library Reference, Release 3.13.1

(continued from previous page)

pass

atexit.register(readline.write_history_file, histfile)

This code is actually automatically run when Python is run in interactive mode (see Readline configuration).

The following example achieves the same goal but supports concurrent interactive sessions, by only appending the
new history.

import atexit

import os

import readline

histfile = os.path.join(os.path.expanduser("~"), ".python_history")

try:

readline.read_history_file(histfile)

h_len = readline.get_current_history_length()

except FileNotFoundError:

open(histfile, 'wb').close()

h_len = 0

def save(prev_h_len, histfile):

new_h_len = readline.get_current_history_length()

readline.set_history_length(1000)

readline.append_history_file(new_h_len - prev_h_len, histfile)

atexit.register(save, h_len, histfile)

The following example extends the code.InteractiveConsole class to support history save/restore.

import atexit

import code

import os

import readline

class HistoryConsole(code.InteractiveConsole):

def __init__(self, locals=None, filename="<console>",

histfile=os.path.expanduser("~/.console-history")):

code.InteractiveConsole.__init__(self, locals, filename)

self.init_history(histfile)

def init_history(self, histfile):

readline.parse_and_bind("tab: complete")

if hasattr(readline, "read_history_file"):

try:

readline.read_history_file(histfile)

except FileNotFoundError:

pass

atexit.register(self.save_history, histfile)

def save_history(self, histfile):

readline.set_history_length(1000)

readline.write_history_file(histfile)

176 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.13.1

6.8 rlcompleter— Completion function for GNU readline

Source code: Lib/rlcompleter.py

The rlcompleter module defines a completion function suitable to be passed to set_completer() in the
readline module.

When this module is imported on a Unix platform with the readline module available, an instance of the
Completer class is automatically created and its complete()method is set as the readline completer. The method
provides completion of valid Python identifiers and keywords.

Example:

>>> import rlcompleter

>>> import readline

>>> readline.parse_and_bind("tab: complete")

>>> readline. <TAB PRESSED>

readline.__doc__ readline.get_line_buffer(readline.read_init_file(

readline.__file__ readline.insert_text(readline.set_completer(

readline.__name__ readline.parse_and_bind(

>>> readline.

The rlcompleter module is designed for use with Python’s interactive mode. Unless Python is run with the -S
option, the module is automatically imported and configured (see Readline configuration).

On platforms without readline, the Completer class defined by this module can still be used for custom purposes.

class rlcompleter.Completer

Completer objects have the following method:

complete(text, state)
Return the next possible completion for text.

When called by the readline module, this method is called successively with state == 0, 1, 2,

... until the method returns None.

If called for text that doesn’t include a period character ('.'), it will complete from names currently
defined in __main__, builtins and keywords (as defined by the keyword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (functions will
not be evaluated, but it can generate calls to __getattr__()) up to the last part, and find matches for
the rest via the dir() function. Any exception raised during the evaluation of the expression is caught,
silenced and None is returned.

6.8. rlcompleter— Completion function for GNU readline 177

https://github.com/python/cpython/tree/3.13/Lib/rlcompleter.py

The Python Library Reference, Release 3.13.1

178 Chapter 6. Text Processing Services

CHAPTER

SEVEN

BINARY DATA SERVICES

The modules described in this chapter provide some basic services operations for manipulation of binary data. Other
operations on binary data, specifically in relation to file formats and network protocols, are described in the relevant
sections.

Some libraries described under Text Processing Services also work with either ASCII-compatible binary formats (for
example, re) or all binary data (for example, difflib).

In addition, see the documentation for Python’s built-in binary data types inBinary Sequence Types—bytes, bytearray,
memoryview.

7.1 struct— Interpret bytes as packed binary data

Source code: Lib/struct.py

This module converts between Python values and C structs represented as Python bytes objects. Compact format
strings describe the intended conversions to/from Python values. The module’s functions and objects can be used for
two largely distinct applications, data exchange with external sources (files or network connections), or data transfer
between the Python application and the C layer.

Note

When no prefix character is given, native mode is the default. It packs or unpacks data based on the platform
and compiler on which the Python interpreter was built. The result of packing a given C struct includes pad
bytes which maintain proper alignment for the C types involved; similarly, alignment is taken into account when
unpacking. In contrast, when communicating data between external sources, the programmer is responsible for
defining byte ordering and padding between elements. See Byte Order, Size, and Alignment for details.

Several struct functions (and methods of Struct) take a buffer argument. This refers to objects that implement the
bufferobjects and provide either a readable or read-writable buffer. The most common types used for that purpose are
bytes and bytearray, but many other types that can be viewed as an array of bytes implement the buffer protocol,
so that they can be read/filled without additional copying from a bytes object.

7.1.1 Functions and Exceptions

The module defines the following exception and functions:

exception struct.error

Exception raised on various occasions; argument is a string describing what is wrong.

struct.pack(format, v1, v2, ...)
Return a bytes object containing the values v1, v2, … packed according to the format string format. The
arguments must match the values required by the format exactly.

179

https://github.com/python/cpython/tree/3.13/Lib/struct.py

The Python Library Reference, Release 3.13.1

struct.pack_into(format, buffer, offset, v1, v2, ...)
Pack the values v1, v2, … according to the format string format and write the packed bytes into the writable
buffer buffer starting at position offset. Note that offset is a required argument.

struct.unpack(format, buffer)
Unpack from the buffer buffer (presumably packed by pack(format, ...)) according to the format string
format. The result is a tuple even if it contains exactly one item. The buffer’s size in bytes must match the size
required by the format, as reflected by calcsize().

struct.unpack_from(format, / , buffer, offset=0)
Unpack from buffer starting at position offset, according to the format string format. The result is a tuple even
if it contains exactly one item. The buffer’s size in bytes, starting at position offset, must be at least the size
required by the format, as reflected by calcsize().

struct.iter_unpack(format, buffer)
Iteratively unpack from the buffer buffer according to the format string format. This function returns an iterator
which will read equally sized chunks from the buffer until all its contents have been consumed. The buffer’s
size in bytes must be a multiple of the size required by the format, as reflected by calcsize().

Each iteration yields a tuple as specified by the format string.

Added in version 3.4.

struct.calcsize(format)
Return the size of the struct (and hence of the bytes object produced by pack(format, ...)) corresponding
to the format string format.

7.1.2 Format Strings

Format strings describe the data layout when packing and unpacking data. They are built up from format characters,
which specify the type of data being packed/unpacked. In addition, special characters control the byte order, size and
alignment. Each format string consists of an optional prefix character which describes the overall properties of the
data and one or more format characters which describe the actual data values and padding.

Byte Order, Size, and Alignment

By default, C types are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler). This behavior is chosen so that the bytes of
a packed struct correspond exactly to the memory layout of the corresponding C struct. Whether to use native byte
ordering and padding or standard formats depends on the application.

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character Byte order Size Alignment

@ native native native
= native standard none
< little-endian standard none
> big-endian standard none
! network (= big-endian) standard none

If the first character is not one of these, '@' is assumed.

Note

The number 1023 (0x3ff in hexadecimal) has the following byte representations:

• 03 ff in big-endian (>)

180 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.13.1

• ff 03 in little-endian (<)

Python example:
>>> import struct

>>> struct.pack('>h', 1023)

b'\x03\xff'

>>> struct.pack('<h', 1023)

b'\xff\x03'

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86, AMD64 (x86-
64), and Apple M1 are little-endian; IBM z and many legacy architectures are big-endian. Use sys.byteorder to
check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

Note the difference between '@' and '=': both use native byte order, but the size and alignment of the latter is
standardized.

The form '!' represents the network byte order which is always big-endian as defined in IETF RFC 1700.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of '<' or '>'.

Notes:

(1) Padding is only automatically added between successive structure members. No padding is added at the be-
ginning or the end of the encoded struct.

(2) No padding is added when using non-native size and alignment, e.g. with ‘<’, ‘>’, ‘=’, and ‘!’.

(3) To align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types. The ‘Standard size’ column refers to the size of the packed value in bytes when using standard size; that
is, when the format string starts with one of '<', '>', '!' or '='. When using native size, the size of the packed
value is platform-dependent.

7.1. struct— Interpret bytes as packed binary data 181

https://datatracker.ietf.org/doc/html/rfc1700

The Python Library Reference, Release 3.13.1

Format C Type Python type Standard size Notes

x pad byte no value (7)
c char bytes of length 1 1
b signed char integer 1 (1), (2)
B unsigned char integer 1 (2)
? _Bool bool 1 (1)
h short integer 2 (2)
H unsigned short integer 2 (2)
i int integer 4 (2)
I unsigned int integer 4 (2)
l long integer 4 (2)
L unsigned long integer 4 (2)
q long long integer 8 (2)
Q unsigned long long integer 8 (2)
n ssize_t integer (3)
N size_t integer (3)
e (6) float 2 (4)
f float float 4 (4)
d double float 8 (4)
s char[] bytes (9)
p char[] bytes (8)
P void* integer (5)

Changed in version 3.3: Added support for the 'n' and 'N' formats.

Changed in version 3.6: Added support for the 'e' format.

Notes:

(1) The '?' conversion code corresponds to the _Bool type defined by C standards since C99. In standard mode,
it is represented by one byte.

(2) When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer has a
__index__() method then that method is called to convert the argument to an integer before packing.

Changed in version 3.2: Added use of the __index__() method for non-integers.

(3) The 'n' and 'N' conversion codes are only available for the native size (selected as the default or with the
'@' byte order character). For the standard size, you can use whichever of the other integer formats fits your
application.

(4) For the 'f', 'd' and 'e' conversion codes, the packed representation uses the IEEE 754 binary32, binary64
or binary16 format (for 'f', 'd' or 'e' respectively), regardless of the floating-point format used by the
platform.

(5) The 'P' format character is only available for the native byte ordering (selected as the default or with the '@'
byte order character). The byte order character '=' chooses to use little- or big-endian ordering based on the
host system. The struct module does not interpret this as native ordering, so the 'P' format is not available.

(6) The IEEE 754 binary16 “half precision” type was introduced in the 2008 revision of the IEEE 754 standard. It
has a sign bit, a 5-bit exponent and 11-bit precision (with 10 bits explicitly stored), and can represent numbers
between approximately 6.1e-05 and 6.5e+04 at full precision. This type is not widely supported by C
compilers: on a typical machine, an unsigned short can be used for storage, but not for math operations. See
the Wikipedia page on the half-precision floating-point format for more information.

(7) When packing, 'x' inserts one NUL byte.

(8) The 'p' format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed
number of bytes, given by the count. The first byte stored is the length of the string, or 255, whichever is
smaller. The bytes of the string follow. If the string passed in to pack() is too long (longer than the count
minus 1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1, it

182 Chapter 7. Binary Data Services

https://en.wikipedia.org/wiki/IEEE_754-2008_revision
https://en.wikipedia.org/wiki/Half-precision_floating-point_format

The Python Library Reference, Release 3.13.1

is padded with null bytes so that exactly count bytes in all are used. Note that for unpack(), the 'p' format
character consumes count bytes, but that the string returned can never contain more than 255 bytes.

(9) For the 's' format character, the count is interpreted as the length of the bytes, not a repeat count like for the
other format characters; for example, '10s'means a single 10-byte string mapping to or from a single Python
byte string, while '10c' means 10 separate one byte character elements (e.g., cccccccccc) mapping to or
from ten different Python byte objects. (See Examples for a concrete demonstration of the difference.) If a
count is not given, it defaults to 1. For packing, the string is truncated or padded with null bytes as appropriate
to make it fit. For unpacking, the resulting bytes object always has exactly the specified number of bytes. As
a special case, '0s' means a single, empty string (while '0c' means 0 characters).

A format character may be preceded by an integral repeat count. For example, the format string '4h'means exactly
the same as 'hhhh'.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

When packing a value x using one of the integer formats ('b', 'B', 'h', 'H', 'i', 'I', 'l', 'L', 'q', 'Q'), if
x is outside the valid range for that format then struct.error is raised.

Changed in version 3.1: Previously, some of the integer formats wrapped out-of-range values and raised
DeprecationWarning instead of struct.error.

For the '?' format character, the return value is either True or False. When packing, the truth value of the
argument object is used. Either 0 or 1 in the native or standard bool representation will be packed, and any non-zero
value will be True when unpacking.

Examples

Note

Native byte order examples (designated by the '@' format prefix or lack of any prefix character) may not match
what the reader’s machine produces as that depends on the platform and compiler.

Pack and unpack integers of three different sizes, using big endian ordering:

>>> from struct import *

>>> pack(">bhl", 1, 2, 3)

b'\x01\x00\x02\x00\x00\x00\x03'

>>> unpack('>bhl', b'\x01\x00\x02\x00\x00\x00\x03')

(1, 2, 3)

>>> calcsize('>bhl')

7

Attempt to pack an integer which is too large for the defined field:

>>> pack(">h", 99999)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

struct.error: 'h' format requires -32768 <= number <= 32767

Demonstrate the difference between 's' and 'c' format characters:

>>> pack("@ccc", b'1', b'2', b'3')

b'123'

>>> pack("@3s", b'123')

b'123'

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

7.1. struct— Interpret bytes as packed binary data 183

The Python Library Reference, Release 3.13.1

>>> record = b'raymond \x32\x12\x08\x01\x08'

>>> name, serialnum, school, gradelevel = unpack('<10sHHb', record)

>>> from collections import namedtuple

>>> Student = namedtuple('Student', 'name serialnum school gradelevel')

>>> Student._make(unpack('<10sHHb', record))

Student(name=b'raymond ', serialnum=4658, school=264, gradelevel=8)

The ordering of format characters may have an impact on size in native mode since padding is implicit. In standard
mode, the user is responsible for inserting any desired padding. Note in the first pack call below that three NUL
bytes were added after the packed '#' to align the following integer on a four-byte boundary. In this example, the
output was produced on a little endian machine:

>>> pack('@ci', b'#', 0x12131415)

b'#\x00\x00\x00\x15\x14\x13\x12'

>>> pack('@ic', 0x12131415, b'#')

b'\x15\x14\x13\x12#'

>>> calcsize('@ci')

8

>>> calcsize('@ic')

5

The following format 'llh0l' results in two pad bytes being added at the end, assuming the platform’s longs are
aligned on 4-byte boundaries:

>>> pack('@llh0l', 1, 2, 3)

b'\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00'

See also

Module array
Packed binary storage of homogeneous data.

Module json
JSON encoder and decoder.

Module pickle
Python object serialization.

7.1.3 Applications

Two main applications for the struct module exist, data interchange between Python and C code within an ap-
plication or another application compiled using the same compiler (native formats), and data interchange between
applications using agreed upon data layout (standard formats). Generally speaking, the format strings constructed
for these two domains are distinct.

Native Formats

When constructing format strings which mimic native layouts, the compiler and machine architecture determine byte
ordering and padding. In such cases, the @ format character should be used to specify native byte ordering and data
sizes. Internal pad bytes are normally inserted automatically. It is possible that a zero-repeat format code will be
needed at the end of a format string to round up to the correct byte boundary for proper alignment of consecutive
chunks of data.

Consider these two simple examples (on a 64-bit, little-endian machine):

>>> calcsize('@lhl')

24
(continues on next page)

184 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> calcsize('@llh')

18

Data is not padded to an 8-byte boundary at the end of the second format string without the use of extra padding. A
zero-repeat format code solves that problem:

>>> calcsize('@llh0l')

24

The 'x' format code can be used to specify the repeat, but for native formats it is better to use a zero-repeat format
like '0l'.

By default, native byte ordering and alignment is used, but it is better to be explicit and use the '@' prefix character.

Standard Formats

When exchanging data beyond your process such as networking or storage, be precise. Specify the exact byte order,
size, and alignment. Do not assume they match the native order of a particular machine. For example, network byte
order is big-endian, while many popular CPUs are little-endian. By defining this explicitly, the user need not care
about the specifics of the platform their code is running on. The first character should typically be < or > (or !).
Padding is the responsibility of the programmer. The zero-repeat format character won’t work. Instead, the user
must explicitly add 'x' pad bytes where needed. Revisiting the examples from the previous section, we have:

>>> calcsize('<qh6xq')

24

>>> pack('<qh6xq', 1, 2, 3) == pack('@lhl', 1, 2, 3)

True

>>> calcsize('@llh')

18

>>> pack('@llh', 1, 2, 3) == pack('<qqh', 1, 2, 3)

True

>>> calcsize('<qqh6x')

24

>>> calcsize('@llh0l')

24

>>> pack('@llh0l', 1, 2, 3) == pack('<qqh6x', 1, 2, 3)

True

The above results (executed on a 64-bit machine) aren’t guaranteed to match when executed on different machines.
For example, the examples below were executed on a 32-bit machine:

>>> calcsize('<qqh6x')

24

>>> calcsize('@llh0l')

12

>>> pack('@llh0l', 1, 2, 3) == pack('<qqh6x', 1, 2, 3)

False

7.1.4 Classes

The struct module also defines the following type:

class struct.Struct(format)

Return a new Struct object which writes and reads binary data according to the format string format. Creating
a Struct object once and calling its methods is more efficient than calling module-level functions with the
same format since the format string is only compiled once.

7.1. struct— Interpret bytes as packed binary data 185

The Python Library Reference, Release 3.13.1

Note

The compiled versions of the most recent format strings passed to the module-level functions are cached,
so programs that use only a few format strings needn’t worry about reusing a single Struct instance.

Compiled Struct objects support the following methods and attributes:

pack(v1, v2, ...)
Identical to the pack() function, using the compiled format. (len(result) will equal size.)

pack_into(buffer, offset, v1, v2, ...)
Identical to the pack_into() function, using the compiled format.

unpack(buffer)
Identical to the unpack() function, using the compiled format. The buffer’s size in bytes must equal
size.

unpack_from(buffer, offset=0)
Identical to the unpack_from() function, using the compiled format. The buffer’s size in bytes, starting
at position offset, must be at least size.

iter_unpack(buffer)
Identical to the iter_unpack() function, using the compiled format. The buffer’s size in bytes must be
a multiple of size.

Added in version 3.4.

format

The format string used to construct this Struct object.

Changed in version 3.7: The format string type is now str instead of bytes.

size

The calculated size of the struct (and hence of the bytes object produced by the pack() method) corre-
sponding to format.

Changed in version 3.13: The repr() of structs has changed. It is now:

>>> Struct('i')

Struct('i')

7.2 codecs— Codec registry and base classes

Source code: Lib/codecs.py

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry, which manages the codec and error handling lookup process. Most standard codecs
are text encodings, which encode text to bytes (and decode bytes to text), but there are also codecs provided that
encode text to text, and bytes to bytes. Custom codecs may encode and decode between arbitrary types, but some
module features are restricted to be used specifically with text encodings or with codecs that encode to bytes.

The module defines the following functions for encoding and decoding with any codec:

codecs.encode(obj, encoding=’utf-8’, errors=’strict’)
Encodes obj using the codec registered for encoding.

Errorsmay be given to set the desired error handling scheme. The default error handler is 'strict'meaning
that encoding errors raise ValueError (or a more codec specific subclass, such as UnicodeEncodeError).
Refer to Codec Base Classes for more information on codec error handling.

186 Chapter 7. Binary Data Services

https://github.com/python/cpython/tree/3.13/Lib/codecs.py

The Python Library Reference, Release 3.13.1

codecs.decode(obj, encoding=’utf-8’, errors=’strict’)
Decodes obj using the codec registered for encoding.

Errorsmay be given to set the desired error handling scheme. The default error handler is 'strict'meaning
that decoding errors raise ValueError (or a more codec specific subclass, such as UnicodeDecodeError).
Refer to Codec Base Classes for more information on codec error handling.

The full details for each codec can also be looked up directly:

codecs.lookup(encoding)

Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined below.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no CodecInfo object is found, a LookupError is raised. Otherwise, the CodecInfo object is
stored in the cache and returned to the caller.

class codecs.CodecInfo(encode, decode, streamreader=None, streamwriter=None, incrementalencoder=None,
incrementaldecoder=None, name=None)

Codec details when looking up the codec registry. The constructor arguments are stored in attributes of the
same name:

name

The name of the encoding.

encode

decode

The stateless encoding and decoding functions. These must be functions or methods which have the
same interface as the encode() and decode()methods of Codec instances (see Codec Interface). The
functions or methods are expected to work in a stateless mode.

incrementalencoder

incrementaldecoder

Incremental encoder and decoder classes or factory functions. These have to provide the interface de-
fined by the base classes IncrementalEncoder and IncrementalDecoder, respectively. Incremen-
tal codecs can maintain state.

streamwriter

streamreader

Stream writer and reader classes or factory functions. These have to provide the interface defined by the
base classes StreamWriter and StreamReader, respectively. Stream codecs can maintain state.

To simplify access to the various codec components, the module provides these additional functions which use
lookup() for the codec lookup:

codecs.getencoder(encoding)

Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getdecoder(encoding)

Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getincrementalencoder(encoding)

Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder.

7.2. codecs— Codec registry and base classes 187

The Python Library Reference, Release 3.13.1

codecs.getincrementaldecoder(encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder.

codecs.getreader(encoding)
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.getwriter(encoding)
Look up the codec for the given encoding and return its StreamWriter class or factory function.

Raises a LookupError in case the encoding cannot be found.

Custom codecs are made available by registering a suitable codec search function:

codecs.register(search_function)
Register a codec search function. Search functions are expected to take one argument, being the encoding
name in all lower case letters with hyphens and spaces converted to underscores, and return a CodecInfo
object. In case a search function cannot find a given encoding, it should return None.

Changed in version 3.9: Hyphens and spaces are converted to underscore.

codecs.unregister(search_function)
Unregister a codec search function and clear the registry’s cache. If the search function is not registered, do
nothing.

Added in version 3.10.

While the builtin open() and the associated io module are the recommended approach for working with encoded
text files, this module provides additional utility functions and classes that allow the use of a wider range of codecs
when working with binary files:

codecs.open(filename, mode=’r’, encoding=None, errors=’strict’, buffering=-1)
Open an encoded file using the given mode and return an instance of StreamReaderWriter, providing
transparent encoding/decoding. The default file mode is 'r', meaning to open the file in read mode.

Note

If encoding is not None, then the underlying encoded files are always opened in binary mode. No automatic
conversion of '\n' is done on reading andwriting. Themode argumentmay be any binarymode acceptable
to the built-in open() function; the 'b' is automatically added.

encoding specifies the encoding which is to be used for the file. Any encoding that encodes to and decodes
from bytes is allowed, and the data types supported by the file methods depend on the codec used.

errors may be given to define the error handling. It defaults to 'strict' which causes a ValueError to be
raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open() function. It defaults to -1 which means that the
default buffer size will be used.

Changed in version 3.11: The 'U' mode has been removed.

codecs.EncodedFile(file, data_encoding, file_encoding=None, errors=’strict’)
Return a StreamRecoder instance, a wrapped version of file which provides transparent transcoding. The
original file is closed when the wrapped version is closed.

Data written to the wrapped file is decoded according to the given data_encoding and thenwritten to the original
file as bytes using file_encoding. Bytes read from the original file are decoded according to file_encoding, and
the result is encoded using data_encoding.

If file_encoding is not given, it defaults to data_encoding.

188 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.13.1

errors may be given to define the error handling. It defaults to 'strict', which causes ValueError to be
raised in case an encoding error occurs.

codecs.iterencode(iterator, encoding, errors=’strict’, **kwargs)
Uses an incremental encoder to iteratively encode the input provided by iterator. This function is a generator.
The errors argument (as well as any other keyword argument) is passed through to the incremental encoder.

This function requires that the codec accept text str objects to encode. Therefore it does not support bytes-
to-bytes encoders such as base64_codec.

codecs.iterdecode(iterator, encoding, errors=’strict’, **kwargs)

Uses an incremental decoder to iteratively decode the input provided by iterator. This function is a generator.
The errors argument (as well as any other keyword argument) is passed through to the incremental decoder.

This function requires that the codec accept bytes objects to decode. Therefore it does not support text-to-text
encoders such as rot_13, although rot_13 may be used equivalently with iterencode().

The module also provides the following constants which are useful for reading and writing to platform dependent
files:

codecs.BOM

codecs.BOM_BE

codecs.BOM_LE

codecs.BOM_UTF8

codecs.BOM_UTF16

codecs.BOM_UTF16_BE

codecs.BOM_UTF16_LE

codecs.BOM_UTF32

codecs.BOM_UTF32_BE

codecs.BOM_UTF32_LE

These constants define various byte sequences, being Unicode byte order marks (BOMs) for several encodings.
They are used in UTF-16 and UTF-32 data streams to indicate the byte order used, and in UTF-8 as a Unicode
signature. BOM_UTF16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the platform’s native byte
order, BOM is an alias for BOM_UTF16, BOM_LE for BOM_UTF16_LE and BOM_BE for BOM_UTF16_BE. The
others represent the BOM in UTF-8 and UTF-32 encodings.

7.2.1 Codec Base Classes

The codecsmodule defines a set of base classes which define the interfaces for working with codec objects, and can
also be used as the basis for custom codec implementations.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols. Codec authors also need to define how the codec will handle encoding and decoding
errors.

Error Handlers

To simplify and standardize error handling, codecs may implement different error handling schemes by accepting the
errors string argument:

>>> 'German ß, ♬'.encode(encoding='ascii', errors='backslashreplace')

b'German \\xdf, \\u266c'

>>> 'German ß, ♬'.encode(encoding='ascii', errors='xmlcharrefreplace')

b'German ß, ♬'

The following error handlers can be used with all Python Standard Encodings codecs:

7.2. codecs— Codec registry and base classes 189

The Python Library Reference, Release 3.13.1

Value Meaning

'strict' Raise UnicodeError (or a subclass), this is the default. Implemented in
strict_errors().

'ignore' Ignore the malformed data and continue without further notice. Implemented in
ignore_errors().

'replace' Replace with a replacement marker. On encoding, use ? (ASCII character). On
decoding, use � (U+FFFD, the official REPLACEMENT CHARACTER).
Implemented in replace_errors().

'backslashreplace' Replace with backslashed escape sequences. On encoding, use hexadecimal form of
Unicode code point with formats \xhh \uxxxx \Uxxxxxxxx. On decoding, use
hexadecimal form of byte value with format \xhh. Implemented in
backslashreplace_errors().

'surrogateescape' On decoding, replace byte with individual surrogate code ranging from U+DC80 to
U+DCFF. This code will then be turned back into the same byte when the
'surrogateescape' error handler is used when encoding the data. (See PEP
383 for more.)

The following error handlers are only applicable to encoding (within text encodings):

Value Meaning

'xmlcharrefreplace'Replace with XML/HTML numeric character reference, which is a decimal form of Unicode
code point with format &#num;. Implemented in xmlcharrefreplace_errors().

'namereplace'Replace with \N{...} escape sequences, what appears in the braces is the Name property from
Unicode Character Database. Implemented in namereplace_errors().

In addition, the following error handler is specific to the given codecs:

Value Codecs Meaning

'surrogatepass'utf-8, utf-16, utf-32, utf-
16-be, utf-16-le, utf-32-
be, utf-32-le

Allow encoding and decoding surrogate code point (U+D800 - U+DFFF) as
normal code point. Otherwise these codecs treat the presence of surrogate
code point in str as an error.

Added in version 3.1: The 'surrogateescape' and 'surrogatepass' error handlers.

Changed in version 3.4: The 'surrogatepass' error handler now works with utf-16* and utf-32* codecs.

Added in version 3.5: The 'namereplace' error handler.

Changed in version 3.5: The 'backslashreplace' error handler now works with decoding and translating.

The set of allowed values can be extended by registering a new named error handler:

codecs.register_error(name, error_handler)
Register the error handling function error_handler under the name name. The error_handler argument will be
called during encoding and decoding in case of an error, when name is specified as the errors parameter.

For encoding, error_handler will be called with a UnicodeEncodeError instance, which contains informa-
tion about the location of the error. The error handler must either raise this or a different exception, or return
a tuple with a replacement for the unencodable part of the input and a position where encoding should con-
tinue. The replacement may be either str or bytes. If the replacement is bytes, the encoder will simply copy
them into the output buffer. If the replacement is a string, the encoder will encode the replacement. Encoding
continues on original input at the specified position. Negative position values will be treated as being relative
to the end of the input string. If the resulting position is out of bound an IndexError will be raised.

Decoding and translating works similarly, except UnicodeDecodeError or UnicodeTranslateErrorwill
be passed to the handler and that the replacement from the error handler will be put into the output directly.

190 Chapter 7. Binary Data Services

https://peps.python.org/pep-0383/
https://peps.python.org/pep-0383/

The Python Library Reference, Release 3.13.1

Previously registered error handlers (including the standard error handlers) can be looked up by name:

codecs.lookup_error(name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.

The following standard error handlers are also made available as module level functions:

codecs.strict_errors(exception)
Implements the 'strict' error handling.

Each encoding or decoding error raises a UnicodeError.

codecs.ignore_errors(exception)
Implements the 'ignore' error handling.

Malformed data is ignored; encoding or decoding is continued without further notice.

codecs.replace_errors(exception)
Implements the 'replace' error handling.

Substitutes ? (ASCII character) for encoding errors or � (U+FFFD, the official REPLACEMENT CHAR-
ACTER) for decoding errors.

codecs.backslashreplace_errors(exception)
Implements the 'backslashreplace' error handling.

Malformed data is replaced by a backslashed escape sequence. On encoding, use the hexadecimal form of
Unicode code point with formats \xhh \uxxxx \Uxxxxxxxx. On decoding, use the hexadecimal form of
byte value with format \xhh.

Changed in version 3.5: Works with decoding and translating.

codecs.xmlcharrefreplace_errors(exception)
Implements the 'xmlcharrefreplace' error handling (for encoding within text encoding only).

The unencodable character is replaced by an appropriate XML/HTML numeric character reference, which is
a decimal form of Unicode code point with format &#num; .

codecs.namereplace_errors(exception)
Implements the 'namereplace' error handling (for encoding within text encoding only).

The unencodable character is replaced by a \N{...} escape sequence. The set of characters that appear in
the braces is the Name property from Unicode Character Database. For example, the German lowercase letter
'ß' will be converted to byte sequence \N{LATIN SMALL LETTER SHARP S} .

Added in version 3.5.

Stateless Encoding and Decoding

The base Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

class codecs.Codec

encode(input, errors=’strict’)
Encodes the object input and returns a tuple (output object, length consumed). For instance, text encoding
converts a string object to a bytes object using a particular character set encoding (e.g., cp1252 or
iso-8859-1).

The errors argument defines the error handling to apply. It defaults to 'strict' handling.

The method may not store state in the Codec instance. Use StreamWriter for codecs which have to
keep state in order to make encoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object
type in this situation.

7.2. codecs— Codec registry and base classes 191

The Python Library Reference, Release 3.13.1

decode(input, errors=’strict’)
Decodes the object input and returns a tuple (output object, length consumed). For instance, for a text
encoding, decoding converts a bytes object encoded using a particular character set encoding to a string
object.

For text encodings and bytes-to-bytes codecs, input must be a bytes object or one which provides the
read-only buffer interface – for example, buffer objects and memory mapped files.

The errors argument defines the error handling to apply. It defaults to 'strict' handling.

The method may not store state in the Codec instance. Use StreamReader for codecs which have to
keep state in order to make decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object
type in this situation.

Incremental Encoding and Decoding

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental en-
coding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder function,
but with multiple calls to the encode()/decode() method of the incremental encoder/decoder. The incremental
encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode()/decode() method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

The IncrementalEncoder class is used for encoding an input in multiple steps. It defines the following methods
which every incremental encoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalEncoder(errors=’strict’)
Constructor for an IncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncodermay implement different error handling schemes by providing the errors keyword
argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the IncrementalEncoder
object.

encode(object, final=False)
Encodes object (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call to encode() final must be true (the default is false).

reset()

Reset the encoder to the initial state. The output is discarded: call .encode(object, final=True),
passing an empty byte or text string if necessary, to reset the encoder and to get the output.

getstate()

Return the current state of the encoder which must be an integer. The implementation should make sure
that 0 is the most common state. (States that are more complicated than integers can be converted into
an integer by marshaling/pickling the state and encoding the bytes of the resulting string into an integer.)

setstate(state)
Set the state of the encoder to state. state must be an encoder state returned by getstate().

192 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.13.1

IncrementalDecoder Objects

The IncrementalDecoder class is used for decoding an input in multiple steps. It defines the following methods
which every incremental decoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalDecoder(errors=’strict’)
Constructor for an IncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecodermay implement different error handling schemes by providing the errors keyword
argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the IncrementalDecoder
object.

decode(object, final=False)
Decodes object (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call to decode() final must be true (the default is false). If final is true the
decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g. because of
incomplete byte sequences at the end of the input) it must initiate error handling just like in the stateless
case (which might raise an exception).

reset()

Reset the decoder to the initial state.

getstate()

Return the current state of the decoder. This must be a tuple with two items, the first must be the
buffer containing the still undecoded input. The second must be an integer and can be additional state
info. (The implementation should make sure that 0 is the most common additional state info.) If this
additional state info is 0 it must be possible to set the decoder to the state which has no input buffered
and 0 as the additional state info, so that feeding the previously buffered input to the decoder returns it
to the previous state without producing any output. (Additional state info that is more complicated than
integers can be converted into an integer by marshaling/pickling the info and encoding the bytes of the
resulting string into an integer.)

setstate(state)
Set the state of the decoder to state. state must be a decoder state returned by getstate().

Stream Encoding and Decoding

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to implement
new encoding submodules very easily. See encodings.utf_8 for an example of how this is done.

StreamWriter Objects

The StreamWriter class is a subclass of Codec and defines the following methods which every stream writer must
define in order to be compatible with the Python codec registry.

class codecs.StreamWriter(stream, errors=’strict’)
Constructor for a StreamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for writing text or binary data, as appropriate for the
specific codec.

The StreamWriter may implement different error handling schemes by providing the errors keyword argu-
ment. See Error Handlers for the standard error handlers the underlying stream codec may support.

7.2. codecs— Codec registry and base classes 193

The Python Library Reference, Release 3.13.1

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the StreamWriter object.

write(object)
Writes the object’s contents encoded to the stream.

writelines(list)
Writes the concatenated iterable of strings to the stream (possibly by reusing the write() method).
Infinite or very large iterables are not supported. The standard bytes-to-bytes codecs do not support this
method.

reset()

Resets the codec buffers used for keeping internal state.

Calling this method should ensure that the data on the output is put into a clean state that allows appending
of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the StreamWriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects

The StreamReader class is a subclass of Codec and defines the following methods which every stream reader must
define in order to be compatible with the Python codec registry.

class codecs.StreamReader(stream, errors=’strict’)
Constructor for a StreamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for reading text or binary data, as appropriate for the
specific codec.

The StreamReader may implement different error handling schemes by providing the errors keyword argu-
ment. See Error Handlers for the standard error handlers the underlying stream codec may support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the StreamReader object.

The set of allowed values for the errors argument can be extended with register_error().

read(size=-1, chars=-1, firstline=False)
Decodes data from the stream and returns the resulting object.

The chars argument indicates the number of decoded code points or bytes to return. The read()method
will never return more data than requested, but it might return less, if there is not enough available.

The size argument indicates the approximate maximum number of encoded bytes or code points to read
for decoding. The decoder can modify this setting as appropriate. The default value -1 indicates to read
and decode as much as possible. This parameter is intended to prevent having to decode huge files in one
step.

The firstline flag indicates that it would be sufficient to only return the first line, if there are decoding
errors on later lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed
within the definition of the encoding and the given size, e.g. if optional encoding endings or state markers
are available on the stream, these should be read too.

readline(size=None, keepends=True)
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s read() method.

194 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.13.1

If keepends is false line-endings will be stripped from the lines returned.

readlines(sizehint=None, keepends=True)
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decode() method and are included in the list entries
if keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read() method.

reset()

Resets the codec buffers used for keeping internal state.

Note that no stream repositioning should take place. This method is primarily intended to be able to
recover from decoding errors.

In addition to the above methods, the StreamReader must also inherit all other methods and attributes from the
underlying stream.

StreamReaderWriter Objects

The StreamReaderWriter is a convenience class that allows wrapping streams which work in both read and write
modes.

The design is such that one can use the factory functions returned by the lookup() function to construct the instance.

class codecs.StreamReaderWriter(stream, Reader,Writer, errors=’strict’)
Creates a StreamReaderWriter instance. stream must be a file-like object. Reader and Writer must be
factory functions or classes providing the StreamReader and StreamWriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of StreamReader and StreamWriter classes.
They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The StreamRecoder translates data from one encoding to another, which is sometimes useful when dealing with
different encoding environments.

The design is such that one can use the factory functions returned by the lookup() function to construct the instance.

class codecs.StreamRecoder(stream, encode, decode, Reader,Writer, errors=’strict’)
Creates a StreamRecoder instance which implements a two-way conversion: encode and decode work on
the frontend — the data visible to code calling read() and write(), while Reader and Writer work on the
backend — the data in stream.

You can use these objects to do transparent transcodings, e.g., from Latin-1 to UTF-8 and back.

The stream argument must be a file-like object.

The encode and decode arguments must adhere to the Codec interface. Reader and Writer must be factory
functions or classes providing objects of the StreamReader and StreamWriter interface respectively.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of StreamReader and StreamWriter classes. They
inherit all other methods and attributes from the underlying stream.

7.2.2 Encodings and Unicode

Strings are stored internally as sequences of code points in range U+0000–U+10FFFF. (See PEP 393 for more details
about the implementation.) Once a string object is used outside of CPU andmemory, endianness and how these arrays
are stored as bytes become an issue. As with other codecs, serialising a string into a sequence of bytes is known as

7.2. codecs— Codec registry and base classes 195

https://peps.python.org/pep-0393/

The Python Library Reference, Release 3.13.1

encoding, and recreating the string from the sequence of bytes is known as decoding. There are a variety of different
text serialisation codecs, which are collectivity referred to as text encodings.

The simplest text encoding (called 'latin-1' or 'iso-8859-1') maps the code points 0–255 to the bytes 0x0–
0xff, which means that a string object that contains code points above U+00FF can’t be encoded with this codec.
Doing so will raise a UnicodeEncodeError that looks like the following (although the details of the error mes-
sage may differ): UnicodeEncodeError: 'latin-1' codec can't encode character '\u1234' in

position 3: ordinal not in range(256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all Unicode
code points and how these code points are mapped to the bytes 0x0–0xff. To see how this is done simply open e.g.
encodings/cp1252.py (which is an encoding that is used primarily on Windows). There’s a string constant with
256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 1114112 code points defined in Unicode. A simple and straight-
forward way that can store each Unicode code point, is to store each code point as four consecutive bytes. There are
two possibilities: store the bytes in big endian or in little endian order. These two encodings are called UTF-32-BE
and UTF-32-LE respectively. Their disadvantage is that if e.g. you use UTF-32-BE on a little endian machine you
will always have to swap bytes on encoding and decoding. UTF-32 avoids this problem: bytes will always be in
natural endianness. When these bytes are read by a CPU with a different endianness, then bytes have to be swapped
though. To be able to detect the endianness of a UTF-16 or UTF-32 byte sequence, there’s the so called BOM
(“Byte Order Mark”). This is the Unicode character U+FEFF. This character can be prepended to every UTF-16 or
UTF-32 byte sequence. The byte swapped version of this character (0xFFFE) is an illegal character that may not
appear in a Unicode text. So when the first character in a UTF-16 or UTF-32 byte sequence appears to be a U+FFFE
the bytes have to be swapped on decoding. Unfortunately the character U+FEFF had a second purpose as a ZERO
WIDTH NO-BREAK SPACE: a character that has no width and doesn’t allow a word to be split. It can e.g. be used to
give hints to a ligature algorithm. With Unicode 4.0 using U+FEFF as a ZERO WIDTH NO-BREAK SPACE has been
deprecated (with U+2060 (WORD JOINER) assuming this role). Nevertheless Unicode software still must be able
to handle U+FEFF in both roles: as a BOM it’s a device to determine the storage layout of the encoded bytes, and
vanishes once the byte sequence has been decoded into a string; as a ZERO WIDTH NO-BREAK SPACE it’s a normal
character that will be decoded like any other.

There’s another encoding that is able to encode the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists
of two parts: marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to
four 1 bits followed by a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when
concatenated give the Unicode character):

Range Encoding

U-00000000… U-0000007F 0xxxxxxx
U-00000080… U-000007FF 110xxxxx 10xxxxxx
U-00000800… U-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
U-00010000… U-0010FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded string (even if it’s the
first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a string.
Each charmap encoding can decode any random byte sequence. However that’s not possible with UTF-8, as UTF-8
byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the reliability with which a
UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python calls "utf-8-sig") for its
Notepad program: Before any of the Unicode characters is written to the file, a UTF-8 encoded BOM (which looks
like this as a byte sequence: 0xef, 0xbb, 0xbf) is written. As it’s rather improbable that any charmap encoded file
starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

196 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.13.1

in iso-8859-1), this increases the probability that a utf-8-sig encoding can be correctly guessed from the byte
sequence. So here the BOM is not used to be able to determine the byte order used for generating the byte sequence,
but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write 0xef, 0xbb, 0xbf
as the first three bytes to the file. On decoding utf-8-sig will skip those three bytes if they appear as the first three
bytes in the file. In UTF-8, the use of the BOM is discouraged and should generally be avoided.

7.2.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases; therefore,
e.g. 'utf-8' is a valid alias for the 'utf_8' codec.

CPython implementation detail: Some common encodings can bypass the codecs lookup machinery to improve
performance. These optimization opportunities are only recognized by CPython for a limited set of (case insensitive)
aliases: utf-8, utf8, latin-1, latin1, iso-8859-1, iso8859-1, mbcs (Windows only), ascii, us-ascii, utf-16, utf16, utf-
32, utf32, and the same using underscores instead of dashes. Using alternative aliases for these encodings may result
in slower execution.

Changed in version 3.6: Optimization opportunity recognized for us-ascii.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

• an ISO 8859 codeset

• a Microsoft Windows code page, which is typically derived from an 8859 codeset, but replaces control char-
acters with additional graphic characters

• an IBM EBCDIC code page

• an IBM PC code page, which is ASCII compatible

Codec Aliases Languages

ascii 646, us-ascii English
big5 big5-tw, csbig5 Traditional Chinese
big5hkscs big5-hkscs, hkscs Traditional Chinese
cp037 IBM037, IBM039 English
cp273 273, IBM273, csIBM273 German

Added in version 3.4.
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, IBM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP-

CH, IBM500
Western Europe

cp720 Arabic
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBM855 Bulgarian, Byelorussian, Macedo-

nian, Russian, Serbian
cp856 Hebrew
cp857 857, IBM857 Turkish
cp858 858, IBM858 Western Europe
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian

continues on next page

7.2. codecs— Codec registry and base classes 197

The Python Library Reference, Release 3.13.1

Table 1 – continued from previous page

Codec Aliases Languages

cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Norwegian
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji,

windows-31j
Japanese

cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional Chinese
cp1006 Urdu
cp1026 ibm1026 Turkish
cp1125 1125, ibm1125, cp866u, ruscii Ukrainian

Added in version 3.4.
cp1140 ibm1140 Western Europe
cp1250 windows-1250 Central and Eastern Europe
cp1251 windows-1251 Bulgarian, Byelorussian, Macedo-

nian, Russian, Serbian
cp1252 windows-1252 Western Europe
cp1253 windows-1253 Greek
cp1254 windows-1254 Turkish
cp1255 windows-1255 Hebrew
cp1256 windows-1256 Arabic
cp1257 windows-1257 Baltic languages
cp1258 windows-1258 Vietnamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ks_c-

5601, ks_c-5601-1987, ksx1001,
ks_x-1001

Korean

gb2312 chinese, csiso58gb231280, euc-
cn, euccn, eucgb2312-cn, gb2312-
1980, gb2312-80, iso-ir-58

Simplified Chinese

gbk 936, cp936, ms936 Unified Chinese
gb18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gb-2312 Simplified Chinese
iso2022_jp csiso2022jp, iso2022jp, iso-2022-

jp
Japanese

iso2022_jp_1 iso2022jp-1, iso-2022-jp-1 Japanese
iso2022_jp_2 iso2022jp-2, iso-2022-jp-2 Japanese, Korean, Simplified Chi-

nese, Western Europe, Greek
iso2022_jp_2004 iso2022jp-2004, iso-2022-jp-

2004
Japanese

iso2022_jp_3 iso2022jp-3, iso-2022-jp-3 Japanese
iso2022_jp_ext iso2022jp-ext, iso-2022-jp-ext Japanese
iso2022_kr csiso2022kr, iso2022kr, iso-2022-

kr
Korean

latin_1 iso-8859-1, iso8859-1, 8859,
cp819, latin, latin1, L1

Western Europe

iso8859_2 iso-8859-2, latin2, L2 Central and Eastern Europe
iso8859_3 iso-8859-3, latin3, L3 Esperanto, Maltese
iso8859_4 iso-8859-4, latin4, L4 Baltic languages
iso8859_5 iso-8859-5, cyrillic Bulgarian, Byelorussian, Macedo-

nian, Russian, Serbian
continues on next page

198 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.13.1

Table 1 – continued from previous page

Codec Aliases Languages

iso8859_6 iso-8859-6, arabic Arabic
iso8859_7 iso-8859-7, greek, greek8 Greek
iso8859_8 iso-8859-8, hebrew Hebrew
iso8859_9 iso-8859-9, latin5, L5 Turkish
iso8859_10 iso-8859-10, latin6, L6 Nordic languages
iso8859_11 iso-8859-11, thai Thai languages
iso8859_13 iso-8859-13, latin7, L7 Baltic languages
iso8859_14 iso-8859-14, latin8, L8 Celtic languages
iso8859_15 iso-8859-15, latin9, L9 Western Europe
iso8859_16 iso-8859-16, latin10, L10 South-Eastern Europe
johab cp1361, ms1361 Korean
koi8_r Russian
koi8_t Tajik

Added in version 3.5.
koi8_u Ukrainian
kz1048 kz_1048, strk1048_2002, rk1048 Kazakh

Added in version 3.5.
mac_cyrillic maccyrillic Bulgarian, Byelorussian, Macedo-

nian, Russian, Serbian
mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2, maccentraleurope,

mac_centeuro
Central and Eastern Europe

mac_roman macroman, macintosh Western Europe
mac_turkish macturkish Turkish
ptcp154 csptcp154, pt154, cp154, cyrillic-

asian
Kazakh

shift_jis csshiftjis, shiftjis, sjis, s_jis Japanese
shift_jis_2004 shiftjis2004, sjis_2004, sjis2004 Japanese
shift_jisx0213 shiftjisx0213, sjisx0213,

s_jisx0213
Japanese

utf_32 U32, utf32 all languages
utf_32_be UTF-32BE all languages
utf_32_le UTF-32LE all languages
utf_16 U16, utf16 all languages
utf_16_be UTF-16BE all languages
utf_16_le UTF-16LE all languages
utf_7 U7, unicode-1-1-utf-7 all languages
utf_8 U8, UTF, utf8, cp65001 all languages
utf_8_sig all languages

Changed in version 3.4: The utf-16* and utf-32* encoders no longer allow surrogate code points (U+D800–U+DFFF)
to be encoded. The utf-32* decoders no longer decode byte sequences that correspond to surrogate code points.

Changed in version 3.8: cp65001 is now an alias to utf_8.

7.2.4 Python Specific Encodings

A number of predefined codecs are specific to Python, so their codec names have no meaning outside Python. These
are listed in the tables below based on the expected input and output types (note that while text encodings are the
most common use case for codecs, the underlying codec infrastructure supports arbitrary data transforms rather than
just text encodings). For asymmetric codecs, the stated meaning describes the encoding direction.

7.2. codecs— Codec registry and base classes 199

The Python Library Reference, Release 3.13.1

Text Encodings

The following codecs provide str to bytes encoding and bytes-like object to str decoding, similar to the Unicode
text encodings.

Codec Aliases Meaning

idna Implement RFC 3490, see
also encodings.idna. Only
errors='strict' is supported.

mbcs ansi, dbcs Windows only: Encode the
operand according to the ANSI
codepage (CP_ACP).

oem Windows only: Encode the
operand according to the OEM
codepage (CP_OEMCP).
Added in version 3.6.

palmos Encoding of PalmOS 3.5.
punycode Implement RFC 3492. Stateful

codecs are not supported.
raw_unicode_escape Latin-1 encoding with \uXXXX

and \UXXXXXXXX for other code
points. Existing backslashes are
not escaped in any way. It is used
in the Python pickle protocol.

undefined Raise an exception for all conver-
sions, even empty strings. The er-
ror handler is ignored.

unicode_escape Encoding suitable as the contents
of a Unicode literal in ASCII-
encoded Python source code, ex-
cept that quotes are not escaped.
Decode from Latin-1 source code.
Beware that Python source code
actually uses UTF-8 by default.

Changed in version 3.8: “unicode_internal” codec is removed.

Binary Transforms

The following codecs provide binary transforms: bytes-like object to bytes mappings. They are not supported by
bytes.decode() (which only produces str output).

200 Chapter 7. Binary Data Services

https://datatracker.ietf.org/doc/html/rfc3490.html
https://datatracker.ietf.org/doc/html/rfc3492.html

The Python Library Reference, Release 3.13.1

Codec Aliases Meaning Encoder / decoder

base64_codec1 base64,
base_64

Convert the operand to multiline MIME base64 (the
result always includes a trailing '\n').
Changed in version 3.4: accepts any bytes-like object
as input for encoding and decoding

base64.

encodebytes() /
base64.

decodebytes()

bz2_codec bz2 Compress the operand using bz2. bz2.compress()

/ bz2.
decompress()

hex_codec hex Convert the operand to hexadecimal representation,
with two digits per byte.

binascii.

b2a_hex() /
binascii.

a2b_hex()

quopri_codec quopri,
quotedprint-
able,
quoted_printable

Convert the operand to MIME quoted printable. quopri.

encode() with
quotetabs=True

/ quopri.
decode()

uu_codec uu Convert the operand using uuencode.
zlib_codec zip, zlib Compress the operand using gzip. zlib.

compress() /
zlib.

decompress()

Added in version 3.2: Restoration of the binary transforms.

Changed in version 3.4: Restoration of the aliases for the binary transforms.

Text Transforms

The following codec provides a text transform: a str to strmapping. It is not supported by str.encode() (which
only produces bytes output).

Codec Aliases Meaning

rot_13 rot13 Return the Caesar-cypher encryption of the operand.

Added in version 3.2: Restoration of the rot_13 text transform.

Changed in version 3.4: Restoration of the rot13 alias.

7.2.5 encodings.idna— Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode encoding and
stringprep.

If you need the IDNA 2008 standard from RFC 5891 and RFC 5895, use the third-party idna module.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name containing
non-ASCII characters (such as www.Alliancefrançaise.nu) is converted into an ASCII-compatible encoding
(ACE, such as www.xn--alliancefranaise-npb.nu). The ACE form of the domain name is then used in all
places where arbitrary characters are not allowed by the protocol, such as DNS queries, HTTP Host fields, and so on.
This conversion is carried out in the application; if possible invisible to the user: The application should transparently
convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before presenting
them to the user.

1 In addition to bytes-like objects, 'base64_codec' also accepts ASCII-only instances of str for decoding

7.2. codecs— Codec registry and base classes 201

https://datatracker.ietf.org/doc/html/rfc3490.html
https://datatracker.ietf.org/doc/html/rfc3492.html
https://datatracker.ietf.org/doc/html/rfc5891.html
https://datatracker.ietf.org/doc/html/rfc5895.html
https://pypi.org/project/idna/

The Python Library Reference, Release 3.13.1

Python supports this conversion in several ways: the idna codec performs conversion between Unicode and ACE,
separating an input string into labels based on the separator characters defined in section 3.1 of RFC 3490 and
converting each label to ACE as required, and conversely separating an input byte string into labels based on the .
separator and converting any ACE labels found into unicode. Furthermore, the socket module transparently con-
verts Unicode host names to ACE, so that applications need not be concerned about converting host names themselves
when they pass them to the socket module. On top of that, modules that have host names as function parameters,
such as http.client and ftplib, accept Unicode host names (http.client then also transparently sends an
IDNA hostname in the Host field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: applications wishing to present such host names to the user should decode them to Unicode.

The module encodings.idna also implements the nameprep procedure, which performs certain normalizations
on host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The
nameprep functions can be used directly if desired.

encodings.idna.nameprep(label)

Return the nameprepped version of label. The implementation currently assumes query strings, so
AllowUnassigned is true.

encodings.idna.ToASCII(label)

Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode(label)
Convert a label to Unicode, as specified in RFC 3490.

7.2.6 encodings.mbcs—Windows ANSI codepage

This module implements the ANSI codepage (CP_ACP).

Availability: Windows.

Changed in version 3.2: Before 3.2, the errors argument was ignored; 'replace' was always used to encode, and
'ignore' to decode.

Changed in version 3.3: Support any error handler.

7.2.7 encodings.utf_8_sig— UTF-8 codec with BOM signature

This module implements a variant of the UTF-8 codec. On encoding, a UTF-8 encoded BOM will be prepended to
the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte stream). On
decoding, an optional UTF-8 encoded BOM at the start of the data will be skipped.

202 Chapter 7. Binary Data Services

https://datatracker.ietf.org/doc/html/rfc3490.html#section-3.1
https://datatracker.ietf.org/doc/html/rfc3490.html
https://datatracker.ietf.org/doc/html/rfc3490.html

CHAPTER

EIGHT

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-type
arrays, heap queues, double-ended queues, and enumerations.

Python also provides some built-in data types, in particular, dict, list, set and frozenset, and tuple. The
str class is used to hold Unicode strings, and the bytes and bytearray classes are used to hold binary data.

The following modules are documented in this chapter:

8.1 datetime— Basic date and time types

Source code: Lib/datetime.py

The datetime module supplies classes for manipulating dates and times.

While date and time arithmetic is supported, the focus of the implementation is on efficient attribute extraction for
output formatting and manipulation.

Tip

Skip to the format codes.

See also

Module calendar
General calendar related functions.

Module time
Time access and conversions.

Module zoneinfo
Concrete time zones representing the IANA time zone database.

Package dateutil
Third-party library with expanded time zone and parsing support.

Package DateType
Third-party library that introduces distinct static types to e.g. allow static type checkers to differentiate
between naive and aware datetimes.

8.1.1 Aware and Naive Objects

Date and time objects may be categorized as “aware” or “naive” depending on whether or not they include time zone
information.

203

https://github.com/python/cpython/tree/3.13/Lib/datetime.py
https://dateutil.readthedocs.io/en/stable/
https://pypi.org/project/DateType/

The Python Library Reference, Release 3.13.1

With sufficient knowledge of applicable algorithmic and political time adjustments, such as time zone and daylight
saving time information, an aware object can locate itself relative to other aware objects. An aware object represents
a specific moment in time that is not open to interpretation.1

A naive object does not contain enough information to unambiguously locate itself relative to other date/time objects.
Whether a naive object represents Coordinated Universal Time (UTC), local time, or time in some other time zone
is purely up to the program, just like it is up to the program whether a particular number represents metres, miles, or
mass. Naive objects are easy to understand and to work with, at the cost of ignoring some aspects of reality.

For applications requiring aware objects, datetime and time objects have an optional time zone information at-
tribute, tzinfo, that can be set to an instance of a subclass of the abstract tzinfo class. These tzinfo objects
capture information about the offset from UTC time, the time zone name, and whether daylight saving time is in
effect.

Only one concrete tzinfo class, the timezone class, is supplied by the datetimemodule. The timezone class can
represent simple time zones with fixed offsets from UTC, such as UTC itself or North American EST and EDT time
zones. Supporting time zones at deeper levels of detail is up to the application. The rules for time adjustment across
the world are more political than rational, change frequently, and there is no standard suitable for every application
aside from UTC.

8.1.2 Constants

The datetime module exports the following constants:

datetime.MINYEAR

The smallest year number allowed in a date or datetime object. MINYEAR is 1.

datetime.MAXYEAR

The largest year number allowed in a date or datetime object. MAXYEAR is 9999.

datetime.UTC

Alias for the UTC time zone singleton datetime.timezone.utc.

Added in version 3.11.

8.1.3 Available Types

class datetime.date

An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes: year, month, and day.

class datetime.time

An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds.
(There is no notion of “leap seconds” here.) Attributes: hour, minute, second, microsecond, and tzinfo.

class datetime.datetime

A combination of a date and a time. Attributes: year, month, day, hour, minute, second, microsecond,
and tzinfo.

class datetime.timedelta

A duration expressing the difference between two datetime or date instances to microsecond resolution.

class datetime.tzinfo

An abstract base class for time zone information objects. These are used by the datetime and time classes
to provide a customizable notion of time adjustment (for example, to account for time zone and/or daylight
saving time).

class datetime.timezone

A class that implements the tzinfo abstract base class as a fixed offset from the UTC.

Added in version 3.2.
1 If, that is, we ignore the effects of Relativity

204 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

Objects of these types are immutable.

Subclass relationships:

object

timedelta

tzinfo

timezone

time

date

datetime

Common Properties

The date, datetime, time, and timezone types share these common features:

• Objects of these types are immutable.

• Objects of these types are hashable, meaning that they can be used as dictionary keys.

• Objects of these types support efficient pickling via the pickle module.

Determining if an Object is Aware or Naive

Objects of the date type are always naive.

An object of type time or datetime may be aware or naive.

A datetime object d is aware if both of the following hold:

1. d.tzinfo is not None

2. d.tzinfo.utcoffset(d) does not return None

Otherwise, d is naive.

A time object t is aware if both of the following hold:

1. t.tzinfo is not None

2. t.tzinfo.utcoffset(None) does not return None.

Otherwise, t is naive.

The distinction between aware and naive doesn’t apply to timedelta objects.

8.1.4 timedelta Objects

A timedelta object represents a duration, the difference between two datetime or date instances.

class datetime.timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0,
weeks=0)

All arguments are optional and default to 0. Arguments may be integers or floats, and may be positive or
negative.

Only days, seconds and microseconds are stored internally. Arguments are converted to those units:

• A millisecond is converted to 1000 microseconds.

• A minute is converted to 60 seconds.

• An hour is converted to 3600 seconds.

• A week is converted to 7 days.

and days, seconds and microseconds are then normalized so that the representation is unique, with

• 0 <= microseconds < 1000000

8.1. datetime— Basic date and time types 205

The Python Library Reference, Release 3.13.1

• 0 <= seconds < 3600*24 (the number of seconds in one day)

• -999999999 <= days <= 999999999

The following example illustrates how any arguments besides days, seconds and microseconds are “merged”
and normalized into those three resulting attributes:

>>> from datetime import timedelta

>>> delta = timedelta(

... days=50,

... seconds=27,

... microseconds=10,

... milliseconds=29000,

... minutes=5,

... hours=8,

... weeks=2

...)

>>> # Only days, seconds, and microseconds remain

>>> delta

datetime.timedelta(days=64, seconds=29156, microseconds=10)

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from
all arguments are combined and their sum is rounded to the nearest microsecond using round-half-to-even
tiebreaker. If no argument is a float, the conversion and normalization processes are exact (no information is
lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.

Note that normalization of negative values may be surprising at first. For example:

>>> from datetime import timedelta

>>> d = timedelta(microseconds=-1)

>>> (d.days, d.seconds, d.microseconds)

(-1, 86399, 999999)

Class attributes:

timedelta.min

The most negative timedelta object, timedelta(-999999999).

timedelta.max

The most positive timedelta object, timedelta(days=999999999, hours=23, minutes=59,

seconds=59, microseconds=999999).

timedelta.resolution

The smallest possible difference between non-equal timedelta objects, timedelta(microseconds=1).

Note that, because of normalization, timedelta.max is greater than -timedelta.min. -timedelta.max is not
representable as a timedelta object.

Instance attributes (read-only):

timedelta.days

Between -999,999,999 and 999,999,999 inclusive.

timedelta.seconds

Between 0 and 86,399 inclusive.

Caution

It is a somewhat common bug for code to unintentionally use this attribute when it is actually intended to
get a total_seconds() value instead:

206 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

>>> from datetime import timedelta

>>> duration = timedelta(seconds=11235813)

>>> duration.days, duration.seconds

(130, 3813)

>>> duration.total_seconds()

11235813.0

timedelta.microseconds

Between 0 and 999,999 inclusive.

Supported operations:

Operation Result

t1 = t2 + t3 Sum of t2 and t3. Afterwards t1 - t2 == t3 and t1 - t3 == t2 are true. (1)
t1 = t2 - t3 Difference of t2 and t3. Afterwards t1 == t2 - t3 and t2 == t1 + t3 are

true. (1)(6)
t1 = t2 * i or t1

= i * t2

Delta multiplied by an integer. Afterwards t1 // i == t2 is true, provided i !=

0.
In general, t1 * i == t1 * (i-1) + t1 is true. (1)

t1 = t2 * f or t1

= f * t2

Delta multiplied by a float. The result is rounded to the nearest multiple of
timedelta.resolution using round-half-to-even.

f = t2 / t3 Division (3) of overall duration t2 by interval unit t3. Returns a float object.
t1 = t2 / f or t1

= t2 / i

Delta divided by a float or an int. The result is rounded to the nearest multiple of
timedelta.resolution using round-half-to-even.

t1 = t2 // i or t1

= t2 // t3

The floor is computed and the remainder (if any) is thrown away. In the second case,
an integer is returned. (3)

t1 = t2 % t3 The remainder is computed as a timedelta object. (3)
q, r = divmod(t1,

t2)

Computes the quotient and the remainder: q = t1 // t2 (3) and r = t1 % t2.
q is an integer and r is a timedelta object.

+t1 Returns a timedelta object with the same value. (2)
-t1 Equivalent to timedelta(-t1.days, -t1.seconds, -t1.microseconds),

and to t1 * -1. (1)(4)
abs(t) Equivalent to +t when t.days >= 0, and to -t when t.days < 0. (2)
str(t) Returns a string in the form [D day[s],][H]H:MM:SS[.UUUUUU], where D is

negative for negative t. (5)
repr(t) Returns a string representation of the timedelta object as a constructor call with

canonical attribute values.

Notes:

(1) This is exact but may overflow.

(2) This is exact and cannot overflow.

(3) Division by zero raises ZeroDivisionError.

(4) -timedelta.max is not representable as a timedelta object.

(5) String representations of timedelta objects are normalized similarly to their internal representation. This
leads to somewhat unusual results for negative timedeltas. For example:

>>> timedelta(hours=-5)

datetime.timedelta(days=-1, seconds=68400)

>>> print(_)

-1 day, 19:00:00

(6) The expression t2 - t3 will always be equal to the expression t2 + (-t3) except when t3 is equal to
timedelta.max; in that case the former will produce a result while the latter will overflow.

8.1. datetime— Basic date and time types 207

The Python Library Reference, Release 3.13.1

In addition to the operations listed above, timedelta objects support certain additions and subtractions with date
and datetime objects (see below).

Changed in version 3.2: Floor division and true division of a timedelta object by another timedelta object
are now supported, as are remainder operations and the divmod() function. True division and multiplication of a
timedelta object by a float object are now supported.

timedelta objects support equality and order comparisons.

In Boolean contexts, a timedelta object is considered to be true if and only if it isn’t equal to timedelta(0).

Instance methods:

timedelta.total_seconds()

Return the total number of seconds contained in the duration. Equivalent to td /

timedelta(seconds=1). For interval units other than seconds, use the division form directly (e.g.
td / timedelta(microseconds=1)).

Note that for very large time intervals (greater than 270 years on most platforms) this method will lose mi-
crosecond accuracy.

Added in version 3.2.

Examples of usage: timedelta

An additional example of normalization:

>>> # Components of another_year add up to exactly 365 days

>>> from datetime import timedelta

>>> year = timedelta(days=365)

>>> another_year = timedelta(weeks=40, days=84, hours=23,

... minutes=50, seconds=600)

>>> year == another_year

True

>>> year.total_seconds()

31536000.0

Examples of timedelta arithmetic:

>>> from datetime import timedelta

>>> year = timedelta(days=365)

>>> ten_years = 10 * year

>>> ten_years

datetime.timedelta(days=3650)

>>> ten_years.days // 365

10

>>> nine_years = ten_years - year

>>> nine_years

datetime.timedelta(days=3285)

>>> three_years = nine_years // 3

>>> three_years, three_years.days // 365

(datetime.timedelta(days=1095), 3)

8.1.5 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions.

January 1 of year 1 is called day number 1, January 2 of year 1 is called day number 2, and so on.2

2 This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and Reingold’s book Calendrical Calculations, where it’s the
base calendar for all computations. See the book for algorithms for converting between proleptic Gregorian ordinals and many other calendar
systems.

208 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

class datetime.date(year, month, day)
All arguments are required. Arguments must be integers, in the following ranges:

• MINYEAR <= year <= MAXYEAR

• 1 <= month <= 12

• 1 <= day <= number of days in the given month and year

If an argument outside those ranges is given, ValueError is raised.

Other constructors, all class methods:

classmethod date.today()

Return the current local date.

This is equivalent to date.fromtimestamp(time.time()).

classmethod date.fromtimestamp(timestamp)

Return the local date corresponding to the POSIX timestamp, such as is returned by time.time().

This may raise OverflowError, if the timestamp is out of the range of values supported by the platform
C localtime() function, and OSError on localtime() failure. It’s common for this to be restricted to
years from 1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion of
a timestamp, leap seconds are ignored by fromtimestamp().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the range
of values supported by the platform C localtime() function. Raise OSError instead of ValueError on
localtime() failure.

classmethod date.fromordinal(ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1.

ValueError is raised unless 1 <= ordinal <= date.max.toordinal(). For any date d, date.
fromordinal(d.toordinal()) == d.

classmethod date.fromisoformat(date_string)
Return a date corresponding to a date_string given in any valid ISO 8601 format, with the following exceptions:

1. Reduced precision dates are not currently supported (YYYY-MM, YYYY).

2. Extended date representations are not currently supported (±YYYYYY-MM-DD).

3. Ordinal dates are not currently supported (YYYY-OOO).

Examples:

>>> from datetime import date

>>> date.fromisoformat('2019-12-04')

datetime.date(2019, 12, 4)

>>> date.fromisoformat('20191204')

datetime.date(2019, 12, 4)

>>> date.fromisoformat('2021-W01-1')

datetime.date(2021, 1, 4)

Added in version 3.7.

Changed in version 3.11: Previously, this method only supported the format YYYY-MM-DD.

classmethod date.fromisocalendar(year, week, day)
Return a date corresponding to the ISO calendar date specified by year, week and day. This is the inverse of
the function date.isocalendar().

Added in version 3.8.

Class attributes:

8.1. datetime— Basic date and time types 209

The Python Library Reference, Release 3.13.1

date.min

The earliest representable date, date(MINYEAR, 1, 1).

date.max

The latest representable date, date(MAXYEAR, 12, 31).

date.resolution

The smallest possible difference between non-equal date objects, timedelta(days=1).

Instance attributes (read-only):

date.year

Between MINYEAR and MAXYEAR inclusive.

date.month

Between 1 and 12 inclusive.

date.day

Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result

date2 = date1 + timedelta date2 will be timedelta.days days after date1.
(1)

date2 = date1 - timedelta Computes date2 such that date2 + timedelta ==

date1. (2)
timedelta = date1 - date2 (3)

date1 == date2

date1 != date2

Equality comparison. (4)

date1 < date2

date1 > date2

date1 <= date2

date1 >= date2

Order comparison. (5)

Notes:

(1) date2 is moved forward in time if timedelta.days > 0, or backward if timedelta.days < 0. After-
ward date2 - date1 == timedelta.days. timedelta.seconds and timedelta.microseconds
are ignored. OverflowError is raised if date2.year would be smaller than MINYEAR or larger than
MAXYEAR.

(2) timedelta.seconds and timedelta.microseconds are ignored.

(3) This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and
date2 + timedelta == date1 after.

(4) date objects are equal if they represent the same date.

date objects that are not also datetime instances are never equal to datetime objects, even if they represent
the same date.

(5) date1 is considered less than date2 when date1 precedes date2 in time. In other words, date1 < date2 if
and only if date1.toordinal() < date2.toordinal().

Order comparison between a date object that is not also a datetime instance and a datetime object raises
TypeError.

210 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

Changed in version 3.13: Comparison between datetime object and an instance of the date subclass that is not
a datetime subclass no longer converts the latter to date, ignoring the time part and the time zone. The default
behavior can be changed by overriding the special comparison methods in subclasses.

In Boolean contexts, all date objects are considered to be true.

Instance methods:

date.replace(year=self.year, month=self.month, day=self.day)
Return a date with the same value, except for those parameters given new values by whichever keyword argu-
ments are specified.

Example:

>>> from datetime import date

>>> d = date(2002, 12, 31)

>>> d.replace(day=26)

datetime.date(2002, 12, 26)

date objects are also supported by generic function copy.replace().

date.timetuple()

Return a time.struct_time such as returned by time.localtime().

The hours, minutes and seconds are 0, and the DST flag is -1.

d.timetuple() is equivalent to:

time.struct_time((d.year, d.month, d.day, 0, 0, 0, d.weekday(), yday, -1))

where yday = d.toordinal() - date(d.year, 1, 1).toordinal() + 1 is the day number
within the current year starting with 1 for January 1st.

date.toordinal()

Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any date
object d, date.fromordinal(d.toordinal()) == d.

date.weekday()

Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date(2002,
12, 4).weekday() == 2, a Wednesday. See also isoweekday().

date.isoweekday()

Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date(2002,
12, 4).isoweekday() == 3, a Wednesday. See also weekday(), isocalendar().

date.isocalendar()

Return a named tuple object with three components: year, week and weekday.

The ISO calendar is a widely used variant of the Gregorian calendar.3

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday. The
first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This is called
week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004:

>>> from datetime import date

>>> date(2003, 12, 29).isocalendar()

datetime.IsoCalendarDate(year=2004, week=1, weekday=1)

>>> date(2004, 1, 4).isocalendar()

datetime.IsoCalendarDate(year=2004, week=1, weekday=7)

3 See R. H. van Gent’s guide to the mathematics of the ISO 8601 calendar for a good explanation.

8.1. datetime— Basic date and time types 211

https://web.archive.org/web/20220531051136/https://webspace.science.uu.nl/~gent0113/calendar/isocalendar.htm

The Python Library Reference, Release 3.13.1

Changed in version 3.9: Result changed from a tuple to a named tuple.

date.isoformat()

Return a string representing the date in ISO 8601 format, YYYY-MM-DD:

>>> from datetime import date

>>> date(2002, 12, 4).isoformat()

'2002-12-04'

date.__str__()

For a date d, str(d) is equivalent to d.isoformat().

date.ctime()

Return a string representing the date:

>>> from datetime import date

>>> date(2002, 12, 4).ctime()

'Wed Dec 4 00:00:00 2002'

d.ctime() is equivalent to:

time.ctime(time.mktime(d.timetuple()))

on platforms where the native C ctime() function (which time.ctime() invokes, but which date.

ctime() does not invoke) conforms to the C standard.

date.strftime(format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to hours,
minutes or seconds will see 0 values. See also strftime() and strptime() Behavior and date.isoformat().

date.__format__(format)
Same as date.strftime(). This makes it possible to specify a format string for a date object in format-
ted string literals and when using str.format(). See also strftime() and strptime() Behavior and date.

isoformat().

Examples of Usage: date

Example of counting days to an event:

>>> import time

>>> from datetime import date

>>> today = date.today()

>>> today

datetime.date(2007, 12, 5)

>>> today == date.fromtimestamp(time.time())

True

>>> my_birthday = date(today.year, 6, 24)

>>> if my_birthday < today:

... my_birthday = my_birthday.replace(year=today.year + 1)

...

>>> my_birthday

datetime.date(2008, 6, 24)

>>> time_to_birthday = abs(my_birthday - today)

>>> time_to_birthday.days

202

More examples of working with date:

212 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

>>> from datetime import date

>>> d = date.fromordinal(730920) # 730920th day after 1. 1. 0001

>>> d

datetime.date(2002, 3, 11)

>>> # Methods related to formatting string output

>>> d.isoformat()

'2002-03-11'

>>> d.strftime("%d/%m/%y")

'11/03/02'

>>> d.strftime("%A %d. %B %Y")

'Monday 11. March 2002'

>>> d.ctime()

'Mon Mar 11 00:00:00 2002'

>>> 'The {1} is {0:%d}, the {2} is {0:%B}.'.format(d, "day", "month")

'The day is 11, the month is March.'

>>> # Methods for to extracting 'components' under different calendars

>>> t = d.timetuple()

>>> for i in t:

... print(i)

2002 # year

3 # month

11 # day

0

0

0

0 # weekday (0 = Monday)

70 # 70th day in the year

-1

>>> ic = d.isocalendar()

>>> for i in ic:

... print(i)

2002 # ISO year

11 # ISO week number

1 # ISO day number (1 = Monday)

>>> # A date object is immutable; all operations produce a new object

>>> d.replace(year=2005)

datetime.date(2005, 3, 11)

8.1.6 datetime Objects

A datetime object is a single object containing all the information from a date object and a time object.

Like a date object, datetime assumes the current Gregorian calendar extended in both directions; like a time
object, datetime assumes there are exactly 3600*24 seconds in every day.

Constructor:

class datetime.datetime(year, month, day, hour=0, minute=0, second=0, microsecond=0, tzinfo=None, *,
fold=0)

The year, month and day arguments are required. tzinfo may be None, or an instance of a tzinfo subclass.
The remaining arguments must be integers in the following ranges:

• MINYEAR <= year <= MAXYEAR,

• 1 <= month <= 12,

• 1 <= day <= number of days in the given month and year,

8.1. datetime— Basic date and time types 213

The Python Library Reference, Release 3.13.1

• 0 <= hour < 24,

• 0 <= minute < 60,

• 0 <= second < 60,

• 0 <= microsecond < 1000000,

• fold in [0, 1].

If an argument outside those ranges is given, ValueError is raised.

Changed in version 3.6: Added the fold parameter.

Other constructors, all class methods:

classmethod datetime.today()

Return the current local date and time, with tzinfo None.

Equivalent to:

datetime.fromtimestamp(time.time())

See also now(), fromtimestamp().

This method is functionally equivalent to now(), but without a tz parameter.

classmethod datetime.now(tz=None)
Return the current local date and time.

If optional argument tz is None or not specified, this is like today(), but, if possible, supplies more precision
than can be gotten from going through a time.time() timestamp (for example, this may be possible on
platforms supplying the C gettimeofday() function).

If tz is not None, it must be an instance of a tzinfo subclass, and the current date and time are converted to
tz’s time zone.

This function is preferred over today() and utcnow().

Note

Subsequent calls to datetime.now() may return the same instant depending on the precision of the
underlying clock.

classmethod datetime.utcnow()

Return the current UTC date and time, with tzinfo None.

This is like now(), but returns the current UTC date and time, as a naive datetime object. An aware current
UTC datetime can be obtained by calling datetime.now(timezone.utc). See also now().

Warning

Because naive datetime objects are treated by many datetime methods as local times, it is preferred
to use aware datetimes to represent times in UTC. As such, the recommended way to create an object
representing the current time in UTC is by calling datetime.now(timezone.utc).

Deprecated since version 3.12: Use datetime.now() with UTC instead.

classmethod datetime.fromtimestamp(timestamp, tz=None)
Return the local date and time corresponding to the POSIX timestamp, such as is returned by time.time().
If optional argument tz is None or not specified, the timestamp is converted to the platform’s local date and
time, and the returned datetime object is naive.

If tz is not None, it must be an instance of a tzinfo subclass, and the timestamp is converted to tz’s time zone.

214 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

fromtimestamp() may raise OverflowError, if the timestamp is out of the range of values supported
by the platform C localtime() or gmtime() functions, and OSError on localtime() or gmtime()
failure. It’s common for this to be restricted to years in 1970 through 2038. Note that on non-POSIX systems
that include leap seconds in their notion of a timestamp, leap seconds are ignored by fromtimestamp(), and
then it’s possible to have two timestamps differing by a second that yield identical datetime objects. This
method is preferred over utcfromtimestamp().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the range
of values supported by the platform C localtime() or gmtime() functions. Raise OSError instead of
ValueError on localtime() or gmtime() failure.

Changed in version 3.6: fromtimestamp() may return instances with fold set to 1.

classmethod datetime.utcfromtimestamp(timestamp)
Return the UTC datetime corresponding to the POSIX timestamp, with tzinfo None. (The resulting object
is naive.)

This may raise OverflowError, if the timestamp is out of the range of values supported by the platform C
gmtime() function, and OSError on gmtime() failure. It’s common for this to be restricted to years in 1970
through 2038.

To get an aware datetime object, call fromtimestamp():

datetime.fromtimestamp(timestamp, timezone.utc)

On the POSIX compliant platforms, it is equivalent to the following expression:

datetime(1970, 1, 1, tzinfo=timezone.utc) + timedelta(seconds=timestamp)

except the latter formula always supports the full years range: between MINYEAR and MAXYEAR inclusive.

Warning

Because naive datetime objects are treated by many datetime methods as local times, it is preferred
to use aware datetimes to represent times in UTC. As such, the recommended way to create an ob-
ject representing a specific timestamp in UTC is by calling datetime.fromtimestamp(timestamp,
tz=timezone.utc).

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the range
of values supported by the platform C gmtime() function. Raise OSError instead of ValueError on
gmtime() failure.

Deprecated since version 3.12: Use datetime.fromtimestamp() with UTC instead.

classmethod datetime.fromordinal(ordinal)
Return the datetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal
1. ValueError is raised unless 1 <= ordinal <= datetime.max.toordinal(). The hour, minute,
second and microsecond of the result are all 0, and tzinfo is None.

classmethod datetime.combine(date, time, tzinfo=time.tzinfo)
Return a new datetime object whose date components are equal to the given date object’s, and whose time
components are equal to the given time object’s. If the tzinfo argument is provided, its value is used to set
the tzinfo attribute of the result, otherwise the tzinfo attribute of the time argument is used. If the date
argument is a datetime object, its time components and tzinfo attributes are ignored.

For any datetime object d, d == datetime.combine(d.date(), d.time(), d.tzinfo).

Changed in version 3.6: Added the tzinfo argument.

classmethod datetime.fromisoformat(date_string)
Return a datetime corresponding to a date_string in any valid ISO 8601 format, with the following exceptions:

1. Time zone offsets may have fractional seconds.

8.1. datetime— Basic date and time types 215

The Python Library Reference, Release 3.13.1

2. The T separator may be replaced by any single unicode character.

3. Fractional hours and minutes are not supported.

4. Reduced precision dates are not currently supported (YYYY-MM, YYYY).

5. Extended date representations are not currently supported (±YYYYYY-MM-DD).

6. Ordinal dates are not currently supported (YYYY-OOO).

Examples:

>>> from datetime import datetime

>>> datetime.fromisoformat('2011-11-04')

datetime.datetime(2011, 11, 4, 0, 0)

>>> datetime.fromisoformat('20111104')

datetime.datetime(2011, 11, 4, 0, 0)

>>> datetime.fromisoformat('2011-11-04T00:05:23')

datetime.datetime(2011, 11, 4, 0, 5, 23)

>>> datetime.fromisoformat('2011-11-04T00:05:23Z')

datetime.datetime(2011, 11, 4, 0, 5, 23, tzinfo=datetime.timezone.utc)

>>> datetime.fromisoformat('20111104T000523')

datetime.datetime(2011, 11, 4, 0, 5, 23)

>>> datetime.fromisoformat('2011-W01-2T00:05:23.283')

datetime.datetime(2011, 1, 4, 0, 5, 23, 283000)

>>> datetime.fromisoformat('2011-11-04 00:05:23.283')

datetime.datetime(2011, 11, 4, 0, 5, 23, 283000)

>>> datetime.fromisoformat('2011-11-04 00:05:23.283+00:00')

datetime.datetime(2011, 11, 4, 0, 5, 23, 283000, tzinfo=datetime.timezone.utc)

>>> datetime.fromisoformat('2011-11-04T00:05:23+04:00')

datetime.datetime(2011, 11, 4, 0, 5, 23,

tzinfo=datetime.timezone(datetime.timedelta(seconds=14400)))

Added in version 3.7.

Changed in version 3.11: Previously, this method only supported formats that could be emitted by date.
isoformat() or datetime.isoformat().

classmethod datetime.fromisocalendar(year, week, day)
Return a datetime corresponding to the ISO calendar date specified by year, week and day. The non-date
components of the datetime are populated with their normal default values. This is the inverse of the function
datetime.isocalendar().

Added in version 3.8.

classmethod datetime.strptime(date_string, format)

Return a datetime corresponding to date_string, parsed according to format.

If format does not contain microseconds or time zone information, this is equivalent to:

datetime(*(time.strptime(date_string, format)[0:6]))

ValueError is raised if the date_string and format can’t be parsed by time.strptime() or if it returns a
value which isn’t a time tuple. See also strftime() and strptime() Behavior and datetime.fromisoformat().

Changed in version 3.13: If format specifies a day of month without a year a DeprecationWarning is now
emitted. This is to avoid a quadrennial leap year bug in code seeking to parse only a month and day as the
default year used in absence of one in the format is not a leap year. Such format values may raise an error as
of Python 3.15. The workaround is to always include a year in your format. If parsing date_string values that
do not have a year, explicitly add a year that is a leap year before parsing:

>>> from datetime import datetime

>>> date_string = "02/29"

(continues on next page)

216 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> when = datetime.strptime(f"{date_string};1984", "%m/%d;%Y") # Avoids leap␣

↪→year bug.

>>> when.strftime("%B %d")

'February 29'

Class attributes:

datetime.min

The earliest representable datetime, datetime(MINYEAR, 1, 1, tzinfo=None).

datetime.max

The latest representable datetime, datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999,

tzinfo=None).

datetime.resolution

The smallest possible difference between non-equal datetime objects, timedelta(microseconds=1).

Instance attributes (read-only):

datetime.year

Between MINYEAR and MAXYEAR inclusive.

datetime.month

Between 1 and 12 inclusive.

datetime.day

Between 1 and the number of days in the given month of the given year.

datetime.hour

In range(24).

datetime.minute

In range(60).

datetime.second

In range(60).

datetime.microsecond

In range(1000000).

datetime.tzinfo

The object passed as the tzinfo argument to the datetime constructor, or None if none was passed.

datetime.fold

In [0, 1]. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs when
clocks are rolled back at the end of daylight saving time or when theUTC offset for the current zone is decreased
for political reasons.) The values 0 and 1 represent, respectively, the earlier and later of the two moments with
the same wall time representation.

Added in version 3.6.

Supported operations:

8.1. datetime— Basic date and time types 217

The Python Library Reference, Release 3.13.1

Operation Result

datetime2 = datetime1 + timedelta (1)
datetime2 = datetime1 - timedelta (2)
timedelta = datetime1 - datetime2 (3)

datetime1 == datetime2

datetime1 != datetime2

Equality comparison. (4)

datetime1 < datetime2

datetime1 > datetime2

datetime1 <= datetime2

datetime1 >= datetime2

Order comparison. (5)

(1) datetime2 is a duration of timedelta removed from datetime1, moving forward in time if timedelta.
days > 0, or backward if timedelta.days < 0. The result has the same tzinfo attribute as the
input datetime, and datetime2 - datetime1 == timedelta after. OverflowError is raised if
datetime2.year would be smaller than MINYEAR or larger than MAXYEAR. Note that no time zone ad-
justments are done even if the input is an aware object.

(2) Computes the datetime2 such that datetime2 + timedelta == datetime1. As for addition, the result
has the same tzinfo attribute as the input datetime, and no time zone adjustments are done even if the input
is aware.

(3) Subtraction of a datetime from a datetime is defined only if both operands are naive, or if both are aware.
If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same tzinfo attribute, the tzinfo attributes are ignored, and
the result is a timedelta object t such that datetime2 + t == datetime1. No time zone adjustments
are done in this case.

If both are aware and have different tzinfo attributes, a-b acts as if a and b were first converted
to naive UTC datetimes. The result is (a.replace(tzinfo=None) - a.utcoffset()) - (b.

replace(tzinfo=None) - b.utcoffset()) except that the implementation never overflows.

(4) datetime objects are equal if they represent the same date and time, taking into account the time zone.

Naive and aware datetime objects are never equal.

If both comparands are aware, and have the same tzinfo attribute, the tzinfo and fold attributes are
ignored and the base datetimes are compared. If both comparands are aware and have different tzinfo
attributes, the comparison acts as comparands were first converted to UTC datetimes except that the imple-
mentation never overflows. datetime instances in a repeated interval are never equal to datetime instances
in other time zone.

(5) datetime1 is considered less than datetime2 when datetime1 precedes datetime2 in time, taking into account the
time zone.

Order comparison between naive and aware datetime objects raises TypeError.

If both comparands are aware, and have the same tzinfo attribute, the tzinfo and fold attributes are
ignored and the base datetimes are compared. If both comparands are aware and have different tzinfo
attributes, the comparison acts as comparands were first converted to UTC datetimes except that the imple-
mentation never overflows.

Changed in version 3.3: Equality comparisons between aware and naive datetime instances don’t raise TypeError.

Changed in version 3.13: Comparison between datetime object and an instance of the date subclass that is not
a datetime subclass no longer converts the latter to date, ignoring the time part and the time zone. The default
behavior can be changed by overriding the special comparison methods in subclasses.

218 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

Instance methods:

datetime.date()

Return date object with same year, month and day.

datetime.time()

Return time object with same hour, minute, second, microsecond and fold. tzinfo is None. See also method
timetz().

Changed in version 3.6: The fold value is copied to the returned time object.

datetime.timetz()

Return time object with same hour, minute, second, microsecond, fold, and tzinfo attributes. See also method
time().

Changed in version 3.6: The fold value is copied to the returned time object.

datetime.replace(year=self.year, month=self.month, day=self.day, hour=self.hour, minute=self.minute,
second=self.second, microsecond=self.microsecond, tzinfo=self.tzinfo, *, fold=0)

Return a datetime with the same attributes, except for those attributes given new values by whichever keyword
arguments are specified. Note that tzinfo=None can be specified to create a naive datetime from an aware
datetime with no conversion of date and time data.

datetime objects are also supported by generic function copy.replace().

Changed in version 3.6: Added the fold parameter.

datetime.astimezone(tz=None)
Return a datetime object with new tzinfo attribute tz, adjusting the date and time data so the result is the
same UTC time as self, but in tz’s local time.

If provided, tzmust be an instance of a tzinfo subclass, and its utcoffset() and dst()methods must not
return None. If self is naive, it is presumed to represent time in the system time zone.

If called without arguments (or with tz=None) the system local time zone is assumed for the target time zone.
The .tzinfo attribute of the converted datetime instance will be set to an instance of timezone with the
zone name and offset obtained from the OS.

If self.tzinfo is tz, self.astimezone(tz) is equal to self: no adjustment of date or time data is per-
formed. Else the result is local time in the time zone tz, representing the same UTC time as self: after astz
= dt.astimezone(tz), astz - astz.utcoffset() will have the same date and time data as dt -

dt.utcoffset().

If you merely want to attach a timezone object tz to a datetime dt without adjustment of date and time data,
use dt.replace(tzinfo=tz). If you merely want to remove the timezone object from an aware datetime
dt without conversion of date and time data, use dt.replace(tzinfo=None).

Note that the default tzinfo.fromutc()method can be overridden in a tzinfo subclass to affect the result
returned by astimezone(). Ignoring error cases, astimezone() acts like:

def astimezone(self, tz):

if self.tzinfo is tz:

return self

Convert self to UTC, and attach the new timezone object.

utc = (self - self.utcoffset()).replace(tzinfo=tz)

Convert from UTC to tz's local time.

return tz.fromutc(utc)

Changed in version 3.3: tz now can be omitted.

Changed in version 3.6: The astimezone() method can now be called on naive instances that are presumed
to represent system local time.

8.1. datetime— Basic date and time types 219

The Python Library Reference, Release 3.13.1

datetime.utcoffset()

If tzinfo is None, returns None, else returns self.tzinfo.utcoffset(self), and raises an exception
if the latter doesn’t return None or a timedelta object with magnitude less than one day.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

datetime.dst()

If tzinfo is None, returns None, else returns self.tzinfo.dst(self), and raises an exception if the
latter doesn’t return None or a timedelta object with magnitude less than one day.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

datetime.tzname()

If tzinfo is None, returns None, else returns self.tzinfo.tzname(self), raises an exception if the
latter doesn’t return None or a string object,

datetime.timetuple()

Return a time.struct_time such as returned by time.localtime().

d.timetuple() is equivalent to:

time.struct_time((d.year, d.month, d.day,

d.hour, d.minute, d.second,

d.weekday(), yday, dst))

where yday = d.toordinal() - date(d.year, 1, 1).toordinal() + 1 is the day number
within the current year starting with 1 for January 1st. The tm_isdst flag of the result is set according
to the dst()method: tzinfo is None or dst() returns None, tm_isdst is set to -1; else if dst() returns
a non-zero value, tm_isdst is set to 1; else tm_isdst is set to 0.

datetime.utctimetuple()

If datetime instance d is naive, this is the same as d.timetuple() except that tm_isdst is forced to 0
regardless of what d.dst() returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset(), and a time.struct_time for
the normalized time is returned. tm_isdst is forced to 0. Note that an OverflowError may be raised if
d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a year boundary.

Warning

Because naive datetime objects are treated by many datetime methods as local times, it is preferred
to use aware datetimes to represent times in UTC; as a result, using datetime.utctimetuple()

may give misleading results. If you have a naive datetime representing UTC, use datetime.

replace(tzinfo=timezone.utc) to make it aware, at which point you can use datetime.

timetuple().

datetime.toordinal()

Return the proleptic Gregorian ordinal of the date. The same as self.date().toordinal().

datetime.timestamp()

Return POSIX timestamp corresponding to the datetime instance. The return value is a float similar to
that returned by time.time().

Naive datetime instances are assumed to represent local time and this method relies on the platform
C mktime() function to perform the conversion. Since datetime supports wider range of values than
mktime() on many platforms, this method may raise OverflowError or OSError for times far in the
past or far in the future.

For aware datetime instances, the return value is computed as:

220 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(dt - datetime(1970, 1, 1, tzinfo=timezone.utc)).total_seconds()

Added in version 3.3.

Changed in version 3.6: The timestamp()method uses the fold attribute to disambiguate the times during
a repeated interval.

Note

There is no method to obtain the POSIX timestamp directly from a naive datetime instance representing
UTC time. If your application uses this convention and your system time zone is not set to UTC, you can
obtain the POSIX timestamp by supplying tzinfo=timezone.utc:

timestamp = dt.replace(tzinfo=timezone.utc).timestamp()

or by calculating the timestamp directly:

timestamp = (dt - datetime(1970, 1, 1)) / timedelta(seconds=1)

datetime.weekday()

Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as self.date().
weekday(). See also isoweekday().

datetime.isoweekday()

Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as self.date().
isoweekday(). See also weekday(), isocalendar().

datetime.isocalendar()

Return a named tuple with three components: year, week and weekday. The same as self.date().
isocalendar().

datetime.isoformat(sep=’T’, timespec=’auto’)
Return a string representing the date and time in ISO 8601 format:

• YYYY-MM-DDTHH:MM:SS.ffffff, if microsecond is not 0

• YYYY-MM-DDTHH:MM:SS, if microsecond is 0

If utcoffset() does not return None, a string is appended, giving the UTC offset:

• YYYY-MM-DDTHH:MM:SS.ffffff+HH:MM[:SS[.ffffff]], if microsecond is not 0

• YYYY-MM-DDTHH:MM:SS+HH:MM[:SS[.ffffff]], if microsecond is 0

Examples:

>>> from datetime import datetime, timezone

>>> datetime(2019, 5, 18, 15, 17, 8, 132263).isoformat()

'2019-05-18T15:17:08.132263'

>>> datetime(2019, 5, 18, 15, 17, tzinfo=timezone.utc).isoformat()

'2019-05-18T15:17:00+00:00'

The optional argument sep (default 'T') is a one-character separator, placed between the date and time portions
of the result. For example:

>>> from datetime import tzinfo, timedelta, datetime

>>> class TZ(tzinfo):

... """A time zone with an arbitrary, constant -06:39 offset."""

... def utcoffset(self, dt):

... return timedelta(hours=-6, minutes=-39)

...

(continues on next page)

8.1. datetime— Basic date and time types 221

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> datetime(2002, 12, 25, tzinfo=TZ()).isoformat(' ')

'2002-12-25 00:00:00-06:39'

>>> datetime(2009, 11, 27, microsecond=100, tzinfo=TZ()).isoformat()

'2009-11-27T00:00:00.000100-06:39'

The optional argument timespec specifies the number of additional components of the time to include (the
default is 'auto'). It can be one of the following:

• 'auto': Same as 'seconds' if microsecond is 0, same as 'microseconds' otherwise.

• 'hours': Include the hour in the two-digit HH format.

• 'minutes': Include hour and minute in HH:MM format.

• 'seconds': Include hour, minute, and second in HH:MM:SS format.

• 'milliseconds': Include full time, but truncate fractional second part to milliseconds. HH:MM:SS.
sss format.

• 'microseconds': Include full time in HH:MM:SS.ffffff format.

Note

Excluded time components are truncated, not rounded.

ValueError will be raised on an invalid timespec argument:

>>> from datetime import datetime

>>> datetime.now().isoformat(timespec='minutes')

'2002-12-25T00:00'

>>> dt = datetime(2015, 1, 1, 12, 30, 59, 0)

>>> dt.isoformat(timespec='microseconds')

'2015-01-01T12:30:59.000000'

Changed in version 3.6: Added the timespec parameter.

datetime.__str__()

For a datetime instance d, str(d) is equivalent to d.isoformat(' ').

datetime.ctime()

Return a string representing the date and time:

>>> from datetime import datetime

>>> datetime(2002, 12, 4, 20, 30, 40).ctime()

'Wed Dec 4 20:30:40 2002'

The output string will not include time zone information, regardless of whether the input is aware or naive.

d.ctime() is equivalent to:

time.ctime(time.mktime(d.timetuple()))

on platforms where the native C ctime() function (which time.ctime() invokes, but which datetime.
ctime() does not invoke) conforms to the C standard.

datetime.strftime(format)
Return a string representing the date and time, controlled by an explicit format string. See also strftime() and
strptime() Behavior and datetime.isoformat().

222 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

datetime.__format__(format)
Same as datetime.strftime(). This makes it possible to specify a format string for a datetime object
in formatted string literals and when using str.format(). See also strftime() and strptime() Behavior and
datetime.isoformat().

Examples of Usage: datetime

Examples of working with datetime objects:

>>> from datetime import datetime, date, time, timezone

>>> # Using datetime.combine()

>>> d = date(2005, 7, 14)

>>> t = time(12, 30)

>>> datetime.combine(d, t)

datetime.datetime(2005, 7, 14, 12, 30)

>>> # Using datetime.now()

>>> datetime.now()

datetime.datetime(2007, 12, 6, 16, 29, 43, 79043) # GMT +1

>>> datetime.now(timezone.utc)

datetime.datetime(2007, 12, 6, 15, 29, 43, 79060, tzinfo=datetime.timezone.utc)

>>> # Using datetime.strptime()

>>> dt = datetime.strptime("21/11/06 16:30", "%d/%m/%y %H:%M")

>>> dt

datetime.datetime(2006, 11, 21, 16, 30)

>>> # Using datetime.timetuple() to get tuple of all attributes

>>> tt = dt.timetuple()

>>> for it in tt:

... print(it)

...

2006 # year

11 # month

21 # day

16 # hour

30 # minute

0 # second

1 # weekday (0 = Monday)

325 # number of days since 1st January

-1 # dst - method tzinfo.dst() returned None

>>> # Date in ISO format

>>> ic = dt.isocalendar()

>>> for it in ic:

... print(it)

...

2006 # ISO year

47 # ISO week

2 # ISO weekday

>>> # Formatting a datetime

>>> dt.strftime("%A, %d. %B %Y %I:%M%p")

'Tuesday, 21. November 2006 04:30PM'

>>> 'The {1} is {0:%d}, the {2} is {0:%B}, the {3} is {0:%I:%M%p}.'.format(dt, "day

↪→", "month", "time")

'The day is 21, the month is November, the time is 04:30PM.'

8.1. datetime— Basic date and time types 223

The Python Library Reference, Release 3.13.1

The example below defines a tzinfo subclass capturing time zone information for Kabul, Afghanistan, which used
+4 UTC until 1945 and then +4:30 UTC thereafter:

from datetime import timedelta, datetime, tzinfo, timezone

class KabulTz(tzinfo):

Kabul used +4 until 1945, when they moved to +4:30

UTC_MOVE_DATE = datetime(1944, 12, 31, 20, tzinfo=timezone.utc)

def utcoffset(self, dt):

if dt.year < 1945:

return timedelta(hours=4)

elif (1945, 1, 1, 0, 0) <= dt.timetuple()[:5] < (1945, 1, 1, 0, 30):

An ambiguous ("imaginary") half-hour range representing

a 'fold' in time due to the shift from +4 to +4:30.

If dt falls in the imaginary range, use fold to decide how

to resolve. See PEP495.

return timedelta(hours=4, minutes=(30 if dt.fold else 0))

else:

return timedelta(hours=4, minutes=30)

def fromutc(self, dt):

Follow same validations as in datetime.tzinfo

if not isinstance(dt, datetime):

raise TypeError("fromutc() requires a datetime argument")

if dt.tzinfo is not self:

raise ValueError("dt.tzinfo is not self")

A custom implementation is required for fromutc as

the input to this function is a datetime with utc values

but with a tzinfo set to self.

See datetime.astimezone or fromtimestamp.

if dt.replace(tzinfo=timezone.utc) >= self.UTC_MOVE_DATE:

return dt + timedelta(hours=4, minutes=30)

else:

return dt + timedelta(hours=4)

def dst(self, dt):

Kabul does not observe daylight saving time.

return timedelta(0)

def tzname(self, dt):

if dt >= self.UTC_MOVE_DATE:

return "+04:30"

return "+04"

Usage of KabulTz from above:

>>> tz1 = KabulTz()

>>> # Datetime before the change

>>> dt1 = datetime(1900, 11, 21, 16, 30, tzinfo=tz1)

>>> print(dt1.utcoffset())

4:00:00

>>> # Datetime after the change

>>> dt2 = datetime(2006, 6, 14, 13, 0, tzinfo=tz1)

>>> print(dt2.utcoffset())

(continues on next page)

224 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

4:30:00

>>> # Convert datetime to another time zone

>>> dt3 = dt2.astimezone(timezone.utc)

>>> dt3

datetime.datetime(2006, 6, 14, 8, 30, tzinfo=datetime.timezone.utc)

>>> dt2

datetime.datetime(2006, 6, 14, 13, 0, tzinfo=KabulTz())

>>> dt2 == dt3

True

8.1.7 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

class datetime.time(hour=0, minute=0, second=0, microsecond=0, tzinfo=None, *, fold=0)
All arguments are optional. tzinfomay be None, or an instance of a tzinfo subclass. The remaining arguments
must be integers in the following ranges:

• 0 <= hour < 24,

• 0 <= minute < 60,

• 0 <= second < 60,

• 0 <= microsecond < 1000000,

• fold in [0, 1].

If an argument outside those ranges is given, ValueError is raised. All default to 0 except tzinfo, which
defaults to None.

Class attributes:

time.min

The earliest representable time, time(0, 0, 0, 0).

time.max

The latest representable time, time(23, 59, 59, 999999).

time.resolution

The smallest possible difference between non-equal time objects, timedelta(microseconds=1), although
note that arithmetic on time objects is not supported.

Instance attributes (read-only):

time.hour

In range(24).

time.minute

In range(60).

time.second

In range(60).

time.microsecond

In range(1000000).

time.tzinfo

The object passed as the tzinfo argument to the time constructor, or None if none was passed.

8.1. datetime— Basic date and time types 225

The Python Library Reference, Release 3.13.1

time.fold

In [0, 1]. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs when
clocks are rolled back at the end of daylight saving time or when theUTC offset for the current zone is decreased
for political reasons.) The values 0 and 1 represent, respectively, the earlier and later of the two moments with
the same wall time representation.

Added in version 3.6.

time objects support equality and order comparisons, where a is considered less than b when a precedes b in time.

Naive and aware time objects are never equal. Order comparison between naive and aware time objects raises
TypeError.

If both comparands are aware, and have the same tzinfo attribute, the tzinfo and fold attributes are ignored and
the base times are compared. If both comparands are aware and have different tzinfo attributes, the comparands
are first adjusted by subtracting their UTC offsets (obtained from self.utcoffset()).

Changed in version 3.3: Equality comparisons between aware and naive time instances don’t raise TypeError.

In Boolean contexts, a time object is always considered to be true.

Changed in version 3.5: Before Python 3.5, a time object was considered to be false if it represented midnight in
UTC. This behavior was considered obscure and error-prone and has been removed in Python 3.5. See bpo-13936
for full details.

Other constructor:

classmethod time.fromisoformat(time_string)
Return a time corresponding to a time_string in any valid ISO 8601 format, with the following exceptions:

1. Time zone offsets may have fractional seconds.

2. The leading T, normally required in cases where there may be ambiguity between a date and a time, is
not required.

3. Fractional seconds may have any number of digits (anything beyond 6 will be truncated).

4. Fractional hours and minutes are not supported.

Examples:

>>> from datetime import time

>>> time.fromisoformat('04:23:01')

datetime.time(4, 23, 1)

>>> time.fromisoformat('T04:23:01')

datetime.time(4, 23, 1)

>>> time.fromisoformat('T042301')

datetime.time(4, 23, 1)

>>> time.fromisoformat('04:23:01.000384')

datetime.time(4, 23, 1, 384)

>>> time.fromisoformat('04:23:01,000384')

datetime.time(4, 23, 1, 384)

>>> time.fromisoformat('04:23:01+04:00')

datetime.time(4, 23, 1, tzinfo=datetime.timezone(datetime.

↪→timedelta(seconds=14400)))

>>> time.fromisoformat('04:23:01Z')

datetime.time(4, 23, 1, tzinfo=datetime.timezone.utc)

>>> time.fromisoformat('04:23:01+00:00')

datetime.time(4, 23, 1, tzinfo=datetime.timezone.utc)

Added in version 3.7.

Changed in version 3.11: Previously, this method only supported formats that could be emitted by time.
isoformat().

Instance methods:

226 Chapter 8. Data Types

https://bugs.python.org/issue?@action=redirect&bpo=13936

The Python Library Reference, Release 3.13.1

time.replace(hour=self.hour, minute=self.minute, second=self.second, microsecond=self.microsecond,
tzinfo=self.tzinfo, *, fold=0)

Return a time with the same value, except for those attributes given new values by whichever keyword argu-
ments are specified. Note that tzinfo=None can be specified to create a naive time from an aware time,
without conversion of the time data.

time objects are also supported by generic function copy.replace().

Changed in version 3.6: Added the fold parameter.

time.isoformat(timespec=’auto’)
Return a string representing the time in ISO 8601 format, one of:

• HH:MM:SS.ffffff, if microsecond is not 0

• HH:MM:SS, if microsecond is 0

• HH:MM:SS.ffffff+HH:MM[:SS[.ffffff]], if utcoffset() does not return None

• HH:MM:SS+HH:MM[:SS[.ffffff]], if microsecond is 0 and utcoffset() does not return None

The optional argument timespec specifies the number of additional components of the time to include (the
default is 'auto'). It can be one of the following:

• 'auto': Same as 'seconds' if microsecond is 0, same as 'microseconds' otherwise.

• 'hours': Include the hour in the two-digit HH format.

• 'minutes': Include hour and minute in HH:MM format.

• 'seconds': Include hour, minute, and second in HH:MM:SS format.

• 'milliseconds': Include full time, but truncate fractional second part to milliseconds. HH:MM:SS.
sss format.

• 'microseconds': Include full time in HH:MM:SS.ffffff format.

Note

Excluded time components are truncated, not rounded.

ValueError will be raised on an invalid timespec argument.

Example:

>>> from datetime import time

>>> time(hour=12, minute=34, second=56, microsecond=123456).isoformat(timespec=

↪→'minutes')

'12:34'

>>> dt = time(hour=12, minute=34, second=56, microsecond=0)

>>> dt.isoformat(timespec='microseconds')

'12:34:56.000000'

>>> dt.isoformat(timespec='auto')

'12:34:56'

Changed in version 3.6: Added the timespec parameter.

time.__str__()

For a time t, str(t) is equivalent to t.isoformat().

time.strftime(format)

Return a string representing the time, controlled by an explicit format string. See also strftime() and strptime()
Behavior and time.isoformat().

8.1. datetime— Basic date and time types 227

The Python Library Reference, Release 3.13.1

time.__format__(format)
Same as time.strftime(). This makes it possible to specify a format string for a time object in format-
ted string literals and when using str.format(). See also strftime() and strptime() Behavior and time.

isoformat().

time.utcoffset()

If tzinfo is None, returns None, else returns self.tzinfo.utcoffset(None), and raises an exception
if the latter doesn’t return None or a timedelta object with magnitude less than one day.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

time.dst()

If tzinfo is None, returns None, else returns self.tzinfo.dst(None), and raises an exception if the
latter doesn’t return None, or a timedelta object with magnitude less than one day.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

time.tzname()

If tzinfo is None, returns None, else returns self.tzinfo.tzname(None), or raises an exception if the
latter doesn’t return None or a string object.

Examples of Usage: time

Examples of working with a time object:

>>> from datetime import time, tzinfo, timedelta

>>> class TZ1(tzinfo):

... def utcoffset(self, dt):

... return timedelta(hours=1)

... def dst(self, dt):

... return timedelta(0)

... def tzname(self,dt):

... return "+01:00"

... def __repr__(self):

... return f"{self.__class__.__name__}()"

...

>>> t = time(12, 10, 30, tzinfo=TZ1())

>>> t

datetime.time(12, 10, 30, tzinfo=TZ1())

>>> t.isoformat()

'12:10:30+01:00'

>>> t.dst()

datetime.timedelta(0)

>>> t.tzname()

'+01:00'

>>> t.strftime("%H:%M:%S %Z")

'12:10:30 +01:00'

>>> 'The {} is {:%H:%M}.'.format("time", t)

'The time is 12:10.'

8.1.8 tzinfo Objects

class datetime.tzinfo

This is an abstract base class, meaning that this class should not be instantiated directly. Define a subclass of
tzinfo to capture information about a particular time zone.

An instance of (a concrete subclass of) tzinfo can be passed to the constructors for datetime and time
objects. The latter objects view their attributes as being in local time, and the tzinfo object supports methods
revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative to a date or
time object passed to them.

228 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

You need to derive a concrete subclass, and (at least) supply implementations of the standard tzinfomethods
needed by the datetime methods you use. The datetime module provides timezone, a simple concrete
subclass of tzinfo which can represent time zones with fixed offset from UTC such as UTC itself or North
American EST and EDT.

Special requirement for pickling: A tzinfo subclass must have an __init__() method that can be called
with no arguments, otherwise it can be pickled but possibly not unpickled again. This is a technical requirement
that may be relaxed in the future.

A concrete subclass of tzinfo may need to implement the following methods. Exactly which methods are
needed depends on the uses made of aware datetime objects. If in doubt, simply implement all of them.

tzinfo.utcoffset(dt)

Return offset of local time from UTC, as a timedelta object that is positive east of UTC. If local time is
west of UTC, this should be negative.

This represents the total offset from UTC; for example, if a tzinfo object represents both time zone
and DST adjustments, utcoffset() should return their sum. If the UTC offset isn’t known, return
None. Else the value returned must be a timedelta object strictly between -timedelta(hours=24)

and timedelta(hours=24) (the magnitude of the offset must be less than one day). Most implementations
of utcoffset() will probably look like one of these two:

return CONSTANT # fixed-offset class

return CONSTANT + self.dst(dt) # daylight-aware class

If utcoffset() does not return None, dst() should not return None either.

The default implementation of utcoffset() raises NotImplementedError.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

tzinfo.dst(dt)
Return the daylight saving time (DST) adjustment, as a timedelta object or None if DST information isn’t
known.

Return timedelta(0) if DST is not in effect. If DST is in effect, return the offset as a timedelta object
(see utcoffset() for details). Note that DST offset, if applicable, has already been added to the UTC offset
returned by utcoffset(), so there’s no need to consult dst() unless you’re interested in obtaining DST info
separately. For example, datetime.timetuple() calls its tzinfo attribute’s dst() method to determine
how the tm_isdst flag should be set, and tzinfo.fromutc() calls dst() to account for DST changes
when crossing time zones.

An instance tz of a tzinfo subclass that models both standard and daylight times must be consistent in this
sense:

tz.utcoffset(dt) - tz.dst(dt)

must return the same result for every datetime dt with dt.tzinfo == tz. For sane tzinfo subclasses,
this expression yields the time zone’s “standard offset”, which should not depend on the date or the time, but
only on geographic location. The implementation of datetime.astimezone() relies on this, but cannot
detect violations; it’s the programmer’s responsibility to ensure it. If a tzinfo subclass cannot guarantee
this, it may be able to override the default implementation of tzinfo.fromutc() to work correctly with
astimezone() regardless.

Most implementations of dst() will probably look like one of these two:

def dst(self, dt):

a fixed-offset class: doesn't account for DST

return timedelta(0)

or:

8.1. datetime— Basic date and time types 229

The Python Library Reference, Release 3.13.1

def dst(self, dt):

Code to set dston and dstoff to the time zone's DST

transition times based on the input dt.year, and expressed

in standard local time.

if dston <= dt.replace(tzinfo=None) < dstoff:

return timedelta(hours=1)

else:

return timedelta(0)

The default implementation of dst() raises NotImplementedError.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

tzinfo.tzname(dt)

Return the time zone name corresponding to the datetime object dt, as a string. Nothing about string names is
defined by the datetimemodule, and there’s no requirement that it mean anything in particular. For example,
"GMT", "UTC", "-500", "-5:00", "EDT", "US/Eastern", "America/New York" are all valid replies.
Return None if a string name isn’t known. Note that this is a method rather than a fixed string primarily
because some tzinfo subclasses will wish to return different names depending on the specific value of dt
passed, especially if the tzinfo class is accounting for daylight time.

The default implementation of tzname() raises NotImplementedError.

These methods are called by a datetime or time object, in response to their methods of the same names. A
datetime object passes itself as the argument, and a time object passes None as the argument. A tzinfo subclass’s
methods should therefore be prepared to accept a dt argument of None, or of class datetime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None is
appropriate if the class wishes to say that time objects don’t participate in the tzinfo protocols. It may be more
useful for utcoffset(None) to return the standard UTC offset, as there is no other convention for discovering the
standard offset.

When a datetime object is passed in response to a datetime method, dt.tzinfo is the same object as self.
tzinfo methods can rely on this, unless user code calls tzinfo methods directly. The intent is that the tzinfo
methods interpret dt as being in local time, and not need worry about objects in other time zones.

There is one more tzinfo method that a subclass may wish to override:

tzinfo.fromutc(dt)
This is called from the default datetime.astimezone() implementation. When called from that, dt.
tzinfo is self, and dt’s date and time data are to be viewed as expressing a UTC time. The purpose of
fromutc() is to adjust the date and time data, returning an equivalent datetime in self ’s local time.

Most tzinfo subclasses should be able to inherit the default fromutc() implementation without problems.
It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard and daylight
time, and the latter even if the DST transition times differ in different years. An example of a time zone the
default fromutc() implementation may not handle correctly in all cases is one where the standard offset
(from UTC) depends on the specific date and time passed, which can happen for political reasons. The default
implementations of astimezone() and fromutc() may not produce the result you want if the result is one
of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the default fromutc() implementation acts like:

def fromutc(self, dt):

raise ValueError error if dt.tzinfo is not self

dtoff = dt.utcoffset()

dtdst = dt.dst()

raise ValueError if dtoff is None or dtdst is None

delta = dtoff - dtdst # this is self's standard offset

if delta:

(continues on next page)

230 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

dt += delta # convert to standard local time

dtdst = dt.dst()

raise ValueError if dtdst is None

if dtdst:

return dt + dtdst

else:

return dt

In the following tzinfo_examples.py file there are some examples of tzinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta(0)

HOUR = timedelta(hours=1)

SECOND = timedelta(seconds=1)

A class capturing the platform's idea of local time.

(May result in wrong values on historical times in

timezones where UTC offset and/or the DST rules had

changed in the past.)

import time as _time

STDOFFSET = timedelta(seconds = -_time.timezone)

if _time.daylight:

DSTOFFSET = timedelta(seconds = -_time.altzone)

else:

DSTOFFSET = STDOFFSET

DSTDIFF = DSTOFFSET - STDOFFSET

class LocalTimezone(tzinfo):

def fromutc(self, dt):

assert dt.tzinfo is self

stamp = (dt - datetime(1970, 1, 1, tzinfo=self)) // SECOND

args = _time.localtime(stamp)[:6]

dst_diff = DSTDIFF // SECOND

Detect fold

fold = (args == _time.localtime(stamp - dst_diff))

return datetime(*args, microsecond=dt.microsecond,

tzinfo=self, fold=fold)

def utcoffset(self, dt):

if self._isdst(dt):

return DSTOFFSET

else:

return STDOFFSET

def dst(self, dt):

if self._isdst(dt):

return DSTDIFF

else:

return ZERO

def tzname(self, dt):

return _time.tzname[self._isdst(dt)]

(continues on next page)

8.1. datetime— Basic date and time types 231

The Python Library Reference, Release 3.13.1

(continued from previous page)

def _isdst(self, dt):

tt = (dt.year, dt.month, dt.day,

dt.hour, dt.minute, dt.second,

dt.weekday(), 0, 0)

stamp = _time.mktime(tt)

tt = _time.localtime(stamp)

return tt.tm_isdst > 0

Local = LocalTimezone()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after(dt):

days_to_go = 6 - dt.weekday()

if days_to_go:

dt += timedelta(days_to_go)

return dt

US DST Rules

#

This is a simplified (i.e., wrong for a few cases) set of rules for US

DST start and end times. For a complete and up-to-date set of DST rules

and timezone definitions, visit the Olson Database (or try pytz):

http://www.twinsun.com/tz/tz-link.htm

https://sourceforge.net/projects/pytz/ (might not be up-to-date)

#

In the US, since 2007, DST starts at 2am (standard time) on the second

Sunday in March, which is the first Sunday on or after Mar 8.

DSTSTART_2007 = datetime(1, 3, 8, 2)

and ends at 2am (DST time) on the first Sunday of Nov.

DSTEND_2007 = datetime(1, 11, 1, 2)

From 1987 to 2006, DST used to start at 2am (standard time) on the first

Sunday in April and to end at 2am (DST time) on the last

Sunday of October, which is the first Sunday on or after Oct 25.

DSTSTART_1987_2006 = datetime(1, 4, 1, 2)

DSTEND_1987_2006 = datetime(1, 10, 25, 2)

From 1967 to 1986, DST used to start at 2am (standard time) on the last

Sunday in April (the one on or after April 24) and to end at 2am (DST time)

on the last Sunday of October, which is the first Sunday

on or after Oct 25.

DSTSTART_1967_1986 = datetime(1, 4, 24, 2)

DSTEND_1967_1986 = DSTEND_1987_2006

def us_dst_range(year):

Find start and end times for US DST. For years before 1967, return

start = end for no DST.

if 2006 < year:

dststart, dstend = DSTSTART_2007, DSTEND_2007

elif 1986 < year < 2007:

dststart, dstend = DSTSTART_1987_2006, DSTEND_1987_2006

elif 1966 < year < 1987:

dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986

else:

(continues on next page)

232 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

return (datetime(year, 1, 1),) * 2

start = first_sunday_on_or_after(dststart.replace(year=year))

end = first_sunday_on_or_after(dstend.replace(year=year))

return start, end

class USTimeZone(tzinfo):

def __init__(self, hours, reprname, stdname, dstname):

self.stdoffset = timedelta(hours=hours)

self.reprname = reprname

self.stdname = stdname

self.dstname = dstname

def __repr__(self):

return self.reprname

def tzname(self, dt):

if self.dst(dt):

return self.dstname

else:

return self.stdname

def utcoffset(self, dt):

return self.stdoffset + self.dst(dt)

def dst(self, dt):

if dt is None or dt.tzinfo is None:

An exception may be sensible here, in one or both cases.

It depends on how you want to treat them. The default

fromutc() implementation (called by the default astimezone()

implementation) passes a datetime with dt.tzinfo is self.

return ZERO

assert dt.tzinfo is self

start, end = us_dst_range(dt.year)

Can't compare naive to aware objects, so strip the timezone from

dt first.

dt = dt.replace(tzinfo=None)

if start + HOUR <= dt < end - HOUR:

DST is in effect.

return HOUR

if end - HOUR <= dt < end:

Fold (an ambiguous hour): use dt.fold to disambiguate.

return ZERO if dt.fold else HOUR

if start <= dt < start + HOUR:

Gap (a non-existent hour): reverse the fold rule.

return HOUR if dt.fold else ZERO

DST is off.

return ZERO

def fromutc(self, dt):

assert dt.tzinfo is self

start, end = us_dst_range(dt.year)

start = start.replace(tzinfo=self)

end = end.replace(tzinfo=self)

(continues on next page)

8.1. datetime— Basic date and time types 233

The Python Library Reference, Release 3.13.1

(continued from previous page)

std_time = dt + self.stdoffset

dst_time = std_time + HOUR

if end <= dst_time < end + HOUR:

Repeated hour

return std_time.replace(fold=1)

if std_time < start or dst_time >= end:

Standard time

return std_time

if start <= std_time < end - HOUR:

Daylight saving time

return dst_time

Eastern = USTimeZone(-5, "Eastern", "EST", "EDT")

Central = USTimeZone(-6, "Central", "CST", "CDT")

Mountain = USTimeZone(-7, "Mountain", "MST", "MDT")

Pacific = USTimeZone(-8, "Pacific", "PST", "PDT")

Note that there are unavoidable subtleties twice per year in a tzinfo subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT begins
the minute after 1:59 (EST) on the second Sunday inMarch, and ends the minute after 1:59 (EDT) on the first Sunday
in November:

UTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM

EST 22:MM 23:MM 0:MM 1:MM 2:MM 3:MM

EDT 23:MM 0:MM 1:MM 2:MM 3:MM 4:MM

start 22:MM 23:MM 0:MM 1:MM 3:MM 4:MM

end 23:MM 0:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM
doesn’t really make sense on that day, so astimezone(Eastern) won’t deliver a result with hour == 2 on the
day DST begins. For example, at the Spring forward transition of 2016, we get:

>>> from datetime import datetime, timezone

>>> from tzinfo_examples import HOUR, Eastern

>>> u0 = datetime(2016, 3, 13, 5, tzinfo=timezone.utc)

>>> for i in range(4):

... u = u0 + i*HOUR

... t = u.astimezone(Eastern)

... print(u.time(), 'UTC =', t.time(), t.tzname())

...

05:00:00 UTC = 00:00:00 EST

06:00:00 UTC = 01:00:00 EST

07:00:00 UTC = 03:00:00 EDT

08:00:00 UTC = 04:00:00 EDT

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unambigu-
ously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the day
daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again. Local
times of the form 1:MM are ambiguous. astimezone()mimics the local clock’s behavior by mapping two adjacent
UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM and 6:MM both
map to 1:MM when converted to Eastern, but earlier times have the fold attribute set to 0 and the later times have
it set to 1. For example, at the Fall back transition of 2016, we get:

234 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

>>> u0 = datetime(2016, 11, 6, 4, tzinfo=timezone.utc)

>>> for i in range(4):

... u = u0 + i*HOUR

... t = u.astimezone(Eastern)

... print(u.time(), 'UTC =', t.time(), t.tzname(), t.fold)

...

04:00:00 UTC = 00:00:00 EDT 0

05:00:00 UTC = 01:00:00 EDT 0

06:00:00 UTC = 01:00:00 EST 1

07:00:00 UTC = 02:00:00 EST 0

Note that the datetime instances that differ only by the value of the fold attribute are considered equal in com-
parisons.

Applications that can’t bear wall-time ambiguities should explicitly check the value of the fold attribute or avoid
using hybrid tzinfo subclasses; there are no ambiguities when using timezone, or any other fixed-offset tzinfo
subclass (such as a class representing only EST (fixed offset -5 hours), or only EDT (fixed offset -4 hours)).

See also

zoneinfo

The datetime module has a basic timezone class (for handling arbitrary fixed offsets from
UTC) and its timezone.utc attribute (a UTC timezone instance).

zoneinfo brings the IANA time zone database (also known as the Olson database) to Python,
and its usage is recommended.

IANA time zone database
The Time Zone Database (often called tz, tzdata or zoneinfo) contains code and data that represent the
history of local time for many representative locations around the globe. It is updated periodically to
reflect changes made by political bodies to time zone boundaries, UTC offsets, and daylight-saving rules.

8.1.9 timezone Objects

The timezone class is a subclass of tzinfo, each instance of which represents a time zone defined by a fixed offset
from UTC.

Objects of this class cannot be used to represent time zone information in the locations where different offsets are
used in different days of the year or where historical changes have been made to civil time.

class datetime.timezone(offset, name=None)

The offset argument must be specified as a timedelta object representing the difference between the local
time and UTC. It must be strictly between -timedelta(hours=24) and timedelta(hours=24), other-
wise ValueError is raised.

The name argument is optional. If specified it must be a string that will be used as the value returned by the
datetime.tzname() method.

Added in version 3.2.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

timezone.utcoffset(dt)
Return the fixed value specified when the timezone instance is constructed.

The dt argument is ignored. The return value is a timedelta instance equal to the difference between the
local time and UTC.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

8.1. datetime— Basic date and time types 235

https://www.iana.org/time-zones

The Python Library Reference, Release 3.13.1

timezone.tzname(dt)
Return the fixed value specified when the timezone instance is constructed.

If name is not provided in the constructor, the name returned by tzname(dt) is generated from the value of
the offset as follows. If offset is timedelta(0), the name is “UTC”, otherwise it is a string in the format
UTC±HH:MM, where ± is the sign of offset, HH and MM are two digits of offset.hours and offset.
minutes respectively.

Changed in version 3.6: Name generated from offset=timedelta(0) is now plain 'UTC', not
'UTC+00:00'.

timezone.dst(dt)
Always returns None.

timezone.fromutc(dt)

Return dt + offset. The dt argument must be an aware datetime instance, with tzinfo set to self.

Class attributes:

timezone.utc

The UTC time zone, timezone(timedelta(0)).

8.1.10 strftime() and strptime() Behavior

date, datetime, and time objects all support a strftime(format) method, to create a string representing the
time under the control of an explicit format string.

Conversely, the datetime.strptime() class method creates a datetime object from a string representing a date
and time and a corresponding format string.

The table below provides a high-level comparison of strftime() versus strptime():

strftime strptime

Usage Convert object to a string according to a
given format

Parse a string into a datetime object given a corre-
sponding format

Type of
method

Instance method Class method

Method of date; datetime; time datetime

Signature strftime(format) strptime(date_string, format)

strftime() and strptime() Format Codes

These methods accept format codes that can be used to parse and format dates:

>>> datetime.strptime('31/01/22 23:59:59.999999',

... '%d/%m/%y %H:%M:%S.%f')

datetime.datetime(2022, 1, 31, 23, 59, 59, 999999)

>>> _.strftime('%a %d %b %Y, %I:%M%p')

'Mon 31 Jan 2022, 11:59PM'

The following is a list of all the format codes that the 1989 C standard requires, and these work on all platforms with
a standard C implementation.

236 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

Directive Meaning Example Notes

%a Weekday as locale’s ab-
breviated name.

Sun, Mon, …, Sat
(en_US);
So, Mo, …, Sa (de_DE)

(1)

%A Weekday as locale’s full
name.

Sunday, Monday, …,
Saturday (en_US);
Sonntag, Montag, …,
Samstag (de_DE)

(1)

%w Weekday as a decimal
number, where 0 is Sun-
day and 6 is Saturday.

0, 1, …, 6

%d Day of the month as
a zero-padded decimal
number.

01, 02, …, 31 (9)

%b Month as locale’s abbrevi-
ated name.

Jan, Feb, …, Dec
(en_US);
Jan, Feb, …, Dez
(de_DE)

(1)

%B Month as locale’s full
name.

January, February, …,
December (en_US);
Januar, Februar, …,
Dezember (de_DE)

(1)

%m Month as a zero-padded
decimal number.

01, 02, …, 12 (9)

%y Year without century as
a zero-padded decimal
number.

00, 01, …, 99 (9)

%Y Year with century as a
decimal number.

0001, 0002, …, 2013,
2014, …, 9998, 9999

(2)

%H Hour (24-hour clock) as
a zero-padded decimal
number.

00, 01, …, 23 (9)

%I Hour (12-hour clock) as
a zero-padded decimal
number.

01, 02, …, 12 (9)

%p Locale’s equivalent of ei-
ther AM or PM.

AM, PM (en_US);
am, pm (de_DE)

(1), (3)

%M Minute as a zero-padded
decimal number.

00, 01, …, 59 (9)

%S Second as a zero-padded
decimal number.

00, 01, …, 59 (4), (9)

%f Microsecond as a decimal
number, zero-padded to 6
digits.

000000, 000001, …,
999999

(5)

%z UTC offset in the form
±HHMM[SS[.ffffff]]

(empty string if the object
is naive).

(empty), +0000, -0400,
+1030, +063415, -
030712.345216

(6)

%Z Time zone name (empty
string if the object is
naive).

(empty), UTC, GMT (6)

%j Day of the year as a zero-
padded decimal number.

001, 002, …, 366 (9)

%U Week number of the year
(Sunday as the first day
of the week) as a zero-
padded decimal number.
All days in a new year pre-
ceding the first Sunday are
considered to be in week
0.

00, 01, …, 53 (7), (9)

%W Week number of the year
(Monday as the first day
of the week) as a zero-
padded decimal number.
All days in a new year
preceding the first Mon-
day are considered to be
in week 0.

00, 01, …, 53 (7), (9)

%c Locale’s appropriate date
and time representation.

Tue Aug 16 21:30:00
1988 (en_US);
Di 16 Aug 21:30:00 1988
(de_DE)

(1)

%x Locale’s appropriate date
representation.

08/16/88 (None);
08/16/1988 (en_US);
16.08.1988 (de_DE)

(1)

%X Locale’s appropriate time
representation.

21:30:00 (en_US);
21:30:00 (de_DE)

(1)

%% A literal '%' character. %

8.1. datetime— Basic date and time types 237

The Python Library Reference, Release 3.13.1

Several additional directives not required by the C89 standard are included for convenience. These parameters all
correspond to ISO 8601 date values.

Di-
rec-
tive

Meaning Example Notes

%G ISO 8601 year with century representing the year that contains
the greater part of the ISO week (%V).

0001, 0002, …, 2013, 2014, …,
9998, 9999

(8)

%u ISO 8601 weekday as a decimal number where 1 is Monday. 1, 2, …, 7
%V ISO 8601 week as a decimal number with Monday as the first

day of the week. Week 01 is the week containing Jan 4.
01, 02, …, 53 (8),

(9)
%:z UTC offset in the form ±HH:MM[:SS[.ffffff]] (empty

string if the object is naive).
(empty), +00:00, -04:00, +10:30,
+06:34:15, -03:07:12.345216

(6)

These may not be available on all platforms when used with the strftime() method. The ISO 8601 year and ISO
8601 week directives are not interchangeable with the year and week number directives above. Calling strptime()
with incomplete or ambiguous ISO 8601 directives will raise a ValueError.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime() function, and platform variations are common. To see the full set of format codes supported on your
platform, consult the strftime(3) documentation. There are also differences between platforms in handling of
unsupported format specifiers.

Added in version 3.6: %G, %u and %V were added.

Added in version 3.12: %:z was added.

Technical Detail

Broadly speaking, d.strftime(fmt) acts like the time module’s time.strftime(fmt, d.timetuple())

although not all objects support a timetuple() method.

For the datetime.strptime() classmethod, the default value is 1900-01-01T00:00:00.000: any components
not specified in the format string will be pulled from the default value.4

Using datetime.strptime(date_string, format) is equivalent to:

datetime(*(time.strptime(date_string, format)[0:6]))

except when the format includes sub-second components or time zone offset information, which are supported in
datetime.strptime but are discarded by time.strptime.

For time objects, the format codes for year, month, and day should not be used, as time objects have no such values.
If they’re used anyway, 1900 is substituted for the year, and 1 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as date
objects have no such values. If they’re used anyway, 0 is substituted for them.

For the same reason, handling of format strings containing Unicode code points that can’t be represented in the
charset of the current locale is also platform-dependent. On some platforms such code points are preserved intact in
the output, while on others strftime may raise UnicodeError or return an empty string instead.

Notes:

(1) Because the format depends on the current locale, care should be taken when making assumptions about the
output value. Field orderings will vary (for example, “month/day/year” versus “day/month/year”), and the
output may contain non-ASCII characters.

(2) The strptime() method can parse years in the full [1, 9999] range, but years < 1000 must be zero-filled to
4-digit width.

Changed in version 3.2: In previous versions, strftime() method was restricted to years >= 1900.

4 Passing datetime.strptime('Feb 29', '%b %d') will fail since 1900 is not a leap year.

238 Chapter 8. Data Types

https://manpages.debian.org/strftime(3)

The Python Library Reference, Release 3.13.1

Changed in version 3.3: In version 3.2, strftime() method was restricted to years >= 1000.

(3) When used with the strptime()method, the %p directive only affects the output hour field if the %I directive
is used to parse the hour.

(4) Unlike the time module, the datetime module does not support leap seconds.

(5) When used with the strptime() method, the %f directive accepts from one to six digits and zero pads on
the right. %f is an extension to the set of format characters in the C standard (but implemented separately in
datetime objects, and therefore always available).

(6) For a naive object, the %z, %:z and %Z format codes are replaced by empty strings.

For an aware object:

%z

utcoffset() is transformed into a string of the form ±HHMM[SS[.ffffff]], where HH is a 2-digit
string giving the number of UTC offset hours, MM is a 2-digit string giving the number of UTC offset
minutes, SS is a 2-digit string giving the number of UTC offset seconds and ffffff is a 6-digit string
giving the number of UTC offset microseconds. The ffffff part is omitted when the offset is a whole
number of seconds and both the ffffff and the SS part is omitted when the offset is a whole number
of minutes. For example, if utcoffset() returns timedelta(hours=-3, minutes=-30), %z is
replaced with the string '-0330'.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

Changed in version 3.7: When the %z directive is provided to the strptime() method, the UTC offsets can
have a colon as a separator between hours, minutes and seconds. For example, '+01:00:00' will be parsed
as an offset of one hour. In addition, providing 'Z' is identical to '+00:00'.

%:z

Behaves exactly as %z, but has a colon separator added between hours, minutes and seconds.

%Z

In strftime(), %Z is replaced by an empty string if tzname() returns None; otherwise %Z is replaced
by the returned value, which must be a string.

strptime() only accepts certain values for %Z:

1. any value in time.tzname for your machine’s locale

2. the hard-coded values UTC and GMT

So someone living in Japan may have JST, UTC, and GMT as valid values, but probably not EST. It will
raise ValueError for invalid values.

Changed in version 3.2: When the %z directive is provided to the strptime() method, an aware datetime
object will be produced. The tzinfo of the result will be set to a timezone instance.

(7) When used with the strptime() method, %U and %W are only used in calculations when the day of the week
and the calendar year (%Y) are specified.

(8) Similar to %U and %W, %V is only used in calculations when the day of the week and the ISO year (%G) are
specified in a strptime() format string. Also note that %G and %Y are not interchangeable.

(9) When used with the strptime() method, the leading zero is optional for formats %d, %m, %H, %I, %M, %S,
%j, %U, %W, and %V. Format %y does require a leading zero.

(10) When parsing a month and day using strptime(), always include a year in the format. If the value you need
to parse lacks a year, append an explicit dummy leap year. Otherwise your code will raise an exception when
it encounters leap day because the default year used by the parser is not a leap year. Users run into this bug
every four years…

>>> month_day = "02/29"

>>> datetime.strptime(f"{month_day};1984", "%m/%d;%Y") # No leap year bug.

datetime.datetime(1984, 2, 29, 0, 0)

8.1. datetime— Basic date and time types 239

The Python Library Reference, Release 3.13.1

Deprecated since version 3.13, will be removed in version 3.15: strptime() calls using a format string
containing a day of month without a year now emit a DeprecationWarning. In 3.15 or later we may change
this into an error or change the default year to a leap year. See gh-70647.

8.2 zoneinfo— IANA time zone support

Added in version 3.9.

Source code: Lib/zoneinfo

The zoneinfo module provides a concrete time zone implementation to support the IANA time zone database as
originally specified in PEP 615. By default, zoneinfo uses the system’s time zone data if available; if no system
time zone data is available, the library will fall back to using the first-party tzdata package available on PyPI.

See also

Module: datetime
Provides the time and datetime types with which the ZoneInfo class is designed to be used.

Package tzdata
First-party package maintained by the CPython core developers to supply time zone data via PyPI.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

8.2.1 Using ZoneInfo

ZoneInfo is a concrete implementation of the datetime.tzinfo abstract base class, and is intended to be attached
to tzinfo, either via the constructor, the datetime.replace method or datetime.astimezone:

>>> from zoneinfo import ZoneInfo

>>> from datetime import datetime, timedelta

>>> dt = datetime(2020, 10, 31, 12, tzinfo=ZoneInfo("America/Los_Angeles"))

>>> print(dt)

2020-10-31 12:00:00-07:00

>>> dt.tzname()

'PDT'

Datetimes constructed in this way are compatible with datetime arithmetic and handle daylight saving time transitions
with no further intervention:

>>> dt_add = dt + timedelta(days=1)

>>> print(dt_add)

2020-11-01 12:00:00-08:00

>>> dt_add.tzname()

'PST'

These time zones also support the fold attribute introduced in PEP 495. During offset transitions which induce
ambiguous times (such as a daylight saving time to standard time transition), the offset from before the transition is
used when fold=0, and the offset after the transition is used when fold=1, for example:

240 Chapter 8. Data Types

https://github.com/python/cpython/issues/70647
https://github.com/python/cpython/tree/3.13/Lib/zoneinfo
https://peps.python.org/pep-0615/
https://pypi.org/project/tzdata/
https://pypi.org/project/tzdata/
https://peps.python.org/pep-0495/

The Python Library Reference, Release 3.13.1

>>> dt = datetime(2020, 11, 1, 1, tzinfo=ZoneInfo("America/Los_Angeles"))

>>> print(dt)

2020-11-01 01:00:00-07:00

>>> print(dt.replace(fold=1))

2020-11-01 01:00:00-08:00

When converting from another time zone, the fold will be set to the correct value:

>>> from datetime import timezone

>>> LOS_ANGELES = ZoneInfo("America/Los_Angeles")

>>> dt_utc = datetime(2020, 11, 1, 8, tzinfo=timezone.utc)

>>> # Before the PDT -> PST transition

>>> print(dt_utc.astimezone(LOS_ANGELES))

2020-11-01 01:00:00-07:00

>>> # After the PDT -> PST transition

>>> print((dt_utc + timedelta(hours=1)).astimezone(LOS_ANGELES))

2020-11-01 01:00:00-08:00

8.2.2 Data sources

The zoneinfo module does not directly provide time zone data, and instead pulls time zone information from
the system time zone database or the first-party PyPI package tzdata, if available. Some systems, including notably
Windows systems, do not have an IANA database available, and so for projects targeting cross-platform compatibility
that require time zone data, it is recommended to declare a dependency on tzdata. If neither system data nor tzdata
are available, all calls to ZoneInfo will raise ZoneInfoNotFoundError.

Configuring the data sources

When ZoneInfo(key) is called, the constructor first searches the directories specified in TZPATH for a file matching
key, and on failure looks for a match in the tzdata package. This behavior can be configured in three ways:

1. The default TZPATH when not otherwise specified can be configured at compile time.

2. TZPATH can be configured using an environment variable.

3. At runtime, the search path can be manipulated using the reset_tzpath() function.

Compile-time configuration

The default TZPATH includes several common deployment locations for the time zone database (except on Win-
dows, where there are no “well-known” locations for time zone data). On POSIX systems, downstream distribu-
tors and those building Python from source who know where their system time zone data is deployed may change
the default time zone path by specifying the compile-time option TZPATH (or, more likely, the configure flag

--with-tzpath), which should be a string delimited by os.pathsep.

On all platforms, the configured value is available as the TZPATH key in sysconfig.get_config_var().

Environment configuration

When initializing TZPATH (either at import time or whenever reset_tzpath() is called with no arguments), the
zoneinfo module will use the environment variable PYTHONTZPATH, if it exists, to set the search path.

PYTHONTZPATH

This is an os.pathsep-separated string containing the time zone search path to use. It must consist of
only absolute rather than relative paths. Relative components specified in PYTHONTZPATH will not be used,
but otherwise the behavior when a relative path is specified is implementation-defined; CPython will raise

8.2. zoneinfo— IANA time zone support 241

https://pypi.org/project/tzdata/

The Python Library Reference, Release 3.13.1

InvalidTZPathWarning, but other implementations are free to silently ignore the erroneous component or
raise an exception.

To set the system to ignore the system data and use the tzdata package instead, set PYTHONTZPATH="".

Runtime configuration

The TZ search path can also be configured at runtime using the reset_tzpath() function. This is generally not
an advisable operation, though it is reasonable to use it in test functions that require the use of a specific time zone
path (or require disabling access to the system time zones).

8.2.3 The ZoneInfo class

class zoneinfo.ZoneInfo(key)

A concrete datetime.tzinfo subclass that represents an IANA time zone specified by the string key. Calls
to the primary constructor will always return objects that compare identically; put another way, barring cache
invalidation via ZoneInfo.clear_cache(), for all values of key, the following assertion will always be
true:

a = ZoneInfo(key)

b = ZoneInfo(key)

assert a is b

key must be in the form of a relative, normalized POSIX path, with no up-level references. The constructor
will raise ValueError if a non-conforming key is passed.

If no file matching key is found, the constructor will raise ZoneInfoNotFoundError.

The ZoneInfo class has two alternate constructors:

classmethod ZoneInfo.from_file(fobj, / , key=None)
Constructs a ZoneInfo object from a file-like object returning bytes (e.g. a file opened in binary mode or an
io.BytesIO object). Unlike the primary constructor, this always constructs a new object.

The key parameter sets the name of the zone for the purposes of __str__() and __repr__().

Objects created via this constructor cannot be pickled (see pickling).

classmethod ZoneInfo.no_cache(key)
An alternate constructor that bypasses the constructor’s cache. It is identical to the primary constructor, but
returns a new object on each call. This is most likely to be useful for testing or demonstration purposes, but it
can also be used to create a system with a different cache invalidation strategy.

Objects created via this constructor will also bypass the cache of a deserializing process when unpickled.

Caution

Using this constructor may change the semantics of your datetimes in surprising ways, only use it if you
know that you need to.

The following class methods are also available:

classmethod ZoneInfo.clear_cache(*, only_keys=None)
A method for invalidating the cache on the ZoneInfo class. If no arguments are passed, all caches are inval-
idated and the next call to the primary constructor for each key will return a new instance.

If an iterable of key names is passed to the only_keys parameter, only the specified keys will be removed
from the cache. Keys passed to only_keys but not found in the cache are ignored.

242 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

Warning

Invoking this function may change the semantics of datetimes using ZoneInfo in surprising ways; this
modifies module state and thus may have wide-ranging effects. Only use it if you know that you need to.

The class has one attribute:

ZoneInfo.key

This is a read-only attribute that returns the value of key passed to the constructor, which should be a lookup
key in the IANA time zone database (e.g. America/New_York, Europe/Paris or Asia/Tokyo).

For zones constructed from file without specifying a key parameter, this will be set to None.

Note

Although it is a somewhat common practice to expose these to end users, these values are designed to be
primary keys for representing the relevant zones and not necessarily user-facing elements. Projects like
CLDR (the Unicode Common Locale Data Repository) can be used to get more user-friendly strings from
these keys.

String representations

The string representation returned when calling str on a ZoneInfo object defaults to using the ZoneInfo.key
attribute (see the note on usage in the attribute documentation):

>>> zone = ZoneInfo("Pacific/Kwajalein")

>>> str(zone)

'Pacific/Kwajalein'

>>> dt = datetime(2020, 4, 1, 3, 15, tzinfo=zone)

>>> f"{dt.isoformat()} [{dt.tzinfo}]"

'2020-04-01T03:15:00+12:00 [Pacific/Kwajalein]'

For objects constructed from a file without specifying a key parameter, str falls back to calling repr().
ZoneInfo’s repr is implementation-defined and not necessarily stable between versions, but it is guaranteed not to
be a valid ZoneInfo key.

Pickle serialization

Rather than serializing all transition data, ZoneInfo objects are serialized by key, and ZoneInfo objects constructed
from files (even those with a value for key specified) cannot be pickled.

The behavior of a ZoneInfo file depends on how it was constructed:

1. ZoneInfo(key): When constructed with the primary constructor, a ZoneInfo object is serialized by key,
and when deserialized, the deserializing process uses the primary and thus it is expected that these are expected
to be the same object as other references to the same time zone. For example, if europe_berlin_pkl is a
string containing a pickle constructed from ZoneInfo("Europe/Berlin"), one would expect the following
behavior:

>>> a = ZoneInfo("Europe/Berlin")

>>> b = pickle.loads(europe_berlin_pkl)

>>> a is b

True

2. ZoneInfo.no_cache(key): When constructed from the cache-bypassing constructor, the ZoneInfo ob-
ject is also serialized by key, but when deserialized, the deserializing process uses the cache bypassing
constructor. If europe_berlin_pkl_nc is a string containing a pickle constructed from ZoneInfo.

no_cache("Europe/Berlin"), one would expect the following behavior:

8.2. zoneinfo— IANA time zone support 243

The Python Library Reference, Release 3.13.1

>>> a = ZoneInfo("Europe/Berlin")

>>> b = pickle.loads(europe_berlin_pkl_nc)

>>> a is b

False

3. ZoneInfo.from_file(fobj, /, key=None): When constructed from a file, the ZoneInfo object raises
an exception on pickling. If an end user wants to pickle a ZoneInfo constructed from a file, it is recommended
that they use a wrapper type or a custom serialization function: either serializing by key or storing the contents
of the file object and serializing that.

This method of serialization requires that the time zone data for the required key be available on both the serializing
and deserializing side, similar to the way that references to classes and functions are expected to exist in both the
serializing and deserializing environments. It also means that no guarantees are made about the consistency of results
when unpickling a ZoneInfo pickled in an environment with a different version of the time zone data.

8.2.4 Functions

zoneinfo.available_timezones()

Get a set containing all the valid keys for IANA time zones available anywhere on the time zone path. This is
recalculated on every call to the function.

This function only includes canonical zone names and does not include “special” zones such as those under the
posix/ and right/ directories, or the posixrules zone.

Caution

This function may open a large number of files, as the best way to determine if a file on the time zone path
is a valid time zone is to read the “magic string” at the beginning.

Note

These values are not designed to be exposed to end-users; for user facing elements, applications should use
something like CLDR (the Unicode Common Locale Data Repository) to get more user-friendly strings.
See also the cautionary note on ZoneInfo.key.

zoneinfo.reset_tzpath(to=None)
Sets or resets the time zone search path (TZPATH) for the module. When called with no arguments, TZPATH
is set to the default value.

Calling reset_tzpath will not invalidate the ZoneInfo cache, and so calls to the primary ZoneInfo con-
structor will only use the new TZPATH in the case of a cache miss.

The to parameter must be a sequence of strings or os.PathLike and not a string, all of which must be
absolute paths. ValueError will be raised if something other than an absolute path is passed.

8.2.5 Globals

zoneinfo.TZPATH

A read-only sequence representing the time zone search path – when constructing a ZoneInfo from a key,
the key is joined to each entry in the TZPATH, and the first file found is used.

TZPATH may contain only absolute paths, never relative paths, regardless of how it is configured.

The object that zoneinfo.TZPATH points to may change in response to a call to reset_tzpath(), so it
is recommended to use zoneinfo.TZPATH rather than importing TZPATH from zoneinfo or assigning a
long-lived variable to zoneinfo.TZPATH.

For more information on configuring the time zone search path, see Configuring the data sources.

244 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

8.2.6 Exceptions and warnings

exception zoneinfo.ZoneInfoNotFoundError

Raised when construction of a ZoneInfo object fails because the specified key could not be found on the
system. This is a subclass of KeyError.

exception zoneinfo.InvalidTZPathWarning

Raised when PYTHONTZPATH contains an invalid component that will be filtered out, such as a relative path.

8.3 calendar— General calendar-related functions

Source code: Lib/calendar.py

This module allows you to output calendars like the Unix cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the last
(the European convention). Use setfirstweekday() to set the first day of the week to Sunday (6) or to any other
weekday. Parameters that specify dates are given as integers. For related functionality, see also the datetime and
time modules.

The functions and classes defined in this module use an idealized calendar, the current Gregorian calendar extended
indefinitely in both directions. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and
Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all computations. Zero and negative years
are interpreted as prescribed by the ISO 8601 standard. Year 0 is 1 BC, year -1 is 2 BC, and so on.

class calendar.Calendar(firstweekday=0)
Creates a Calendar object. firstweekday is an integer specifying the first day of the week. MONDAY is 0 (the
default), SUNDAY is 6.

A Calendar object provides several methods that can be used for preparing the calendar data for formatting.
This class doesn’t do any formatting itself. This is the job of subclasses.

Calendar instances have the following methods:

iterweekdays()

Return an iterator for the week day numbers that will be used for one week. The first value from the
iterator will be the same as the value of the firstweekday property.

itermonthdates(year, month)

Return an iterator for the month month (1–12) in the year year. This iterator will return all days (as
datetime.date objects) for the month and all days before the start of the month or after the end of
the month that are required to get a complete week.

itermonthdays(year, month)

Return an iterator for themonthmonth in the year year similar to itermonthdates(), but not restricted
by the datetime.date range. Days returned will simply be day of the month numbers. For the days
outside of the specified month, the day number is 0.

itermonthdays2(year, month)
Return an iterator for themonthmonth in the year year similar to itermonthdates(), but not restricted
by the datetime.date range. Days returned will be tuples consisting of a day of the month number
and a week day number.

itermonthdays3(year, month)

Return an iterator for themonthmonth in the year year similar to itermonthdates(), but not restricted
by the datetime.date range. Days returned will be tuples consisting of a year, a month and a day of
the month numbers.

Added in version 3.7.

8.3. calendar— General calendar-related functions 245

https://github.com/python/cpython/tree/3.13/Lib/calendar.py

The Python Library Reference, Release 3.13.1

itermonthdays4(year, month)
Return an iterator for themonthmonth in the year year similar to itermonthdates(), but not restricted
by the datetime.date range. Days returned will be tuples consisting of a year, a month, a day of the
month, and a day of the week numbers.

Added in version 3.7.

monthdatescalendar(year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime.date objects.

monthdays2calendar(year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven tuples
of day numbers and weekday numbers.

monthdayscalendar(year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven day
numbers.

yeardatescalendar(year, width=3)

Return the data for the specified year ready for formatting. The return value is a list of month rows. Each
month row contains up to width months (defaulting to 3). Each month contains between 4 and 6 weeks
and each week contains 1–7 days. Days are datetime.date objects.

yeardays2calendar(year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar()). Entries
in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this month are
zero.

yeardayscalendar(year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar()). Entries
in the week lists are day numbers. Day numbers outside this month are zero.

class calendar.TextCalendar(firstweekday=0)
This class can be used to generate plain text calendars.

TextCalendar instances have the following methods:

formatweek(theweek, w=0)
Return a single week in a string with no newline. If w is provided, it specifies the width of the date
columns, which are centered. Depends on the first weekday as specified in the constructor or set by the
setfirstweekday() method.

formatmonth(theyear, themonth, w=0, l=0)
Return amonth’s calendar in amulti-line string. Ifw is provided, it specifies thewidth of the date columns,
which are centered. If l is given, it specifies the number of lines that each week will use. Depends on the
first weekday as specified in the constructor or set by the setfirstweekday() method.

prmonth(theyear, themonth, w=0, l=0)
Print a month’s calendar as returned by formatmonth().

formatyear(theyear, w=2, l=1, c=6, m=3)

Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, l, and c
are for date column width, lines per week, and number of spaces between month columns, respectively.
Depends on the first weekday as specified in the constructor or set by the setfirstweekday()method.
The earliest year for which a calendar can be generated is platform-dependent.

pryear(theyear, w=2, l=1, c=6, m=3)

Print the calendar for an entire year as returned by formatyear().

246 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

class calendar.HTMLCalendar(firstweekday=0)
This class can be used to generate HTML calendars.

HTMLCalendar instances have the following methods:

formatmonth(theyear, themonth, withyear=True)

Return a month’s calendar as an HTML table. If withyear is true the year will be included in the header,
otherwise just the month name will be used.

formatyear(theyear, width=3)
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of months per
row.

formatyearpage(theyear, width=3, css=’calendar.css’, encoding=None)
Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number of
months per row. css is the name for the cascading style sheet to be used. None can be passed if no style
sheet should be used. encoding specifies the encoding to be used for the output (defaulting to the system
default encoding).

formatmonthname(theyear, themonth, withyear=True)

Return a month name as an HTML table row. If withyear is true the year will be included in the row,
otherwise just the month name will be used.

HTMLCalendar has the following attributes you can override to customize the CSS classes used by the calen-
dar:

cssclasses

A list of CSS classes used for each weekday. The default class list is:

cssclasses = ["mon", "tue", "wed", "thu", "fri", "sat", "sun"]

more styles can be added for each day:

cssclasses = ["mon text-bold", "tue", "wed", "thu", "fri", "sat", "sun red

↪→"]

Note that the length of this list must be seven items.

cssclass_noday

The CSS class for a weekday occurring in the previous or coming month.

Added in version 3.7.

cssclasses_weekday_head

A list of CSS classes used for weekday names in the header row. The default is the same as cssclasses.

Added in version 3.7.

cssclass_month_head

The month’s head CSS class (used by formatmonthname()). The default value is "month".

Added in version 3.7.

cssclass_month

The CSS class for the whole month’s table (used by formatmonth()). The default value is "month".

Added in version 3.7.

cssclass_year

TheCSS class for the whole year’s table of tables (used by formatyear()). The default value is "year".

Added in version 3.7.

8.3. calendar— General calendar-related functions 247

The Python Library Reference, Release 3.13.1

cssclass_year_head

The CSS class for the table head for the whole year (used by formatyear()). The default value is
"year".

Added in version 3.7.

Note that although the naming for the above described class attributes is singular (e.g. cssclass_month

cssclass_noday), one can replace the single CSS class with a space separated list of CSS classes, for ex-
ample:

"text-bold text-red"

Here is an example how HTMLCalendar can be customized:

class CustomHTMLCal(calendar.HTMLCalendar):

cssclasses = [style + " text-nowrap" for style in

calendar.HTMLCalendar.cssclasses]

cssclass_month_head = "text-center month-head"

cssclass_month = "text-center month"

cssclass_year = "text-italic lead"

class calendar.LocaleTextCalendar(firstweekday=0, locale=None)
This subclass of TextCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale.

class calendar.LocaleHTMLCalendar(firstweekday=0, locale=None)
This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale.

Note

The constructor, formatweekday() and formatmonthname() methods of these two classes temporarily
change the LC_TIME locale to the given locale. Because the current locale is a process-wide setting, they are
not thread-safe.

For simple text calendars this module provides the following functions.

calendar.setfirstweekday(weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For example, to set the first
weekday to Sunday:

import calendar

calendar.setfirstweekday(calendar.SUNDAY)

calendar.firstweekday()

Returns the current setting for the weekday to start each week.

calendar.isleap(year)
Returns True if year is a leap year, otherwise False.

calendar.leapdays(y1, y2)
Returns the number of leap years in the range from y1 to y2 (exclusive), where y1 and y2 are years.

This function works for ranges spanning a century change.

calendar.weekday(year, month, day)
Returns the day of the week (0 is Monday) for year (1970–…), month (1–12), day (1–31).

248 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

calendar.weekheader(n)
Return a header containing abbreviated weekday names. n specifies the width in characters for one weekday.

calendar.monthrange(year, month)
Returns weekday of first day of the month and number of days in month, for the specified year and month.

calendar.monthcalendar(year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month are
represented by zeros. Each week begins with Monday unless set by setfirstweekday().

calendar.prmonth(theyear, themonth, w=0, l=0)
Prints a month’s calendar as returned by month().

calendar.month(theyear, themonth, w=0, l=0)
Returns a month’s calendar in a multi-line string using the formatmonth() of the TextCalendar class.

calendar.prcal(year, w=0, l=0, c=6, m=3)
Prints the calendar for an entire year as returned by calendar().

calendar.calendar(year, w=2, l=1, c=6, m=3)
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear() of the
TextCalendar class.

calendar.timegm(tuple)
An unrelated but handy function that takes a time tuple such as returned by the gmtime() function in the
time module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In fact, time.gmtime() and timegm() are each others’ inverse.

The calendar module exports the following data attributes:

calendar.day_name

A sequence that represents the days of the week in the current locale, where Monday is day number 0.

>>> import calendar

>>> list(calendar.day_name)

['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']

calendar.day_abbr

A sequence that represents the abbreviated days of the week in the current locale, where Mon is day number
0.

>>> import calendar

>>> list(calendar.day_abbr)

['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

calendar.MONDAY

calendar.TUESDAY

calendar.WEDNESDAY

calendar.THURSDAY

calendar.FRIDAY

calendar.SATURDAY

calendar.SUNDAY

Aliases for the days of the week, where MONDAY is 0 and SUNDAY is 6.

Added in version 3.12.

class calendar.Day

Enumeration defining days of the week as integer constants. The members of this enumeration are exported
to the module scope as MONDAY through SUNDAY.

Added in version 3.12.

8.3. calendar— General calendar-related functions 249

The Python Library Reference, Release 3.13.1

calendar.month_name

A sequence that represents the months of the year in the current locale. This follows normal convention of
January being month number 1, so it has a length of 13 and month_name[0] is the empty string.

>>> import calendar

>>> list(calendar.month_name)

['', 'January', 'February', 'March', 'April', 'May', 'June', 'July', 'August',

↪→'September', 'October', 'November', 'December']

calendar.month_abbr

A sequence that represents the abbreviated months of the year in the current locale. This follows normal
convention of January being month number 1, so it has a length of 13 and month_abbr[0] is the empty
string.

>>> import calendar

>>> list(calendar.month_abbr)

['', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov

↪→', 'Dec']

calendar.JANUARY

calendar.FEBRUARY

calendar.MARCH

calendar.APRIL

calendar.MAY

calendar.JUNE

calendar.JULY

calendar.AUGUST

calendar.SEPTEMBER

calendar.OCTOBER

calendar.NOVEMBER

calendar.DECEMBER

Aliases for the months of the year, where JANUARY is 1 and DECEMBER is 12.

Added in version 3.12.

class calendar.Month

Enumeration defining months of the year as integer constants. The members of this enumeration are exported
to the module scope as JANUARY through DECEMBER.

Added in version 3.12.

The calendar module defines the following exceptions:

exception calendar.IllegalMonthError(month)

A subclass of ValueError, raised when the given month number is outside of the range 1-12 (inclusive).

month

The invalid month number.

exception calendar.IllegalWeekdayError(weekday)

A subclass of ValueError, raised when the given weekday number is outside of the range 0-6 (inclusive).

weekday

The invalid weekday number.

See also

250 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

Module datetime
Object-oriented interface to dates and times with similar functionality to the time module.

Module time
Low-level time related functions.

8.3.1 Command-Line Usage

Added in version 2.5.

The calendar module can be executed as a script from the command line to interactively print a calendar.

python -m calendar [-h] [-L LOCALE] [-e ENCODING] [-t {text,html}]

[-w WIDTH] [-l LINES] [-s SPACING] [-m MONTHS] [-c CSS]

[-f FIRST_WEEKDAY] [year] [month]

For example, to print a calendar for the year 2000:

$ python -m calendar 2000

2000

January February March

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

1 2 1 2 3 4 5 6 1 2 3 4 5

3 4 5 6 7 8 9 7 8 9 10 11 12 13 6 7 8 9 10 11 12

10 11 12 13 14 15 16 14 15 16 17 18 19 20 13 14 15 16 17 18 19

17 18 19 20 21 22 23 21 22 23 24 25 26 27 20 21 22 23 24 25 26

24 25 26 27 28 29 30 28 29 27 28 29 30 31

31

April May June

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

1 2 1 2 3 4 5 6 7 1 2 3 4

3 4 5 6 7 8 9 8 9 10 11 12 13 14 5 6 7 8 9 10 11

10 11 12 13 14 15 16 15 16 17 18 19 20 21 12 13 14 15 16 17 18

17 18 19 20 21 22 23 22 23 24 25 26 27 28 19 20 21 22 23 24 25

24 25 26 27 28 29 30 29 30 31 26 27 28 29 30

July August September

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

1 2 1 2 3 4 5 6 1 2 3

3 4 5 6 7 8 9 7 8 9 10 11 12 13 4 5 6 7 8 9 10

10 11 12 13 14 15 16 14 15 16 17 18 19 20 11 12 13 14 15 16 17

17 18 19 20 21 22 23 21 22 23 24 25 26 27 18 19 20 21 22 23 24

24 25 26 27 28 29 30 28 29 30 31 25 26 27 28 29 30

31

October November December

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

1 1 2 3 4 5 1 2 3

2 3 4 5 6 7 8 6 7 8 9 10 11 12 4 5 6 7 8 9 10

9 10 11 12 13 14 15 13 14 15 16 17 18 19 11 12 13 14 15 16 17

16 17 18 19 20 21 22 20 21 22 23 24 25 26 18 19 20 21 22 23 24

23 24 25 26 27 28 29 27 28 29 30 25 26 27 28 29 30 31

30 31

The following options are accepted:

8.3. calendar— General calendar-related functions 251

The Python Library Reference, Release 3.13.1

--help, -h

Show the help message and exit.

--locale LOCALE, -L LOCALE

The locale to use for month and weekday names. Defaults to English.

--encoding ENCODING, -e ENCODING

The encoding to use for output. --encoding is required if --locale is set.

--type {text,html}, -t {text,html}

Print the calendar to the terminal as text, or as an HTML document.

--first-weekday FIRST_WEEKDAY, -f FIRST_WEEKDAY

The weekday to start each week. Must be a number between 0 (Monday) and 6 (Sunday). Defaults to 0.

Added in version 3.13.

year

The year to print the calendar for. Defaults to the current year.

month

The month of the specified year to print the calendar for. Must be a number between 1 and 12, and may only
be used in text mode. Defaults to printing a calendar for the full year.

Text-mode options:

--width WIDTH, -w WIDTH

The width of the date column in terminal columns. The date is printed centred in the column. Any value lower
than 2 is ignored. Defaults to 2.

--lines LINES, -l LINES

The number of lines for each week in terminal rows. The date is printed top-aligned. Any value lower than 1
is ignored. Defaults to 1.

--spacing SPACING, -s SPACING

The space between months in columns. Any value lower than 2 is ignored. Defaults to 6.

--months MONTHS, -m MONTHS

The number of months printed per row. Defaults to 3.

HTML-mode options:

--css CSS, -c CSS

The path of a CSS stylesheet to use for the calendar. This must either be relative to the generated HTML, or
an absolute HTTP or file:/// URL.

8.4 collections— Container datatypes

Source code: Lib/collections/__init__.py

This module implements specialized container datatypes providing alternatives to Python’s general purpose built-in
containers, dict, list, set, and tuple.

252 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.13/Lib/collections/__init__.py

The Python Library Reference, Release 3.13.1

namedtuple() factory function for creating tuple subclasses with named fields
deque list-like container with fast appends and pops on either end
ChainMap dict-like class for creating a single view of multiple mappings
Counter dict subclass for counting hashable objects
OrderedDict dict subclass that remembers the order entries were added
defaultdict dict subclass that calls a factory function to supply missing values
UserDict wrapper around dictionary objects for easier dict subclassing
UserList wrapper around list objects for easier list subclassing
UserString wrapper around string objects for easier string subclassing

8.4.1 ChainMap objects

Added in version 3.3.

A ChainMap class is provided for quickly linking a number of mappings so they can be treated as a single unit. It is
often much faster than creating a new dictionary and running multiple update() calls.

The class can be used to simulate nested scopes and is useful in templating.

class collections.ChainMap(*maps)
A ChainMap groups multiple dicts or other mappings together to create a single, updateable view. If no maps
are specified, a single empty dictionary is provided so that a new chain always has at least one mapping.

The underlying mappings are stored in a list. That list is public and can be accessed or updated using the maps
attribute. There is no other state.

Lookups search the underlying mappings successively until a key is found. In contrast, writes, updates, and
deletions only operate on the first mapping.

A ChainMap incorporates the underlying mappings by reference. So, if one of the underlying mappings gets
updated, those changes will be reflected in ChainMap.

All of the usual dictionary methods are supported. In addition, there is a maps attribute, a method for creating
new subcontexts, and a property for accessing all but the first mapping:

maps

A user updateable list of mappings. The list is ordered from first-searched to last-searched. It is the only
stored state and can be modified to change which mappings are searched. The list should always contain
at least one mapping.

new_child(m=None, **kwargs)
Returns a new ChainMap containing a new map followed by all of the maps in the current instance. If m
is specified, it becomes the new map at the front of the list of mappings; if not specified, an empty dict is
used, so that a call to d.new_child() is equivalent to: ChainMap({}, *d.maps). If any keyword
arguments are specified, they update passed map or new empty dict. This method is used for creating
subcontexts that can be updated without altering values in any of the parent mappings.

Changed in version 3.4: The optional m parameter was added.

Changed in version 3.10: Keyword arguments support was added.

parents

Property returning a new ChainMap containing all of the maps in the current instance except the first one.
This is useful for skipping the first map in the search. Use cases are similar to those for the nonlocal
keyword used in nested scopes. The use cases also parallel those for the built-in super() function. A
reference to d.parents is equivalent to: ChainMap(*d.maps[1:]).

Note, the iteration order of a ChainMap is determined by scanning the mappings last to first:

>>> baseline = {'music': 'bach', 'art': 'rembrandt'}

>>> adjustments = {'art': 'van gogh', 'opera': 'carmen'}

(continues on next page)

8.4. collections— Container datatypes 253

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> list(ChainMap(adjustments, baseline))

['music', 'art', 'opera']

This gives the same ordering as a series of dict.update() calls starting with the last mapping:

>>> combined = baseline.copy()

>>> combined.update(adjustments)

>>> list(combined)

['music', 'art', 'opera']

Changed in version 3.9: Added support for | and |= operators, specified in PEP 584.

See also

• TheMultiContext class in the Enthought CodeTools package has options to support writing to any mapping
in the chain.

• Django’s Context class for templating is a read-only chain of mappings. It also features pushing and popping
of contexts similar to the new_child() method and the parents property.

• The Nested Contexts recipe has options to control whether writes and other mutations apply only to the
first mapping or to any mapping in the chain.

• A greatly simplified read-only version of Chainmap.

ChainMap Examples and Recipes

This section shows various approaches to working with chained maps.

Example of simulating Python’s internal lookup chain:

import builtins

pylookup = ChainMap(locals(), globals(), vars(builtins))

Example of letting user specified command-line arguments take precedence over environment variables which in turn
take precedence over default values:

import os, argparse

defaults = {'color': 'red', 'user': 'guest'}

parser = argparse.ArgumentParser()

parser.add_argument('-u', '--user')

parser.add_argument('-c', '--color')

namespace = parser.parse_args()

command_line_args = {k: v for k, v in vars(namespace).items() if v is not None}

combined = ChainMap(command_line_args, os.environ, defaults)

print(combined['color'])

print(combined['user'])

Example patterns for using the ChainMap class to simulate nested contexts:

c = ChainMap() # Create root context

d = c.new_child() # Create nested child context

e = c.new_child() # Child of c, independent from d

e.maps[0] # Current context dictionary -- like Python's locals()

e.maps[-1] # Root context -- like Python's globals()

(continues on next page)

254 Chapter 8. Data Types

https://peps.python.org/pep-0584/
https://github.com/enthought/codetools/blob/4.0.0/codetools/contexts/multi_context.py
https://github.com/enthought/codetools
https://github.com/django/django/blob/main/django/template/context.py
https://code.activestate.com/recipes/577434-nested-contexts-a-chain-of-mapping-objects/
https://code.activestate.com/recipes/305268/

The Python Library Reference, Release 3.13.1

(continued from previous page)

e.parents # Enclosing context chain -- like Python's nonlocals

d['x'] = 1 # Set value in current context

d['x'] # Get first key in the chain of contexts

del d['x'] # Delete from current context

list(d) # All nested values

k in d # Check all nested values

len(d) # Number of nested values

d.items() # All nested items

dict(d) # Flatten into a regular dictionary

The ChainMap class only makes updates (writes and deletions) to the first mapping in the chain while lookups will
search the full chain. However, if deep writes and deletions are desired, it is easy to make a subclass that updates
keys found deeper in the chain:

class DeepChainMap(ChainMap):

'Variant of ChainMap that allows direct updates to inner scopes'

def __setitem__(self, key, value):

for mapping in self.maps:

if key in mapping:

mapping[key] = value

return

self.maps[0][key] = value

def __delitem__(self, key):

for mapping in self.maps:

if key in mapping:

del mapping[key]

return

raise KeyError(key)

>>> d = DeepChainMap({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})

>>> d['lion'] = 'orange' # update an existing key two levels down

>>> d['snake'] = 'red' # new keys get added to the topmost dict

>>> del d['elephant'] # remove an existing key one level down

>>> d # display result

DeepChainMap({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})

8.4.2 Counter objects

A counter tool is provided to support convenient and rapid tallies. For example:

>>> # Tally occurrences of words in a list

>>> cnt = Counter()

>>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:

... cnt[word] += 1

...

>>> cnt

Counter({'blue': 3, 'red': 2, 'green': 1})

>>> # Find the ten most common words in Hamlet

>>> import re

>>> words = re.findall(r'\w+', open('hamlet.txt').read().lower())

>>> Counter(words).most_common(10)

[('the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),

(continues on next page)

8.4. collections— Container datatypes 255

The Python Library Reference, Release 3.13.1

(continued from previous page)

('you', 554), ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]

class collections.Counter([iterable-or-mapping])
A Counter is a dict subclass for counting hashable objects. It is a collection where elements are stored as
dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any integer value
including zero or negative counts. The Counter class is similar to bags or multisets in other languages.

Elements are counted from an iterable or initialized from another mapping (or counter):

>>> c = Counter() # a new, empty counter

>>> c = Counter('gallahad') # a new counter from an iterable

>>> c = Counter({'red': 4, 'blue': 2}) # a new counter from a mapping

>>> c = Counter(cats=4, dogs=8) # a new counter from keyword args

Counter objects have a dictionary interface except that they return a zero count for missing items instead of
raising a KeyError:

>>> c = Counter(['eggs', 'ham'])

>>> c['bacon'] # count of a missing element is␣

↪→zero

0

Setting a count to zero does not remove an element from a counter. Use del to remove it entirely:

>>> c['sausage'] = 0 # counter entry with a zero count

>>> del c['sausage'] # del actually removes the entry

Added in version 3.1.

Changed in version 3.7: As a dict subclass, Counter inherited the capability to remember insertion order.
Math operations on Counter objects also preserve order. Results are ordered according to when an element is
first encountered in the left operand and then by the order encountered in the right operand.

Counter objects support additional methods beyond those available for all dictionaries:

elements()

Return an iterator over elements repeating each as many times as its count. Elements are returned in the
order first encountered. If an element’s count is less than one, elements() will ignore it.

>>> c = Counter(a=4, b=2, c=0, d=-2)

>>> sorted(c.elements())

['a', 'a', 'a', 'a', 'b', 'b']

most_common([n])
Return a list of the nmost common elements and their counts from the most common to the least. If n is
omitted or None, most_common() returns all elements in the counter. Elements with equal counts are
ordered in the order first encountered:

>>> Counter('abracadabra').most_common(3)

[('a', 5), ('b', 2), ('r', 2)]

subtract([iterable-or-mapping])
Elements are subtracted from an iterable or from another mapping (or counter). Like dict.update()
but subtracts counts instead of replacing them. Both inputs and outputs may be zero or negative.

>>> c = Counter(a=4, b=2, c=0, d=-2)

>>> d = Counter(a=1, b=2, c=3, d=4)

>>> c.subtract(d)

(continues on next page)

256 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> c

Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})

Added in version 3.2.

total()

Compute the sum of the counts.

>>> c = Counter(a=10, b=5, c=0)

>>> c.total()

15

Added in version 3.10.

The usual dictionary methods are available for Counter objects except for two which work differently for
counters.

fromkeys(iterable)

This class method is not implemented for Counter objects.

update([iterable-or-mapping])
Elements are counted from an iterable or added-in from another mapping (or counter). Like dict.
update() but adds counts instead of replacing them. Also, the iterable is expected to be a sequence of
elements, not a sequence of (key, value) pairs.

Counters support rich comparison operators for equality, subset, and superset relationships: ==, !=, <, <=, >, >=.
All of those tests treat missing elements as having zero counts so that Counter(a=1) == Counter(a=1, b=0)

returns true.

Changed in version 3.10: Rich comparison operations were added.

Changed in version 3.10: In equality tests, missing elements are treated as having zero counts. Formerly,
Counter(a=3) and Counter(a=3, b=0) were considered distinct.

Common patterns for working with Counter objects:

c.total() # total of all counts

c.clear() # reset all counts

list(c) # list unique elements

set(c) # convert to a set

dict(c) # convert to a regular dictionary

c.items() # access the (elem, cnt) pairs

Counter(dict(list_of_pairs)) # convert from a list of (elem, cnt) pairs

c.most_common()[:-n-1:-1] # n least common elements

+c # remove zero and negative counts

Several mathematical operations are provided for combining Counter objects to produce multisets (counters that
have counts greater than zero). Addition and subtraction combine counters by adding or subtracting the counts
of corresponding elements. Intersection and union return the minimum and maximum of corresponding counts.
Equality and inclusion compare corresponding counts. Each operation can accept inputs with signed counts, but the
output will exclude results with counts of zero or less.

>>> c = Counter(a=3, b=1)

>>> d = Counter(a=1, b=2)

>>> c + d # add two counters together: c[x] + d[x]

Counter({'a': 4, 'b': 3})

>>> c - d # subtract (keeping only positive counts)

Counter({'a': 2})

>>> c & d # intersection: min(c[x], d[x])

Counter({'a': 1, 'b': 1})

(continues on next page)

8.4. collections— Container datatypes 257

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> c | d # union: max(c[x], d[x])

Counter({'a': 3, 'b': 2})

>>> c == d # equality: c[x] == d[x]

False

>>> c <= d # inclusion: c[x] <= d[x]

False

Unary addition and subtraction are shortcuts for adding an empty counter or subtracting from an empty counter.

>>> c = Counter(a=2, b=-4)

>>> +c

Counter({'a': 2})

>>> -c

Counter({'b': 4})

Added in version 3.3: Added support for unary plus, unary minus, and in-place multiset operations.

Note

Counters were primarily designed to work with positive integers to represent running counts; however, care was
taken to not unnecessarily preclude use cases needing other types or negative values. To help with those use
cases, this section documents the minimum range and type restrictions.

• The Counter class itself is a dictionary subclass with no restrictions on its keys and values. The values
are intended to be numbers representing counts, but you could store anything in the value field.

• The most_common() method requires only that the values be orderable.

• For in-place operations such as c[key] += 1, the value type need only support addition and subtraction.
So fractions, floats, and decimals would work and negative values are supported. The same is also true for
update() and subtract() which allow negative and zero values for both inputs and outputs.

• The multiset methods are designed only for use cases with positive values. The inputs may be negative or
zero, but only outputs with positive values are created. There are no type restrictions, but the value type
needs to support addition, subtraction, and comparison.

• The elements() method requires integer counts. It ignores zero and negative counts.

See also

• Bag class in Smalltalk.

• Wikipedia entry for Multisets.

• C++ multisets tutorial with examples.

• For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer
Programming Volume II, Section 4.6.3, Exercise 19.

• To enumerate all distinct multisets of a given size over a given set of elements, see itertools.

combinations_with_replacement():

map(Counter, combinations_with_replacement('ABC', 2)) # --> AA AB AC BB BC␣

↪→CC

258 Chapter 8. Data Types

https://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
https://en.wikipedia.org/wiki/Multiset
http://www.java2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm

The Python Library Reference, Release 3.13.1

8.4.3 deque objects

class collections.deque([iterable[, maxlen]])
Returns a new deque object initialized left-to-right (using append()) with data from iterable. If iterable is not
specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the deque
with approximately the same O(1) performance in either direction.

Though list objects support similar operations, they are optimized for fast fixed-length operations and incur
O(n) memory movement costs for pop(0) and insert(0, v) operations which change both the size and
position of the underlying data representation.

Ifmaxlen is not specified or is None, deques may grow to an arbitrary length. Otherwise, the deque is bounded
to the specified maximum length. Once a bounded length deque is full, when new items are added, a corre-
sponding number of items are discarded from the opposite end. Bounded length deques provide functionality
similar to the tail filter in Unix. They are also useful for tracking transactions and other pools of data where
only the most recent activity is of interest.

Deque objects support the following methods:

append(x)

Add x to the right side of the deque.

appendleft(x)
Add x to the left side of the deque.

clear()

Remove all elements from the deque leaving it with length 0.

copy()

Create a shallow copy of the deque.

Added in version 3.5.

count(x)
Count the number of deque elements equal to x.

Added in version 3.2.

extend(iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft(iterable)

Extend the left side of the deque by appending elements from iterable. Note, the series of left appends
results in reversing the order of elements in the iterable argument.

index(x[, start[, stop]])
Return the position of x in the deque (at or after index start and before index stop). Returns the first
match or raises ValueError if not found.

Added in version 3.5.

insert(i, x)
Insert x into the deque at position i.

If the insertion would cause a bounded deque to grow beyond maxlen, an IndexError is raised.

Added in version 3.5.

pop()

Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError.

8.4. collections— Container datatypes 259

The Python Library Reference, Release 3.13.1

popleft()

Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError.

remove(value)
Remove the first occurrence of value. If not found, raises a ValueError.

reverse()

Reverse the elements of the deque in-place and then return None.

Added in version 3.2.

rotate(n=1)
Rotate the deque n steps to the right. If n is negative, rotate to the left.

When the deque is not empty, rotating one step to the right is equivalent to d.appendleft(d.pop()),
and rotating one step to the left is equivalent to d.append(d.popleft()).

Deque objects also provide one read-only attribute:

maxlen

Maximum size of a deque or None if unbounded.

Added in version 3.1.

In addition to the above, deques support iteration, pickling, len(d), reversed(d), copy.copy(d), copy.
deepcopy(d), membership testing with the in operator, and subscript references such as d[0] to access the first
element. Indexed access isO(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

Starting in version 3.5, deques support __add__(), __mul__(), and __imul__().

Example:

>>> from collections import deque

>>> d = deque('ghi') # make a new deque with three items

>>> for elem in d: # iterate over the deque's elements

... print(elem.upper())

G

H

I

>>> d.append('j') # add a new entry to the right side

>>> d.appendleft('f') # add a new entry to the left side

>>> d # show the representation of the deque

deque(['f', 'g', 'h', 'i', 'j'])

>>> d.pop() # return and remove the rightmost item

'j'

>>> d.popleft() # return and remove the leftmost item

'f'

>>> list(d) # list the contents of the deque

['g', 'h', 'i']

>>> d[0] # peek at leftmost item

'g'

>>> d[-1] # peek at rightmost item

'i'

>>> list(reversed(d)) # list the contents of a deque in reverse

['i', 'h', 'g']

>>> 'h' in d # search the deque

True

>>> d.extend('jkl') # add multiple elements at once

(continues on next page)

260 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> d

deque(['g', 'h', 'i', 'j', 'k', 'l'])

>>> d.rotate(1) # right rotation

>>> d

deque(['l', 'g', 'h', 'i', 'j', 'k'])

>>> d.rotate(-1) # left rotation

>>> d

deque(['g', 'h', 'i', 'j', 'k', 'l'])

>>> deque(reversed(d)) # make a new deque in reverse order

deque(['l', 'k', 'j', 'i', 'h', 'g'])

>>> d.clear() # empty the deque

>>> d.pop() # cannot pop from an empty deque

Traceback (most recent call last):

File "<pyshell#6>", line 1, in -toplevel-

d.pop()

IndexError: pop from an empty deque

>>> d.extendleft('abc') # extendleft() reverses the input order

>>> d

deque(['c', 'b', 'a'])

deque Recipes

This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the tail filter in Unix:

def tail(filename, n=10):

'Return the last n lines of a file'

with open(filename) as f:

return deque(f, n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right
and popping to the left:

def moving_average(iterable, n=3):

moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0

https://en.wikipedia.org/wiki/Moving_average

it = iter(iterable)

d = deque(itertools.islice(it, n-1))

d.appendleft(0)

s = sum(d)

for elem in it:

s += elem - d.popleft()

d.append(elem)

yield s / n

A round-robin scheduler can be implemented with input iterators stored in a deque. Values are yielded from the
active iterator in position zero. If that iterator is exhausted, it can be removed with popleft(); otherwise, it can be
cycled back to the end with the rotate() method:

def roundrobin(*iterables):

"roundrobin('ABC', 'D', 'EF') --> A D E B F C"

iterators = deque(map(iter, iterables))

while iterators:

try:

(continues on next page)

8.4. collections— Container datatypes 261

https://en.wikipedia.org/wiki/Round-robin_scheduling

The Python Library Reference, Release 3.13.1

(continued from previous page)

while True:

yield next(iterators[0])

iterators.rotate(-1)

except StopIteration:

Remove an exhausted iterator.

iterators.popleft()

The rotate() method provides a way to implement deque slicing and deletion. For example, a pure Python
implementation of del d[n] relies on the rotate() method to position elements to be popped:

def delete_nth(d, n):

d.rotate(-n)

d.popleft()

d.rotate(n)

To implement deque slicing, use a similar approach applying rotate() to bring a target element to the left side
of the deque. Remove old entries with popleft(), add new entries with extend(), and then reverse the rotation.
With minor variations on that approach, it is easy to implement Forth style stack manipulations such as dup, drop,
swap, over, pick, rot, and roll.

8.4.4 defaultdict objects

class collections.defaultdict(default_factory=None, /[, ...])
Return a new dictionary-like object. defaultdict is a subclass of the built-in dict class. It overrides one
method and adds one writable instance variable. The remaining functionality is the same as for the dict class
and is not documented here.

The first argument provides the initial value for the default_factory attribute; it defaults to None. All
remaining arguments are treated the same as if they were passed to the dict constructor, including keyword
arguments.

defaultdict objects support the following method in addition to the standard dict operations:

__missing__(key)
If the default_factory attribute is None, this raises a KeyError exception with the key as argument.

If default_factory is not None, it is called without arguments to provide a default value for the given
key, this value is inserted in the dictionary for the key, and returned.

If calling default_factory raises an exception this exception is propagated unchanged.

This method is called by the __getitem__() method of the dict class when the requested key is not
found; whatever it returns or raises is then returned or raised by __getitem__().

Note that __missing__() is not called for any operations besides __getitem__(). This means that
get() will, like normal dictionaries, return None as a default rather than using default_factory.

defaultdict objects support the following instance variable:

default_factory

This attribute is used by the __missing__() method; it is initialized from the first argument to the
constructor, if present, or to None, if absent.

Changed in version 3.9: Added merge (|) and update (|=) operators, specified in PEP 584.

defaultdict Examples

Using list as the default_factory, it is easy to group a sequence of key-value pairs into a dictionary of lists:

262 Chapter 8. Data Types

https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.13.1

>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]

>>> d = defaultdict(list)

>>> for k, v in s:

... d[k].append(v)

...

>>> sorted(d.items())

[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created
using the default_factory function which returns an empty list. The list.append() operation then attaches
the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the list for that
key) and the list.append() operation adds another value to the list. This technique is simpler and faster than an
equivalent technique using dict.setdefault():

>>> d = {}

>>> for k, v in s:

... d.setdefault(k, []).append(v)

...

>>> sorted(d.items())

[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

Setting the default_factory to intmakes the defaultdict useful for counting (like a bag or multiset in other
languages):

>>> s = 'mississippi'

>>> d = defaultdict(int)

>>> for k in s:

... d[k] += 1

...

>>> sorted(d.items())

[('i', 4), ('m', 1), ('p', 2), ('s', 4)]

When a letter is first encountered, it is missing from the mapping, so the default_factory function calls int()
to supply a default count of zero. The increment operation then builds up the count for each letter.

The function int() which always returns zero is just a special case of constant functions. A faster and more flexible
way to create constant functions is to use a lambda function which can supply any constant value (not just zero):

>>> def constant_factory(value):

... return lambda: value

...

>>> d = defaultdict(constant_factory('<missing>'))

>>> d.update(name='John', action='ran')

>>> '%(name)s %(action)s to %(object)s' % d

'John ran to <missing>'

Setting the default_factory to set makes the defaultdict useful for building a dictionary of sets:

>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]

>>> d = defaultdict(set)

>>> for k, v in s:

... d[k].add(v)

...

>>> sorted(d.items())

[('blue', {2, 4}), ('red', {1, 3})]

8.4. collections— Container datatypes 263

The Python Library Reference, Release 3.13.1

8.4.5 namedtuple() Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code. They
can be used wherever regular tuples are used, and they add the ability to access fields by name instead of position
index.

collections.namedtuple(typename, field_names, *, rename=False, defaults=None, module=None)
Returns a new tuple subclass named typename. The new subclass is used to create tuple-like objects that have
fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass also have
a helpful docstring (with typename and field_names) and a helpful __repr__() method which lists the tuple
contents in a name=value format.

The field_names are a sequence of strings such as ['x', 'y']. Alternatively, field_names can be a single
string with each fieldname separated by whitespace and/or commas, for example 'x y' or 'x, y'.

Any valid Python identifier may be used for a fieldname except for names starting with an underscore. Valid
identifiers consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be a
keyword such as class, for, return, global, pass, or raise.

If rename is true, invalid fieldnames are automatically replaced with positional names. For example, ['abc',
'def', 'ghi', 'abc'] is converted to ['abc', '_1', 'ghi', '_3'], eliminating the keyword def
and the duplicate fieldname abc.

defaults can be None or an iterable of default values. Since fields with a default value must come after any
fields without a default, the defaults are applied to the rightmost parameters. For example, if the fieldnames
are ['x', 'y', 'z'] and the defaults are (1, 2), then x will be a required argument, y will default to 1,
and z will default to 2.

If module is defined, the __module__ attribute of the named tuple is set to that value.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more
memory than regular tuples.

To support pickling, the named tuple class should be assigned to a variable that matches typename.

Changed in version 3.1: Added support for rename.

Changed in version 3.6: The verbose and rename parameters became keyword-only arguments.

Changed in version 3.6: Added the module parameter.

Changed in version 3.7: Removed the verbose parameter and the _source attribute.

Changed in version 3.7: Added the defaults parameter and the _field_defaults attribute.

>>> # Basic example

>>> Point = namedtuple('Point', ['x', 'y'])

>>> p = Point(11, y=22) # instantiate with positional or keyword arguments

>>> p[0] + p[1] # indexable like the plain tuple (11, 22)

33

>>> x, y = p # unpack like a regular tuple

>>> x, y

(11, 22)

>>> p.x + p.y # fields also accessible by name

33

>>> p # readable __repr__ with a name=value style

Point(x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sqlite3modules:

EmployeeRecord = namedtuple('EmployeeRecord', 'name, age, title, department,␣

↪→paygrade')

import csv

(continues on next page)

264 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):

print(emp.name, emp.title)

import sqlite3

conn = sqlite3.connect('/companydata')

cursor = conn.cursor()

cursor.execute('SELECT name, age, title, department, paygrade FROM employees')

for emp in map(EmployeeRecord._make, cursor.fetchall()):

print(emp.name, emp.title)

In addition to the methods inherited from tuples, named tuples support three additional methods and two attributes.
To prevent conflicts with field names, the method and attribute names start with an underscore.

classmethod somenamedtuple._make(iterable)
Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11, 22]

>>> Point._make(t)

Point(x=11, y=22)

somenamedtuple._asdict()

Return a new dict which maps field names to their corresponding values:

>>> p = Point(x=11, y=22)

>>> p._asdict()

{'x': 11, 'y': 22}

Changed in version 3.1: Returns an OrderedDict instead of a regular dict.

Changed in version 3.8: Returns a regular dict instead of an OrderedDict. As of Python 3.7, regular dicts
are guaranteed to be ordered. If the extra features of OrderedDict are required, the suggested remediation
is to cast the result to the desired type: OrderedDict(nt._asdict()).

somenamedtuple._replace(**kwargs)
Return a new instance of the named tuple replacing specified fields with new values:

>>> p = Point(x=11, y=22)

>>> p._replace(x=33)

Point(x=33, y=22)

>>> for partnum, record in inventory.items():

... inventory[partnum] = record._replace(price=newprices[partnum],␣

↪→timestamp=time.now())

Named tuples are also supported by generic function copy.replace().

Changed in version 3.13: Raise TypeError instead of ValueError for invalid keyword arguments.

somenamedtuple._fields

Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types from
existing named tuples.

>>> p._fields # view the field names

('x', 'y')

>>> Color = namedtuple('Color', 'red green blue')

>>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)

>>> Pixel(11, 22, 128, 255, 0)

Pixel(x=11, y=22, red=128, green=255, blue=0)

8.4. collections— Container datatypes 265

The Python Library Reference, Release 3.13.1

somenamedtuple._field_defaults

Dictionary mapping field names to default values.

>>> Account = namedtuple('Account', ['type', 'balance'], defaults=[0])

>>> Account._field_defaults

{'balance': 0}

>>> Account('premium')

Account(type='premium', balance=0)

To retrieve a field whose name is stored in a string, use the getattr() function:

>>> getattr(p, 'x')

11

To convert a dictionary to a named tuple, use the double-star-operator (as described in tut-unpacking-arguments):

>>> d = {'x': 11, 'y': 22}

>>> Point(**d)

Point(x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is how
to add a calculated field and a fixed-width print format:

>>> class Point(namedtuple('Point', ['x', 'y'])):

... __slots__ = ()

... @property

... def hypot(self):

... return (self.x ** 2 + self.y ** 2) ** 0.5

... def __str__(self):

... return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.

↪→hypot)

>>> for p in Point(3, 4), Point(14, 5/7):

... print(p)

Point: x= 3.000 y= 4.000 hypot= 5.000

Point: x=14.000 y= 0.714 hypot=14.018

The subclass shown above sets __slots__ to an empty tuple. This helps keep memory requirements low by pre-
venting the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from the
_fields attribute:

>>> Point3D = namedtuple('Point3D', Point._fields + ('z',))

Docstrings can be customized by making direct assignments to the __doc__ fields:

>>> Book = namedtuple('Book', ['id', 'title', 'authors'])

>>> Book.__doc__ += ': Hardcover book in active collection'

>>> Book.id.__doc__ = '13-digit ISBN'

>>> Book.title.__doc__ = 'Title of first printing'

>>> Book.authors.__doc__ = 'List of authors sorted by last name'

Changed in version 3.5: Property docstrings became writeable.

See also

• See typing.NamedTuple for a way to add type hints for named tuples. It also provides an elegant notation
using the class keyword:

266 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

class Component(NamedTuple):

part_number: int

weight: float

description: Optional[str] = None

• See types.SimpleNamespace() for a mutable namespace based on an underlying dictionary instead of
a tuple.

• The dataclasses module provides a decorator and functions for automatically adding generated special
methods to user-defined classes.

8.4.6 OrderedDict objects

Ordered dictionaries are just like regular dictionaries but have some extra capabilities relating to ordering operations.
They have become less important now that the built-in dict class gained the ability to remember insertion order
(this new behavior became guaranteed in Python 3.7).

Some differences from dict still remain:

• The regular dictwas designed to be very good at mapping operations. Tracking insertion order was secondary.

• The OrderedDict was designed to be good at reordering operations. Space efficiency, iteration speed, and
the performance of update operations were secondary.

• The OrderedDict algorithm can handle frequent reordering operations better than dict. As shown in the
recipes below, this makes it suitable for implementing various kinds of LRU caches.

• The equality operation for OrderedDict checks for matching order.

A regular dict can emulate the order sensitive equality test with p == q and all(k1 == k2 for k1,

k2 in zip(p, q)).

• The popitem()method of OrderedDict has a different signature. It accepts an optional argument to specify
which item is popped.

A regular dict can emulate OrderedDict’s od.popitem(last=True) with d.popitem() which is guar-
anteed to pop the rightmost (last) item.

A regular dict can emulate OrderedDict’s od.popitem(last=False) with (k := next(iter(d)),

d.pop(k)) which will return and remove the leftmost (first) item if it exists.

• OrderedDict has a move_to_end() method to efficiently reposition an element to an endpoint.

A regular dict can emulate OrderedDict’s od.move_to_end(k, last=True) with d[k] = d.pop(k)

which will move the key and its associated value to the rightmost (last) position.

A regular dict does not have an efficient equivalent for OrderedDict’s od.move_to_end(k, last=False)

which moves the key and its associated value to the leftmost (first) position.

• Until Python 3.8, dict lacked a __reversed__() method.

class collections.OrderedDict([items])
Return an instance of a dict subclass that has methods specialized for rearranging dictionary order.

Added in version 3.1.

popitem(last=True)
The popitem() method for ordered dictionaries returns and removes a (key, value) pair. The pairs are
returned in LIFO order if last is true or FIFO (first-in, first-out) order if false.

move_to_end(key, last=True)
Move an existing key to either end of an ordered dictionary. The item is moved to the right end if last is
true (the default) or to the beginning if last is false. Raises KeyError if the key does not exist:

8.4. collections— Container datatypes 267

The Python Library Reference, Release 3.13.1

>>> d = OrderedDict.fromkeys('abcde')

>>> d.move_to_end('b')

>>> ''.join(d)

'acdeb'

>>> d.move_to_end('b', last=False)

>>> ''.join(d)

'bacde'

Added in version 3.2.

In addition to the usual mapping methods, ordered dictionaries also support reverse iteration using reversed().

Equality tests between OrderedDict objects are order-sensitive and are roughly equivalent to list(od1.

items())==list(od2.items()).

Equality tests between OrderedDict objects and other Mapping objects are order-insensitive like regular dictio-
naries. This allows OrderedDict objects to be substituted anywhere a regular dictionary is used.

Changed in version 3.5: The items, keys, and values views of OrderedDict now support reverse iteration using
reversed().

Changed in version 3.6: With the acceptance of PEP 468, order is retained for keyword arguments passed to the
OrderedDict constructor and its update() method.

Changed in version 3.9: Added merge (|) and update (|=) operators, specified in PEP 584.

OrderedDict Examples and Recipes

It is straightforward to create an ordered dictionary variant that remembers the order the keys were last inserted. If
a new entry overwrites an existing entry, the original insertion position is changed and moved to the end:

class LastUpdatedOrderedDict(OrderedDict):

'Store items in the order the keys were last added'

def __setitem__(self, key, value):

super().__setitem__(key, value)

self.move_to_end(key)

An OrderedDict would also be useful for implementing variants of functools.lru_cache():

from collections import OrderedDict

from time import time

class TimeBoundedLRU:

"LRU Cache that invalidates and refreshes old entries."

def __init__(self, func, maxsize=128, maxage=30):

self.cache = OrderedDict() # { args : (timestamp, result)}

self.func = func

self.maxsize = maxsize

self.maxage = maxage

def __call__(self, *args):

if args in self.cache:

self.cache.move_to_end(args)

timestamp, result = self.cache[args]

if time() - timestamp <= self.maxage:

return result

result = self.func(*args)

self.cache[args] = time(), result

(continues on next page)

268 Chapter 8. Data Types

https://peps.python.org/pep-0468/
https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.13.1

(continued from previous page)

if len(self.cache) > self.maxsize:

self.cache.popitem(last=False)

return result

class MultiHitLRUCache:

""" LRU cache that defers caching a result until

it has been requested multiple times.

To avoid flushing the LRU cache with one-time requests,

we don't cache until a request has been made more than once.

"""

def __init__(self, func, maxsize=128, maxrequests=4096, cache_after=1):

self.requests = OrderedDict() # { uncached_key : request_count }

self.cache = OrderedDict() # { cached_key : function_result }

self.func = func

self.maxrequests = maxrequests # max number of uncached requests

self.maxsize = maxsize # max number of stored return values

self.cache_after = cache_after

def __call__(self, *args):

if args in self.cache:

self.cache.move_to_end(args)

return self.cache[args]

result = self.func(*args)

self.requests[args] = self.requests.get(args, 0) + 1

if self.requests[args] <= self.cache_after:

self.requests.move_to_end(args)

if len(self.requests) > self.maxrequests:

self.requests.popitem(last=False)

else:

self.requests.pop(args, None)

self.cache[args] = result

if len(self.cache) > self.maxsize:

self.cache.popitem(last=False)

return result

8.4.7 UserDict objects

The class, UserDict acts as a wrapper around dictionary objects. The need for this class has been partially supplanted
by the ability to subclass directly from dict; however, this class can be easier to work with because the underlying
dictionary is accessible as an attribute.

class collections.UserDict([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via the data attribute of UserDict instances. If initialdata is provided, data is initialized with its contents;
note that a reference to initialdata will not be kept, allowing it to be used for other purposes.

In addition to supporting the methods and operations of mappings, UserDict instances provide the following
attribute:

data

A real dictionary used to store the contents of the UserDict class.

8.4. collections— Container datatypes 269

The Python Library Reference, Release 3.13.1

8.4.8 UserList objects

This class acts as a wrapper around list objects. It is a useful base class for your own list-like classes which can inherit
from them and override existing methods or add new ones. In this way, one can add new behaviors to lists.

The need for this class has been partially supplanted by the ability to subclass directly from list; however, this class
can be easier to work with because the underlying list is accessible as an attribute.

class collections.UserList([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data
attribute of UserList instances. The instance’s contents are initially set to a copy of list, defaulting to the
empty list []. list can be any iterable, for example a real Python list or a UserList object.

In addition to supporting the methods and operations of mutable sequences, UserList instances provide the
following attribute:

data

A real list object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expected to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance
of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter,
which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class
will need to be overridden; please consult the sources for information about the methods which need to be provided
in that case.

8.4.9 UserString objects

The class, UserString acts as a wrapper around string objects. The need for this class has been partially supplanted
by the ability to subclass directly from str; however, this class can be easier to work with because the underlying
string is accessible as an attribute.

class collections.UserString(seq)
Class that simulates a string object. The instance’s content is kept in a regular string object, which is accessible
via the data attribute of UserString instances. The instance’s contents are initially set to a copy of seq. The
seq argument can be any object which can be converted into a string using the built-in str() function.

In addition to supporting the methods and operations of strings, UserString instances provide the following
attribute:

data

A real str object used to store the contents of the UserString class.

Changed in version 3.5: New methods __getnewargs__, __rmod__, casefold, format_map,
isprintable, and maketrans.

8.5 collections.abc— Abstract Base Classes for Containers

Added in version 3.3: Formerly, this module was part of the collections module.

Source code: Lib/_collections_abc.py

This module provides abstract base classes that can be used to test whether a class provides a particular interface; for
example, whether it is hashable or whether it is a mapping.

An issubclass() or isinstance() test for an interface works in one of three ways.

1) A newly written class can inherit directly from one of the abstract base classes. The class must supply the required
abstract methods. The remaining mixin methods come from inheritance and can be overridden if desired. Other
methods may be added as needed:

270 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.13/Lib/_collections_abc.py

The Python Library Reference, Release 3.13.1

class C(Sequence): # Direct inheritance

def __init__(self): ... # Extra method not required by the ABC

def __getitem__(self, index): ... # Required abstract method

def __len__(self): ... # Required abstract method

def count(self, value): ... # Optionally override a mixin method

>>> issubclass(C, Sequence)

True

>>> isinstance(C(), Sequence)

True

2) Existing classes and built-in classes can be registered as “virtual subclasses” of the ABCs. Those classes should
define the full API including all of the abstract methods and all of the mixin methods. This lets users rely on
issubclass() or isinstance() tests to determine whether the full interface is supported. The exception to
this rule is for methods that are automatically inferred from the rest of the API:

class D: # No inheritance

def __init__(self): ... # Extra method not required by the ABC

def __getitem__(self, index): ... # Abstract method

def __len__(self): ... # Abstract method

def count(self, value): ... # Mixin method

def index(self, value): ... # Mixin method

Sequence.register(D) # Register instead of inherit

>>> issubclass(D, Sequence)

True

>>> isinstance(D(), Sequence)

True

In this example, class D does not need to define __contains__, __iter__, and __reversed__ because the
in-operator, the iteration logic, and the reversed() function automatically fall back to using __getitem__ and
__len__.

3) Some simple interfaces are directly recognizable by the presence of the required methods (unless those methods
have been set to None):

class E:

def __iter__(self): ...

def __next__(self): ...

>>> issubclass(E, Iterable)

True

>>> isinstance(E(), Iterable)

True

Complex interfaces do not support this last technique because an interface is more than just the presence of method
names. Interfaces specify semantics and relationships between methods that cannot be inferred solely from the pres-
ence of specificmethod names. For example, knowing that a class supplies __getitem__, __len__, and __iter__
is insufficient for distinguishing a Sequence from a Mapping.

Added in version 3.9: These abstract classes now support []. See Generic Alias Type and PEP 585.

8.5. collections.abc— Abstract Base Classes for Containers 271

https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.13.1

8.5.1 Collections Abstract Base Classes

The collections module offers the following ABCs:

ABC Inherits
from

Abstract Methods Mixin Methods

Container1 __contains__

Hashable1 __hash__

Iterable12 __iter__

Iterator1 Iterable __next__ __iter__

Reversible1 Iterable __reversed__

Generator1 Iterator send, throw close, __iter__, __next__
Sized1 __len__

Callable1 __call__

Collection1 Sized,
Iterable,
Container

__contains__,
__iter__, __len__

Sequence Reversible,
Collection

__getitem__, __len__ __contains__, __iter__,
__reversed__, index, and count

MutableSequence Sequence __getitem__,
__setitem__,
__delitem__,
__len__, insert

Inherited Sequence methods and
append, clear, reverse, extend, pop,
remove, and __iadd__

ByteString Sequence __getitem__, __len__ Inherited Sequence methods
Set Collection __contains__,

__iter__, __len__
__le__, __lt__, __eq__, __ne__,
__gt__, __ge__, __and__, __or__,
__sub__, __xor__, and isdisjoint

MutableSet Set __contains__,
__iter__, __len__,
add, discard

Inherited Set methods and clear, pop,
remove, __ior__, __iand__,
__ixor__, and __isub__

Mapping Collection __getitem__,
__iter__, __len__

__contains__, keys, items, values,
get, __eq__, and __ne__

MutableMapping Mapping __getitem__,
__setitem__,
__delitem__,
__iter__, __len__

Inherited Mapping methods and pop,
popitem, clear, update, and
setdefault

MappingView Sized __len__

ItemsView MappingView,
Set

__contains__, __iter__

KeysView MappingView,
Set

__contains__, __iter__

ValuesView MappingView,
Collection

__contains__, __iter__

Awaitable1 __await__

Coroutine1 Awaitable send, throw close

AsyncIterable1 __aiter__

AsyncIterator1 AsyncIterable__anext__ __aiter__

AsyncGenerator1 AsyncIteratorasend, athrow aclose, __aiter__, __anext__
Buffer1 __buffer__

1 These ABCs override __subclasshook__() to support testing an interface by verifying the required methods are present and have not
been set to None. This only works for simple interfaces. More complex interfaces require registration or direct subclassing.

2 Checking isinstance(obj, Iterable) detects classes that are registered as Iterable or that have an __iter__() method, but it
does not detect classes that iterate with the __getitem__() method. The only reliable way to determine whether an object is iterable is to call
iter(obj).

272 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

8.5.2 Collections Abstract Base Classes – Detailed Descriptions

class collections.abc.Container

ABC for classes that provide the __contains__() method.

class collections.abc.Hashable

ABC for classes that provide the __hash__() method.

class collections.abc.Sized

ABC for classes that provide the __len__() method.

class collections.abc.Callable

ABC for classes that provide the __call__() method.

See Annotating callable objects for details on how to use Callable in type annotations.

class collections.abc.Iterable

ABC for classes that provide the __iter__() method.

Checking isinstance(obj, Iterable) detects classes that are registered as Iterable or that have an
__iter__() method, but it does not detect classes that iterate with the __getitem__() method. The only
reliable way to determine whether an object is iterable is to call iter(obj).

class collections.abc.Collection

ABC for sized iterable container classes.

Added in version 3.6.

class collections.abc.Iterator

ABC for classes that provide the __iter__() and __next__() methods. See also the definition of iterator.

class collections.abc.Reversible

ABC for iterable classes that also provide the __reversed__() method.

Added in version 3.6.

class collections.abc.Generator

ABC for generator classes that implement the protocol defined in PEP 342 that extends iterators with the
send(), throw() and close() methods.

See Annotating generators and coroutines for details on using Generator in type annotations.

Added in version 3.5.

class collections.abc.Sequence

class collections.abc.MutableSequence

class collections.abc.ByteString

ABCs for read-only and mutable sequences.

Implementation note: Some of the mixin methods, such as __iter__(), __reversed__() and index(),
make repeated calls to the underlying __getitem__()method. Consequently, if __getitem__() is imple-
mented with constant access speed, the mixin methods will have linear performance; however, if the underlying
method is linear (as it would be with a linked list), the mixins will have quadratic performance and will likely
need to be overridden.

Changed in version 3.5: The index() method added support for stop and start arguments.

Deprecated since version 3.12, will be removed in version 3.14: The ByteString ABC has been deprecated.
For use in typing, prefer a union, like bytes | bytearray, or collections.abc.Buffer. For use as
an ABC, prefer Sequence or collections.abc.Buffer.

class collections.abc.Set

8.5. collections.abc— Abstract Base Classes for Containers 273

https://peps.python.org/pep-0342/

The Python Library Reference, Release 3.13.1

class collections.abc.MutableSet

ABCs for read-only and mutable sets.

class collections.abc.Mapping

class collections.abc.MutableMapping

ABCs for read-only and mutable mappings.

class collections.abc.MappingView

class collections.abc.ItemsView

class collections.abc.KeysView

class collections.abc.ValuesView

ABCs for mapping, items, keys, and values views.

class collections.abc.Awaitable

ABC for awaitable objects, which can be used in await expressions. Custom implementations must provide
the __await__() method.

Coroutine objects and instances of the Coroutine ABC are all instances of this ABC.

Note

In CPython, generator-based coroutines (generators decorated with @types.coroutine) are awaitables,
even though they do not have an __await__() method. Using isinstance(gencoro, Awaitable)

for them will return False. Use inspect.isawaitable() to detect them.

Added in version 3.5.

class collections.abc.Coroutine

ABC for coroutine compatible classes. These implement the following methods, defined in coroutine-objects:
send(), throw(), and close(). Custom implementations must also implement __await__(). All
Coroutine instances are also instances of Awaitable.

Note

In CPython, generator-based coroutines (generators decorated with @types.coroutine) are awaitables,
even though they do not have an __await__() method. Using isinstance(gencoro, Coroutine)

for them will return False. Use inspect.isawaitable() to detect them.

See Annotating generators and coroutines for details on using Coroutine in type annotations. The variance
and order of type parameters correspond to those of Generator.

Added in version 3.5.

class collections.abc.AsyncIterable

ABC for classes that provide an __aiter__ method. See also the definition of asynchronous iterable.

Added in version 3.5.

class collections.abc.AsyncIterator

ABC for classes that provide __aiter__ and __anext__ methods. See also the definition of asynchronous
iterator.

Added in version 3.5.

class collections.abc.AsyncGenerator

ABC for asynchronous generator classes that implement the protocol defined in PEP 525 and PEP 492.

See Annotating generators and coroutines for details on using AsyncGenerator in type annotations.

Added in version 3.6.

274 Chapter 8. Data Types

https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/

The Python Library Reference, Release 3.13.1

class collections.abc.Buffer

ABC for classes that provide the __buffer__() method, implementing the buffer protocol. See PEP 688.

Added in version 3.12.

8.5.3 Examples and Recipes

ABCs allow us to ask classes or instances if they provide particular functionality, for example:

size = None

if isinstance(myvar, collections.abc.Sized):

size = len(myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs. For
example, to write a class supporting the full Set API, it is only necessary to supply the three underlying abstract
methods: __contains__(), __iter__(), and __len__(). The ABC supplies the remaining methods such as
__and__() and isdisjoint():

class ListBasedSet(collections.abc.Set):

''' Alternate set implementation favoring space over speed

and not requiring the set elements to be hashable. '''

def __init__(self, iterable):

self.elements = lst = []

for value in iterable:

if value not in lst:

lst.append(value)

def __iter__(self):

return iter(self.elements)

def __contains__(self, value):

return value in self.elements

def __len__(self):

return len(self.elements)

s1 = ListBasedSet('abcdef')

s2 = ListBasedSet('defghi')

overlap = s1 & s2 # The __and__() method is supported automatically

Notes on using Set and MutableSet as a mixin:

(1) Since some set operations create new sets, the default mixin methods need a way to create new instances
from an iterable. The class constructor is assumed to have a signature in the form ClassName(iterable).
That assumption is factored-out to an internal classmethod called _from_iterable() which calls
cls(iterable) to produce a new set. If the Set mixin is being used in a class with a different construc-
tor signature, you will need to override _from_iterable() with a classmethod or regular method that can
construct new instances from an iterable argument.

(2) To override the comparisons (presumably for speed, as the semantics are fixed), redefine __le__() and
__ge__(), then the other operations will automatically follow suit.

(3) The Setmixin provides a _hash()method to compute a hash value for the set; however, __hash__() is not
defined because not all sets are hashable or immutable. To add set hashability using mixins, inherit from both
Set() and Hashable(), then define __hash__ = Set._hash.

See also

• OrderedSet recipe for an example built on MutableSet.

8.5. collections.abc— Abstract Base Classes for Containers 275

https://peps.python.org/pep-0688/
https://code.activestate.com/recipes/576694/

The Python Library Reference, Release 3.13.1

• For more about ABCs, see the abc module and PEP 3119.

8.6 heapq— Heap queue algorithm

Source code: Lib/heapq.py

This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are binary trees for which every parent node has a value less than or equal to any of its children. We refer to
this condition as the heap invariant.

This implementation uses arrays for which heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2] for all
k, counting elements from zero. For the sake of comparison, non-existing elements are considered to be infinite. The
interesting property of a heap is that its smallest element is always the root, heap[0].

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes
the relationship between the index for a node and the indexes for its children slightly less obvious, but is more suitable
since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest (called a “min
heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap[0] is the smallest item,
and heap.sort() maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function heapify().

The following functions are provided:

heapq.heappush(heap, item)
Push the value item onto the heap, maintaining the heap invariant.

heapq.heappop(heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty,
IndexError is raised. To access the smallest item without popping it, use heap[0].

heapq.heappushpop(heap, item)
Push item on the heap, then pop and return the smallest item from the heap. The combined action runs more
efficiently than heappush() followed by a separate call to heappop().

heapq.heapify(x)
Transform list x into a heap, in-place, in linear time.

heapq.heapreplace(heap, item)
Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t change. If
the heap is empty, IndexError is raised.

This one step operation is more efficient than a heappop() followed by heappush() and can be more ap-
propriate when using a fixed-size heap. The pop/push combination always returns an element from the heap
and replaces it with item.

The value returned may be larger than the item added. If that isn’t desired, consider using heappushpop()
instead. Its push/pop combination returns the smaller of the two values, leaving the larger value on the heap.

The module also offers three general purpose functions based on heaps.

heapq.merge(*iterables, key=None, reverse=False)
Mergemultiple sorted inputs into a single sorted output (for example, merge timestamped entries frommultiple
log files). Returns an iterator over the sorted values.

Similar to sorted(itertools.chain(*iterables)) but returns an iterable, does not pull the data into
memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).

Has two optional arguments which must be specified as keyword arguments.

276 Chapter 8. Data Types

https://peps.python.org/pep-3119/
https://github.com/python/cpython/tree/3.13/Lib/heapq.py

The Python Library Reference, Release 3.13.1

key specifies a key function of one argument that is used to extract a comparison key from each input element.
The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the input elements are merged as if each comparison were
reversed. To achieve behavior similar to sorted(itertools.chain(*iterables), reverse=True),
all iterables must be sorted from largest to smallest.

Changed in version 3.5: Added the optional key and reverse parameters.

heapq.nlargest(n, iterable, key=None)
Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies a
function of one argument that is used to extract a comparison key from each element in iterable (for example,
key=str.lower). Equivalent to: sorted(iterable, key=key, reverse=True)[:n].

heapq.nsmallest(n, iterable, key=None)
Return a list with the n smallest elements from the dataset defined by iterable. key, if provided, specifies a
function of one argument that is used to extract a comparison key from each element in iterable (for example,
key=str.lower). Equivalent to: sorted(iterable, key=key)[:n].

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use the sorted()
function. Also, when n==1, it is more efficient to use the built-in min() and max() functions. If repeated usage of
these functions is required, consider turning the iterable into an actual heap.

8.6.1 Basic Examples

A heapsort can be implemented by pushing all values onto a heap and then popping off the smallest values one at a
time:

>>> def heapsort(iterable):

... h = []

... for value in iterable:

... heappush(h, value)

... return [heappop(h) for i in range(len(h))]

...

>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

This is similar to sorted(iterable), but unlike sorted(), this implementation is not stable.

Heap elements can be tuples. This is useful for assigning comparison values (such as task priorities) alongside the
main record being tracked:

>>> h = []

>>> heappush(h, (5, 'write code'))

>>> heappush(h, (7, 'release product'))

>>> heappush(h, (1, 'write spec'))

>>> heappush(h, (3, 'create tests'))

>>> heappop(h)

(1, 'write spec')

8.6.2 Priority Queue Implementation Notes

A priority queue is common use for a heap, and it presents several implementation challenges:

• Sort stability: how do you get two tasks with equal priorities to be returned in the order they were originally
added?

• Tuple comparison breaks for (priority, task) pairs if the priorities are equal and the tasks do not have a default
comparison order.

• If the priority of a task changes, how do you move it to a new position in the heap?

• Or if a pending task needs to be deleted, how do you find it and remove it from the queue?

8.6. heapq— Heap queue algorithm 277

https://en.wikipedia.org/wiki/Heapsort
https://en.wikipedia.org/wiki/Priority_queue

The Python Library Reference, Release 3.13.1

A solution to the first two challenges is to store entries as 3-element list including the priority, an entry count, and
the task. The entry count serves as a tie-breaker so that two tasks with the same priority are returned in the order
they were added. And since no two entry counts are the same, the tuple comparison will never attempt to directly
compare two tasks.

Another solution to the problem of non-comparable tasks is to create a wrapper class that ignores the task item and
only compares the priority field:

from dataclasses import dataclass, field

from typing import Any

@dataclass(order=True)

class PrioritizedItem:

priority: int

item: Any=field(compare=False)

The remaining challenges revolve around finding a pending task and making changes to its priority or removing it
entirely. Finding a task can be done with a dictionary pointing to an entry in the queue.

Removing the entry or changing its priority is more difficult because it would break the heap structure invariants. So,
a possible solution is to mark the entry as removed and add a new entry with the revised priority:

pq = [] # list of entries arranged in a heap

entry_finder = {} # mapping of tasks to entries

REMOVED = '<removed-task>' # placeholder for a removed task

counter = itertools.count() # unique sequence count

def add_task(task, priority=0):

'Add a new task or update the priority of an existing task'

if task in entry_finder:

remove_task(task)

count = next(counter)

entry = [priority, count, task]

entry_finder[task] = entry

heappush(pq, entry)

def remove_task(task):

'Mark an existing task as REMOVED. Raise KeyError if not found.'

entry = entry_finder.pop(task)

entry[-1] = REMOVED

def pop_task():

'Remove and return the lowest priority task. Raise KeyError if empty.'

while pq:

priority, count, task = heappop(pq)

if task is not REMOVED:

del entry_finder[task]

return task

raise KeyError('pop from an empty priority queue')

8.6.3 Theory

Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for all k, counting elements from 0. For
the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap is that
a[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers below
are k, not a[k]:

278 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell k is topping 2*k+1 and 2*k+2. In a usual binary tournament we see in sports, each cell
is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To
be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and
the rule becomes that a cell and the two cells it tops contain three different items, but the top cell “wins” over the two
topped cells.

If this heap invariant is protected at all time, index 0 is clearly the overall winner. The simplest algorithmic way to
remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above) into the 0 position,
and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This is clearly
logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the
inserted items are not “better” than the last 0’th element you extracted. This is especially useful in simulation contexts,
where the tree holds all incoming events, and the “win” condition means the smallest scheduled time. When an event
schedules other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a
heap is a good structure for implementing schedulers (this is what I used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs”
(which are pre-sorted sequences, whose size is usually related to the amount of CPUmemory), followed by a merging
passes for these runs, whichmerging is often very cleverly organised1. It is very important that the initial sort produces
the longest runs possible. Tournaments are a good way to achieve that. If, using all the memory available to hold a
tournament, you replace and percolate items that happen to fit the current run, you’ll produce runs which are twice
the size of the memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament (because
the value “wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed
memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly the
same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run.
Clever and quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to
keep a ‘heap’ module around. :-)

8.7 bisect— Array bisection algorithm

Source code: Lib/bisect.py

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over linear searches or
frequent resorting.

1 The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking capa-
bilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to ensure (far
in advance) that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge). Some tapes
were even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite spectacular to
watch! From all times, sorting has always been a Great Art! :-)

8.7. bisect— Array bisection algorithm 279

https://github.com/python/cpython/tree/3.13/Lib/bisect.py

The Python Library Reference, Release 3.13.1

The module is called bisect because it uses a basic bisection algorithm to do its work. Unlike other bisection tools
that search for a specific value, the functions in this module are designed to locate an insertion point. Accordingly,
the functions never call an __eq__() method to determine whether a value has been found. Instead, the functions
only call the __lt__() method and will return an insertion point between values in an array.

The following functions are provided:

bisect.bisect_left(a, x, lo=0, hi=len(a), *, key=None)
Locate the insertion point for x in a to maintain sorted order. The parameters lo and hi may be used to specify
a subset of the list which should be considered; by default the entire list is used. If x is already present in a,
the insertion point will be before (to the left of) any existing entries. The return value is suitable for use as the
first parameter to list.insert() assuming that a is already sorted.

The returned insertion point ip partitions the array a into two slices such that all(elem < x for elem in

a[lo : ip]) is true for the left slice and all(elem >= x for elem in a[ip : hi]) is true for the
right slice.

key specifies a key function of one argument that is used to extract a comparison key from each element in the
array. To support searching complex records, the key function is not applied to the x value.

If key is None, the elements are compared directly and no key function is called.

Changed in version 3.10: Added the key parameter.

bisect.bisect_right(a, x, lo=0, hi=len(a), *, key=None)
bisect.bisect(a, x, lo=0, hi=len(a), *, key=None)

Similar to bisect_left(), but returns an insertion point which comes after (to the right of) any existing
entries of x in a.

The returned insertion point ip partitions the array a into two slices such that all(elem <= x for elem

in a[lo : ip]) is true for the left slice and all(elem > x for elem in a[ip : hi]) is true for
the right slice.

Changed in version 3.10: Added the key parameter.

bisect.insort_left(a, x, lo=0, hi=len(a), *, key=None)
Insert x in a in sorted order.

This function first runs bisect_left() to locate an insertion point. Next, it runs the insert() method on
a to insert x at the appropriate position to maintain sort order.

To support inserting records in a table, the key function (if any) is applied to x for the search step but not for
the insertion step.

Keep in mind that the O(log n) search is dominated by the slow O(n) insertion step.

Changed in version 3.10: Added the key parameter.

bisect.insort_right(a, x, lo=0, hi=len(a), *, key=None)
bisect.insort(a, x, lo=0, hi=len(a), *, key=None)

Similar to insort_left(), but inserting x in a after any existing entries of x.

This function first runs bisect_right() to locate an insertion point. Next, it runs the insert() method
on a to insert x at the appropriate position to maintain sort order.

To support inserting records in a table, the key function (if any) is applied to x for the search step but not for
the insertion step.

Keep in mind that the O(log n) search is dominated by the slow O(n) insertion step.

Changed in version 3.10: Added the key parameter.

280 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

8.7.1 Performance Notes

When writing time sensitive code using bisect() and insort(), keep these thoughts in mind:

• Bisection is effective for searching ranges of values. For locating specific values, dictionaries are more perfor-
mant.

• The insort() functions are O(n) because the logarithmic search step is dominated by the linear time insertion
step.

• The search functions are stateless and discard key function results after they are used. Consequently, if the
search functions are used in a loop, the key function may be called again and again on the same array elements.
If the key function isn’t fast, consider wrapping it with functools.cache() to avoid duplicate computations.
Alternatively, consider searching an array of precomputed keys to locate the insertion point (as shown in the
examples section below).

See also

• Sorted Collections is a high performance module that uses bisect to managed sorted collections of data.

• The SortedCollection recipe uses bisect to build a full-featured collection class with straight-forward search
methods and support for a key-function. The keys are precomputed to save unnecessary calls to the key
function during searches.

8.7.2 Searching Sorted Lists

The above bisect functions are useful for finding insertion points but can be tricky or awkward to use for common
searching tasks. The following five functions show how to transform them into the standard lookups for sorted lists:

def index(a, x):

'Locate the leftmost value exactly equal to x'

i = bisect_left(a, x)

if i != len(a) and a[i] == x:

return i

raise ValueError

def find_lt(a, x):

'Find rightmost value less than x'

i = bisect_left(a, x)

if i:

return a[i-1]

raise ValueError

def find_le(a, x):

'Find rightmost value less than or equal to x'

i = bisect_right(a, x)

if i:

return a[i-1]

raise ValueError

def find_gt(a, x):

'Find leftmost value greater than x'

i = bisect_right(a, x)

if i != len(a):

return a[i]

raise ValueError

def find_ge(a, x):

'Find leftmost item greater than or equal to x'

(continues on next page)

8.7. bisect— Array bisection algorithm 281

https://grantjenks.com/docs/sortedcollections/
https://code.activestate.com/recipes/577197-sortedcollection/

The Python Library Reference, Release 3.13.1

(continued from previous page)

i = bisect_left(a, x)

if i != len(a):

return a[i]

raise ValueError

8.7.3 Examples

The bisect() function can be useful for numeric table lookups. This example uses bisect() to look up a letter
grade for an exam score (say) based on a set of ordered numeric breakpoints: 90 and up is an ‘A’, 80 to 89 is a ‘B’,
and so on:

>>> def grade(score, breakpoints=[60, 70, 80, 90], grades='FDCBA'):

... i = bisect(breakpoints, score)

... return grades[i]

...

>>> [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]

['F', 'A', 'C', 'C', 'B', 'A', 'A']

The bisect() and insort() functions also work with lists of tuples. The key argument can serve to extract the
field used for ordering records in a table:

>>> from collections import namedtuple

>>> from operator import attrgetter

>>> from bisect import bisect, insort

>>> from pprint import pprint

>>> Movie = namedtuple('Movie', ('name', 'released', 'director'))

>>> movies = [

... Movie('Jaws', 1975, 'Spielberg'),

... Movie('Titanic', 1997, 'Cameron'),

... Movie('The Birds', 1963, 'Hitchcock'),

... Movie('Aliens', 1986, 'Cameron')

...]

>>> # Find the first movie released after 1960

>>> by_year = attrgetter('released')

>>> movies.sort(key=by_year)

>>> movies[bisect(movies, 1960, key=by_year)]

Movie(name='The Birds', released=1963, director='Hitchcock')

>>> # Insert a movie while maintaining sort order

>>> romance = Movie('Love Story', 1970, 'Hiller')

>>> insort(movies, romance, key=by_year)

>>> pprint(movies)

[Movie(name='The Birds', released=1963, director='Hitchcock'),

Movie(name='Love Story', released=1970, director='Hiller'),

Movie(name='Jaws', released=1975, director='Spielberg'),

Movie(name='Aliens', released=1986, director='Cameron'),

Movie(name='Titanic', released=1997, director='Cameron')]

If the key function is expensive, it is possible to avoid repeated function calls by searching a list of precomputed keys
to find the index of a record:

>>> data = [('red', 5), ('blue', 1), ('yellow', 8), ('black', 0)]

>>> data.sort(key=lambda r: r[1]) # Or use operator.itemgetter(1).

(continues on next page)

282 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> keys = [r[1] for r in data] # Precompute a list of keys.

>>> data[bisect_left(keys, 0)]

('black', 0)

>>> data[bisect_left(keys, 1)]

('blue', 1)

>>> data[bisect_left(keys, 5)]

('red', 5)

>>> data[bisect_left(keys, 8)]

('yellow', 8)

8.8 array— Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters, integers,
floating-point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a type code, which is a single
character. The following type codes are defined:

Type code C Type Python Type Minimum size in bytes Notes

'b' signed char int 1
'B' unsigned char int 1
'u' wchar_t Unicode character 2 (1)
'w' Py_UCS4 Unicode character 4
'h' signed short int 2
'H' unsigned short int 2
'i' signed int int 2
'I' unsigned int int 2
'l' signed long int 4
'L' unsigned long int 4
'q' signed long long int 8
'Q' unsigned long long int 8
'f' float float 4
'd' double float 8

Notes:

(1) It can be 16 bits or 32 bits depending on the platform.

Changed in version 3.9: array('u') now uses wchar_t as C type instead of deprecated Py_UNICODE. This
change doesn’t affect its behavior because Py_UNICODE is alias of wchar_t since Python 3.3.

Deprecated since version 3.3, will be removed in version 3.16: Please migrate to 'w' typecode.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed through the array.itemsize attribute.

The module defines the following item:

array.typecodes

A string with all available type codes.

The module defines the following type:

class array.array(typecode[, initializer])
A new array whose items are restricted by typecode, and initialized from the optional initializer value, which
must be a bytes or bytearray object, a Unicode string, or iterable over elements of the appropriate type.

8.8. array— Efficient arrays of numeric values 283

The Python Library Reference, Release 3.13.1

If given a bytes or bytearray object, the initializer is passed to the new array’s frombytes() method;
if given a Unicode string, the initializer is passed to the fromunicode() method; otherwise, the initializer’s
iterator is passed to the extend() method to add initial items to the array.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication.
When using slice assignment, the assigned value must be an array object with the same type code; in all other
cases, TypeError is raised. Array objects also implement the buffer interface, and may be used wherever
bytes-like objects are supported.

Raises an auditing event array.__new__ with arguments typecode, initializer.

typecode

The typecode character used to create the array.

itemsize

The length in bytes of one array item in the internal representation.

append(x)

Append a new item with value x to the end of the array.

buffer_info()

Return a tuple (address, length) giving the current memory address and the length in elements
of the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed
as array.buffer_info()[1] * array.itemsize. This is occasionally useful when working with
low-level (and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioctl()
operations. The returned numbers are valid as long as the array exists and no length-changing operations
are applied to it.

Note

When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This
method is maintained for backward compatibility and should be avoided in new code. The buffer
interface is documented in bufferobjects.

byteswap()

“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size;
for other types of values, RuntimeError is raised. It is useful when reading data from a file written on
a machine with a different byte order.

count(x)

Return the number of occurrences of x in the array.

extend(iterable)

Append items from iterable to the end of the array. If iterable is another array, it must have exactly the
same type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable and its
elements must be the right type to be appended to the array.

frombytes(buffer)

Appends items from the bytes-like object, interpreting its content as an array of machine values (as if it
had been read from a file using the fromfile() method).

Added in version 3.2: fromstring() is renamed to frombytes() for clarity.

fromfile(f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If less
than n items are available, EOFError is raised, but the items that were available are still inserted into
the array.

284 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

fromlist(list)
Append items from the list. This is equivalent to for x in list: a.append(x) except that if there
is a type error, the array is unchanged.

fromunicode(s)
Extends this array with data from the given Unicode string. The array must have type code 'u' or 'w';
otherwise a ValueError is raised. Use array.frombytes(unicodestring.encode(enc)) to
append Unicode data to an array of some other type.

index(x[, start[, stop]])
Return the smallest i such that i is the index of the first occurrence of x in the array. The optional argu-
ments start and stop can be specified to search for x within a subsection of the array. Raise ValueError
if x is not found.

Changed in version 3.10: Added optional start and stop parameters.

insert(i, x)
Insert a new item with value x in the array before position i. Negative values are treated as being relative
to the end of the array.

pop([i])
Removes the item with the index i from the array and returns it. The optional argument defaults to -1,
so that by default the last item is removed and returned.

remove(x)
Remove the first occurrence of x from the array.

clear()

Remove all elements from the array.

Added in version 3.13.

reverse()

Reverse the order of the items in the array.

tobytes()

Convert the array to an array of machine values and return the bytes representation (the same sequence
of bytes that would be written to a file by the tofile() method.)

Added in version 3.2: tostring() is renamed to tobytes() for clarity.

tofile(f)

Write all items (as machine values) to the file object f.

tolist()

Convert the array to an ordinary list with the same items.

tounicode()

Convert the array to a Unicode string. The array must have a type 'u' or 'w'; otherwise a ValueError
is raised. Use array.tobytes().decode(enc) to obtain a Unicode string from an array of some
other type.

The string representation of array objects has the form array(typecode, initializer). The initializer is
omitted if the array is empty, otherwise it is a Unicode string if the typecode is 'u' or 'w', otherwise it is a list of
numbers. The string representation is guaranteed to be able to be converted back to an array with the same type and
value using eval(), so long as the array class has been imported using from array import array. Variables
inf and nan must also be defined if it contains corresponding floating-point values. Examples:

array('l')

array('w', 'hello \u2641')

array('l', [1, 2, 3, 4, 5])

array('d', [1.0, 2.0, 3.14, -inf, nan])

8.8. array— Efficient arrays of numeric values 285

The Python Library Reference, Release 3.13.1

See also

Module struct
Packing and unpacking of heterogeneous binary data.

NumPy
The NumPy package defines another array type.

8.9 weakref—Weak references

Source code: Lib/weakref.py

The weakref module allows the Python programmer to create weak references to objects.

In the following, the term referent means the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a
referent are weak references, garbage collection is free to destroy the referent and reuse its memory for something
else. However, until the object is actually destroyed the weak reference may return the object even if there are no
strong references to it.

A primary use for weak references is to implement caches or mappings holding large objects, where it’s desired that
a large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a name with each. If you
used a Python dictionary to map names to images, or images to names, the image objects would remain alive just be-
cause they appeared as values or keys in the dictionaries. The WeakKeyDictionary and WeakValueDictionary
classes supplied by the weakref module are an alternative, using weak references to construct mappings that don’t
keep objects alive solely because they appear in the mapping objects. If, for example, an image object is a value in
a WeakValueDictionary, then when the last remaining references to that image object are the weak references
held by weak mappings, garbage collection can reclaim the object, and its corresponding entries in weak mappings
are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting up call-
back functions on the weak references that notify the weak dictionaries when a key or value has been reclaimed by
garbage collection. WeakSet implements the set interface, but keeps weak references to its elements, just like a
WeakKeyDictionary does.

finalize provides a straight forward way to register a cleanup function to be called when an object is garbage
collected. This is simpler to use than setting up a callback function on a raw weak reference, since the module
automatically ensures that the finalizer remains alive until the object is collected.

Most programs should find that using one of these weak container types or finalize is all they need – it’s not usually
necessary to create your own weak references directly. The low-level machinery is exposed by the weakref module
for the benefit of advanced uses.

Not all objects can be weakly referenced. Objects which support weak references include class instances, functions
written in Python (but not in C), instance methods, sets, frozensets, some file objects, generators, type objects, sockets,
arrays, deques, regular expression pattern objects, and code objects.

Changed in version 3.2: Added support for thread.lock, threading.Lock, and code objects.

Several built-in types such as list and dict do not directly support weak references but can add support through
subclassing:

class Dict(dict):

pass

obj = Dict(red=1, green=2, blue=3) # this object is weak referenceable

286 Chapter 8. Data Types

https://numpy.org/
https://github.com/python/cpython/tree/3.13/Lib/weakref.py

The Python Library Reference, Release 3.13.1

CPython implementation detail: Other built-in types such as tuple and int do not support weak references even
when subclassed.

Extension types can easily be made to support weak references; see weakref-support.

When __slots__ are defined for a given type, weak reference support is disabled unless a '__weakref__' string
is also present in the sequence of strings in the __slots__ declaration. See __slots__ documentation for details.

class weakref.ref(object[, callback])
Return a weak reference to object. The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will cause None to be returned.
If callback is provided and not None, and the returned weakref object is still alive, the callback will be called
when the object is about to be finalized; the weak reference object will be passed as the only parameter to the
callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an object’s __del__() method.

Weak references are hashable if the object is hashable. They will maintain their hash value even after the object
was deleted. If hash() is called the first time only after the object was deleted, the call will raise TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references have
the same equality relationship as their referents (regardless of the callback). If either referent has been deleted,
the references are equal only if the reference objects are the same object.

This is a subclassable type rather than a factory function.

__callback__

This read-only attribute returns the callback currently associated to the weakref. If there is no callback
or if the referent of the weakref is no longer alive then this attribute will have value None.

Changed in version 3.4: Added the __callback__ attribute.

weakref.proxy(object[, callback])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts instead of
requiring the explicit dereferencing used with weak reference objects. The returned object will have a type of
either ProxyType or CallableProxyType, depending on whether object is callable. Proxy objects are not
hashable regardless of the referent; this avoids a number of problems related to their fundamentally mutable
nature, and prevents their use as dictionary keys. callback is the same as the parameter of the same name to
the ref() function.

Accessing an attribute of the proxy object after the referent is garbage collected raises ReferenceError.

Changed in version 3.8: Extended the operator support on proxy objects to include the matrix multiplication
operators @ and @=.

weakref.getweakrefcount(object)
Return the number of weak references and proxies which refer to object.

weakref.getweakrefs(object)

Return a list of all weak reference and proxy objects which refer to object.

class weakref.WeakKeyDictionary([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer
a strong reference to the key. This can be used to associate additional data with an object owned by other parts
of an application without adding attributes to those objects. This can be especially useful with objects that
override attribute accesses.

Note that when a key with equal value to an existing key (but not equal identity) is inserted into the dictionary,
it replaces the value but does not replace the existing key. Due to this, when the reference to the original key
is deleted, it also deletes the entry in the dictionary:

8.9. weakref—Weak references 287

The Python Library Reference, Release 3.13.1

>>> class T(str): pass

...

>>> k1, k2 = T(), T()

>>> d = weakref.WeakKeyDictionary()

>>> d[k1] = 1 # d = {k1: 1}

>>> d[k2] = 2 # d = {k1: 2}

>>> del k1 # d = {}

A workaround would be to remove the key prior to reassignment:

>>> class T(str): pass

...

>>> k1, k2 = T(), T()

>>> d = weakref.WeakKeyDictionary()

>>> d[k1] = 1 # d = {k1: 1}

>>> del d[k1]

>>> d[k2] = 2 # d = {k2: 2}

>>> del k1 # d = {k2: 2}

Changed in version 3.9: Added support for | and |= operators, as specified in PEP 584.

WeakKeyDictionary objects have an additional method that exposes the internal references directly. The refer-
ences are not guaranteed to be “live” at the time they are used, so the result of calling the references needs to be
checked before being used. This can be used to avoid creating references that will cause the garbage collector to
keep the keys around longer than needed.

WeakKeyDictionary.keyrefs()

Return an iterable of the weak references to the keys.

class weakref.WeakValueDictionary([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong ref-
erence to the value exists any more.

Changed in version 3.9: Added support for | and |= operators, as specified in PEP 584.

WeakValueDictionary objects have an additional method that has the same issues as the WeakKeyDictionary.
keyrefs() method.

WeakValueDictionary.valuerefs()

Return an iterable of the weak references to the values.

class weakref.WeakSet([elements])
Set class that keeps weak references to its elements. An element will be discarded when no strong reference to
it exists any more.

class weakref.WeakMethod(method[, callback])
A custom ref subclass which simulates a weak reference to a bound method (i.e., a method defined on a class
and looked up on an instance). Since a bound method is ephemeral, a standard weak reference cannot keep
hold of it. WeakMethod has special code to recreate the bound method until either the object or the original
function dies:

>>> class C:

... def method(self):

... print("method called!")

...

>>> c = C()

>>> r = weakref.ref(c.method)

>>> r()

>>> r = weakref.WeakMethod(c.method)

>>> r()

(continues on next page)

288 Chapter 8. Data Types

https://peps.python.org/pep-0584/
https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.13.1

(continued from previous page)

<bound method C.method of <__main__.C object at 0x7fc859830220>>

>>> r()()

method called!

>>> del c

>>> gc.collect()

0

>>> r()

>>>

callback is the same as the parameter of the same name to the ref() function.

Added in version 3.4.

class weakref.finalize(obj, func, / , *args, **kwargs)
Return a callable finalizer object which will be called when obj is garbage collected. Unlike an ordinary weak
reference, a finalizer will always survive until the reference object is collected, greatly simplifying lifecycle
management.

A finalizer is considered alive until it is called (either explicitly or at garbage collection), and after that it is
dead. Calling a live finalizer returns the result of evaluating func(*arg, **kwargs), whereas calling a
dead finalizer returns None.

Exceptions raised by finalizer callbacks during garbage collection will be shown on the standard error output,
but cannot be propagated. They are handled in the same way as exceptions raised from an object’s __del__()
method or a weak reference’s callback.

When the program exits, each remaining live finalizer is called unless its atexit attribute has been set to false.
They are called in reverse order of creation.

A finalizer will never invoke its callback during the later part of the interpreter shutdown when module globals
are liable to have been replaced by None.

__call__()

If self is alive then mark it as dead and return the result of calling func(*args, **kwargs). If self
is dead then return None.

detach()

If self is alive then mark it as dead and return the tuple (obj, func, args, kwargs). If self is dead
then return None.

peek()

If self is alive then return the tuple (obj, func, args, kwargs). If self is dead then return None.

alive

Property which is true if the finalizer is alive, false otherwise.

atexit

A writable boolean property which by default is true. When the program exits, it calls all remaining live
finalizers for which atexit is true. They are called in reverse order of creation.

Note

It is important to ensure that func, args and kwargs do not own any references to obj, either directly or
indirectly, since otherwise obj will never be garbage collected. In particular, func should not be a bound
method of obj.

Added in version 3.4.

weakref.ReferenceType

The type object for weak references objects.

8.9. weakref—Weak references 289

The Python Library Reference, Release 3.13.1

weakref.ProxyType

The type object for proxies of objects which are not callable.

weakref.CallableProxyType

The type object for proxies of callable objects.

weakref.ProxyTypes

Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

See also

PEP 205 - Weak References
The proposal and rationale for this feature, including links to earlier implementations and information about
similar features in other languages.

8.9.1 Weak Reference Objects

Weak reference objects have no methods and no attributes besides ref.__callback__. A weak reference object
allows the referent to be obtained, if it still exists, by calling it:

>>> import weakref

>>> class Object:

... pass

...

>>> o = Object()

>>> r = weakref.ref(o)

>>> o2 = r()

>>> o is o2

True

If the referent no longer exists, calling the reference object returns None:

>>> del o, o2

>>> print(r())

None

Testing that a weak reference object is still live should be done using the expression ref() is not None. Nor-
mally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object

o = r()

if o is None:

referent has been garbage collected

print("Object has been deallocated; can't frobnicate.")

else:

print("Object is still live!")

o.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before the weak reference is called; the idiom shown above is safe in threaded
applications as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing. This is used in the implementation of the
WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most useful
to associate additional information with a reference, but could also be used to insert additional processing on calls to
retrieve the referent.

290 Chapter 8. Data Types

https://peps.python.org/pep-0205/

The Python Library Reference, Release 3.13.1

This example shows how a subclass of ref can be used to store additional information about an object and affect the
value that’s returned when the referent is accessed:

import weakref

class ExtendedRef(weakref.ref):

def __init__(self, ob, callback=None, /, **annotations):

super().__init__(ob, callback)

self.__counter = 0

for k, v in annotations.items():

setattr(self, k, v)

def __call__(self):

"""Return a pair containing the referent and the number of

times the reference has been called.

"""

ob = super().__call__()

if ob is not None:

self.__counter += 1

ob = (ob, self.__counter)

return ob

8.9.2 Example

This simple example shows how an application can use object IDs to retrieve objects that it has seen before. The IDs
of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects
can still be retrieved by ID if they do.

import weakref

_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):

oid = id(obj)

_id2obj_dict[oid] = obj

return oid

def id2obj(oid):

return _id2obj_dict[oid]

8.9.3 Finalizer Objects

The main benefit of using finalize is that it makes it simple to register a callback without needing to preserve the
returned finalizer object. For instance

>>> import weakref

>>> class Object:

... pass

...

>>> kenny = Object()

>>> weakref.finalize(kenny, print, "You killed Kenny!")

<finalize object at ...; for 'Object' at ...>

>>> del kenny

You killed Kenny!

The finalizer can be called directly as well. However the finalizer will invoke the callback at most once.

8.9. weakref—Weak references 291

The Python Library Reference, Release 3.13.1

>>> def callback(x, y, z):

... print("CALLBACK")

... return x + y + z

...

>>> obj = Object()

>>> f = weakref.finalize(obj, callback, 1, 2, z=3)

>>> assert f.alive

>>> assert f() == 6

CALLBACK

>>> assert not f.alive

>>> f() # callback not called because finalizer dead

>>> del obj # callback not called because finalizer dead

You can unregister a finalizer using its detach() method. This kills the finalizer and returns the arguments passed
to the constructor when it was created.

>>> obj = Object()

>>> f = weakref.finalize(obj, callback, 1, 2, z=3)

>>> f.detach()

(<...Object object ...>, <function callback ...>, (1, 2), {'z': 3})

>>> newobj, func, args, kwargs = _

>>> assert not f.alive

>>> assert newobj is obj

>>> assert func(*args, **kwargs) == 6

CALLBACK

Unless you set the atexit attribute to False, a finalizer will be called when the program exits if it is still alive. For
instance

>>> obj = Object()

>>> weakref.finalize(obj, print, "obj dead or exiting")

<finalize object at ...; for 'Object' at ...>

>>> exit()

obj dead or exiting

8.9.4 Comparing finalizers with __del__() methods

Suppose we want to create a class whose instances represent temporary directories. The directories should be deleted
with their contents when the first of the following events occurs:

• the object is garbage collected,

• the object’s remove() method is called, or

• the program exits.

We might try to implement the class using a __del__() method as follows:

class TempDir:

def __init__(self):

self.name = tempfile.mkdtemp()

def remove(self):

if self.name is not None:

shutil.rmtree(self.name)

self.name = None

@property

def removed(self):

(continues on next page)

292 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

return self.name is None

def __del__(self):

self.remove()

Starting with Python 3.4, __del__()methods no longer prevent reference cycles from being garbage collected, and
module globals are no longer forced to None during interpreter shutdown. So this code should work without any
issues on CPython.

However, handling of __del__()methods is notoriously implementation specific, since it depends on internal details
of the interpreter’s garbage collector implementation.

A more robust alternative can be to define a finalizer which only references the specific functions and objects that it
needs, rather than having access to the full state of the object:

class TempDir:

def __init__(self):

self.name = tempfile.mkdtemp()

self._finalizer = weakref.finalize(self, shutil.rmtree, self.name)

def remove(self):

self._finalizer()

@property

def removed(self):

return not self._finalizer.alive

Defined like this, our finalizer only receives a reference to the details it needs to clean up the directory appropriately.
If the object never gets garbage collected the finalizer will still be called at exit.

The other advantage of weakref based finalizers is that they can be used to register finalizers for classes where the
definition is controlled by a third party, such as running code when a module is unloaded:

import weakref, sys

def unloading_module():

implicit reference to the module globals from the function body

weakref.finalize(sys.modules[__name__], unloading_module)

Note

If you create a finalizer object in a daemonic thread just as the program exits then there is the possibility that
the finalizer does not get called at exit. However, in a daemonic thread atexit.register(), try: ...

finally: ... and with: ... do not guarantee that cleanup occurs either.

8.10 types— Dynamic type creation and names for built-in types

Source code: Lib/types.py

This module defines utility functions to assist in dynamic creation of new types.

It also defines names for some object types that are used by the standard Python interpreter, but not exposed as
builtins like int or str are.

Finally, it provides some additional type-related utility classes and functions that are not fundamental enough to be
builtins.

8.10. types— Dynamic type creation and names for built-in types 293

https://github.com/python/cpython/tree/3.13/Lib/types.py

The Python Library Reference, Release 3.13.1

8.10.1 Dynamic Type Creation

types.new_class(name, bases=(), kwds=None, exec_body=None)
Creates a class object dynamically using the appropriate metaclass.

The first three arguments are the components that make up a class definition header: the class name, the base
classes (in order), the keyword arguments (such as metaclass).

The exec_body argument is a callback that is used to populate the freshly created class namespace. It should
accept the class namespace as its sole argument and update the namespace directly with the class contents. If
no callback is provided, it has the same effect as passing in lambda ns: None.

Added in version 3.3.

types.prepare_class(name, bases=(), kwds=None)

Calculates the appropriate metaclass and creates the class namespace.

The arguments are the components that make up a class definition header: the class name, the base classes (in
order) and the keyword arguments (such as metaclass).

The return value is a 3-tuple: metaclass, namespace, kwds

metaclass is the appropriate metaclass, namespace is the prepared class namespace and kwds is an updated
copy of the passed in kwds argument with any 'metaclass' entry removed. If no kwds argument is passed
in, this will be an empty dict.

Added in version 3.3.

Changed in version 3.6: The default value for the namespace element of the returned tuple has changed. Now
an insertion-order-preserving mapping is used when the metaclass does not have a __prepare__ method.

See also

metaclasses
Full details of the class creation process supported by these functions

PEP 3115 - Metaclasses in Python 3000
Introduced the __prepare__ namespace hook

types.resolve_bases(bases)
Resolve MRO entries dynamically as specified by PEP 560.

This function looks for items in bases that are not instances of type, and returns a tuple where each such object
that has an __mro_entries__() method is replaced with an unpacked result of calling this method. If a
bases item is an instance of type, or it doesn’t have an __mro_entries__() method, then it is included in
the return tuple unchanged.

Added in version 3.7.

types.get_original_bases(cls, /)
Return the tuple of objects originally given as the bases of cls before the __mro_entries__() method has
been called on any bases (following the mechanisms laid out in PEP 560). This is useful for introspecting
Generics.

For classes that have an __orig_bases__ attribute, this function returns the value of cls.

__orig_bases__. For classes without the __orig_bases__ attribute, cls.__bases__ is returned.

Examples:

from typing import TypeVar, Generic, NamedTuple, TypedDict

T = TypeVar("T")

class Foo(Generic[T]): ...

(continues on next page)

294 Chapter 8. Data Types

https://peps.python.org/pep-3115/
https://peps.python.org/pep-0560/
https://peps.python.org/pep-0560/

The Python Library Reference, Release 3.13.1

(continued from previous page)

class Bar(Foo[int], float): ...

class Baz(list[str]): ...

Eggs = NamedTuple("Eggs", [("a", int), ("b", str)])

Spam = TypedDict("Spam", {"a": int, "b": str})

assert Bar.__bases__ == (Foo, float)

assert get_original_bases(Bar) == (Foo[int], float)

assert Baz.__bases__ == (list,)

assert get_original_bases(Baz) == (list[str],)

assert Eggs.__bases__ == (tuple,)

assert get_original_bases(Eggs) == (NamedTuple,)

assert Spam.__bases__ == (dict,)

assert get_original_bases(Spam) == (TypedDict,)

assert int.__bases__ == (object,)

assert get_original_bases(int) == (object,)

Added in version 3.12.

See also

PEP 560 - Core support for typing module and generic types

8.10.2 Standard Interpreter Types

This module provides names for many of the types that are required to implement a Python interpreter. It deliberately
avoids including some of the types that arise only incidentally during processing such as the listiterator type.

Typical use of these names is for isinstance() or issubclass() checks.

If you instantiate any of these types, note that signatures may vary between Python versions.

Standard names are defined for the following types:

types.NoneType

The type of None.

Added in version 3.10.

types.FunctionType

types.LambdaType

The type of user-defined functions and functions created by lambda expressions.

Raises an auditing event function.__new__ with argument code.

The audit event only occurs for direct instantiation of function objects, and is not raised for normal compilation.

types.GeneratorType

The type of generator-iterator objects, created by generator functions.

types.CoroutineType

The type of coroutine objects, created by async def functions.

Added in version 3.5.

8.10. types— Dynamic type creation and names for built-in types 295

https://peps.python.org/pep-0560/

The Python Library Reference, Release 3.13.1

types.AsyncGeneratorType

The type of asynchronous generator-iterator objects, created by asynchronous generator functions.

Added in version 3.6.

class types.CodeType(**kwargs)

The type of code objects such as returned by compile().

Raises an auditing event code.__new__ with arguments code, filename, name, argcount,
posonlyargcount, kwonlyargcount, nlocals, stacksize, flags.

Note that the audited arguments may not match the names or positions required by the initializer. The audit
event only occurs for direct instantiation of code objects, and is not raised for normal compilation.

types.CellType

The type for cell objects: such objects are used as containers for a function’s closure variables.

Added in version 3.8.

types.MethodType

The type of methods of user-defined class instances.

types.BuiltinFunctionType

types.BuiltinMethodType

The type of built-in functions like len() or sys.exit(), and methods of built-in classes. (Here, the term
“built-in” means “written in C”.)

types.WrapperDescriptorType

The type of methods of some built-in data types and base classes such as object.__init__() or object.
__lt__().

Added in version 3.7.

types.MethodWrapperType

The type of bound methods of some built-in data types and base classes. For example it is the type of
object().__str__.

Added in version 3.7.

types.NotImplementedType

The type of NotImplemented.

Added in version 3.10.

types.MethodDescriptorType

The type of methods of some built-in data types such as str.join().

Added in version 3.7.

types.ClassMethodDescriptorType

The type of unbound class methods of some built-in data types such as dict.__dict__['fromkeys'].

Added in version 3.7.

class types.ModuleType(name, doc=None)
The type of modules. The constructor takes the name of the module to be created and optionally its docstring.

See also

Documentation on module objects
Provides details on the special attributes that can be found on instances of ModuleType.

296 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

importlib.util.module_from_spec()

Modules created using the ModuleType constructor are created with many of their special attributes
unset or set to default values. module_from_spec() provides a more robust way of creating
ModuleType instances which ensures the various attributes are set appropriately.

types.EllipsisType

The type of Ellipsis.

Added in version 3.10.

class types.GenericAlias(t_origin, t_args)
The type of parameterized generics such as list[int].

t_origin should be a non-parameterized generic class, such as list, tuple or dict. t_args should be a
tuple (possibly of length 1) of types which parameterize t_origin:

>>> from types import GenericAlias

>>> list[int] == GenericAlias(list, (int,))

True

>>> dict[str, int] == GenericAlias(dict, (str, int))

True

Added in version 3.9.

Changed in version 3.9.2: This type can now be subclassed.

See also

Generic Alias Types
In-depth documentation on instances of types.GenericAlias

PEP 585 - Type Hinting Generics In Standard Collections
Introducing the types.GenericAlias class

class types.UnionType

The type of union type expressions.

Added in version 3.10.

class types.TracebackType(tb_next, tb_frame, tb_lasti, tb_lineno)
The type of traceback objects such as found in sys.exception().__traceback__.

See the language reference for details of the available attributes and operations, and guidance on creating
tracebacks dynamically.

types.FrameType

The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

types.GetSetDescriptorType

The type of objects defined in extension modules with PyGetSetDef, such as FrameType.f_locals or
array.array.typecode. This type is used as descriptor for object attributes; it has the same purpose as
the property type, but for classes defined in extension modules.

types.MemberDescriptorType

The type of objects defined in extensionmodules with PyMemberDef, such as datetime.timedelta.days.
This type is used as descriptor for simple C data members which use standard conversion functions; it has the
same purpose as the property type, but for classes defined in extension modules.

8.10. types— Dynamic type creation and names for built-in types 297

https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.13.1

In addition, when a class is defined with a __slots__ attribute, then for each slot, an instance of
MemberDescriptorType will be added as an attribute on the class. This allows the slot to appear in the
class’s __dict__.

CPython implementation detail: In other implementations of Python, this type may be identical to
GetSetDescriptorType.

class types.MappingProxyType(mapping)

Read-only proxy of a mapping. It provides a dynamic view on the mapping’s entries, which means that when
the mapping changes, the view reflects these changes.

Added in version 3.3.

Changed in version 3.9: Updated to support the new union (|) operator from PEP 584, which simply delegates
to the underlying mapping.

key in proxy

Return True if the underlying mapping has a key key, else False.

proxy[key]

Return the item of the underlyingmappingwith key key. Raises a KeyError if key is not in the underlying
mapping.

iter(proxy)

Return an iterator over the keys of the underlying mapping. This is a shortcut for iter(proxy.
keys()).

len(proxy)

Return the number of items in the underlying mapping.

copy()

Return a shallow copy of the underlying mapping.

get(key[, default])
Return the value for key if key is in the underlying mapping, else default. If default is not given, it defaults
to None, so that this method never raises a KeyError.

items()

Return a new view of the underlying mapping’s items ((key, value) pairs).

keys()

Return a new view of the underlying mapping’s keys.

values()

Return a new view of the underlying mapping’s values.

reversed(proxy)

Return a reverse iterator over the keys of the underlying mapping.

Added in version 3.9.

hash(proxy)

Return a hash of the underlying mapping.

Added in version 3.12.

class types.CapsuleType

The type of capsule objects.

Added in version 3.13.

298 Chapter 8. Data Types

https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.13.1

8.10.3 Additional Utility Classes and Functions

class types.SimpleNamespace

A simple object subclass that provides attribute access to its namespace, as well as a meaningful repr.

Unlike object, with SimpleNamespace you can add and remove attributes.

SimpleNamespace objects may be initialized in the same way as dict: either with keyword arguments,
with a single positional argument, or with both. When initialized with keyword arguments, those are directly
added to the underlying namespace. Alternatively, when initialized with a positional argument, the underlying
namespace will be updated with key-value pairs from that argument (either a mapping object or an iterable
object producing key-value pairs). All such keys must be strings.

The type is roughly equivalent to the following code:

class SimpleNamespace:

def __init__(self, mapping_or_iterable=(), /, **kwargs):

self.__dict__.update(mapping_or_iterable)

self.__dict__.update(kwargs)

def __repr__(self):

items = (f"{k}={v!r}" for k, v in self.__dict__.items())

return "{}({})".format(type(self).__name__, ", ".join(items))

def __eq__(self, other):

if isinstance(self, SimpleNamespace) and isinstance(other,␣

↪→SimpleNamespace):

return self.__dict__ == other.__dict__

return NotImplemented

SimpleNamespacemay be useful as a replacement for class NS: pass. However, for a structured record
type use namedtuple() instead.

SimpleNamespace objects are supported by copy.replace().

Added in version 3.3.

Changed in version 3.9: Attribute order in the repr changed from alphabetical to insertion (like dict).

Changed in version 3.13: Added support for an optional positional argument.

types.DynamicClassAttribute(fget=None, fset=None, fdel=None, doc=None)
Route attribute access on a class to __getattr__.

This is a descriptor, used to define attributes that act differently when accessed through an instance and through
a class. Instance access remains normal, but access to an attribute through a class will be routed to the class’s
__getattr__ method; this is done by raising AttributeError.

This allows one to have properties active on an instance, and have virtual attributes on the class with the same
name (see enum.Enum for an example).

Added in version 3.4.

8.10.4 Coroutine Utility Functions

types.coroutine(gen_func)
This function transforms a generator function into a coroutine function which returns a generator-based corou-
tine. The generator-based coroutine is still a generator iterator, but is also considered to be a coroutine object
and is awaitable. However, it may not necessarily implement the __await__() method.

If gen_func is a generator function, it will be modified in-place.

If gen_func is not a generator function, it will be wrapped. If it returns an instance of collections.abc.
Generator, the instance will be wrapped in an awaitable proxy object. All other types of objects will be
returned as is.

8.10. types— Dynamic type creation and names for built-in types 299

The Python Library Reference, Release 3.13.1

Added in version 3.5.

8.11 copy— Shallow and deep copy operations

Source code: Lib/copy.py

Assignment statements in Python do not copy objects, they create bindings between a target and an object. For
collections that are mutable or contain mutable items, a copy is sometimes needed so one can change one copy
without changing the other. This module provides generic shallow and deep copy operations (explained below).

Interface summary:

copy.copy(obj)
Return a shallow copy of obj.

copy.deepcopy(obj[, memo])
Return a deep copy of obj.

copy.replace(obj, / , **changes)
Creates a new object of the same type as obj, replacing fields with values from changes.

Added in version 3.13.

exception copy.Error

Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

• A shallow copy constructs a new compound object and then (to the extent possible) inserts references into it to
the objects found in the original.

• A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects found
in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

• Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause
a recursive loop.

• Because deep copy copies everything it may copy too much, such as data which is intended to be shared
between copies.

The deepcopy() function avoids these problems by:

• keeping a memo dictionary of objects already copied during the current copying pass; and

• letting user-defined classes override the copying operation or the set of components copied.

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, or any similar
types. It does “copy” functions and classes (shallow and deeply), by returning the original object unchanged; this is
compatible with the way these are treated by the pickle module.

Shallow copies of dictionaries can be made using dict.copy(), and of lists by assigning a slice of the entire list,
for example, copied_list = original_list[:].

Classes can use the same interfaces to control copying that they use to control pickling. See the description of module
pickle for information on these methods. In fact, the copy module uses the registered pickle functions from the
copyreg module.

In order for a class to define its own copy implementation, it can define special methods __copy__() and
__deepcopy__().

object.__copy__(self)
Called to implement the shallow copy operation; no additional arguments are passed.

300 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.13/Lib/copy.py

The Python Library Reference, Release 3.13.1

object.__deepcopy__(self, memo)
Called to implement the deep copy operation; it is passed one argument, the memo dictionary. If the
__deepcopy__ implementation needs to make a deep copy of a component, it should call the deepcopy()
function with the component as first argument and the memo dictionary as second argument. The memo dic-
tionary should be treated as an opaque object.

Function copy.replace() is more limited than copy() and deepcopy(), and only supports named tuples created
by namedtuple(), dataclasses, and other classes which define method __replace__().

object.__replace__(self, / , **changes)
This method should create a new object of the same type, replacing fields with values from changes.

See also

Module pickle
Discussion of the special methods used to support object state retrieval and restoration.

8.12 pprint— Data pretty printer

Source code: Lib/pprint.py

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be
used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets or classes are included,
as well as many other objects which are not representable as Python literals.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don’t
fit within the allowed width, adjustable by the width parameter defaulting to 80 characters.

Dictionaries are sorted by key before the display is computed.

Changed in version 3.9: Added support for pretty-printing types.SimpleNamespace.

Changed in version 3.10: Added support for pretty-printing dataclasses.dataclass.

8.12.1 Functions

pprint.pp(object, stream=None, indent=1, width=80, depth=None, *, compact=False, sort_dicts=False,
underscore_numbers=False)

Prints the formatted representation of object, followed by a newline. This functionmay be used in the interactive
interpreter instead of the print() function for inspecting values. Tip: you can reassign print = pprint.

pp for use within a scope.

Parameters

• object – The object to be printed.

• stream (file-like object | None) – A file-like object to which the output will be written by
calling its write() method. If None (the default), sys.stdout is used.

• indent (int) – The amount of indentation added for each nesting level.

• width (int) – The desired maximum number of characters per line in the output. If a
structure cannot be formatted within the width constraint, a best effort will be made.

• depth (int | None) – The number of nesting levels which may be printed. If the data
structure being printed is too deep, the next contained level is replaced by If None
(the default), there is no constraint on the depth of the objects being formatted.

8.12. pprint— Data pretty printer 301

https://github.com/python/cpython/tree/3.13/Lib/pprint.py

The Python Library Reference, Release 3.13.1

• compact (bool) – Control the way long sequences are formatted. If False (the default),
each item of a sequence will be formatted on a separate line, otherwise as many items as
will fit within the width will be formatted on each output line.

• sort_dicts (bool) – If True, dictionaries will be formatted with their keys sorted,
otherwise they will be displayed in insertion order (the default).

• underscore_numbers (bool) – If True, integers will be formatted with the _ character
for a thousands separator, otherwise underscores are not displayed (the default).

>>> import pprint

>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']

>>> stuff.insert(0, stuff)

>>> pprint.pp(stuff)

[<Recursion on list with id=...>,

'spam',

'eggs',

'lumberjack',

'knights',

'ni']

Added in version 3.8.

pprint.pprint(object, stream=None, indent=1, width=80, depth=None, *, compact=False, sort_dicts=True,
underscore_numbers=False)

Alias for pp() with sort_dicts set to True by default, which would automatically sort the dictionaries’ keys,
you might want to use pp() instead where it is False by default.

pprint.pformat(object, indent=1, width=80, depth=None, *, compact=False, sort_dicts=True,
underscore_numbers=False)

Return the formatted representation of object as a string. indent, width, depth, compact, sort_dicts and under-
score_numbers are passed to the PrettyPrinter constructor as formatting parameters and their meanings
are as described in the documentation above.

pprint.isreadable(object)
Determine if the formatted representation of object is “readable”, or can be used to reconstruct the value using
eval(). This always returns False for recursive objects.

>>> pprint.isreadable(stuff)

False

pprint.isrecursive(object)
Determine if object requires a recursive representation. This function is subject to the same limitations as noted
in saferepr() below and may raise an RecursionError if it fails to detect a recursive object.

pprint.saferepr(object)

Return a string representation of object, protected against recursion in some common data structures, namely
instances of dict, list and tuple or subclasses whose __repr__ has not been overridden. If the repre-
sentation of object exposes a recursive entry, the recursive reference will be represented as <Recursion on

typename with id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=...>, 'spam', 'eggs', 'lumberjack', 'knights', 'ni

↪→']"

8.12.2 PrettyPrinter Objects

class pprint.PrettyPrinter(indent=1, width=80, depth=None, stream=None, *, compact=False,
sort_dicts=True, underscore_numbers=False)

302 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

Construct a PrettyPrinter instance.

Arguments have the same meaning as for pp(). Note that they are in a different order, and that sort_dicts
defaults to True.

>>> import pprint

>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']

>>> stuff.insert(0, stuff[:])

>>> pp = pprint.PrettyPrinter(indent=4)

>>> pp.pprint(stuff)

[['spam', 'eggs', 'lumberjack', 'knights', 'ni'],

'spam',

'eggs',

'lumberjack',

'knights',

'ni']

>>> pp = pprint.PrettyPrinter(width=41, compact=True)

>>> pp.pprint(stuff)

[['spam', 'eggs', 'lumberjack',

'knights', 'ni'],

'spam', 'eggs', 'lumberjack', 'knights',

'ni']

>>> tup = ('spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead',

... ('parrot', ('fresh fruit',))))))))

>>> pp = pprint.PrettyPrinter(depth=6)

>>> pp.pprint(tup)

('spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead', (...)))))))

Changed in version 3.4: Added the compact parameter.

Changed in version 3.8: Added the sort_dicts parameter.

Changed in version 3.10: Added the underscore_numbers parameter.

Changed in version 3.11: No longer attempts to write to sys.stdout if it is None.

PrettyPrinter instances have the following methods:

PrettyPrinter.pformat(object)
Return the formatted representation of object. This takes into account the options passed to the
PrettyPrinter constructor.

PrettyPrinter.pprint(object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since new PrettyPrinter objects don’t need to be created.

PrettyPrinter.isreadable(object)

Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the
value using eval(). Note that this returns False for recursive objects. If the depth parameter of the
PrettyPrinter is set and the object is deeper than allowed, this returns False.

PrettyPrinter.isrecursive(object)

Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The default
implementation uses the internals of the saferepr() implementation.

PrettyPrinter.format(object, context, maxlevels, level)
Returns three values: the formatted version of object as a string, a flag indicating whether the result is readable,
and a flag indicating whether recursion was detected. The first argument is the object to be presented. The

8.12. pprint— Data pretty printer 303

The Python Library Reference, Release 3.13.1

second is a dictionary which contains the id() of objects that are part of the current presentation context
(direct and indirect containers for object that are affecting the presentation) as the keys; if an object needs to
be presented which is already represented in context, the third return value should be True. Recursive calls
to the format() method should add additional entries for containers to this dictionary. The third argument,
maxlevels, gives the requested limit to recursion; this will be 0 if there is no requested limit. This argument
should be passed unmodified to recursive calls. The fourth argument, level, gives the current level; recursive
calls should be passed a value less than that of the current call.

8.12.3 Example

To demonstrate several uses of the pp() function and its parameters, let’s fetch information about a project from
PyPI:

>>> import json

>>> import pprint

>>> from urllib.request import urlopen

>>> with urlopen('https://pypi.org/pypi/sampleproject/1.2.0/json') as resp:

... project_info = json.load(resp)['info']

In its basic form, pp() shows the whole object:

>>> pprint.pp(project_info)

{'author': 'The Python Packaging Authority',

'author_email': 'pypa-dev@googlegroups.com',

'bugtrack_url': None,

'classifiers': ['Development Status :: 3 - Alpha',

'Intended Audience :: Developers',

'License :: OSI Approved :: MIT License',

'Programming Language :: Python :: 2',

'Programming Language :: Python :: 2.6',

'Programming Language :: Python :: 2.7',

'Programming Language :: Python :: 3',

'Programming Language :: Python :: 3.2',

'Programming Language :: Python :: 3.3',

'Programming Language :: Python :: 3.4',

'Topic :: Software Development :: Build Tools'],

'description': 'A sample Python project\n'

'=======================\n'

'\n'

'This is the description file for the project.\n'

'\n'

'The file should use UTF-8 encoding and be written using '

'ReStructured Text. It\n'

'will be used to generate the project webpage on PyPI, and '

'should be written for\n'

'that purpose.\n'

'\n'

'Typical contents for this file would include an overview of '

'the project, basic\n'

'usage examples, etc. Generally, including the project '

'changelog in here is not\n'

'a good idea, although a simple "What\'s New" section for the '

'most recent version\n'

'may be appropriate.',

'description_content_type': None,

'docs_url': None,

'download_url': 'UNKNOWN',

'downloads': {'last_day': -1, 'last_month': -1, 'last_week': -1},

(continues on next page)

304 Chapter 8. Data Types

https://pypi.org

The Python Library Reference, Release 3.13.1

(continued from previous page)

'home_page': 'https://github.com/pypa/sampleproject',

'keywords': 'sample setuptools development',

'license': 'MIT',

'maintainer': None,

'maintainer_email': None,

'name': 'sampleproject',

'package_url': 'https://pypi.org/project/sampleproject/',

'platform': 'UNKNOWN',

'project_url': 'https://pypi.org/project/sampleproject/',

'project_urls': {'Download': 'UNKNOWN',

'Homepage': 'https://github.com/pypa/sampleproject'},

'release_url': 'https://pypi.org/project/sampleproject/1.2.0/',

'requires_dist': None,

'requires_python': None,

'summary': 'A sample Python project',

'version': '1.2.0'}

The result can be limited to a certain depth (ellipsis is used for deeper contents):

>>> pprint.pp(project_info, depth=1)

{'author': 'The Python Packaging Authority',

'author_email': 'pypa-dev@googlegroups.com',

'bugtrack_url': None,

'classifiers': [...],

'description': 'A sample Python project\n'

'=======================\n'

'\n'

'This is the description file for the project.\n'

'\n'

'The file should use UTF-8 encoding and be written using '

'ReStructured Text. It\n'

'will be used to generate the project webpage on PyPI, and '

'should be written for\n'

'that purpose.\n'

'\n'

'Typical contents for this file would include an overview of '

'the project, basic\n'

'usage examples, etc. Generally, including the project '

'changelog in here is not\n'

'a good idea, although a simple "What\'s New" section for the '

'most recent version\n'

'may be appropriate.',

'description_content_type': None,

'docs_url': None,

'download_url': 'UNKNOWN',

'downloads': {...},

'home_page': 'https://github.com/pypa/sampleproject',

'keywords': 'sample setuptools development',

'license': 'MIT',

'maintainer': None,

'maintainer_email': None,

'name': 'sampleproject',

'package_url': 'https://pypi.org/project/sampleproject/',

'platform': 'UNKNOWN',

'project_url': 'https://pypi.org/project/sampleproject/',

'project_urls': {...},

(continues on next page)

8.12. pprint— Data pretty printer 305

The Python Library Reference, Release 3.13.1

(continued from previous page)

'release_url': 'https://pypi.org/project/sampleproject/1.2.0/',

'requires_dist': None,

'requires_python': None,

'summary': 'A sample Python project',

'version': '1.2.0'}

Additionally, maximum character width can be suggested. If a long object cannot be split, the specified width will
be exceeded:

>>> pprint.pp(project_info, depth=1, width=60)

{'author': 'The Python Packaging Authority',

'author_email': 'pypa-dev@googlegroups.com',

'bugtrack_url': None,

'classifiers': [...],

'description': 'A sample Python project\n'

'=======================\n'

'\n'

'This is the description file for the '

'project.\n'

'\n'

'The file should use UTF-8 encoding and be '

'written using ReStructured Text. It\n'

'will be used to generate the project '

'webpage on PyPI, and should be written '

'for\n'

'that purpose.\n'

'\n'

'Typical contents for this file would '

'include an overview of the project, '

'basic\n'

'usage examples, etc. Generally, including '

'the project changelog in here is not\n'

'a good idea, although a simple "What\'s '

'New" section for the most recent version\n'

'may be appropriate.',

'description_content_type': None,

'docs_url': None,

'download_url': 'UNKNOWN',

'downloads': {...},

'home_page': 'https://github.com/pypa/sampleproject',

'keywords': 'sample setuptools development',

'license': 'MIT',

'maintainer': None,

'maintainer_email': None,

'name': 'sampleproject',

'package_url': 'https://pypi.org/project/sampleproject/',

'platform': 'UNKNOWN',

'project_url': 'https://pypi.org/project/sampleproject/',

'project_urls': {...},

'release_url': 'https://pypi.org/project/sampleproject/1.2.0/',

'requires_dist': None,

'requires_python': None,

'summary': 'A sample Python project',

'version': '1.2.0'}

306 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

8.13 reprlib— Alternate repr() implementation

Source code: Lib/reprlib.py

The reprlib module provides a means for producing object representations with limits on the size of the resulting
strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class reprlib.Repr(*, maxlevel=6, maxtuple=6, maxlist=6, maxarray=5, maxdict=4, maxset=6,
maxfrozenset=6, maxdeque=6, maxstring=30, maxlong=40, maxother=30, fillvalue=’...’,
indent=None)

Class which provides formatting services useful in implementing functions similar to the built-in repr(); size
limits for different object types are added to avoid the generation of representations which are excessively long.

The keyword arguments of the constructor can be used as a shortcut to set the attributes of the Repr instance.
Which means that the following initialization:

aRepr = reprlib.Repr(maxlevel=3)

Is equivalent to:

aRepr = reprlib.Repr()

aRepr.maxlevel = 3

See section Repr Objects for more information about Repr attributes.

Changed in version 3.12: Allow attributes to be set via keyword arguments.

reprlib.aRepr

This is an instance of Repr which is used to provide the repr() function described below. Changing the
attributes of this object will affect the size limits used by repr() and the Python debugger.

reprlib.repr(obj)
This is the repr()method of aRepr. It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

In addition to size-limiting tools, the module also provides a decorator for detecting recursive calls to __repr__()
and substituting a placeholder string instead.

@reprlib.recursive_repr(fillvalue=’...’)
Decorator for __repr__() methods to detect recursive calls within the same thread. If a recursive call is
made, the fillvalue is returned, otherwise, the usual __repr__() call is made. For example:

>>> from reprlib import recursive_repr

>>> class MyList(list):

... @recursive_repr()

... def __repr__(self):

... return '<' + '|'.join(map(repr, self)) + '>'

...

>>> m = MyList('abc')

>>> m.append(m)

>>> m.append('x')

>>> print(m)

<'a'|'b'|'c'|...|'x'>

Added in version 3.2.

8.13. reprlib— Alternate repr() implementation 307

https://github.com/python/cpython/tree/3.13/Lib/reprlib.py

The Python Library Reference, Release 3.13.1

8.13.1 Repr Objects

Repr instances provide several attributes which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

Repr.fillvalue

This string is displayed for recursive references. It defaults to

Added in version 3.11.

Repr.maxlevel

Depth limit on the creation of recursive representations. The default is 6.

Repr.maxdict

Repr.maxlist

Repr.maxtuple

Repr.maxset

Repr.maxfrozenset

Repr.maxdeque

Repr.maxarray

Limits on the number of entries represented for the named object type. The default is 4 for maxdict, 5 for
maxarray, and 6 for the others.

Repr.maxlong

Maximum number of characters in the representation for an integer. Digits are dropped from the middle. The
default is 40.

Repr.maxstring

Limit on the number of characters in the representation of the string. Note that the “normal” representation
of the string is used as the character source: if escape sequences are needed in the representation, these may
be mangled when the representation is shortened. The default is 30.

Repr.maxother

This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. It is applied in a similar manner as maxstring. The default is 20.

Repr.indent

If this attribute is set to None (the default), the output is formatted with no line breaks or indentation, like the
standard repr(). For example:

>>> example = [

... 1, 'spam', {'a': 2, 'b': 'spam eggs', 'c': {3: 4.5, 6: []}}, 'ham']

>>> import reprlib

>>> aRepr = reprlib.Repr()

>>> print(aRepr.repr(example))

[1, 'spam', {'a': 2, 'b': 'spam eggs', 'c': {3: 4.5, 6: []}}, 'ham']

If indent is set to a string, each recursion level is placed on its own line, indented by that string:

>>> aRepr.indent = '-->'

>>> print(aRepr.repr(example))

[

-->1,

-->'spam',

-->{

-->-->'a': 2,

-->-->'b': 'spam eggs',

-->-->'c': {

-->-->-->3: 4.5,

(continues on next page)

308 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

-->-->-->6: [],

-->-->},

-->},

-->'ham',

]

Setting indent to a positive integer value behaves as if it was set to a string with that number of spaces:

>>> aRepr.indent = 4

>>> print(aRepr.repr(example))

[

1,

'spam',

{

'a': 2,

'b': 'spam eggs',

'c': {

3: 4.5,

6: [],

},

},

'ham',

]

Added in version 3.12.

Repr.repr(obj)
The equivalent to the built-in repr() that uses the formatting imposed by the instance.

Repr.repr1(obj, level)
Recursive implementation used by repr(). This uses the type of obj to determine which formatting method to
call, passing it obj and level. The type-specific methods should call repr1() to perform recursive formatting,
with level - 1 for the value of level in the recursive call.

Repr.repr_TYPE(obj, level)
Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method name, TYPE is replaced by '_'.join(type(obj).__name__.split()). Dispatch to these
methods is handled by repr1(). Type-specific methods which need to recursively format a value should call
self.repr1(subobj, level - 1).

8.13.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr.repr1() allows subclasses of Repr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

import reprlib

import sys

class MyRepr(reprlib.Repr):

def repr_TextIOWrapper(self, obj, level):

if obj.name in {'<stdin>', '<stdout>', '<stderr>'}:

return obj.name

return repr(obj)

aRepr = MyRepr()

print(aRepr.repr(sys.stdin)) # prints '<stdin>'

8.13. reprlib— Alternate repr() implementation 309

The Python Library Reference, Release 3.13.1

<stdin>

8.14 enum— Support for enumerations

Added in version 3.4.

Source code: Lib/enum.py

Important

This page contains the API reference information. For tutorial information and discussion of more advanced
topics, see

• Basic Tutorial

• Advanced Tutorial

• Enum Cookbook

An enumeration:

• is a set of symbolic names (members) bound to unique values

• can be iterated over to return its canonical (i.e. non-alias) members in definition order

• uses call syntax to return members by value

• uses index syntax to return members by name

Enumerations are created either by using class syntax, or by using function-call syntax:

>>> from enum import Enum

>>> # class syntax

>>> class Color(Enum):

... RED = 1

... GREEN = 2

... BLUE = 3

>>> # functional syntax

>>> Color = Enum('Color', [('RED', 1), ('GREEN', 2), ('BLUE', 3)])

Even though we can use class syntax to create Enums, Enums are not normal Python classes. See How are Enums
different? for more details.

Note

Nomenclature

• The class Color is an enumeration (or enum)

• The attributes Color.RED, Color.GREEN, etc., are enumeration members (ormembers) and are function-
ally constants.

• The enum members have names and values (the name of Color.RED is RED, the value of Color.BLUE
is 3, etc.)

310 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.13/Lib/enum.py

The Python Library Reference, Release 3.13.1

8.14.1 Module Contents

EnumType

The type for Enum and its subclasses.

Enum

Base class for creating enumerated constants.

IntEnum

Base class for creating enumerated constants that are also subclasses of int. (Notes)

StrEnum

Base class for creating enumerated constants that are also subclasses of str. (Notes)

Flag

Base class for creating enumerated constants that can be combined using the bitwise opera-
tions without losing their Flag membership.

IntFlag

Base class for creating enumerated constants that can be combined using the bitwise operators
without losing their IntFlag membership. IntFlag members are also subclasses of int.
(Notes)

ReprEnum

Used by IntEnum, StrEnum, and IntFlag to keep the str() of the mixed-in type.

EnumCheck

An enumeration with the values CONTINUOUS, NAMED_FLAGS, and UNIQUE, for use with
verify() to ensure various constraints are met by a given enumeration.

FlagBoundary

An enumeration with the values STRICT, CONFORM, EJECT, and KEEPwhich allows for more
fine-grained control over how invalid values are dealt with in an enumeration.

EnumDict

A subclass of dict for use when subclassing EnumType.

auto

Instances are replaced with an appropriate value for Enum members. StrEnum defaults to
the lower-cased version of the member name, while other Enums default to 1 and increase
from there.

property()

Allows Enum members to have attributes without conflicting with member names. The
value and name attributes are implemented this way.

unique()

Enum class decorator that ensures only one name is bound to any one value.

verify()

Enum class decorator that checks user-selectable constraints on an enumeration.

member()

Make obj a member. Can be used as a decorator.

nonmember()

Do not make obj a member. Can be used as a decorator.

8.14. enum— Support for enumerations 311

The Python Library Reference, Release 3.13.1

global_enum()

Modify the str() and repr() of an enum to show its members as belonging to the module
instead of its class, and export the enum members to the global namespace.

show_flag_values()

Return a list of all power-of-two integers contained in a flag.

Added in version 3.6: Flag, IntFlag, auto

Added in version 3.11: StrEnum, EnumCheck, ReprEnum, FlagBoundary, property, member, nonmember,
global_enum, show_flag_values

Added in version 3.13: EnumDict

8.14.2 Data Types

class enum.EnumType

EnumType is the metaclass for enum enumerations. It is possible to subclass EnumType – see Subclassing
EnumType for details.

EnumType is responsible for setting the correct __repr__(), __str__(), __format__(), and
__reduce__() methods on the final enum, as well as creating the enum members, properly handling du-
plicates, providing iteration over the enum class, etc.

__call__(cls, value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

This method is called in two different ways:

• to look up an existing member:

cls
The enum class being called.

value
The value to lookup.

• to use the cls enum to create a new enum (only if the existing enum does not have any members):

cls
The enum class being called.

value
The name of the new Enum to create.

names
The names/values of the members for the new Enum.

module
The name of the module the new Enum is created in.

qualname
The actual location in the module where this Enum can be found.

type
A mix-in type for the new Enum.

start
The first integer value for the Enum (used by auto).

boundary
How to handle out-of-range values from bit operations (Flag only).

312 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

__contains__(cls, member)
Returns True if member belongs to the cls:

>>> some_var = Color.RED

>>> some_var in Color

True

>>> Color.RED.value in Color

True

Changed in version 3.12: Before Python 3.12, a TypeError is raised if a non-Enum-member is used in a
containment check.

__dir__(cls)
Returns ['__class__', '__doc__', '__members__', '__module__'] and the names of the
members in cls:

>>> dir(Color)

['BLUE', 'GREEN', 'RED', '__class__', '__contains__', '__doc__', '__

↪→getitem__', '__init_subclass__', '__iter__', '__len__', '__members__', '_

↪→_module__', '__name__', '__qualname__']

__getitem__(cls, name)
Returns the Enum member in cls matching name, or raises a KeyError:

>>> Color['BLUE']

<Color.BLUE: 3>

__iter__(cls)
Returns each member in cls in definition order:

>>> list(Color)

[<Color.RED: 1>, <Color.GREEN: 2>, <Color.BLUE: 3>]

__len__(cls)
Returns the number of member in cls:

>>> len(Color)

3

__members__

Returns a mapping of every enum name to its member, including aliases

__reversed__(cls)
Returns each member in cls in reverse definition order:

>>> list(reversed(Color))

[<Color.BLUE: 3>, <Color.GREEN: 2>, <Color.RED: 1>]

_add_alias_()

Adds a new name as an alias to an existing member. Raises a NameError if the name is already assigned
to a different member.

_add_value_alias_()

Adds a new value as an alias to an existing member. Raises a ValueError if the value is already linked
with a different member.

Added in version 3.11: Before 3.11 EnumType was called EnumMeta, which is still available as an alias.

8.14. enum— Support for enumerations 313

The Python Library Reference, Release 3.13.1

class enum.Enum

Enum is the base class for all enum enumerations.

name

The name used to define the Enum member:

>>> Color.BLUE.name

'BLUE'

value

The value given to the Enum member:

>>> Color.RED.value

1

Value of the member, can be set in __new__().

Note

Enum member values

Member values can be anything: int, str, etc. If the exact value is unimportant you may use auto
instances and an appropriate value will be chosen for you. See auto for the details.

While mutable/unhashable values, such as dict, list or a mutable dataclass, can be used,
they will have a quadratic performance impact during creation relative to the total number of muta-
ble/unhashable values in the enum.

name

Name of the member.

value

Value of the member, can be set in __new__().

order

No longer used, kept for backward compatibility. (class attribute, removed during class creation).

ignore

ignore is only used during creation and is removed from the enumeration once creation is complete.

ignore is a list of names that will not become members, and whose names will also be removed from
the completed enumeration. See TimePeriod for an example.

__dir__(self)

Returns ['__class__', '__doc__', '__module__', 'name', 'value'] and any public
methods defined on self.__class__:

>>> from datetime import date

>>> class Weekday(Enum):

... MONDAY = 1

... TUESDAY = 2

... WEDNESDAY = 3

... THURSDAY = 4

... FRIDAY = 5

... SATURDAY = 6

... SUNDAY = 7

... @classmethod

... def today(cls):

... print('today is %s' % cls(date.today().isoweekday()).name)

(continues on next page)

314 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

...

>>> dir(Weekday.SATURDAY)

['__class__', '__doc__', '__eq__', '__hash__', '__module__', 'name', 'today

↪→', 'value']

_generate_next_value_(name, start, count, last_values)

name
The name of the member being defined (e.g. ‘RED’).

start
The start value for the Enum; the default is 1.

count
The number of members currently defined, not including this one.

last_values
A list of the previous values.

A staticmethod that is used to determine the next value returned by auto:

>>> from enum import auto

>>> class PowersOfThree(Enum):

... @staticmethod

... def _generate_next_value_(name, start, count, last_values):

... return 3 ** (count + 1)

... FIRST = auto()

... SECOND = auto()

...

>>> PowersOfThree.SECOND.value

9

__init__(self, *args, **kwds)
By default, does nothing. If multiple values are given in the member assignment, those values become
separate arguments to __init__; e.g.

>>> from enum import Enum

>>> class Weekday(Enum):

... MONDAY = 1, 'Mon'

Weekday.__init__() would be called as Weekday.__init__(self, 1, 'Mon')

__init_subclass__(cls, **kwds)

A classmethod that is used to further configure subsequent subclasses. By default, does nothing.

missing(cls, value)
A classmethod for looking up values not found in cls. By default it does nothing, but can be overridden
to implement custom search behavior:

>>> from enum import StrEnum

>>> class Build(StrEnum):

... DEBUG = auto()

... OPTIMIZED = auto()

... @classmethod

... def _missing_(cls, value):

... value = value.lower()

... for member in cls:

... if member.value == value:

... return member

(continues on next page)

8.14. enum— Support for enumerations 315

The Python Library Reference, Release 3.13.1

(continued from previous page)

... return None

...

>>> Build.DEBUG.value

'debug'

>>> Build('deBUG')

<Build.DEBUG: 'debug'>

__new__(cls, *args, **kwds)
By default, doesn’t exist. If specified, either in the enum class definition or in a mixin class (such as int),
all values given in the member assignment will be passed; e.g.

>>> from enum import Enum

>>> class MyIntEnum(int, Enum):

... TWENTYSIX = '1a', 16

results in the call int('1a', 16) and a value of 26 for the member.

Note

When writing a custom __new__, do not use super().__new__ – call the appropriate __new__
instead.

__repr__(self)
Returns the string used for repr() calls. By default, returns the Enum name, member name, and value, but
can be overridden:

>>> class OtherStyle(Enum):

... ALTERNATE = auto()

... OTHER = auto()

... SOMETHING_ELSE = auto()

... def __repr__(self):

... cls_name = self.__class__.__name__

... return f'{cls_name}.{self.name}'

...

>>> OtherStyle.ALTERNATE, str(OtherStyle.ALTERNATE), f"{OtherStyle.

↪→ALTERNATE}"

(OtherStyle.ALTERNATE, 'OtherStyle.ALTERNATE', 'OtherStyle.ALTERNATE')

__str__(self)

Returns the string used for str() calls. By default, returns the Enum name and member name, but can be
overridden:

>>> class OtherStyle(Enum):

... ALTERNATE = auto()

... OTHER = auto()

... SOMETHING_ELSE = auto()

... def __str__(self):

... return f'{self.name}'

...

>>> OtherStyle.ALTERNATE, str(OtherStyle.ALTERNATE), f"{OtherStyle.

↪→ALTERNATE}"

(<OtherStyle.ALTERNATE: 1>, 'ALTERNATE', 'ALTERNATE')

__format__(self)
Returns the string used for format() and f-string calls. By default, returns __str__() return value, but
can be overridden:

316 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

>>> class OtherStyle(Enum):

... ALTERNATE = auto()

... OTHER = auto()

... SOMETHING_ELSE = auto()

... def __format__(self, spec):

... return f'{self.name}'

...

>>> OtherStyle.ALTERNATE, str(OtherStyle.ALTERNATE), f"{OtherStyle.

↪→ALTERNATE}"

(<OtherStyle.ALTERNATE: 1>, 'OtherStyle.ALTERNATE', 'ALTERNATE')

Note

Using auto with Enum results in integers of increasing value, starting with 1.

Changed in version 3.12: Added enum-dataclass-support

class enum.IntEnum

IntEnum is the same as Enum, but its members are also integers and can be used anywhere that an integer can be
used. If any integer operation is performed with an IntEnummember, the resulting value loses its enumeration
status.

>>> from enum import IntEnum

>>> class Number(IntEnum):

... ONE = 1

... TWO = 2

... THREE = 3

...

>>> Number.THREE

<Number.THREE: 3>

>>> Number.ONE + Number.TWO

3

>>> Number.THREE + 5

8

>>> Number.THREE == 3

True

Note

Using auto with IntEnum results in integers of increasing value, starting with 1.

Changed in version 3.11: __str__() is now int.__str__() to better support the replacement of existing
constants use-case. __format__() was already int.__format__() for that same reason.

class enum.StrEnum

StrEnum is the same as Enum, but its members are also strings and can be used in most of the same places
that a string can be used. The result of any string operation performed on or with a StrEnum member is not
part of the enumeration.

Note

There are places in the stdlib that check for an exact str instead of a str subclass (i.e. type(unknown)
== str instead of isinstance(unknown, str)), and in those locations you will need to use
str(StrEnum.member).

8.14. enum— Support for enumerations 317

The Python Library Reference, Release 3.13.1

Note

Using auto with StrEnum results in the lower-cased member name as the value.

Note

__str__() is str.__str__() to better support the replacement of existing constants use-case.
__format__() is likewise str.__format__() for that same reason.

Added in version 3.11.

class enum.Flag

Flag is the same as Enum, but its members support the bitwise operators & (AND), | (OR), ^ (XOR), and ~
(INVERT); the results of those operations are (aliases of) members of the enumeration.

__contains__(self, value)
Returns True if value is in self:

>>> from enum import Flag, auto

>>> class Color(Flag):

... RED = auto()

... GREEN = auto()

... BLUE = auto()

...

>>> purple = Color.RED | Color.BLUE

>>> white = Color.RED | Color.GREEN | Color.BLUE

>>> Color.GREEN in purple

False

>>> Color.GREEN in white

True

>>> purple in white

True

>>> white in purple

False

__iter__(self):

Returns all contained non-alias members:

>>> list(Color.RED)

[<Color.RED: 1>]

>>> list(purple)

[<Color.RED: 1>, <Color.BLUE: 4>]

Added in version 3.11.

__len__(self):

Returns number of members in flag:

>>> len(Color.GREEN)

1

>>> len(white)

3

Added in version 3.11.

__bool__(self):

Returns True if any members in flag, False otherwise:

318 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

>>> bool(Color.GREEN)

True

>>> bool(white)

True

>>> black = Color(0)

>>> bool(black)

False

__or__(self, other)
Returns current flag binary or’ed with other:

>>> Color.RED | Color.GREEN

<Color.RED|GREEN: 3>

__and__(self, other)
Returns current flag binary and’ed with other:

>>> purple & white

<Color.RED|BLUE: 5>

>>> purple & Color.GREEN

<Color: 0>

__xor__(self, other)
Returns current flag binary xor’ed with other:

>>> purple ^ white

<Color.GREEN: 2>

>>> purple ^ Color.GREEN

<Color.RED|GREEN|BLUE: 7>

__invert__(self):

Returns all the flags in type(self) that are not in self:

>>> ~white

<Color: 0>

>>> ~purple

<Color.GREEN: 2>

>>> ~Color.RED

<Color.GREEN|BLUE: 6>

_numeric_repr_()

Function used to format any remaining unnamed numeric values. Default is the value’s repr; common
choices are hex() and oct().

Note

Using auto with Flag results in integers that are powers of two, starting with 1.

Changed in version 3.11: The repr() of zero-valued flags has changed. It is now::

>>> Color(0)

<Color: 0>

class enum.IntFlag

IntFlag is the same as Flag, but its members are also integers and can be used anywhere that an integer can
be used.

8.14. enum— Support for enumerations 319

The Python Library Reference, Release 3.13.1

>>> from enum import IntFlag, auto

>>> class Color(IntFlag):

... RED = auto()

... GREEN = auto()

... BLUE = auto()

...

>>> Color.RED & 2

<Color: 0>

>>> Color.RED | 2

<Color.RED|GREEN: 3>

If any integer operation is performed with an IntFlag member, the result is not an IntFlag:

>>> Color.RED + 2

3

If a Flag operation is performed with an IntFlag member and:

• the result is a valid IntFlag: an IntFlag is returned

• the result is not a valid IntFlag: the result depends on the FlagBoundary setting

The repr() of unnamed zero-valued flags has changed. It is now:

>>> Color(0)

<Color: 0>

Note

Using auto with IntFlag results in integers that are powers of two, starting with 1.

Changed in version 3.11: __str__() is now int.__str__() to better support the replacement of existing
constants use-case. __format__() was already int.__format__() for that same reason.

Inversion of an IntFlag now returns a positive value that is the union of all flags not in the given flag, rather
than a negative value. This matches the existing Flag behavior.

class enum.ReprEnum

ReprEnum uses the repr() of Enum, but the str() of the mixed-in data type:

• int.__str__() for IntEnum and IntFlag

• str.__str__() for StrEnum

Inherit from ReprEnum to keep the str() / format() of the mixed-in data type instead of using the Enum-
default str().

Added in version 3.11.

class enum.EnumCheck

EnumCheck contains the options used by the verify() decorator to ensure various constraints; failed con-
straints result in a ValueError.

UNIQUE

Ensure that each value has only one name:

>>> from enum import Enum, verify, UNIQUE

>>> @verify(UNIQUE)

... class Color(Enum):

... RED = 1

... GREEN = 2

(continues on next page)

320 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

(continued from previous page)

... BLUE = 3

... CRIMSON = 1

Traceback (most recent call last):

...

ValueError: aliases found in <enum 'Color'>: CRIMSON -> RED

CONTINUOUS

Ensure that there are no missing values between the lowest-valued member and the highest-valued mem-
ber:

>>> from enum import Enum, verify, CONTINUOUS

>>> @verify(CONTINUOUS)

... class Color(Enum):

... RED = 1

... GREEN = 2

... BLUE = 5

Traceback (most recent call last):

...

ValueError: invalid enum 'Color': missing values 3, 4

NAMED_FLAGS

Ensure that any flag groups/masks contain only named flags – useful when values are specified instead of
being generated by auto():

>>> from enum import Flag, verify, NAMED_FLAGS

>>> @verify(NAMED_FLAGS)

... class Color(Flag):

... RED = 1

... GREEN = 2

... BLUE = 4

... WHITE = 15

... NEON = 31

Traceback (most recent call last):

...

ValueError: invalid Flag 'Color': aliases WHITE and NEON are missing␣

↪→combined values of 0x18 [use enum.show_flag_values(value) for details]

Note

CONTINUOUS and NAMED_FLAGS are designed to work with integer-valued members.

Added in version 3.11.

class enum.FlagBoundary

FlagBoundary controls how out-of-range values are handled in Flag and its subclasses.

STRICT

Out-of-range values cause a ValueError to be raised. This is the default for Flag:

>>> from enum import Flag, STRICT, auto

>>> class StrictFlag(Flag, boundary=STRICT):

... RED = auto()

... GREEN = auto()

... BLUE = auto()

...

(continues on next page)

8.14. enum— Support for enumerations 321

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> StrictFlag(2**2 + 2**4)

Traceback (most recent call last):

...

ValueError: <flag 'StrictFlag'> invalid value 20

given 0b0 10100

allowed 0b0 00111

CONFORM

Out-of-range values have invalid values removed, leaving a valid Flag value:

>>> from enum import Flag, CONFORM, auto

>>> class ConformFlag(Flag, boundary=CONFORM):

... RED = auto()

... GREEN = auto()

... BLUE = auto()

...

>>> ConformFlag(2**2 + 2**4)

<ConformFlag.BLUE: 4>

EJECT

Out-of-range values lose their Flag membership and revert to int.

>>> from enum import Flag, EJECT, auto

>>> class EjectFlag(Flag, boundary=EJECT):

... RED = auto()

... GREEN = auto()

... BLUE = auto()

...

>>> EjectFlag(2**2 + 2**4)

20

KEEP

Out-of-range values are kept, and the Flag membership is kept. This is the default for IntFlag:

>>> from enum import Flag, KEEP, auto

>>> class KeepFlag(Flag, boundary=KEEP):

... RED = auto()

... GREEN = auto()

... BLUE = auto()

...

>>> KeepFlag(2**2 + 2**4)

<KeepFlag.BLUE|16: 20>

Added in version 3.11.

class enum.EnumDict

EnumDict is a subclass of dict that is used as the namespace for defining enum classes (see prepare). It is
exposed to allow subclasses of EnumType with advanced behavior like having multiple values per member. It
should be called with the name of the enum class being created, otherwise private names and internal classes
will not be handled correctly.

Note that only the MutableMapping interface (__setitem__() and update()) is overridden. It may be
possible to bypass the checks using other dict operations like |=.

member_names

A list of member names.

Added in version 3.13.

322 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

Supported __dunder__ names

__members__ is a read-only ordered mapping of member_name:member items. It is only available on the class.

__new__(), if specified, must create and return the enum members; it is also a very good idea to set the member’s
value appropriately. Once all the members are created it is no longer used.

Supported _sunder_ names

• _add_alias_() – adds a new name as an alias to an existing member.

• _add_value_alias_() – adds a new value as an alias to an existing member.

• _name_ – name of the member

• _value_ – value of the member; can be set in __new__

• _missing_() – a lookup function used when a value is not found; may be overridden

• _ignore_ – a list of names, either as a list or a str, that will not be transformed into members, and will
be removed from the final class

• _order_ – no longer used, kept for backward compatibility (class attribute, removed during class creation)

• _generate_next_value_() – used to get an appropriate value for an enum member; may be overridden

Note

For standard Enum classes the next value chosen is the highest value seen incremented by one.

For Flag classes the next value chosen will be the next highest power-of-two.

• While _sunder_ names are generally reserved for the further development of the Enum class and can not be
used, some are explicitly allowed:

– _repr_* (e.g. _repr_html_), as used in IPython’s rich display

Added in version 3.6: _missing_, _order_, _generate_next_value_

Added in version 3.7: _ignore_

Added in version 3.13: _add_alias_, _add_value_alias_, _repr_*

8.14.3 Utilities and Decorators

class enum.auto

auto can be used in place of a value. If used, the Enum machinery will call an Enum’s
_generate_next_value_() to get an appropriate value. For Enum and IntEnum that appropriate value
will be the last value plus one; for Flag and IntFlag it will be the first power-of-two greater than the highest
value; for StrEnum it will be the lower-cased version of the member’s name. Care must be taken if mixing
auto() with manually specified values.

auto instances are only resolved when at the top level of an assignment:

• FIRST = auto() will work (auto() is replaced with 1);

• SECOND = auto(), -2 will work (auto is replaced with 2, so 2, -2 is used to create the SECOND
enum member;

• THREE = [auto(), -3] will not work (<auto instance>, -3 is used to create the THREE enum
member)

8.14. enum— Support for enumerations 323

https://ipython.readthedocs.io/en/stable/config/integrating.html#rich-display

The Python Library Reference, Release 3.13.1

Changed in version 3.11.1: In prior versions, auto() had to be the only thing on the assignment line to work
properly.

_generate_next_value_ can be overridden to customize the values used by auto.

Note

in 3.13 the default _generate_next_value_ will always return the highest member value incremented
by 1, and will fail if any member is an incompatible type.

@enum.property

A decorator similar to the built-in property, but specifically for enumerations. It allows member attributes to
have the same names as members themselves.

Note

the property and the member must be defined in separate classes; for example, the value and name attributes
are defined in the Enum class, and Enum subclasses can define members with the names value and name.

Added in version 3.11.

@enum.unique

A class decorator specifically for enumerations. It searches an enumeration’s __members__, gathering any
aliases it finds; if any are found ValueError is raised with the details:

>>> from enum import Enum, unique

>>> @unique

... class Mistake(Enum):

... ONE = 1

... TWO = 2

... THREE = 3

... FOUR = 3

...

Traceback (most recent call last):

...

ValueError: duplicate values found in <enum 'Mistake'>: FOUR -> THREE

@enum.verify

A class decorator specifically for enumerations. Members from EnumCheck are used to specify which
constraints should be checked on the decorated enumeration.

Added in version 3.11.

@enum.member

A decorator for use in enums: its target will become a member.

Added in version 3.11.

@enum.nonmember

A decorator for use in enums: its target will not become a member.

Added in version 3.11.

@enum.global_enum

A decorator to change the str() and repr() of an enum to show its members as belonging to the module
instead of its class. Should only be used when the enummembers are exported to the module global namespace
(see re.RegexFlag for an example).

Added in version 3.11.

324 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

enum.show_flag_values(value)
Return a list of all power-of-two integers contained in a flag value.

Added in version 3.11.

8.14.4 Notes

IntEnum, StrEnum, and IntFlag

These three enum types are designed to be drop-in replacements for existing integer- and string-based
values; as such, they have extra limitations:

• __str__ uses the value and not the name of the enum member

• __format__, because it uses __str__, will also use the value of the enum member instead of
its name

If you do not need/want those limitations, you can either create your own base class by mixing in the
int or str type yourself:

>>> from enum import Enum

>>> class MyIntEnum(int, Enum):

... pass

or you can reassign the appropriate str(), etc., in your enum:

>>> from enum import Enum, IntEnum

>>> class MyIntEnum(IntEnum):

... __str__ = Enum.__str__

8.15 graphlib—Functionality to operate with graph-like structures

Source code: Lib/graphlib.py

class graphlib.TopologicalSorter(graph=None)
Provides functionality to topologically sort a graph of hashable nodes.

A topological order is a linear ordering of the vertices in a graph such that for every directed edge u -> v from
vertex u to vertex v, vertex u comes before vertex v in the ordering. For instance, the vertices of the graph
may represent tasks to be performed, and the edges may represent constraints that one task must be performed
before another; in this example, a topological ordering is just a valid sequence for the tasks. A complete
topological ordering is possible if and only if the graph has no directed cycles, that is, if it is a directed acyclic
graph.

If the optional graph argument is provided it must be a dictionary representing a directed acyclic graph where
the keys are nodes and the values are iterables of all predecessors of that node in the graph (the nodes that have
edges that point to the value in the key). Additional nodes can be added to the graph using the add()method.

In the general case, the steps required to perform the sorting of a given graph are as follows:

• Create an instance of the TopologicalSorter with an optional initial graph.

• Add additional nodes to the graph.

• Call prepare() on the graph.

• While is_active() is True, iterate over the nodes returned by get_ready() and process them. Call
done() on each node as it finishes processing.

In case just an immediate sorting of the nodes in the graph is required and no parallelism is involved, the
convenience method TopologicalSorter.static_order() can be used directly:

8.15. graphlib— Functionality to operate with graph-like structures 325

https://github.com/python/cpython/tree/3.13/Lib/graphlib.py

The Python Library Reference, Release 3.13.1

>>> graph = {"D": {"B", "C"}, "C": {"A"}, "B": {"A"}}

>>> ts = TopologicalSorter(graph)

>>> tuple(ts.static_order())

('A', 'C', 'B', 'D')

The class is designed to easily support parallel processing of the nodes as they become ready. For instance:

topological_sorter = TopologicalSorter()

Add nodes to 'topological_sorter'...

topological_sorter.prepare()

while topological_sorter.is_active():

for node in topological_sorter.get_ready():

Worker threads or processes take nodes to work on off the

'task_queue' queue.

task_queue.put(node)

When the work for a node is done, workers put the node in

'finalized_tasks_queue' so we can get more nodes to work on.

The definition of 'is_active()' guarantees that, at this point, at

least one node has been placed on 'task_queue' that hasn't yet

been passed to 'done()', so this blocking 'get()' must (eventually)

succeed. After calling 'done()', we loop back to call 'get_ready()'

again, so put newly freed nodes on 'task_queue' as soon as

logically possible.

node = finalized_tasks_queue.get()

topological_sorter.done(node)

add(node, *predecessors)
Add a new node and its predecessors to the graph. Both the node and all elements in predecessors must
be hashable.

If called multiple times with the same node argument, the set of dependencies will be the union of all
dependencies passed in.

It is possible to add a node with no dependencies (predecessors is not provided) or to provide a dependency
twice. If a node that has not been provided before is included among predecessors it will be automatically
added to the graph with no predecessors of its own.

Raises ValueError if called after prepare().

prepare()

Mark the graph as finished and check for cycles in the graph. If any cycle is detected, CycleError will
be raised, but get_ready() can still be used to obtain as many nodes as possible until cycles block
more progress. After a call to this function, the graph cannot be modified, and therefore no more nodes
can be added using add().

is_active()

Returns True if more progress can be made and False otherwise. Progress can be made if cy-
cles do not block the resolution and either there are still nodes ready that haven’t yet been returned
by TopologicalSorter.get_ready() or the number of nodes marked TopologicalSorter.

done() is less than the number that have been returned by TopologicalSorter.get_ready().

The __bool__() method of this class defers to this function, so instead of:

if ts.is_active():

...

it is possible to simply do:

326 Chapter 8. Data Types

The Python Library Reference, Release 3.13.1

if ts:

...

Raises ValueError if called without calling prepare() previously.

done(*nodes)
Marks a set of nodes returned by TopologicalSorter.get_ready() as processed, unblocking any
successor of each node in nodes for being returned in the future by a call to TopologicalSorter.
get_ready().

Raises ValueError if any node in nodes has already been marked as processed by a previous call to
this method or if a node was not added to the graph by using TopologicalSorter.add(), if called
without calling prepare() or if node has not yet been returned by get_ready().

get_ready()

Returns a tuple with all the nodes that are ready. Initially it returns all nodes with no predecessors, and
once those are marked as processed by calling TopologicalSorter.done(), further calls will return
all new nodes that have all their predecessors already processed. Once no more progress can be made,
empty tuples are returned.

Raises ValueError if called without calling prepare() previously.

static_order()

Returns an iterator object which will iterate over nodes in a topological order. When using this method,
prepare() and done() should not be called. This method is equivalent to:

def static_order(self):

self.prepare()

while self.is_active():

node_group = self.get_ready()

yield from node_group

self.done(*node_group)

The particular order that is returned may depend on the specific order in which the items were inserted
in the graph. For example:

>>> ts = TopologicalSorter()

>>> ts.add(3, 2, 1)

>>> ts.add(1, 0)

>>> print([*ts.static_order()])

[2, 0, 1, 3]

>>> ts2 = TopologicalSorter()

>>> ts2.add(1, 0)

>>> ts2.add(3, 2, 1)

>>> print([*ts2.static_order()])

[0, 2, 1, 3]

This is due to the fact that “0” and “2” are in the same level in the graph (they would have been returned
in the same call to get_ready()) and the order between them is determined by the order of insertion.

If any cycle is detected, CycleError will be raised.

Added in version 3.9.

8.15.1 Exceptions

The graphlib module defines the following exception classes:

8.15. graphlib— Functionality to operate with graph-like structures 327

The Python Library Reference, Release 3.13.1

exception graphlib.CycleError

Subclass of ValueError raised by TopologicalSorter.prepare() if cycles exist in the working graph.
If multiple cycles exist, only one undefined choice among them will be reported and included in the exception.

The detected cycle can be accessed via the second element in the args attribute of the exception instance and
consists in a list of nodes, such that each node is, in the graph, an immediate predecessor of the next node in
the list. In the reported list, the first and the last node will be the same, to make it clear that it is cyclic.

328 Chapter 8. Data Types

CHAPTER

NINE

NUMERIC AND MATHEMATICAL MODULES

The modules described in this chapter provide numeric and math-related functions and data types. The numbers
module defines an abstract hierarchy of numeric types. The math and cmathmodules contain various mathematical
functions for floating-point and complex numbers. The decimal module supports exact representations of decimal
numbers, using arbitrary precision arithmetic.

The following modules are documented in this chapter:

9.1 numbers— Numeric abstract base classes

Source code: Lib/numbers.py

The numbers module (PEP 3141) defines a hierarchy of numeric abstract base classes which progressively define
more operations. None of the types defined in this module are intended to be instantiated.

class numbers.Number

The root of the numeric hierarchy. If you just want to check if an argument x is a number, without caring what
kind, use isinstance(x, Number).

9.1.1 The numeric tower

class numbers.Complex

Subclasses of this type describe complex numbers and include the operations that work on the built-in complex
type. These are: conversions to complex and bool, real, imag, +, -, *, /, **, abs(), conjugate(), ==,
and !=. All except - and != are abstract.

real

Abstract. Retrieves the real component of this number.

imag

Abstract. Retrieves the imaginary component of this number.

abstractmethod conjugate()

Abstract. Returns the complex conjugate. For example, (1+3j).conjugate() == (1-3j).

class numbers.Real

To Complex, Real adds the operations that work on real numbers.

In short, those are: a conversion to float, math.trunc(), round(), math.floor(), math.ceil(),
divmod(), //, %, <, <=, >, and >=.

Real also provides defaults for complex(), real, imag, and conjugate().

class numbers.Rational

Subtypes Real and adds numerator and denominator properties. It also provides a default for float().

The numerator and denominator values should be instances of Integral and should be in lowest terms
with denominator positive.

329

https://github.com/python/cpython/tree/3.13/Lib/numbers.py
https://peps.python.org/pep-3141/

The Python Library Reference, Release 3.13.1

numerator

Abstract.

denominator

Abstract.

class numbers.Integral

Subtypes Rational and adds a conversion to int. Provides defaults for float(), numerator, and
denominator. Adds abstract methods for pow() with modulus and bit-string operations: <<, >>, &, ^,
|, ~.

9.1.2 Notes for type implementers

Implementers should be careful to make equal numbers equal and hash them to the same values. This may be subtle
if there are two different extensions of the real numbers. For example, fractions.Fraction implements hash()
as follows:

def __hash__(self):

if self.denominator == 1:

Get integers right.

return hash(self.numerator)

Expensive check, but definitely correct.

if self == float(self):

return hash(float(self))

else:

Use tuple's hash to avoid a high collision rate on

simple fractions.

return hash((self.numerator, self.denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the
possibility of adding those. You can add MyFoo between Complex and Real with:

class MyFoo(Complex): ...

MyFoo.register(Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation whose
author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there.
For subtypes of Integral, this means that __add__() and __radd__() should be defined as:

class MyIntegral(Integral):

def __add__(self, other):

if isinstance(other, MyIntegral):

return do_my_adding_stuff(self, other)

elif isinstance(other, OtherTypeIKnowAbout):

return do_my_other_adding_stuff(self, other)

else:

return NotImplemented

def __radd__(self, other):

if isinstance(other, MyIntegral):

return do_my_adding_stuff(other, self)

elif isinstance(other, OtherTypeIKnowAbout):

return do_my_other_adding_stuff(other, self)

(continues on next page)

330 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

(continued from previous page)

elif isinstance(other, Integral):

return int(other) + int(self)

elif isinstance(other, Real):

return float(other) + float(self)

elif isinstance(other, Complex):

return complex(other) + complex(self)

else:

return NotImplemented

There are 5 different cases for a mixed-type operation on subclasses of Complex. I’ll refer to all of the above code
that doesn’t refer to MyIntegral and OtherTypeIKnowAbout as “boilerplate”. a will be an instance of A, which
is a subtype of Complex (a : A <: Complex), and b : B <: Complex. I’ll consider a + b:

1. If A defines an __add__() which accepts b, all is well.

2. If A falls back to the boilerplate code, and it were to return a value from __add__(), we’d miss the possibil-
ity that B defines a more intelligent __radd__(), so the boilerplate should return NotImplemented from
__add__(). (Or A may not implement __add__() at all.)

3. Then B’s __radd__() gets a chance. If it accepts a, all is well.

4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default imple-
mentation should live.

5. If B <: A, Python tries B.__radd__ before A.__add__. This is ok, because it was implemented with
knowledge of A, so it can handle those instances before delegating to Complex.

If A <: Complex and B <: Real without sharing any other knowledge, then the appropriate shared operation is
the one involving the built in complex, and both __radd__() s land there, so a+b == b+a.

Because most of the operations on any given type will be very similar, it can be useful to define a helper function
which generates the forward and reverse instances of any given operator. For example, fractions.Fraction uses:

def _operator_fallbacks(monomorphic_operator, fallback_operator):

def forward(a, b):

if isinstance(b, (int, Fraction)):

return monomorphic_operator(a, b)

elif isinstance(b, float):

return fallback_operator(float(a), b)

elif isinstance(b, complex):

return fallback_operator(complex(a), b)

else:

return NotImplemented

forward.__name__ = '__' + fallback_operator.__name__ + '__'

forward.__doc__ = monomorphic_operator.__doc__

def reverse(b, a):

if isinstance(a, Rational):

Includes ints.

return monomorphic_operator(a, b)

elif isinstance(a, Real):

return fallback_operator(float(a), float(b))

elif isinstance(a, Complex):

return fallback_operator(complex(a), complex(b))

else:

return NotImplemented

reverse.__name__ = '__r' + fallback_operator.__name__ + '__'

reverse.__doc__ = monomorphic_operator.__doc__

return forward, reverse

(continues on next page)

9.1. numbers— Numeric abstract base classes 331

The Python Library Reference, Release 3.13.1

(continued from previous page)

def _add(a, b):

"""a + b"""

return Fraction(a.numerator * b.denominator +

b.numerator * a.denominator,

a.denominator * b.denominator)

__add__, __radd__ = _operator_fallbacks(_add, operator.add)

...

9.2 math—Mathematical functions

This module provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmathmodule
if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don’t is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the
first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values are
floats.

Number-theoretic functions
comb(n, k) Number of ways to choose k items from n items without repetition and without order
factorial(n) n factorial
gcd(*integers) Greatest common divisor of the integer arguments
isqrt(n) Integer square root of a nonnegative integer n
lcm(*integers) Least common multiple of the integer arguments
perm(n, k) Number of ways to choose k items from n items without repetition and with order
Floating point arithmetic
ceil(x) Ceiling of x, the smallest integer greater than or equal to x
fabs(x) Absolute value of x
floor(x) Floor of x, the largest integer less than or equal to x
fma(x, y, z) Fused multiply-add operation: (x * y) + z

fmod(x, y) Remainder of division x / y

modf(x) Fractional and integer parts of x
remainder(x, y) Remainder of x with respect to y
trunc(x) Integer part of x
Floating point manipulation functions
copysign(x, y) Magnitude (absolute value) of x with the sign of y
frexp(x) Mantissa and exponent of x
isclose(a, b, rel_tol, abs_tol) Check if the values a and b are close to each other
isfinite(x) Check if x is neither an infinity nor a NaN
isinf(x) Check if x is a positive or negative infinity
isnan(x) Check if x is a NaN (not a number)
ldexp(x, i) x * (2**i), inverse of function frexp()
nextafter(x, y, steps) Floating-point value steps steps after x towards y
ulp(x) Value of the least significant bit of x
Power, exponential and logarithmic functions
cbrt(x) Cube root of x

continues on next page

332 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

Table 1 – continued from previous page

exp(x) e raised to the power x
exp2(x) 2 raised to the power x
expm1(x) e raised to the power x, minus 1
log(x, base) Logarithm of x to the given base (e by default)
log1p(x) Natural logarithm of 1+x (base e)
log2(x) Base-2 logarithm of x
log10(x) Base-10 logarithm of x
pow(x, y) x raised to the power y
sqrt(x) Square root of x
Summation and product functions
dist(p, q) Euclidean distance between two points p and q given as an iterable of coordinates
fsum(iterable) Sum of values in the input iterable
hypot(*coordinates) Euclidean norm of an iterable of coordinates
prod(iterable, start) Product of elements in the input iterable with a start value
sumprod(p, q) Sum of products from two iterables p and q
Angular conversion
degrees(x) Convert angle x from radians to degrees
radians(x) Convert angle x from degrees to radians
Trigonometric functions
acos(x) Arc cosine of x
asin(x) Arc sine of x
atan(x) Arc tangent of x
atan2(y, x) atan(y / x)

cos(x) Cosine of x
sin(x) Sine of x
tan(x) Tangent of x
Hyperbolic functions
acosh(x) Inverse hyperbolic cosine of x
asinh(x) Inverse hyperbolic sine of x
atanh(x) Inverse hyperbolic tangent of x
cosh(x) Hyperbolic cosine of x
sinh(x) Hyperbolic sine of x
tanh(x) Hyperbolic tangent of x
Special functions
erf(x) Error function at x
erfc(x) Complementary error function at x
gamma(x) Gamma function at x
lgamma(x) Natural logarithm of the absolute value of the Gamma function at x
Constants
pi π = 3.141592…
e e = 2.718281…
tau τ = 2π = 6.283185…
inf Positive infinity
nan “Not a number” (NaN)

9.2.1 Number-theoretic functions

math.comb(n, k)
Return the number of ways to choose k items from n items without repetition and without order.

Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates to zero when k > n.

Also called the binomial coefficient because it is equivalent to the coefficient of k-th term in polynomial ex-
pansion of (1 + x)ⁿ.

Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the arguments
are negative.

9.2. math—Mathematical functions 333

https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Gamma_function

The Python Library Reference, Release 3.13.1

Added in version 3.8.

math.factorial(n)
Return n factorial as an integer. Raises ValueError if n is not integral or is negative.

Changed in version 3.10: Floats with integral values (like 5.0) are no longer accepted.

math.gcd(*integers)
Return the greatest common divisor of the specified integer arguments. If any of the arguments is nonzero,
then the returned value is the largest positive integer that is a divisor of all arguments. If all arguments are
zero, then the returned value is 0. gcd() without arguments returns 0.

Added in version 3.5.

Changed in version 3.9: Added support for an arbitrary number of arguments. Formerly, only two arguments
were supported.

math.isqrt(n)

Return the integer square root of the nonnegative integer n. This is the floor of the exact square root of n, or
equivalently the greatest integer a such that a² ≤ n.

For some applications, it may be more convenient to have the least integer a such that n ≤ a², or in other words
the ceiling of the exact square root of n. For positive n, this can be computed using a = 1 + isqrt(n -

1).

Added in version 3.8.

math.lcm(*integers)
Return the least common multiple of the specified integer arguments. If all arguments are nonzero, then the
returned value is the smallest positive integer that is a multiple of all arguments. If any of the arguments is
zero, then the returned value is 0. lcm() without arguments returns 1.

Added in version 3.9.

math.perm(n, k=None)
Return the number of ways to choose k items from n items without repetition and with order.

Evaluates to n! / (n - k)! when k <= n and evaluates to zero when k > n.

If k is not specified or is None, then k defaults to n and the function returns n!.

Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the arguments
are negative.

Added in version 3.8.

9.2.2 Floating point arithmetic

math.ceil(x)
Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to x.

__ceil__, which should return an Integral value.

math.fabs(x)

Return the absolute value of x.

math.floor(x)

Return the floor of x, the largest integer less than or equal to x. If x is not a float, delegates to x.__floor__,
which should return an Integral value.

math.fma(x, y, z)
Fused multiply-add operation. Return (x * y) + z, computed as though with infinite precision and range
followed by a single round to the float format. This operation often provides better accuracy than the direct
expression (x * y) + z.

334 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

This function follows the specification of the fusedMultiplyAdd operation described in the IEEE 754 stan-
dard. The standard leaves one case implementation-defined, namely the result of fma(0, inf, nan) and
fma(inf, 0, nan). In these cases, math.fma returns a NaN, and does not raise any exception.

Added in version 3.13.

math.fmod(x, y)
Return fmod(x, y), as defined by the platform C library. Note that the Python expression x % y may not
return the same result. The intent of the C standard is that fmod(x, y) be exactly (mathematically; to infinite
precision) equal to x - n*y for some integer n such that the result has the same sign as x and magnitude less
than abs(y). Python’s x % y returns a result with the sign of y instead, and may not be exactly computable for
float arguments. For example, fmod(-1e-100, 1e100) is -1e-100, but the result of Python’s -1e-100 %

1e100 is 1e100-1e-100, which cannot be represented exactly as a float, and rounds to the surprising 1e100.
For this reason, function fmod() is generally preferred when working with floats, while Python’s x % y is
preferred when working with integers.

math.modf(x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

Note that modf() has a different call/return pattern than its C equivalents: it takes a single argument and return
a pair of values, rather than returning its second return value through an ‘output parameter’ (there is no such
thing in Python).

math.remainder(x, y)
Return the IEEE 754-style remainder of x with respect to y. For finite x and finite nonzero y, this is the
difference x - n*y, where n is the closest integer to the exact value of the quotient x / y. If x / y is
exactly halfway between two consecutive integers, the nearest even integer is used for n. The remainder r =

remainder(x, y) thus always satisfies abs(r) <= 0.5 * abs(y).

Special cases follow IEEE 754: in particular, remainder(x, math.inf) is x for any finite x, and
remainder(x, 0) and remainder(math.inf, x) raise ValueError for any non-NaN x. If the result
of the remainder operation is zero, that zero will have the same sign as x.

On platforms using IEEE 754 binary floating point, the result of this operation is always exactly representable:
no rounding error is introduced.

Added in version 3.7.

math.trunc(x)
Return x with the fractional part removed, leaving the integer part. This rounds toward 0: trunc() is equiv-
alent to floor() for positive x, and equivalent to ceil() for negative x. If x is not a float, delegates to
x.__trunc__, which should return an Integral value.

For the ceil(), floor(), and modf() functions, note that all floating-point numbers of sufficiently largemagnitude
are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the platform C double
type), in which case any float x with abs(x) >= 2**52 necessarily has no fractional bits.

9.2.3 Floating point manipulation functions

math.copysign(x, y)
Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed
zeros, copysign(1.0, -0.0) returns -1.0.

math.frexp(x)

Return the mantissa and exponent of x as the pair (m, e). m is a float and e is an integer such that x == m *

2**e exactly. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs(m) < 1. This is used to “pick apart”
the internal representation of a float in a portable way.

Note that frexp() has a different call/return pattern than its C equivalents: it takes a single argument and
return a pair of values, rather than returning its second return value through an ‘output parameter’ (there is no
such thing in Python).

9.2. math—Mathematical functions 335

The Python Library Reference, Release 3.13.1

math.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to given absolute and relative toler-
ances. If no errors occur, the result will be: abs(a-b) <= max(rel_tol * max(abs(a), abs(b)),

abs_tol).

rel_tol is the relative tolerance – it is the maximum allowed difference between a and b, relative to the larger
absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance
is 1e-09, which assures that the two values are the same within about 9 decimal digits. rel_tol must be
nonnegative and less than 1.0.

abs_tol is the absolute tolerance; it defaults to 0.0 and it must be nonnegative. When comparing x to 0.0,
isclose(x, 0) is computed as abs(x) <= rel_tol * abs(x), which is False for any x and rel_tol
less than 1.0. So add an appropriate positive abs_tol argument to the call.

The IEEE 754 special values of NaN, inf, and -inf will be handled according to IEEE rules. Specifically,
NaN is not considered close to any other value, including NaN. inf and -inf are only considered close to
themselves.

Added in version 3.5.

See also

PEP 485 – A function for testing approximate equality

math.isfinite(x)
Return True if x is neither an infinity nor a NaN, and False otherwise. (Note that 0.0 is considered finite.)

Added in version 3.2.

math.isinf(x)
Return True if x is a positive or negative infinity, and False otherwise.

math.isnan(x)
Return True if x is a NaN (not a number), and False otherwise.

math.ldexp(x, i)
Return x * (2**i). This is essentially the inverse of function frexp().

math.nextafter(x, y, steps=1)
Return the floating-point value steps steps after x towards y.

If x is equal to y, return y, unless steps is zero.

Examples:

• math.nextafter(x, math.inf) goes up: towards positive infinity.

• math.nextafter(x, -math.inf) goes down: towards minus infinity.

• math.nextafter(x, 0.0) goes towards zero.

• math.nextafter(x, math.copysign(math.inf, x)) goes away from zero.

See also math.ulp().

Added in version 3.9.

Changed in version 3.12: Added the steps argument.

math.ulp(x)

Return the value of the least significant bit of the float x:

• If x is a NaN (not a number), return x.

336 Chapter 9. Numeric and Mathematical Modules

https://peps.python.org/pep-0485/

The Python Library Reference, Release 3.13.1

• If x is negative, return ulp(-x).

• If x is a positive infinity, return x.

• If x is equal to zero, return the smallest positive denormalized representable float (smaller than the min-
imum positive normalized float, sys.float_info.min).

• If x is equal to the largest positive representable float, return the value of the least significant bit of x,
such that the first float smaller than x is x - ulp(x).

• Otherwise (x is a positive finite number), return the value of the least significant bit of x, such that the
first float bigger than x is x + ulp(x).

ULP stands for “Unit in the Last Place”.

See also math.nextafter() and sys.float_info.epsilon.

Added in version 3.9.

9.2.4 Power, exponential and logarithmic functions

math.cbrt(x)

Return the cube root of x.

Added in version 3.11.

math.exp(x)
Return e raised to the power x, where e = 2.718281… is the base of natural logarithms. This is usually more
accurate than math.e ** x or pow(math.e, x).

math.exp2(x)
Return 2 raised to the power x.

Added in version 3.11.

math.expm1(x)
Return e raised to the power x, minus 1. Here e is the base of natural logarithms. For small floats x, the
subtraction in exp(x) - 1 can result in a significant loss of precision; the expm1() function provides a way
to compute this quantity to full precision:

>>> from math import exp, expm1

>>> exp(1e-5) - 1 # gives result accurate to 11 places

1.0000050000069649e-05

>>> expm1(1e-5) # result accurate to full precision

1.0000050000166668e-05

Added in version 3.2.

math.log(x[, base])
With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base, calculated as log(x)/log(base).

math.log1p(x)

Return the natural logarithm of 1+x (base e). The result is calculated in a way which is accurate for x near
zero.

math.log2(x)
Return the base-2 logarithm of x. This is usually more accurate than log(x, 2).

Added in version 3.3.

9.2. math—Mathematical functions 337

https://en.wikipedia.org/wiki/Loss_of_significance

The Python Library Reference, Release 3.13.1

See also

int.bit_length() returns the number of bits necessary to represent an integer in binary, excluding the
sign and leading zeros.

math.log10(x)

Return the base-10 logarithm of x. This is usually more accurate than log(x, 10).

math.pow(x, y)
Return x raised to the power y. Exceptional cases follow the IEEE 754 standard as far as possible. In particular,
pow(1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or a NaN. If both x and y are
finite, x is negative, and y is not an integer then pow(x, y) is undefined, and raises ValueError.

Unlike the built-in ** operator, math.pow() converts both its arguments to type float. Use ** or the
built-in pow() function for computing exact integer powers.

Changed in version 3.11: The special cases pow(0.0, -inf) and pow(-0.0, -inf) were changed to
return inf instead of raising ValueError, for consistency with IEEE 754.

math.sqrt(x)
Return the square root of x.

9.2.5 Summation and product functions

math.dist(p, q)
Return the Euclidean distance between two points p and q, each given as a sequence (or iterable) of coordinates.
The two points must have the same dimension.

Roughly equivalent to:

sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))

Added in version 3.8.

math.fsum(iterable)
Return an accurate floating-point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums.

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the rounding
mode is half-even. On some non-Windows builds, the underlying C library uses extended precision addition
and may occasionally double-round an intermediate sum causing it to be off in its least significant bit.

For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate floating-
point summation.

math.hypot(*coordinates)
Return the Euclidean norm, sqrt(sum(x**2 for x in coordinates)). This is the length of the vector
from the origin to the point given by the coordinates.

For a two dimensional point (x, y), this is equivalent to computing the hypotenuse of a right triangle using
the Pythagorean theorem, sqrt(x*x + y*y).

Changed in version 3.8: Added support for n-dimensional points. Formerly, only the two dimensional case was
supported.

Changed in version 3.10: Improved the algorithm’s accuracy so that the maximum error is under 1 ulp (unit in
the last place). More typically, the result is almost always correctly rounded to within 1/2 ulp.

math.prod(iterable, *, start=1)
Calculate the product of all the elements in the input iterable. The default start value for the product is 1.

338 Chapter 9. Numeric and Mathematical Modules

https://code.activestate.com/recipes/393090-binary-floating-point-summation-accurate-to-full-p/
https://code.activestate.com/recipes/393090-binary-floating-point-summation-accurate-to-full-p/

The Python Library Reference, Release 3.13.1

When the iterable is empty, return the start value. This function is intended specifically for use with numeric
values and may reject non-numeric types.

Added in version 3.8.

math.sumprod(p, q)
Return the sum of products of values from two iterables p and q.

Raises ValueError if the inputs do not have the same length.

Roughly equivalent to:

sum(itertools.starmap(operator.mul, zip(p, q, strict=True)))

For float and mixed int/float inputs, the intermediate products and sums are computed with extended precision.

Added in version 3.12.

9.2.6 Angular conversion

math.degrees(x)

Convert angle x from radians to degrees.

math.radians(x)
Convert angle x from degrees to radians.

9.2.7 Trigonometric functions

math.acos(x)
Return the arc cosine of x, in radians. The result is between 0 and pi.

math.asin(x)
Return the arc sine of x, in radians. The result is between -pi/2 and pi/2.

math.atan(x)
Return the arc tangent of x, in radians. The result is between -pi/2 and pi/2.

math.atan2(y, x)
Return atan(y / x), in radians. The result is between -pi and pi. The vector in the plane from the origin to
point (x, y)makes this angle with the positive X axis. The point of atan2() is that the signs of both inputs
are known to it, so it can compute the correct quadrant for the angle. For example, atan(1) and atan2(1,
1) are both pi/4, but atan2(-1, -1) is -3*pi/4.

math.cos(x)
Return the cosine of x radians.

math.sin(x)

Return the sine of x radians.

math.tan(x)

Return the tangent of x radians.

9.2.8 Hyperbolic functions

Hyperbolic functions are analogs of trigonometric functions that are based on hyperbolas instead of circles.

math.acosh(x)
Return the inverse hyperbolic cosine of x.

math.asinh(x)

Return the inverse hyperbolic sine of x.

9.2. math—Mathematical functions 339

https://en.wikipedia.org/wiki/Hyperbolic_functions

The Python Library Reference, Release 3.13.1

math.atanh(x)
Return the inverse hyperbolic tangent of x.

math.cosh(x)

Return the hyperbolic cosine of x.

math.sinh(x)

Return the hyperbolic sine of x.

math.tanh(x)
Return the hyperbolic tangent of x.

9.2.9 Special functions

math.erf(x)

Return the error function at x.

The erf() function can be used to compute traditional statistical functions such as the cumulative standard
normal distribution:

def phi(x):

'Cumulative distribution function for the standard normal distribution'

return (1.0 + erf(x / sqrt(2.0))) / 2.0

Added in version 3.2.

math.erfc(x)
Return the complementary error function at x. The complementary error function is defined as 1.0 -

erf(x). It is used for large values of x where a subtraction from one would cause a loss of significance.

Added in version 3.2.

math.gamma(x)
Return the Gamma function at x.

Added in version 3.2.

math.lgamma(x)
Return the natural logarithm of the absolute value of the Gamma function at x.

Added in version 3.2.

9.2.10 Constants

math.pi

The mathematical constant π = 3.141592…, to available precision.

math.e

The mathematical constant e = 2.718281…, to available precision.

math.tau

The mathematical constant τ = 6.283185…, to available precision. Tau is a circle constant equal to 2π, the
ratio of a circle’s circumference to its radius. To learn more about Tau, check out Vi Hart’s video Pi is (still)
Wrong, and start celebrating Tau day by eating twice as much pie!

Added in version 3.6.

math.inf

A floating-point positive infinity. (For negative infinity, use -math.inf.) Equivalent to the output of
float('inf').

Added in version 3.5.

340 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Loss_of_significance
https://en.wikipedia.org/wiki/Gamma_function
https://www.youtube.com/watch?v=jG7vhMMXagQ
https://www.youtube.com/watch?v=jG7vhMMXagQ
https://tauday.com/

The Python Library Reference, Release 3.13.1

math.nan

A floating-point “not a number” (NaN) value. Equivalent to the output of float('nan'). Due to the re-
quirements of the IEEE-754 standard, math.nan and float('nan') are not considered to equal to any
other numeric value, including themselves. To check whether a number is a NaN, use the isnan() function
to test for NaNs instead of is or ==. Example:

>>> import math

>>> math.nan == math.nan

False

>>> float('nan') == float('nan')

False

>>> math.isnan(math.nan)

True

>>> math.isnan(float('nan'))

True

Added in version 3.5.

Changed in version 3.11: It is now always available.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C math
library functions. Behavior in exceptional cases follows Annex F of the C99 standard where appropriate. The current
implementation will raise ValueError for invalid operations like sqrt(-1.0) or log(0.0) (where C99 Annex
F recommends signaling invalid operation or divide-by-zero), and OverflowError for results that overflow (for
example, exp(1000.0)). A NaN will not be returned from any of the functions above unless one or more of
the input arguments was a NaN; in that case, most functions will return a NaN, but (again following C99 Annex
F) there are some exceptions to this rule, for example pow(float('nan'), 0.0) or hypot(float('nan'),
float('inf')).

Note that Python makes no effort to distinguish signaling NaNs from quiet NaNs, and behavior for signaling NaNs
remains unspecified. Typical behavior is to treat all NaNs as though they were quiet.

See also

Module cmath
Complex number versions of many of these functions.

9.3 cmath—Mathematical functions for complex numbers

This module provides access to mathematical functions for complex numbers. The functions in this module accept
integers, floating-point numbers or complex numbers as arguments. They will also accept any Python object that has
either a __complex__() or a __float__() method: these methods are used to convert the object to a complex
or floating-point number, respectively, and the function is then applied to the result of the conversion.

Note

For functions involving branch cuts, we have the problem of deciding how to define those functions on the cut
itself. Following Kahan’s “Branch cuts for complex elementary functions” paper, as well as Annex G of C99 and
later C standards, we use the sign of zero to distinguish one side of the branch cut from the other: for a branch
cut along (a portion of) the real axis we look at the sign of the imaginary part, while for a branch cut along the
imaginary axis we look at the sign of the real part.

For example, the cmath.sqrt() function has a branch cut along the negative real axis. An argument of
complex(-2.0, -0.0) is treated as though it lies below the branch cut, and so gives a result on the nega-
tive imaginary axis:

9.3. cmath—Mathematical functions for complex numbers 341

https://en.wikipedia.org/wiki/IEEE_754

The Python Library Reference, Release 3.13.1

>>> cmath.sqrt(complex(-2.0, -0.0))

-1.4142135623730951j

But an argument of complex(-2.0, 0.0) is treated as though it lies above the branch cut:

>>> cmath.sqrt(complex(-2.0, 0.0))

1.4142135623730951j

9.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely deter-
mined by its real part z.real and its imaginary part z.imag.

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex number
z is defined by the modulus r and the phase angle phi. The modulus r is the distance from z to the origin, while the
phase phi is the counterclockwise angle, measured in radians, from the positive x-axis to the line segment that joins
the origin to z.

The following functions can be used to convert from the native rectangular coordinates to polar coordinates and back.

cmath.phase(x)
Return the phase of x (also known as the argument of x), as a float. phase(x) is equivalent to math.atan2(x.
imag, x.real). The result lies in the range [-π, π], and the branch cut for this operation lies along the
negative real axis. The sign of the result is the same as the sign of x.imag, even when x.imag is zero:

>>> phase(complex(-1.0, 0.0))

3.141592653589793

>>> phase(complex(-1.0, -0.0))

-3.141592653589793

Note

The modulus (absolute value) of a complex number x can be computed using the built-in abs() function. There
is no separate cmath module function for this operation.

cmath.polar(x)
Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of x and
phi is the phase of x. polar(x) is equivalent to (abs(x), phase(x)).

cmath.rect(r, phi)
Return the complex number x with polar coordinates r and phi. Equivalent to complex(r * math.

cos(phi), r * math.sin(phi)).

9.3.2 Power and logarithmic functions

cmath.exp(x)
Return e raised to the power x, where e is the base of natural logarithms.

cmath.log(x[, base])
Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm of x.
There is one branch cut, from 0 along the negative real axis to -∞.

cmath.log10(x)
Return the base-10 logarithm of x. This has the same branch cut as log().

cmath.sqrt(x)
Return the square root of x. This has the same branch cut as log().

342 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

9.3.3 Trigonometric functions

cmath.acos(x)

Return the arc cosine of x. There are two branch cuts: One extends right from 1 along the real axis to ∞. The
other extends left from -1 along the real axis to -∞.

cmath.asin(x)

Return the arc sine of x. This has the same branch cuts as acos().

cmath.atan(x)
Return the arc tangent of x. There are two branch cuts: One extends from 1j along the imaginary axis to ∞j.
The other extends from -1j along the imaginary axis to -∞j.

cmath.cos(x)

Return the cosine of x.

cmath.sin(x)

Return the sine of x.

cmath.tan(x)
Return the tangent of x.

9.3.4 Hyperbolic functions

cmath.acosh(x)
Return the inverse hyperbolic cosine of x. There is one branch cut, extending left from 1 along the real axis to
-∞.

cmath.asinh(x)
Return the inverse hyperbolic sine of x. There are two branch cuts: One extends from 1j along the imaginary
axis to ∞j. The other extends from -1j along the imaginary axis to -∞j.

cmath.atanh(x)
Return the inverse hyperbolic tangent of x. There are two branch cuts: One extends from 1 along the real axis
to ∞. The other extends from -1 along the real axis to -∞.

cmath.cosh(x)
Return the hyperbolic cosine of x.

cmath.sinh(x)
Return the hyperbolic sine of x.

cmath.tanh(x)
Return the hyperbolic tangent of x.

9.3.5 Classification functions

cmath.isfinite(x)
Return True if both the real and imaginary parts of x are finite, and False otherwise.

Added in version 3.2.

cmath.isinf(x)

Return True if either the real or the imaginary part of x is an infinity, and False otherwise.

cmath.isnan(x)

Return True if either the real or the imaginary part of x is a NaN, and False otherwise.

9.3. cmath—Mathematical functions for complex numbers 343

The Python Library Reference, Release 3.13.1

cmath.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to given absolute and relative toler-
ances. If no errors occur, the result will be: abs(a-b) <= max(rel_tol * max(abs(a), abs(b)),

abs_tol).

rel_tol is the relative tolerance – it is the maximum allowed difference between a and b, relative to the larger
absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance
is 1e-09, which assures that the two values are the same within about 9 decimal digits. rel_tol must be
nonnegative and less than 1.0.

abs_tol is the absolute tolerance; it defaults to 0.0 and it must be nonnegative. When comparing x to 0.0,
isclose(x, 0) is computed as abs(x) <= rel_tol * abs(x), which is False for any x and rel_tol
less than 1.0. So add an appropriate positive abs_tol argument to the call.

The IEEE 754 special values of NaN, inf, and -inf will be handled according to IEEE rules. Specifically,
NaN is not considered close to any other value, including NaN. inf and -inf are only considered close to
themselves.

Added in version 3.5.

See also

PEP 485 – A function for testing approximate equality

9.3.6 Constants

cmath.pi

The mathematical constant π, as a float.

cmath.e

The mathematical constant e, as a float.

cmath.tau

The mathematical constant τ, as a float.

Added in version 3.6.

cmath.inf

Floating-point positive infinity. Equivalent to float('inf').

Added in version 3.6.

cmath.infj

Complex number with zero real part and positive infinity imaginary part. Equivalent to complex(0.0,

float('inf')).

Added in version 3.6.

cmath.nan

A floating-point “not a number” (NaN) value. Equivalent to float('nan').

Added in version 3.6.

cmath.nanj

Complex number with zero real part and NaN imaginary part. Equivalent to complex(0.0,

float('nan')).

Added in version 3.6.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two
modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They
would rather have math.sqrt(-1) raise an exception than return a complex number. Also note that the functions

344 Chapter 9. Numeric and Mathematical Modules

https://peps.python.org/pep-0485/

The Python Library Reference, Release 3.13.1

defined in cmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlightenment.
For information of the proper choice of branch cuts for numerical purposes, a good reference should be the following:

See also

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A.,
and Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165–211.

9.4 decimal— Decimal fixed-point and floating-point arithmetic

Source code: Lib/decimal.py

The decimal module provides support for fast correctly rounded decimal floating-point arithmetic. It offers several
advantages over the float datatype:

• Decimal “is based on a floating-point model which was designed with people in mind, and necessarily has
a paramount guiding principle – computers must provide an arithmetic that works in the same way as the
arithmetic that people learn at school.” – excerpt from the decimal arithmetic specification.

• Decimal numbers can be represented exactly. In contrast, numbers like 1.1 and 2.2 do not have exact
representations in binary floating point. End users typically would not expect 1.1 + 2.2 to display as 3.
3000000000000003 as it does with binary floating point.

• The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 + 0.1 - 0.3 is exactly
equal to zero. In binary floating point, the result is 5.5511151231257827e-017. While near to zero, the dif-
ferences prevent reliable equality testing and differences can accumulate. For this reason, decimal is preferred
in accounting applications which have strict equality invariants.

• The decimal module incorporates a notion of significant places so that 1.30 + 1.20 is 2.50. The trailing
zero is kept to indicate significance. This is the customary presentation for monetary applications. For multi-
plication, the “schoolbook” approach uses all the figures in the multiplicands. For instance, 1.3 * 1.2 gives
1.56 while 1.30 * 1.20 gives 1.5600.

• Unlike hardware based binary floating point, the decimal module has a user alterable precision (defaulting to
28 places) which can be as large as needed for a given problem:

>>> from decimal import *

>>> getcontext().prec = 6

>>> Decimal(1) / Decimal(7)

Decimal('0.142857')

>>> getcontext().prec = 28

>>> Decimal(1) / Decimal(7)

Decimal('0.1428571428571428571428571429')

• Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts of
the standard. When needed, the programmer has full control over rounding and signal handling. This includes
an option to enforce exact arithmetic by using exceptions to block any inexact operations.

• The decimal module was designed to support “without prejudice, both exact unrounded decimal arithmetic
(sometimes called fixed-point arithmetic) and rounded floating-point arithmetic.” – excerpt from the decimal
arithmetic specification.

9.4. decimal— Decimal fixed-point and floating-point arithmetic 345

https://github.com/python/cpython/tree/3.13/Lib/decimal.py

The Python Library Reference, Release 3.13.1

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance, the
coefficient digits do not truncate trailing zeros. Decimals also include special values such as Infinity, -Infinity,
and NaN. The standard also differentiates -0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags indicat-
ing the results of operations, and trap enablers which determine whether signals are treated as exceptions. Round-
ing options include ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF_DOWN, ROUND_HALF_EVEN,
ROUND_HALF_UP, ROUND_UP, and ROUND_05UP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs of the
application, signals may be ignored, considered as informational, or treated as exceptions. The signals in the decimal
module are: Clamped, InvalidOperation, DivisionByZero, Inexact, Rounded, Subnormal, Overflow,
Underflow and FloatOperation.

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if the trap
enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before monitoring a
calculation.

See also

• IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

9.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with getcontext() and, if
necessary, setting new values for precision, rounding, or enabled traps:

>>> from decimal import *

>>> getcontext()

Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,

capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,

InvalidOperation])

>>> getcontext().prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings, floats, or tuples. Construction from an integer or a float
performs an exact conversion of the value of that integer or float. Decimal numbers include special values such as
NaN which stands for “Not a number”, positive and negative Infinity, and -0:

>>> getcontext().prec = 28

>>> Decimal(10)

Decimal('10')

>>> Decimal('3.14')

Decimal('3.14')

>>> Decimal(3.14)

Decimal('3.140000000000000124344978758017532527446746826171875')

>>> Decimal((0, (3, 1, 4), -2))

Decimal('3.14')

>>> Decimal(str(2.0 ** 0.5))

Decimal('1.4142135623730951')

>>> Decimal(2) ** Decimal('0.5')

Decimal('1.414213562373095048801688724')

>>> Decimal('NaN')

Decimal('NaN')

>>> Decimal('-Infinity')

Decimal('-Infinity')

346 Chapter 9. Numeric and Mathematical Modules

https://speleotrove.com/decimal/decarith.html

The Python Library Reference, Release 3.13.1

If the FloatOperation signal is trapped, accidental mixing of decimals and floats in constructors or ordering
comparisons raises an exception:

>>> c = getcontext()

>>> c.traps[FloatOperation] = True

>>> Decimal(3.14)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

decimal.FloatOperation: [<class 'decimal.FloatOperation'>]

>>> Decimal('3.5') < 3.7

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

decimal.FloatOperation: [<class 'decimal.FloatOperation'>]

>>> Decimal('3.5') == 3.5

True

Added in version 3.3.

The significance of a newDecimal is determined solely by the number of digits input. Context precision and rounding
only come into play during arithmetic operations.

>>> getcontext().prec = 6

>>> Decimal('3.0')

Decimal('3.0')

>>> Decimal('3.1415926535')

Decimal('3.1415926535')

>>> Decimal('3.1415926535') + Decimal('2.7182818285')

Decimal('5.85987')

>>> getcontext().rounding = ROUND_UP

>>> Decimal('3.1415926535') + Decimal('2.7182818285')

Decimal('5.85988')

If the internal limits of the C version are exceeded, constructing a decimal raises InvalidOperation:

>>> Decimal("1e9999999999999999999")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]

Changed in version 3.3.

Decimals interact well with much of the rest of Python. Here is a small decimal floating-point flying circus:

>>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))

>>> max(data)

Decimal('9.25')

>>> min(data)

Decimal('0.03')

>>> sorted(data)

[Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),

Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]

>>> sum(data)

Decimal('19.29')

>>> a,b,c = data[:3]

>>> str(a)

'1.34'

>>> float(a)

1.34

>>> round(a, 1)

(continues on next page)

9.4. decimal— Decimal fixed-point and floating-point arithmetic 347

The Python Library Reference, Release 3.13.1

(continued from previous page)

Decimal('1.3')

>>> int(a)

1

>>> a * 5

Decimal('6.70')

>>> a * b

Decimal('2.5058')

>>> c % a

Decimal('0.77')

And some mathematical functions are also available to Decimal:

>>> getcontext().prec = 28

>>> Decimal(2).sqrt()

Decimal('1.414213562373095048801688724')

>>> Decimal(1).exp()

Decimal('2.718281828459045235360287471')

>>> Decimal('10').ln()

Decimal('2.302585092994045684017991455')

>>> Decimal('10').log10()

Decimal('1')

The quantize() method rounds a number to a fixed exponent. This method is useful for monetary applications
that often round results to a fixed number of places:

>>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)

Decimal('7.32')

>>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)

Decimal('8')

As shown above, the getcontext() function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make an
alternate active, use the setcontext() function.

In accordance with the standard, the decimalmodule provides two ready to use standard contexts, BasicContext
and ExtendedContext. The former is especially useful for debugging because many of the traps are enabled:

>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)

>>> setcontext(myothercontext)

>>> Decimal(1) / Decimal(7)

Decimal('0.142857142857142857142857142857142857142857142857142857142857')

>>> ExtendedContext

Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,

capitals=1, clamp=0, flags=[], traps=[])

>>> setcontext(ExtendedContext)

>>> Decimal(1) / Decimal(7)

Decimal('0.142857143')

>>> Decimal(42) / Decimal(0)

Decimal('Infinity')

>>> setcontext(BasicContext)

>>> Decimal(42) / Decimal(0)

Traceback (most recent call last):

File "<pyshell#143>", line 1, in -toplevel-

(continues on next page)

348 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

(continued from previous page)

Decimal(42) / Decimal(0)

DivisionByZero: x / 0

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by using
the clear_flags() method.

>>> setcontext(ExtendedContext)

>>> getcontext().clear_flags()

>>> Decimal(355) / Decimal(113)

Decimal('3.14159292')

>>> getcontext()

Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,

capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])

The flags entry shows that the rational approximation to pi was rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the traps attribute of a context:

>>> setcontext(ExtendedContext)

>>> Decimal(1) / Decimal(0)

Decimal('Infinity')

>>> getcontext().traps[DivisionByZero] = 1

>>> Decimal(1) / Decimal(0)

Traceback (most recent call last):

File "<pyshell#112>", line 1, in -toplevel-

Decimal(1) / Decimal(0)

DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted to Decimal with a single cast inside a loop. With context set and decimals created, the bulk of the
program manipulates the data no differently than with other Python numeric types.

9.4.2 Decimal objects

class decimal.Decimal(value=’0’, context=None)
Construct a new Decimal object based from value.

value can be an integer, string, tuple, float, or another Decimal object. If no value is given, returns
Decimal('0'). If value is a string, it should conform to the decimal numeric string syntax after leading
and trailing whitespace characters, as well as underscores throughout, are removed:

sign ::= '+' | '-'

digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

indicator ::= 'e' | 'E'

digits ::= digit [digit]...

decimal-part ::= digits '.' [digits] | ['.'] digits

exponent-part ::= indicator [sign] digits

infinity ::= 'Infinity' | 'Inf'

nan ::= 'NaN' [digits] | 'sNaN' [digits]

numeric-value ::= decimal-part [exponent-part] | infinity

numeric-string ::= [sign] numeric-value | [sign] nan

Other Unicode decimal digits are also permitted where digit appears above. These include decimal digits
from various other alphabets (for example, Arabic-Indic and Devanāgarī digits) along with the fullwidth digits
'\uff10' through '\uff19'.

9.4. decimal— Decimal fixed-point and floating-point arithmetic 349

The Python Library Reference, Release 3.13.1

If value is a tuple, it should have three components, a sign (0 for positive or 1 for negative), a tuple of
digits, and an integer exponent. For example, Decimal((0, (1, 4, 1, 4), -3)) returns Decimal('1.
414').

If value is a float, the binary floating-point value is losslessly converted to its exact decimal equivalent.
This conversion can often require 53 or more digits of precision. For example, Decimal(float('1.1'))
converts to Decimal('1.100000000000000088817841970012523233890533447265625').

The context precision does not affect how many digits are stored. That is determined exclusively by the number
of digits in value. For example, Decimal('3.00000') records all five zeros even if the context precision is
only three.

The purpose of the context argument is determining what to do if value is a malformed string. If the context
traps InvalidOperation, an exception is raised; otherwise, the constructor returns a new Decimal with the
value of NaN.

Once constructed, Decimal objects are immutable.

Changed in version 3.2: The argument to the constructor is now permitted to be a float instance.

Changed in version 3.3: float arguments raise an exception if the FloatOperation trap is set. By default
the trap is off.

Changed in version 3.6: Underscores are allowed for grouping, as with integral and floating-point literals in
code.

Decimal floating-point objects share many properties with the other built-in numeric types such as float and
int. All of the usual math operations and special methods apply. Likewise, decimal objects can be copied,
pickled, printed, used as dictionary keys, used as set elements, compared, sorted, and coerced to another type
(such as float or int).

There are some small differences between arithmetic on Decimal objects and arithmetic on integers and floats.
When the remainder operator % is applied to Decimal objects, the sign of the result is the sign of the dividend
rather than the sign of the divisor:

>>> (-7) % 4

1

>>> Decimal(-7) % Decimal(4)

Decimal('-3')

The integer division operator // behaves analogously, returning the integer part of the true quotient (truncating
towards zero) rather than its floor, so as to preserve the usual identity x == (x // y) * y + x % y:

>>> -7 // 4

-2

>>> Decimal(-7) // Decimal(4)

Decimal('-1')

The % and // operators implement the remainder and divide-integer operations (respectively) as de-
scribed in the specification.

Decimal objects cannot generally be combinedwith floats or instances of fractions.Fraction in arithmetic
operations: an attempt to add a Decimal to a float, for example, will raise a TypeError. However, it is
possible to use Python’s comparison operators to compare a Decimal instance x with another number y. This
avoids confusing results when doing equality comparisons between numbers of different types.

Changed in version 3.2: Mixed-type comparisons between Decimal instances and other numeric types are
now fully supported.

In addition to the standard numeric properties, decimal floating-point objects also have a number of specialized
methods:

adjusted()

Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit

350 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

remains: Decimal('321e+5').adjusted() returns seven. Used for determining the position of the
most significant digit with respect to the decimal point.

as_integer_ratio()

Return a pair (n, d) of integers that represent the given Decimal instance as a fraction, in lowest terms
and with a positive denominator:

>>> Decimal('-3.14').as_integer_ratio()

(-157, 50)

The conversion is exact. Raise OverflowError on infinities and ValueError on NaNs.

Added in version 3.6.

as_tuple()

Return a named tuple representation of the number: DecimalTuple(sign, digits, exponent).

canonical()

Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always
canonical, so this operation returns its argument unchanged.

compare(other, context=None)
Compare the values of two Decimal instances. compare() returns a Decimal instance, and if either
operand is a NaN then the result is a NaN:

a or b is a NaN ==> Decimal('NaN')

a < b ==> Decimal('-1')

a == b ==> Decimal('0')

a > b ==> Decimal('1')

compare_signal(other, context=None)
This operation is identical to the compare() method, except that all NaNs signal. That is, if neither
operand is a signaling NaN then any quiet NaN operand is treated as though it were a signaling NaN.

compare_total(other, context=None)
Compare two operands using their abstract representation rather than their numerical value. Similar to
the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal

instances with the same numeric value but different representations compare unequal in this ordering:

>>> Decimal('12.0').compare_total(Decimal('12'))

Decimal('-1')

Quiet and signaling NaNs are also included in the total ordering. The result of this function is
Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is
lower in the total order than the second, and Decimal('1') if the first operand is higher in the total
order than the second operand. See the specification for details of the total order.

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

compare_total_mag(other, context=None)
Compare two operands using their abstract representation rather than their value as in
compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is
equivalent to x.copy_abs().compare_total(y.copy_abs()).

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

conjugate()

Just returns self, this method is only to comply with the Decimal Specification.

9.4. decimal— Decimal fixed-point and floating-point arithmetic 351

The Python Library Reference, Release 3.13.1

copy_abs()

Return the absolute value of the argument. This operation is unaffected by the context and is quiet: no
flags are changed and no rounding is performed.

copy_negate()

Return the negation of the argument. This operation is unaffected by the context and is quiet: no flags
are changed and no rounding is performed.

copy_sign(other, context=None)
Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For
example:

>>> Decimal('2.3').copy_sign(Decimal('-1.5'))

Decimal('-2.3')

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

exp(context=None)
Return the value of the (natural) exponential function e**x at the given number. The result is correctly
rounded using the ROUND_HALF_EVEN rounding mode.

>>> Decimal(1).exp()

Decimal('2.718281828459045235360287471')

>>> Decimal(321).exp()

Decimal('2.561702493119680037517373933E+139')

classmethod from_float(f)
Alternative constructor that only accepts instances of float or int.

Note Decimal.from_float(0.1) is not the same as Decimal('0.1'). Since 0.1 is
not exactly representable in binary floating point, the value is stored as the nearest repre-
sentable value which is 0x1.999999999999ap-4. That equivalent value in decimal is 0.

1000000000000000055511151231257827021181583404541015625.

Note

From Python 3.2 onwards, a Decimal instance can also be constructed directly from a float.

>>> Decimal.from_float(0.1)

Decimal('0.1000000000000000055511151231257827021181583404541015625')

>>> Decimal.from_float(float('nan'))

Decimal('NaN')

>>> Decimal.from_float(float('inf'))

Decimal('Infinity')

>>> Decimal.from_float(float('-inf'))

Decimal('-Infinity')

Added in version 3.1.

fma(other, third, context=None)
Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other.

>>> Decimal(2).fma(3, 5)

Decimal('11')

352 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

is_canonical()

Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always
canonical, so this operation always returns True.

is_finite()

Return True if the argument is a finite number, and False if the argument is an infinity or a NaN.

is_infinite()

Return True if the argument is either positive or negative infinity and False otherwise.

is_nan()

Return True if the argument is a (quiet or signaling) NaN and False otherwise.

is_normal(context=None)

Return True if the argument is a normal finite number. Return False if the argument is zero, subnormal,
infinite or a NaN.

is_qnan()

Return True if the argument is a quiet NaN, and False otherwise.

is_signed()

Return True if the argument has a negative sign and False otherwise. Note that zeros and NaNs can
both carry signs.

is_snan()

Return True if the argument is a signaling NaN and False otherwise.

is_subnormal(context=None)
Return True if the argument is subnormal, and False otherwise.

is_zero()

Return True if the argument is a (positive or negative) zero and False otherwise.

ln(context=None)
Return the natural (base e) logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

log10(context=None)
Return the base ten logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

logb(context=None)
For a nonzero number, return the adjusted exponent of its operand as a Decimal instance. If the operand
is a zero then Decimal('-Infinity') is returned and the DivisionByZero flag is raised. If the
operand is an infinity then Decimal('Infinity') is returned.

logical_and(other, context=None)
logical_and() is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise and of the two operands.

logical_invert(context=None)

logical_invert() is a logical operation. The result is the digit-wise inversion of the operand.

logical_or(other, context=None)
logical_or() is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise or of the two operands.

logical_xor(other, context=None)
logical_xor() is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise exclusive or of the two operands.

9.4. decimal— Decimal fixed-point and floating-point arithmetic 353

The Python Library Reference, Release 3.13.1

max(other, context=None)
Like max(self, other) except that the context rounding rule is applied before returning and that NaN
values are either signaled or ignored (depending on the context and whether they are signaling or quiet).

max_mag(other, context=None)
Similar to the max() method, but the comparison is done using the absolute values of the operands.

min(other, context=None)
Like min(self, other) except that the context rounding rule is applied before returning and that NaN
values are either signaled or ignored (depending on the context and whether they are signaling or quiet).

min_mag(other, context=None)
Similar to the min() method, but the comparison is done using the absolute values of the operands.

next_minus(context=None)
Return the largest number representable in the given context (or in the current thread’s context if no
context is given) that is smaller than the given operand.

next_plus(context=None)
Return the smallest number representable in the given context (or in the current thread’s context if no
context is given) that is larger than the given operand.

next_toward(other, context=None)
If the two operands are unequal, return the number closest to the first operand in the direction of the
second operand. If both operands are numerically equal, return a copy of the first operand with the sign
set to be the same as the sign of the second operand.

normalize(context=None)
Used for producing canonical values of an equivalence class within either the current context or the
specified context.

This has the same semantics as the unary plus operation, except that if the final result is finite it is reduced
to its simplest form, with all trailing zeros removed and its sign preserved. That is, while the coefficient
is non-zero and a multiple of ten the coefficient is divided by ten and the exponent is incremented by 1.
Otherwise (the coefficient is zero) the exponent is set to 0. In all cases the sign is unchanged.

For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent
value Decimal('32.1').

Note that rounding is applied before reducing to simplest form.

In the latest versions of the specification, this operation is also known as reduce.

number_class(context=None)
Return a string describing the class of the operand. The returned value is one of the following ten strings.

• "-Infinity", indicating that the operand is negative infinity.

• "-Normal", indicating that the operand is a negative normal number.

• "-Subnormal", indicating that the operand is negative and subnormal.

• "-Zero", indicating that the operand is a negative zero.

• "+Zero", indicating that the operand is a positive zero.

• "+Subnormal", indicating that the operand is positive and subnormal.

• "+Normal", indicating that the operand is a positive normal number.

• "+Infinity", indicating that the operand is positive infinity.

• "NaN", indicating that the operand is a quiet NaN (Not a Number).

• "sNaN", indicating that the operand is a signaling NaN.

354 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

quantize(exp, rounding=None, context=None)
Return a value equal to the first operand after rounding and having the exponent of the second operand.

>>> Decimal('1.41421356').quantize(Decimal('1.000'))

Decimal('1.414')

Unlike other operations, if the length of the coefficient after the quantize operation would be greater
than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error
condition, the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact.

If the exponent of the second operand is larger than that of the first then rounding may be necessary.
In this case, the rounding mode is determined by the rounding argument if given, else by the given
context argument; if neither argument is given the rounding mode of the current thread’s context is
used.

An error is returned whenever the resulting exponent is greater than Emax or less than Etiny().

radix()

Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for
compatibility with the specification.

remainder_near(other, context=None)
Return the remainder from dividing self by other. This differs from self % other in that the sign of
the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self -

n * other where n is the integer nearest to the exact value of self / other, and if two integers are
equally near then the even one is chosen.

If the result is zero then its sign will be the sign of self.

>>> Decimal(18).remainder_near(Decimal(10))

Decimal('-2')

>>> Decimal(25).remainder_near(Decimal(10))

Decimal('5')

>>> Decimal(35).remainder_near(Decimal(10))

Decimal('-5')

rotate(other, context=None)
Return the result of rotating the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of
the second operand gives the number of places to rotate. If the second operand is positive then rotation
is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left
with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged.

same_quantum(other, context=None)
Test whether self and other have the same exponent or whether both are NaN.

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

scaleb(other, context=None)
Return the first operand with exponent adjusted by the second. Equivalently, return the first operand
multiplied by 10**other. The second operand must be an integer.

shift(other, context=None)
Return the result of shifting the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of
the second operand gives the number of places to shift. If the second operand is positive then the shift
is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and
exponent of the first operand are unchanged.

9.4. decimal— Decimal fixed-point and floating-point arithmetic 355

The Python Library Reference, Release 3.13.1

sqrt(context=None)
Return the square root of the argument to full precision.

to_eng_string(context=None)

Convert to a string, using engineering notation if an exponent is needed.

Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of
the decimal place and may require the addition of either one or two trailing zeros.

For example, this converts Decimal('123E+1') to Decimal('1.23E+3').

to_integral(rounding=None, context=None)
Identical to the to_integral_value()method. The to_integral name has been kept for compat-
ibility with older versions.

to_integral_exact(rounding=None, context=None)
Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The
rounding mode is determined by the rounding parameter if given, else by the given context. If
neither parameter is given then the rounding mode of the current context is used.

to_integral_value(rounding=None, context=None)
Round to the nearest integer without signaling Inexact or Rounded. If given, applies rounding; other-
wise, uses the rounding method in either the supplied context or the current context.

Decimal numbers can be rounded using the round() function:

round(number)

round(number, ndigits)

If ndigits is not given or None, returns the nearest int to number, rounding ties to even, and ignor-
ing the rounding mode of the Decimal context. Raises OverflowError if number is an infinity or
ValueError if it is a (quiet or signaling) NaN.

If ndigits is an int, the context’s rounding mode is respected and a Decimal representing num-
ber rounded to the nearest multiple of Decimal('1E-ndigits') is returned; in this case,
round(number, ndigits) is equivalent to self.quantize(Decimal('1E-ndigits')). Re-
turns Decimal('NaN') if number is a quiet NaN. Raises InvalidOperation if number is an infinity,
a signaling NaN, or if the length of the coefficient after the quantize operation would be greater than the
current context’s precision. In other words, for the non-corner cases:

• if ndigits is positive, return number rounded to ndigits decimal places;

• if ndigits is zero, return number rounded to the nearest integer;

• if ndigits is negative, return number rounded to the nearest multiple of 10**abs(ndigits).

For example:

>>> from decimal import Decimal, getcontext, ROUND_DOWN

>>> getcontext().rounding = ROUND_DOWN

>>> round(Decimal('3.75')) # context rounding ignored

4

>>> round(Decimal('3.5')) # round-ties-to-even

4

>>> round(Decimal('3.75'), 0) # uses the context rounding

Decimal('3')

>>> round(Decimal('3.75'), 1)

Decimal('3.7')

>>> round(Decimal('3.75'), -1)

Decimal('0E+1')

356 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

Logical operands

The logical_and(), logical_invert(), logical_or(), and logical_xor() methods expect their argu-
ments to be logical operands. A logical operand is a Decimal instance whose exponent and sign are both zero, and
whose digits are all either 0 or 1.

9.4.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine which
signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed using the getcontext() and setcontext()
functions:

decimal.getcontext()

Return the current context for the active thread.

decimal.setcontext(c)
Set the current context for the active thread to c.

You can also use the with statement and the localcontext() function to temporarily change the active context.

decimal.localcontext(ctx=None, **kwargs)
Return a context manager that will set the current context for the active thread to a copy of ctx on entry to the
with-statement and restore the previous context when exiting the with-statement. If no context is specified, a
copy of the current context is used. The kwargs argument is used to set the attributes of the new context.

For example, the following code sets the current decimal precision to 42 places, performs a calculation, and
then automatically restores the previous context:

from decimal import localcontext

with localcontext() as ctx:

ctx.prec = 42 # Perform a high precision calculation

s = calculate_something()

s = +s # Round the final result back to the default precision

Using keyword arguments, the code would be the following:

from decimal import localcontext

with localcontext(prec=42) as ctx:

s = calculate_something()

s = +s

Raises TypeError if kwargs supplies an attribute that Context doesn’t support. Raises either TypeError
or ValueError if kwargs supplies an invalid value for an attribute.

Changed in version 3.11: localcontext() now supports setting context attributes through the use of key-
word arguments.

New contexts can also be created using the Context constructor described below. In addition, the module provides
three pre-made contexts:

class decimal.BasicContext

This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_UP. All flags are cleared. All traps are enabled (treated as exceptions) except
Inexact, Rounded, and Subnormal.

Because many of the traps are enabled, this context is useful for debugging.

9.4. decimal— Decimal fixed-point and floating-point arithmetic 357

The Python Library Reference, Release 3.13.1

class decimal.ExtendedContext

This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_EVEN. All flags are cleared. No traps are enabled (so that exceptions are not
raised during computations).

Because the traps are disabled, this context is useful for applications that prefer to have result value of NaN
or Infinity instead of raising exceptions. This allows an application to complete a run in the presence of
conditions that would otherwise halt the program.

class decimal.DefaultContext

This context is used by the Context constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts created by the Context constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are
started has the effect of setting system-wide defaults. Changing the fields after threads have started is not
recommended as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are Context.prec=28, Context.rounding=ROUND_HALF_EVEN, and enabled traps
for Overflow, InvalidOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created with the Context constructor.

class decimal.Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None,
flags=None, traps=None)

Creates a new context. If a field is not specified or is None, the default values are copied from the
DefaultContext. If the flags field is not specified or is None, all flags are cleared.

prec is an integer in the range [1, MAX_PREC] that sets the precision for arithmetic operations in the context.

The rounding option is one of the constants listed in the section Rounding Modes.

The traps and flags fields list any signals to be set. Generally, new contexts should only set traps and leave the
flags clear.

The Emin and Emax fields are integers specifying the outer limits allowable for exponents. Emin must be in
the range [MIN_EMIN, 0], Emax in the range [0, MAX_EMAX].

The capitals field is either 0 or 1 (the default). If set to 1, exponents are printed with a capital E; otherwise, a
lowercase e is used: Decimal('6.02e+23').

The clamp field is either 0 (the default) or 1. If set to 1, the exponent e of a Decimal instance representable in
this context is strictly limited to the range Emin - prec + 1 <= e <= Emax - prec + 1. If clamp is 0
then a weaker condition holds: the adjusted exponent of the Decimal instance is at most Emax. When clamp
is 1, a large normal number will, where possible, have its exponent reduced and a corresponding number of
zeros added to its coefficient, in order to fit the exponent constraints; this preserves the value of the number
but loses information about significant trailing zeros. For example:

>>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')

Decimal('1.23000E+999')

A clamp value of 1 allows compatibility with the fixed-width decimal interchange formats specified in IEEE
754.

The Context class defines several general purpose methods as well as a large number of methods for doing
arithmetic directly in a given context. In addition, for each of the Decimalmethods described above (with the
exception of the adjusted() and as_tuple() methods) there is a corresponding Context method. For
example, for a Context instance C and Decimal instance x, C.exp(x) is equivalent to x.exp(context=C).
Each Context method accepts a Python integer (an instance of int) anywhere that a Decimal instance is
accepted.

358 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

clear_flags()

Resets all of the flags to 0.

clear_traps()

Resets all of the traps to 0.

Added in version 3.3.

copy()

Return a duplicate of the context.

copy_decimal(num)
Return a copy of the Decimal instance num.

create_decimal(num)
Creates a new Decimal instance from num but using self as context. Unlike the Decimal constructor,
the context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application.
Another benefit is that rounding immediately eliminates unintended effects from digits beyond the current
precision. In the following example, using unrounded inputs means that adding zero to a sum can change
the result:

>>> getcontext().prec = 3

>>> Decimal('3.4445') + Decimal('1.0023')

Decimal('4.45')

>>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')

Decimal('4.44')

This method implements the to-number operation of the IBM specification. If the argument is a string,
no leading or trailing whitespace or underscores are permitted.

create_decimal_from_float(f)
Creates a new Decimal instance from a float f but rounding using self as the context. Unlike the
Decimal.from_float() class method, the context precision, rounding method, flags, and traps are
applied to the conversion.

>>> context = Context(prec=5, rounding=ROUND_DOWN)

>>> context.create_decimal_from_float(math.pi)

Decimal('3.1415')

>>> context = Context(prec=5, traps=[Inexact])

>>> context.create_decimal_from_float(math.pi)

Traceback (most recent call last):

...

decimal.Inexact: None

Added in version 3.1.

Etiny()

Returns a value equal to Emin - prec + 1which is theminimum exponent value for subnormal results.
When underflow occurs, the exponent is set to Etiny.

Etop()

Returns a value equal to Emax - prec + 1.

The usual approach to working with decimals is to create Decimal instances and then apply arithmetic op-
erations which take place within the current context for the active thread. An alternative approach is to use
context methods for calculating within a specific context. The methods are similar to those for the Decimal
class and are only briefly recounted here.

abs(x)
Returns the absolute value of x.

9.4. decimal— Decimal fixed-point and floating-point arithmetic 359

The Python Library Reference, Release 3.13.1

add(x, y)
Return the sum of x and y.

canonical(x)

Returns the same Decimal object x.

compare(x, y)
Compares x and y numerically.

compare_signal(x, y)
Compares the values of the two operands numerically.

compare_total(x, y)
Compares two operands using their abstract representation.

compare_total_mag(x, y)
Compares two operands using their abstract representation, ignoring sign.

copy_abs(x)
Returns a copy of x with the sign set to 0.

copy_negate(x)

Returns a copy of x with the sign inverted.

copy_sign(x, y)
Copies the sign from y to x.

divide(x, y)
Return x divided by y.

divide_int(x, y)
Return x divided by y, truncated to an integer.

divmod(x, y)
Divides two numbers and returns the integer part of the result.

exp(x)
Returns e ** x.

fma(x, y, z)
Returns x multiplied by y, plus z.

is_canonical(x)

Returns True if x is canonical; otherwise returns False.

is_finite(x)
Returns True if x is finite; otherwise returns False.

is_infinite(x)

Returns True if x is infinite; otherwise returns False.

is_nan(x)
Returns True if x is a qNaN or sNaN; otherwise returns False.

is_normal(x)

Returns True if x is a normal number; otherwise returns False.

is_qnan(x)

Returns True if x is a quiet NaN; otherwise returns False.

is_signed(x)
Returns True if x is negative; otherwise returns False.

360 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

is_snan(x)
Returns True if x is a signaling NaN; otherwise returns False.

is_subnormal(x)

Returns True if x is subnormal; otherwise returns False.

is_zero(x)

Returns True if x is a zero; otherwise returns False.

ln(x)
Returns the natural (base e) logarithm of x.

log10(x)
Returns the base 10 logarithm of x.

logb(x)
Returns the exponent of the magnitude of the operand’s MSD.

logical_and(x, y)
Applies the logical operation and between each operand’s digits.

logical_invert(x)

Invert all the digits in x.

logical_or(x, y)
Applies the logical operation or between each operand’s digits.

logical_xor(x, y)
Applies the logical operation xor between each operand’s digits.

max(x, y)
Compares two values numerically and returns the maximum.

max_mag(x, y)
Compares the values numerically with their sign ignored.

min(x, y)
Compares two values numerically and returns the minimum.

min_mag(x, y)
Compares the values numerically with their sign ignored.

minus(x)

Minus corresponds to the unary prefix minus operator in Python.

multiply(x, y)
Return the product of x and y.

next_minus(x)

Returns the largest representable number smaller than x.

next_plus(x)
Returns the smallest representable number larger than x.

next_toward(x, y)
Returns the number closest to x, in direction towards y.

normalize(x)

Reduces x to its simplest form.

number_class(x)
Returns an indication of the class of x.

9.4. decimal— Decimal fixed-point and floating-point arithmetic 361

The Python Library Reference, Release 3.13.1

plus(x)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context precision
and rounding, so it is not an identity operation.

power(x, y, modulo=None)
Return x to the power of y, reduced modulo modulo if given.

With two arguments, compute x**y. If x is negative then y must be integral. The result will be inexact
unless y is integral and the result is finite and can be expressed exactly in ‘precision’ digits. The rounding
mode of the context is used. Results are always correctly rounded in the Python version.

Decimal(0) ** Decimal(0) results in InvalidOperation, and if InvalidOperation is not
trapped, then results in Decimal('NaN').

Changed in version 3.3: The C module computes power() in terms of the correctly rounded exp() and
ln() functions. The result is well-defined but only “almost always correctly rounded”.

With three arguments, compute (x**y) % modulo. For the three argument form, the following re-
strictions on the arguments hold:

• all three arguments must be integral

• y must be nonnegative

• at least one of x or y must be nonzero

• modulo must be nonzero and have at most ‘precision’ digits

The value resulting from Context.power(x, y, modulo) is equal to the value that would be ob-
tained by computing (x**y) % modulo with unbounded precision, but is computed more efficiently.
The exponent of the result is zero, regardless of the exponents of x, y and modulo. The result is always
exact.

quantize(x, y)
Returns a value equal to x (rounded), having the exponent of y.

radix()

Just returns 10, as this is Decimal, :)

remainder(x, y)
Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.

remainder_near(x, y)
Returns x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its
sign will be the sign of x).

rotate(x, y)
Returns a rotated copy of x, y times.

same_quantum(x, y)
Returns True if the two operands have the same exponent.

scaleb(x, y)
Returns the first operand after adding the second value its exp.

shift(x, y)
Returns a shifted copy of x, y times.

sqrt(x)
Square root of a non-negative number to context precision.

subtract(x, y)
Return the difference between x and y.

362 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

to_eng_string(x)
Convert to a string, using engineering notation if an exponent is needed.

Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of
the decimal place and may require the addition of either one or two trailing zeros.

to_integral_exact(x)

Rounds to an integer.

to_sci_string(x)
Converts a number to a string using scientific notation.

9.4.4 Constants

The constants in this section are only relevant for the C module. They are also included in the pure Python version
for compatibility.

32-bit 64-bit

decimal.MAX_PREC
425000000 999999999999999999

decimal.MAX_EMAX
425000000 999999999999999999

decimal.MIN_EMIN
-425000000 -999999999999999999

decimal.MIN_ETINY
-849999999 -1999999999999999997

decimal.HAVE_THREADS

The value is True. Deprecated, because Python now always has threads.

Deprecated since version 3.9.

decimal.HAVE_CONTEXTVAR

The default value is True. If Python is configured using the --without-decimal-contextvar

option, the C version uses a thread-local rather than a coroutine-local context and the value is False. This
is slightly faster in some nested context scenarios.

Added in version 3.8.3.

9.4.5 Rounding modes

decimal.ROUND_CEILING

Round towards Infinity.

decimal.ROUND_DOWN

Round towards zero.

decimal.ROUND_FLOOR

Round towards -Infinity.

decimal.ROUND_HALF_DOWN

Round to nearest with ties going towards zero.

decimal.ROUND_HALF_EVEN

Round to nearest with ties going to nearest even integer.

9.4. decimal— Decimal fixed-point and floating-point arithmetic 363

The Python Library Reference, Release 3.13.1

decimal.ROUND_HALF_UP

Round to nearest with ties going away from zero.

decimal.ROUND_UP

Round away from zero.

decimal.ROUND_05UP

Round away from zero if last digit after rounding towards zero would have been 0 or 5; otherwise round towards
zero.

9.4.6 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context trap
enabler.

The context flag is set whenever the condition is encountered. After the computation, flags may be checked for
informational purposes (for instance, to determine whether a computation was exact). After checking the flags, be
sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For
example, if the DivisionByZero trap is set, then a DivisionByZero exception is raised upon encountering the
condition.

class decimal.Clamped

Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the context’s Emin and Emax limits. If possible, the
exponent is reduced to fit by adding zeros to the coefficient.

class decimal.DecimalException

Base class for other signals and a subclass of ArithmeticError.

class decimal.DivisionByZero

Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is not
trapped, returns Infinity or -Infinity with the sign determined by the inputs to the calculation.

class decimal.Inexact

Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal flag
or trap is used to detect when results are inexact.

class decimal.InvalidOperation

An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trapped, returns NaN. Possible causes
include:

Infinity - Infinity

0 * Infinity

Infinity / Infinity

x % 0

Infinity % x

sqrt(-x) and x > 0

0 ** 0

x ** (non-integer)

x ** Infinity

364 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

class decimal.Overflow

Numerical overflow.

Indicates the exponent is larger than Context.Emax after rounding has occurred. If not trapped, the result
depends on the rounding mode, either pulling inward to the largest representable finite number or rounding
outward to Infinity. In either case, Inexact and Rounded are also signaled.

class decimal.Rounded

Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rounding 5.00 to 5.0). If
not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

class decimal.Subnormal

Exponent was lower than Emin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

class decimal.Underflow

Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rounding. Inexact and Subnormal are also signaled.

class decimal.FloatOperation

Enable stricter semantics for mixing floats and Decimals.

If the signal is not trapped (default), mixing floats and Decimals is permitted in the Decimal constructor,
create_decimal() and all comparison operators. Both conversion and comparisons are exact. Any oc-
currence of a mixed operation is silently recorded by setting FloatOperation in the context flags. Explicit
conversions with from_float() or create_decimal_from_float() do not set the flag.

Otherwise (the signal is trapped), only equality comparisons and explicit conversions are silent. All other
mixed operations raise FloatOperation.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError(exceptions.Exception)

DecimalException

Clamped

DivisionByZero(DecimalException, exceptions.ZeroDivisionError)

Inexact

Overflow(Inexact, Rounded)

Underflow(Inexact, Rounded, Subnormal)

InvalidOperation

Rounded

Subnormal

FloatOperation(DecimalException, exceptions.TypeError)

9.4.7 Floating-Point Notes

Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to represent 0.1 ex-
actly); however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities result-
ing in loss of significance. Knuth provides two instructive examples where rounded floating-point arithmetic with
insufficient precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.

>>> from decimal import Decimal, getcontext

(continues on next page)

9.4. decimal— Decimal fixed-point and floating-point arithmetic 365

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> getcontext().prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')

>>> (u + v) + w

Decimal('9.5111111')

>>> u + (v + w)

Decimal('10')

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')

>>> (u*v) + (u*w)

Decimal('0.01')

>>> u * (v+w)

Decimal('0.0060000')

The decimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid loss
of significance:

>>> getcontext().prec = 20

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')

>>> (u + v) + w

Decimal('9.51111111')

>>> u + (v + w)

Decimal('9.51111111')

>>>

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')

>>> (u*v) + (u*w)

Decimal('0.0060000')

>>> u * (v+w)

Decimal('0.0060000')

Special values

The number system for the decimalmodule provides special values including NaN, sNaN, -Infinity, Infinity,
and two zeros, +0 and -0.

Infinities can be constructed directly with: Decimal('Infinity'). Also, they can arise from dividing by zero
when the DivisionByZero signal is not trapped. Likewise, when the Overflow signal is not trapped, infinity can
result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large, inde-
terminate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the InvalidOperation signal is trapped, raise an excep-
tion. For example, 0/0 returns NaN which means “not a number”. This variety of NaN is quiet and, once created,
will flow through other computations always resulting in another NaN. This behavior can be useful for a series of
computations that occasionally have missing inputs — it allows the calculation to proceed while flagging specific
results as invalid.

A variant is sNaN which signals rather than remaining quiet after every operation. This is a useful return value when
an invalid result needs to interrupt a calculation for special handling.

The behavior of Python’s comparison operators can be a little surprising where a NaN is involved. A test
for equality where one of the operands is a quiet or signaling NaN always returns False (even when doing
Decimal('NaN')==Decimal('NaN')), while a test for inequality always returns True. An attempt to compare
two Decimals using any of the <, <=, > or >= operators will raise the InvalidOperation signal if either operand
is a NaN, and return False if this signal is not trapped. Note that the General Decimal Arithmetic specification
does not specify the behavior of direct comparisons; these rules for comparisons involving a NaN were taken from
the IEEE 854 standard (see Table 3 in section 5.7). To ensure strict standards-compliance, use the compare() and
compare_signal() methods instead.

366 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative zeros
are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with differing
precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized floating-
point representations, it is not immediately obvious that the following calculation returns a value equal to zero:

>>> 1 / Decimal('Infinity')

Decimal('0E-1000026')

9.4.8 Working with threads

The getcontext() function accesses a different Context object for each thread. Having separate thread contexts
means that threads may make changes (such as getcontext().prec=10) without interfering with other threads.

Likewise, the setcontext() function automatically assigns its target to the current thread.

If setcontext() has not been called before getcontext(), then getcontext()will automatically create a new
context for use in the current thread.

The new context is copied from a prototype context called DefaultContext. To control the defaults so that each thread
will use the same values throughout the application, directly modify the DefaultContext object. This should be done
before any threads are started so that there won’t be a race condition between threads calling getcontext(). For
example:

Set applicationwide defaults for all threads about to be launched

DefaultContext.prec = 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy()

DefaultContext.traps[InvalidOperation] = 1

setcontext(DefaultContext)

Afterwards, the threads can be started

t1.start()

t2.start()

t3.start()

. . .

9.4.9 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work with the Decimal class:

def moneyfmt(value, places=2, curr='', sep=',', dp='.',

pos='', neg='-', trailneg=''):

"""Convert Decimal to a money formatted string.

places: required number of places after the decimal point

curr: optional currency symbol before the sign (may be blank)

sep: optional grouping separator (comma, period, space, or blank)

dp: decimal point indicator (comma or period)

only specify as blank when places is zero

pos: optional sign for positive numbers: '+', space or blank

neg: optional sign for negative numbers: '-', '(', space or blank

trailneg:optional trailing minus indicator: '-', ')', space or blank

>>> d = Decimal('-1234567.8901')

>>> moneyfmt(d, curr='$')

'-$1,234,567.89'

(continues on next page)

9.4. decimal— Decimal fixed-point and floating-point arithmetic 367

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')

'1.234.568-'

>>> moneyfmt(d, curr='$', neg='(', trailneg=')')

'($1,234,567.89)'

>>> moneyfmt(Decimal(123456789), sep=' ')

'123 456 789.00'

>>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')

'<0.02>'

"""

q = Decimal(10) ** -places # 2 places --> '0.01'

sign, digits, exp = value.quantize(q).as_tuple()

result = []

digits = list(map(str, digits))

build, next = result.append, digits.pop

if sign:

build(trailneg)

for i in range(places):

build(next() if digits else '0')

if places:

build(dp)

if not digits:

build('0')

i = 0

while digits:

build(next())

i += 1

if i == 3 and digits:

i = 0

build(sep)

build(curr)

build(neg if sign else pos)

return ''.join(reversed(result))

def pi():

"""Compute Pi to the current precision.

>>> print(pi())

3.141592653589793238462643383

"""

getcontext().prec += 2 # extra digits for intermediate steps

three = Decimal(3) # substitute "three=3.0" for regular floats

lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24

while s != lasts:

lasts = s

n, na = n+na, na+8

d, da = d+da, da+32

t = (t * n) / d

s += t

getcontext().prec -= 2

return +s # unary plus applies the new precision

def exp(x):

"""Return e raised to the power of x. Result type matches input type.

(continues on next page)

368 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> print(exp(Decimal(1)))

2.718281828459045235360287471

>>> print(exp(Decimal(2)))

7.389056098930650227230427461

>>> print(exp(2.0))

7.38905609893

>>> print(exp(2+0j))

(7.38905609893+0j)

"""

getcontext().prec += 2

i, lasts, s, fact, num = 0, 0, 1, 1, 1

while s != lasts:

lasts = s

i += 1

fact *= i

num *= x

s += num / fact

getcontext().prec -= 2

return +s

def cos(x):

"""Return the cosine of x as measured in radians.

The Taylor series approximation works best for a small value of x.

For larger values, first compute x = x % (2 * pi).

>>> print(cos(Decimal('0.5')))

0.8775825618903727161162815826

>>> print(cos(0.5))

0.87758256189

>>> print(cos(0.5+0j))

(0.87758256189+0j)

"""

getcontext().prec += 2

i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1

while s != lasts:

lasts = s

i += 2

fact *= i * (i-1)

num *= x * x

sign *= -1

s += num / fact * sign

getcontext().prec -= 2

return +s

def sin(x):

"""Return the sine of x as measured in radians.

The Taylor series approximation works best for a small value of x.

For larger values, first compute x = x % (2 * pi).

>>> print(sin(Decimal('0.5')))

0.4794255386042030002732879352

>>> print(sin(0.5))

(continues on next page)

9.4. decimal— Decimal fixed-point and floating-point arithmetic 369

The Python Library Reference, Release 3.13.1

(continued from previous page)

0.479425538604

>>> print(sin(0.5+0j))

(0.479425538604+0j)

"""

getcontext().prec += 2

i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1

while s != lasts:

lasts = s

i += 2

fact *= i * (i-1)

num *= x * x

sign *= -1

s += num / fact * sign

getcontext().prec -= 2

return +s

9.4.10 Decimal FAQ

Q. It is cumbersome to type decimal.Decimal('1234.5'). Is there a way to minimize typing when using the
interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal

>>> D('1.23') + D('3.45')

Decimal('4.68')

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded.
Others are not supposed to have excess digits and need to be validated. What methods should be used?

A. The quantize()method rounds to a fixed number of decimal places. If the Inexact trap is set, it is also useful
for validation:

>>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')

>>> # Round to two places

>>> Decimal('3.214').quantize(TWOPLACES)

Decimal('3.21')

>>> # Validate that a number does not exceed two places

>>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))

Decimal('3.21')

>>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))

Traceback (most recent call last):

...

Inexact: None

Q. Once I have valid two place inputs, how do I maintain that invariant throughout an application?

A. Some operations like addition, subtraction, and multiplication by an integer will automatically preserve fixed point.
Others operations, like division and non-integer multiplication, will change the number of decimal places and need
to be followed-up with a quantize() step:

>>> a = Decimal('102.72') # Initial fixed-point values

>>> b = Decimal('3.17')

(continues on next page)

370 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> a + b # Addition preserves fixed-point

Decimal('105.89')

>>> a - b

Decimal('99.55')

>>> a * 42 # So does integer multiplication

Decimal('4314.24')

>>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication

Decimal('325.62')

>>> (b / a).quantize(TWOPLACES) # And quantize division

Decimal('0.03')

In developing fixed-point applications, it is convenient to define functions to handle the quantize() step:

>>> def mul(x, y, fp=TWOPLACES):

... return (x * y).quantize(fp)

...

>>> def div(x, y, fp=TWOPLACES):

... return (x / y).quantize(fp)

>>> mul(a, b) # Automatically preserve fixed-point

Decimal('325.62')

>>> div(b, a)

Decimal('0.03')

Q. There are many ways to express the same value. The numbers 200, 200.000, 2E2, and .02E+4 all have the
same value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. The normalize() method maps all equivalent values to a single representative:

>>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())

>>> [v.normalize() for v in values]

[Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]

Q. When does rounding occur in a computation?

A. It occurs after the computation. The philosophy of the decimal specification is that numbers are considered
exact and are created independent of the current context. They can even have greater precision than current context.
Computations process with those exact inputs and then rounding (or other context operations) is applied to the result
of the computation:

>>> getcontext().prec = 5

>>> pi = Decimal('3.1415926535') # More than 5 digits

>>> pi # All digits are retained

Decimal('3.1415926535')

>>> pi + 0 # Rounded after an addition

Decimal('3.1416')

>>> pi - Decimal('0.00005') # Subtract unrounded numbers, then round

Decimal('3.1415')

>>> pi + 0 - Decimal('0.00005'). # Intermediate values are rounded

Decimal('3.1416')

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential representation?

A. For some values, exponential notation is the only way to express the number of significant places in the coeffi-
cient. For example, expressing 5.0E+3 as 5000 keeps the value constant but cannot show the original’s two-place
significance.

If an application does not care about tracking significance, it is easy to remove the exponent and trailing zeroes, losing
significance, but keeping the value unchanged:

9.4. decimal— Decimal fixed-point and floating-point arithmetic 371

The Python Library Reference, Release 3.13.1

>>> def remove_exponent(d):

... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()

>>> remove_exponent(Decimal('5E+3'))

Decimal('5000')

Q. Is there a way to convert a regular float to a Decimal?

A. Yes, any binary floating-point number can be exactly expressed as a Decimal though an exact conversion may take
more precision than intuition would suggest:

>>> Decimal(math.pi)

Decimal('3.141592653589793115997963468544185161590576171875')

Q. Within a complex calculation, how can I make sure that I haven’t gotten a spurious result because of insufficient
precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater precision
and with various rounding modes. Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there anything to
watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values. Only the
results are rounded. The advantage for inputs is that “what you type is what you get”. A disadvantage is that the
results can look odd if you forget that the inputs haven’t been rounded:

>>> getcontext().prec = 3

>>> Decimal('3.104') + Decimal('2.104')

Decimal('5.21')

>>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')

Decimal('5.20')

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext().prec = 3

>>> +Decimal('1.23456789') # unary plus triggers rounding

Decimal('1.23')

Alternatively, inputs can be rounded upon creation using the Context.create_decimal() method:

>>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')

Decimal('1.2345')

Q. Is the CPython implementation fast for large numbers?

A. Yes. In the CPython and PyPy3 implementations, the C/CFFI versions of the decimal module integrate the high
speed libmpdec library for arbitrary precision correctly rounded decimal floating-point arithmetic1. libmpdec uses
Karatsuba multiplication for medium-sized numbers and the Number Theoretic Transform for very large numbers.

The context must be adapted for exact arbitrary precision arithmetic. Emin and Emax should always be set to the
maximum values, clamp should always be 0 (the default). Setting prec requires some care.

The easiest approach for trying out bignum arithmetic is to use the maximum value for prec as well2:

1

Added in version 3.3.
2

Changed in version 3.9: This approach now works for all exact results except for non-integer powers.

372 Chapter 9. Numeric and Mathematical Modules

https://www.bytereef.org/mpdecimal/doc/libmpdec/index.html
https://en.wikipedia.org/wiki/Karatsuba_algorithm
https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general)#Number-theoretic_transform

The Python Library Reference, Release 3.13.1

>>> setcontext(Context(prec=MAX_PREC, Emax=MAX_EMAX, Emin=MIN_EMIN))

>>> x = Decimal(2) ** 256

>>> x / 128

Decimal(

↪→'904625697166532776746648320380374280103671755200316906558262375061821325312')

For inexact results, MAX_PREC is far too large on 64-bit platforms and the available memory will be insufficient:

>>> Decimal(1) / 3

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

MemoryError

On systems with overallocation (e.g. Linux), a more sophisticated approach is to adjust prec to the amount of
available RAM. Suppose that you have 8GB of RAM and expect 10 simultaneous operands using a maximum of
500MB each:

>>> import sys

>>>

>>> # Maximum number of digits for a single operand using 500MB in 8-byte words

>>> # with 19 digits per word (4-byte and 9 digits for the 32-bit build):

>>> maxdigits = 19 * ((500 * 1024**2) // 8)

>>>

>>> # Check that this works:

>>> c = Context(prec=maxdigits, Emax=MAX_EMAX, Emin=MIN_EMIN)

>>> c.traps[Inexact] = True

>>> setcontext(c)

>>>

>>> # Fill the available precision with nines:

>>> x = Decimal(0).logical_invert() * 9

>>> sys.getsizeof(x)

524288112

>>> x + 2

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

decimal.Inexact: [<class 'decimal.Inexact'>]

In general (and especially on systems without overallocation), it is recommended to estimate even tighter bounds and
set the Inexact trap if all calculations are expected to be exact.

9.5 fractions— Rational numbers

Source code: Lib/fractions.py

The fractions module provides support for rational number arithmetic.

A Fraction instance can be constructed from a pair of integers, from another rational number, or from a string.

class fractions.Fraction(numerator=0, denominator=1)
class fractions.Fraction(other_fraction)

class fractions.Fraction(float)
class fractions.Fraction(decimal)

class fractions.Fraction(string)
The first version requires that numerator and denominator are instances of numbers.Rational and re-
turns a new Fraction instance with value numerator/denominator. If denominator is 0, it raises

9.5. fractions— Rational numbers 373

https://github.com/python/cpython/tree/3.13/Lib/fractions.py

The Python Library Reference, Release 3.13.1

a ZeroDivisionError. The second version requires that other_fraction is an instance of numbers.
Rational and returns a Fraction instance with the same value. The next two versions accept either a
float or a decimal.Decimal instance, and return a Fraction instance with exactly the same value. Note
that due to the usual issues with binary floating point (see tut-fp-issues), the argument to Fraction(1.1)
is not exactly equal to 11/10, and so Fraction(1.1) does not return Fraction(11, 10) as one might
expect. (But see the documentation for the limit_denominator() method below.) The last version of the
constructor expects a string or unicode instance. The usual form for this instance is:

[sign] numerator ['/' denominator]

where the optional sign may be either ‘+’ or ‘-’ and numerator and denominator (if present) are strings
of decimal digits (underscores may be used to delimit digits as with integral literals in code). In addition, any
string that represents a finite value and is accepted by the float constructor is also accepted by the Fraction
constructor. In either form the input string may also have leading and/or trailing whitespace. Here are some
examples:

>>> from fractions import Fraction

>>> Fraction(16, -10)

Fraction(-8, 5)

>>> Fraction(123)

Fraction(123, 1)

>>> Fraction()

Fraction(0, 1)

>>> Fraction('3/7')

Fraction(3, 7)

>>> Fraction(' -3/7 ')

Fraction(-3, 7)

>>> Fraction('1.414213 \t\n')

Fraction(1414213, 1000000)

>>> Fraction('-.125')

Fraction(-1, 8)

>>> Fraction('7e-6')

Fraction(7, 1000000)

>>> Fraction(2.25)

Fraction(9, 4)

>>> Fraction(1.1)

Fraction(2476979795053773, 2251799813685248)

>>> from decimal import Decimal

>>> Fraction(Decimal('1.1'))

Fraction(11, 10)

The Fraction class inherits from the abstract base class numbers.Rational, and implements all of the
methods and operations from that class. Fraction instances are hashable, and should be treated as immutable.
In addition, Fraction has the following properties and methods:

Changed in version 3.2: The Fraction constructor now accepts float and decimal.Decimal instances.

Changed in version 3.9: The math.gcd() function is now used to normalize the numerator and denominator.
math.gcd() always returns an int type. Previously, the GCD type depended on numerator and denominator.

Changed in version 3.11: Underscores are now permitted when creating a Fraction instance from a string,
following PEP 515 rules.

Changed in version 3.11: Fraction implements __int__ now to satisfy typing.SupportsInt instance
checks.

Changed in version 3.12: Space is allowed around the slash for string inputs: Fraction('2 / 3').

Changed in version 3.12: Fraction instances now support float-style formatting, with presentation types "e",
"E", "f", "F", "g", "G" and "%"".

374 Chapter 9. Numeric and Mathematical Modules

https://peps.python.org/pep-0515/

The Python Library Reference, Release 3.13.1

Changed in version 3.13: Formatting of Fraction instances without a presentation type now supports fill,
alignment, sign handling, minimum width and grouping.

numerator

Numerator of the Fraction in lowest term.

denominator

Denominator of the Fraction in lowest term.

as_integer_ratio()

Return a tuple of two integers, whose ratio is equal to the original Fraction. The ratio is in lowest terms
and has a positive denominator.

Added in version 3.8.

is_integer()

Return True if the Fraction is an integer.

Added in version 3.12.

classmethod from_float(flt)

Alternative constructor which only accepts instances of float or numbers.Integral. Beware that
Fraction.from_float(0.3) is not the same value as Fraction(3, 10).

Note

From Python 3.2 onwards, you can also construct a Fraction instance directly from a float.

classmethod from_decimal(dec)
Alternative constructor which only accepts instances of decimal.Decimal or numbers.Integral.

Note

From Python 3.2 onwards, you can also construct a Fraction instance directly from a decimal.
Decimal instance.

limit_denominator(max_denominator=1000000)
Finds and returns the closest Fraction to self that has denominator at most max_denominator. This
method is useful for finding rational approximations to a given floating-point number:

>>> from fractions import Fraction

>>> Fraction('3.1415926535897932').limit_denominator(1000)

Fraction(355, 113)

or for recovering a rational number that’s represented as a float:

>>> from math import pi, cos

>>> Fraction(cos(pi/3))

Fraction(4503599627370497, 9007199254740992)

>>> Fraction(cos(pi/3)).limit_denominator()

Fraction(1, 2)

>>> Fraction(1.1).limit_denominator()

Fraction(11, 10)

__floor__()

Returns the greatest int <= self. This method can also be accessed through the math.floor()
function:

9.5. fractions— Rational numbers 375

The Python Library Reference, Release 3.13.1

>>> from math import floor

>>> floor(Fraction(355, 113))

3

__ceil__()

Returns the least int >= self. This method can also be accessed through the math.ceil() function.

__round__()

__round__(ndigits)
The first version returns the nearest int to self, rounding half to even. The second version rounds
self to the nearest multiple of Fraction(1, 10**ndigits) (logically, if ndigits is negative),
again rounding half toward even. This method can also be accessed through the round() function.

__format__(format_spec, /)
Provides support for formatting of Fraction instances via the str.format()method, the format()
built-in function, or Formatted string literals.

If the format_spec format specification string does not endwith one of the presentation types 'e', 'E',
'f', 'F', 'g', 'G' or '%' then formatting follows the general rules for fill, alignment, sign handling,
minimum width, and grouping as described in the format specification mini-language. The “alternate
form” flag '#' is supported: if present, it forces the output string to always include an explicit denomi-
nator, even when the value being formatted is an exact integer. The zero-fill flag '0' is not supported.

If the format_spec format specification string ends with one of the presentation types 'e', 'E', 'f',
'F', 'g', 'G' or '%' then formatting follows the rules outlined for the float type in the Format
Specification Mini-Language section.

Here are some examples:

>>> from fractions import Fraction

>>> format(Fraction(103993, 33102), '_')

'103_993/33_102'

>>> format(Fraction(1, 7), '.^+10')

'...+1/7...'

>>> format(Fraction(3, 1), '')

'3'

>>> format(Fraction(3, 1), '#')

'3/1'

>>> format(Fraction(1, 7), '.40g')

'0.1428571428571428571428571428571428571429'

>>> format(Fraction('1234567.855'), '_.2f')

'1_234_567.86'

>>> f"{Fraction(355, 113):*>20.6e}"

'********3.141593e+00'

>>> old_price, new_price = 499, 672

>>> "{:.2%} price increase".format(Fraction(new_price, old_price) - 1)

'34.67% price increase'

See also

Module numbers
The abstract base classes making up the numeric tower.

376 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

9.6 random— Generate pseudo-random numbers

Source code: Lib/random.py

This module implements pseudo-random number generators for various distributions.

For integers, there is uniform selection from a range. For sequences, there is uniform selection of a random element, a
function to generate a random permutation of a list in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential, gamma,
and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random(), which generates a random float uniformly in
the half-open range 0.0 <= X < 1.0. Python uses the Mersenne Twister as the core generator. It produces 53-bit
precision floats and has a period of 2**19937-1. The underlying implementation in C is both fast and threadsafe.
The Mersenne Twister is one of the most extensively tested random number generators in existence. However, being
completely deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic purposes.

The functions supplied by this module are actually bound methods of a hidden instance of the random.Random
class. You can instantiate your own instances of Random to get generators that don’t share state.

Class Random can also be subclassed if you want to use a different basic generator of your own devising: see the
documentation on that class for more details.

The random module also provides the SystemRandom class which uses the system function os.urandom() to
generate random numbers from sources provided by the operating system.

Warning

The pseudo-random generators of this module should not be used for security purposes. For security or crypto-
graphic uses, see the secrets module.

See also

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-
random number generator”, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January
pp.3–30 1998.

Complementary-Multiply-with-Carry recipe for a compatible alternative random number generator with a long
period and comparatively simple update operations.

Note

The global random number generator and instances of Random are thread-safe. However, in the free-threaded
build, concurrent calls to the global generator or to the same instance of Random may encounter contention and
poor performance. Consider using separate instances of Random per thread instead.

9.6.1 Bookkeeping functions

random.seed(a=None, version=2)
Initialize the random number generator.

If a is omitted or None, the current system time is used. If randomness sources are provided by the operating
system, they are used instead of the system time (see the os.urandom() function for details on availability).

If a is an int, it is used directly.

9.6. random— Generate pseudo-random numbers 377

https://github.com/python/cpython/tree/3.13/Lib/random.py
https://code.activestate.com/recipes/576707-long-period-random-number-generator/

The Python Library Reference, Release 3.13.1

With version 2 (the default), a str, bytes, or bytearray object gets converted to an int and all of its bits
are used.

With version 1 (provided for reproducing random sequences from older versions of Python), the algorithm for
str and bytes generates a narrower range of seeds.

Changed in version 3.2: Moved to the version 2 scheme which uses all of the bits in a string seed.

Changed in version 3.11: The seed must be one of the following types: None, int, float, str, bytes, or
bytearray.

random.getstate()

Return an object capturing the current internal state of the generator. This object can be passed to setstate()
to restore the state.

random.setstate(state)

state should have been obtained from a previous call to getstate(), and setstate() restores the internal
state of the generator to what it was at the time getstate() was called.

9.6.2 Functions for bytes

random.randbytes(n)
Generate n random bytes.

This method should not be used for generating security tokens. Use secrets.token_bytes() instead.

Added in version 3.9.

9.6.3 Functions for integers

random.randrange(stop)

random.randrange(start, stop[, step])
Return a randomly selected element from range(start, stop, step).

This is roughly equivalent to choice(range(start, stop, step)) but supports arbitrarily large ranges
and is optimized for common cases.

The positional argument pattern matches the range() function.

Keyword arguments should not be used because they can be interpreted in unexpected ways. For example
randrange(start=100) is interpreted as randrange(0, 100, 1).

Changed in version 3.2: randrange() is more sophisticated about producing equally distributed values.
Formerly it used a style like int(random()*n) which could produce slightly uneven distributions.

Changed in version 3.12: Automatic conversion of non-integer types is no longer supported. Calls such as
randrange(10.0) and randrange(Fraction(10, 1)) now raise a TypeError.

random.randint(a, b)
Return a random integer N such that a <= N <= b. Alias for randrange(a, b+1).

random.getrandbits(k)

Returns a non-negative Python integer with k random bits. This method is supplied with the Mersenne Twister
generator and some other generators may also provide it as an optional part of the API. When available,
getrandbits() enables randrange() to handle arbitrarily large ranges.

Changed in version 3.9: This method now accepts zero for k.

9.6.4 Functions for sequences

random.choice(seq)

Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

378 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

random.choices(population, weights=None, *, cum_weights=None, k=1)
Return a k sized list of elements chosen from the population with replacement. If the population is empty,
raises IndexError.

If a weights sequence is specified, selections are made according to the relative weights. Alternatively, if a
cum_weights sequence is given, the selections are made according to the cumulative weights (perhaps computed
using itertools.accumulate()). For example, the relative weights [10, 5, 30, 5] are equivalent to
the cumulative weights [10, 15, 45, 50]. Internally, the relative weights are converted to cumulative
weights before making selections, so supplying the cumulative weights saves work.

If neither weights nor cum_weights are specified, selections are made with equal probability. If a weights
sequence is supplied, it must be the same length as the population sequence. It is a TypeError to specify both
weights and cum_weights.

The weights or cum_weights can use any numeric type that interoperates with the float values returned by
random() (that includes integers, floats, and fractions but excludes decimals). Weights are assumed to be
non-negative and finite. A ValueError is raised if all weights are zero.

For a given seed, the choices() function with equal weighting typically produces a different sequence than
repeated calls to choice(). The algorithm used by choices() uses floating-point arithmetic for internal
consistency and speed. The algorithm used by choice() defaults to integer arithmetic with repeated selections
to avoid small biases from round-off error.

Added in version 3.6.

Changed in version 3.9: Raises a ValueError if all weights are zero.

random.shuffle(x)
Shuffle the sequence x in place.

To shuffle an immutable sequence and return a new shuffled list, use sample(x, k=len(x)) instead.

Note that even for small len(x), the total number of permutations of x can quickly grow larger than the
period of most random number generators. This implies that most permutations of a long sequence can never
be generated. For example, a sequence of length 2080 is the largest that can fit within the period of the
Mersenne Twister random number generator.

Changed in version 3.11: Removed the optional parameter random.

random.sample(population, k, *, counts=None)
Return a k length list of unique elements chosen from the population sequence. Used for random sampling
without replacement.

Returns a new list containing elements from the population while leaving the original population unchanged.
The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle
winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each
occurrence is a possible selection in the sample.

Repeated elements can be specified one at a time or with the optional keyword-only counts parameter.
For example, sample(['red', 'blue'], counts=[4, 2], k=5) is equivalent to sample(['red',
'red', 'red', 'red', 'blue', 'blue'], k=5).

To choose a sample from a range of integers, use a range() object as an argument. This is especially fast and
space efficient for sampling from a large population: sample(range(10000000), k=60).

If the sample size is larger than the population size, a ValueError is raised.

Changed in version 3.9: Added the counts parameter.

Changed in version 3.11: The populationmust be a sequence. Automatic conversion of sets to lists is no longer
supported.

9.6. random— Generate pseudo-random numbers 379

The Python Library Reference, Release 3.13.1

9.6.5 Discrete distributions

The following function generates a discrete distribution.

random.binomialvariate(n=1, p=0.5)
Binomial distribution. Return the number of successes for n independent trials with the probability of success
in each trial being p:

Mathematically equivalent to:

sum(random() < p for i in range(n))

The number of trials n should be a non-negative integer. The probability of success p should be between 0.0
<= p <= 1.0. The result is an integer in the range 0 <= X <= n.

Added in version 3.12.

9.6.6 Real-valued distributions

The following functions generate specific real-valued distributions. Function parameters are named after the corre-
sponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations
can be found in any statistics text.

random.random()

Return the next random floating-point number in the range 0.0 <= X < 1.0

random.uniform(a, b)
Return a random floating-point number N such that a <= N <= b for a <= b and b <= N <= a for b <

a.

The end-point value b may or may not be included in the range depending on floating-point rounding in the
expression a + (b-a) * random().

random.triangular(low, high, mode)
Return a random floating-point numberN such that low <= N <= high and with the specifiedmode between
those bounds. The low and high bounds default to zero and one. The mode argument defaults to the midpoint
between the bounds, giving a symmetric distribution.

random.betavariate(alpha, beta)
Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range
between 0 and 1.

random.expovariate(lambd=1.0)
Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter
would be called “lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive
infinity if lambd is positive, and from negative infinity to 0 if lambd is negative.

Changed in version 3.12: Added the default value for lambd.

random.gammavariate(alpha, beta)
Gamma distribution. (Not the gamma function!) The shape and scale parameters, alpha and beta, must have
positive values. (Calling conventions vary and some sources define ‘beta’ as the inverse of the scale).

The probability distribution function is:

x ** (alpha - 1) * math.exp(-x / beta)

pdf(x) = --------------------------------------

math.gamma(alpha) * beta ** alpha

random.gauss(mu=0.0, sigma=1.0)

Normal distribution, also called the Gaussian distribution. mu is the mean, and sigma is the standard deviation.
This is slightly faster than the normalvariate() function defined below.

380 Chapter 9. Numeric and Mathematical Modules

https://mathworld.wolfram.com/BinomialDistribution.html

The Python Library Reference, Release 3.13.1

Multithreading note: When two threads call this function simultaneously, it is possible that they will receive
the same return value. This can be avoided in three ways. 1) Have each thread use a different instance of the
random number generator. 2) Put locks around all calls. 3) Use the slower, but thread-safe normalvariate()
function instead.

Changed in version 3.11: mu and sigma now have default arguments.

random.lognormvariate(mu, sigma)

Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero.

random.normalvariate(mu=0.0, sigma=1.0)
Normal distribution. mu is the mean, and sigma is the standard deviation.

Changed in version 3.11: mu and sigma now have default arguments.

random.vonmisesvariate(mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter,
which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform
random angle over the range 0 to 2*pi.

random.paretovariate(alpha)
Pareto distribution. alpha is the shape parameter.

random.weibullvariate(alpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

9.6.7 Alternative Generator

class random.Random([seed])
Class that implements the default pseudo-random number generator used by the random module.

Changed in version 3.11: Formerly the seed could be any hashable object. Now it is limited to: None, int,
float, str, bytes, or bytearray.

Subclasses of Random should override the following methods if they wish to make use of a different basic
generator:

seed(a=None, version=2)
Override this method in subclasses to customise the seed() behaviour of Random instances.

getstate()

Override this method in subclasses to customise the getstate() behaviour of Random instances.

setstate(state)
Override this method in subclasses to customise the setstate() behaviour of Random instances.

random()

Override this method in subclasses to customise the random() behaviour of Random instances.

Optionally, a custom generator subclass can also supply the following method:

getrandbits(k)
Override this method in subclasses to customise the getrandbits() behaviour of Random instances.

class random.SystemRandom([seed])
Class that uses the os.urandom() function for generating random numbers from sources provided by the
operating system. Not available on all systems. Does not rely on software state, and sequences are not repro-
ducible. Accordingly, the seed() method has no effect and is ignored. The getstate() and setstate()
methods raise NotImplementedError if called.

9.6. random— Generate pseudo-random numbers 381

The Python Library Reference, Release 3.13.1

9.6.8 Notes on Reproducibility

Sometimes it is useful to be able to reproduce the sequences given by a pseudo-random number generator. By reusing
a seed value, the same sequence should be reproducible from run to run as long as multiple threads are not running.

Most of the random module’s algorithms and seeding functions are subject to change across Python versions, but two
aspects are guaranteed not to change:

• If a new seeding method is added, then a backward compatible seeder will be offered.

• The generator’s random() method will continue to produce the same sequence when the compatible seeder
is given the same seed.

9.6.9 Examples

Basic examples:

>>> random() # Random float: 0.0 <= x < 1.0

0.37444887175646646

>>> uniform(2.5, 10.0) # Random float: 2.5 <= x <= 10.0

3.1800146073117523

>>> expovariate(1 / 5) # Interval between arrivals averaging 5␣

↪→seconds

5.148957571865031

>>> randrange(10) # Integer from 0 to 9 inclusive

7

>>> randrange(0, 101, 2) # Even integer from 0 to 100 inclusive

26

>>> choice(['win', 'lose', 'draw']) # Single random element from a sequence

'draw'

>>> deck = 'ace two three four'.split()

>>> shuffle(deck) # Shuffle a list

>>> deck

['four', 'two', 'ace', 'three']

>>> sample([10, 20, 30, 40, 50], k=4) # Four samples without replacement

[40, 10, 50, 30]

Simulations:

>>> # Six roulette wheel spins (weighted sampling with replacement)

>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)

['red', 'green', 'black', 'black', 'red', 'black']

>>> # Deal 20 cards without replacement from a deck

>>> # of 52 playing cards, and determine the proportion of cards

>>> # with a ten-value: ten, jack, queen, or king.

>>> deal = sample(['tens', 'low cards'], counts=[16, 36], k=20)

>>> deal.count('tens') / 20

0.15

>>> # Estimate the probability of getting 5 or more heads from 7 spins

>>> # of a biased coin that settles on heads 60% of the time.

>>> sum(binomialvariate(n=7, p=0.6) >= 5 for i in range(10_000)) / 10_000

(continues on next page)

382 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

(continued from previous page)

0.4169

>>> # Probability of the median of 5 samples being in middle two quartiles

>>> def trial():

... return 2_500 <= sorted(choices(range(10_000), k=5))[2] < 7_500

...

>>> sum(trial() for i in range(10_000)) / 10_000

0.7958

Example of statistical bootstrapping using resampling with replacement to estimate a confidence interval for the mean
of a sample:

https://www.thoughtco.com/example-of-bootstrapping-3126155

from statistics import fmean as mean

from random import choices

data = [41, 50, 29, 37, 81, 30, 73, 63, 20, 35, 68, 22, 60, 31, 95]

means = sorted(mean(choices(data, k=len(data))) for i in range(100))

print(f'The sample mean of {mean(data):.1f} has a 90% confidence '

f'interval from {means[5]:.1f} to {means[94]:.1f}')

Example of a resampling permutation test to determine the statistical significance or p-value of an observed difference
between the effects of a drug versus a placebo:

Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson

from statistics import fmean as mean

from random import shuffle

drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]

placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]

observed_diff = mean(drug) - mean(placebo)

n = 10_000

count = 0

combined = drug + placebo

for i in range(n):

shuffle(combined)

new_diff = mean(combined[:len(drug)]) - mean(combined[len(drug):])

count += (new_diff >= observed_diff)

print(f'{n} label reshufflings produced only {count} instances with a difference')

print(f'at least as extreme as the observed difference of {observed_diff:.1f}.')

print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')

print(f'hypothesis that there is no difference between the drug and the placebo.')

Simulation of arrival times and service deliveries for a multiserver queue:

from heapq import heapify, heapreplace

from random import expovariate, gauss

from statistics import mean, quantiles

average_arrival_interval = 5.6

average_service_time = 15.0

stdev_service_time = 3.5

num_servers = 3

waits = []

(continues on next page)

9.6. random— Generate pseudo-random numbers 383

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests
https://en.wikipedia.org/wiki/P-value

The Python Library Reference, Release 3.13.1

(continued from previous page)

arrival_time = 0.0

servers = [0.0] * num_servers # time when each server becomes available

heapify(servers)

for i in range(1_000_000):

arrival_time += expovariate(1.0 / average_arrival_interval)

next_server_available = servers[0]

wait = max(0.0, next_server_available - arrival_time)

waits.append(wait)

service_duration = max(0.0, gauss(average_service_time, stdev_service_time))

service_completed = arrival_time + wait + service_duration

heapreplace(servers, service_completed)

print(f'Mean wait: {mean(waits):.1f} Max wait: {max(waits):.1f}')

print('Quartiles:', [round(q, 1) for q in quantiles(waits)])

See also

Statistics for Hackers a video tutorial by Jake Vanderplas on statistical analysis using just a few fundamental
concepts including simulation, sampling, shuffling, and cross-validation.

Economics Simulation a simulation of a marketplace by Peter Norvig that shows effective use of many of the tools
and distributions provided by this module (gauss, uniform, sample, betavariate, choice, triangular, and randrange).

A Concrete Introduction to Probability (using Python) a tutorial by Peter Norvig covering the basics of probability
theory, how to write simulations, and how to perform data analysis using Python.

9.6.10 Recipes

These recipes show how to efficiently make random selections from the combinatoric iterators in the itertools
module:

def random_product(*args, repeat=1):

"Random selection from itertools.product(*args, **kwds)"

pools = [tuple(pool) for pool in args] * repeat

return tuple(map(random.choice, pools))

def random_permutation(iterable, r=None):

"Random selection from itertools.permutations(iterable, r)"

pool = tuple(iterable)

r = len(pool) if r is None else r

return tuple(random.sample(pool, r))

def random_combination(iterable, r):

"Random selection from itertools.combinations(iterable, r)"

pool = tuple(iterable)

n = len(pool)

indices = sorted(random.sample(range(n), r))

return tuple(pool[i] for i in indices)

def random_combination_with_replacement(iterable, r):

"Choose r elements with replacement. Order the result to match the iterable."

Result will be in set(itertools.combinations_with_replacement(iterable, r)).

pool = tuple(iterable)

n = len(pool)

indices = sorted(random.choices(range(n), k=r))

return tuple(pool[i] for i in indices)

384 Chapter 9. Numeric and Mathematical Modules

https://www.youtube.com/watch?v=Iq9DzN6mvYA
https://us.pycon.org/2016/speaker/profile/295/
https://nbviewer.org/url/norvig.com/ipython/Economics.ipynb
https://norvig.com/bio.html
https://nbviewer.org/url/norvig.com/ipython/Probability.ipynb
https://norvig.com/bio.html

The Python Library Reference, Release 3.13.1

The default random() returns multiples of 2⁻⁵³ in the range 0.0 ≤ x < 1.0. All such numbers are evenly spaced and
are exactly representable as Python floats. However, many other representable floats in that interval are not possible
selections. For example, 0.05954861408025609 isn’t an integer multiple of 2⁻⁵³.

The following recipe takes a different approach. All floats in the interval are possible selections. The mantissa comes
from a uniform distribution of integers in the range 2⁵² ≤ mantissa < 2⁵³. The exponent comes from a geometric
distribution where exponents smaller than -53 occur half as often as the next larger exponent.

from random import Random

from math import ldexp

class FullRandom(Random):

def random(self):

mantissa = 0x10_0000_0000_0000 | self.getrandbits(52)

exponent = -53

x = 0

while not x:

x = self.getrandbits(32)

exponent += x.bit_length() - 32

return ldexp(mantissa, exponent)

All real valued distributions in the class will use the new method:

>>> fr = FullRandom()

>>> fr.random()

0.05954861408025609

>>> fr.expovariate(0.25)

8.87925541791544

The recipe is conceptually equivalent to an algorithm that chooses from all the multiples of 2⁻¹⁰⁷⁴ in the range 0.0 ≤
x < 1.0. All such numbers are evenly spaced, but most have to be rounded down to the nearest representable Python
float. (The value 2⁻¹⁰⁷⁴ is the smallest positive unnormalized float and is equal to math.ulp(0.0).)

See also

Generating Pseudo-random Floating-Point Values a paper by Allen B. Downey describing ways to generate more
fine-grained floats than normally generated by random().

9.6.11 Command-line usage

Added in version 3.13.

The random module can be executed from the command line.

python -m random [-h] [-c CHOICE [CHOICE ...] | -i N | -f N] [input ...]

The following options are accepted:

-h, --help

Show the help message and exit.

-c CHOICE [CHOICE ...]

--choice CHOICE [CHOICE ...]

Print a random choice, using choice().

-i <N>

--integer <N>

Print a random integer between 1 and N inclusive, using randint().

9.6. random— Generate pseudo-random numbers 385

https://allendowney.com/research/rand/downey07randfloat.pdf

The Python Library Reference, Release 3.13.1

-f <N>

--float <N>

Print a random floating-point number between 0 and N inclusive, using uniform().

If no options are given, the output depends on the input:

• String or multiple: same as --choice.

• Integer: same as --integer.

• Float: same as --float.

9.6.12 Command-line example

Here are some examples of the random command-line interface:

$ # Choose one at random

$ python -m random egg bacon sausage spam "Lobster Thermidor aux crevettes with a␣

↪→Mornay sauce"

Lobster Thermidor aux crevettes with a Mornay sauce

$ # Random integer

$ python -m random 6

6

$ # Random floating-point number

$ python -m random 1.8

1.7080016272295635

$ # With explicit arguments

$ python -m random --choice egg bacon sausage spam "Lobster Thermidor aux␣

↪→crevettes with a Mornay sauce"

egg

$ python -m random --integer 6

3

$ python -m random --float 1.8

1.5666339105010318

$ python -m random --integer 6

5

$ python -m random --float 6

3.1942323316565915

9.7 statistics—Mathematical statistics functions

Added in version 3.4.

Source code: Lib/statistics.py

This module provides functions for calculating mathematical statistics of numeric (Real-valued) data.

The module is not intended to be a competitor to third-party libraries such as NumPy, SciPy, or proprietary full-
featured statistics packages aimed at professional statisticians such as Minitab, SAS and Matlab. It is aimed at the
level of graphing and scientific calculators.

386 Chapter 9. Numeric and Mathematical Modules

https://github.com/python/cpython/tree/3.13/Lib/statistics.py
https://numpy.org
https://scipy.org/

The Python Library Reference, Release 3.13.1

Unless explicitly noted, these functions support int, float, Decimal and Fraction. Behaviour with other types
(whether in the numeric tower or not) is currently unsupported. Collections with a mix of types are also undefined
and implementation-dependent. If your input data consists of mixed types, you may be able to use map() to ensure
a consistent result, for example: map(float, input_data).

Some datasets use NaN (not a number) values to represent missing data. Since NaNs have unusual comparison
semantics, they cause surprising or undefined behaviors in the statistics functions that sort data or that count occur-
rences. The functions affected are median(), median_low(), median_high(), median_grouped(), mode(),
multimode(), and quantiles(). The NaN values should be stripped before calling these functions:

>>> from statistics import median

>>> from math import isnan

>>> from itertools import filterfalse

>>> data = [20.7, float('NaN'),19.2, 18.3, float('NaN'), 14.4]

>>> sorted(data) # This has surprising behavior

[20.7, nan, 14.4, 18.3, 19.2, nan]

>>> median(data) # This result is unexpected

16.35

>>> sum(map(isnan, data)) # Number of missing values

2

>>> clean = list(filterfalse(isnan, data)) # Strip NaN values

>>> clean

[20.7, 19.2, 18.3, 14.4]

>>> sorted(clean) # Sorting now works as expected

[14.4, 18.3, 19.2, 20.7]

>>> median(clean) # This result is now well defined

18.75

9.7.1 Averages and measures of central location

These functions calculate an average or typical value from a population or sample.

mean() Arithmetic mean (“average”) of data.
fmean() Fast, floating-point arithmetic mean, with optional weighting.
geometric_mean() Geometric mean of data.
harmonic_mean() Harmonic mean of data.
kde() Estimate the probability density distribution of the data.
kde_random() Random sampling from the PDF generated by kde().
median() Median (middle value) of data.
median_low() Low median of data.
median_high() High median of data.
median_grouped() Median (50th percentile) of grouped data.
mode() Single mode (most common value) of discrete or nominal data.
multimode() List of modes (most common values) of discrete or nominal data.
quantiles() Divide data into intervals with equal probability.

9.7.2 Measures of spread

These functions calculate a measure of how much the population or sample tends to deviate from the typical or
average values.

pstdev() Population standard deviation of data.
pvariance() Population variance of data.
stdev() Sample standard deviation of data.
variance() Sample variance of data.

9.7. statistics—Mathematical statistics functions 387

The Python Library Reference, Release 3.13.1

9.7.3 Statistics for relations between two inputs

These functions calculate statistics regarding relations between two inputs.

covariance() Sample covariance for two variables.
correlation() Pearson and Spearman’s correlation coefficients.
linear_regression() Slope and intercept for simple linear regression.

9.7.4 Function details

Note: The functions do not require the data given to them to be sorted. However, for reading convenience, most of
the examples show sorted sequences.

statistics.mean(data)
Return the sample arithmetic mean of data which can be a sequence or iterable.

The arithmetic mean is the sum of the data divided by the number of data points. It is commonly called “the
average”, although it is only one of many different mathematical averages. It is a measure of the central location
of the data.

If data is empty, StatisticsError will be raised.

Some examples of use:

>>> mean([1, 2, 3, 4, 4])

2.8

>>> mean([-1.0, 2.5, 3.25, 5.75])

2.625

>>> from fractions import Fraction as F

>>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])

Fraction(13, 21)

>>> from decimal import Decimal as D

>>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])

Decimal('0.5625')

Note

The mean is strongly affected by outliers and is not necessarily a typical example of the data points. For a
more robust, although less efficient, measure of central tendency, see median().

The sample mean gives an unbiased estimate of the true population mean, so that when taken on average
over all the possible samples, mean(sample) converges on the true mean of the entire population. If data
represents the entire population rather than a sample, then mean(data) is equivalent to calculating the
true population mean μ.

statistics.fmean(data, weights=None)

Convert data to floats and compute the arithmetic mean.

This runs faster than the mean() function and it always returns a float. The data may be a sequence or
iterable. If the input dataset is empty, raises a StatisticsError.

>>> fmean([3.5, 4.0, 5.25])

4.25

Optional weighting is supported. For example, a professor assigns a grade for a course by weighting quizzes at
20%, homework at 20%, a midterm exam at 30%, and a final exam at 30%:

388 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Outlier
https://en.wikipedia.org/wiki/Central_tendency

The Python Library Reference, Release 3.13.1

>>> grades = [85, 92, 83, 91]

>>> weights = [0.20, 0.20, 0.30, 0.30]

>>> fmean(grades, weights)

87.6

If weights is supplied, it must be the same length as the data or a ValueError will be raised.

Added in version 3.8.

Changed in version 3.11: Added support for weights.

statistics.geometric_mean(data)
Convert data to floats and compute the geometric mean.

The geometric mean indicates the central tendency or typical value of the data using the product of the values
(as opposed to the arithmetic mean which uses their sum).

Raises a StatisticsError if the input dataset is empty, if it contains a zero, or if it contains a negative
value. The data may be a sequence or iterable.

No special efforts are made to achieve exact results. (However, this may change in the future.)

>>> round(geometric_mean([54, 24, 36]), 1)

36.0

Added in version 3.8.

statistics.harmonic_mean(data, weights=None)
Return the harmonic mean of data, a sequence or iterable of real-valued numbers. If weights is omitted or
None, then equal weighting is assumed.

The harmonic mean is the reciprocal of the arithmetic mean() of the reciprocals of the data. For example,
the harmonic mean of three values a, b and c will be equivalent to 3/(1/a + 1/b + 1/c). If one of the
values is zero, the result will be zero.

The harmonic mean is a type of average, a measure of the central location of the data. It is often appropriate
when averaging ratios or rates, for example speeds.

Suppose a car travels 10 km at 40 km/hr, then another 10 km at 60 km/hr. What is the average speed?

>>> harmonic_mean([40, 60])

48.0

Suppose a car travels 40 km/hr for 5 km, and when traffic clears, speeds-up to 60 km/hr for the remaining 30
km of the journey. What is the average speed?

>>> harmonic_mean([40, 60], weights=[5, 30])

56.0

StatisticsError is raised if data is empty, any element is less than zero, or if the weighted sum isn’t
positive.

The current algorithm has an early-out when it encounters a zero in the input. This means that the subsequent
inputs are not tested for validity. (This behavior may change in the future.)

Added in version 3.6.

Changed in version 3.10: Added support for weights.

statistics.kde(data, h, kernel=’normal’, *, cumulative=False)

Kernel Density Estimation (KDE): Create a continuous probability density function or cumulative distribution
function from discrete samples.

The basic idea is to smooth the data using a kernel function. to help draw inferences about a population from
a sample.

9.7. statistics—Mathematical statistics functions 389

https://www.itm-conferences.org/articles/itmconf/pdf/2018/08/itmconf_sam2018_00037.pdf
https://en.wikipedia.org/wiki/Kernel_(statistics)

The Python Library Reference, Release 3.13.1

The degree of smoothing is controlled by the scaling parameter hwhich is called the bandwidth. Smaller values
emphasize local features while larger values give smoother results.

The kernel determines the relative weights of the sample data points. Generally, the choice of kernel shape
does not matter as much as the more influential bandwidth smoothing parameter.

Kernels that give some weight to every sample point include normal (gauss), logistic, and sigmoid.

Kernels that only give weight to sample points within the bandwidth include rectangular (uniform), triangular,
parabolic (epanechnikov), quartic (biweight), triweight, and cosine.

If cumulative is true, will return a cumulative distribution function.

A StatisticsError will be raised if the data sequence is empty.

Wikipedia has an example where we can use kde() to generate and plot a probability density function esti-
mated from a small sample:

>>> sample = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]

>>> f_hat = kde(sample, h=1.5)

>>> xarr = [i/100 for i in range(-750, 1100)]

>>> yarr = [f_hat(x) for x in xarr]

The points in xarr and yarr can be used to make a PDF plot:

Added in version 3.13.

statistics.kde_random(data, h, kernel=’normal’, *, seed=None)
Return a function that makes a random selection from the estimated probability density function produced by
kde(data, h, kernel).

Providing a seed allows reproducible selections. In the future, the values may change slightly as more accurate
kernel inverse CDF estimates are implemented. The seed may be an integer, float, str, or bytes.

A StatisticsError will be raised if the data sequence is empty.

Continuing the example for kde(), we can use kde_random() to generate new random selections from an
estimated probability density function:

390 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Kernel_density_estimation#Example

The Python Library Reference, Release 3.13.1

>>> data = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]

>>> rand = kde_random(data, h=1.5, seed=8675309)

>>> new_selections = [rand() for i in range(10)]

>>> [round(x, 1) for x in new_selections]

[0.7, 6.2, 1.2, 6.9, 7.0, 1.8, 2.5, -0.5, -1.8, 5.6]

Added in version 3.13.

statistics.median(data)
Return the median (middle value) of numeric data, using the common “mean of middle two” method. If data
is empty, StatisticsError is raised. data can be a sequence or iterable.

The median is a robust measure of central location and is less affected by the presence of outliers. When the
number of data points is odd, the middle data point is returned:

>>> median([1, 3, 5])

3

When the number of data points is even, the median is interpolated by taking the average of the two middle
values:

>>> median([1, 3, 5, 7])

4.0

This is suited for when your data is discrete, and you don’t mind that the median may not be an actual data
point.

If the data is ordinal (supports order operations) but not numeric (doesn’t support addition), consider using
median_low() or median_high() instead.

statistics.median_low(data)
Return the lowmedian of numeric data. If data is empty, StatisticsError is raised. data can be a sequence
or iterable.

The low median is always a member of the data set. When the number of data points is odd, the middle value
is returned. When it is even, the smaller of the two middle values is returned.

>>> median_low([1, 3, 5])

3

>>> median_low([1, 3, 5, 7])

3

Use the low median when your data are discrete and you prefer the median to be an actual data point rather
than interpolated.

statistics.median_high(data)

Return the high median of data. If data is empty, StatisticsError is raised. data can be a sequence or
iterable.

The high median is always a member of the data set. When the number of data points is odd, the middle value
is returned. When it is even, the larger of the two middle values is returned.

>>> median_high([1, 3, 5])

3

>>> median_high([1, 3, 5, 7])

5

Use the high median when your data are discrete and you prefer the median to be an actual data point rather
than interpolated.

9.7. statistics—Mathematical statistics functions 391

The Python Library Reference, Release 3.13.1

statistics.median_grouped(data, interval=1.0)
Estimates the median for numeric data that has been grouped or binned around the midpoints of consecutive,
fixed-width intervals.

The data can be any iterable of numeric data with each value being exactly the midpoint of a bin. At least one
value must be present.

The interval is the width of each bin.

For example, demographic information may have been summarized into consecutive ten-year age groups with
each group being represented by the 5-year midpoints of the intervals:

>>> from collections import Counter

>>> demographics = Counter({

... 25: 172, # 20 to 30 years old

... 35: 484, # 30 to 40 years old

... 45: 387, # 40 to 50 years old

... 55: 22, # 50 to 60 years old

... 65: 6, # 60 to 70 years old

... })

...

The 50th percentile (median) is the 536th person out of the 1071 member cohort. That person is in the 30 to
40 year old age group.

The regular median() function would assume that everyone in the tricenarian age group was exactly 35 years
old. A more tenable assumption is that the 484 members of that age group are evenly distributed between 30
and 40. For that, we use median_grouped():

>>> data = list(demographics.elements())

>>> median(data)

35

>>> round(median_grouped(data, interval=10), 1)

37.5

The caller is responsible for making sure the data points are separated by exact multiples of interval. This is
essential for getting a correct result. The function does not check this precondition.

Inputs may be any numeric type that can be coerced to a float during the interpolation step.

statistics.mode(data)
Return the single most common data point from discrete or nominal data. The mode (when it exists) is the
most typical value and serves as a measure of central location.

If there are multiple modes with the same frequency, returns the first one encountered in the data. If the
smallest or largest of those is desired instead, use min(multimode(data)) or max(multimode(data)).
If the input data is empty, StatisticsError is raised.

mode assumes discrete data and returns a single value. This is the standard treatment of the mode as commonly
taught in schools:

>>> mode([1, 1, 2, 3, 3, 3, 3, 4])

3

The mode is unique in that it is the only statistic in this package that also applies to nominal (non-numeric)
data:

>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])

'red'

Only hashable inputs are supported. To handle type set, consider casting to frozenset. To handle type
list, consider casting to tuple. For mixed or nested inputs, consider using this slower quadratic algorithm
that only depends on equality tests: max(data, key=data.count).

392 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Data_binning

The Python Library Reference, Release 3.13.1

Changed in version 3.8: Now handles multimodal datasets by returning the first mode encountered. Formerly,
it raised StatisticsError when more than one mode was found.

statistics.multimode(data)
Return a list of the most frequently occurring values in the order they were first encountered in the data. Will
return more than one result if there are multiple modes or an empty list if the data is empty:

>>> multimode('aabbbbccddddeeffffgg')

['b', 'd', 'f']

>>> multimode('')

[]

Added in version 3.8.

statistics.pstdev(data, mu=None)
Return the population standard deviation (the square root of the population variance). See pvariance() for
arguments and other details.

>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])

0.986893273527251

statistics.pvariance(data, mu=None)
Return the population variance of data, a non-empty sequence or iterable of real-valued numbers. Variance, or
second moment about the mean, is a measure of the variability (spread or dispersion) of data. A large variance
indicates that the data is spread out; a small variance indicates it is clustered closely around the mean.

If the optional second argument mu is given, it should be the population mean of the data. It can also be used
to compute the second moment around a point that is not the mean. If it is missing or None (the default), the
arithmetic mean is automatically calculated.

Use this function to calculate the variance from the entire population. To estimate the variance from a sample,
the variance() function is usually a better choice.

Raises StatisticsError if data is empty.

Examples:

>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]

>>> pvariance(data)

1.25

If you have already calculated the mean of your data, you can pass it as the optional second argument mu to
avoid recalculation:

>>> mu = mean(data)

>>> pvariance(data, mu)

1.25

Decimals and Fractions are supported:

>>> from decimal import Decimal as D

>>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])

Decimal('24.815')

>>> from fractions import Fraction as F

>>> pvariance([F(1, 4), F(5, 4), F(1, 2)])

Fraction(13, 72)

9.7. statistics—Mathematical statistics functions 393

The Python Library Reference, Release 3.13.1

Note

When called with the entire population, this gives the population variance σ². When called on a sample
instead, this is the biased sample variance s², also known as variance with N degrees of freedom.

If you somehow know the true population mean μ, you may use this function to calculate the variance of a
sample, giving the known population mean as the second argument. Provided the data points are a random
sample of the population, the result will be an unbiased estimate of the population variance.

statistics.stdev(data, xbar=None)
Return the sample standard deviation (the square root of the sample variance). See variance() for arguments
and other details.

>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])

1.0810874155219827

statistics.variance(data, xbar=None)
Return the sample variance of data, an iterable of at least two real-valued numbers. Variance, or second
moment about the mean, is a measure of the variability (spread or dispersion) of data. A large variance
indicates that the data is spread out; a small variance indicates it is clustered closely around the mean.

If the optional second argument xbar is given, it should be the sample mean of data. If it is missing or None
(the default), the mean is automatically calculated.

Use this function when your data is a sample from a population. To calculate the variance from the entire
population, see pvariance().

Raises StatisticsError if data has fewer than two values.

Examples:

>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]

>>> variance(data)

1.3720238095238095

If you have already calculated the sample mean of your data, you can pass it as the optional second argument
xbar to avoid recalculation:

>>> m = mean(data)

>>> variance(data, m)

1.3720238095238095

This function does not attempt to verify that you have passed the actual mean as xbar. Using arbitrary values
for xbar can lead to invalid or impossible results.

Decimal and Fraction values are supported:

>>> from decimal import Decimal as D

>>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])

Decimal('31.01875')

>>> from fractions import Fraction as F

>>> variance([F(1, 6), F(1, 2), F(5, 3)])

Fraction(67, 108)

Note

This is the sample variance s² with Bessel’s correction, also known as variance with N-1 degrees of freedom.

394 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.13.1

Provided that the data points are representative (e.g. independent and identically distributed), the result
should be an unbiased estimate of the true population variance.

If you somehow know the actual population mean μ you should pass it to the pvariance() function as
the mu parameter to get the variance of a sample.

statistics.quantiles(data, *, n=4, method=’exclusive’)
Divide data into n continuous intervals with equal probability. Returns a list of n - 1 cut points separating
the intervals.

Set n to 4 for quartiles (the default). Set n to 10 for deciles. Set n to 100 for percentiles which gives the 99
cuts points that separate data into 100 equal sized groups. Raises StatisticsError if n is not least 1.

The data can be any iterable containing sample data. For meaningful results, the number of data points in data
should be larger than n. Raises StatisticsError if there is not at least one data point.

The cut points are linearly interpolated from the two nearest data points. For example, if a cut point falls
one-third of the distance between two sample values, 100 and 112, the cut-point will evaluate to 104.

The method for computing quantiles can be varied depending on whether the data includes or excludes the
lowest and highest possible values from the population.

The default method is “exclusive” and is used for data sampled from a population that can have more extreme
values than found in the samples. The portion of the population falling below the i-th of m sorted data points
is computed as i / (m + 1). Given nine sample values, the method sorts them and assigns the following
percentiles: 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%.

Setting themethod to “inclusive” is used for describing population data or for samples that are known to include
the most extreme values from the population. The minimum value in data is treated as the 0th percentile and
the maximum value is treated as the 100th percentile. The portion of the population falling below the i-th of
m sorted data points is computed as (i - 1) / (m - 1). Given 11 sample values, the method sorts them
and assigns the following percentiles: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%.

Decile cut points for empirically sampled data

>>> data = [105, 129, 87, 86, 111, 111, 89, 81, 108, 92, 110,

... 100, 75, 105, 103, 109, 76, 119, 99, 91, 103, 129,

... 106, 101, 84, 111, 74, 87, 86, 103, 103, 106, 86,

... 111, 75, 87, 102, 121, 111, 88, 89, 101, 106, 95,

... 103, 107, 101, 81, 109, 104]

>>> [round(q, 1) for q in quantiles(data, n=10)]

[81.0, 86.2, 89.0, 99.4, 102.5, 103.6, 106.0, 109.8, 111.0]

Added in version 3.8.

Changed in version 3.13: No longer raises an exception for an input with only a single data point. This allows
quantile estimates to be built up one sample point at a time becoming gradually more refined with each new
data point.

statistics.covariance(x, y, /)
Return the sample covariance of two inputs x and y. Covariance is a measure of the joint variability of two
inputs.

Both inputs must be of the same length (no less than two), otherwise StatisticsError is raised.

Examples:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> covariance(x, y)

0.75

>>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]

>>> covariance(x, z)
(continues on next page)

9.7. statistics—Mathematical statistics functions 395

The Python Library Reference, Release 3.13.1

(continued from previous page)

-7.5

>>> covariance(z, x)

-7.5

Added in version 3.10.

statistics.correlation(x, y, / , *, method=’linear’)

Return the Pearson’s correlation coefficient for two inputs. Pearson’s correlation coefficient r takes values
between -1 and +1. It measures the strength and direction of a linear relationship.

If method is “ranked”, computes Spearman’s rank correlation coefficient for two inputs. The data is replaced
by ranks. Ties are averaged so that equal values receive the same rank. The resulting coefficient measures the
strength of a monotonic relationship.

Spearman’s correlation coefficient is appropriate for ordinal data or for continuous data that doesn’t meet the
linear proportion requirement for Pearson’s correlation coefficient.

Both inputs must be of the same length (no less than two), and need not to be constant, otherwise
StatisticsError is raised.

Example with Kepler’s laws of planetary motion:

>>> # Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune

>>> orbital_period = [88, 225, 365, 687, 4331, 10_756, 30_687, 60_190] #␣

↪→days

>>> dist_from_sun = [58, 108, 150, 228, 778, 1_400, 2_900, 4_500] # million km

>>> # Show that a perfect monotonic relationship exists

>>> correlation(orbital_period, dist_from_sun, method='ranked')

1.0

>>> # Observe that a linear relationship is imperfect

>>> round(correlation(orbital_period, dist_from_sun), 4)

0.9882

>>> # Demonstrate Kepler's third law: There is a linear correlation

>>> # between the square of the orbital period and the cube of the

>>> # distance from the sun.

>>> period_squared = [p * p for p in orbital_period]

>>> dist_cubed = [d * d * d for d in dist_from_sun]

>>> round(correlation(period_squared, dist_cubed), 4)

1.0

Added in version 3.10.

Changed in version 3.12: Added support for Spearman’s rank correlation coefficient.

statistics.linear_regression(x, y, / , *, proportional=False)
Return the slope and intercept of simple linear regression parameters estimated using ordinary least squares.
Simple linear regression describes the relationship between an independent variable x and a dependent variable
y in terms of this linear function:

y = slope * x + intercept + noise

where slope and intercept are the regression parameters that are estimated, and noise represents the
variability of the data that was not explained by the linear regression (it is equal to the difference between
predicted and actual values of the dependent variable).

Both inputs must be of the same length (no less than two), and the independent variable x cannot be constant;
otherwise a StatisticsError is raised.

396 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Kepler's_laws_of_planetary_motion
https://en.wikipedia.org/wiki/Simple_linear_regression

The Python Library Reference, Release 3.13.1

For example, we can use the release dates of the Monty Python films to predict the cumulative number of
Monty Python films that would have been produced by 2019 assuming that they had kept the pace.

>>> year = [1971, 1975, 1979, 1982, 1983]

>>> films_total = [1, 2, 3, 4, 5]

>>> slope, intercept = linear_regression(year, films_total)

>>> round(slope * 2019 + intercept)

16

If proportional is true, the independent variable x and the dependent variable y are assumed to be directly
proportional. The data is fit to a line passing through the origin. Since the intercept will always be 0.0, the
underlying linear function simplifies to:

y = slope * x + noise

Continuing the example from correlation(), we look to see how well a model based on major planets can
predict the orbital distances for dwarf planets:

>>> model = linear_regression(period_squared, dist_cubed, proportional=True)

>>> slope = model.slope

>>> # Dwarf planets: Pluto, Eris, Makemake, Haumea, Ceres

>>> orbital_periods = [90_560, 204_199, 111_845, 103_410, 1_680] # days

>>> predicted_dist = [math.cbrt(slope * (p * p)) for p in orbital_periods]

>>> list(map(round, predicted_dist))

[5912, 10166, 6806, 6459, 414]

>>> [5_906, 10_152, 6_796, 6_450, 414] # actual distance in million km

[5906, 10152, 6796, 6450, 414]

Added in version 3.10.

Changed in version 3.11: Added support for proportional.

9.7.5 Exceptions

A single exception is defined:

exception statistics.StatisticsError

Subclass of ValueError for statistics-related exceptions.

9.7.6 NormalDist objects

NormalDist is a tool for creating and manipulating normal distributions of a random variable. It is a class that treats
the mean and standard deviation of data measurements as a single entity.

Normal distributions arise from the Central Limit Theorem and have a wide range of applications in statistics.

class statistics.NormalDist(mu=0.0, sigma=1.0)

Returns a new NormalDist object where mu represents the arithmetic mean and sigma represents the standard
deviation.

If sigma is negative, raises StatisticsError.

mean

A read-only property for the arithmetic mean of a normal distribution.

median

A read-only property for the median of a normal distribution.

mode

A read-only property for the mode of a normal distribution.

9.7. statistics—Mathematical statistics functions 397

https://en.wikipedia.org/wiki/Monty_Python#Films
http://www.stat.yale.edu/Courses/1997-98/101/ranvar.htm
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Mode_(statistics)

The Python Library Reference, Release 3.13.1

stdev

A read-only property for the standard deviation of a normal distribution.

variance

A read-only property for the variance of a normal distribution. Equal to the square of the standard
deviation.

classmethod from_samples(data)
Makes a normal distribution instance with mu and sigma parameters estimated from the data using
fmean() and stdev().

The data can be any iterable and should consist of values that can be converted to type float. If data
does not contain at least two elements, raises StatisticsError because it takes at least one point to
estimate a central value and at least two points to estimate dispersion.

samples(n, *, seed=None)
Generates n random samples for a given mean and standard deviation. Returns a list of float values.

If seed is given, creates a new instance of the underlying random number generator. This is useful for
creating reproducible results, even in a multi-threading context.

Changed in version 3.13.

Switched to a faster algorithm. To reproduce samples from previous versions, use random.seed() and
random.gauss().

pdf(x)
Using a probability density function (pdf), compute the relative likelihood that a random variable X will
be near the given value x. Mathematically, it is the limit of the ratio P(x <= X < x+dx) / dx as dx
approaches zero.

The relative likelihood is computed as the probability of a sample occurring in a narrow range divided
by the width of the range (hence the word “density”). Since the likelihood is relative to other points, its
value can be greater than 1.0.

cdf(x)
Using a cumulative distribution function (cdf), compute the probability that a random variable X will be
less than or equal to x. Mathematically, it is written P(X <= x).

inv_cdf(p)
Compute the inverse cumulative distribution function, also known as the quantile function or the percent-
point function. Mathematically, it is written x : P(X <= x) = p.

Finds the value x of the random variable X such that the probability of the variable being less than or
equal to that value equals the given probability p.

overlap(other)
Measures the agreement between two normal probability distributions. Returns a value between 0.0 and
1.0 giving the overlapping area for the two probability density functions.

quantiles(n=4)
Divide the normal distribution into n continuous intervals with equal probability. Returns a list of (n - 1)
cut points separating the intervals.

Set n to 4 for quartiles (the default). Set n to 10 for deciles. Set n to 100 for percentiles which gives the
99 cuts points that separate the normal distribution into 100 equal sized groups.

zscore(x)

Compute the Standard Score describing x in terms of the number of standard deviations above or below
the mean of the normal distribution: (x - mean) / stdev.

Added in version 3.9.

Instances of NormalDist support addition, subtraction, multiplication and division by a constant. These
operations are used for translation and scaling. For example:

398 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Quantile_function
https://web.archive.org/web/20190203145224/https://www.statisticshowto.datasciencecentral.com/inverse-distribution-function/
https://web.archive.org/web/20190203145224/https://www.statisticshowto.datasciencecentral.com/inverse-distribution-function/
https://www.rasch.org/rmt/rmt101r.htm
https://www.statisticshowto.com/probability-and-statistics/z-score/

The Python Library Reference, Release 3.13.1

>>> temperature_february = NormalDist(5, 2.5) # Celsius

>>> temperature_february * (9/5) + 32 # Fahrenheit

NormalDist(mu=41.0, sigma=4.5)

Dividing a constant by an instance of NormalDist is not supported because the result wouldn’t be normally
distributed.

Since normal distributions arise from additive effects of independent variables, it is possible to add and sub-
tract two independent normally distributed random variables represented as instances of NormalDist. For
example:

>>> birth_weights = NormalDist.from_samples([2.5, 3.1, 2.1, 2.4, 2.7, 3.5])

>>> drug_effects = NormalDist(0.4, 0.15)

>>> combined = birth_weights + drug_effects

>>> round(combined.mean, 1)

3.1

>>> round(combined.stdev, 1)

0.5

Added in version 3.8.

9.7.7 Examples and Recipes

Classic probability problems

NormalDist readily solves classic probability problems.

For example, given historical data for SAT exams showing that scores are normally distributed with a mean of 1060
and a standard deviation of 195, determine the percentage of students with test scores between 1100 and 1200, after
rounding to the nearest whole number:

>>> sat = NormalDist(1060, 195)

>>> fraction = sat.cdf(1200 + 0.5) - sat.cdf(1100 - 0.5)

>>> round(fraction * 100.0, 1)

18.4

Find the quartiles and deciles for the SAT scores:

>>> list(map(round, sat.quantiles()))

[928, 1060, 1192]

>>> list(map(round, sat.quantiles(n=10)))

[810, 896, 958, 1011, 1060, 1109, 1162, 1224, 1310]

Monte Carlo inputs for simulations

To estimate the distribution for a model that isn’t easy to solve analytically, NormalDist can generate input samples
for a Monte Carlo simulation:

>>> def model(x, y, z):

... return (3*x + 7*x*y - 5*y) / (11 * z)

...

>>> n = 100_000

>>> X = NormalDist(10, 2.5).samples(n, seed=3652260728)

>>> Y = NormalDist(15, 1.75).samples(n, seed=4582495471)

>>> Z = NormalDist(50, 1.25).samples(n, seed=6582483453)

>>> quantiles(map(model, X, Y, Z))

[1.4591308524824727, 1.8035946855390597, 2.175091447274739]

9.7. statistics—Mathematical statistics functions 399

https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
https://nces.ed.gov/programs/digest/d17/tables/dt17_226.40.asp
https://en.wikipedia.org/wiki/Quartile
https://en.wikipedia.org/wiki/Decile
https://en.wikipedia.org/wiki/Monte_Carlo_method

The Python Library Reference, Release 3.13.1

Approximating binomial distributions

Normal distributions can be used to approximate Binomial distributions when the sample size is large and when the
probability of a successful trial is near 50%.

For example, an open source conference has 750 attendees and two rooms with a 500 person capacity. There is a talk
about Python and another about Ruby. In previous conferences, 65% of the attendees preferred to listen to Python
talks. Assuming the population preferences haven’t changed, what is the probability that the Python room will stay
within its capacity limits?

>>> n = 750 # Sample size

>>> p = 0.65 # Preference for Python

>>> q = 1.0 - p # Preference for Ruby

>>> k = 500 # Room capacity

>>> # Approximation using the cumulative normal distribution

>>> from math import sqrt

>>> round(NormalDist(mu=n*p, sigma=sqrt(n*p*q)).cdf(k + 0.5), 4)

0.8402

>>> # Exact solution using the cumulative binomial distribution

>>> from math import comb, fsum

>>> round(fsum(comb(n, r) * p**r * q**(n-r) for r in range(k+1)), 4)

0.8402

>>> # Approximation using a simulation

>>> from random import seed, binomialvariate

>>> seed(8675309)

>>> mean(binomialvariate(n, p) <= k for i in range(10_000))

0.8406

Naive bayesian classifier

Normal distributions commonly arise in machine learning problems.

Wikipedia has a nice example of a Naive Bayesian Classifier. The challenge is to predict a person’s gender from
measurements of normally distributed features including height, weight, and foot size.

We’re given a training dataset with measurements for eight people. The measurements are assumed to be normally
distributed, so we summarize the data with NormalDist:

>>> height_male = NormalDist.from_samples([6, 5.92, 5.58, 5.92])

>>> height_female = NormalDist.from_samples([5, 5.5, 5.42, 5.75])

>>> weight_male = NormalDist.from_samples([180, 190, 170, 165])

>>> weight_female = NormalDist.from_samples([100, 150, 130, 150])

>>> foot_size_male = NormalDist.from_samples([12, 11, 12, 10])

>>> foot_size_female = NormalDist.from_samples([6, 8, 7, 9])

Next, we encounter a new person whose feature measurements are known but whose gender is unknown:

>>> ht = 6.0 # height

>>> wt = 130 # weight

>>> fs = 8 # foot size

Starting with a 50% prior probability of being male or female, we compute the posterior as the prior times the product
of likelihoods for the feature measurements given the gender:

>>> prior_male = 0.5

>>> prior_female = 0.5

>>> posterior_male = (prior_male * height_male.pdf(ht) *

(continues on next page)

400 Chapter 9. Numeric and Mathematical Modules

https://mathworld.wolfram.com/BinomialDistribution.html
https://en.wikipedia.org/wiki/Naive_Bayes_classifier#Person_classification
https://en.wikipedia.org/wiki/Prior_probability

The Python Library Reference, Release 3.13.1

(continued from previous page)

... weight_male.pdf(wt) * foot_size_male.pdf(fs))

>>> posterior_female = (prior_female * height_female.pdf(ht) *

... weight_female.pdf(wt) * foot_size_female.pdf(fs))

The final prediction goes to the largest posterior. This is known as the maximum a posteriori or MAP:

>>> 'male' if posterior_male > posterior_female else 'female'

'female'

9.7. statistics—Mathematical statistics functions 401

https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation

The Python Library Reference, Release 3.13.1

402 Chapter 9. Numeric and Mathematical Modules

CHAPTER

TEN

FUNCTIONAL PROGRAMMING MODULES

The modules described in this chapter provide functions and classes that support a functional programming style, and
general operations on callables.

The following modules are documented in this chapter:

10.1 itertools— Functions creating iterators for efficient looping

This module implements a number of iterator building blocks inspired by constructs from APL, Haskell, and SML.
Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination.
Together, they form an “iterator algebra” making it possible to construct specialized tools succinctly and efficiently
in pure Python.

For instance, SML provides a tabulation tool: tabulate(f) which produces a sequence f(0), f(1), The
same effect can be achieved in Python by combining map() and count() to form map(f, count()).

Infinite iterators:

Iterator Argu-
ments

Results Example

count() [start[,
step]]

start, start+step, start+2*step, … count(10) → 10 11 12 13 14 ...

cycle() p p0, p1, … plast, p0, p1, … cycle('ABCD') → A B C D A B C

D ...

repeat() elem [,n] elem, elem, elem, … endlessly or up to n
times

repeat(10, 3) → 10 10 10

Iterators terminating on the shortest input sequence:

403

The Python Library Reference, Release 3.13.1

Iterator Arguments Results Example

accumulate() p [,func] p0, p0+p1, p0+p1+p2, … accumulate([1,2,3,4,5]) → 1 3 6

10 15

batched() p, n (p0, p1, …, p_n-1), … batched('ABCDEFG', n=3) → ABC

DEF G

chain() p, q, … p0, p1, … plast, q0, q1, … chain('ABC', 'DEF') → A B C D E

F

chain.

from_iterable()

iterable p0, p1, … plast, q0, q1, … chain.from_iterable(['ABC',

'DEF']) → A B C D E F

compress() data, selectors (d[0] if s[0]), (d[1] if s[1]),
…

compress('ABCDEF', [1,0,1,0,1,

1]) → A C E F

dropwhile() predicate, seq seq[n], seq[n+1], starting
when predicate fails

dropwhile(lambda x: x<5, [1,4,6,

3,8]) → 6 3 8

filterfalse() predicate, seq elements of seq where
predicate(elem) fails

filterfalse(lambda x: x<5, [1,4,

6,3,8]) → 6 8

groupby() iterable[, key] sub-iterators grouped by
value of key(v)

groupby(['A','B','DEF'], len) →

(1, A B) (3, DEF)

islice() seq, [start,]
stop [, step]

elements from
seq[start:stop:step]

islice('ABCDEFG', 2, None) → C D

E F G

pairwise() iterable (p[0], p[1]), (p[1], p[2]) pairwise('ABCDEFG') → AB BC CD

DE EF FG

starmap() func, seq func(*seq[0]),
func(*seq[1]), …

starmap(pow, [(2,5), (3,2), (10,

3)]) → 32 9 1000

takewhile() predicate, seq seq[0], seq[1], until predi-
cate fails

takewhile(lambda x: x<5, [1,4,6,

3,8]) → 1 4

tee() it, n it1, it2, … itn splits one it-
erator into n

zip_longest() p, q, … (p[0], q[0]), (p[1], q[1]),… zip_longest('ABCD', 'xy',

fillvalue='-') → Ax By C- D-

Combinatoric iterators:

Iterator Arguments Results

product() p, q, … [re-
peat=1]

cartesian product, equivalent to a nested for-loop

permutations() p[, r] r-length tuples, all possible orderings, no repeated el-
ements

combinations() p, r r-length tuples, in sorted order, no repeated elements
combinations_with_replacement()p, r r-length tuples, in sorted order, with repeated ele-

ments

Examples Results

product('ABCD', repeat=2) AA AB AC AD BA BB BC BD CA CB CC CD DA DB

DC DD

permutations('ABCD', 2) AB AC AD BA BC BD CA CB CD DA DB DC

combinations('ABCD', 2) AB AC AD BC BD CD

combinations_with_replacement('ABCD',

2)

AA AB AC AD BB BC BD CC CD DD

404 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.13.1

10.1.1 Itertool Functions

The following functions all construct and return iterators. Some provide streams of infinite length, so they should
only be accessed by functions or loops that truncate the stream.

itertools.accumulate(iterable[, function, *, initial=None])
Make an iterator that returns accumulated sums or accumulated results from other binary functions.

The function defaults to addition. The function should accept two arguments, an accumulated total and a value
from the iterable.

If an initial value is provided, the accumulation will start with that value and the output will have one more
element than the input iterable.

Roughly equivalent to:

def accumulate(iterable, function=operator.add, *, initial=None):

'Return running totals'

accumulate([1,2,3,4,5]) → 1 3 6 10 15

accumulate([1,2,3,4,5], initial=100) → 100 101 103 106 110 115

accumulate([1,2,3,4,5], operator.mul) → 1 2 6 24 120

iterator = iter(iterable)

total = initial

if initial is None:

try:

total = next(iterator)

except StopIteration:

return

yield total

for element in iterator:

total = function(total, element)

yield total

To compute a running minimum, set function to min(). For a running maximum, set function to max().
Or for a running product, set function to operator.mul(). To build an amortization table, accumulate the
interest and apply payments:

>>> data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]

>>> list(accumulate(data, max)) # running maximum

[3, 4, 6, 6, 6, 9, 9, 9, 9, 9]

>>> list(accumulate(data, operator.mul)) # running product

[3, 12, 72, 144, 144, 1296, 0, 0, 0, 0]

Amortize a 5% loan of 1000 with 10 annual payments of 90

>>> update = lambda balance, payment: round(balance * 1.05) - payment

>>> list(accumulate(repeat(90, 10), update, initial=1_000))

[1000, 960, 918, 874, 828, 779, 728, 674, 618, 559, 497]

See functools.reduce() for a similar function that returns only the final accumulated value.

Added in version 3.2.

Changed in version 3.3: Added the optional function parameter.

Changed in version 3.8: Added the optional initial parameter.

itertools.batched(iterable, n, *, strict=False)
Batch data from the iterable into tuples of length n. The last batch may be shorter than n.

If strict is true, will raise a ValueError if the final batch is shorter than n.

10.1. itertools— Functions creating iterators for efficient looping 405

https://www.ramseysolutions.com/real-estate/amortization-schedule

The Python Library Reference, Release 3.13.1

Loops over the input iterable and accumulates data into tuples up to size n. The input is consumed lazily, just
enough to fill a batch. The result is yielded as soon as the batch is full or when the input iterable is exhausted:

>>> flattened_data = ['roses', 'red', 'violets', 'blue', 'sugar', 'sweet']

>>> unflattened = list(batched(flattened_data, 2))

>>> unflattened

[('roses', 'red'), ('violets', 'blue'), ('sugar', 'sweet')]

Roughly equivalent to:

def batched(iterable, n, *, strict=False):

batched('ABCDEFG', 3) → ABC DEF G

if n < 1:

raise ValueError('n must be at least one')

iterator = iter(iterable)

while batch := tuple(islice(iterator, n)):

if strict and len(batch) != n:

raise ValueError('batched(): incomplete batch')

yield batch

Added in version 3.12.

Changed in version 3.13: Added the strict option.

itertools.chain(*iterables)
Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to the next
iterable, until all of the iterables are exhausted. This combines multiple data sources into a single iterator.
Roughly equivalent to:

def chain(*iterables):

chain('ABC', 'DEF') → A B C D E F

for iterable in iterables:

yield from iterable

classmethod chain.from_iterable(iterable)
Alternate constructor for chain(). Gets chained inputs from a single iterable argument that is evaluated lazily.
Roughly equivalent to:

def from_iterable(iterables):

chain.from_iterable(['ABC', 'DEF']) → A B C D E F

for iterable in iterables:

yield from iterable

itertools.combinations(iterable, r)
Return r length subsequences of elements from the input iterable.

The output is a subsequence of product() keeping only entries that are subsequences of the iterable. The
length of the output is given by math.comb() which computes n! / r! / (n - r)! when 0 ≤ r ≤ n

or zero when r > n.

The combination tuples are emitted in lexicographic order according to the order of the input iterable. If the
input iterable is sorted, the output tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. If the input elements are unique,
there will be no repeated values within each combination.

Roughly equivalent to:

def combinations(iterable, r):

combinations('ABCD', 2) → AB AC AD BC BD CD

combinations(range(4), 3) → 012 013 023 123

(continues on next page)

406 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.13.1

(continued from previous page)

pool = tuple(iterable)

n = len(pool)

if r > n:

return

indices = list(range(r))

yield tuple(pool[i] for i in indices)

while True:

for i in reversed(range(r)):

if indices[i] != i + n - r:

break

else:

return

indices[i] += 1

for j in range(i+1, r):

indices[j] = indices[j-1] + 1

yield tuple(pool[i] for i in indices)

itertools.combinations_with_replacement(iterable, r)
Return r length subsequences of elements from the input iterable allowing individual elements to be repeated
more than once.

The output is a subsequence of product() that keeps only entries that are subsequences (with possible re-
peated elements) of the iterable. The number of subsequence returned is (n + r - 1)! / r! / (n -

1)! when n > 0.

The combination tuples are emitted in lexicographic order according to the order of the input iterable. if the
input iterable is sorted, the output tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. If the input elements are unique, the
generated combinations will also be unique.

Roughly equivalent to:

def combinations_with_replacement(iterable, r):

combinations_with_replacement('ABC', 2) → AA AB AC BB BC CC

pool = tuple(iterable)

n = len(pool)

if not n and r:

return

indices = [0] * r

yield tuple(pool[i] for i in indices)

while True:

for i in reversed(range(r)):

if indices[i] != n - 1:

break

else:

return

indices[i:] = [indices[i] + 1] * (r - i)

yield tuple(pool[i] for i in indices)

Added in version 3.1.

itertools.compress(data, selectors)
Make an iterator that returns elements from data where the corresponding element in selectors is true. Stops
when either the data or selectors iterables have been exhausted. Roughly equivalent to:

10.1. itertools— Functions creating iterators for efficient looping 407

The Python Library Reference, Release 3.13.1

def compress(data, selectors):

compress('ABCDEF', [1,0,1,0,1,1]) → A C E F

return (datum for datum, selector in zip(data, selectors) if selector)

Added in version 3.1.

itertools.count(start=0, step=1)
Make an iterator that returns evenly spaced values beginning with start. Can be used with map() to generate
consecutive data points or with zip() to add sequence numbers. Roughly equivalent to:

def count(start=0, step=1):

count(10) → 10 11 12 13 14 ...

count(2.5, 0.5) → 2.5 3.0 3.5 ...

n = start

while True:

yield n

n += step

When counting with floating-point numbers, better accuracy can sometimes be achieved by substituting mul-
tiplicative code such as: (start + step * i for i in count()).

Changed in version 3.1: Added step argument and allowed non-integer arguments.

itertools.cycle(iterable)
Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is exhausted,
return elements from the saved copy. Repeats indefinitely. Roughly equivalent to:

def cycle(iterable):

cycle('ABCD') → A B C D A B C D A B C D ...

saved = []

for element in iterable:

yield element

saved.append(element)

while saved:

for element in saved:

yield element

This itertool may require significant auxiliary storage (depending on the length of the iterable).

itertools.dropwhile(predicate, iterable)
Make an iterator that drops elements from the iterable while the predicate is true and afterwards returns every
element. Roughly equivalent to:

def dropwhile(predicate, iterable):

dropwhile(lambda x: x<5, [1,4,6,3,8]) → 6 3 8

iterator = iter(iterable)

for x in iterator:

if not predicate(x):

yield x

break

for x in iterator:

yield x

Note this does not produce any output until the predicate first becomes false, so this itertool may have a lengthy
start-up time.

408 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.13.1

itertools.filterfalse(predicate, iterable)
Make an iterator that filters elements from the iterable returning only those for which the predicate returns a
false value. If predicate is None, returns the items that are false. Roughly equivalent to:

def filterfalse(predicate, iterable):

filterfalse(lambda x: x<5, [1,4,6,3,8]) → 6 8

if predicate is None:

predicate = bool

for x in iterable:

if not predicate(x):

yield x

itertools.groupby(iterable, key=None)
Make an iterator that returns consecutive keys and groups from the iterable. The key is a function computing
a key value for each element. If not specified or is None, key defaults to an identity function and returns the
element unchanged. Generally, the iterable needs to already be sorted on the same key function.

The operation of groupby() is similar to the uniq filter in Unix. It generates a break or new group every
time the value of the key function changes (which is why it is usually necessary to have sorted the data using
the same key function). That behavior differs from SQL’s GROUP BY which aggregates common elements
regardless of their input order.

The returned group is itself an iterator that shares the underlying iterable with groupby(). Because the source
is shared, when the groupby() object is advanced, the previous group is no longer visible. So, if that data is
needed later, it should be stored as a list:

groups = []

uniquekeys = []

data = sorted(data, key=keyfunc)

for k, g in groupby(data, keyfunc):

groups.append(list(g)) # Store group iterator as a list

uniquekeys.append(k)

groupby() is roughly equivalent to:

def groupby(iterable, key=None):

[k for k, g in groupby('AAAABBBCCDAABBB')] → A B C D A B

[list(g) for k, g in groupby('AAAABBBCCD')] → AAAA BBB CC D

keyfunc = (lambda x: x) if key is None else key

iterator = iter(iterable)

exhausted = False

def _grouper(target_key):

nonlocal curr_value, curr_key, exhausted

yield curr_value

for curr_value in iterator:

curr_key = keyfunc(curr_value)

if curr_key != target_key:

return

yield curr_value

exhausted = True

try:

curr_value = next(iterator)

except StopIteration:

return
(continues on next page)

10.1. itertools— Functions creating iterators for efficient looping 409

The Python Library Reference, Release 3.13.1

(continued from previous page)

curr_key = keyfunc(curr_value)

while not exhausted:

target_key = curr_key

curr_group = _grouper(target_key)

yield curr_key, curr_group

if curr_key == target_key:

for _ in curr_group:

pass

itertools.islice(iterable, stop)

itertools.islice(iterable, start, stop[, step])
Make an iterator that returns selected elements from the iterable. Works like sequence slicing but does not
support negative values for start, stop, or step.

If start is zero or None, iteration starts at zero. Otherwise, elements from the iterable are skipped until start is
reached.

If stop is None, iteration continues until the input is exhausted, if at all. Otherwise, it stops at the specified
position.

If step is None, the step defaults to one. Elements are returned consecutively unless step is set higher than one
which results in items being skipped.

Roughly equivalent to:

def islice(iterable, *args):

islice('ABCDEFG', 2) → A B

islice('ABCDEFG', 2, 4) → C D

islice('ABCDEFG', 2, None) → C D E F G

islice('ABCDEFG', 0, None, 2) → A C E G

s = slice(*args)

start = 0 if s.start is None else s.start

stop = s.stop

step = 1 if s.step is None else s.step

if start < 0 or (stop is not None and stop < 0) or step <= 0:

raise ValueError

indices = count() if stop is None else range(max(start, stop))

next_i = start

for i, element in zip(indices, iterable):

if i == next_i:

yield element

next_i += step

If the input is an iterator, then fully consuming the islice advances the input iterator by max(start, stop)

steps regardless of the step value.

itertools.pairwise(iterable)

Return successive overlapping pairs taken from the input iterable.

The number of 2-tuples in the output iterator will be one fewer than the number of inputs. It will be empty if
the input iterable has fewer than two values.

Roughly equivalent to:

def pairwise(iterable):

pairwise('ABCDEFG') → AB BC CD DE EF FG

(continues on next page)

410 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.13.1

(continued from previous page)

iterator = iter(iterable)

a = next(iterator, None)

for b in iterator:

yield a, b

a = b

Added in version 3.10.

itertools.permutations(iterable, r=None)
Return successive r length permutations of elements from the iterable.

If r is not specified or is None, then r defaults to the length of the iterable and all possible full-length permu-
tations are generated.

The output is a subsequence of product() where entries with repeated elements have been filtered out. The
length of the output is given by math.perm() which computes n! / (n - r)! when 0 ≤ r ≤ n or zero
when r > n.

The permutation tuples are emitted in lexicographic order according to the order of the input iterable. If the
input iterable is sorted, the output tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. If the input elements are unique,
there will be no repeated values within a permutation.

Roughly equivalent to:

def permutations(iterable, r=None):

permutations('ABCD', 2) → AB AC AD BA BC BD CA CB CD DA DB DC

permutations(range(3)) → 012 021 102 120 201 210

pool = tuple(iterable)

n = len(pool)

r = n if r is None else r

if r > n:

return

indices = list(range(n))

cycles = list(range(n, n-r, -1))

yield tuple(pool[i] for i in indices[:r])

while n:

for i in reversed(range(r)):

cycles[i] -= 1

if cycles[i] == 0:

indices[i:] = indices[i+1:] + indices[i:i+1]

cycles[i] = n - i

else:

j = cycles[i]

indices[i], indices[-j] = indices[-j], indices[i]

yield tuple(pool[i] for i in indices[:r])

break

else:

return

itertools.product(*iterables, repeat=1)
Cartesian product of the input iterables.

10.1. itertools— Functions creating iterators for efficient looping 411

https://www.britannica.com/science/permutation
https://en.wikipedia.org/wiki/Cartesian_product

The Python Library Reference, Release 3.13.1

Roughly equivalent to nested for-loops in a generator expression. For example, product(A, B) returns the
same as ((x,y) for x in A for y in B).

The nested loops cycle like an odometer with the rightmost element advancing on every iteration. This pattern
creates a lexicographic ordering so that if the input’s iterables are sorted, the product tuples are emitted in
sorted order.

To compute the product of an iterable with itself, specify the number of repetitions with the optional repeat
keyword argument. For example, product(A, repeat=4) means the same as product(A, A, A, A).

This function is roughly equivalent to the following code, except that the actual implementation does not build
up intermediate results in memory:

def product(*iterables, repeat=1):

product('ABCD', 'xy') → Ax Ay Bx By Cx Cy Dx Dy

product(range(2), repeat=3) → 000 001 010 011 100 101 110 111

if repeat < 0:

raise ValueError('repeat argument cannot be negative')

pools = [tuple(pool) for pool in iterables] * repeat

result = [[]]

for pool in pools:

result = [x+[y] for x in result for y in pool]

for prod in result:

yield tuple(prod)

Before product() runs, it completely consumes the input iterables, keeping pools of values in memory to
generate the products. Accordingly, it is only useful with finite inputs.

itertools.repeat(object[, times])
Make an iterator that returns object over and over again. Runs indefinitely unless the times argument is specified.

Roughly equivalent to:

def repeat(object, times=None):

repeat(10, 3) → 10 10 10

if times is None:

while True:

yield object

else:

for i in range(times):

yield object

A common use for repeat is to supply a stream of constant values to map or zip:

>>> list(map(pow, range(10), repeat(2)))

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

itertools.starmap(function, iterable)
Make an iterator that computes the function using arguments obtained from the iterable. Used instead of
map() when argument parameters have already been “pre-zipped” into tuples.

The difference between map() and starmap() parallels the distinction between function(a,b) and
function(*c). Roughly equivalent to:

def starmap(function, iterable):

starmap(pow, [(2,5), (3,2), (10,3)]) → 32 9 1000

for args in iterable:

yield function(*args)

412 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.13.1

itertools.takewhile(predicate, iterable)
Make an iterator that returns elements from the iterable as long as the predicate is true. Roughly equivalent to:

def takewhile(predicate, iterable):

takewhile(lambda x: x<5, [1,4,6,3,8]) → 1 4

for x in iterable:

if not predicate(x):

break

yield x

Note, the element that first fails the predicate condition is consumed from the input iterator and there is no way
to access it. This could be an issue if an application wants to further consume the input iterator after takewhile
has been run to exhaustion. To work around this problem, consider using more-itertools before_and_after()
instead.

itertools.tee(iterable, n=2)
Return n independent iterators from a single iterable.

Roughly equivalent to:

def tee(iterable, n=2):

if n < 0:

raise ValueError

if n == 0:

return ()

iterator = _tee(iterable)

result = [iterator]

for _ in range(n - 1):

result.append(_tee(iterator))

return tuple(result)

class _tee:

def __init__(self, iterable):

it = iter(iterable)

if isinstance(it, _tee):

self.iterator = it.iterator

self.link = it.link

else:

self.iterator = it

self.link = [None, None]

def __iter__(self):

return self

def __next__(self):

link = self.link

if link[1] is None:

link[0] = next(self.iterator)

link[1] = [None, None]

value, self.link = link

return value

When the input iterable is already a tee iterator object, all members of the return tuple are constructed as if
they had been produced by the upstream tee() call. This “flattening step” allows nested tee() calls to share
the same underlying data chain and to have a single update step rather than a chain of calls.

The flattening property makes tee iterators efficiently peekable:

10.1. itertools— Functions creating iterators for efficient looping 413

https://more-itertools.readthedocs.io/en/stable/api.html#more_itertools.before_and_after

The Python Library Reference, Release 3.13.1

def lookahead(tee_iterator):

"Return the next value without moving the input forward"

[forked_iterator] = tee(tee_iterator, 1)

return next(forked_iterator)

>>> iterator = iter('abcdef')

>>> [iterator] = tee(iterator, 1) # Make the input peekable

>>> next(iterator) # Move the iterator forward

'a'

>>> lookahead(iterator) # Check next value

'b'

>>> next(iterator) # Continue moving forward

'b'

tee iterators are not threadsafe. A RuntimeErrormay be raisedwhen simultaneously using iterators returned
by the same tee() call, even if the original iterable is threadsafe.

This itertool may require significant auxiliary storage (depending on how much temporary data needs to be
stored). In general, if one iterator uses most or all of the data before another iterator starts, it is faster to use
list() instead of tee().

itertools.zip_longest(*iterables, fillvalue=None)
Make an iterator that aggregates elements from each of the iterables.

If the iterables are of uneven length, missing values are filled-in with fillvalue. If not specified, fillvalue defaults
to None.

Iteration continues until the longest iterable is exhausted.

Roughly equivalent to:

def zip_longest(*iterables, fillvalue=None):

zip_longest('ABCD', 'xy', fillvalue='-') → Ax By C- D-

iterators = list(map(iter, iterables))

num_active = len(iterators)

if not num_active:

return

while True:

values = []

for i, iterator in enumerate(iterators):

try:

value = next(iterator)

except StopIteration:

num_active -= 1

if not num_active:

return

iterators[i] = repeat(fillvalue)

value = fillvalue

values.append(value)

yield tuple(values)

If one of the iterables is potentially infinite, then the zip_longest() function should be wrapped with some-
thing that limits the number of calls (for example islice() or takewhile()).

414 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.13.1

10.1.2 Itertools Recipes

This section shows recipes for creating an extended toolset using the existing itertools as building blocks.

The primary purpose of the itertools recipes is educational. The recipes show various ways of thinking about indi-
vidual tools — for example, that chain.from_iterable is related to the concept of flattening. The recipes also
give ideas about ways that the tools can be combined — for example, how starmap() and repeat() can work
together. The recipes also show patterns for using itertools with the operator and collections modules as well
as with the built-in itertools such as map(), filter(), reversed(), and enumerate().

A secondary purpose of the recipes is to serve as an incubator. The accumulate(), compress(), and
pairwise() itertools started out as recipes. Currently, the sliding_window(), iter_index(), and sieve()
recipes are being tested to see whether they prove their worth.

Substantially all of these recipes and many, many others can be installed from the more-itertools project found on
the Python Package Index:

python -m pip install more-itertools

Many of the recipes offer the same high performance as the underlying toolset. Superior memory performance is kept
by processing elements one at a time rather than bringing the whole iterable into memory all at once. Code volume
is kept small by linking the tools together in a functional style. High speed is retained by preferring “vectorized”
building blocks over the use of for-loops and generators which incur interpreter overhead.

from collections import deque

from contextlib import suppress

from functools import reduce

from math import sumprod, isqrt

from operator import itemgetter, getitem, mul, neg

def take(n, iterable):

"Return first n items of the iterable as a list."

return list(islice(iterable, n))

def prepend(value, iterable):

"Prepend a single value in front of an iterable."

prepend(1, [2, 3, 4]) → 1 2 3 4

return chain([value], iterable)

def tabulate(function, start=0):

"Return function(0), function(1), ..."

return map(function, count(start))

def repeatfunc(function, times=None, *args):

"Repeat calls to a function with specified arguments."

if times is None:

return starmap(function, repeat(args))

return starmap(function, repeat(args, times))

def flatten(list_of_lists):

"Flatten one level of nesting."

return chain.from_iterable(list_of_lists)

def ncycles(iterable, n):

"Returns the sequence elements n times."

return chain.from_iterable(repeat(tuple(iterable), n))

def loops(n):

"Loop n times. Like range(n) but without creating integers."

for _ in loops(100): ...
(continues on next page)

10.1. itertools— Functions creating iterators for efficient looping 415

https://pypi.org/project/more-itertools/
https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf

The Python Library Reference, Release 3.13.1

(continued from previous page)

return repeat(None, n)

def tail(n, iterable):

"Return an iterator over the last n items."

tail(3, 'ABCDEFG') → E F G

return iter(deque(iterable, maxlen=n))

def consume(iterator, n=None):

"Advance the iterator n-steps ahead. If n is None, consume entirely."

Use functions that consume iterators at C speed.

if n is None:

deque(iterator, maxlen=0)

else:

next(islice(iterator, n, n), None)

def nth(iterable, n, default=None):

"Returns the nth item or a default value."

return next(islice(iterable, n, None), default)

def quantify(iterable, predicate=bool):

"Given a predicate that returns True or False, count the True results."

return sum(map(predicate, iterable))

def first_true(iterable, default=False, predicate=None):

"Returns the first true value or the *default* if there is no true value."

first_true([a,b,c], x) → a or b or c or x

first_true([a,b], x, f) → a if f(a) else b if f(b) else x

return next(filter(predicate, iterable), default)

def all_equal(iterable, key=None):

"Returns True if all the elements are equal to each other."

all_equal('4����', key=int) → True

return len(take(2, groupby(iterable, key))) <= 1

def unique_justseen(iterable, key=None):

"Yield unique elements, preserving order. Remember only the element just seen."

unique_justseen('AAAABBBCCDAABBB') → A B C D A B

unique_justseen('ABBcCAD', str.casefold) → A B c A D

if key is None:

return map(itemgetter(0), groupby(iterable))

return map(next, map(itemgetter(1), groupby(iterable, key)))

def unique_everseen(iterable, key=None):

"Yield unique elements, preserving order. Remember all elements ever seen."

unique_everseen('AAAABBBCCDAABBB') → A B C D

unique_everseen('ABBcCAD', str.casefold) → A B c D

seen = set()

if key is None:

for element in filterfalse(seen.__contains__, iterable):

seen.add(element)

yield element

else:

for element in iterable:

k = key(element)

if k not in seen:

seen.add(k)

(continues on next page)

416 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.13.1

(continued from previous page)

yield element

def unique(iterable, key=None, reverse=False):

"Yield unique elements in sorted order. Supports unhashable inputs."

unique([[1, 2], [3, 4], [1, 2]]) → [1, 2] [3, 4]

sequenced = sorted(iterable, key=key, reverse=reverse)

return unique_justseen(sequenced, key=key)

def sliding_window(iterable, n):

"Collect data into overlapping fixed-length chunks or blocks."

sliding_window('ABCDEFG', 4) → ABCD BCDE CDEF DEFG

iterator = iter(iterable)

window = deque(islice(iterator, n - 1), maxlen=n)

for x in iterator:

window.append(x)

yield tuple(window)

def grouper(iterable, n, *, incomplete='fill', fillvalue=None):

"Collect data into non-overlapping fixed-length chunks or blocks."

grouper('ABCDEFG', 3, fillvalue='x') → ABC DEF Gxx

grouper('ABCDEFG', 3, incomplete='strict') → ABC DEF ValueError

grouper('ABCDEFG', 3, incomplete='ignore') → ABC DEF

iterators = [iter(iterable)] * n

match incomplete:

case 'fill':

return zip_longest(*iterators, fillvalue=fillvalue)

case 'strict':

return zip(*iterators, strict=True)

case 'ignore':

return zip(*iterators)

case _:

raise ValueError('Expected fill, strict, or ignore')

def roundrobin(*iterables):

"Visit input iterables in a cycle until each is exhausted."

roundrobin('ABC', 'D', 'EF') → A D E B F C

Algorithm credited to George Sakkis

iterators = map(iter, iterables)

for num_active in range(len(iterables), 0, -1):

iterators = cycle(islice(iterators, num_active))

yield from map(next, iterators)

def subslices(seq):

"Return all contiguous non-empty subslices of a sequence."

subslices('ABCD') → A AB ABC ABCD B BC BCD C CD D

slices = starmap(slice, combinations(range(len(seq) + 1), 2))

return map(getitem, repeat(seq), slices)

def iter_index(iterable, value, start=0, stop=None):

"Return indices where a value occurs in a sequence or iterable."

iter_index('AABCADEAF', 'A') → 0 1 4 7

seq_index = getattr(iterable, 'index', None)

if seq_index is None:

iterator = islice(iterable, start, stop)

for i, element in enumerate(iterator, start):

if element is value or element == value:

(continues on next page)

10.1. itertools— Functions creating iterators for efficient looping 417

The Python Library Reference, Release 3.13.1

(continued from previous page)

yield i

else:

stop = len(iterable) if stop is None else stop

i = start

with suppress(ValueError):

while True:

yield (i := seq_index(value, i, stop))

i += 1

def iter_except(function, exception, first=None):

"Convert a call-until-exception interface to an iterator interface."

iter_except(d.popitem, KeyError) → non-blocking dictionary iterator

with suppress(exception):

if first is not None:

yield first()

while True:

yield function()

The following recipes have a more mathematical flavor:

def powerset(iterable):

"Subsequences of the iterable from shortest to longest."

powerset([1,2,3]) → () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)

s = list(iterable)

return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

def sum_of_squares(iterable):

"Add up the squares of the input values."

sum_of_squares([10, 20, 30]) → 1400

return sumprod(*tee(iterable))

def reshape(matrix, columns):

"Reshape a 2-D matrix to have a given number of columns."

reshape([(0, 1), (2, 3), (4, 5)], 3) → (0, 1, 2), (3, 4, 5)

return batched(chain.from_iterable(matrix), columns, strict=True)

def transpose(matrix):

"Swap the rows and columns of a 2-D matrix."

transpose([(1, 2, 3), (11, 22, 33)]) → (1, 11) (2, 22) (3, 33)

return zip(*matrix, strict=True)

def matmul(m1, m2):

"Multiply two matrices."

matmul([(7, 5), (3, 5)], [(2, 5), (7, 9)]) → (49, 80), (41, 60)

n = len(m2[0])

return batched(starmap(sumprod, product(m1, transpose(m2))), n)

def convolve(signal, kernel):

"""Discrete linear convolution of two iterables.

Equivalent to polynomial multiplication.

Convolutions are mathematically commutative; however, the inputs are

evaluated differently. The signal is consumed lazily and can be

infinite. The kernel is fully consumed before the calculations begin.

Article: https://betterexplained.com/articles/intuitive-convolution/

(continues on next page)

418 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.13.1

(continued from previous page)

Video: https://www.youtube.com/watch?v=KuXjwB4LzSA

"""

convolve([1, -1, -20], [1, -3]) → 1 -4 -17 60

convolve(data, [0.25, 0.25, 0.25, 0.25]) → Moving average (blur)

convolve(data, [1/2, 0, -1/2]) → 1st derivative estimate

convolve(data, [1, -2, 1]) → 2nd derivative estimate

kernel = tuple(kernel)[::-1]

n = len(kernel)

padded_signal = chain(repeat(0, n-1), signal, repeat(0, n-1))

windowed_signal = sliding_window(padded_signal, n)

return map(sumprod, repeat(kernel), windowed_signal)

def polynomial_from_roots(roots):

"""Compute a polynomial's coefficients from its roots.

(x - 5) (x + 4) (x - 3) expands to: x³ -4x² -17x + 60

"""

polynomial_from_roots([5, -4, 3]) → [1, -4, -17, 60]

factors = zip(repeat(1), map(neg, roots))

return list(reduce(convolve, factors, [1]))

def polynomial_eval(coefficients, x):

"""Evaluate a polynomial at a specific value.

Computes with better numeric stability than Horner's method.

"""

Evaluate x³ -4x² -17x + 60 at x = 5

polynomial_eval([1, -4, -17, 60], x=5) → 0

n = len(coefficients)

if not n:

return type(x)(0)

powers = map(pow, repeat(x), reversed(range(n)))

return sumprod(coefficients, powers)

def polynomial_derivative(coefficients):

"""Compute the first derivative of a polynomial.

f(x) = x³ -4x² -17x + 60

f'(x) = 3x² -8x -17

"""

polynomial_derivative([1, -4, -17, 60]) → [3, -8, -17]

n = len(coefficients)

powers = reversed(range(1, n))

return list(map(mul, coefficients, powers))

def sieve(n):

"Primes less than n."

sieve(30) → 2 3 5 7 11 13 17 19 23 29

if n > 2:

yield 2

data = bytearray((0, 1)) * (n // 2)

for p in iter_index(data, 1, start=3, stop=isqrt(n) + 1):

data[p*p : n : p+p] = bytes(len(range(p*p, n, p+p)))

yield from iter_index(data, 1, start=3)

def factor(n):

(continues on next page)

10.1. itertools— Functions creating iterators for efficient looping 419

The Python Library Reference, Release 3.13.1

(continued from previous page)

"Prime factors of n."

factor(99) → 3 3 11

factor(1_000_000_000_000_007) → 47 59 360620266859

factor(1_000_000_000_000_403) → 1000000000000403

for prime in sieve(isqrt(n) + 1):

while not n % prime:

yield prime

n //= prime

if n == 1:

return

if n > 1:

yield n

def is_prime(n):

"Return True if n is prime."

is_prime(1_000_000_000_000_403) → True

return n > 1 and next(factor(n)) == n

def totient(n):

"Count of natural numbers up to n that are coprime to n."

https://mathworld.wolfram.com/TotientFunction.html

totient(12) → 4 because len([1, 5, 7, 11]) == 4

for prime in set(factor(n)):

n -= n // prime

return n

10.2 functools — Higher-order functions and operations on
callable objects

Source code: Lib/functools.py

The functoolsmodule is for higher-order functions: functions that act on or return other functions. In general, any
callable object can be treated as a function for the purposes of this module.

The functools module defines the following functions:

@functools.cache(user_function)
Simple lightweight unbounded function cache. Sometimes called “memoize”.

Returns the same as lru_cache(maxsize=None), creating a thin wrapper around a dictionary lookup for
the function arguments. Because it never needs to evict old values, this is smaller and faster than lru_cache()
with a size limit.

For example:

@cache

def factorial(n):

return n * factorial(n-1) if n else 1

>>> factorial(10) # no previously cached result, makes 11 recursive calls

3628800

>>> factorial(5) # just looks up cached value result

120

>>> factorial(12) # makes two new recursive calls, the other 10 are cached

479001600

420 Chapter 10. Functional Programming Modules

https://github.com/python/cpython/tree/3.13/Lib/functools.py
https://en.wikipedia.org/wiki/Memoization

The Python Library Reference, Release 3.13.1

The cache is threadsafe so that the wrapped function can be used in multiple threads. This means that the
underlying data structure will remain coherent during concurrent updates.

It is possible for the wrapped function to be called more than once if another thread makes an additional call
before the initial call has been completed and cached.

Added in version 3.9.

@functools.cached_property(func)
Transform a method of a class into a property whose value is computed once and then cached as a normal
attribute for the life of the instance. Similar to property(), with the addition of caching. Useful for expensive
computed properties of instances that are otherwise effectively immutable.

Example:

class DataSet:

def __init__(self, sequence_of_numbers):

self._data = tuple(sequence_of_numbers)

@cached_property

def stdev(self):

return statistics.stdev(self._data)

The mechanics of cached_property() are somewhat different from property(). A regular property
blocks attribute writes unless a setter is defined. In contrast, a cached_property allows writes.

The cached_property decorator only runs on lookups and only when an attribute of the same name doesn’t
exist. When it does run, the cached_property writes to the attribute with the same name. Subsequent attribute
reads and writes take precedence over the cached_property method and it works like a normal attribute.

The cached value can be cleared by deleting the attribute. This allows the cached_property method to run
again.

The cached_property does not prevent a possible race condition in multi-threaded usage. The getter function
could run more than once on the same instance, with the latest run setting the cached value. If the cached
property is idempotent or otherwise not harmful to run more than once on an instance, this is fine. If synchro-
nization is needed, implement the necessary locking inside the decorated getter function or around the cached
property access.

Note, this decorator interferes with the operation of PEP 412 key-sharing dictionaries. This means that in-
stance dictionaries can take more space than usual.

Also, this decorator requires that the __dict__ attribute on each instance be a mutable mapping. This means
it will not work with some types, such as metaclasses (since the __dict__ attributes on type instances are
read-only proxies for the class namespace), and those that specify __slots__ without including __dict__
as one of the defined slots (as such classes don’t provide a __dict__ attribute at all).

If a mutable mapping is not available or if space-efficient key sharing is desired, an effect similar to
cached_property() can also be achieved by stacking property() on top of lru_cache(). See faq-
cache-method-calls for more details on how this differs from cached_property().

Added in version 3.8.

Changed in version 3.12: Prior to Python 3.12, cached_property included an undocumented lock to ensure
that in multi-threaded usage the getter function was guaranteed to run only once per instance. However, the
lock was per-property, not per-instance, which could result in unacceptably high lock contention. In Python
3.12+ this locking is removed.

functools.cmp_to_key(func)
Transform an old-style comparison function to a key function. Used with tools that accept key functions (such as
sorted(), min(), max(), heapq.nlargest(), heapq.nsmallest(), itertools.groupby()). This
function is primarily used as a transition tool for programs being converted from Python 2 which supported
the use of comparison functions.

10.2. functools— Higher-order functions and operations on callable objects 421

https://peps.python.org/pep-0412/

The Python Library Reference, Release 3.13.1

A comparison function is any callable that accepts two arguments, compares them, and returns a negative
number for less-than, zero for equality, or a positive number for greater-than. A key function is a callable that
accepts one argument and returns another value to be used as the sort key.

Example:

sorted(iterable, key=cmp_to_key(locale.strcoll)) # locale-aware sort order

For sorting examples and a brief sorting tutorial, see sortinghowto.

Added in version 3.2.

@functools.lru_cache(user_function)
@functools.lru_cache(maxsize=128, typed=False)

Decorator to wrap a function with a memoizing callable that saves up to the maxsize most recent calls. It can
save time when an expensive or I/O bound function is periodically called with the same arguments.

The cache is threadsafe so that the wrapped function can be used in multiple threads. This means that the
underlying data structure will remain coherent during concurrent updates.

It is possible for the wrapped function to be called more than once if another thread makes an additional call
before the initial call has been completed and cached.

Since a dictionary is used to cache results, the positional and keyword arguments to the function must be
hashable.

Distinct argument patterns may be considered to be distinct calls with separate cache entries. For example,
f(a=1, b=2) and f(b=2, a=1) differ in their keyword argument order and may have two separate cache
entries.

If user_function is specified, it must be a callable. This allows the lru_cache decorator to be applied directly
to a user function, leaving the maxsize at its default value of 128:

@lru_cache

def count_vowels(sentence):

return sum(sentence.count(vowel) for vowel in 'AEIOUaeiou')

If maxsize is set to None, the LRU feature is disabled and the cache can grow without bound.

If typed is set to true, function arguments of different types will be cached separately. If typed is false, the
implementation will usually regard them as equivalent calls and only cache a single result. (Some types such
as str and int may be cached separately even when typed is false.)

Note, type specificity applies only to the function’s immediate arguments rather than their contents. The scalar
arguments, Decimal(42) and Fraction(42) are be treated as distinct calls with distinct results. In con-
trast, the tuple arguments ('answer', Decimal(42)) and ('answer', Fraction(42)) are treated as
equivalent.

The wrapped function is instrumented with a cache_parameters() function that returns a new dict show-
ing the values for maxsize and typed. This is for information purposes only. Mutating the values has no effect.

To help measure the effectiveness of the cache and tune the maxsize parameter, the wrapped function is instru-
mented with a cache_info() function that returns a named tuple showing hits, misses, maxsize and currsize.

The decorator also provides a cache_clear() function for clearing or invalidating the cache.

The original underlying function is accessible through the __wrapped__ attribute. This is useful for intro-
spection, for bypassing the cache, or for rewrapping the function with a different cache.

The cache keeps references to the arguments and return values until they age out of the cache or until the cache
is cleared.

If a method is cached, the self instance argument is included in the cache. See faq-cache-method-calls

An LRU (least recently used) cache works best when the most recent calls are the best predictors of upcoming
calls (for example, the most popular articles on a news server tend to change each day). The cache’s size limit
assures that the cache does not grow without bound on long-running processes such as web servers.

422 Chapter 10. Functional Programming Modules

https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_(LRU)

The Python Library Reference, Release 3.13.1

In general, the LRU cache should only be used when you want to reuse previously computed values. Accord-
ingly, it doesn’t make sense to cache functions with side-effects, functions that need to create distinct mutable
objects on each call (such as generators and async functions), or impure functions such as time() or random().

Example of an LRU cache for static web content:

@lru_cache(maxsize=32)

def get_pep(num):

'Retrieve text of a Python Enhancement Proposal'

resource = f'https://peps.python.org/pep-{num:04d}'

try:

with urllib.request.urlopen(resource) as s:

return s.read()

except urllib.error.HTTPError:

return 'Not Found'

>>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:

... pep = get_pep(n)

... print(n, len(pep))

>>> get_pep.cache_info()

CacheInfo(hits=3, misses=8, maxsize=32, currsize=8)

Example of efficiently computing Fibonacci numbers using a cache to implement a dynamic programming
technique:

@lru_cache(maxsize=None)

def fib(n):

if n < 2:

return n

return fib(n-1) + fib(n-2)

>>> [fib(n) for n in range(16)]

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

>>> fib.cache_info()

CacheInfo(hits=28, misses=16, maxsize=None, currsize=16)

Added in version 3.2.

Changed in version 3.3: Added the typed option.

Changed in version 3.8: Added the user_function option.

Changed in version 3.9: Added the function cache_parameters()

@functools.total_ordering

Given a class defining one or more rich comparison ordering methods, this class decorator supplies the rest.
This simplifies the effort involved in specifying all of the possible rich comparison operations:

The class must define one of __lt__(), __le__(), __gt__(), or __ge__(). In addition, the class should
supply an __eq__() method.

For example:

@total_ordering

class Student:

def _is_valid_operand(self, other):

return (hasattr(other, "lastname") and

hasattr(other, "firstname"))

def __eq__(self, other):

(continues on next page)

10.2. functools— Higher-order functions and operations on callable objects 423

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Dynamic_programming

The Python Library Reference, Release 3.13.1

(continued from previous page)

if not self._is_valid_operand(other):

return NotImplemented

return ((self.lastname.lower(), self.firstname.lower()) ==

(other.lastname.lower(), other.firstname.lower()))

def __lt__(self, other):

if not self._is_valid_operand(other):

return NotImplemented

return ((self.lastname.lower(), self.firstname.lower()) <

(other.lastname.lower(), other.firstname.lower()))

Note

While this decorator makes it easy to create well behaved totally ordered types, it does come at the cost
of slower execution and more complex stack traces for the derived comparison methods. If performance
benchmarking indicates this is a bottleneck for a given application, implementing all six rich comparison
methods instead is likely to provide an easy speed boost.

Note

This decorator makes no attempt to override methods that have been declared in the class or its superclasses.
Meaning that if a superclass defines a comparison operator, total_orderingwill not implement it again, even
if the original method is abstract.

Added in version 3.2.

Changed in version 3.4: Returning NotImplemented from the underlying comparison function for unrecog-
nised types is now supported.

functools.partial(func, / , *args, **keywords)
Return a new partial object which when called will behave like func called with the positional arguments args
and keyword arguments keywords. If more arguments are supplied to the call, they are appended to args. If
additional keyword arguments are supplied, they extend and override keywords. Roughly equivalent to:

def partial(func, /, *args, **keywords):

def newfunc(*fargs, **fkeywords):

newkeywords = {**keywords, **fkeywords}

return func(*args, *fargs, **newkeywords)

newfunc.func = func

newfunc.args = args

newfunc.keywords = keywords

return newfunc

The partial() is used for partial function application which “freezes” some portion of a function’s arguments
and/or keywords resulting in a new object with a simplified signature. For example, partial() can be used
to create a callable that behaves like the int() function where the base argument defaults to two:

>>> from functools import partial

>>> basetwo = partial(int, base=2)

>>> basetwo.__doc__ = 'Convert base 2 string to an int.'

>>> basetwo('10010')

18

class functools.partialmethod(func, / , *args, **keywords)
Return a new partialmethod descriptor which behaves like partial except that it is designed to be used
as a method definition rather than being directly callable.

424 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.13.1

func must be a descriptor or a callable (objects which are both, like normal functions, are handled as descrip-
tors).

When func is a descriptor (such as a normal Python function, classmethod(), staticmethod(),
abstractmethod() or another instance of partialmethod), calls to __get__ are delegated to the un-
derlying descriptor, and an appropriate partial object returned as the result.

When func is a non-descriptor callable, an appropriate bound method is created dynamically. This behaves
like a normal Python function when used as a method: the self argument will be inserted as the first positional
argument, even before the args and keywords supplied to the partialmethod constructor.

Example:

>>> class Cell:

... def __init__(self):

... self._alive = False

... @property

... def alive(self):

... return self._alive

... def set_state(self, state):

... self._alive = bool(state)

... set_alive = partialmethod(set_state, True)

... set_dead = partialmethod(set_state, False)

...

>>> c = Cell()

>>> c.alive

False

>>> c.set_alive()

>>> c.alive

True

Added in version 3.4.

functools.reduce(function, iterable, [initial,]/)
Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce the
iterable to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and the right argument, y, is the
update value from the iterable. If the optional initial is present, it is placed before the items of the iterable in
the calculation, and serves as a default when the iterable is empty. If initial is not given and iterable contains
only one item, the first item is returned.

Roughly equivalent to:

initial_missing = object()

def reduce(function, iterable, initial=initial_missing, /):

it = iter(iterable)

if initial is initial_missing:

value = next(it)

else:

value = initial

for element in it:

value = function(value, element)

return value

See itertools.accumulate() for an iterator that yields all intermediate values.

@functools.singledispatch

Transform a function into a single-dispatch generic function.

To define a generic function, decorate it with the @singledispatch decorator. When defining a function
using @singledispatch, note that the dispatch happens on the type of the first argument:

10.2. functools— Higher-order functions and operations on callable objects 425

The Python Library Reference, Release 3.13.1

>>> from functools import singledispatch

>>> @singledispatch

... def fun(arg, verbose=False):

... if verbose:

... print("Let me just say,", end=" ")

... print(arg)

To add overloaded implementations to the function, use the register() attribute of the generic function,
which can be used as a decorator. For functions annotated with types, the decorator will infer the type of the
first argument automatically:

>>> @fun.register

... def _(arg: int, verbose=False):

... if verbose:

... print("Strength in numbers, eh?", end=" ")

... print(arg)

...

>>> @fun.register

... def _(arg: list, verbose=False):

... if verbose:

... print("Enumerate this:")

... for i, elem in enumerate(arg):

... print(i, elem)

types.UnionType and typing.Union can also be used:

>>> @fun.register

... def _(arg: int | float, verbose=False):

... if verbose:

... print("Strength in numbers, eh?", end=" ")

... print(arg)

...

>>> from typing import Union

>>> @fun.register

... def _(arg: Union[list, set], verbose=False):

... if verbose:

... print("Enumerate this:")

... for i, elem in enumerate(arg):

... print(i, elem)

...

For code which doesn’t use type annotations, the appropriate type argument can be passed explicitly to the
decorator itself:

>>> @fun.register(complex)

... def _(arg, verbose=False):

... if verbose:

... print("Better than complicated.", end=" ")

... print(arg.real, arg.imag)

...

For code that dispatches on a collections type (e.g., list), but wants to typehint the items of the collection
(e.g., list[int]), the dispatch type should be passed explicitly to the decorator itself with the typehint going
into the function definition:

>>> @fun.register(list)

... def _(arg: list[int], verbose=False):

... if verbose:
(continues on next page)

426 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.13.1

(continued from previous page)

... print("Enumerate this:")

... for i, elem in enumerate(arg):

... print(i, elem)

Note

At runtime the function will dispatch on an instance of a list regardless of the type contained within the
list i.e. [1,2,3] will be dispatched the same as ["foo", "bar", "baz"]. The annotation provided
in this example is for static type checkers only and has no runtime impact.

To enable registering lambdas and pre-existing functions, the register() attribute can also be used in a
functional form:

>>> def nothing(arg, verbose=False):

... print("Nothing.")

...

>>> fun.register(type(None), nothing)

The register() attribute returns the undecorated function. This enables decorator stacking, pickling,
and the creation of unit tests for each variant independently:

>>> @fun.register(float)

... @fun.register(Decimal)

... def fun_num(arg, verbose=False):

... if verbose:

... print("Half of your number:", end=" ")

... print(arg / 2)

...

>>> fun_num is fun

False

When called, the generic function dispatches on the type of the first argument:

>>> fun("Hello, world.")

Hello, world.

>>> fun("test.", verbose=True)

Let me just say, test.

>>> fun(42, verbose=True)

Strength in numbers, eh? 42

>>> fun(['spam', 'spam', 'eggs', 'spam'], verbose=True)

Enumerate this:

0 spam

1 spam

2 eggs

3 spam

>>> fun(None)

Nothing.

>>> fun(1.23)

0.615

Where there is no registered implementation for a specific type, its method resolution order is used to find a
more generic implementation. The original function decorated with @singledispatch is registered for the
base object type, which means it is used if no better implementation is found.

If an implementation is registered to an abstract base class, virtual subclasses of the base class will be dispatched
to that implementation:

10.2. functools— Higher-order functions and operations on callable objects 427

The Python Library Reference, Release 3.13.1

>>> from collections.abc import Mapping

>>> @fun.register

... def _(arg: Mapping, verbose=False):

... if verbose:

... print("Keys & Values")

... for key, value in arg.items():

... print(key, "=>", value)

...

>>> fun({"a": "b"})

a => b

To check which implementation the generic function will choose for a given type, use the dispatch() at-
tribute:

>>> fun.dispatch(float)

<function fun_num at 0x1035a2840>

>>> fun.dispatch(dict) # note: default implementation

<function fun at 0x103fe0000>

To access all registered implementations, use the read-only registry attribute:

>>> fun.registry.keys()

dict_keys([<class 'NoneType'>, <class 'int'>, <class 'object'>,

<class 'decimal.Decimal'>, <class 'list'>,

<class 'float'>])

>>> fun.registry[float]

<function fun_num at 0x1035a2840>

>>> fun.registry[object]

<function fun at 0x103fe0000>

Added in version 3.4.

Changed in version 3.7: The register() attribute now supports using type annotations.

Changed in version 3.11: The register() attribute now supports types.UnionType and typing.Union
as type annotations.

class functools.singledispatchmethod(func)
Transform a method into a single-dispatch generic function.

To define a generic method, decorate it with the @singledispatchmethod decorator. When defining a
function using @singledispatchmethod, note that the dispatch happens on the type of the first non-self or
non-cls argument:

class Negator:

@singledispatchmethod

def neg(self, arg):

raise NotImplementedError("Cannot negate a")

@neg.register

def _(self, arg: int):

return -arg

@neg.register

def _(self, arg: bool):

return not arg

@singledispatchmethod supports nesting with other decorators such as @classmethod. Note that to
allow for dispatcher.register, singledispatchmethodmust be the outer most decorator. Here is the
Negator class with the neg methods bound to the class, rather than an instance of the class:

428 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.13.1

class Negator:

@singledispatchmethod

@classmethod

def neg(cls, arg):

raise NotImplementedError("Cannot negate a")

@neg.register

@classmethod

def _(cls, arg: int):

return -arg

@neg.register

@classmethod

def _(cls, arg: bool):

return not arg

The same pattern can be used for other similar decorators: @staticmethod, @abstractmethod, and others.

Added in version 3.8.

functools.update_wrapper(wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS,
updated=WRAPPER_UPDATES)

Update a wrapper function to look like the wrapped function. The optional arguments are tuples to specify
which attributes of the original function are assigned directly to the matching attributes on the wrapper function
and which attributes of the wrapper function are updated with the corresponding attributes from the original
function. The default values for these arguments are the module level constants WRAPPER_ASSIGNMENTS
(which assigns to the wrapper function’s __module__, __name__, __qualname__, __annotations__,
__type_params__, and __doc__, the documentation string) and WRAPPER_UPDATES (which updates the
wrapper function’s __dict__, i.e. the instance dictionary).

To allow access to the original function for introspection and other purposes (e.g. bypassing a caching decorator
such as lru_cache()), this function automatically adds a __wrapped__ attribute to the wrapper that refers
to the function being wrapped.

The main intended use for this function is in decorator functions which wrap the decorated function and return
the wrapper. If the wrapper function is not updated, the metadata of the returned function will reflect the
wrapper definition rather than the original function definition, which is typically less than helpful.

update_wrapper() may be used with callables other than functions. Any attributes named in assigned or
updated that are missing from the object being wrapped are ignored (i.e. this function will not attempt to set
them on the wrapper function). AttributeError is still raised if the wrapper function itself is missing any
attributes named in updated.

Changed in version 3.2: The __wrapped__ attribute is now automatically added. The __annotations__
attribute is now copied by default. Missing attributes no longer trigger an AttributeError.

Changed in version 3.4: The __wrapped__ attribute now always refers to the wrapped function, even if that
function defined a __wrapped__ attribute. (see bpo-17482)

Changed in version 3.12: The __type_params__ attribute is now copied by default.

@functools.wraps(wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)
This is a convenience function for invoking update_wrapper() as a function decorator when
defining a wrapper function. It is equivalent to partial(update_wrapper, wrapped=wrapped,

assigned=assigned, updated=updated). For example:

>>> from functools import wraps

>>> def my_decorator(f):

... @wraps(f)

... def wrapper(*args, **kwds):

... print('Calling decorated function')

(continues on next page)

10.2. functools— Higher-order functions and operations on callable objects 429

https://bugs.python.org/issue?@action=redirect&bpo=17482

The Python Library Reference, Release 3.13.1

(continued from previous page)

... return f(*args, **kwds)

... return wrapper

...

>>> @my_decorator

... def example():

... """Docstring"""

... print('Called example function')

...

>>> example()

Calling decorated function

Called example function

>>> example.__name__

'example'

>>> example.__doc__

'Docstring'

Without the use of this decorator factory, the name of the example function would have been 'wrapper',
and the docstring of the original example() would have been lost.

10.2.1 partial Objects

partial objects are callable objects created by partial(). They have three read-only attributes:

partial.func

A callable object or function. Calls to the partial object will be forwarded to func with new arguments and
keywords.

partial.args

The leftmost positional arguments that will be prepended to the positional arguments provided to a partial
object call.

partial.keywords

The keyword arguments that will be supplied when the partial object is called.

partial objects are like function objects in that they are callable, weak referenceable, and can have attributes. There
are some important differences. For instance, the __name__ and function.__doc__ attributes are not created
automatically. Also, partial objects defined in classes behave like static methods and do not transform into bound
methods during instance attribute look-up.

10.3 operator— Standard operators as functions

Source code: Lib/operator.py

The operator module exports a set of efficient functions corresponding to the intrinsic operators of Python. For
example, operator.add(x, y) is equivalent to the expression x+y. Many function names are those used for
special methods, without the double underscores. For backward compatibility, many of these have a variant with the
double underscores kept. The variants without the double underscores are preferred for clarity.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations and
sequence operations.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

operator.lt(a, b)
operator.le(a, b)
operator.eq(a, b)

430 Chapter 10. Functional Programming Modules

https://github.com/python/cpython/tree/3.13/Lib/operator.py

The Python Library Reference, Release 3.13.1

operator.ne(a, b)
operator.ge(a, b)
operator.gt(a, b)
operator.__lt__(a, b)
operator.__le__(a, b)
operator.__eq__(a, b)
operator.__ne__(a, b)
operator.__ge__(a, b)
operator.__gt__(a, b)

Perform “rich comparisons” between a and b. Specifically, lt(a, b) is equivalent to a < b, le(a, b) is
equivalent to a <= b, eq(a, b) is equivalent to a == b, ne(a, b) is equivalent to a != b, gt(a, b) is
equivalent to a > b and ge(a, b) is equivalent to a >= b. Note that these functions can return any value,
which may or may not be interpretable as a Boolean value. See comparisons for more information about rich
comparisons.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and boolean
operations:

operator.not_(obj)
operator.__not__(obj)

Return the outcome of not obj. (Note that there is no __not__() method for object instances; only the
interpreter core defines this operation. The result is affected by the __bool__() and __len__() methods.)

operator.truth(obj)
Return True if obj is true, and False otherwise. This is equivalent to using the bool constructor.

operator.is_(a, b)
Return a is b. Tests object identity.

operator.is_not(a, b)
Return a is not b. Tests object identity.

The mathematical and bitwise operations are the most numerous:

operator.abs(obj)
operator.__abs__(obj)

Return the absolute value of obj.

operator.add(a, b)
operator.__add__(a, b)

Return a + b, for a and b numbers.

operator.and_(a, b)
operator.__and__(a, b)

Return the bitwise and of a and b.

operator.floordiv(a, b)
operator.__floordiv__(a, b)

Return a // b.

operator.index(a)
operator.__index__(a)

Return a converted to an integer. Equivalent to a.__index__().

Changed in version 3.10: The result always has exact type int. Previously, the result could have been an
instance of a subclass of int.

operator.inv(obj)
operator.invert(obj)

10.3. operator— Standard operators as functions 431

The Python Library Reference, Release 3.13.1

operator.__inv__(obj)
operator.__invert__(obj)

Return the bitwise inverse of the number obj. This is equivalent to ~obj.

operator.lshift(a, b)
operator.__lshift__(a, b)

Return a shifted left by b.

operator.mod(a, b)
operator.__mod__(a, b)

Return a % b.

operator.mul(a, b)
operator.__mul__(a, b)

Return a * b, for a and b numbers.

operator.matmul(a, b)
operator.__matmul__(a, b)

Return a @ b.

Added in version 3.5.

operator.neg(obj)
operator.__neg__(obj)

Return obj negated (-obj).

operator.or_(a, b)
operator.__or__(a, b)

Return the bitwise or of a and b.

operator.pos(obj)
operator.__pos__(obj)

Return obj positive (+obj).

operator.pow(a, b)
operator.__pow__(a, b)

Return a ** b, for a and b numbers.

operator.rshift(a, b)
operator.__rshift__(a, b)

Return a shifted right by b.

operator.sub(a, b)
operator.__sub__(a, b)

Return a - b.

operator.truediv(a, b)
operator.__truediv__(a, b)

Return a / b where 2/3 is .66 rather than 0. This is also known as “true” division.

operator.xor(a, b)
operator.__xor__(a, b)

Return the bitwise exclusive or of a and b.

Operations which work with sequences (some of them with mappings too) include:

operator.concat(a, b)

432 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.13.1

operator.__concat__(a, b)
Return a + b for a and b sequences.

operator.contains(a, b)
operator.__contains__(a, b)

Return the outcome of the test b in a. Note the reversed operands.

operator.countOf(a, b)
Return the number of occurrences of b in a.

operator.delitem(a, b)
operator.__delitem__(a, b)

Remove the value of a at index b.

operator.getitem(a, b)
operator.__getitem__(a, b)

Return the value of a at index b.

operator.indexOf(a, b)
Return the index of the first of occurrence of b in a.

operator.setitem(a, b, c)
operator.__setitem__(a, b, c)

Set the value of a at index b to c.

operator.length_hint(obj, default=0)
Return an estimated length for the object obj. First try to return its actual length, then an estimate using
object.__length_hint__(), and finally return the default value.

Added in version 3.4.

The following operation works with callables:

operator.call(obj, / , *args, **kwargs)
operator.__call__(obj, / , *args, **kwargs)

Return obj(*args, **kwargs).

Added in version 3.11.

The operator module also defines tools for generalized attribute and item lookups. These are useful for making
fast field extractors as arguments for map(), sorted(), itertools.groupby(), or other functions that expect a
function argument.

operator.attrgetter(attr)

operator.attrgetter(*attrs)
Return a callable object that fetches attr from its operand. If more than one attribute is requested, returns a
tuple of attributes. The attribute names can also contain dots. For example:

• After f = attrgetter('name'), the call f(b) returns b.name.

• After f = attrgetter('name', 'date'), the call f(b) returns (b.name, b.date).

• After f = attrgetter('name.first', 'name.last'), the call f(b) returns (b.name.first,
b.name.last).

Equivalent to:

def attrgetter(*items):

if any(not isinstance(item, str) for item in items):

raise TypeError('attribute name must be a string')

if len(items) == 1:

attr = items[0]

(continues on next page)

10.3. operator— Standard operators as functions 433

The Python Library Reference, Release 3.13.1

(continued from previous page)

def g(obj):

return resolve_attr(obj, attr)

else:

def g(obj):

return tuple(resolve_attr(obj, attr) for attr in items)

return g

def resolve_attr(obj, attr):

for name in attr.split("."):

obj = getattr(obj, name)

return obj

operator.itemgetter(item)
operator.itemgetter(*items)

Return a callable object that fetches item from its operand using the operand’s __getitem__() method. If
multiple items are specified, returns a tuple of lookup values. For example:

• After f = itemgetter(2), the call f(r) returns r[2].

• After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3]).

Equivalent to:

def itemgetter(*items):

if len(items) == 1:

item = items[0]

def g(obj):

return obj[item]

else:

def g(obj):

return tuple(obj[item] for item in items)

return g

The items can be any type accepted by the operand’s __getitem__() method. Dictionaries accept any
hashable value. Lists, tuples, and strings accept an index or a slice:

>>> itemgetter(1)('ABCDEFG')

'B'

>>> itemgetter(1, 3, 5)('ABCDEFG')

('B', 'D', 'F')

>>> itemgetter(slice(2, None))('ABCDEFG')

'CDEFG'

>>> soldier = dict(rank='captain', name='dotterbart')

>>> itemgetter('rank')(soldier)

'captain'

Example of using itemgetter() to retrieve specific fields from a tuple record:

>>> inventory = [('apple', 3), ('banana', 2), ('pear', 5), ('orange', 1)]

>>> getcount = itemgetter(1)

>>> list(map(getcount, inventory))

[3, 2, 5, 1]

>>> sorted(inventory, key=getcount)

[('orange', 1), ('banana', 2), ('apple', 3), ('pear', 5)]

operator.methodcaller(name, / , *args, **kwargs)
Return a callable object that calls the method name on its operand. If additional arguments and/or keyword
arguments are given, they will be given to the method as well. For example:

434 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.13.1

• After f = methodcaller('name'), the call f(b) returns b.name().

• After f = methodcaller('name', 'foo', bar=1), the call f(b) returns b.name('foo',

bar=1).

Equivalent to:

def methodcaller(name, /, *args, **kwargs):

def caller(obj):

return getattr(obj, name)(*args, **kwargs)

return caller

10.3.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in
the operator module.

Operation Syntax Function

Addition a + b add(a, b)

Concatenation seq1 + seq2 concat(seq1, seq2)

Containment Test obj in seq contains(seq, obj)

Division a / b truediv(a, b)

Division a // b floordiv(a, b)

Bitwise And a & b and_(a, b)

Bitwise Exclusive Or a ^ b xor(a, b)

Bitwise Inversion ~ a invert(a)

Bitwise Or a | b or_(a, b)

Exponentiation a ** b pow(a, b)

Identity a is b is_(a, b)

Identity a is not b is_not(a, b)

Indexed Assignment obj[k] = v setitem(obj, k, v)

Indexed Deletion del obj[k] delitem(obj, k)

Indexing obj[k] getitem(obj, k)

Left Shift a << b lshift(a, b)

Modulo a % b mod(a, b)

Multiplication a * b mul(a, b)

Matrix Multiplication a @ b matmul(a, b)

Negation (Arithmetic) - a neg(a)

Negation (Logical) not a not_(a)

Positive + a pos(a)

Right Shift a >> b rshift(a, b)

Slice Assignment seq[i:j] = values setitem(seq, slice(i, j), values)

Slice Deletion del seq[i:j] delitem(seq, slice(i, j))

Slicing seq[i:j] getitem(seq, slice(i, j))

String Formatting s % obj mod(s, obj)

Subtraction a - b sub(a, b)

Truth Test obj truth(obj)

Ordering a < b lt(a, b)

Ordering a <= b le(a, b)

Equality a == b eq(a, b)

Difference a != b ne(a, b)

Ordering a >= b ge(a, b)

Ordering a > b gt(a, b)

10.3. operator— Standard operators as functions 435

The Python Library Reference, Release 3.13.1

10.3.2 In-place Operators

Many operations have an “in-place” version. Listed below are functions providing a more primitive access to in-place
operators than the usual syntax does; for example, the statement x += y is equivalent to x = operator.iadd(x,

y). Another way to put it is to say that z = operator.iadd(x, y) is equivalent to the compound statement z
= x; z += y.

In those examples, note that when an in-place method is called, the computation and assignment are performed in
two separate steps. The in-place functions listed below only do the first step, calling the in-place method. The second
step, assignment, is not handled.

For immutable targets such as strings, numbers, and tuples, the updated value is computed, but not assigned back to
the input variable:

>>> a = 'hello'

>>> iadd(a, ' world')

'hello world'

>>> a

'hello'

For mutable targets such as lists and dictionaries, the in-place method will perform the update, so no subsequent
assignment is necessary:

>>> s = ['h', 'e', 'l', 'l', 'o']

>>> iadd(s, [' ', 'w', 'o', 'r', 'l', 'd'])

['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']

>>> s

['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']

operator.iadd(a, b)
operator.__iadd__(a, b)

a = iadd(a, b) is equivalent to a += b.

operator.iand(a, b)
operator.__iand__(a, b)

a = iand(a, b) is equivalent to a &= b.

operator.iconcat(a, b)
operator.__iconcat__(a, b)

a = iconcat(a, b) is equivalent to a += b for a and b sequences.

operator.ifloordiv(a, b)
operator.__ifloordiv__(a, b)

a = ifloordiv(a, b) is equivalent to a //= b.

operator.ilshift(a, b)
operator.__ilshift__(a, b)

a = ilshift(a, b) is equivalent to a <<= b.

operator.imod(a, b)
operator.__imod__(a, b)

a = imod(a, b) is equivalent to a %= b.

operator.imul(a, b)
operator.__imul__(a, b)

a = imul(a, b) is equivalent to a *= b.

operator.imatmul(a, b)

436 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.13.1

operator.__imatmul__(a, b)
a = imatmul(a, b) is equivalent to a @= b.

Added in version 3.5.

operator.ior(a, b)
operator.__ior__(a, b)

a = ior(a, b) is equivalent to a |= b.

operator.ipow(a, b)
operator.__ipow__(a, b)

a = ipow(a, b) is equivalent to a **= b.

operator.irshift(a, b)
operator.__irshift__(a, b)

a = irshift(a, b) is equivalent to a >>= b.

operator.isub(a, b)
operator.__isub__(a, b)

a = isub(a, b) is equivalent to a -= b.

operator.itruediv(a, b)
operator.__itruediv__(a, b)

a = itruediv(a, b) is equivalent to a /= b.

operator.ixor(a, b)
operator.__ixor__(a, b)

a = ixor(a, b) is equivalent to a ^= b.

10.3. operator— Standard operators as functions 437

The Python Library Reference, Release 3.13.1

438 Chapter 10. Functional Programming Modules

CHAPTER

ELEVEN

FILE AND DIRECTORY ACCESS

The modules described in this chapter deal with disk files and directories. For example, there are modules for reading
the properties of files, manipulating paths in a portable way, and creating temporary files. The full list of modules in
this chapter is:

11.1 pathlib— Object-oriented filesystem paths

Added in version 3.4.

Source code: Lib/pathlib/

This module offers classes representing filesystem paths with semantics appropriate for different operating systems.
Path classes are divided between pure paths, which provide purely computational operations without I/O, and concrete
paths, which inherit from pure paths but also provide I/O operations.

If you’ve never used this module before or just aren’t sure which class is right for your task, Path is most likely what
you need. It instantiates a concrete path for the platform the code is running on.

Pure paths are useful in some special cases; for example:

1. If you want to manipulate Windows paths on a Unix machine (or vice versa). You cannot instantiate a
WindowsPath when running on Unix, but you can instantiate PureWindowsPath.

439

https://github.com/python/cpython/tree/3.13/Lib/pathlib/

The Python Library Reference, Release 3.13.1

2. You want to make sure that your code only manipulates paths without actually accessing the OS. In this case,
instantiating one of the pure classes may be useful since those simply don’t have any OS-accessing operations.

See also

PEP 428: The pathlib module – object-oriented filesystem paths.

See also

For low-level path manipulation on strings, you can also use the os.path module.

11.1.1 Basic use

Importing the main class:

>>> from pathlib import Path

Listing subdirectories:

>>> p = Path('.')

>>> [x for x in p.iterdir() if x.is_dir()]

[PosixPath('.hg'), PosixPath('docs'), PosixPath('dist'),

PosixPath('__pycache__'), PosixPath('build')]

Listing Python source files in this directory tree:

>>> list(p.glob('**/*.py'))

[PosixPath('test_pathlib.py'), PosixPath('setup.py'),

PosixPath('pathlib.py'), PosixPath('docs/conf.py'),

PosixPath('build/lib/pathlib.py')]

Navigating inside a directory tree:

>>> p = Path('/etc')

>>> q = p / 'init.d' / 'reboot'

>>> q

PosixPath('/etc/init.d/reboot')

>>> q.resolve()

PosixPath('/etc/rc.d/init.d/halt')

Querying path properties:

>>> q.exists()

True

>>> q.is_dir()

False

Opening a file:

>>> with q.open() as f: f.readline()

...

'#!/bin/bash\n'

440 Chapter 11. File and Directory Access

https://peps.python.org/pep-0428/

The Python Library Reference, Release 3.13.1

11.1.2 Exceptions

exception pathlib.UnsupportedOperation

An exception inheriting NotImplementedError that is raised when an unsupported operation is called on a
path object.

Added in version 3.13.

11.1.3 Pure paths

Pure path objects provide path-handling operations which don’t actually access a filesystem. There are three ways to
access these classes, which we also call flavours:

class pathlib.PurePath(*pathsegments)

A generic class that represents the system’s path flavour (instantiating it creates either a PurePosixPath or a
PureWindowsPath):

>>> PurePath('setup.py') # Running on a Unix machine

PurePosixPath('setup.py')

Each element of pathsegments can be either a string representing a path segment, or an object implementing
the os.PathLike interface where the __fspath__() method returns a string, such as another path object:

>>> PurePath('foo', 'some/path', 'bar')

PurePosixPath('foo/some/path/bar')

>>> PurePath(Path('foo'), Path('bar'))

PurePosixPath('foo/bar')

When pathsegments is empty, the current directory is assumed:

>>> PurePath()

PurePosixPath('.')

If a segment is an absolute path, all previous segments are ignored (like os.path.join()):

>>> PurePath('/etc', '/usr', 'lib64')

PurePosixPath('/usr/lib64')

>>> PureWindowsPath('c:/Windows', 'd:bar')

PureWindowsPath('d:bar')

On Windows, the drive is not reset when a rooted relative path segment (e.g., r'\foo') is encountered:

>>> PureWindowsPath('c:/Windows', '/Program Files')

PureWindowsPath('c:/Program Files')

Spurious slashes and single dots are collapsed, but double dots ('..') and leading double slashes ('//') are
not, since this would change the meaning of a path for various reasons (e.g. symbolic links, UNC paths):

>>> PurePath('foo//bar')

PurePosixPath('foo/bar')

>>> PurePath('//foo/bar')

PurePosixPath('//foo/bar')

>>> PurePath('foo/./bar')

PurePosixPath('foo/bar')

>>> PurePath('foo/../bar')

PurePosixPath('foo/../bar')

(a naïve approach wouldmake PurePosixPath('foo/../bar') equivalent to PurePosixPath('bar'),
which is wrong if foo is a symbolic link to another directory)

11.1. pathlib— Object-oriented filesystem paths 441

The Python Library Reference, Release 3.13.1

Pure path objects implement the os.PathLike interface, allowing them to be used anywhere the interface is
accepted.

Changed in version 3.6: Added support for the os.PathLike interface.

class pathlib.PurePosixPath(*pathsegments)
A subclass of PurePath, this path flavour represents non-Windows filesystem paths:

>>> PurePosixPath('/etc/hosts')

PurePosixPath('/etc/hosts')

pathsegments is specified similarly to PurePath.

class pathlib.PureWindowsPath(*pathsegments)
A subclass of PurePath, this path flavour represents Windows filesystem paths, including UNC paths:

>>> PureWindowsPath('c:/', 'Users', 'Ximénez')

PureWindowsPath('c:/Users/Ximénez')

>>> PureWindowsPath('//server/share/file')

PureWindowsPath('//server/share/file')

pathsegments is specified similarly to PurePath.

Regardless of the system you’re running on, you can instantiate all of these classes, since they don’t provide any
operation that does system calls.

General properties

Paths are immutable and hashable. Paths of a same flavour are comparable and orderable. These properties respect
the flavour’s case-folding semantics:

>>> PurePosixPath('foo') == PurePosixPath('FOO')

False

>>> PureWindowsPath('foo') == PureWindowsPath('FOO')

True

>>> PureWindowsPath('FOO') in { PureWindowsPath('foo') }

True

>>> PureWindowsPath('C:') < PureWindowsPath('d:')

True

Paths of a different flavour compare unequal and cannot be ordered:

>>> PureWindowsPath('foo') == PurePosixPath('foo')

False

>>> PureWindowsPath('foo') < PurePosixPath('foo')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: '<' not supported between instances of 'PureWindowsPath' and

↪→'PurePosixPath'

Operators

The slash operator helps create child paths, like os.path.join(). If the argument is an absolute path, the previous
path is ignored. On Windows, the drive is not reset when the argument is a rooted relative path (e.g., r'\foo'):

>>> p = PurePath('/etc')

>>> p

PurePosixPath('/etc')

>>> p / 'init.d' / 'apache2'

PurePosixPath('/etc/init.d/apache2')

(continues on next page)

442 Chapter 11. File and Directory Access

https://en.wikipedia.org/wiki/Path_(computing)#UNC

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> q = PurePath('bin')

>>> '/usr' / q

PurePosixPath('/usr/bin')

>>> p / '/an_absolute_path'

PurePosixPath('/an_absolute_path')

>>> PureWindowsPath('c:/Windows', '/Program Files')

PureWindowsPath('c:/Program Files')

A path object can be used anywhere an object implementing os.PathLike is accepted:

>>> import os

>>> p = PurePath('/etc')

>>> os.fspath(p)

'/etc'

The string representation of a path is the raw filesystem path itself (in native form, e.g. with backslashes under
Windows), which you can pass to any function taking a file path as a string:

>>> p = PurePath('/etc')

>>> str(p)

'/etc'

>>> p = PureWindowsPath('c:/Program Files')

>>> str(p)

'c:\\Program Files'

Similarly, calling bytes on a path gives the raw filesystem path as a bytes object, as encoded by os.fsencode():

>>> bytes(p)

b'/etc'

Note

Calling bytes is only recommended under Unix. Under Windows, the unicode form is the canonical represen-
tation of filesystem paths.

Accessing individual parts

To access the individual “parts” (components) of a path, use the following property:

PurePath.parts

A tuple giving access to the path’s various components:

>>> p = PurePath('/usr/bin/python3')

>>> p.parts

('/', 'usr', 'bin', 'python3')

>>> p = PureWindowsPath('c:/Program Files/PSF')

>>> p.parts

('c:\\', 'Program Files', 'PSF')

(note how the drive and local root are regrouped in a single part)

11.1. pathlib— Object-oriented filesystem paths 443

The Python Library Reference, Release 3.13.1

Methods and properties

Pure paths provide the following methods and properties:

PurePath.parser

The implementation of the os.path module used for low-level path parsing and joining: either posixpath
or ntpath.

Added in version 3.13.

PurePath.drive

A string representing the drive letter or name, if any:

>>> PureWindowsPath('c:/Program Files/').drive

'c:'

>>> PureWindowsPath('/Program Files/').drive

''

>>> PurePosixPath('/etc').drive

''

UNC shares are also considered drives:

>>> PureWindowsPath('//host/share/foo.txt').drive

'\\\\host\\share'

PurePath.root

A string representing the (local or global) root, if any:

>>> PureWindowsPath('c:/Program Files/').root

'\\'

>>> PureWindowsPath('c:Program Files/').root

''

>>> PurePosixPath('/etc').root

'/'

UNC shares always have a root:

>>> PureWindowsPath('//host/share').root

'\\'

If the path starts with more than two successive slashes, PurePosixPath collapses them:

>>> PurePosixPath('//etc').root

'//'

>>> PurePosixPath('///etc').root

'/'

>>> PurePosixPath('////etc').root

'/'

Note

This behavior conforms to The Open Group Base Specifications Issue 6, paragraph 4.11 Pathname Resolu-
tion:

“A pathname that begins with two successive slashes may be interpreted in an implementation-definedmanner,
although more than two leading slashes shall be treated as a single slash.”

PurePath.anchor

The concatenation of the drive and root:

444 Chapter 11. File and Directory Access

https://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap04.html#tag_04_11
https://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap04.html#tag_04_11

The Python Library Reference, Release 3.13.1

>>> PureWindowsPath('c:/Program Files/').anchor

'c:\\'

>>> PureWindowsPath('c:Program Files/').anchor

'c:'

>>> PurePosixPath('/etc').anchor

'/'

>>> PureWindowsPath('//host/share').anchor

'\\\\host\\share\\'

PurePath.parents

An immutable sequence providing access to the logical ancestors of the path:

>>> p = PureWindowsPath('c:/foo/bar/setup.py')

>>> p.parents[0]

PureWindowsPath('c:/foo/bar')

>>> p.parents[1]

PureWindowsPath('c:/foo')

>>> p.parents[2]

PureWindowsPath('c:/')

Changed in version 3.10: The parents sequence now supports slices and negative index values.

PurePath.parent

The logical parent of the path:

>>> p = PurePosixPath('/a/b/c/d')

>>> p.parent

PurePosixPath('/a/b/c')

You cannot go past an anchor, or empty path:

>>> p = PurePosixPath('/')

>>> p.parent

PurePosixPath('/')

>>> p = PurePosixPath('.')

>>> p.parent

PurePosixPath('.')

Note

This is a purely lexical operation, hence the following behaviour:

>>> p = PurePosixPath('foo/..')

>>> p.parent

PurePosixPath('foo')

If you want to walk an arbitrary filesystem path upwards, it is recommended to first call Path.resolve()
so as to resolve symlinks and eliminate ".." components.

PurePath.name

A string representing the final path component, excluding the drive and root, if any:

>>> PurePosixPath('my/library/setup.py').name

'setup.py'

UNC drive names are not considered:

11.1. pathlib— Object-oriented filesystem paths 445

The Python Library Reference, Release 3.13.1

>>> PureWindowsPath('//some/share/setup.py').name

'setup.py'

>>> PureWindowsPath('//some/share').name

''

PurePath.suffix

The last dot-separated portion of the final component, if any:

>>> PurePosixPath('my/library/setup.py').suffix

'.py'

>>> PurePosixPath('my/library.tar.gz').suffix

'.gz'

>>> PurePosixPath('my/library').suffix

''

This is commonly called the file extension.

PurePath.suffixes

A list of the path’s suffixes, often called file extensions:

>>> PurePosixPath('my/library.tar.gar').suffixes

['.tar', '.gar']

>>> PurePosixPath('my/library.tar.gz').suffixes

['.tar', '.gz']

>>> PurePosixPath('my/library').suffixes

[]

PurePath.stem

The final path component, without its suffix:

>>> PurePosixPath('my/library.tar.gz').stem

'library.tar'

>>> PurePosixPath('my/library.tar').stem

'library'

>>> PurePosixPath('my/library').stem

'library'

PurePath.as_posix()

Return a string representation of the path with forward slashes (/):

>>> p = PureWindowsPath('c:\\windows')

>>> str(p)

'c:\\windows'

>>> p.as_posix()

'c:/windows'

PurePath.is_absolute()

Return whether the path is absolute or not. A path is considered absolute if it has both a root and (if the flavour
allows) a drive:

>>> PurePosixPath('/a/b').is_absolute()

True

>>> PurePosixPath('a/b').is_absolute()

False

>>> PureWindowsPath('c:/a/b').is_absolute()

True

(continues on next page)

446 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> PureWindowsPath('/a/b').is_absolute()

False

>>> PureWindowsPath('c:').is_absolute()

False

>>> PureWindowsPath('//some/share').is_absolute()

True

PurePath.is_relative_to(other)
Return whether or not this path is relative to the other path.

>>> p = PurePath('/etc/passwd')

>>> p.is_relative_to('/etc')

True

>>> p.is_relative_to('/usr')

False

This method is string-based; it neither accesses the filesystem nor treats “..” segments specially. The following
code is equivalent:

>>> u = PurePath('/usr')

>>> u == p or u in p.parents

False

Added in version 3.9.

Deprecated since version 3.12, will be removed in version 3.14: Passing additional arguments is deprecated;
if supplied, they are joined with other.

PurePath.is_reserved()

With PureWindowsPath, return True if the path is considered reserved under Windows, False otherwise.
With PurePosixPath, False is always returned.

Changed in version 3.13: Windows path names that contain a colon, or end with a dot or a space, are considered
reserved. UNC paths may be reserved.

Deprecated since version 3.13, will be removed in version 3.15: This method is deprecated; use os.path.
isreserved() to detect reserved paths on Windows.

PurePath.joinpath(*pathsegments)
Calling this method is equivalent to combining the path with each of the given pathsegments in turn:

>>> PurePosixPath('/etc').joinpath('passwd')

PurePosixPath('/etc/passwd')

>>> PurePosixPath('/etc').joinpath(PurePosixPath('passwd'))

PurePosixPath('/etc/passwd')

>>> PurePosixPath('/etc').joinpath('init.d', 'apache2')

PurePosixPath('/etc/init.d/apache2')

>>> PureWindowsPath('c:').joinpath('/Program Files')

PureWindowsPath('c:/Program Files')

PurePath.full_match(pattern, *, case_sensitive=None)
Match this path against the provided glob-style pattern. Return True if matching is successful, False other-
wise. For example:

>>> PurePath('a/b.py').full_match('a/*.py')

True

>>> PurePath('a/b.py').full_match('*.py')

False

(continues on next page)

11.1. pathlib— Object-oriented filesystem paths 447

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> PurePath('/a/b/c.py').full_match('/a/**')

True

>>> PurePath('/a/b/c.py').full_match('**/*.py')

True

See also

Pattern language documentation.

As with other methods, case-sensitivity follows platform defaults:

>>> PurePosixPath('b.py').full_match('*.PY')

False

>>> PureWindowsPath('b.py').full_match('*.PY')

True

Set case_sensitive to True or False to override this behaviour.

Added in version 3.13.

PurePath.match(pattern, *, case_sensitive=None)
Match this path against the provided non-recursive glob-style pattern. Return True if matching is successful,
False otherwise.

This method is similar to full_match(), but empty patterns aren’t allowed (ValueError is raised), the
recursive wildcard “**” isn’t supported (it acts like non-recursive “*”), and if a relative pattern is provided,
then matching is done from the right:

>>> PurePath('a/b.py').match('*.py')

True

>>> PurePath('/a/b/c.py').match('b/*.py')

True

>>> PurePath('/a/b/c.py').match('a/*.py')

False

Changed in version 3.12: The pattern parameter accepts a path-like object.

Changed in version 3.12: The case_sensitive parameter was added.

PurePath.relative_to(other, walk_up=False)
Compute a version of this path relative to the path represented by other. If it’s impossible, ValueError is
raised:

>>> p = PurePosixPath('/etc/passwd')

>>> p.relative_to('/')

PurePosixPath('etc/passwd')

>>> p.relative_to('/etc')

PurePosixPath('passwd')

>>> p.relative_to('/usr')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "pathlib.py", line 941, in relative_to

raise ValueError(error_message.format(str(self), str(formatted)))

ValueError: '/etc/passwd' is not in the subpath of '/usr' OR one path is␣

↪→relative and the other is absolute.

When walk_up is false (the default), the path must start with other. When the argument is true, .. entries
may be added to form the relative path. In all other cases, such as the paths referencing different drives,

448 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

ValueError is raised.:

>>> p.relative_to('/usr', walk_up=True)

PurePosixPath('../etc/passwd')

>>> p.relative_to('foo', walk_up=True)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "pathlib.py", line 941, in relative_to

raise ValueError(error_message.format(str(self), str(formatted)))

ValueError: '/etc/passwd' is not on the same drive as 'foo' OR one path is␣

↪→relative and the other is absolute.

Warning

This function is part of PurePath and works with strings. It does not check or access the underlying file
structure. This can impact the walk_up option as it assumes that no symlinks are present in the path; call
resolve() first if necessary to resolve symlinks.

Changed in version 3.12: The walk_up parameter was added (old behavior is the same as walk_up=False).

Deprecated since version 3.12, will be removed in version 3.14: Passing additional positional arguments is
deprecated; if supplied, they are joined with other.

PurePath.with_name(name)
Return a new path with the name changed. If the original path doesn’t have a name, ValueError is raised:

>>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz')

>>> p.with_name('setup.py')

PureWindowsPath('c:/Downloads/setup.py')

>>> p = PureWindowsPath('c:/')

>>> p.with_name('setup.py')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/home/antoine/cpython/default/Lib/pathlib.py", line 751, in with_name

raise ValueError("%r has an empty name" % (self,))

ValueError: PureWindowsPath('c:/') has an empty name

PurePath.with_stem(stem)
Return a new path with the stem changed. If the original path doesn’t have a name, ValueError is raised:

>>> p = PureWindowsPath('c:/Downloads/draft.txt')

>>> p.with_stem('final')

PureWindowsPath('c:/Downloads/final.txt')

>>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz')

>>> p.with_stem('lib')

PureWindowsPath('c:/Downloads/lib.gz')

>>> p = PureWindowsPath('c:/')

>>> p.with_stem('')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/home/antoine/cpython/default/Lib/pathlib.py", line 861, in with_stem

return self.with_name(stem + self.suffix)

File "/home/antoine/cpython/default/Lib/pathlib.py", line 851, in with_name

raise ValueError("%r has an empty name" % (self,))

ValueError: PureWindowsPath('c:/') has an empty name

Added in version 3.9.

11.1. pathlib— Object-oriented filesystem paths 449

The Python Library Reference, Release 3.13.1

PurePath.with_suffix(suffix)
Return a new path with the suffix changed. If the original path doesn’t have a suffix, the new suffix is
appended instead. If the suffix is an empty string, the original suffix is removed:

>>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz')

>>> p.with_suffix('.bz2')

PureWindowsPath('c:/Downloads/pathlib.tar.bz2')

>>> p = PureWindowsPath('README')

>>> p.with_suffix('.txt')

PureWindowsPath('README.txt')

>>> p = PureWindowsPath('README.txt')

>>> p.with_suffix('')

PureWindowsPath('README')

PurePath.with_segments(*pathsegments)
Create a new path object of the same type by combining the given pathsegments. This method is called when-
ever a derivative path is created, such as from parent and relative_to(). Subclasses may override this
method to pass information to derivative paths, for example:

from pathlib import PurePosixPath

class MyPath(PurePosixPath):

def __init__(self, *pathsegments, session_id):

super().__init__(*pathsegments)

self.session_id = session_id

def with_segments(self, *pathsegments):

return type(self)(*pathsegments, session_id=self.session_id)

etc = MyPath('/etc', session_id=42)

hosts = etc / 'hosts'

print(hosts.session_id) # 42

Added in version 3.12.

11.1.4 Concrete paths

Concrete paths are subclasses of the pure path classes. In addition to operations provided by the latter, they also
provide methods to do system calls on path objects. There are three ways to instantiate concrete paths:

class pathlib.Path(*pathsegments)

A subclass of PurePath, this class represents concrete paths of the system’s path flavour (instantiating it
creates either a PosixPath or a WindowsPath):

>>> Path('setup.py')

PosixPath('setup.py')

pathsegments is specified similarly to PurePath.

class pathlib.PosixPath(*pathsegments)

A subclass of Path and PurePosixPath, this class represents concrete non-Windows filesystem paths:

>>> PosixPath('/etc/hosts')

PosixPath('/etc/hosts')

pathsegments is specified similarly to PurePath.

Changed in version 3.13: Raises UnsupportedOperation on Windows. In previous versions,
NotImplementedError was raised instead.

450 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

class pathlib.WindowsPath(*pathsegments)
A subclass of Path and PureWindowsPath, this class represents concrete Windows filesystem paths:

>>> WindowsPath('c:/', 'Users', 'Ximénez')

WindowsPath('c:/Users/Ximénez')

pathsegments is specified similarly to PurePath.

Changed in version 3.13: Raises UnsupportedOperation on non-Windows platforms. In previous versions,
NotImplementedError was raised instead.

You can only instantiate the class flavour that corresponds to your system (allowing system calls on non-compatible
path flavours could lead to bugs or failures in your application):

>>> import os

>>> os.name

'posix'

>>> Path('setup.py')

PosixPath('setup.py')

>>> PosixPath('setup.py')

PosixPath('setup.py')

>>> WindowsPath('setup.py')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "pathlib.py", line 798, in __new__

% (cls.__name__,))

UnsupportedOperation: cannot instantiate 'WindowsPath' on your system

Some concrete path methods can raise an OSError if a system call fails (for example because the path doesn’t exist).

Parsing and generating URIs

Concrete path objects can be created from, and represented as, ‘file’ URIs conforming to RFC 8089.

Note

File URIs are not portable across machines with different filesystem encodings.

classmethod Path.from_uri(uri)
Return a new path object from parsing a ‘file’ URI. For example:

>>> p = Path.from_uri('file:///etc/hosts')

PosixPath('/etc/hosts')

On Windows, DOS device and UNC paths may be parsed from URIs:

>>> p = Path.from_uri('file:///c:/windows')

WindowsPath('c:/windows')

>>> p = Path.from_uri('file://server/share')

WindowsPath('//server/share')

Several variant forms are supported:

>>> p = Path.from_uri('file:////server/share')

WindowsPath('//server/share')

>>> p = Path.from_uri('file://///server/share')

WindowsPath('//server/share')

>>> p = Path.from_uri('file:c:/windows')

(continues on next page)

11.1. pathlib— Object-oriented filesystem paths 451

https://datatracker.ietf.org/doc/html/rfc8089.html

The Python Library Reference, Release 3.13.1

(continued from previous page)

WindowsPath('c:/windows')

>>> p = Path.from_uri('file:/c|/windows')

WindowsPath('c:/windows')

ValueError is raised if the URI does not start with file:, or the parsed path isn’t absolute.

Added in version 3.13.

Path.as_uri()

Represent the path as a ‘file’ URI. ValueError is raised if the path isn’t absolute.

>>> p = PosixPath('/etc/passwd')

>>> p.as_uri()

'file:///etc/passwd'

>>> p = WindowsPath('c:/Windows')

>>> p.as_uri()

'file:///c:/Windows'

For historical reasons, this method is also available from PurePath objects. However, its use of os.
fsencode() makes it strictly impure.

Expanding and resolving paths

classmethod Path.home()

Return a new path object representing the user’s home directory (as returned by os.path.expanduser()
with ~ construct). If the home directory can’t be resolved, RuntimeError is raised.

>>> Path.home()

PosixPath('/home/antoine')

Added in version 3.5.

Path.expanduser()

Return a new path with expanded ~ and ~user constructs, as returned by os.path.expanduser(). If a
home directory can’t be resolved, RuntimeError is raised.

>>> p = PosixPath('~/films/Monty Python')

>>> p.expanduser()

PosixPath('/home/eric/films/Monty Python')

Added in version 3.5.

classmethod Path.cwd()

Return a new path object representing the current directory (as returned by os.getcwd()):

>>> Path.cwd()

PosixPath('/home/antoine/pathlib')

Path.absolute()

Make the path absolute, without normalization or resolving symlinks. Returns a new path object:

>>> p = Path('tests')

>>> p

PosixPath('tests')

>>> p.absolute()

PosixPath('/home/antoine/pathlib/tests')

452 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

Path.resolve(strict=False)
Make the path absolute, resolving any symlinks. A new path object is returned:

>>> p = Path()

>>> p

PosixPath('.')

>>> p.resolve()

PosixPath('/home/antoine/pathlib')

“..” components are also eliminated (this is the only method to do so):

>>> p = Path('docs/../setup.py')

>>> p.resolve()

PosixPath('/home/antoine/pathlib/setup.py')

If a path doesn’t exist or a symlink loop is encountered, and strict is True, OSError is raised. If strict is False,
the path is resolved as far as possible and any remainder is appended without checking whether it exists.

Changed in version 3.6: The strict parameter was added (pre-3.6 behavior is strict).

Changed in version 3.13: Symlink loops are treated like other errors: OSError is raised in strict mode, and
no exception is raised in non-strict mode. In previous versions, RuntimeError is raised no matter the value
of strict.

Path.readlink()

Return the path to which the symbolic link points (as returned by os.readlink()):

>>> p = Path('mylink')

>>> p.symlink_to('setup.py')

>>> p.readlink()

PosixPath('setup.py')

Added in version 3.9.

Changed in version 3.13: Raises UnsupportedOperation if os.readlink() is not available. In previous
versions, NotImplementedError was raised.

Querying file type and status

Changed in version 3.8: exists(), is_dir(), is_file(), is_mount(), is_symlink(),
is_block_device(), is_char_device(), is_fifo(), is_socket() now return False instead of
raising an exception for paths that contain characters unrepresentable at the OS level.

Path.stat(*, follow_symlinks=True)

Return an os.stat_result object containing information about this path, like os.stat(). The result is
looked up at each call to this method.

This method normally follows symlinks; to stat a symlink add the argument follow_symlinks=False, or
use lstat().

>>> p = Path('setup.py')

>>> p.stat().st_size

956

>>> p.stat().st_mtime

1327883547.852554

Changed in version 3.10: The follow_symlinks parameter was added.

Path.lstat()

Like Path.stat() but, if the path points to a symbolic link, return the symbolic link’s information rather
than its target’s.

11.1. pathlib— Object-oriented filesystem paths 453

The Python Library Reference, Release 3.13.1

Path.exists(*, follow_symlinks=True)
Return True if the path points to an existing file or directory.

This method normally follows symlinks; to check if a symlink exists, add the argument
follow_symlinks=False.

>>> Path('.').exists()

True

>>> Path('setup.py').exists()

True

>>> Path('/etc').exists()

True

>>> Path('nonexistentfile').exists()

False

Changed in version 3.12: The follow_symlinks parameter was added.

Path.is_file(*, follow_symlinks=True)
Return True if the path points to a regular file, False if it points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors)
are propagated.

This method normally follows symlinks; to exclude symlinks, add the argument follow_symlinks=False.

Changed in version 3.13: The follow_symlinks parameter was added.

Path.is_dir(*, follow_symlinks=True)
Return True if the path points to a directory, False if it points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors)
are propagated.

This method normally follows symlinks; to exclude symlinks to directories, add the argument
follow_symlinks=False.

Changed in version 3.13: The follow_symlinks parameter was added.

Path.is_symlink()

Return True if the path points to a symbolic link, False otherwise.

False is also returned if the path doesn’t exist; other errors (such as permission errors) are propagated.

Path.is_junction()

Return True if the path points to a junction, and False for any other type of file. Currently only Windows
supports junctions.

Added in version 3.12.

Path.is_mount()

Return True if the path is amount point: a point in a file systemwhere a different file system has beenmounted.
On POSIX, the function checks whether path’s parent, path/.., is on a different device than path, or whether
path/.. and path point to the same i-node on the same device — this should detect mount points for all Unix
and POSIX variants. On Windows, a mount point is considered to be a drive letter root (e.g. c:\), a UNC
share (e.g. \\server\share), or a mounted filesystem directory.

Added in version 3.7.

Changed in version 3.12: Windows support was added.

Path.is_socket()

Return True if the path points to a Unix socket (or a symbolic link pointing to a Unix socket), False if it
points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors)
are propagated.

454 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

Path.is_fifo()

Return True if the path points to a FIFO (or a symbolic link pointing to a FIFO), False if it points to another
kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors)
are propagated.

Path.is_block_device()

Return True if the path points to a block device (or a symbolic link pointing to a block device), False if it
points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors)
are propagated.

Path.is_char_device()

Return True if the path points to a character device (or a symbolic link pointing to a character device), False
if it points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission errors)
are propagated.

Path.samefile(other_path)
Return whether this path points to the same file as other_path, which can be either a Path object, or a string.
The semantics are similar to os.path.samefile() and os.path.samestat().

An OSError can be raised if either file cannot be accessed for some reason.

>>> p = Path('spam')

>>> q = Path('eggs')

>>> p.samefile(q)

False

>>> p.samefile('spam')

True

Added in version 3.5.

Reading and writing files

Path.open(mode=’r’, buffering=-1, encoding=None, errors=None, newline=None)
Open the file pointed to by the path, like the built-in open() function does:

>>> p = Path('setup.py')

>>> with p.open() as f:

... f.readline()

...

'#!/usr/bin/env python3\n'

Path.read_text(encoding=None, errors=None, newline=None)
Return the decoded contents of the pointed-to file as a string:

>>> p = Path('my_text_file')

>>> p.write_text('Text file contents')

18

>>> p.read_text()

'Text file contents'

The file is opened and then closed. The optional parameters have the same meaning as in open().

Added in version 3.5.

Changed in version 3.13: The newline parameter was added.

11.1. pathlib— Object-oriented filesystem paths 455

The Python Library Reference, Release 3.13.1

Path.read_bytes()

Return the binary contents of the pointed-to file as a bytes object:

>>> p = Path('my_binary_file')

>>> p.write_bytes(b'Binary file contents')

20

>>> p.read_bytes()

b'Binary file contents'

Added in version 3.5.

Path.write_text(data, encoding=None, errors=None, newline=None)

Open the file pointed to in text mode, write data to it, and close the file:

>>> p = Path('my_text_file')

>>> p.write_text('Text file contents')

18

>>> p.read_text()

'Text file contents'

An existing file of the same name is overwritten. The optional parameters have the samemeaning as in open().

Added in version 3.5.

Changed in version 3.10: The newline parameter was added.

Path.write_bytes(data)
Open the file pointed to in bytes mode, write data to it, and close the file:

>>> p = Path('my_binary_file')

>>> p.write_bytes(b'Binary file contents')

20

>>> p.read_bytes()

b'Binary file contents'

An existing file of the same name is overwritten.

Added in version 3.5.

Reading directories

Path.iterdir()

When the path points to a directory, yield path objects of the directory contents:

>>> p = Path('docs')

>>> for child in p.iterdir(): child

...

PosixPath('docs/conf.py')

PosixPath('docs/_templates')

PosixPath('docs/make.bat')

PosixPath('docs/index.rst')

PosixPath('docs/_build')

PosixPath('docs/_static')

PosixPath('docs/Makefile')

The children are yielded in arbitrary order, and the special entries '.' and '..' are not included. If a file is
removed from or added to the directory after creating the iterator, it is unspecified whether a path object for
that file is included.

If the path is not a directory or otherwise inaccessible, OSError is raised.

456 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

Path.glob(pattern, *, case_sensitive=None, recurse_symlinks=False)
Glob the given relative pattern in the directory represented by this path, yielding all matching files (of any
kind):

>>> sorted(Path('.').glob('*.py'))

[PosixPath('pathlib.py'), PosixPath('setup.py'), PosixPath('test_pathlib.py')]

>>> sorted(Path('.').glob('*/*.py'))

[PosixPath('docs/conf.py')]

>>> sorted(Path('.').glob('**/*.py'))

[PosixPath('build/lib/pathlib.py'),

PosixPath('docs/conf.py'),

PosixPath('pathlib.py'),

PosixPath('setup.py'),

PosixPath('test_pathlib.py')]

See also

Pattern language documentation.

By default, or when the case_sensitive keyword-only argument is set to None, this method matches paths us-
ing platform-specific casing rules: typically, case-sensitive on POSIX, and case-insensitive on Windows. Set
case_sensitive to True or False to override this behaviour.

By default, or when the recurse_symlinks keyword-only argument is set to False, this method follows symlinks
except when expanding “**” wildcards. Set recurse_symlinks to True to always follow symlinks.

Raises an auditing event pathlib.Path.glob with arguments self, pattern.

Changed in version 3.12: The case_sensitive parameter was added.

Changed in version 3.13: The recurse_symlinks parameter was added.

Changed in version 3.13: The pattern parameter accepts a path-like object.

Changed in version 3.13: Any OSError exceptions raised from scanning the filesystem are suppressed. In
previous versions, such exceptions are suppressed in many cases, but not all.

Path.rglob(pattern, *, case_sensitive=None, recurse_symlinks=False)
Glob the given relative pattern recursively. This is like calling Path.glob() with “**/” added in front of the
pattern.

See also

Pattern language and Path.glob() documentation.

Raises an auditing event pathlib.Path.rglob with arguments self, pattern.

Changed in version 3.12: The case_sensitive parameter was added.

Changed in version 3.13: The recurse_symlinks parameter was added.

Changed in version 3.13: The pattern parameter accepts a path-like object.

Path.walk(top_down=True, on_error=None, follow_symlinks=False)

Generate the file names in a directory tree by walking the tree either top-down or bottom-up.

For each directory in the directory tree rooted at self (including self but excluding ‘.’ and ‘..’), the method
yields a 3-tuple of (dirpath, dirnames, filenames).

dirpath is a Path to the directory currently being walked, dirnames is a list of strings for the names of subdirec-
tories in dirpath (excluding '.' and '..'), and filenames is a list of strings for the names of the non-directory

11.1. pathlib— Object-oriented filesystem paths 457

The Python Library Reference, Release 3.13.1

files in dirpath. To get a full path (which begins with self) to a file or directory in dirpath, do dirpath /

name. Whether or not the lists are sorted is file system-dependent.

If the optional argument top_down is true (which is the default), the triple for a directory is generated before
the triples for any of its subdirectories (directories are walked top-down). If top_down is false, the triple for
a directory is generated after the triples for all of its subdirectories (directories are walked bottom-up). No
matter the value of top_down, the list of subdirectories is retrieved before the triples for the directory and its
subdirectories are walked.

When top_down is true, the caller can modify the dirnames list in-place (for example, using del or slice
assignment), and Path.walk() will only recurse into the subdirectories whose names remain in dirnames.
This can be used to prune the search, or to impose a specific order of visiting, or even to inform Path.walk()

about directories the caller creates or renames before it resumes Path.walk() again. Modifying dirnames
when top_down is false has no effect on the behavior of Path.walk() since the directories in dirnames have
already been generated by the time dirnames is yielded to the caller.

By default, errors from os.scandir() are ignored. If the optional argument on_error is specified, it should
be a callable; it will be called with one argument, an OSError instance. The callable can handle the error to
continue the walk or re-raise it to stop the walk. Note that the filename is available as the filename attribute
of the exception object.

By default, Path.walk() does not follow symbolic links, and instead adds them to the filenames list. Set
follow_symlinks to true to resolve symlinks and place them in dirnames and filenames as appropriate for their
targets, and consequently visit directories pointed to by symlinks (where supported).

Note

Be aware that setting follow_symlinks to true can lead to infinite recursion if a link points to a parent
directory of itself. Path.walk() does not keep track of the directories it has already visited.

Note

Path.walk() assumes the directories it walks are not modified during execution. For example, if a
directory from dirnames has been replaced with a symlink and follow_symlinks is false, Path.walk()
will still try to descend into it. To prevent such behavior, remove directories from dirnames as appropriate.

Note

Unlike os.walk(), Path.walk() lists symlinks to directories in filenames if follow_symlinks is false.

This example displays the number of bytes used by all files in each directory, while ignoring __pycache__
directories:

from pathlib import Path

for root, dirs, files in Path("cpython/Lib/concurrent").walk(on_error=print):

print(

root,

"consumes",

sum((root / file).stat().st_size for file in files),

"bytes in",

len(files),

"non-directory files"

)

if '__pycache__' in dirs:

dirs.remove('__pycache__')

458 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

This next example is a simple implementation of shutil.rmtree(). Walking the tree bottom-up is essential
as rmdir() doesn’t allow deleting a directory before it is empty:

Delete everything reachable from the directory "top".

CAUTION: This is dangerous! For example, if top == Path('/'),

it could delete all of your files.

for root, dirs, files in top.walk(top_down=False):

for name in files:

(root / name).unlink()

for name in dirs:

(root / name).rmdir()

Added in version 3.12.

Creating files and directories

Path.touch(mode=0o666, exist_ok=True)
Create a file at this given path. If mode is given, it is combined with the process’s umask value to determine
the file mode and access flags. If the file already exists, the function succeeds when exist_ok is true (and its
modification time is updated to the current time), otherwise FileExistsError is raised.

See also

The open(), write_text() and write_bytes() methods are often used to create files.

Path.mkdir(mode=0o777, parents=False, exist_ok=False)
Create a new directory at this given path. If mode is given, it is combined with the process’s umask value to
determine the file mode and access flags. If the path already exists, FileExistsError is raised.

If parents is true, any missing parents of this path are created as needed; they are created with the default
permissions without taking mode into account (mimicking the POSIX mkdir -p command).

If parents is false (the default), a missing parent raises FileNotFoundError.

If exist_ok is false (the default), FileExistsError is raised if the target directory already exists.

If exist_ok is true, FileExistsError will not be raised unless the given path already exists in the file system
and is not a directory (same behavior as the POSIX mkdir -p command).

Changed in version 3.5: The exist_ok parameter was added.

Path.symlink_to(target, target_is_directory=False)
Make this path a symbolic link pointing to target.

On Windows, a symlink represents either a file or a directory, and does not morph to the target dynamically. If
the target is present, the type of the symlink will be created to match. Otherwise, the symlink will be created as
a directory if target_is_directory is true or a file symlink (the default) otherwise. On non-Windows platforms,
target_is_directory is ignored.

>>> p = Path('mylink')

>>> p.symlink_to('setup.py')

>>> p.resolve()

PosixPath('/home/antoine/pathlib/setup.py')

>>> p.stat().st_size

956

>>> p.lstat().st_size

8

11.1. pathlib— Object-oriented filesystem paths 459

The Python Library Reference, Release 3.13.1

Note

The order of arguments (link, target) is the reverse of os.symlink()’s.

Changed in version 3.13: Raises UnsupportedOperation if os.symlink() is not available. In previous
versions, NotImplementedError was raised.

Path.hardlink_to(target)

Make this path a hard link to the same file as target.

Note

The order of arguments (link, target) is the reverse of os.link()’s.

Added in version 3.10.

Changed in version 3.13: Raises UnsupportedOperation if os.link() is not available. In previous ver-
sions, NotImplementedError was raised.

Renaming and deleting

Path.rename(target)
Rename this file or directory to the given target, and return a new Path instance pointing to target. On Unix,
if target exists and is a file, it will be replaced silently if the user has permission. On Windows, if target exists,
FileExistsError will be raised. target can be either a string or another path object:

>>> p = Path('foo')

>>> p.open('w').write('some text')

9

>>> target = Path('bar')

>>> p.rename(target)

PosixPath('bar')

>>> target.open().read()

'some text'

The target path may be absolute or relative. Relative paths are interpreted relative to the current working
directory, not the directory of the Path object.

It is implemented in terms of os.rename() and gives the same guarantees.

Changed in version 3.8: Added return value, return the new Path instance.

Path.replace(target)
Rename this file or directory to the given target, and return a new Path instance pointing to target. If target
points to an existing file or empty directory, it will be unconditionally replaced.

The target path may be absolute or relative. Relative paths are interpreted relative to the current working
directory, not the directory of the Path object.

Changed in version 3.8: Added return value, return the new Path instance.

Path.unlink(missing_ok=False)

Remove this file or symbolic link. If the path points to a directory, use Path.rmdir() instead.

If missing_ok is false (the default), FileNotFoundError is raised if the path does not exist.

If missing_ok is true, FileNotFoundError exceptions will be ignored (same behavior as the POSIX rm -f

command).

Changed in version 3.8: The missing_ok parameter was added.

460 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

Path.rmdir()

Remove this directory. The directory must be empty.

Permissions and ownership

Path.owner(*, follow_symlinks=True)

Return the name of the user owning the file. KeyError is raised if the file’s user identifier (UID) isn’t found
in the system database.

This method normally follows symlinks; to get the owner of the symlink, add the argument
follow_symlinks=False.

Changed in version 3.13: Raises UnsupportedOperation if the pwd module is not available. In earlier
versions, NotImplementedError was raised.

Changed in version 3.13: The follow_symlinks parameter was added.

Path.group(*, follow_symlinks=True)
Return the name of the group owning the file. KeyError is raised if the file’s group identifier (GID) isn’t found
in the system database.

This method normally follows symlinks; to get the group of the symlink, add the argument
follow_symlinks=False.

Changed in version 3.13: Raises UnsupportedOperation if the grp module is not available. In earlier
versions, NotImplementedError was raised.

Changed in version 3.13: The follow_symlinks parameter was added.

Path.chmod(mode, *, follow_symlinks=True)
Change the file mode and permissions, like os.chmod().

This method normally follows symlinks. Some Unix flavours support changing permissions on the symlink
itself; on these platforms you may add the argument follow_symlinks=False, or use lchmod().

>>> p = Path('setup.py')

>>> p.stat().st_mode

33277

>>> p.chmod(0o444)

>>> p.stat().st_mode

33060

Changed in version 3.10: The follow_symlinks parameter was added.

Path.lchmod(mode)

Like Path.chmod() but, if the path points to a symbolic link, the symbolic link’s mode is changed rather
than its target’s.

11.1.5 Pattern language

The following wildcards are supported in patterns for full_match(), glob() and rglob():

** (entire segment)
Matches any number of file or directory segments, including zero.

* (entire segment)
Matches one file or directory segment.

* (part of a segment)
Matches any number of non-separator characters, including zero.

?

Matches one non-separator character.

11.1. pathlib— Object-oriented filesystem paths 461

The Python Library Reference, Release 3.13.1

[seq]

Matches one character in seq.

[!seq]

Matches one character not in seq.

For a literal match, wrap the meta-characters in brackets. For example, "[?]" matches the character "?".

The “**” wildcard enables recursive globbing. A few examples:

Pattern Meaning

“**/*” Any path with at least one segment.
“**/*.py” Any path with a final segment ending “.py”.
“assets/**” Any path starting with “assets/”.
“assets/**/*” Any path starting with “assets/”, excluding “assets/” itself.

Note

Globbing with the “**” wildcard visits every directory in the tree. Large directory trees may take a long time to
search.

Changed in version 3.13: Globbing with a pattern that ends with “**” returns both files and directories. In previous
versions, only directories were returned.

In Path.glob() and rglob(), a trailing slash may be added to the pattern to match only directories.

Changed in version 3.11: Globbing with a pattern that ends with a pathname components separator (sep or altsep)
returns only directories.

11.1.6 Comparison to the glob module

The patterns accepted and results generated by Path.glob() and Path.rglob() differ slightly from those by the
glob module:

1. Files beginning with a dot are not special in pathlib. This is like passing include_hidden=True to glob.
glob().

2. “**” pattern components are always recursive in pathlib. This is like passing recursive=True to glob.
glob().

3. “**” pattern components do not follow symlinks by default in pathlib. This behaviour has no equivalent in
glob.glob(), but you can pass recurse_symlinks=True to Path.glob() for compatible behaviour.

4. Like all PurePath and Path objects, the values returned from Path.glob() and Path.rglob() don’t
include trailing slashes.

5. The values returned from pathlib’s path.glob() and path.rglob() include the path as a prefix, unlike the
results of glob.glob(root_dir=path).

6. The values returned from pathlib’s path.glob() and path.rglob() may include path itself, for example
when globbing “**”, whereas the results of glob.glob(root_dir=path) never include an empty string
that would correspond to path.

11.1.7 Comparison to the os and os.path modules

pathlib implements path operations using PurePath and Path objects, and so it’s said to be object-oriented. On the
other hand, the os and os.path modules supply functions that work with low-level str and bytes objects, which
is a more procedural approach. Some users consider the object-oriented style to be more readable.

Many functions in os and os.path support bytes paths and paths relative to directory descriptors. These features
aren’t available in pathlib.

462 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

Python’s str and bytes types, and portions of the os and os.path modules, are written in C and are very speedy.
pathlib is written in pure Python and is often slower, but rarely slow enough to matter.

pathlib’s path normalization is slightly more opinionated and consistent than os.path. For example, whereas os.
path.abspath() eliminates “..” segments from a path, which may change its meaning if symlinks are involved,
Path.absolute() preserves these segments for greater safety.

pathlib’s path normalization may render it unsuitable for some applications:

1. pathlib normalizes Path("my_folder/") to Path("my_folder"), which changes a path’s meaning when
supplied to various operating system APIs and command-line utilities. Specifically, the absence of a trailing
separator may allow the path to be resolved as either a file or directory, rather than a directory only.

2. pathlib normalizes Path("./my_program") to Path("my_program"), which changes a path’s meaning
when used as an executable search path, such as in a shell or when spawning a child process. Specifically, the
absence of a separator in the path may force it to be looked up in PATH rather than the current directory.

As a consequence of these differences, pathlib is not a drop-in replacement for os.path.

Corresponding tools

Below is a table mapping various os functions to their corresponding PurePath/Path equivalent.

os and os.path pathlib

os.path.dirname() PurePath.parent

os.path.basename() PurePath.name

os.path.splitext() PurePath.stem, PurePath.suffix
os.path.join() PurePath.joinpath()

os.path.isabs() PurePath.is_absolute()

os.path.relpath() PurePath.relative_to()1

os.path.expanduser() Path.expanduser()2

os.path.realpath() Path.resolve()

os.path.abspath() Path.absolute()3

os.path.exists() Path.exists()

os.path.isfile() Path.is_file()

os.path.isdir() Path.is_dir()

os.path.islink() Path.is_symlink()

os.path.isjunction() Path.is_junction()

os.path.ismount() Path.is_mount()

os.path.samefile() Path.samefile()

os.getcwd() Path.cwd()

os.stat() Path.stat()

os.lstat() Path.lstat()

os.listdir() Path.iterdir()

os.walk() Path.walk()4

os.mkdir(), os.makedirs() Path.mkdir()

os.link() Path.hardlink_to()

os.symlink() Path.symlink_to()

os.readlink() Path.readlink()

os.rename() Path.rename()

os.replace() Path.replace()

os.remove(), os.unlink() Path.unlink()

os.rmdir() Path.rmdir()

os.chmod() Path.chmod()

os.lchmod() Path.lchmod()

11.1. pathlib— Object-oriented filesystem paths 463

The Python Library Reference, Release 3.13.1

11.2 os.path— Common pathname manipulations

Source code: Lib/genericpath.py, Lib/posixpath.py (for POSIX) and Lib/ntpath.py (for Windows).

This module implements some useful functions on pathnames. To read or write files see open(), and for accessing
the filesystem see the osmodule. The path parameters can be passed as strings, or bytes, or any object implementing
the os.PathLike protocol.

Unlike a Unix shell, Python does not do any automatic path expansions. Functions such as expanduser() and
expandvars() can be invoked explicitly when an application desires shell-like path expansion. (See also the glob
module.)

See also

The pathlib module offers high-level path objects.

Note

All of these functions accept either only bytes or only string objects as their parameters. The result is an object
of the same type, if a path or file name is returned.

Note

Since different operating systems have different path name conventions, there are several versions of this module
in the standard library. The os.pathmodule is always the path module suitable for the operating system Python
is running on, and therefore usable for local paths. However, you can also import and use the individual modules
if you want to manipulate a path that is always in one of the different formats. They all have the same interface:

• posixpath for UNIX-style paths

• ntpath for Windows paths

Changed in version 3.8: exists(), lexists(), isdir(), isfile(), islink(), and ismount() now return
False instead of raising an exception for paths that contain characters or bytes unrepresentable at the OS level.

os.path.abspath(path)

Return a normalized absolutized version of the pathname path. On most platforms, this is equivalent to calling
the function normpath() as follows: normpath(join(os.getcwd(), path)).

Changed in version 3.6: Accepts a path-like object.

os.path.basename(path)
Return the base name of pathname path. This is the second element of the pair returned by passing path to the
function split(). Note that the result of this function is different from the Unix basename program; where
basename for '/foo/bar/' returns 'bar', the basename() function returns an empty string ('').

1 os.path.relpath() calls abspath() to make paths absolute and remove “..” parts, whereas PurePath.relative_to() is a lexical
operation that raises ValueError when its inputs’ anchors differ (e.g. if one path is absolute and the other relative.)

2 os.path.expanduser() returns the path unchanged if the home directory can’t be resolved, whereas Path.expanduser() raises
RuntimeError.

3 os.path.abspath() removes “..” components without resolving symlinks, which may change the meaning of the path, whereas Path.
absolute() leaves any “..” components in the path.

4 os.walk() always follows symlinks when categorizing paths into dirnames and filenames, whereas Path.walk() categorizes all symlinks
into filenames when follow_symlinks is false (the default.)

464 Chapter 11. File and Directory Access

https://github.com/python/cpython/tree/3.13/Lib/genericpath.py
https://github.com/python/cpython/tree/3.13/Lib/posixpath.py
https://github.com/python/cpython/tree/3.13/Lib/ntpath.py

The Python Library Reference, Release 3.13.1

Changed in version 3.6: Accepts a path-like object.

os.path.commonpath(paths)
Return the longest common sub-path of each pathname in the iterable paths. Raise ValueError if paths
contain both absolute and relative pathnames, if paths are on different drives, or if paths is empty. Unlike
commonprefix(), this returns a valid path.

Added in version 3.5.

Changed in version 3.6: Accepts a sequence of path-like objects.

Changed in version 3.13: Any iterable can now be passed, rather than just sequences.

os.path.commonprefix(list)
Return the longest path prefix (taken character-by-character) that is a prefix of all paths in list. If list is empty,
return the empty string ('').

Note

This function may return invalid paths because it works a character at a time. To obtain a valid path, see
commonpath().

>>> os.path.commonprefix(['/usr/lib', '/usr/local/lib'])

'/usr/l'

>>> os.path.commonpath(['/usr/lib', '/usr/local/lib'])

'/usr'

Changed in version 3.6: Accepts a path-like object.

os.path.dirname(path)
Return the directory name of pathname path. This is the first element of the pair returned by passing path to
the function split().

Changed in version 3.6: Accepts a path-like object.

os.path.exists(path)
Return True if path refers to an existing path or an open file descriptor. Returns False for broken symbolic
links. On some platforms, this function may return False if permission is not granted to execute os.stat()
on the requested file, even if the path physically exists.

Changed in version 3.3: path can now be an integer: True is returned if it is an open file descriptor, False
otherwise.

Changed in version 3.6: Accepts a path-like object.

os.path.lexists(path)

Return True if path refers to an existing path, including broken symbolic links. Equivalent to exists() on
platforms lacking os.lstat().

Changed in version 3.6: Accepts a path-like object.

os.path.expanduser(path)
On Unix and Windows, return the argument with an initial component of ~ or ~user replaced by that user’s
home directory.

On Unix, an initial ~ is replaced by the environment variable HOME if it is set; otherwise the current user’s
home directory is looked up in the password directory through the built-in module pwd. An initial ~user is
looked up directly in the password directory.

On Windows, USERPROFILE will be used if set, otherwise a combination of HOMEPATH and HOMEDRIVE will
be used. An initial ~user is handled by checking that the last directory component of the current user’s home
directory matches USERNAME, and replacing it if so.

11.2. os.path— Common pathname manipulations 465

The Python Library Reference, Release 3.13.1

If the expansion fails or if the path does not begin with a tilde, the path is returned unchanged.

Changed in version 3.6: Accepts a path-like object.

Changed in version 3.8: No longer uses HOME on Windows.

os.path.expandvars(path)
Return the argument with environment variables expanded. Substrings of the form $name or ${name} are
replaced by the value of environment variable name. Malformed variable names and references to non-existing
variables are left unchanged.

On Windows, %name% expansions are supported in addition to $name and ${name}.

Changed in version 3.6: Accepts a path-like object.

os.path.getatime(path)
Return the time of last access of path. The return value is a floating-point number giving the number of seconds
since the epoch (see the time module). Raise OSError if the file does not exist or is inaccessible.

os.path.getmtime(path)
Return the time of last modification of path. The return value is a floating-point number giving the number of
seconds since the epoch (see the time module). Raise OSError if the file does not exist or is inaccessible.

Changed in version 3.6: Accepts a path-like object.

os.path.getctime(path)
Return the system’s ctime which, on some systems (like Unix) is the time of the last metadata change, and,
on others (like Windows), is the creation time for path. The return value is a number giving the number of
seconds since the epoch (see the time module). Raise OSError if the file does not exist or is inaccessible.

Changed in version 3.6: Accepts a path-like object.

os.path.getsize(path)
Return the size, in bytes, of path. Raise OSError if the file does not exist or is inaccessible.

Changed in version 3.6: Accepts a path-like object.

os.path.isabs(path)
Return True if path is an absolute pathname. On Unix, that means it begins with a slash, on Windows that it
begins with two (back)slashes, or a drive letter, colon, and (back)slash together.

Changed in version 3.6: Accepts a path-like object.

Changed in version 3.13: On Windows, returns False if the given path starts with exactly one (back)slash.

os.path.isfile(path)
Return True if path is an existing regular file. This follows symbolic links, so both islink() and
isfile() can be true for the same path.

Changed in version 3.6: Accepts a path-like object.

os.path.isdir(path)
Return True if path is an existing directory. This follows symbolic links, so both islink() and isdir()
can be true for the same path.

Changed in version 3.6: Accepts a path-like object.

os.path.isjunction(path)
Return True if path refers to an existing directory entry that is a junction. Always return False if junctions
are not supported on the current platform.

Added in version 3.12.

os.path.islink(path)
Return True if path refers to an existing directory entry that is a symbolic link. Always False if symbolic
links are not supported by the Python runtime.

Changed in version 3.6: Accepts a path-like object.

466 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

os.path.ismount(path)
Return True if pathname path is a mount point: a point in a file system where a different file system has been
mounted. On POSIX, the function checks whether path’s parent, path/.., is on a different device than path, or
whether path/.. and path point to the same i-node on the same device— this should detect mount points for
all Unix and POSIX variants. It is not able to reliably detect bind mounts on the same filesystem. OnWindows,
a drive letter root and a share UNC are always mount points, and for any other path GetVolumePathName is
called to see if it is different from the input path.

Changed in version 3.4: Added support for detecting non-root mount points on Windows.

Changed in version 3.6: Accepts a path-like object.

os.path.isdevdrive(path)
Return True if pathname path is located on a Windows Dev Drive. A Dev Drive is optimized for developer
scenarios, and offers faster performance for reading and writing files. It is recommended for use for source
code, temporary build directories, package caches, and other IO-intensive operations.

May raise an error for an invalid path, for example, one without a recognizable drive, but returns False on
platforms that do not support Dev Drives. See the Windows documentation for information on enabling and
creating Dev Drives.

Added in version 3.12.

Changed in version 3.13: The function is now available on all platforms, and will always return False on those
that have no support for Dev Drives

os.path.isreserved(path)
Return True if path is a reserved pathname on the current system.

On Windows, reserved filenames include those that end with a space or dot; those that contain colons (i.e.
file streams such as “name:stream”), wildcard characters (i.e. '*?"<>'), pipe, or ASCII control characters;
as well as DOS device names such as “NUL”, “CON”, “CONIN$”, “CONOUT$”, “AUX”, “PRN”, “COM1”,
and “LPT1”.

Note

This function approximates rules for reserved paths on most Windows systems. These rules change over
time in various Windows releases. This function may be updated in future Python releases as changes to
the rules become broadly available.

Availability: Windows.

Added in version 3.13.

os.path.join(path, *paths)
Join one or more path segments intelligently. The return value is the concatenation of path and all members of
*paths, with exactly one directory separator following each non-empty part, except the last. That is, the result
will only end in a separator if the last part is either empty or ends in a separator. If a segment is an absolute
path (which on Windows requires both a drive and a root), then all previous segments are ignored and joining
continues from the absolute path segment.

On Windows, the drive is not reset when a rooted path segment (e.g., r'\foo') is encountered. If a segment
is on a different drive or is an absolute path, all previous segments are ignored and the drive is reset. Note that
since there is a current directory for each drive, os.path.join("c:", "foo") represents a path relative
to the current directory on drive C: (c:foo), not c:\foo.

Changed in version 3.6: Accepts a path-like object for path and paths.

os.path.normcase(path)
Normalize the case of a pathname. OnWindows, convert all characters in the pathname to lowercase, and also
convert forward slashes to backward slashes. On other operating systems, return the path unchanged.

Changed in version 3.6: Accepts a path-like object.

11.2. os.path— Common pathname manipulations 467

https://learn.microsoft.com/windows/dev-drive/

The Python Library Reference, Release 3.13.1

os.path.normpath(path)
Normalize a pathname by collapsing redundant separators and up-level references so that A//B, A/B/, A/
./B and A/foo/../B all become A/B. This string manipulation may change the meaning of a path that
contains symbolic links. On Windows, it converts forward slashes to backward slashes. To normalize case, use
normcase().

Note

On POSIX systems, in accordance with IEEE Std 1003.1 2013 Edition; 4.13 Pathname Resolution, if
a pathname begins with exactly two slashes, the first component following the leading characters may
be interpreted in an implementation-defined manner, although more than two leading characters shall be
treated as a single character.

Changed in version 3.6: Accepts a path-like object.

os.path.realpath(path, *, strict=False)
Return the canonical path of the specified filename, eliminating any symbolic links encountered in the path
(if they are supported by the operating system). On Windows, this function will also resolve MS-DOS (also
called 8.3) style names such as C:\\PROGRA~1 to C:\\Program Files.

If a path doesn’t exist or a symlink loop is encountered, and strict is True, OSError is raised. If strict is False
these errors are ignored, and so the result might be missing or otherwise inaccessible.

Note

This function emulates the operating system’s procedure for making a path canonical, which differs slightly
between Windows and UNIX with respect to how links and subsequent path components interact.

Operating system APIs make paths canonical as needed, so it’s not normally necessary to call this function.

Changed in version 3.6: Accepts a path-like object.

Changed in version 3.8: Symbolic links and junctions are now resolved on Windows.

Changed in version 3.10: The strict parameter was added.

os.path.relpath(path, start=os.curdir)
Return a relative filepath to path either from the current directory or from an optional start directory. This
is a path computation: the filesystem is not accessed to confirm the existence or nature of path or start. On
Windows, ValueError is raised when path and start are on different drives.

start defaults to os.curdir.

Changed in version 3.6: Accepts a path-like object.

os.path.samefile(path1, path2)
Return True if both pathname arguments refer to the same file or directory. This is determined by the device
number and i-node number and raises an exception if an os.stat() call on either pathname fails.

Changed in version 3.2: Added Windows support.

Changed in version 3.4: Windows now uses the same implementation as all other platforms.

Changed in version 3.6: Accepts a path-like object.

os.path.sameopenfile(fp1, fp2)
Return True if the file descriptors fp1 and fp2 refer to the same file.

Changed in version 3.2: Added Windows support.

Changed in version 3.6: Accepts a path-like object.

468 Chapter 11. File and Directory Access

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_13

The Python Library Reference, Release 3.13.1

os.path.samestat(stat1, stat2)
Return True if the stat tuples stat1 and stat2 refer to the same file. These structures may have been returned
by os.fstat(), os.lstat(), or os.stat(). This function implements the underlying comparison used
by samefile() and sameopenfile().

Changed in version 3.4: Added Windows support.

Changed in version 3.6: Accepts a path-like object.

os.path.split(path)
Split the pathname path into a pair, (head, tail) where tail is the last pathname component and head is
everything leading up to that. The tail part will never contain a slash; if path ends in a slash, tail will be empty.
If there is no slash in path, head will be empty. If path is empty, both head and tail are empty. Trailing slashes
are stripped from head unless it is the root (one or more slashes only). In all cases, join(head, tail)

returns a path to the same location as path (but the strings may differ). Also see the functions dirname() and
basename().

Changed in version 3.6: Accepts a path-like object.

os.path.splitdrive(path)
Split the pathname path into a pair (drive, tail) where drive is either a mount point or the empty string.
On systems which do not use drive specifications, drive will always be the empty string. In all cases, drive +

tail will be the same as path.

On Windows, splits a pathname into drive/UNC sharepoint and relative path.

If the path contains a drive letter, drive will contain everything up to and including the colon:

>>> splitdrive("c:/dir")

("c:", "/dir")

If the path contains a UNC path, drive will contain the host name and share:

>>> splitdrive("//host/computer/dir")

("//host/computer", "/dir")

Changed in version 3.6: Accepts a path-like object.

os.path.splitroot(path)
Split the pathname path into a 3-item tuple (drive, root, tail) where drive is a device name or mount
point, root is a string of separators after the drive, and tail is everything after the root. Any of these items may
be the empty string. In all cases, drive + root + tail will be the same as path.

On POSIX systems, drive is always empty. The rootmay be empty (if path is relative), a single forward slash (if
path is absolute), or two forward slashes (implementation-defined per IEEE Std 1003.1-2017; 4.13 Pathname
Resolution.) For example:

>>> splitroot('/home/sam')

('', '/', 'home/sam')

>>> splitroot('//home/sam')

('', '//', 'home/sam')

>>> splitroot('///home/sam')

('', '/', '//home/sam')

On Windows, drive may be empty, a drive-letter name, a UNC share, or a device name. The root may be
empty, a forward slash, or a backward slash. For example:

>>> splitroot('C:/Users/Sam')

('C:', '/', 'Users/Sam')

>>> splitroot('//Server/Share/Users/Sam')

('//Server/Share', '/', 'Users/Sam')

Added in version 3.12.

11.2. os.path— Common pathname manipulations 469

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_13
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_13

The Python Library Reference, Release 3.13.1

os.path.splitext(path)
Split the pathname path into a pair (root, ext) such that root + ext == path, and the extension, ext,
is empty or begins with a period and contains at most one period.

If the path contains no extension, ext will be '':

>>> splitext('bar')

('bar', '')

If the path contains an extension, then ext will be set to this extension, including the leading period. Note that
previous periods will be ignored:

>>> splitext('foo.bar.exe')

('foo.bar', '.exe')

>>> splitext('/foo/bar.exe')

('/foo/bar', '.exe')

Leading periods of the last component of the path are considered to be part of the root:

>>> splitext('.cshrc')

('.cshrc', '')

>>> splitext('/foo/....jpg')

('/foo/....jpg', '')

Changed in version 3.6: Accepts a path-like object.

os.path.supports_unicode_filenames

True if arbitrary Unicode strings can be used as file names (within limitations imposed by the file system).

11.3 stat— Interpreting stat() results

Source code: Lib/stat.py

The stat module defines constants and functions for interpreting the results of os.stat(), os.fstat() and
os.lstat() (if they exist). For complete details about the stat(), fstat() and lstat() calls, consult the
documentation for your system.

Changed in version 3.4: The stat module is backed by a C implementation.

The stat module defines the following functions to test for specific file types:

stat.S_ISDIR(mode)

Return non-zero if the mode is from a directory.

stat.S_ISCHR(mode)

Return non-zero if the mode is from a character special device file.

stat.S_ISBLK(mode)
Return non-zero if the mode is from a block special device file.

stat.S_ISREG(mode)

Return non-zero if the mode is from a regular file.

stat.S_ISFIFO(mode)

Return non-zero if the mode is from a FIFO (named pipe).

stat.S_ISLNK(mode)
Return non-zero if the mode is from a symbolic link.

470 Chapter 11. File and Directory Access

https://github.com/python/cpython/tree/3.13/Lib/stat.py

The Python Library Reference, Release 3.13.1

stat.S_ISSOCK(mode)
Return non-zero if the mode is from a socket.

stat.S_ISDOOR(mode)

Return non-zero if the mode is from a door.

Added in version 3.4.

stat.S_ISPORT(mode)

Return non-zero if the mode is from an event port.

Added in version 3.4.

stat.S_ISWHT(mode)
Return non-zero if the mode is from a whiteout.

Added in version 3.4.

Two additional functions are defined for more general manipulation of the file’s mode:

stat.S_IMODE(mode)
Return the portion of the file’s mode that can be set by os.chmod()—that is, the file’s permission bits, plus
the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

stat.S_IFMT(mode)
Return the portion of the file’s mode that describes the file type (used by the S_IS*() functions above).

Normally, you would use the os.path.is*() functions for testing the type of a file; the functions here are useful
when you are doing multiple tests of the same file and wish to avoid the overhead of the stat() system call for each
test. These are also useful when checking for information about a file that isn’t handled by os.path, like the tests
for block and character devices.

Example:

import os, sys

from stat import *

def walktree(top, callback):

'''recursively descend the directory tree rooted at top,

calling the callback function for each regular file'''

for f in os.listdir(top):

pathname = os.path.join(top, f)

mode = os.lstat(pathname).st_mode

if S_ISDIR(mode):

It's a directory, recurse into it

walktree(pathname, callback)

elif S_ISREG(mode):

It's a file, call the callback function

callback(pathname)

else:

Unknown file type, print a message

print('Skipping %s' % pathname)

def visitfile(file):

print('visiting', file)

if __name__ == '__main__':

walktree(sys.argv[1], visitfile)

An additional utility function is provided to convert a file’s mode in a human readable string:

11.3. stat— Interpreting stat() results 471

The Python Library Reference, Release 3.13.1

stat.filemode(mode)
Convert a file’s mode to a string of the form ‘-rwxrwxrwx’.

Added in version 3.3.

Changed in version 3.4: The function supports S_IFDOOR, S_IFPORT and S_IFWHT.

All the variables below are simply symbolic indexes into the 10-tuple returned by os.stat(), os.fstat() or
os.lstat().

stat.ST_MODE

Inode protection mode.

stat.ST_INO

Inode number.

stat.ST_DEV

Device inode resides on.

stat.ST_NLINK

Number of links to the inode.

stat.ST_UID

User id of the owner.

stat.ST_GID

Group id of the owner.

stat.ST_SIZE

Size in bytes of a plain file; amount of data waiting on some special files.

stat.ST_ATIME

Time of last access.

stat.ST_MTIME

Time of last modification.

stat.ST_CTIME

The “ctime” as reported by the operating system. On some systems (like Unix) is the time of the last metadata
change, and, on others (like Windows), is the creation time (see platform documentation for details).

The interpretation of “file size” changes according to the file type. For plain files this is the size of the file in bytes.
For FIFOs and sockets under most flavors of Unix (including Linux in particular), the “size” is the number of bytes
waiting to be read at the time of the call to os.stat(), os.fstat(), or os.lstat(); this can sometimes be
useful, especially for polling one of these special files after a non-blocking open. The meaning of the size field for
other character and block devices varies more, depending on the implementation of the underlying system call.

The variables below define the flags used in the ST_MODE field.

Use of the functions above is more portable than use of the first set of flags:

stat.S_IFSOCK

Socket.

stat.S_IFLNK

Symbolic link.

stat.S_IFREG

Regular file.

stat.S_IFBLK

Block device.

stat.S_IFDIR

Directory.

472 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

stat.S_IFCHR

Character device.

stat.S_IFIFO

FIFO.

stat.S_IFDOOR

Door.

Added in version 3.4.

stat.S_IFPORT

Event port.

Added in version 3.4.

stat.S_IFWHT

Whiteout.

Added in version 3.4.

Note

S_IFDOOR, S_IFPORT or S_IFWHT are defined as 0 when the platform does not have support for the file types.

The following flags can also be used in the mode argument of os.chmod():

stat.S_ISUID

Set UID bit.

stat.S_ISGID

Set-group-ID bit. This bit has several special uses. For a directory it indicates that BSD semantics is to be used
for that directory: files created there inherit their group ID from the directory, not from the effective group ID
of the creating process, and directories created there will also get the S_ISGID bit set. For a file that does not
have the group execution bit (S_IXGRP) set, the set-group-ID bit indicates mandatory file/record locking (see
also S_ENFMT).

stat.S_ISVTX

Sticky bit. When this bit is set on a directory it means that a file in that directory can be renamed or deleted
only by the owner of the file, by the owner of the directory, or by a privileged process.

stat.S_IRWXU

Mask for file owner permissions.

stat.S_IRUSR

Owner has read permission.

stat.S_IWUSR

Owner has write permission.

stat.S_IXUSR

Owner has execute permission.

stat.S_IRWXG

Mask for group permissions.

stat.S_IRGRP

Group has read permission.

stat.S_IWGRP

Group has write permission.

11.3. stat— Interpreting stat() results 473

The Python Library Reference, Release 3.13.1

stat.S_IXGRP

Group has execute permission.

stat.S_IRWXO

Mask for permissions for others (not in group).

stat.S_IROTH

Others have read permission.

stat.S_IWOTH

Others have write permission.

stat.S_IXOTH

Others have execute permission.

stat.S_ENFMT

System V file locking enforcement. This flag is shared with S_ISGID: file/record locking is enforced on files
that do not have the group execution bit (S_IXGRP) set.

stat.S_IREAD

Unix V7 synonym for S_IRUSR.

stat.S_IWRITE

Unix V7 synonym for S_IWUSR.

stat.S_IEXEC

Unix V7 synonym for S_IXUSR.

The following flags can be used in the flags argument of os.chflags():

stat.UF_SETTABLE

All user settable flags.

Added in version 3.13.

stat.UF_NODUMP

Do not dump the file.

stat.UF_IMMUTABLE

The file may not be changed.

stat.UF_APPEND

The file may only be appended to.

stat.UF_OPAQUE

The directory is opaque when viewed through a union stack.

stat.UF_NOUNLINK

The file may not be renamed or deleted.

stat.UF_COMPRESSED

The file is stored compressed (macOS 10.6+).

stat.UF_TRACKED

Used for handling document IDs (macOS)

Added in version 3.13.

stat.UF_DATAVAULT

The file needs an entitlement for reading or writing (macOS 10.13+)

Added in version 3.13.

474 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

stat.UF_HIDDEN

The file should not be displayed in a GUI (macOS 10.5+).

stat.SF_SETTABLE

All super-user changeable flags

Added in version 3.13.

stat.SF_SUPPORTED

All super-user supported flags

Availability: macOS

Added in version 3.13.

stat.SF_SYNTHETIC

All super-user read-only synthetic flags

Availability: macOS

Added in version 3.13.

stat.SF_ARCHIVED

The file may be archived.

stat.SF_IMMUTABLE

The file may not be changed.

stat.SF_APPEND

The file may only be appended to.

stat.SF_RESTRICTED

The file needs an entitlement to write to (macOS 10.13+)

Added in version 3.13.

stat.SF_NOUNLINK

The file may not be renamed or deleted.

stat.SF_SNAPSHOT

The file is a snapshot file.

stat.SF_FIRMLINK

The file is a firmlink (macOS 10.15+)

Added in version 3.13.

stat.SF_DATALESS

The file is a dataless object (macOS 10.15+)

Added in version 3.13.

See the *BSD or macOS systems man page chflags(2) for more information.

On Windows, the following file attribute constants are available for use when testing bits in the
st_file_attributes member returned by os.stat(). See the Windows API documentation for more detail
on the meaning of these constants.

stat.FILE_ATTRIBUTE_ARCHIVE

stat.FILE_ATTRIBUTE_COMPRESSED

stat.FILE_ATTRIBUTE_DEVICE

stat.FILE_ATTRIBUTE_DIRECTORY

stat.FILE_ATTRIBUTE_ENCRYPTED

stat.FILE_ATTRIBUTE_HIDDEN

stat.FILE_ATTRIBUTE_INTEGRITY_STREAM

11.3. stat— Interpreting stat() results 475

https://manpages.debian.org/chflags(2)
https://msdn.microsoft.com/en-us/library/windows/desktop/gg258117.aspx

The Python Library Reference, Release 3.13.1

stat.FILE_ATTRIBUTE_NORMAL

stat.FILE_ATTRIBUTE_NOT_CONTENT_INDEXED

stat.FILE_ATTRIBUTE_NO_SCRUB_DATA

stat.FILE_ATTRIBUTE_OFFLINE

stat.FILE_ATTRIBUTE_READONLY

stat.FILE_ATTRIBUTE_REPARSE_POINT

stat.FILE_ATTRIBUTE_SPARSE_FILE

stat.FILE_ATTRIBUTE_SYSTEM

stat.FILE_ATTRIBUTE_TEMPORARY

stat.FILE_ATTRIBUTE_VIRTUAL

Added in version 3.5.

On Windows, the following constants are available for comparing against the st_reparse_tag member returned
by os.lstat(). These are well-known constants, but are not an exhaustive list.

stat.IO_REPARSE_TAG_SYMLINK

stat.IO_REPARSE_TAG_MOUNT_POINT

stat.IO_REPARSE_TAG_APPEXECLINK

Added in version 3.8.

11.4 filecmp— File and Directory Comparisons

Source code: Lib/filecmp.py

The filecmpmodule defines functions to compare files and directories, with various optional time/correctness trade-
offs. For comparing files, see also the difflib module.

The filecmp module defines the following functions:

filecmp.cmp(f1, f2, shallow=True)
Compare the files named f1 and f2, returning True if they seem equal, False otherwise.

If shallow is true and the os.stat() signatures (file type, size, and modification time) of both files are iden-
tical, the files are taken to be equal.

Otherwise, the files are treated as different if their sizes or contents differ.

Note that no external programs are called from this function, giving it portability and efficiency.

This function uses a cache for past comparisons and the results, with cache entries invalidated if the os.stat()
information for the file changes. The entire cache may be cleared using clear_cache().

filecmp.cmpfiles(dir1, dir2, common, shallow=True)
Compare the files in the two directories dir1 and dir2 whose names are given by common.

Returns three lists of file names: match, mismatch, errors. match contains the list of files that match, mismatch
contains the names of those that don’t, and errors lists the names of files which could not be compared. Files
are listed in errors if they don’t exist in one of the directories, the user lacks permission to read them or if the
comparison could not be done for some other reason.

The shallow parameter has the same meaning and default value as for filecmp.cmp().

For example, cmpfiles('a', 'b', ['c', 'd/e'])will compare a/cwith b/c and a/d/ewith b/d/e.
'c' and 'd/e' will each be in one of the three returned lists.

filecmp.clear_cache()

Clear the filecmp cache. This may be useful if a file is compared so quickly after it is modified that it is within
the mtime resolution of the underlying filesystem.

Added in version 3.4.

476 Chapter 11. File and Directory Access

https://github.com/python/cpython/tree/3.13/Lib/filecmp.py

The Python Library Reference, Release 3.13.1

11.4.1 The dircmp class

class filecmp.dircmp(a, b, ignore=None, hide=None, *, shallow=True)

Construct a new directory comparison object, to compare the directories a and b. ignore is a list of names to
ignore, and defaults to filecmp.DEFAULT_IGNORES. hide is a list of names to hide, and defaults to [os.
curdir, os.pardir].

The dircmp class compares files by doing shallow comparisons as described for filecmp.cmp() by default
using the shallow parameter.

Changed in version 3.13: Added the shallow parameter.

The dircmp class provides the following methods:

report()

Print (to sys.stdout) a comparison between a and b.

report_partial_closure()

Print a comparison between a and b and common immediate subdirectories.

report_full_closure()

Print a comparison between a and b and common subdirectories (recursively).

The dircmp class offers a number of interesting attributes that may be used to get various bits of information
about the directory trees being compared.

Note that via __getattr__() hooks, all attributes are computed lazily, so there is no speed penalty if only
those attributes which are lightweight to compute are used.

left

The directory a.

right

The directory b.

left_list

Files and subdirectories in a, filtered by hide and ignore.

right_list

Files and subdirectories in b, filtered by hide and ignore.

common

Files and subdirectories in both a and b.

left_only

Files and subdirectories only in a.

right_only

Files and subdirectories only in b.

common_dirs

Subdirectories in both a and b.

common_files

Files in both a and b.

common_funny

Names in both a and b, such that the type differs between the directories, or names for which os.stat()
reports an error.

same_files

Files which are identical in both a and b, using the class’s file comparison operator.

11.4. filecmp— File and Directory Comparisons 477

The Python Library Reference, Release 3.13.1

diff_files

Files which are in both a and b, whose contents differ according to the class’s file comparison operator.

funny_files

Files which are in both a and b, but could not be compared.

subdirs

A dictionary mapping names in common_dirs to dircmp instances (or MyDirCmp instances if this
instance is of type MyDirCmp, a subclass of dircmp).

Changed in version 3.10: Previously entries were always dircmp instances. Now entries are the same
type as self, if self is a subclass of dircmp.

filecmp.DEFAULT_IGNORES

Added in version 3.4.

List of directories ignored by dircmp by default.

Here is a simplified example of using the subdirs attribute to search recursively through two directories to show
common different files:

>>> from filecmp import dircmp

>>> def print_diff_files(dcmp):

... for name in dcmp.diff_files:

... print("diff_file %s found in %s and %s" % (name, dcmp.left,

... dcmp.right))

... for sub_dcmp in dcmp.subdirs.values():

... print_diff_files(sub_dcmp)

...

>>> dcmp = dircmp('dir1', 'dir2')

>>> print_diff_files(dcmp)

11.5 tempfile— Generate temporary files and directories

Source code: Lib/tempfile.py

This module creates temporary files and directories. It works on all supported platforms. TemporaryFile,
NamedTemporaryFile, TemporaryDirectory, and SpooledTemporaryFile are high-level interfaces which
provide automatic cleanup and can be used as context managers. mkstemp() and mkdtemp() are lower-level func-
tions which require manual cleanup.

All the user-callable functions and constructors take additional arguments which allow direct control over the location
and name of temporary files and directories. Files names used by this module include a string of random characters
which allows those files to be securely created in shared temporary directories. To maintain backward compatibility,
the argument order is somewhat odd; it is recommended to use keyword arguments for clarity.

The module defines the following user-callable items:

tempfile.TemporaryFile(mode=’w+b’, buffering=-1, encoding=None, newline=None, suffix=None,
prefix=None, dir=None, *, errors=None)

Return a file-like object that can be used as a temporary storage area. The file is created securely, using the same
rules as mkstemp(). It will be destroyed as soon as it is closed (including an implicit close when the object
is garbage collected). Under Unix, the directory entry for the file is either not created at all or is removed
immediately after the file is created. Other platforms do not support this; your code should not rely on a
temporary file created using this function having or not having a visible name in the file system.

The resulting object can be used as a context manager (see Examples). On completion of the context or de-
struction of the file object the temporary file will be removed from the filesystem.

478 Chapter 11. File and Directory Access

https://github.com/python/cpython/tree/3.13/Lib/tempfile.py

The Python Library Reference, Release 3.13.1

The mode parameter defaults to 'w+b' so that the file created can be read and written without being closed.
Binary mode is used so that it behaves consistently on all platforms without regard for the data that is stored.
buffering, encoding, errors and newline are interpreted as for open().

The dir, prefix and suffix parameters have the same meaning and defaults as with mkstemp().

The returned object is a true file object on POSIX platforms. On other platforms, it is a file-like object whose
file attribute is the underlying true file object.

The os.O_TMPFILE flag is used if it is available and works (Linux-specific, requires Linux kernel 3.11 or
later).

On platforms that are neither Posix nor Cygwin, TemporaryFile is an alias for NamedTemporaryFile.

Raises an auditing event tempfile.mkstemp with argument fullpath.

Changed in version 3.5: The os.O_TMPFILE flag is now used if available.

Changed in version 3.8: Added errors parameter.

tempfile.NamedTemporaryFile(mode=’w+b’, buffering=-1, encoding=None, newline=None, suffix=None,
prefix=None, dir=None, delete=True, *, errors=None, delete_on_close=True)

This function operates exactly as TemporaryFile() does, except the following differences:

• This function returns a file that is guaranteed to have a visible name in the file system.

• To manage the named file, it extends the parameters of TemporaryFile() with delete and
delete_on_close parameters that determine whether and how the named file should be automatically
deleted.

The returned object is always a file-like object whose file attribute is the underlying true file object. This file-
like object can be used in a with statement, just like a normal file. The name of the temporary file can be re-
trieved from the name attribute of the returned file-like object. On Unix, unlike with the TemporaryFile(),
the directory entry does not get unlinked immediately after the file creation.

If delete is true (the default) and delete_on_close is true (the default), the file is deleted as soon as it is closed.
If delete is true and delete_on_close is false, the file is deleted on context manager exit only, or else when the
file-like object is finalized. Deletion is not always guaranteed in this case (see object.__del__()). If delete
is false, the value of delete_on_close is ignored.

Therefore to use the name of the temporary file to reopen the file after closing it, either make sure not to delete
the file upon closure (set the delete parameter to be false) or, in case the temporary file is created in a with
statement, set the delete_on_close parameter to be false. The latter approach is recommended as it provides
assistance in automatic cleaning of the temporary file upon the context manager exit.

Opening the temporary file again by its name while it is still open works as follows:

• On POSIX the file can always be opened again.

• On Windows, make sure that at least one of the following conditions are fulfilled:

– delete is false

– additional open shares delete access (e.g. by calling os.open() with the flag O_TEMPORARY)

– delete is true but delete_on_close is false. Note, that in this case the additional opens that do not share
delete access (e.g. created via builtin open()) must be closed before exiting the context manager,
else the os.unlink() call on context manager exit will fail with a PermissionError.

On Windows, if delete_on_close is false, and the file is created in a directory for which the user lacks delete
access, then the os.unlink() call on exit of the context manager will fail with a PermissionError. This
cannot happen when delete_on_close is true because delete access is requested by the open, which fails imme-
diately if the requested access is not granted.

On POSIX (only), a process that is terminated abruptly with SIGKILL cannot automatically delete any
NamedTemporaryFiles it created.

Raises an auditing event tempfile.mkstemp with argument fullpath.

11.5. tempfile— Generate temporary files and directories 479

The Python Library Reference, Release 3.13.1

Changed in version 3.8: Added errors parameter.

Changed in version 3.12: Added delete_on_close parameter.

class tempfile.SpooledTemporaryFile(max_size=0, mode=’w+b’, buffering=-1, encoding=None,
newline=None, suffix=None, prefix=None, dir=None, *,
errors=None)

This class operates exactly as TemporaryFile() does, except that data is spooled in memory until the file
size exceeds max_size, or until the file’s fileno()method is called, at which point the contents are written to
disk and operation proceeds as with TemporaryFile().

rollover()

The resulting file has one additional method, rollover(), which causes the file to roll over to an on-disk
file regardless of its size.

The returned object is a file-like object whose _file attribute is either an io.BytesIO or io.

TextIOWrapper object (depending on whether binary or text mode was specified) or a true file object, de-
pending on whether rollover() has been called. This file-like object can be used in a with statement, just
like a normal file.

Changed in version 3.3: the truncate method now accepts a size argument.

Changed in version 3.8: Added errors parameter.

Changed in version 3.11: Fully implements the io.BufferedIOBase and io.TextIOBase abstract base
classes (depending on whether binary or text mode was specified).

class tempfile.TemporaryDirectory(suffix=None, prefix=None, dir=None, ignore_cleanup_errors=False,
*, delete=True)

This class securely creates a temporary directory using the same rules as mkdtemp(). The resulting object can
be used as a context manager (see Examples). On completion of the context or destruction of the temporary
directory object, the newly created temporary directory and all its contents are removed from the filesystem.

name

The directory name can be retrieved from the name attribute of the returned object. When the returned
object is used as a context manager, the name will be assigned to the target of the as clause in the with
statement, if there is one.

cleanup()

The directory can be explicitly cleaned up by calling the cleanup() method. If ignore_cleanup_errors
is true, any unhandled exceptions during explicit or implicit cleanup (such as a PermissionError
removing open files on Windows) will be ignored, and the remaining removable items deleted on a “best-
effort” basis. Otherwise, errors will be raised in whatever context cleanup occurs (the cleanup() call,
exiting the context manager, when the object is garbage-collected or during interpreter shutdown).

The delete parameter can be used to disable cleanup of the directory tree upon exiting the context. While it
may seem unusual for a context manager to disable the action taken when exiting the context, it can be useful
during debugging or when you need your cleanup behavior to be conditional based on other logic.

Raises an auditing event tempfile.mkdtemp with argument fullpath.

Added in version 3.2.

Changed in version 3.10: Added ignore_cleanup_errors parameter.

Changed in version 3.12: Added the delete parameter.

tempfile.mkstemp(suffix=None, prefix=None, dir=None, text=False)
Creates a temporary file in the most secure manner possible. There are no race conditions in the file’s creation,
assuming that the platform properly implements the os.O_EXCL flag for os.open(). The file is readable
and writable only by the creating user ID. If the platform uses permission bits to indicate whether a file is
executable, the file is executable by no one. The file descriptor is not inherited by child processes.

Unlike TemporaryFile(), the user of mkstemp() is responsible for deleting the temporary file when done
with it.

480 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

If suffix is not None, the file name will end with that suffix, otherwise there will be no suffix. mkstemp() does
not put a dot between the file name and the suffix; if you need one, put it at the beginning of suffix.

If prefix is not None, the file name will begin with that prefix; otherwise, a default prefix is used. The default
is the return value of gettempprefix() or gettempprefixb(), as appropriate.

If dir is not None, the file will be created in that directory; otherwise, a default directory is used. The default
directory is chosen from a platform-dependent list, but the user of the application can control the directory
location by setting the TMPDIR, TEMP or TMP environment variables. There is thus no guarantee that the gen-
erated filename will have any nice properties, such as not requiring quoting when passed to external commands
via os.popen().

If any of suffix, prefix, and dir are not None, they must be the same type. If they are bytes, the returned name
will be bytes instead of str. If you want to force a bytes return value with otherwise default behavior, pass
suffix=b''.

If text is specified and true, the file is opened in text mode. Otherwise, (the default) the file is opened in binary
mode.

mkstemp() returns a tuple containing an OS-level handle to an open file (as would be returned by os.open())
and the absolute pathname of that file, in that order.

Raises an auditing event tempfile.mkstemp with argument fullpath.

Changed in version 3.5: suffix, prefix, and dir may now be supplied in bytes in order to obtain a bytes re-
turn value. Prior to this, only str was allowed. suffix and prefix now accept and default to None to cause an
appropriate default value to be used.

Changed in version 3.6: The dir parameter now accepts a path-like object.

tempfile.mkdtemp(suffix=None, prefix=None, dir=None)
Creates a temporary directory in the most secure manner possible. There are no race conditions in the direc-
tory’s creation. The directory is readable, writable, and searchable only by the creating user ID.

The user of mkdtemp() is responsible for deleting the temporary directory and its contents when done with
it.

The prefix, suffix, and dir arguments are the same as for mkstemp().

mkdtemp() returns the absolute pathname of the new directory.

Raises an auditing event tempfile.mkdtemp with argument fullpath.

Changed in version 3.5: suffix, prefix, and dir may now be supplied in bytes in order to obtain a bytes re-
turn value. Prior to this, only str was allowed. suffix and prefix now accept and default to None to cause an
appropriate default value to be used.

Changed in version 3.6: The dir parameter now accepts a path-like object.

Changed in version 3.12: mkdtemp() now always returns an absolute path, even if dir is relative.

tempfile.gettempdir()

Return the name of the directory used for temporary files. This defines the default value for the dir argument
to all functions in this module.

Python searches a standard list of directories to find one which the calling user can create files in. The list is:

1. The directory named by the TMPDIR environment variable.

2. The directory named by the TEMP environment variable.

3. The directory named by the TMP environment variable.

4. A platform-specific location:

• On Windows, the directories C:\TEMP, C:\TMP, \TEMP, and \TMP, in that order.

• On all other platforms, the directories /tmp, /var/tmp, and /usr/tmp, in that order.

5. As a last resort, the current working directory.

11.5. tempfile— Generate temporary files and directories 481

The Python Library Reference, Release 3.13.1

The result of this search is cached, see the description of tempdir below.

Changed in version 3.10: Always returns a str. Previously it would return any tempdir value regardless of
type so long as it was not None.

tempfile.gettempdirb()

Same as gettempdir() but the return value is in bytes.

Added in version 3.5.

tempfile.gettempprefix()

Return the filename prefix used to create temporary files. This does not contain the directory component.

tempfile.gettempprefixb()

Same as gettempprefix() but the return value is in bytes.

Added in version 3.5.

The module uses a global variable to store the name of the directory used for temporary files returned by
gettempdir(). It can be set directly to override the selection process, but this is discouraged. All functions in
this module take a dir argument which can be used to specify the directory. This is the recommended approach that
does not surprise other unsuspecting code by changing global API behavior.

tempfile.tempdir

When set to a value other than None, this variable defines the default value for the dir argument to the functions
defined in this module, including its type, bytes or str. It cannot be a path-like object.

If tempdir is None (the default) at any call to any of the above functions except gettempprefix() it is
initialized following the algorithm described in gettempdir().

Note

Beware that if you set tempdir to a bytes value, there is a nasty side effect: The global default return type
of mkstemp() and mkdtemp() changes to bytes when no explicit prefix, suffix, or dir arguments
of type str are supplied. Please do not write code expecting or depending on this. This awkward behavior
is maintained for compatibility with the historical implementation.

11.5.1 Examples

Here are some examples of typical usage of the tempfile module:

>>> import tempfile

create a temporary file and write some data to it

>>> fp = tempfile.TemporaryFile()

>>> fp.write(b'Hello world!')

read data from file

>>> fp.seek(0)

>>> fp.read()

b'Hello world!'

close the file, it will be removed

>>> fp.close()

create a temporary file using a context manager

>>> with tempfile.TemporaryFile() as fp:

... fp.write(b'Hello world!')

... fp.seek(0)

... fp.read()

b'Hello world!'

>>>

(continues on next page)

482 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

(continued from previous page)

file is now closed and removed

create a temporary file using a context manager

close the file, use the name to open the file again

>>> with tempfile.NamedTemporaryFile(delete_on_close=False) as fp:

... fp.write(b'Hello world!')

... fp.close()

... # the file is closed, but not removed

... # open the file again by using its name

... with open(fp.name, mode='rb') as f:

... f.read()

b'Hello world!'

>>>

file is now removed

create a temporary directory using the context manager

>>> with tempfile.TemporaryDirectory() as tmpdirname:

... print('created temporary directory', tmpdirname)

>>>

directory and contents have been removed

11.5.2 Deprecated functions and variables

A historical way to create temporary files was to first generate a file name with the mktemp() function and then
create a file using this name. Unfortunately this is not secure, because a different process may create a file with this
name in the time between the call to mktemp() and the subsequent attempt to create the file by the first process. The
solution is to combine the two steps and create the file immediately. This approach is used by mkstemp() and the
other functions described above.

tempfile.mktemp(suffix=” , prefix=’tmp’, dir=None)
Deprecated since version 2.3: Use mkstemp() instead.

Return an absolute pathname of a file that did not exist at the time the call is made. The prefix, suffix, and dir
arguments are similar to those of mkstemp(), except that bytes file names, suffix=None and prefix=None
are not supported.

Warning

Use of this function may introduce a security hole in your program. By the time you get around to doing
anything with the file name it returns, someone else may have beaten you to the punch. mktemp() usage
can be replaced easily with NamedTemporaryFile(), passing it the delete=False parameter:

>>> f = NamedTemporaryFile(delete=False)

>>> f.name

'/tmp/tmptjujjt'

>>> f.write(b"Hello World!\n")

13

>>> f.close()

>>> os.unlink(f.name)

>>> os.path.exists(f.name)

False

11.5. tempfile— Generate temporary files and directories 483

The Python Library Reference, Release 3.13.1

11.6 glob— Unix style pathname pattern expansion

Source code: Lib/glob.py

The glob module finds all the pathnames matching a specified pattern according to the rules used by the Unix shell,
although results are returned in arbitrary order. No tilde expansion is done, but *, ?, and character ranges expressed
with [] will be correctly matched. This is done by using the os.scandir() and fnmatch.fnmatch() functions
in concert, and not by actually invoking a subshell.

Note that files beginning with a dot (.) can only be matched by patterns that also start with a dot, unlike fnmatch.
fnmatch() or pathlib.Path.glob(). (For tilde and shell variable expansion, use os.path.expanduser()
and os.path.expandvars().)

For a literal match, wrap the meta-characters in brackets. For example, '[?]' matches the character '?'.

The glob module defines the following functions:

glob.glob(pathname, *, root_dir=None, dir_fd=None, recursive=False, include_hidden=False)
Return a possibly empty list of path names that match pathname, which must be a string containing a path
specification. pathname can be either absolute (like /usr/src/Python-1.5/Makefile) or relative (like .
./../Tools/*/*.gif), and can contain shell-style wildcards. Broken symlinks are included in the results (as
in the shell). Whether or not the results are sorted depends on the file system. If a file that satisfies conditions
is removed or added during the call of this function, whether a path name for that file will be included is
unspecified.

If root_dir is not None, it should be a path-like object specifying the root directory for searching. It has the
same effect on glob() as changing the current directory before calling it. If pathname is relative, the result
will contain paths relative to root_dir.

This function can support paths relative to directory descriptors with the dir_fd parameter.

If recursive is true, the pattern “**” will match any files and zero or more directories, subdirectories and
symbolic links to directories. If the pattern is followed by an os.sep or os.altsep then files will not match.

If include_hidden is true, “**” pattern will match hidden directories.

Raises an auditing event glob.glob with arguments pathname, recursive.

Raises an auditing event glob.glob/2 with arguments pathname, recursive, root_dir, dir_fd.

Note

Using the “**” pattern in large directory trees may consume an inordinate amount of time.

Note

This function may return duplicate path names if pathname contains multiple “**” patterns and recursive
is true.

Changed in version 3.5: Support for recursive globs using “**”.

Changed in version 3.10: Added the root_dir and dir_fd parameters.

Changed in version 3.11: Added the include_hidden parameter.

glob.iglob(pathname, *, root_dir=None, dir_fd=None, recursive=False, include_hidden=False)
Return an iterator which yields the same values as glob() without actually storing them all simultaneously.

Raises an auditing event glob.glob with arguments pathname, recursive.

Raises an auditing event glob.glob/2 with arguments pathname, recursive, root_dir, dir_fd.

484 Chapter 11. File and Directory Access

https://github.com/python/cpython/tree/3.13/Lib/glob.py

The Python Library Reference, Release 3.13.1

Note

This function may return duplicate path names if pathname contains multiple “**” patterns and recursive
is true.

Changed in version 3.5: Support for recursive globs using “**”.

Changed in version 3.10: Added the root_dir and dir_fd parameters.

Changed in version 3.11: Added the include_hidden parameter.

glob.escape(pathname)

Escape all special characters ('?', '*' and '['). This is useful if you want to match an arbitrary literal string
that may have special characters in it. Special characters in drive/UNC sharepoints are not escaped, e.g. on
Windows escape('//?/c:/Quo vadis?.txt') returns '//?/c:/Quo vadis[?].txt'.

Added in version 3.4.

glob.translate(pathname, *, recursive=False, include_hidden=False, seps=None)
Convert the given path specification to a regular expression for use with re.match(). The path specification
can contain shell-style wildcards.

For example:

>>> import glob, re

>>>

>>> regex = glob.translate('**/*.txt', recursive=True, include_hidden=True)

>>> regex

'(?s:(?:.+/)?[^/]*\\.txt)\\Z'

>>> reobj = re.compile(regex)

>>> reobj.match('foo/bar/baz.txt')

<re.Match object; span=(0, 15), match='foo/bar/baz.txt'>

Path separators and segments are meaningful to this function, unlike fnmatch.translate(). By default
wildcards do not match path separators, and * pattern segments match precisely one path segment.

If recursive is true, the pattern segment “**” will match any number of path segments.

If include_hidden is true, wildcards can match path segments that start with a dot (.).

A sequence of path separators may be supplied to the seps argument. If not given, os.sep and altsep (if
available) are used.

See also

pathlib.PurePath.full_match() and pathlib.Path.glob() methods, which call this function
to implement pattern matching and globbing.

Added in version 3.13.

11.6.1 Examples

Consider a directory containing the following files: 1.gif, 2.txt, card.gif and a subdirectory subwhich contains
only the file 3.txt. glob() will produce the following results. Notice how any leading components of the path are
preserved.

>>> import glob

>>> glob.glob('./[0-9].*')

['./1.gif', './2.txt']

>>> glob.glob('*.gif')

(continues on next page)

11.6. glob— Unix style pathname pattern expansion 485

The Python Library Reference, Release 3.13.1

(continued from previous page)

['1.gif', 'card.gif']

>>> glob.glob('?.gif')

['1.gif']

>>> glob.glob('**/*.txt', recursive=True)

['2.txt', 'sub/3.txt']

>>> glob.glob('./**/', recursive=True)

['./', './sub/']

If the directory contains files starting with . they won’t be matched by default. For example, consider a directory
containing card.gif and .card.gif:

>>> import glob

>>> glob.glob('*.gif')

['card.gif']

>>> glob.glob('.c*')

['.card.gif']

See also

The fnmatch module offers shell-style filename (not path) expansion.

See also

The pathlib module offers high-level path objects.

11.7 fnmatch— Unix filename pattern matching

Source code: Lib/fnmatch.py

This module provides support for Unix shell-style wildcards, which are not the same as regular expressions (which
are documented in the re module). The special characters used in shell-style wildcards are:

Pattern Meaning

* matches everything
? matches any single character
[seq] matches any character in seq
[!seq] matches any character not in seq

For a literal match, wrap the meta-characters in brackets. For example, '[?]' matches the character '?'.

Note that the filename separator ('/' on Unix) is not special to this module. See module glob for pathname expan-
sion (glob uses filter() to match pathname segments). Similarly, filenames starting with a period are not special
for this module, and are matched by the * and ? patterns.

Also note that functools.lru_cache() with the maxsize of 32768 is used to cache the compiled regex patterns
in the following functions: fnmatch(), fnmatchcase(), filter().

fnmatch.fnmatch(name, pat)
Test whether the filename string name matches the pattern string pat, returning True or False. Both pa-
rameters are case-normalized using os.path.normcase(). fnmatchcase() can be used to perform a
case-sensitive comparison, regardless of whether that’s standard for the operating system.

This example will print all file names in the current directory with the extension .txt:

486 Chapter 11. File and Directory Access

https://github.com/python/cpython/tree/3.13/Lib/fnmatch.py

The Python Library Reference, Release 3.13.1

import fnmatch

import os

for file in os.listdir('.'):

if fnmatch.fnmatch(file, '*.txt'):

print(file)

fnmatch.fnmatchcase(name, pat)
Test whether the filename string namematches the pattern string pat, returning True or False; the comparison
is case-sensitive and does not apply os.path.normcase().

fnmatch.filter(names, pat)
Construct a list from those elements of the iterable names that match pattern pat. It is the same as [n for n

in names if fnmatch(n, pat)], but implemented more efficiently.

fnmatch.translate(pat)
Return the shell-style pattern pat converted to a regular expression for using with re.match().

Example:

>>> import fnmatch, re

>>>

>>> regex = fnmatch.translate('*.txt')

>>> regex

'(?s:.*\\.txt)\\Z'

>>> reobj = re.compile(regex)

>>> reobj.match('foobar.txt')

<re.Match object; span=(0, 10), match='foobar.txt'>

See also

Module glob
Unix shell-style path expansion.

11.8 linecache— Random access to text lines

Source code: Lib/linecache.py

The linecachemodule allows one to get any line from a Python source file, while attempting to optimize internally,
using a cache, the common case where many lines are read from a single file. This is used by the tracebackmodule
to retrieve source lines for inclusion in the formatted traceback.

The tokenize.open() function is used to open files. This function uses tokenize.detect_encoding() to get
the encoding of the file; in the absence of an encoding token, the file encoding defaults to UTF-8.

The linecache module defines the following functions:

linecache.getline(filename, lineno, module_globals=None)
Get line lineno from file named filename. This function will never raise an exception — it will return '' on
errors (the terminating newline character will be included for lines that are found).

If a file named filename is not found, the function first checks for a PEP 302 __loader__ in module_globals.
If there is such a loader and it defines a get_source method, then that determines the source lines (if
get_source() returns None, then '' is returned). Finally, if filename is a relative filename, it is looked
up relative to the entries in the module search path, sys.path.

11.8. linecache— Random access to text lines 487

https://github.com/python/cpython/tree/3.13/Lib/linecache.py
https://peps.python.org/pep-0302/

The Python Library Reference, Release 3.13.1

linecache.clearcache()

Clear the cache. Use this function if you no longer need lines from files previously read using getline().

linecache.checkcache(filename=None)

Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version. If filename is omitted, it will check all the entries in the cache.

linecache.lazycache(filename, module_globals)
Capture enough detail about a non-file-based module to permit getting its lines later via getline() even if
module_globals is None in the later call. This avoids doing I/O until a line is actually needed, without having
to carry the module globals around indefinitely.

Added in version 3.5.

Example:

>>> import linecache

>>> linecache.getline(linecache.__file__, 8)

'import sys\n'

11.9 shutil— High-level file operations

Source code: Lib/shutil.py

The shutilmodule offers a number of high-level operations on files and collections of files. In particular, functions
are provided which support file copying and removal. For operations on individual files, see also the os module.

Warning

Even the higher-level file copying functions (shutil.copy(), shutil.copy2()) cannot copy all filemetadata.

On POSIX platforms, this means that file owner and group are lost as well as ACLs. On Mac OS, the resource
fork and other metadata are not used. This means that resources will be lost and file type and creator codes will
not be correct. On Windows, file owners, ACLs and alternate data streams are not copied.

11.9.1 Directory and files operations

shutil.copyfileobj(fsrc, fdst[, length])
Copy the contents of the file-like object fsrc to the file-like object fdst. The integer length, if given, is the
buffer size. In particular, a negative length value means to copy the data without looping over the source data
in chunks; by default the data is read in chunks to avoid uncontrolled memory consumption. Note that if the
current file position of the fsrc object is not 0, only the contents from the current file position to the end of the
file will be copied.

shutil.copyfile(src, dst, *, follow_symlinks=True)
Copy the contents (no metadata) of the file named src to a file named dst and return dst in the most efficient
way possible. src and dst are path-like objects or path names given as strings.

dst must be the complete target file name; look at copy() for a copy that accepts a target directory path. If
src and dst specify the same file, SameFileError is raised.

The destination location must be writable; otherwise, an OSError exception will be raised. If dst already
exists, it will be replaced. Special files such as character or block devices and pipes cannot be copied with this
function.

If follow_symlinks is false and src is a symbolic link, a new symbolic link will be created instead of copying
the file src points to.

488 Chapter 11. File and Directory Access

https://github.com/python/cpython/tree/3.13/Lib/shutil.py

The Python Library Reference, Release 3.13.1

Raises an auditing event shutil.copyfile with arguments src, dst.

Changed in version 3.3: IOError used to be raised instead of OSError. Added follow_symlinks argument.
Now returns dst.

Changed in version 3.4: Raise SameFileError instead of Error. Since the former is a subclass of the latter,
this change is backward compatible.

Changed in version 3.8: Platform-specific fast-copy syscalls may be used internally in order to copy the file
more efficiently. See Platform-dependent efficient copy operations section.

exception shutil.SameFileError

This exception is raised if source and destination in copyfile() are the same file.

Added in version 3.4.

shutil.copymode(src, dst, *, follow_symlinks=True)
Copy the permission bits from src to dst. The file contents, owner, and group are unaffected. src and dst are
path-like objects or path names given as strings. If follow_symlinks is false, and both src and dst are symbolic
links, copymode() will attempt to modify the mode of dst itself (rather than the file it points to). This
functionality is not available on every platform; please see copystat() formore information. If copymode()
cannot modify symbolic links on the local platform, and it is asked to do so, it will do nothing and return.

Raises an auditing event shutil.copymode with arguments src, dst.

Changed in version 3.3: Added follow_symlinks argument.

shutil.copystat(src, dst, *, follow_symlinks=True)
Copy the permission bits, last access time, last modification time, and flags from src to dst. On Linux,
copystat() also copies the “extended attributes” where possible. The file contents, owner, and group are
unaffected. src and dst are path-like objects or path names given as strings.

If follow_symlinks is false, and src and dst both refer to symbolic links, copystat() will operate on the
symbolic links themselves rather than the files the symbolic links refer to—reading the information from the
src symbolic link, and writing the information to the dst symbolic link.

Note

Not all platforms provide the ability to examine and modify symbolic links. Python itself can tell you what
functionality is locally available.

• If os.chmod in os.supports_follow_symlinks is True, copystat() can modify the per-
mission bits of a symbolic link.

• If os.utime in os.supports_follow_symlinks is True, copystat() can modify the last
access and modification times of a symbolic link.

• If os.chflags in os.supports_follow_symlinks is True, copystat() can modify the
flags of a symbolic link. (os.chflags is not available on all platforms.)

On platforms where some or all of this functionality is unavailable, when asked to modify a symbolic link,
copystat() will copy everything it can. copystat() never returns failure.

Please see os.supports_follow_symlinks for more information.

Raises an auditing event shutil.copystat with arguments src, dst.

Changed in version 3.3: Added follow_symlinks argument and support for Linux extended attributes.

shutil.copy(src, dst, *, follow_symlinks=True)
Copies the file src to the file or directory dst. src and dst should be path-like objects or strings. If dst specifies
a directory, the file will be copied into dst using the base filename from src. If dst specifies a file that already
exists, it will be replaced. Returns the path to the newly created file.

11.9. shutil— High-level file operations 489

The Python Library Reference, Release 3.13.1

If follow_symlinks is false, and src is a symbolic link, dst will be created as a symbolic link. If follow_symlinks
is true and src is a symbolic link, dst will be a copy of the file src refers to.

copy() copies the file data and the file’s permission mode (see os.chmod()). Other metadata, like the file’s
creation and modification times, is not preserved. To preserve all file metadata from the original, use copy2()
instead.

Raises an auditing event shutil.copyfile with arguments src, dst.

Raises an auditing event shutil.copymode with arguments src, dst.

Changed in version 3.3: Added follow_symlinks argument. Now returns path to the newly created file.

Changed in version 3.8: Platform-specific fast-copy syscalls may be used internally in order to copy the file
more efficiently. See Platform-dependent efficient copy operations section.

shutil.copy2(src, dst, *, follow_symlinks=True)
Identical to copy() except that copy2() also attempts to preserve file metadata.

When follow_symlinks is false, and src is a symbolic link, copy2() attempts to copy all metadata from the
src symbolic link to the newly created dst symbolic link. However, this functionality is not available on all
platforms. On platforms where some or all of this functionality is unavailable, copy2() will preserve all the
metadata it can; copy2() never raises an exception because it cannot preserve file metadata.

copy2() uses copystat() to copy the file metadata. Please see copystat() for more information about
platform support for modifying symbolic link metadata.

Raises an auditing event shutil.copyfile with arguments src, dst.

Raises an auditing event shutil.copystat with arguments src, dst.

Changed in version 3.3: Added follow_symlinks argument, try to copy extended file system attributes too
(currently Linux only). Now returns path to the newly created file.

Changed in version 3.8: Platform-specific fast-copy syscalls may be used internally in order to copy the file
more efficiently. See Platform-dependent efficient copy operations section.

shutil.ignore_patterns(*patterns)
This factory function creates a function that can be used as a callable for copytree()’s ignore argument,
ignoring files and directories that match one of the glob-style patterns provided. See the example below.

shutil.copytree(src, dst, symlinks=False, ignore=None, copy_function=copy2,
ignore_dangling_symlinks=False, dirs_exist_ok=False)

Recursively copy an entire directory tree rooted at src to a directory named dst and return the destination
directory. All intermediate directories needed to contain dst will also be created by default.

Permissions and times of directories are copied with copystat(), individual files are copied using copy2().

If symlinks is true, symbolic links in the source tree are represented as symbolic links in the new tree and the
metadata of the original links will be copied as far as the platform allows; if false or omitted, the contents and
metadata of the linked files are copied to the new tree.

When symlinks is false, if the file pointed to by the symlink doesn’t exist, an exception will be added in
the list of errors raised in an Error exception at the end of the copy process. You can set the optional ig-
nore_dangling_symlinks flag to true if you want to silence this exception. Notice that this option has no effect
on platforms that don’t support os.symlink().

If ignore is given, it must be a callable that will receive as its arguments the directory being visited by
copytree(), and a list of its contents, as returned by os.listdir(). Since copytree() is called re-
cursively, the ignore callable will be called once for each directory that is copied. The callable must return a
sequence of directory and file names relative to the current directory (i.e. a subset of the items in its second
argument); these names will then be ignored in the copy process. ignore_patterns() can be used to create
such a callable that ignores names based on glob-style patterns.

If exception(s) occur, an Error is raised with a list of reasons.

490 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

If copy_function is given, it must be a callable that will be used to copy each file. It will be called with the
source path and the destination path as arguments. By default, copy2() is used, but any function that supports
the same signature (like copy()) can be used.

If dirs_exist_ok is false (the default) and dst already exists, a FileExistsError is raised. If dirs_exist_ok is
true, the copying operation will continue if it encounters existing directories, and files within the dst tree will
be overwritten by corresponding files from the src tree.

Raises an auditing event shutil.copytree with arguments src, dst.

Changed in version 3.2: Added the copy_function argument to be able to provide a custom copy function.
Added the ignore_dangling_symlinks argument to silence dangling symlinks errors when symlinks is false.

Changed in version 3.3: Copy metadata when symlinks is false. Now returns dst.

Changed in version 3.8: Platform-specific fast-copy syscalls may be used internally in order to copy the file
more efficiently. See Platform-dependent efficient copy operations section.

Changed in version 3.8: Added the dirs_exist_ok parameter.

shutil.rmtree(path, ignore_errors=False, onerror=None, *, onexc=None, dir_fd=None)
Delete an entire directory tree; path must point to a directory (but not a symbolic link to a directory). If
ignore_errors is true, errors resulting from failed removals will be ignored; if false or omitted, such errors are
handled by calling a handler specified by onexc or onerror or, if both are omitted, exceptions are propagated
to the caller.

This function can support paths relative to directory descriptors.

Note

On platforms that support the necessary fd-based functions a symlink attack resistant version of rmtree()
is used by default. On other platforms, the rmtree() implementation is susceptible to a symlink attack:
given proper timing and circumstances, attackers can manipulate symlinks on the filesystem to delete files
theywouldn’t be able to access otherwise. Applications can use the rmtree.avoids_symlink_attacks
function attribute to determine which case applies.

If onexc is provided, it must be a callable that accepts three parameters: function, path, and excinfo.

The first parameter, function, is the function which raised the exception; it depends on the platform and im-
plementation. The second parameter, path, will be the path name passed to function. The third parameter,
excinfo, is the exception that was raised. Exceptions raised by onexc will not be caught.

The deprecated onerror is similar to onexc, except that the third parameter it receives is the tuple returned
from sys.exc_info().

Raises an auditing event shutil.rmtree with arguments path, dir_fd.

Changed in version 3.3: Added a symlink attack resistant version that is used automatically if platform supports
fd-based functions.

Changed in version 3.8: OnWindows, will no longer delete the contents of a directory junction before removing
the junction.

Changed in version 3.11: Added the dir_fd parameter.

Changed in version 3.12: Added the onexc parameter, deprecated onerror.

Changed in version 3.13: rmtree() now ignores FileNotFoundError exceptions for all but the top-level
path. Exceptions other than OSError and subclasses of OSError are now always propagated to the caller.

rmtree.avoids_symlink_attacks

Indicates whether the current platform and implementation provides a symlink attack resistant version of
rmtree(). Currently this is only true for platforms supporting fd-based directory access functions.

Added in version 3.3.

11.9. shutil— High-level file operations 491

The Python Library Reference, Release 3.13.1

shutil.move(src, dst, copy_function=copy2)
Recursively move a file or directory (src) to another location and return the destination.

If dst is an existing directory or a symlink to a directory, then src is moved inside that directory. The destination
path in that directory must not already exist.

If dst already exists but is not a directory, it may be overwritten depending on os.rename() semantics.

If the destination is on the current filesystem, then os.rename() is used. Otherwise, src is copied to the
destination using copy_function and then removed. In case of symlinks, a new symlink pointing to the target
of src will be created as the destination and src will be removed.

If copy_function is given, it must be a callable that takes two arguments, src and the destination, and will
be used to copy src to the destination if os.rename() cannot be used. If the source is a directory,
copytree() is called, passing it the copy_function. The default copy_function is copy2(). Using copy() as
the copy_function allows the move to succeed when it is not possible to also copy the metadata, at the expense
of not copying any of the metadata.

Raises an auditing event shutil.move with arguments src, dst.

Changed in version 3.3: Added explicit symlink handling for foreign filesystems, thus adapting it to the behavior
of GNU’s mv. Now returns dst.

Changed in version 3.5: Added the copy_function keyword argument.

Changed in version 3.8: Platform-specific fast-copy syscalls may be used internally in order to copy the file
more efficiently. See Platform-dependent efficient copy operations section.

Changed in version 3.9: Accepts a path-like object for both src and dst.

shutil.disk_usage(path)
Return disk usage statistics about the given path as a named tuple with the attributes total, used and free, which
are the amount of total, used and free space, in bytes. path may be a file or a directory.

Note

On Unix filesystems, pathmust point to a path within amounted filesystem partition. On those platforms,
CPython doesn’t attempt to retrieve disk usage information from non-mounted filesystems.

Added in version 3.3.

Changed in version 3.8: On Windows, path can now be a file or directory.

Availability: Unix, Windows.

shutil.chown(path, user=None, group=None, *, dir_fd=None, follow_symlinks=True)

Change owner user and/or group of the given path.

user can be a system user name or a uid; the same applies to group. At least one argument is required.

See also os.chown(), the underlying function.

Raises an auditing event shutil.chown with arguments path, user, group.

Availability: Unix.

Added in version 3.3.

Changed in version 3.13: Added dir_fd and follow_symlinks parameters.

shutil.which(cmd, mode=os.F_OK | os.X_OK, path=None)
Return the path to an executable which would be run if the given cmd was called. If no cmd would be called,
return None.

mode is a permission mask passed to os.access(), by default determining if the file exists and is executable.

492 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

path is a “PATH string” specifying the directories to look in, delimited by os.pathsep. When no path is
specified, the PATH environment variable is read from os.environ, falling back to os.defpath if it is not
set.

On Windows, the current directory is prepended to the path if mode does not include os.X_OK. When the
mode does include os.X_OK, the Windows API NeedCurrentDirectoryForExePathW will be consulted
to determine if the current directory should be prepended to path. To avoid consulting the current working
directory for executables: set the environment variable NoDefaultCurrentDirectoryInExePath.

Also on Windows, the PATHEXT environment variable is used to resolve commands that may not already
include an extension. For example, if you call shutil.which("python"), which() will search PATHEXT
to know that it should look for python.exe within the path directories. For example, on Windows:

>>> shutil.which("python")

'C:\\Python33\\python.EXE'

This is also applied when cmd is a path that contains a directory component:

>> shutil.which("C:\\Python33\\python")

'C:\\Python33\\python.EXE'

Added in version 3.3.

Changed in version 3.8: The bytes type is now accepted. If cmd type is bytes, the result type is also bytes.

Changed in version 3.12: OnWindows, the current directory is no longer prepended to the search path ifmode
includes os.X_OK and WinAPI NeedCurrentDirectoryForExePathW(cmd) is false, else the current di-
rectory is prepended even if it is already in the search path; PATHEXT is used now even when cmd includes a
directory component or ends with an extension that is in PATHEXT; and filenames that have no extension can
now be found.

exception shutil.Error

This exception collects exceptions that are raised during amulti-file operation. For copytree(), the exception
argument is a list of 3-tuples (srcname, dstname, exception).

Platform-dependent efficient copy operations

Starting from Python 3.8, all functions involving a file copy (copyfile(), copy(), copy2(), copytree(), and
move()) may use platform-specific “fast-copy” syscalls in order to copy the file more efficiently (see bpo-33671).
“fast-copy” means that the copying operation occurs within the kernel, avoiding the use of userspace buffers in Python
as in “outfd.write(infd.read())”.

On macOS fcopyfile is used to copy the file content (not metadata).

On Linux os.sendfile() is used.

On Windows shutil.copyfile() uses a bigger default buffer size (1 MiB instead of 64 KiB) and a
memoryview()-based variant of shutil.copyfileobj() is used.

If the fast-copy operation fails and no data was written in the destination file then shutil will silently fallback on using
less efficient copyfileobj() function internally.

Changed in version 3.8.

copytree example

An example that uses the ignore_patterns() helper:

from shutil import copytree, ignore_patterns

copytree(source, destination, ignore=ignore_patterns('*.pyc', 'tmp*'))

This will copy everything except .pyc files and files or directories whose name starts with tmp.

Another example that uses the ignore argument to add a logging call:

11.9. shutil— High-level file operations 493

https://bugs.python.org/issue?@action=redirect&bpo=33671
http://www.manpagez.com/man/3/copyfile/

The Python Library Reference, Release 3.13.1

from shutil import copytree

import logging

def _logpath(path, names):

logging.info('Working in %s', path)

return [] # nothing will be ignored

copytree(source, destination, ignore=_logpath)

rmtree example

This example shows how to remove a directory tree on Windows where some of the files have their read-only bit set.
It uses the onexc callback to clear the readonly bit and reattempt the remove. Any subsequent failure will propagate.

import os, stat

import shutil

def remove_readonly(func, path, _):

"Clear the readonly bit and reattempt the removal"

os.chmod(path, stat.S_IWRITE)

func(path)

shutil.rmtree(directory, onexc=remove_readonly)

11.9.2 Archiving operations

Added in version 3.2.

Changed in version 3.5: Added support for the xztar format.

High-level utilities to create and read compressed and archived files are also provided. They rely on the zipfile
and tarfile modules.

shutil.make_archive(base_name, format[, root_dir[, base_dir[, verbose[, dry_run[, owner[, group[, logger
]]]]]]])

Create an archive file (such as zip or tar) and return its name.

base_name is the name of the file to create, including the path, minus any format-specific extension.

format is the archive format: one of “zip” (if the zlibmodule is available), “tar”, “gztar” (if the zlibmodule
is available), “bztar” (if the bz2 module is available), or “xztar” (if the lzma module is available).

root_dir is a directory that will be the root directory of the archive, all paths in the archive will be relative to
it; for example, we typically chdir into root_dir before creating the archive.

base_dir is the directory where we start archiving from; i.e. base_dir will be the common prefix of all files and
directories in the archive. base_dir must be given relative to root_dir. See Archiving example with base_dir for
how to use base_dir and root_dir together.

root_dir and base_dir both default to the current directory.

If dry_run is true, no archive is created, but the operations that would be executed are logged to logger.

owner and group are used when creating a tar archive. By default, uses the current owner and group.

logger must be an object compatible with PEP 282, usually an instance of logging.Logger.

The verbose argument is unused and deprecated.

Raises an auditing event shutil.make_archive with arguments base_name, format, root_dir,
base_dir.

494 Chapter 11. File and Directory Access

https://peps.python.org/pep-0282/

The Python Library Reference, Release 3.13.1

Note

This function is not thread-safe when custom archivers registered with register_archive_format()
do not support the root_dir argument. In this case it temporarily changes the current working directory of
the process to root_dir to perform archiving.

Changed in version 3.8: The modern pax (POSIX.1-2001) format is now used instead of the legacy GNU
format for archives created with format="tar".

Changed in version 3.10.6: This function is now made thread-safe during creation of standard .zip and tar
archives.

shutil.get_archive_formats()

Return a list of supported formats for archiving. Each element of the returned sequence is a tuple (name,
description).

By default shutil provides these formats:

• zip: ZIP file (if the zlib module is available).

• tar: Uncompressed tar file. Uses POSIX.1-2001 pax format for new archives.

• gztar: gzip’ed tar-file (if the zlib module is available).

• bztar: bzip2’ed tar-file (if the bz2 module is available).

• xztar: xz’ed tar-file (if the lzma module is available).

You can register new formats or provide your own archiver for any existing formats, by using
register_archive_format().

shutil.register_archive_format(name, function[, extra_args[, description]])
Register an archiver for the format name.

function is the callable that will be used to unpack archives. The callable will receive the base_name of the file
to create, followed by the base_dir (which defaults to os.curdir) to start archiving from. Further arguments
are passed as keyword arguments: owner, group, dry_run and logger (as passed in make_archive()).

If function has the custom attribute function.supports_root_dir set to True, the root_dir argument is
passed as a keyword argument. Otherwise the current working directory of the process is temporarily changed
to root_dir before calling function. In this case make_archive() is not thread-safe.

If given, extra_args is a sequence of (name, value) pairs that will be used as extra keywords arguments
when the archiver callable is used.

description is used by get_archive_formats() which returns the list of archivers. Defaults to an empty
string.

Changed in version 3.12: Added support for functions supporting the root_dir argument.

shutil.unregister_archive_format(name)
Remove the archive format name from the list of supported formats.

shutil.unpack_archive(filename[, extract_dir[, format[, filter]]])
Unpack an archive. filename is the full path of the archive.

extract_dir is the name of the target directory where the archive is unpacked. If not provided, the current
working directory is used.

format is the archive format: one of “zip”, “tar”, “gztar”, “bztar”, or “xztar”. Or any other format registered
with register_unpack_format(). If not provided, unpack_archive() will use the archive file name
extension and see if an unpacker was registered for that extension. In case none is found, a ValueError is
raised.

11.9. shutil— High-level file operations 495

The Python Library Reference, Release 3.13.1

The keyword-only filter argument is passed to the underlying unpacking function. For zip files, filter is not
accepted. For tar files, it is recommended to set it to 'data', unless using features specific to tar and UNIX-
like filesystems. (See Extraction filters for details.) The 'data' filter will become the default for tar files in
Python 3.14.

Raises an auditing event shutil.unpack_archive with arguments filename, extract_dir, format.

Warning

Never extract archives from untrusted sources without prior inspection. It is possible that files are created
outside of the path specified in the extract_dir argument, e.g. members that have absolute filenames starting
with “/” or filenames with two dots “..”.

Changed in version 3.7: Accepts a path-like object for filename and extract_dir.

Changed in version 3.12: Added the filter argument.

shutil.register_unpack_format(name, extensions, function[, extra_args[, description]])
Registers an unpack format. name is the name of the format and extensions is a list of extensions corresponding
to the format, like .zip for Zip files.

function is the callable that will be used to unpack archives. The callable will receive:

• the path of the archive, as a positional argument;

• the directory the archive must be extracted to, as a positional argument;

• possibly a filter keyword argument, if it was given to unpack_archive();

• additional keyword arguments, specified by extra_args as a sequence of (name, value) tuples.

description can be provided to describe the format, and will be returned by the get_unpack_formats()
function.

shutil.unregister_unpack_format(name)
Unregister an unpack format. name is the name of the format.

shutil.get_unpack_formats()

Return a list of all registered formats for unpacking. Each element of the returned sequence is a tuple (name,
extensions, description).

By default shutil provides these formats:

• zip: ZIP file (unpacking compressed files works only if the corresponding module is available).

• tar: uncompressed tar file.

• gztar: gzip’ed tar-file (if the zlib module is available).

• bztar: bzip2’ed tar-file (if the bz2 module is available).

• xztar: xz’ed tar-file (if the lzma module is available).

You can register new formats or provide your own unpacker for any existing formats, by using
register_unpack_format().

Archiving example

In this example, we create a gzip’ed tar-file archive containing all files found in the .ssh directory of the user:

>>> from shutil import make_archive

>>> import os

>>> archive_name = os.path.expanduser(os.path.join('~', 'myarchive'))

>>> root_dir = os.path.expanduser(os.path.join('~', '.ssh'))

>>> make_archive(archive_name, 'gztar', root_dir)

'/Users/tarek/myarchive.tar.gz'

496 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.13.1

The resulting archive contains:

$ tar -tzvf /Users/tarek/myarchive.tar.gz

drwx------ tarek/staff 0 2010-02-01 16:23:40 ./

-rw-r--r-- tarek/staff 609 2008-06-09 13:26:54 ./authorized_keys

-rwxr-xr-x tarek/staff 65 2008-06-09 13:26:54 ./config

-rwx------ tarek/staff 668 2008-06-09 13:26:54 ./id_dsa

-rwxr-xr-x tarek/staff 609 2008-06-09 13:26:54 ./id_dsa.pub

-rw------- tarek/staff 1675 2008-06-09 13:26:54 ./id_rsa

-rw-r--r-- tarek/staff 397 2008-06-09 13:26:54 ./id_rsa.pub

-rw-r--r-- tarek/staff 37192 2010-02-06 18:23:10 ./known_hosts

Archiving example with base_dir

In this example, similar to the one above, we show how to use make_archive(), but this time with the usage of
base_dir. We now have the following directory structure:

$ tree tmp

tmp

└── root

└── structure

├── content

└── please_add.txt

└── do_not_add.txt

In the final archive, please_add.txt should be included, but do_not_add.txt should not. Therefore we use the
following:

>>> from shutil import make_archive

>>> import os

>>> archive_name = os.path.expanduser(os.path.join('~', 'myarchive'))

>>> make_archive(

... archive_name,

... 'tar',

... root_dir='tmp/root',

... base_dir='structure/content',

...)

'/Users/tarek/my_archive.tar'

Listing the files in the resulting archive gives us:

$ python -m tarfile -l /Users/tarek/myarchive.tar

structure/content/

structure/content/please_add.txt

11.9.3 Querying the size of the output terminal

shutil.get_terminal_size(fallback=(columns, lines))
Get the size of the terminal window.

For each of the two dimensions, the environment variable, COLUMNS and LINES respectively, is checked. If
the variable is defined and the value is a positive integer, it is used.

When COLUMNS or LINES is not defined, which is the common case, the terminal connected to sys.

__stdout__ is queried by invoking os.get_terminal_size().

If the terminal size cannot be successfully queried, either because the system doesn’t support querying, or
because we are not connected to a terminal, the value given in fallback parameter is used. fallback

defaults to (80, 24) which is the default size used by many terminal emulators.

11.9. shutil— High-level file operations 497

The Python Library Reference, Release 3.13.1

The value returned is a named tuple of type os.terminal_size.

See also: The Single UNIX Specification, Version 2, Other Environment Variables.

Added in version 3.3.

Changed in version 3.11: The fallback values are also used if os.get_terminal_size() returns zeroes.

See also

Module os
Operating system interfaces, including functions to work with files at a lower level than Python file objects.

Module io
Python’s built-in I/O library, including both abstract classes and some concrete classes such as file I/O.

Built-in function open()
The standard way to open files for reading and writing with Python.

498 Chapter 11. File and Directory Access

https://pubs.opengroup.org/onlinepubs/7908799/xbd/envvar.html#tag_002_003

CHAPTER

TWELVE

DATA PERSISTENCE

The modules described in this chapter support storing Python data in a persistent form on disk. The pickle and
marshal modules can turn many Python data types into a stream of bytes and then recreate the objects from the
bytes. The various DBM-related modules support a family of hash-based file formats that store a mapping of strings
to other strings.

The list of modules described in this chapter is:

12.1 pickle— Python object serialization

Source code: Lib/pickle.py

The pickle module implements binary protocols for serializing and de-serializing a Python object structure. “Pick-
ling” is the process whereby a Python object hierarchy is converted into a byte stream, and “unpickling” is the inverse
operation, whereby a byte stream (from a binary file or bytes-like object) is converted back into an object hierarchy.
Pickling (and unpickling) is alternatively known as “serialization”, “marshalling,”1 or “flattening”; however, to avoid
confusion, the terms used here are “pickling” and “unpickling”.

Warning

The pickle module is not secure. Only unpickle data you trust.

It is possible to construct malicious pickle data which will execute arbitrary code during unpickling. Never
unpickle data that could have come from an untrusted source, or that could have been tampered with.

Consider signing data with hmac if you need to ensure that it has not been tampered with.

Safer serialization formats such as json may be more appropriate if you are processing untrusted data. See
Comparison with json.

12.1.1 Relationship to other Python modules

Comparison with marshal

Python has a more primitive serialization module called marshal, but in general pickle should always be the
preferred way to serialize Python objects. marshal exists primarily to support Python’s .pyc files.

The pickle module differs from marshal in several significant ways:

• The pickle module keeps track of the objects it has already serialized, so that later references to the same
object won’t be serialized again. marshal doesn’t do this.

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive
objects will crash your Python interpreter. Object sharing happens when there are multiple references to the

1 Don’t confuse this with the marshal module

499

https://github.com/python/cpython/tree/3.13/Lib/pickle.py

The Python Library Reference, Release 3.13.1

same object in different places in the object hierarchy being serialized. pickle stores such objects only once,
and ensures that all other references point to the master copy. Shared objects remain shared, which can be very
important for mutable objects.

• marshal cannot be used to serialize user-defined classes and their instances. pickle can save and restore
class instances transparently, however the class definition must be importable and live in the same module as
when the object was stored.

• The marshal serialization format is not guaranteed to be portable across Python versions. Because its primary
job in life is to support .pyc files, the Python implementers reserve the right to change the serialization format
in non-backwards compatible ways should the need arise. The pickle serialization format is guaranteed to be
backwards compatible across Python releases provided a compatible pickle protocol is chosen and pickling and
unpickling code deals with Python 2 to Python 3 type differences if your data is crossing that unique breaking
change language boundary.

Comparison with json

There are fundamental differences between the pickle protocols and JSON (JavaScript Object Notation):

• JSON is a text serialization format (it outputs unicode text, although most of the time it is then encoded to
utf-8), while pickle is a binary serialization format;

• JSON is human-readable, while pickle is not;

• JSON is interoperable and widely used outside of the Python ecosystem, while pickle is Python-specific;

• JSON, by default, can only represent a subset of the Python built-in types, and no custom classes; pickle can
represent an extremely large number of Python types (many of them automatically, by clever usage of Python’s
introspection facilities; complex cases can be tackled by implementing specific object APIs);

• Unlike pickle, deserializing untrusted JSON does not in itself create an arbitrary code execution vulnerability.

See also

The json module: a standard library module allowing JSON serialization and deserialization.

12.1.2 Data stream format

The data format used by pickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as JSON (which can’t represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, the pickle data format uses a relatively compact binary representation. If you need optimal size char-
acteristics, you can efficiently compress pickled data.

The module pickletools contains tools for analyzing data streams generated by pickle. pickletools source
code has extensive comments about opcodes used by pickle protocols.

There are currently 6 different protocols which can be used for pickling. The higher the protocol used, the more
recent the version of Python needed to read the pickle produced.

• Protocol version 0 is the original “human-readable” protocol and is backwards compatible with earlier versions
of Python.

• Protocol version 1 is an old binary format which is also compatible with earlier versions of Python.

• Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style classes.
Refer to PEP 307 for information about improvements brought by protocol 2.

• Protocol version 3 was added in Python 3.0. It has explicit support for bytes objects and cannot be unpickled
by Python 2.x. This was the default protocol in Python 3.0–3.7.

• Protocol version 4 was added in Python 3.4. It adds support for very large objects, pickling more kinds of
objects, and some data format optimizations. It is the default protocol starting with Python 3.8. Refer to PEP
3154 for information about improvements brought by protocol 4.

500 Chapter 12. Data Persistence

https://json.org
https://peps.python.org/pep-0307/
https://peps.python.org/pep-3154/
https://peps.python.org/pep-3154/

The Python Library Reference, Release 3.13.1

• Protocol version 5 was added in Python 3.8. It adds support for out-of-band data and speedup for in-band data.
Refer to PEP 574 for information about improvements brought by protocol 5.

Note

Serialization is a more primitive notion than persistence; although pickle reads and writes file objects, it does
not handle the issue of naming persistent objects, nor the (even more complicated) issue of concurrent access to
persistent objects. The pickle module can transform a complex object into a byte stream and it can transform
the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do with these
byte streams is to write them onto a file, but it is also conceivable to send them across a network or store them in a
database. The shelvemodule provides a simple interface to pickle and unpickle objects on DBM-style database
files.

12.1.3 Module Interface

To serialize an object hierarchy, you simply call the dumps() function. Similarly, to de-serialize a data stream, you
call the loads() function. However, if you want more control over serialization and de-serialization, you can create
a Pickler or an Unpickler object, respectively.

The pickle module provides the following constants:

pickle.HIGHEST_PROTOCOL

An integer, the highest protocol version available. This value can be passed as a protocol value to functions
dump() and dumps() as well as the Pickler constructor.

pickle.DEFAULT_PROTOCOL

An integer, the default protocol version used for pickling. May be less than HIGHEST_PROTOCOL. Currently
the default protocol is 4, first introduced in Python 3.4 and incompatible with previous versions.

Changed in version 3.0: The default protocol is 3.

Changed in version 3.8: The default protocol is 4.

The pickle module provides the following functions to make the pickling process more convenient:

pickle.dump(obj, file, protocol=None, *, fix_imports=True, buffer_callback=None)
Write the pickled representation of the object obj to the open file object file. This is equivalent to
Pickler(file, protocol).dump(obj).

Arguments file, protocol, fix_imports and buffer_callback have the same meaning as in the Pickler construc-
tor.

Changed in version 3.8: The buffer_callback argument was added.

pickle.dumps(obj, protocol=None, *, fix_imports=True, buffer_callback=None)
Return the pickled representation of the object obj as a bytes object, instead of writing it to a file.

Arguments protocol, fix_imports and buffer_callback have the same meaning as in the Pickler constructor.

Changed in version 3.8: The buffer_callback argument was added.

pickle.load(file, *, fix_imports=True, encoding=’ASCII’, errors=’strict’, buffers=None)
Read the pickled representation of an object from the open file object file and return the reconstituted object
hierarchy specified therein. This is equivalent to Unpickler(file).load().

The protocol version of the pickle is detected automatically, so no protocol argument is needed. Bytes past the
pickled representation of the object are ignored.

Arguments file, fix_imports, encoding, errors, strict and buffers have the same meaning as in the Unpickler
constructor.

Changed in version 3.8: The buffers argument was added.

12.1. pickle— Python object serialization 501

https://peps.python.org/pep-0574/

The Python Library Reference, Release 3.13.1

pickle.loads(data, / , *, fix_imports=True, encoding=’ASCII’, errors=’strict’, buffers=None)
Return the reconstituted object hierarchy of the pickled representation data of an object. data must be a
bytes-like object.

The protocol version of the pickle is detected automatically, so no protocol argument is needed. Bytes past the
pickled representation of the object are ignored.

Arguments fix_imports, encoding, errors, strict and buffers have the same meaning as in the Unpickler con-
structor.

Changed in version 3.8: The buffers argument was added.

The pickle module defines three exceptions:

exception pickle.PickleError

Common base class for the other pickling exceptions. It inherits from Exception.

exception pickle.PicklingError

Error raised when an unpicklable object is encountered by Pickler. It inherits from PickleError.

Refer toWhat can be pickled and unpickled? to learn what kinds of objects can be pickled.

exception pickle.UnpicklingError

Error raised when there is a problem unpickling an object, such as a data corruption or a security violation. It
inherits from PickleError.

Note that other exceptions may also be raised during unpickling, including (but not necessarily limited to)
AttributeError, EOFError, ImportError, and IndexError.

The pickle module exports three classes, Pickler, Unpickler and PickleBuffer:

class pickle.Pickler(file, protocol=None, *, fix_imports=True, buffer_callback=None)
This takes a binary file for writing a pickle data stream.

The optional protocol argument, an integer, tells the pickler to use the given protocol; supported protocols
are 0 to HIGHEST_PROTOCOL. If not specified, the default is DEFAULT_PROTOCOL. If a negative number is
specified, HIGHEST_PROTOCOL is selected.

The file argument must have a write() method that accepts a single bytes argument. It can thus be an on-disk
file opened for binary writing, an io.BytesIO instance, or any other custom object that meets this interface.

If fix_imports is true and protocol is less than 3, pickle will try to map the new Python 3 names to the old
module names used in Python 2, so that the pickle data stream is readable with Python 2.

If buffer_callback is None (the default), buffer views are serialized into file as part of the pickle stream.

If buffer_callback is not None, then it can be called any number of times with a buffer view. If the callback
returns a false value (such as None), the given buffer is out-of-band; otherwise the buffer is serialized in-band,
i.e. inside the pickle stream.

It is an error if buffer_callback is not None and protocol is None or smaller than 5.

Changed in version 3.8: The buffer_callback argument was added.

dump(obj)

Write the pickled representation of obj to the open file object given in the constructor.

persistent_id(obj)
Do nothing by default. This exists so a subclass can override it.

If persistent_id() returns None, obj is pickled as usual. Any other value causes Pickler to emit
the returned value as a persistent ID for obj. The meaning of this persistent ID should be defined by
Unpickler.persistent_load(). Note that the value returned by persistent_id() cannot itself
have a persistent ID.

See Persistence of External Objects for details and examples of uses.

502 Chapter 12. Data Persistence

The Python Library Reference, Release 3.13.1

Changed in version 3.13: Add the default implementation of this method in the C implementation of
Pickler.

dispatch_table

A pickler object’s dispatch table is a registry of reduction functions of the kind which can be declared
using copyreg.pickle(). It is a mapping whose keys are classes and whose values are reduction
functions. A reduction function takes a single argument of the associated class and should conform to
the same interface as a __reduce__() method.

By default, a pickler object will not have a dispatch_table attribute, and it will instead use the global
dispatch table managed by the copyreg module. However, to customize the pickling for a specific
pickler object one can set the dispatch_table attribute to a dict-like object. Alternatively, if a subclass
of Pickler has a dispatch_table attribute then this will be used as the default dispatch table for
instances of that class.

See Dispatch Tables for usage examples.

Added in version 3.3.

reducer_override(obj)
Special reducer that can be defined in Pickler subclasses. This method has priority over any reducer
in the dispatch_table. It should conform to the same interface as a __reduce__() method, and
can optionally return NotImplemented to fallback on dispatch_table-registered reducers to pickle
obj.

For a detailed example, see Custom Reduction for Types, Functions, and Other Objects.

Added in version 3.8.

fast

Deprecated. Enable fast mode if set to a true value. The fast mode disables the usage of memo, therefore
speeding the pickling process by not generating superfluous PUT opcodes. It should not be used with
self-referential objects, doing otherwise will cause Pickler to recurse infinitely.

Use pickletools.optimize() if you need more compact pickles.

class pickle.Unpickler(file, *, fix_imports=True, encoding=’ASCII’, errors=’strict’, buffers=None)
This takes a binary file for reading a pickle data stream.

The protocol version of the pickle is detected automatically, so no protocol argument is needed.

The argument file must have three methods, a read() method that takes an integer argument, a readinto()
method that takes a buffer argument and a readline() method that requires no arguments, as in the io.

BufferedIOBase interface. Thus file can be an on-disk file opened for binary reading, an io.BytesIO

object, or any other custom object that meets this interface.

The optional arguments fix_imports, encoding and errors are used to control compatibility support for pickle
stream generated by Python 2. If fix_imports is true, pickle will try to map the old Python 2 names to the
new names used in Python 3. The encoding and errors tell pickle how to decode 8-bit string instances pickled
by Python 2; these default to ‘ASCII’ and ‘strict’, respectively. The encoding can be ‘bytes’ to read these 8-bit
string instances as bytes objects. Using encoding='latin1' is required for unpickling NumPy arrays and
instances of datetime, date and time pickled by Python 2.

If buffers is None (the default), then all data necessary for deserialization must be contained in the pickle
stream. This means that the buffer_callback argument was None when a Pickler was instantiated (or when
dump() or dumps() was called).

If buffers is not None, it should be an iterable of buffer-enabled objects that is consumed each time the pickle
stream references an out-of-band buffer view. Such buffers have been given in order to the buffer_callback of
a Pickler object.

Changed in version 3.8: The buffers argument was added.

12.1. pickle— Python object serialization 503

The Python Library Reference, Release 3.13.1

load()

Read the pickled representation of an object from the open file object given in the constructor, and return
the reconstituted object hierarchy specified therein. Bytes past the pickled representation of the object
are ignored.

persistent_load(pid)
Raise an UnpicklingError by default.

If defined, persistent_load() should return the object specified by the persistent ID pid. If an invalid
persistent ID is encountered, an UnpicklingError should be raised.

See Persistence of External Objects for details and examples of uses.

Changed in version 3.13: Add the default implementation of this method in the C implementation of
Unpickler.

find_class(module, name)
Import module if necessary and return the object called name from it, where the module and name argu-
ments are str objects. Note, unlike its name suggests, find_class() is also used for finding functions.

Subclasses may override this to gain control over what type of objects and how they can be loaded,
potentially reducing security risks. Refer to Restricting Globals for details.

Raises an auditing event pickle.find_class with arguments module, name.

class pickle.PickleBuffer(buffer)
Awrapper for a buffer representing picklable data. buffermust be a buffer-providing object, such as a bytes-like
object or a N-dimensional array.

PickleBuffer is itself a buffer provider, therefore it is possible to pass it to other APIs expecting a buffer-
providing object, such as memoryview.

PickleBuffer objects can only be serialized using pickle protocol 5 or higher. They are eligible for out-of-
band serialization.

Added in version 3.8.

raw()

Return a memoryview of the memory area underlying this buffer. The returned object is a one-
dimensional, C-contiguous memoryview with format B (unsigned bytes). BufferError is raised if
the buffer is neither C- nor Fortran-contiguous.

release()

Release the underlying buffer exposed by the PickleBuffer object.

12.1.4 What can be pickled and unpickled?

The following types can be pickled:

• built-in constants (None, True, False, Ellipsis, and NotImplemented);

• integers, floating-point numbers, complex numbers;

• strings, bytes, bytearrays;

• tuples, lists, sets, and dictionaries containing only picklable objects;

• functions (built-in and user-defined) accessible from the top level of a module (using def, not lambda);

• classes accessible from the top level of a module;

• instances of such classes whose the result of calling __getstate__() is picklable (see section Pickling Class
Instances for details).

Attempts to pickle unpicklable objects will raise the PicklingError exception; when this happens, an unspecified
number of bytes may have already been written to the underlying file. Trying to pickle a highly recursive data structure

504 Chapter 12. Data Persistence

The Python Library Reference, Release 3.13.1

may exceed the maximum recursion depth, a RecursionError will be raised in this case. You can carefully raise
this limit with sys.setrecursionlimit().

Note that functions (built-in and user-defined) are pickled by fully qualified name, not by value.2 This means that
only the function name is pickled, along with the name of the containing module and classes. Neither the function’s
code, nor any of its function attributes are pickled. Thus the defining module must be importable in the unpickling
environment, and the module must contain the named object, otherwise an exception will be raised.3

Similarly, classes are pickled by fully qualified name, so the same restrictions in the unpickling environment apply.
Note that none of the class’s code or data is pickled, so in the following example the class attribute attr is not
restored in the unpickling environment:

class Foo:

attr = 'A class attribute'

picklestring = pickle.dumps(Foo)

These restrictions are why picklable functions and classes must be defined at the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and still
load objects that were created with an earlier version of the class. If you plan to have long-lived objects that will see
many versions of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can
be made by the class’s __setstate__() method.

12.1.5 Pickling Class Instances

In this section, we describe the general mechanisms available to you to define, customize, and control how class
instances are pickled and unpickled.

In most cases, no additional code is needed to make instances picklable. By default, pickle will retrieve the class and
the attributes of an instance via introspection. When a class instance is unpickled, its __init__()method is usually
not invoked. The default behaviour first creates an uninitialized instance and then restores the saved attributes. The
following code shows an implementation of this behaviour:

def save(obj):

return (obj.__class__, obj.__dict__)

def restore(cls, attributes):

obj = cls.__new__(cls)

obj.__dict__.update(attributes)

return obj

Classes can alter the default behaviour by providing one or several special methods:

object.__getnewargs_ex__()

In protocols 2 and newer, classes that implements the __getnewargs_ex__()method can dictate the values
passed to the __new__()method upon unpickling. The method must return a pair (args, kwargs) where
args is a tuple of positional arguments and kwargs a dictionary of named arguments for constructing the object.
Those will be passed to the __new__() method upon unpickling.

You should implement this method if the __new__()method of your class requires keyword-only arguments.
Otherwise, it is recommended for compatibility to implement __getnewargs__().

Changed in version 3.6: __getnewargs_ex__() is now used in protocols 2 and 3.

object.__getnewargs__()

This method serves a similar purpose as __getnewargs_ex__(), but supports only positional arguments. It
must return a tuple of arguments args which will be passed to the __new__() method upon unpickling.

2 This is why lambda functions cannot be pickled: all lambda functions share the same name: <lambda>.
3 The exception raised will likely be an ImportError or an AttributeError but it could be something else.

12.1. pickle— Python object serialization 505

The Python Library Reference, Release 3.13.1

__getnewargs__() will not be called if __getnewargs_ex__() is defined.

Changed in version 3.6: Before Python 3.6, __getnewargs__() was called instead of
__getnewargs_ex__() in protocols 2 and 3.

object.__getstate__()

Classes can further influence how their instances are pickled by overriding the method __getstate__(). It
is called and the returned object is pickled as the contents for the instance, instead of a default state. There are
several cases:

• For a class that has no instance __dict__ and no __slots__, the default state is None.

• For a class that has an instance __dict__ and no __slots__, the default state is self.__dict__.

• For a class that has an instance __dict__ and __slots__, the default state is a tuple consisting of two
dictionaries: self.__dict__, and a dictionary mapping slot names to slot values. Only slots that have
a value are included in the latter.

• For a class that has __slots__ and no instance __dict__, the default state is a tuple whose first item is
None and whose second item is a dictionary mapping slot names to slot values described in the previous
bullet.

Changed in version 3.11: Added the default implementation of the __getstate__()method in the object
class.

object.__setstate__(state)
Upon unpickling, if the class defines __setstate__(), it is called with the unpickled state. In that case,
there is no requirement for the state object to be a dictionary. Otherwise, the pickled state must be a dictionary
and its items are assigned to the new instance’s dictionary.

Note

If __reduce__() returns a state with value None at pickling, the __setstate__() method will not be
called upon unpickling.

Refer to the sectionHandling Stateful Objects for more information about how to use the methods __getstate__()
and __setstate__().

Note

At unpickling time, some methods like __getattr__(), __getattribute__(), or __setattr__() may
be called upon the instance. In case those methods rely on some internal invariant being true, the type should
implement __new__() to establish such an invariant, as __init__() is not called when unpickling an instance.

As we shall see, pickle does not use directly the methods described above. In fact, these methods are part of the copy
protocol which implements the __reduce__() special method. The copy protocol provides a unified interface for
retrieving the data necessary for pickling and copying objects.4

Although powerful, implementing __reduce__() directly in your classes is error prone. For this rea-
son, class designers should use the high-level interface (i.e., __getnewargs_ex__(), __getstate__() and
__setstate__()) whenever possible. We will show, however, cases where using __reduce__() is the only
option or leads to more efficient pickling or both.

object.__reduce__()

The interface is currently defined as follows. The __reduce__() method takes no argument and shall return
either a string or preferably a tuple (the returned object is often referred to as the “reduce value”).

If a string is returned, the string should be interpreted as the name of a global variable. It should be the object’s
local name relative to its module; the pickle module searches the module namespace to determine the object’s
module. This behaviour is typically useful for singletons.

4 The copy module uses this protocol for shallow and deep copying operations.

506 Chapter 12. Data Persistence

The Python Library Reference, Release 3.13.1

When a tuple is returned, it must be between two and six items long. Optional items can either be omitted, or
None can be provided as their value. The semantics of each item are in order:

• A callable object that will be called to create the initial version of the object.

• A tuple of arguments for the callable object. An empty tuple must be given if the callable does not accept
any argument.

• Optionally, the object’s state, whichwill be passed to the object’s __setstate__()method as previously
described. If the object has no such method then, the value must be a dictionary and it will be added to
the object’s __dict__ attribute.

• Optionally, an iterator (and not a sequence) yielding successive items. These items will be appended
to the object either using obj.append(item) or, in batch, using obj.extend(list_of_items).
This is primarily used for list subclasses, but may be used by other classes as long as they have append
and extend methods with the appropriate signature. (Whether append() or extend() is used depends
on which pickle protocol version is used as well as the number of items to append, so both must be
supported.)

• Optionally, an iterator (not a sequence) yielding successive key-value pairs. These items will be stored
to the object using obj[key] = value. This is primarily used for dictionary subclasses, but may be
used by other classes as long as they implement __setitem__().

• Optionally, a callable with a (obj, state) signature. This callable allows the user to programmatically
control the state-updating behavior of a specific object, instead of using obj’s static __setstate__()
method. If not None, this callable will have priority over obj’s __setstate__().

Added in version 3.8: The optional sixth tuple item, (obj, state), was added.

object.__reduce_ex__(protocol)
Alternatively, a __reduce_ex__() method may be defined. The only difference is this method should take
a single integer argument, the protocol version. When defined, pickle will prefer it over the __reduce__()
method. In addition, __reduce__() automatically becomes a synonym for the extended version. The main
use for this method is to provide backwards-compatible reduce values for older Python releases.

Persistence of External Objects

For the benefit of object persistence, the pickle module supports the notion of a reference to an object outside the
pickled data stream. Such objects are referenced by a persistent ID, which should be either a string of alphanumeric
characters (for protocol 0)5 or just an arbitrary object (for any newer protocol).

The resolution of such persistent IDs is not defined by the pickle module; it will delegate this resolution to the
user-defined methods on the pickler and unpickler, persistent_id() and persistent_load() respectively.

To pickle objects that have an external persistent ID, the pickler must have a custom persistent_id()method that
takes an object as an argument and returns either None or the persistent ID for that object. When None is returned,
the pickler simply pickles the object as normal. When a persistent ID string is returned, the pickler will pickle that
object, along with a marker so that the unpickler will recognize it as a persistent ID.

To unpickle external objects, the unpickler must have a custom persistent_load()method that takes a persistent
ID object and returns the referenced object.

Here is a comprehensive example presenting how persistent ID can be used to pickle external objects by reference.

Simple example presenting how persistent ID can be used to pickle

external objects by reference.

import pickle

import sqlite3

from collections import namedtuple

(continues on next page)

5 The limitation on alphanumeric characters is due to the fact that persistent IDs in protocol 0 are delimited by the newline character. Therefore
if any kind of newline characters occurs in persistent IDs, the resulting pickled data will become unreadable.

12.1. pickle— Python object serialization 507

The Python Library Reference, Release 3.13.1

(continued from previous page)

Simple class representing a record in our database.

MemoRecord = namedtuple("MemoRecord", "key, task")

class DBPickler(pickle.Pickler):

def persistent_id(self, obj):

Instead of pickling MemoRecord as a regular class instance, we emit a

persistent ID.

if isinstance(obj, MemoRecord):

Here, our persistent ID is simply a tuple, containing a tag and a

key, which refers to a specific record in the database.

return ("MemoRecord", obj.key)

else:

If obj does not have a persistent ID, return None. This means obj

needs to be pickled as usual.

return None

class DBUnpickler(pickle.Unpickler):

def __init__(self, file, connection):

super().__init__(file)

self.connection = connection

def persistent_load(self, pid):

This method is invoked whenever a persistent ID is encountered.

Here, pid is the tuple returned by DBPickler.

cursor = self.connection.cursor()

type_tag, key_id = pid

if type_tag == "MemoRecord":

Fetch the referenced record from the database and return it.

cursor.execute("SELECT * FROM memos WHERE key=?", (str(key_id),))

key, task = cursor.fetchone()

return MemoRecord(key, task)

else:

Always raises an error if you cannot return the correct object.

Otherwise, the unpickler will think None is the object referenced

by the persistent ID.

raise pickle.UnpicklingError("unsupported persistent object")

def main():

import io

import pprint

Initialize and populate our database.

conn = sqlite3.connect(":memory:")

cursor = conn.cursor()

cursor.execute("CREATE TABLE memos(key INTEGER PRIMARY KEY, task TEXT)")

tasks = (

'give food to fish',

'prepare group meeting',

'fight with a zebra',

)

for task in tasks:

cursor.execute("INSERT INTO memos VALUES(NULL, ?)", (task,))

(continues on next page)

508 Chapter 12. Data Persistence

The Python Library Reference, Release 3.13.1

(continued from previous page)

Fetch the records to be pickled.

cursor.execute("SELECT * FROM memos")

memos = [MemoRecord(key, task) for key, task in cursor]

Save the records using our custom DBPickler.

file = io.BytesIO()

DBPickler(file).dump(memos)

print("Pickled records:")

pprint.pprint(memos)

Update a record, just for good measure.

cursor.execute("UPDATE memos SET task='learn italian' WHERE key=1")

Load the records from the pickle data stream.

file.seek(0)

memos = DBUnpickler(file, conn).load()

print("Unpickled records:")

pprint.pprint(memos)

if __name__ == '__main__':

main()

Dispatch Tables

If one wants to customize pickling of some classes without disturbing any other code which depends on pickling,
then one can create a pickler with a private dispatch table.

The global dispatch table managed by the copyreg module is available as copyreg.dispatch_table. Therefore,
one may choose to use a modified copy of copyreg.dispatch_table as a private dispatch table.

For example

f = io.BytesIO()

p = pickle.Pickler(f)

p.dispatch_table = copyreg.dispatch_table.copy()

p.dispatch_table[SomeClass] = reduce_SomeClass

creates an instance of pickle.Pickler with a private dispatch table which handles the SomeClass class specially.
Alternatively, the code

class MyPickler(pickle.Pickler):

dispatch_table = copyreg.dispatch_table.copy()

dispatch_table[SomeClass] = reduce_SomeClass

f = io.BytesIO()

p = MyPickler(f)

does the same but all instances of MyPickler will by default share the private dispatch table. On the other hand,
the code

copyreg.pickle(SomeClass, reduce_SomeClass)

f = io.BytesIO()

p = pickle.Pickler(f)

modifies the global dispatch table shared by all users of the copyreg module.

12.1. pickle— Python object serialization 509

The Python Library Reference, Release 3.13.1

Handling Stateful Objects

Here’s an example that shows how to modify pickling behavior for a class. The TextReader class below opens a text
file, and returns the line number and line contents each time its readline() method is called. If a TextReader
instance is pickled, all attributes except the file object member are saved. When the instance is unpickled, the file is
reopened, and reading resumes from the last location. The __setstate__() and __getstate__() methods are
used to implement this behavior.

class TextReader:

"""Print and number lines in a text file."""

def __init__(self, filename):

self.filename = filename

self.file = open(filename)

self.lineno = 0

def readline(self):

self.lineno += 1

line = self.file.readline()

if not line:

return None

if line.endswith('\n'):

line = line[:-1]

return "%i: %s" % (self.lineno, line)

def __getstate__(self):

Copy the object's state from self.__dict__ which contains

all our instance attributes. Always use the dict.copy()

method to avoid modifying the original state.

state = self.__dict__.copy()

Remove the unpicklable entries.

del state['file']

return state

def __setstate__(self, state):

Restore instance attributes (i.e., filename and lineno).

self.__dict__.update(state)

Restore the previously opened file's state. To do so, we need to

reopen it and read from it until the line count is restored.

file = open(self.filename)

for _ in range(self.lineno):

file.readline()

Finally, save the file.

self.file = file

A sample usage might be something like this:

>>> reader = TextReader("hello.txt")

>>> reader.readline()

'1: Hello world!'

>>> reader.readline()

'2: I am line number two.'

>>> new_reader = pickle.loads(pickle.dumps(reader))

>>> new_reader.readline()

'3: Goodbye!'

510 Chapter 12. Data Persistence

The Python Library Reference, Release 3.13.1

12.1.6 Custom Reduction for Types, Functions, and Other Objects

Added in version 3.8.

Sometimes, dispatch_table may not be flexible enough. In particular we may want to customize pickling based
on another criterion than the object’s type, or we may want to customize the pickling of functions and classes.

For those cases, it is possible to subclass from the Pickler class and implement a reducer_override()

method. This method can return an arbitrary reduction tuple (see __reduce__()). It can alternatively return
NotImplemented to fallback to the traditional behavior.

If both the dispatch_table and reducer_override() are defined, then reducer_override()method takes
priority.

Note

For performance reasons, reducer_override() may not be called for the following objects: None, True,
False, and exact instances of int, float, bytes, str, dict, set, frozenset, list and tuple.

Here is a simple example where we allow pickling and reconstructing a given class:

import io

import pickle

class MyClass:

my_attribute = 1

class MyPickler(pickle.Pickler):

def reducer_override(self, obj):

"""Custom reducer for MyClass."""

if getattr(obj, "__name__", None) == "MyClass":

return type, (obj.__name__, obj.__bases__,

{'my_attribute': obj.my_attribute})

else:

For any other object, fallback to usual reduction

return NotImplemented

f = io.BytesIO()

p = MyPickler(f)

p.dump(MyClass)

del MyClass

unpickled_class = pickle.loads(f.getvalue())

assert isinstance(unpickled_class, type)

assert unpickled_class.__name__ == "MyClass"

assert unpickled_class.my_attribute == 1

12.1.7 Out-of-band Buffers

Added in version 3.8.

In some contexts, the pickle module is used to transfer massive amounts of data. Therefore, it can be important
to minimize the number of memory copies, to preserve performance and resource consumption. However, normal
operation of the pickle module, as it transforms a graph-like structure of objects into a sequential stream of bytes,
intrinsically involves copying data to and from the pickle stream.

This constraint can be eschewed if both the provider (the implementation of the object types to be transferred) and
the consumer (the implementation of the communications system) support the out-of-band transfer facilities provided

12.1. pickle— Python object serialization 511

The Python Library Reference, Release 3.13.1

by pickle protocol 5 and higher.

Provider API

The large data objects to be pickled must implement a __reduce_ex__() method specialized for protocol 5 and
higher, which returns a PickleBuffer instance (instead of e.g. a bytes object) for any large data.

A PickleBuffer object signals that the underlying buffer is eligible for out-of-band data transfer. Those objects
remain compatible with normal usage of the pickle module. However, consumers can also opt-in to tell pickle
that they will handle those buffers by themselves.

Consumer API

A communications system can enable custom handling of the PickleBuffer objects generated when serializing an
object graph.

On the sending side, it needs to pass a buffer_callback argument to Pickler (or to the dump() or dumps() function),
which will be called with each PickleBuffer generated while pickling the object graph. Buffers accumulated by
the buffer_callback will not see their data copied into the pickle stream, only a cheap marker will be inserted.

On the receiving side, it needs to pass a buffers argument to Unpickler (or to the load() or loads() function),
which is an iterable of the buffers which were passed to buffer_callback. That iterable should produce buffers in the
same order as they were passed to buffer_callback. Those buffers will provide the data expected by the reconstructors
of the objects whose pickling produced the original PickleBuffer objects.

Between the sending side and the receiving side, the communications system is free to implement its own transfer
mechanism for out-of-band buffers. Potential optimizations include the use of shared memory or datatype-dependent
compression.

Example

Here is a trivial example where we implement a bytearray subclass able to participate in out-of-band buffer pick-
ling:

class ZeroCopyByteArray(bytearray):

def __reduce_ex__(self, protocol):

if protocol >= 5:

return type(self)._reconstruct, (PickleBuffer(self),), None

else:

PickleBuffer is forbidden with pickle protocols <= 4.

return type(self)._reconstruct, (bytearray(self),)

@classmethod

def _reconstruct(cls, obj):

with memoryview(obj) as m:

Get a handle over the original buffer object

obj = m.obj

if type(obj) is cls:

Original buffer object is a ZeroCopyByteArray, return it

as-is.

return obj

else:

return cls(obj)

The reconstructor (the _reconstruct class method) returns the buffer’s providing object if it has the right type.
This is an easy way to simulate zero-copy behaviour on this toy example.

On the consumer side, we can pickle those objects the usual way, which when unserialized will give us a copy of the
original object:

512 Chapter 12. Data Persistence

The Python Library Reference, Release 3.13.1

b = ZeroCopyByteArray(b"abc")

data = pickle.dumps(b, protocol=5)

new_b = pickle.loads(data)

print(b == new_b) # True

print(b is new_b) # False: a copy was made

But if we pass a buffer_callback and then give back the accumulated buffers when unserializing, we are able to get
back the original object:

b = ZeroCopyByteArray(b"abc")

buffers = []

data = pickle.dumps(b, protocol=5, buffer_callback=buffers.append)

new_b = pickle.loads(data, buffers=buffers)

print(b == new_b) # True

print(b is new_b) # True: no copy was made

This example is limited by the fact that bytearray allocates its own memory: you cannot create a bytearray
instance that is backed by another object’s memory. However, third-party datatypes such as NumPy arrays do not
have this limitation, and allow use of zero-copy pickling (or making as few copies as possible) when transferring
between distinct processes or systems.

See also

PEP 574 – Pickle protocol 5 with out-of-band data

12.1.8 Restricting Globals

By default, unpickling will import any class or function that it finds in the pickle data. For many applications, this
behaviour is unacceptable as it permits the unpickler to import and invoke arbitrary code. Just consider what this
hand-crafted pickle data stream does when loaded:

>>> import pickle

>>> pickle.loads(b"cos\nsystem\n(S'echo hello world'\ntR.")

hello world

0

In this example, the unpickler imports the os.system() function and then apply the string argument “echo hello
world”. Although this example is inoffensive, it is not difficult to imagine one that could damage your system.

For this reason, you may want to control what gets unpickled by customizing Unpickler.find_class(). Unlike
its name suggests, Unpickler.find_class() is called whenever a global (i.e., a class or a function) is requested.
Thus it is possible to either completely forbid globals or restrict them to a safe subset.

Here is an example of an unpickler allowing only few safe classes from the builtins module to be loaded:

import builtins

import io

import pickle

safe_builtins = {

'range',

'complex',

'set',

'frozenset',

'slice',

}

(continues on next page)

12.1. pickle— Python object serialization 513

https://peps.python.org/pep-0574/

The Python Library Reference, Release 3.13.1

(continued from previous page)

class RestrictedUnpickler(pickle.Unpickler):

def find_class(self, module, name):

Only allow safe classes from builtins.

if module == "builtins" and name in safe_builtins:

return getattr(builtins, name)

Forbid everything else.

raise pickle.UnpicklingError("global '%s.%s' is forbidden" %

(module, name))

def restricted_loads(s):

"""Helper function analogous to pickle.loads()."""

return RestrictedUnpickler(io.BytesIO(s)).load()

A sample usage of our unpickler working as intended:

>>> restricted_loads(pickle.dumps([1, 2, range(15)]))

[1, 2, range(0, 15)]

>>> restricted_loads(b"cos\nsystem\n(S'echo hello world'\ntR.")

Traceback (most recent call last):

...

pickle.UnpicklingError: global 'os.system' is forbidden

>>> restricted_loads(b'cbuiltins\neval\n'

... b'(S\'getattr(__import__("os"), "system")'

... b'("echo hello world")\'\ntR.')

Traceback (most recent call last):

...

pickle.UnpicklingError: global 'builtins.eval' is forbidden

As our examples shows, you have to be careful with what you allow to be unpickled. Therefore if security is a concern,
you may want to consider alternatives such as the marshalling API in xmlrpc.client or third-party solutions.

12.1.9 Performance

Recent versions of the pickle protocol (from protocol 2 and upwards) feature efficient binary encodings for several
common features and built-in types. Also, the pickle module has a transparent optimizer written in C.

12.1.10 Examples

For the simplest code, use the dump() and load() functions.

import pickle

An arbitrary collection of objects supported by pickle.

data = {

'a': [1, 2.0, 3+4j],

'b': ("character string", b"byte string"),

'c': {None, True, False}

}

with open('data.pickle', 'wb') as f:

Pickle the 'data' dictionary using the highest protocol available.

pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)

The following example reads the resulting pickled data.

514 Chapter 12. Data Persistence

The Python Library Reference, Release 3.13.1

import pickle

with open('data.pickle', 'rb') as f:

The protocol version used is detected automatically, so we do not

have to specify it.

data = pickle.load(f)

See also

Module copyreg
Pickle interface constructor registration for extension types.

Module pickletools
Tools for working with and analyzing pickled data.

Module shelve
Indexed databases of objects; uses pickle.

Module copy
Shallow and deep object copying.

Module marshal
High-performance serialization of built-in types.

12.2 copyreg— Register pickle support functions

Source code: Lib/copyreg.py

The copyreg module offers a way to define functions used while pickling specific objects. The pickle and copy
modules use those functions when pickling/copying those objects. The module provides configuration information
about object constructors which are not classes. Such constructors may be factory functions or class instances.

copyreg.constructor(object)
Declares object to be a valid constructor. If object is not callable (and hence not valid as a constructor), raises
TypeError.

copyreg.pickle(type, function, constructor_ob=None)
Declares that function should be used as a “reduction” function for objects of type type. function must return
either a string or a tuple containing between two and six elements. See the dispatch_table for more details
on the interface of function.

The constructor_ob parameter is a legacy feature and is now ignored, but if passed it must be a callable.

Note that the dispatch_table attribute of a pickler object or subclass of pickle.Pickler can also be
used for declaring reduction functions.

12.2.1 Example

The example below would like to show how to register a pickle function and how it will be used:

>>> import copyreg, copy, pickle

>>> class C:

... def __init__(self, a):

... self.a = a

...

>>> def pickle_c(c):

... print("pickling a C instance...")

(continues on next page)

12.2. copyreg— Register pickle support functions 515

https://github.com/python/cpython/tree/3.13/Lib/copyreg.py

The Python Library Reference, Release 3.13.1

(continued from previous page)

... return C, (c.a,)

...

>>> copyreg.pickle(C, pickle_c)

>>> c = C(1)

>>> d = copy.copy(c)

pickling a C instance...

>>> p = pickle.dumps(c)

pickling a C instance...

12.3 shelve— Python object persistence

Source code: Lib/shelve.py

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)
in a shelf can be essentially arbitrary Python objects — anything that the pickle module can handle. This includes
most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

shelve.open(filename, flag=’c’, protocol=None, writeback=False)
Open a persistent dictionary. The filename specified is the base filename for the underlying database. As a
side-effect, an extension may be added to the filename and more than one file may be created. By default,
the underlying database file is opened for reading and writing. The optional flag parameter has the same
interpretation as the flag parameter of dbm.open().

By default, pickles created with pickle.DEFAULT_PROTOCOL are used to serialize values. The version of
the pickle protocol can be specified with the protocol parameter.

Because of Python semantics, a shelf cannot know when a mutable persistent-dictionary entry is modified. By
default modified objects are written only when assigned to the shelf (see Example). If the optional writeback
parameter is set to True, all entries accessed are also cached in memory, and written back on sync() and
close(); this can make it handier to mutate mutable entries in the persistent dictionary, but, if many entries
are accessed, it can consume vast amounts of memory for the cache, and it can make the close operation
very slow since all accessed entries are written back (there is no way to determine which accessed entries are
mutable, nor which ones were actually mutated).

Changed in version 3.10: pickle.DEFAULT_PROTOCOL is now used as the default pickle protocol.

Changed in version 3.11: Accepts path-like object for filename.

Note

Do not rely on the shelf being closed automatically; always call close() explicitly when you don’t need it
any more, or use shelve.open() as a context manager:

with shelve.open('spam') as db:

db['eggs'] = 'eggs'

Warning

Because the shelve module is backed by pickle, it is insecure to load a shelf from an untrusted source. Like
with pickle, loading a shelf can execute arbitrary code.

Shelf objects support most of methods and operations supported by dictionaries (except copying, constructors and
operators | and |=). This eases the transition from dictionary based scripts to those requiring persistent storage.

516 Chapter 12. Data Persistence

https://github.com/python/cpython/tree/3.13/Lib/shelve.py

The Python Library Reference, Release 3.13.1

Two additional methods are supported:

Shelf.sync()

Write back all entries in the cache if the shelf was opened with writeback set to True. Also empty the cache
and synchronize the persistent dictionary on disk, if feasible. This is called automatically when the shelf is
closed with close().

Shelf.close()

Synchronize and close the persistent dict object. Operations on a closed shelf will fail with a ValueError.

See also

Persistent dictionary recipe with widely supported storage formats and having the speed of native dictionaries.

12.3.1 Restrictions

• The choice of which database package will be used (such as dbm.ndbm or dbm.gnu) depends on which in-
terface is available. Therefore it is not safe to open the database directly using dbm. The database is also
(unfortunately) subject to the limitations of dbm, if it is used — this means that (the pickled representation
of) the objects stored in the database should be fairly small, and in rare cases key collisions may cause the
database to refuse updates.

• The shelvemodule does not support concurrent read/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. Unix file locking can be used to solve this, but this differs across Unix versions and
requires knowledge about the database implementation used.

• On macOS dbm.ndbm can silently corrupt the database file on updates, which can cause hard crashes when
trying to read from the database.

class shelve.Shelf(dict, protocol=None, writeback=False, keyencoding=’utf-8’)
A subclass of collections.abc.MutableMapping which stores pickled values in the dict object.

By default, pickles created with pickle.DEFAULT_PROTOCOL are used to serialize values. The version of the
pickle protocol can be specified with the protocol parameter. See the pickle documentation for a discussion
of the pickle protocols.

If the writeback parameter is True, the object will hold a cache of all entries accessed and write them back
to the dict at sync and close times. This allows natural operations on mutable entries, but can consume much
more memory and make sync and close take a long time.

The keyencoding parameter is the encoding used to encode keys before they are used with the underlying dict.

A Shelf object can also be used as a context manager, in which case it will be automatically closed when the
with block ends.

Changed in version 3.2: Added the keyencoding parameter; previously, keys were always encoded in UTF-8.

Changed in version 3.4: Added context manager support.

Changed in version 3.10: pickle.DEFAULT_PROTOCOL is now used as the default pickle protocol.

class shelve.BsdDbShelf(dict, protocol=None, writeback=False, keyencoding=’utf-8’)
A subclass of Shelf which exposes first(), next(), previous(), last() and set_location()meth-
ods. These are available in the third-party bsddb module from pybsddb but not in other database modules.
The dict object passed to the constructor must support those methods. This is generally accomplished by call-
ing one of bsddb.hashopen(), bsddb.btopen() or bsddb.rnopen(). The optional protocol, writeback,
and keyencoding parameters have the same interpretation as for the Shelf class.

class shelve.DbfilenameShelf(filename, flag=’c’, protocol=None, writeback=False)

A subclass of Shelf which accepts a filename instead of a dict-like object. The underlying file will be opened
using dbm.open(). By default, the file will be created and opened for both read and write. The optional

12.3. shelve— Python object persistence 517

https://code.activestate.com/recipes/576642-persistent-dict-with-multiple-standard-file-format/
https://www.jcea.es/programacion/pybsddb.htm

The Python Library Reference, Release 3.13.1

flag parameter has the same interpretation as for the open() function. The optional protocol and writeback
parameters have the same interpretation as for the Shelf class.

12.3.2 Example

To summarize the interface (key is a string, data is an arbitrary object):

import shelve

d = shelve.open(filename) # open -- file may get suffix added by low-level

library

d[key] = data # store data at key (overwrites old data if

using an existing key)

data = d[key] # retrieve a COPY of data at key (raise KeyError

if no such key)

del d[key] # delete data stored at key (raises KeyError

if no such key)

flag = key in d # true if the key exists

klist = list(d.keys()) # a list of all existing keys (slow!)

as d was opened WITHOUT writeback=True, beware:

d['xx'] = [0, 1, 2] # this works as expected, but...

d['xx'].append(3) # *this doesn't!* -- d['xx'] is STILL [0, 1, 2]!

having opened d without writeback=True, you need to code carefully:

temp = d['xx'] # extracts the copy

temp.append(5) # mutates the copy

d['xx'] = temp # stores the copy right back, to persist it

or, d=shelve.open(filename,writeback=True) would let you just code

d['xx'].append(5) and have it work as expected, BUT it would also

consume more memory and make the d.close() operation slower.

d.close() # close it

See also

Module dbm
Generic interface to dbm-style databases.

Module pickle
Object serialization used by shelve.

12.4 marshal— Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Mac, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely does).1

1 The name of this module stems from a bit of terminology used by the designers ofModula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form
(in an RPC buffer for instance) and “unmarshalling” for the reverse process.

518 Chapter 12. Data Persistence

The Python Library Reference, Release 3.13.1

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC
calls, see the modules pickle and shelve. The marshal module exists mainly to support reading and writing the
“pseudo-compiled” code for Python modules of .pyc files. Therefore, the Python maintainers reserve the right to
modify the marshal format in backward incompatible ways should the need arise. The format of code objects is not
compatible between Python versions, even if the version of the format is the same. De-serializing a code object in
the incorrect Python version has undefined behavior. If you’re serializing and de-serializing Python objects, use the
pickle module instead – the performance is comparable, version independence is guaranteed, and pickle supports
a substantially wider range of objects than marshal.

Warning

The marshal module is not intended to be secure against erroneous or maliciously constructed data. Never
unmarshal data received from an untrusted or unauthenticated source.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are supported: booleans, integers,
floating-point numbers, complex numbers, strings, bytes, bytearrays, tuples, lists, sets, frozensets, dictionaries, and
code objects (if allow_code is true), where it should be understood that tuples, lists, sets, frozensets and dictionaries
are only supported as long as the values contained therein are themselves supported. The singletons None, Ellipsis
and StopIteration can also be marshalled and unmarshalled. For format version lower than 3, recursive lists, sets
and dictionaries cannot be written (see below).

There are functions that read/write files as well as functions operating on bytes-like objects.

The module defines these functions:

marshal.dump(value, file, version=version, / , *, allow_code=True)
Write the value on the open file. The value must be a supported type. The file must be a writeable binary file.

If the value has (or contains an object that has) an unsupported type, a ValueError exception is raised —
but garbage data will also be written to the file. The object will not be properly read back by load(). Code
objects are only supported if allow_code is true.

The version argument indicates the data format that dump should use (see below).

Raises an auditing event marshal.dumps with arguments value, version.

Changed in version 3.13: Added the allow_code parameter.

marshal.load(file, / , *, allow_code=True)
Read one value from the open file and return it. If no valid value is read (e.g. because the data has a different
Python version’s incompatible marshal format), raise EOFError, ValueError or TypeError. Code objects
are only supported if allow_code is true. The file must be a readable binary file.

Raises an auditing event marshal.load with no arguments.

Note

If an object containing an unsupported type was marshalled with dump(), load() will substitute None
for the unmarshallable type.

Changed in version 3.10: This call used to raise a code.__new__ audit event for each code object. Now it
raises a single marshal.load event for the entire load operation.

Changed in version 3.13: Added the allow_code parameter.

marshal.dumps(value, version=version, / , *, allow_code=True)
Return the bytes object that would be written to a file by dump(value, file). The valuemust be a supported
type. Raise a ValueError exception if value has (or contains an object that has) an unsupported type. Code
objects are only supported if allow_code is true.

12.4. marshal— Internal Python object serialization 519

The Python Library Reference, Release 3.13.1

The version argument indicates the data format that dumps should use (see below).

Raises an auditing event marshal.dumps with arguments value, version.

Changed in version 3.13: Added the allow_code parameter.

marshal.loads(bytes, / , *, allow_code=True)
Convert the bytes-like object to a value. If no valid value is found, raise EOFError, ValueError or
TypeError. Code objects are only supported if allow_code is true. Extra bytes in the input are ignored.

Raises an auditing event marshal.loads with argument bytes.

Changed in version 3.10: This call used to raise a code.__new__ audit event for each code object. Now it
raises a single marshal.loads event for the entire load operation.

Changed in version 3.13: Added the allow_code parameter.

In addition, the following constants are defined:

marshal.version

Indicates the format that the module uses. Version 0 is the historical format, version 1 shares interned strings
and version 2 uses a binary format for floating-point numbers. Version 3 adds support for object instancing
and recursion. The current version is 4.

12.5 dbm— Interfaces to Unix “databases”

Source code: Lib/dbm/__init__.py

dbm is a generic interface to variants of the DBM database:

• dbm.sqlite3

• dbm.gnu

• dbm.ndbm

If none of these modules are installed, the slow-but-simple implementation in module dbm.dumbwill be used. There
is a third party interface to the Oracle Berkeley DB.

exception dbm.error

A tuple containing the exceptions that can be raised by each of the supported modules, with a unique exception
also named dbm.error as the first item — the latter is used when dbm.error is raised.

dbm.whichdb(filename)
This function attempts to guess which of the several simple database modules available — dbm.sqlite3,
dbm.gnu, dbm.ndbm, or dbm.dumb— should be used to open a given file.

Return one of the following values:

• None if the file can’t be opened because it’s unreadable or doesn’t exist

• the empty string ('') if the file’s format can’t be guessed

• a string containing the required module name, such as 'dbm.ndbm' or 'dbm.gnu'

Changed in version 3.11: filename accepts a path-like object.

dbm.open(file, flag=’r’, mode=0o666)
Open a database and return the corresponding database object.

Parameters

• file (path-like object) – The database file to open.

If the database file already exists, the whichdb() function is used to determine its type
and the appropriate module is used; if it does not exist, the first submodule listed above
that can be imported is used.

520 Chapter 12. Data Persistence

https://github.com/python/cpython/tree/3.13/Lib/dbm/__init__.py
https://www.jcea.es/programacion/pybsddb.htm

The Python Library Reference, Release 3.13.1

• flag (str) –

– 'r' (default): Open existing database for reading only.

– 'w': Open existing database for reading and writing.

– 'c': Open database for reading and writing, creating it if it doesn’t exist.

– 'n': Always create a new, empty database, open for reading and writing.

• mode (int) – The Unix file access mode of the file (default: octal 0o666), used only when
the database has to be created.

Changed in version 3.11: file accepts a path-like object.

The object returned by open() supports the same basic functionality as a dict; keys and their corresponding values
can be stored, retrieved, and deleted, and the in operator and the keys() method are available, as well as get()
and setdefault() methods.

Key and values are always stored as bytes. This means that when strings are used they are implicitly converted to
the default encoding before being stored.

These objects also support being used in a with statement, which will automatically close them when done.

Changed in version 3.2: get() and setdefault() methods are now available for all dbm backends.

Changed in version 3.4: Added native support for the context management protocol to the objects returned by
open().

Changed in version 3.8: Deleting a key from a read-only database raises a database module specific exception instead
of KeyError.

The following example records some hostnames and a corresponding title, and then prints out the contents of the
database:

import dbm

Open database, creating it if necessary.

with dbm.open('cache', 'c') as db:

Record some values

db[b'hello'] = b'there'

db['www.python.org'] = 'Python Website'

db['www.cnn.com'] = 'Cable News Network'

Note that the keys are considered bytes now.

assert db[b'www.python.org'] == b'Python Website'

Notice how the value is now in bytes.

assert db['www.cnn.com'] == b'Cable News Network'

Often-used methods of the dict interface work too.

print(db.get('python.org', b'not present'))

Storing a non-string key or value will raise an exception (most

likely a TypeError).

db['www.yahoo.com'] = 4

db is automatically closed when leaving the with statement.

See also

Module shelve
Persistence module which stores non-string data.

12.5. dbm— Interfaces to Unix “databases” 521

The Python Library Reference, Release 3.13.1

The individual submodules are described in the following sections.

12.5.1 dbm.sqlite3— SQLite backend for dbm

Added in version 3.13.

Source code: Lib/dbm/sqlite3.py

This module uses the standard library sqlite3module to provide an SQLite backend for the dbmmodule. The files
created by dbm.sqlite3 can thus be opened by sqlite3, or any other SQLite browser, including the SQLite CLI.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

dbm.sqlite3.open(filename, / , flag=’r’, mode=0o666)

Open an SQLite database. The returned object behaves like a mapping, implements a close() method, and
supports a “closing” context manager via the with keyword.

Parameters

• filename (path-like object) – The path to the database to be opened.

• flag (str) –

– 'r' (default): Open existing database for reading only.

– 'w': Open existing database for reading and writing.

– 'c': Open database for reading and writing, creating it if it doesn’t exist.

– 'n': Always create a new, empty database, open for reading and writing.

• mode – The Unix file access mode of the file (default: octal 0o666), used only when the
database has to be created.

12.5.2 dbm.gnu— GNU database manager

Source code: Lib/dbm/gnu.py

The dbm.gnu module provides an interface to the GDBM (GNU dbm) library, similar to the dbm.ndbm module,
but with additional functionality like crash tolerance.

Note

The file formats created by dbm.gnu and dbm.ndbm are incompatible and can not be used interchangeably.

Availability: not Android, not iOS, not WASI.

This module is not supported on mobile platforms orWebAssembly platforms.

exception dbm.gnu.error

Raised on dbm.gnu-specific errors, such as I/O errors. KeyError is raised for general mapping errors like
specifying an incorrect key.

dbm.gnu.open(filename, flag=’r’, mode=0o666, /)
Open a GDBM database and return a gdbm object.

Parameters

• filename (path-like object) – The database file to open.

• flag (str) –

522 Chapter 12. Data Persistence

https://github.com/python/cpython/tree/3.13/Lib/dbm/sqlite3.py
https://github.com/python/cpython/tree/3.13/Lib/dbm/gnu.py

The Python Library Reference, Release 3.13.1

– 'r' (default): Open existing database for reading only.

– 'w': Open existing database for reading and writing.

– 'c': Open database for reading and writing, creating it if it doesn’t exist.

– 'n': Always create a new, empty database, open for reading and writing.

The following additional characters may be appended to control how the database is
opened:

– 'f': Open the database in fast mode. Writes to the database will not be synchronized.

– 's': Synchronized mode. Changes to the database will be written immediately to the
file.

– 'u': Do not lock database.

Not all flags are valid for all versions of GDBM. See the open_flags member for a list
of supported flag characters.

• mode (int) – The Unix file access mode of the file (default: octal 0o666), used only when
the database has to be created.

Raises
error – If an invalid flag argument is passed.

Changed in version 3.11: filename accepts a path-like object.

dbm.gnu.open_flags

A string of characters the flag parameter of open() supports.

gdbm objects behave similar to mappings, but items() and values() methods are not supported. The
following methods are also provided:

gdbm.firstkey()

It’s possible to loop over every key in the database using this method and the nextkey() method. The
traversal is ordered by GDBM’s internal hash values, and won’t be sorted by the key values. This method
returns the starting key.

gdbm.nextkey(key)
Returns the key that follows key in the traversal. The following code prints every key in the database db,
without having to create a list in memory that contains them all:

k = db.firstkey()

while k is not None:

print(k)

k = db.nextkey(k)

gdbm.reorganize()

If you have carried out a lot of deletions and would like to shrink the space used by the GDBM file, this
routine will reorganize the database. gdbm objects will not shorten the length of a database file except by
using this reorganization; otherwise, deleted file space will be kept and reused as new (key, value) pairs
are added.

gdbm.sync()

When the database has been opened in fast mode, this method forces any unwritten data to be written to
the disk.

gdbm.close()

Close the GDBM database.

gdbm.clear()

Remove all items from the GDBM database.

Added in version 3.13.

12.5. dbm— Interfaces to Unix “databases” 523

The Python Library Reference, Release 3.13.1

12.5.3 dbm.ndbm— New Database Manager

Source code: Lib/dbm/ndbm.py

The dbm.ndbm module provides an interface to the NDBM (New Database Manager) library. This module can be
used with the “classic” NDBM interface or the GDBM compatibility interface.

Note

The file formats created by dbm.gnu and dbm.ndbm are incompatible and can not be used interchangeably.

Warning

The NDBM library shipped as part of macOS has an undocumented limitation on the size of values, which can
result in corrupted database files when storing values larger than this limit. Reading such corrupted files can result
in a hard crash (segmentation fault).

Availability: not Android, not iOS, not WASI.

This module is not supported on mobile platforms orWebAssembly platforms.

exception dbm.ndbm.error

Raised on dbm.ndbm-specific errors, such as I/O errors. KeyError is raised for general mapping errors like
specifying an incorrect key.

dbm.ndbm.library

Name of the NDBM implementation library used.

dbm.ndbm.open(filename, flag=’r’, mode=0o666, /)
Open an NDBM database and return an ndbm object.

Parameters

• filename (path-like object) – The basename of the database file (without the .dir or
.pag extensions).

• flag (str) –

– 'r' (default): Open existing database for reading only.

– 'w': Open existing database for reading and writing.

– 'c': Open database for reading and writing, creating it if it doesn’t exist.

– 'n': Always create a new, empty database, open for reading and writing.

• mode (int) – The Unix file access mode of the file (default: octal 0o666), used only when
the database has to be created.

ndbm objects behave similar to mappings, but items() and values() methods are not supported. The
following methods are also provided:

Changed in version 3.11: Accepts path-like object for filename.

ndbm.close()

Close the NDBM database.

ndbm.clear()

Remove all items from the NDBM database.

Added in version 3.13.

524 Chapter 12. Data Persistence

https://github.com/python/cpython/tree/3.13/Lib/dbm/ndbm.py

The Python Library Reference, Release 3.13.1

12.5.4 dbm.dumb— Portable DBM implementation

Source code: Lib/dbm/dumb.py

Note

The dbm.dumbmodule is intended as a last resort fallback for the dbmmodule when a more robust module is not
available. The dbm.dumb module is not written for speed and is not nearly as heavily used as the other database
modules.

The dbm.dumb module provides a persistent dict-like interface which is written entirely in Python. Unlike other
dbm backends, such as dbm.gnu, no external library is required.

The dbm.dumb module defines the following:

exception dbm.dumb.error

Raised on dbm.dumb-specific errors, such as I/O errors. KeyError is raised for general mapping errors like
specifying an incorrect key.

dbm.dumb.open(filename, flag=’c’, mode=0o666)
Open a dbm.dumb database. The returned database object behaves similar to a mapping, in addition to pro-
viding sync() and close() methods.

Parameters

• filename – The basename of the database file (without extensions). A new database
creates the following files:

– filename.dat

– filename.dir

• flag (str) –

– 'r': Open existing database for reading only.

– 'w': Open existing database for reading and writing.

– 'c' (default): Open database for reading and writing, creating it if it doesn’t exist.

– 'n': Always create a new, empty database, open for reading and writing.

• mode (int) – The Unix file access mode of the file (default: octal 0o666), used only when
the database has to be created.

Warning

It is possible to crash the Python interpreter when loading a database with a sufficiently large/complex entry
due to stack depth limitations in Python’s AST compiler.

Changed in version 3.5: open() always creates a new database when flag is 'n'.

Changed in version 3.8: A database opened read-only if flag is 'r'. A database is not created if it does not
exist if flag is 'r' or 'w'.

Changed in version 3.11: filename accepts a path-like object.

In addition to the methods provided by the collections.abc.MutableMapping class, the following meth-
ods are provided:

dumbdbm.sync()

Synchronize the on-disk directory and data files. This method is called by the Shelve.sync()method.

12.5. dbm— Interfaces to Unix “databases” 525

https://github.com/python/cpython/tree/3.13/Lib/dbm/dumb.py

The Python Library Reference, Release 3.13.1

dumbdbm.close()

Close the database.

12.6 sqlite3— DB-API 2.0 interface for SQLite databases

Source code: Lib/sqlite3/ SQLite is a C library that provides a lightweight disk-based database that doesn’t require
a separate server process and allows accessing the database using a nonstandard variant of the SQL query language.
Some applications can use SQLite for internal data storage. It’s also possible to prototype an application using SQLite
and then port the code to a larger database such as PostgreSQL or Oracle.

The sqlite3module was written by Gerhard Häring. It provides an SQL interface compliant with the DB-API 2.0
specification described by PEP 249, and requires SQLite 3.15.2 or newer.

This document includes four main sections:

• Tutorial teaches how to use the sqlite3 module.

• Reference describes the classes and functions this module defines.

• How-to guides details how to handle specific tasks.

• Explanation provides in-depth background on transaction control.

See also

https://www.sqlite.org
The SQLite web page; the documentation describes the syntax and the available data types for the supported
SQL dialect.

https://www.w3schools.com/sql/
Tutorial, reference and examples for learning SQL syntax.

PEP 249 - Database API Specification 2.0
PEP written by Marc-André Lemburg.

12.6.1 Tutorial

In this tutorial, you will create a database of Monty Python movies using basic sqlite3 functionality. It assumes a
fundamental understanding of database concepts, including cursors and transactions.

First, we need to create a new database and open a database connection to allow sqlite3 to work with it. Call
sqlite3.connect() to create a connection to the database tutorial.db in the current working directory, im-
plicitly creating it if it does not exist:

import sqlite3

con = sqlite3.connect("tutorial.db")

The returned Connection object con represents the connection to the on-disk database.

In order to execute SQL statements and fetch results from SQL queries, we will need to use a database cursor. Call
con.cursor() to create the Cursor:

cur = con.cursor()

Now that we’ve got a database connection and a cursor, we can create a database table movie with columns for title,
release year, and review score. For simplicity, we can just use column names in the table declaration – thanks to the
flexible typing feature of SQLite, specifying the data types is optional. Execute the CREATE TABLE statement by
calling cur.execute(...):

cur.execute("CREATE TABLE movie(title, year, score)")

526 Chapter 12. Data Persistence

https://github.com/python/cpython/tree/3.13/Lib/sqlite3/
https://peps.python.org/pep-0249/
https://www.sqlite.org
https://www.w3schools.com/sql/
https://peps.python.org/pep-0249/
https://en.wikipedia.org/wiki/Cursor_(databases)
https://en.wikipedia.org/wiki/Database_transaction
https://www.sqlite.org/flextypegood.html

The Python Library Reference, Release 3.13.1

We can verify that the new table has been created by querying the sqlite_master table built-in to SQLite, which
should now contain an entry for the movie table definition (see The Schema Table for details). Execute that query
by calling cur.execute(...), assign the result to res, and call res.fetchone() to fetch the resulting row:

>>> res = cur.execute("SELECT name FROM sqlite_master")

>>> res.fetchone()

('movie',)

We can see that the table has been created, as the query returns a tuple containing the table’s name. If we query
sqlite_master for a non-existent table spam, res.fetchone() will return None:

>>> res = cur.execute("SELECT name FROM sqlite_master WHERE name='spam'")

>>> res.fetchone() is None

True

Now, add two rows of data supplied as SQL literals by executing an INSERT statement, once again by calling cur.
execute(...):

cur.execute("""

INSERT INTO movie VALUES

('Monty Python and the Holy Grail', 1975, 8.2),

('And Now for Something Completely Different', 1971, 7.5)

""")

The INSERT statement implicitly opens a transaction, which needs to be committed before changes are saved in
the database (see Transaction control for details). Call con.commit() on the connection object to commit the
transaction:

con.commit()

We can verify that the data was inserted correctly by executing a SELECT query. Use the now-familiar cur.
execute(...) to assign the result to res, and call res.fetchall() to return all resulting rows:

>>> res = cur.execute("SELECT score FROM movie")

>>> res.fetchall()

[(8.2,), (7.5,)]

The result is a list of two tuples, one per row, each containing that row’s score value.

Now, insert three more rows by calling cur.executemany(...):

data = [

("Monty Python Live at the Hollywood Bowl", 1982, 7.9),

("Monty Python's The Meaning of Life", 1983, 7.5),

("Monty Python's Life of Brian", 1979, 8.0),

]

cur.executemany("INSERT INTO movie VALUES(?, ?, ?)", data)

con.commit() # Remember to commit the transaction after executing INSERT.

Notice that ? placeholders are used to bind data to the query. Always use placeholders instead of string formatting
to bind Python values to SQL statements, to avoid SQL injection attacks (see How to use placeholders to bind values
in SQL queries for more details).

We can verify that the new rows were inserted by executing a SELECT query, this time iterating over the results of
the query:

>>> for row in cur.execute("SELECT year, title FROM movie ORDER BY year"):

... print(row)

(1971, 'And Now for Something Completely Different')

(1975, 'Monty Python and the Holy Grail')

(continues on next page)

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 527

https://www.sqlite.org/schematab.html
https://en.wikipedia.org/wiki/SQL_injection

The Python Library Reference, Release 3.13.1

(continued from previous page)

(1979, "Monty Python's Life of Brian")

(1982, 'Monty Python Live at the Hollywood Bowl')

(1983, "Monty Python's The Meaning of Life")

Each row is a two-item tuple of (year, title), matching the columns selected in the query.

Finally, verify that the database has been written to disk by calling con.close() to close the existing connection,
opening a new one, creating a new cursor, then querying the database:

>>> con.close()

>>> new_con = sqlite3.connect("tutorial.db")

>>> new_cur = new_con.cursor()

>>> res = new_cur.execute("SELECT title, year FROM movie ORDER BY score DESC")

>>> title, year = res.fetchone()

>>> print(f'The highest scoring Monty Python movie is {title!r}, released in {year}

↪→')

The highest scoring Monty Python movie is 'Monty Python and the Holy Grail',␣

↪→released in 1975

>>> new_con.close()

You’ve now created an SQLite database using the sqlite3 module, inserted data and retrieved values from it in
multiple ways.

See also

• How-to guides for further reading:

– How to use placeholders to bind values in SQL queries

– How to adapt custom Python types to SQLite values

– How to convert SQLite values to custom Python types

– How to use the connection context manager

– How to create and use row factories

• Explanation for in-depth background on transaction control.

12.6.2 Reference

Module functions

sqlite3.connect(database, timeout=5.0, detect_types=0, isolation_level=’DEFERRED’,
check_same_thread=True, factory=sqlite3.Connection, cached_statements=128, uri=False, *,
autocommit=sqlite3.LEGACY_TRANSACTION_CONTROL)

Open a connection to an SQLite database.

Parameters

• database (path-like object) – The path to the database file to be opened. You can pass
":memory:" to create an SQLite database existing only in memory, and open a connec-
tion to it.

• timeout (float) – How many seconds the connection should wait before raising an
OperationalError when a table is locked. If another connection opens a transaction
to modify a table, that table will be locked until the transaction is committed. Default five
seconds.

• detect_types (int) – Control whether and how data types not natively supported by
SQLite are looked up to be converted to Python types, using the converters registered
with register_converter(). Set it to any combination (using |, bitwise or) of

528 Chapter 12. Data Persistence

https://sqlite.org/inmemorydb.html

The Python Library Reference, Release 3.13.1

PARSE_DECLTYPES and PARSE_COLNAMES to enable this. Column names takes prece-
dence over declared types if both flags are set. Types cannot be detected for generated
fields (for example max(data)), even when the detect_types parameter is set; str will be
returned instead. By default (0), type detection is disabled.

• isolation_level (str | None) – Control legacy transaction handling behaviour.
See Connection.isolation_level and Transaction control via the isolation_level
attribute for more information. Can be "DEFERRED" (default), "EXCLUSIVE" or
"IMMEDIATE"; or None to disable opening transactions implicitly. Has no effect unless
Connection.autocommit is set to LEGACY_TRANSACTION_CONTROL (the default).

• check_same_thread (bool) – If True (default), ProgrammingErrorwill be raised if
the database connection is used by a thread other than the one that created it. If False, the
connectionmay be accessed inmultiple threads; write operations may need to be serialized
by the user to avoid data corruption. See threadsafety for more information.

• factory (Connection) – A custom subclass of Connection to create the connection
with, if not the default Connection class.

• cached_statements (int) – The number of statements that sqlite3 should internally
cache for this connection, to avoid parsing overhead. By default, 128 statements.

• uri (bool) – If set to True, database is interpreted as a URI (Uniform Resource Iden-
tifier) with a file path and an optional query string. The scheme part must be "file:",
and the path can be relative or absolute. The query string allows passing parameters to
SQLite, enabling various How to work with SQLite URIs.

• autocommit (bool) – Control PEP 249 transaction handling behaviour. See
Connection.autocommit andTransaction control via the autocommit attribute formore
information. autocommit currently defaults to LEGACY_TRANSACTION_CONTROL. The
default will change to False in a future Python release.

Return type
Connection

Raises an auditing event sqlite3.connect with argument database.

Raises an auditing event sqlite3.connect/handle with argument connection_handle.

Changed in version 3.4: Added the uri parameter.

Changed in version 3.7: database can now also be a path-like object, not only a string.

Changed in version 3.10: Added the sqlite3.connect/handle auditing event.

Changed in version 3.12: Added the autocommit parameter.

Changed in version 3.13: Positional use of the parameters timeout, detect_types, isolation_level,
check_same_thread, factory, cached_statements, and uri is deprecated. They will become keyword-only pa-
rameters in Python 3.15.

sqlite3.complete_statement(statement)
Return True if the string statement appears to contain one or more complete SQL statements. No syntactic
verification or parsing of any kind is performed, other than checking that there are no unclosed string literals
and the statement is terminated by a semicolon.

For example:

>>> sqlite3.complete_statement("SELECT foo FROM bar;")

True

>>> sqlite3.complete_statement("SELECT foo")

False

This function may be useful during command-line input to determine if the entered text seems to form a
complete SQL statement, or if additional input is needed before calling execute().

See runsource() in Lib/sqlite3/__main__.py for real-world use.

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 529

https://peps.python.org/pep-0249/
https://github.com/python/cpython/tree/3.13/Lib/sqlite3/__main__.py

The Python Library Reference, Release 3.13.1

sqlite3.enable_callback_tracebacks(flag, /)
Enable or disable callback tracebacks. By default you will not get any tracebacks in user-defined functions,
aggregates, converters, authorizer callbacks etc. If you want to debug them, you can call this function with flag
set to True. Afterwards, you will get tracebacks from callbacks on sys.stderr. Use False to disable the
feature again.

Note

Errors in user-defined function callbacks are logged as unraisable exceptions. Use an unraisable hook

handler for introspection of the failed callback.

sqlite3.register_adapter(type, adapter, /)
Register an adapter callable to adapt the Python type type into an SQLite type. The adapter is called with a
Python object of type type as its sole argument, and must return a value of a type that SQLite natively under-
stands.

sqlite3.register_converter(typename, converter, /)
Register the converter callable to convert SQLite objects of type typename into a Python object of a specific
type. The converter is invoked for all SQLite values of type typename; it is passed a bytes object and should
return an object of the desired Python type. Consult the parameter detect_types of connect() for information
regarding how type detection works.

Note: typename and the name of the type in your query are matched case-insensitively.

Module constants

sqlite3.LEGACY_TRANSACTION_CONTROL

Set autocommit to this constant to select old style (pre-Python 3.12) transaction control behaviour. See
Transaction control via the isolation_level attribute for more information.

sqlite3.PARSE_COLNAMES

Pass this flag value to the detect_types parameter of connect() to look up a converter function by using the
type name, parsed from the query column name, as the converter dictionary key. The type name must be
wrapped in square brackets ([]).

SELECT p as "p [point]" FROM test; ! will look up converter "point"

This flag may be combined with PARSE_DECLTYPES using the | (bitwise or) operator.

sqlite3.PARSE_DECLTYPES

Pass this flag value to the detect_types parameter of connect() to look up a converter function using the
declared types for each column. The types are declared when the database table is created. sqlite3 will look
up a converter function using the first word of the declared type as the converter dictionary key. For example:

CREATE TABLE test(

i integer primary key, ! will look up a converter named "integer"

p point, ! will look up a converter named "point"

n number(10) ! will look up a converter named "number"

)

This flag may be combined with PARSE_COLNAMES using the | (bitwise or) operator.

sqlite3.SQLITE_OK

sqlite3.SQLITE_DENY

sqlite3.SQLITE_IGNORE

Flags that should be returned by the authorizer_callback callable passed to Connection.

set_authorizer(), to indicate whether:

• Access is allowed (SQLITE_OK),

530 Chapter 12. Data Persistence

The Python Library Reference, Release 3.13.1

• The SQL statement should be aborted with an error (SQLITE_DENY)

• The column should be treated as a NULL value (SQLITE_IGNORE)

sqlite3.apilevel

String constant stating the supported DB-API level. Required by the DB-API. Hard-coded to "2.0".

sqlite3.paramstyle

String constant stating the type of parameter marker formatting expected by the sqlite3 module. Required
by the DB-API. Hard-coded to "qmark".

Note

The named DB-API parameter style is also supported.

sqlite3.sqlite_version

Version number of the runtime SQLite library as a string.

sqlite3.sqlite_version_info

Version number of the runtime SQLite library as a tuple of integers.

sqlite3.threadsafety

Integer constant required by the DB-API 2.0, stating the level of thread safety the sqlite3 module supports.
This attribute is set based on the default threading mode the underlying SQLite library is compiled with. The
SQLite threading modes are:

1. Single-thread: In this mode, all mutexes are disabled and SQLite is unsafe to use in more than a single
thread at once.

2. Multi-thread: In this mode, SQLite can be safely used by multiple threads provided that no single
database connection is used simultaneously in two or more threads.

3. Serialized: In serialized mode, SQLite can be safely used by multiple threads with no restriction.

The mappings from SQLite threading modes to DB-API 2.0 threadsafety levels are as follows:

SQLite threading
mode

thread-
safety

SQLITE_THREADSAFEDB-API 2.0 meaning

single-thread 0 0 Threads may not share the module
multi-thread 1 2 Threads may share the module, but not con-

nections
serialized 3 1 Threads may share the module, connections

and cursors

Changed in version 3.11: Set threadsafety dynamically instead of hard-coding it to 1.

sqlite3.version

Version number of this module as a string. This is not the version of the SQLite library.

Deprecated since version 3.12, will be removed in version 3.14: This constant used to reflect the version
number of the pysqlite package, a third-party library which used to upstream changes to sqlite3. Today,
it carries no meaning or practical value.

sqlite3.version_info

Version number of this module as a tuple of integers. This is not the version of the SQLite library.

Deprecated since version 3.12, will be removed in version 3.14: This constant used to reflect the version
number of the pysqlite package, a third-party library which used to upstream changes to sqlite3. Today,
it carries no meaning or practical value.

sqlite3.SQLITE_DBCONFIG_DEFENSIVE

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 531

https://sqlite.org/threadsafe.html
https://peps.python.org/pep-0249/#threadsafety
https://peps.python.org/pep-0249/#threadsafety
https://sqlite.org/compile.html#threadsafe

The Python Library Reference, Release 3.13.1

sqlite3.SQLITE_DBCONFIG_DQS_DDL

sqlite3.SQLITE_DBCONFIG_DQS_DML

sqlite3.SQLITE_DBCONFIG_ENABLE_FKEY

sqlite3.SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER

sqlite3.SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION

sqlite3.SQLITE_DBCONFIG_ENABLE_QPSG

sqlite3.SQLITE_DBCONFIG_ENABLE_TRIGGER

sqlite3.SQLITE_DBCONFIG_ENABLE_VIEW

sqlite3.SQLITE_DBCONFIG_LEGACY_ALTER_TABLE

sqlite3.SQLITE_DBCONFIG_LEGACY_FILE_FORMAT

sqlite3.SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE

sqlite3.SQLITE_DBCONFIG_RESET_DATABASE

sqlite3.SQLITE_DBCONFIG_TRIGGER_EQP

sqlite3.SQLITE_DBCONFIG_TRUSTED_SCHEMA

sqlite3.SQLITE_DBCONFIG_WRITABLE_SCHEMA

These constants are used for the Connection.setconfig() and getconfig() methods.

The availability of these constants varies depending on the version of SQLite Python was compiled with.

Added in version 3.12.

See also

https://www.sqlite.org/c3ref/c_dbconfig_defensive.html
SQLite docs: Database Connection Configuration Options

Connection objects

class sqlite3.Connection

Each open SQLite database is represented by a Connection object, which is created using sqlite3.

connect(). Their main purpose is creating Cursor objects, and Transaction control.

See also

• How to use connection shortcut methods

• How to use the connection context manager

Changed in version 3.13: A ResourceWarning is emitted if close() is not called before a Connection
object is deleted.

An SQLite database connection has the following attributes and methods:

cursor(factory=Cursor)
Create and return a Cursor object. The cursor method accepts a single optional parameter factory. If
supplied, this must be a callable returning an instance of Cursor or its subclasses.

blobopen(table, column, row, / , *, readonly=False, name=’main’)

Open a Blob handle to an existing BLOB (Binary Large OBject).

Parameters

• table (str) – The name of the table where the blob is located.

• column (str) – The name of the column where the blob is located.

532 Chapter 12. Data Persistence

https://www.sqlite.org/c3ref/c_dbconfig_defensive.html

The Python Library Reference, Release 3.13.1

• row (str) – The name of the row where the blob is located.

• readonly (bool) – Set to True if the blob should be opened without write permissions.
Defaults to False.

• name (str) – The name of the database where the blob is located. Defaults to "main".

Raises
OperationalError – When trying to open a blob in a WITHOUT ROWID table.

Return type
Blob

Note

The blob size cannot be changed using the Blob class. Use the SQL function zeroblob to create a
blob with a fixed size.

Added in version 3.11.

commit()

Commit any pending transaction to the database. If autocommit is True, or there is no open transaction,
this method does nothing. If autocommit is False, a new transaction is implicitly opened if a pending
transaction was committed by this method.

rollback()

Roll back to the start of any pending transaction. If autocommit is True, or there is no open transaction,
this method does nothing. If autocommit is False, a new transaction is implicitly opened if a pending
transaction was rolled back by this method.

close()

Close the database connection. If autocommit is False, any pending transaction is implicitly rolled
back. If autocommit is True or LEGACY_TRANSACTION_CONTROL, no implicit transaction control is
executed. Make sure to commit() before closing to avoid losing pending changes.

execute(sql, parameters=(), /)
Create a new Cursor object and call execute() on it with the given sql and parameters. Return the
new cursor object.

executemany(sql, parameters, /)
Create a new Cursor object and call executemany() on it with the given sql and parameters. Return
the new cursor object.

executescript(sql_script, /)
Create a new Cursor object and call executescript() on it with the given sql_script. Return the new
cursor object.

create_function(name, narg, func, *, deterministic=False)
Create or remove a user-defined SQL function.

Parameters

• name (str) – The name of the SQL function.

• narg (int) – The number of arguments the SQL function can accept. If -1, it may take
any number of arguments.

• func (callback | None) – A callable that is called when the SQL function is invoked.
The callable must return a type natively supported by SQLite. Set to None to remove an
existing SQL function.

• deterministic (bool) – If True, the created SQL function is marked as determin-
istic, which allows SQLite to perform additional optimizations.

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 533

https://sqlite.org/deterministic.html
https://sqlite.org/deterministic.html

The Python Library Reference, Release 3.13.1

Changed in version 3.8: Added the deterministic parameter.

Example:

>>> import hashlib

>>> def md5sum(t):

... return hashlib.md5(t).hexdigest()

>>> con = sqlite3.connect(":memory:")

>>> con.create_function("md5", 1, md5sum)

>>> for row in con.execute("SELECT md5(?)", (b"foo",)):

... print(row)

('acbd18db4cc2f85cedef654fccc4a4d8',)

>>> con.close()

Changed in version 3.13: Passing name, narg, and func as keyword arguments is deprecated. These
parameters will become positional-only in Python 3.15.

create_aggregate(name, n_arg, aggregate_class)
Create or remove a user-defined SQL aggregate function.

Parameters

• name (str) – The name of the SQL aggregate function.

• n_arg (int) – The number of arguments the SQL aggregate function can accept. If
-1, it may take any number of arguments.

• aggregate_class (class | None) – A class must implement the following methods:

– step(): Add a row to the aggregate.

– finalize(): Return the final result of the aggregate as a type natively supported by
SQLite.

The number of arguments that the step() method must accept is controlled by n_arg.

Set to None to remove an existing SQL aggregate function.

Example:

class MySum:

def __init__(self):

self.count = 0

def step(self, value):

self.count += value

def finalize(self):

return self.count

con = sqlite3.connect(":memory:")

con.create_aggregate("mysum", 1, MySum)

cur = con.execute("CREATE TABLE test(i)")

cur.execute("INSERT INTO test(i) VALUES(1)")

cur.execute("INSERT INTO test(i) VALUES(2)")

cur.execute("SELECT mysum(i) FROM test")

print(cur.fetchone()[0])

con.close()

Changed in version 3.13: Passing name, n_arg, and aggregate_class as keyword arguments is deprecated.
These parameters will become positional-only in Python 3.15.

534 Chapter 12. Data Persistence

The Python Library Reference, Release 3.13.1

create_window_function(name, num_params, aggregate_class, /)
Create or remove a user-defined aggregate window function.

Parameters

• name (str) – The name of the SQL aggregate window function to create or remove.

• num_params (int) – The number of arguments the SQL aggregate window function
can accept. If -1, it may take any number of arguments.

• aggregate_class (class | None) –A class that must implement the followingmethods:

– step(): Add a row to the current window.

– value(): Return the current value of the aggregate.

– inverse(): Remove a row from the current window.

– finalize(): Return the final result of the aggregate as a type natively supported by
SQLite.

The number of arguments that the step() and value() methods must accept is con-
trolled by num_params.

Set to None to remove an existing SQL aggregate window function.

Raises
NotSupportedError – If used with a version of SQLite older than 3.25.0, which does
not support aggregate window functions.

Added in version 3.11.

Example:

Example taken from https://www.sqlite.org/windowfunctions.html#udfwinfunc

class WindowSumInt:

def __init__(self):

self.count = 0

def step(self, value):

"""Add a row to the current window."""

self.count += value

def value(self):

"""Return the current value of the aggregate."""

return self.count

def inverse(self, value):

"""Remove a row from the current window."""

self.count -= value

def finalize(self):

"""Return the final value of the aggregate.

Any clean-up actions should be placed here.

"""

return self.count

con = sqlite3.connect(":memory:")

cur = con.execute("CREATE TABLE test(x, y)")

values = [

("a", 4),

("b", 5),

(continues on next page)

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 535

The Python Library Reference, Release 3.13.1

(continued from previous page)

("c", 3),

("d", 8),

("e", 1),

]

cur.executemany("INSERT INTO test VALUES(?, ?)", values)

con.create_window_function("sumint", 1, WindowSumInt)

cur.execute("""

SELECT x, sumint(y) OVER (

ORDER BY x ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING

) AS sum_y

FROM test ORDER BY x

""")

print(cur.fetchall())

con.close()

create_collation(name, callable, /)
Create a collation named name using the collating function callable. callable is passed two string

arguments, and it should return an integer:

• 1 if the first is ordered higher than the second

• -1 if the first is ordered lower than the second

• 0 if they are ordered equal

The following example shows a reverse sorting collation:

def collate_reverse(string1, string2):

if string1 == string2:

return 0

elif string1 < string2:

return 1

else:

return -1

con = sqlite3.connect(":memory:")

con.create_collation("reverse", collate_reverse)

cur = con.execute("CREATE TABLE test(x)")

cur.executemany("INSERT INTO test(x) VALUES(?)", [("a",), ("b",)])

cur.execute("SELECT x FROM test ORDER BY x COLLATE reverse")

for row in cur:

print(row)

con.close()

Remove a collation function by setting callable to None.

Changed in version 3.11: The collation name can contain any Unicode character. Earlier, only ASCII
characters were allowed.

interrupt()

Call this method from a different thread to abort any queries that might be executing on the connection.
Aborted queries will raise an OperationalError.

set_authorizer(authorizer_callback)
Register callable authorizer_callback to be invoked for each attempt to access a column of a table in the
database. The callback should return one of SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE to signal
how access to the column should be handled by the underlying SQLite library.

The first argument to the callback signifies what kind of operation is to be authorized. The second and
third argument will be arguments or None depending on the first argument. The 4th argument is the name

536 Chapter 12. Data Persistence

The Python Library Reference, Release 3.13.1

of the database (“main”, “temp”, etc.) if applicable. The 5th argument is the name of the inner-most
trigger or view that is responsible for the access attempt or None if this access attempt is directly from
input SQL code.

Please consult the SQLite documentation about the possible values for the first argument and the meaning
of the second and third argument depending on the first one. All necessary constants are available in the
sqlite3 module.

Passing None as authorizer_callback will disable the authorizer.

Changed in version 3.11: Added support for disabling the authorizer using None.

Changed in version 3.13: Passing authorizer_callback as a keyword argument is deprecated. The param-
eter will become positional-only in Python 3.15.

set_progress_handler(progress_handler, n)
Register callable progress_handler to be invoked for every n instructions of the SQLite virtual machine.
This is useful if you want to get called from SQLite during long-running operations, for example to update
a GUI.

If you want to clear any previously installed progress handler, call the method with None for
progress_handler.

Returning a non-zero value from the handler function will terminate the currently executing query and
cause it to raise a DatabaseError exception.

Changed in version 3.13: Passing progress_handler as a keyword argument is deprecated. The parameter
will become positional-only in Python 3.15.

set_trace_callback(trace_callback)
Register callable trace_callback to be invoked for each SQL statement that is actually executed by the
SQLite backend.

The only argument passed to the callback is the statement (as str) that is being executed. The return
value of the callback is ignored. Note that the backend does not only run statements passed to the
Cursor.execute() methods. Other sources include the transaction management of the sqlite3

module and the execution of triggers defined in the current database.

Passing None as trace_callback will disable the trace callback.

Note

Exceptions raised in the trace callback are not propagated. As a development and debugging aid, use
enable_callback_tracebacks() to enable printing tracebacks from exceptions raised in the
trace callback.

Added in version 3.3.

Changed in version 3.13: Passing trace_callback as a keyword argument is deprecated. The parameter
will become positional-only in Python 3.15.

enable_load_extension(enabled, /)
Enable the SQLite engine to load SQLite extensions from shared libraries if enabled is True; else, dis-
allow loading SQLite extensions. SQLite extensions can define new functions, aggregates or whole new
virtual table implementations. One well-known extension is the fulltext-search extension distributed with
SQLite.

Note

The sqlite3 module is not built with loadable extension support by default, because some plat-
forms (notably macOS) have SQLite libraries which are compiled without this feature. To get load-

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 537

The Python Library Reference, Release 3.13.1

able extension support, you must pass the --enable-loadable-sqlite-extensions option to
configure.

Raises an auditing event sqlite3.enable_load_extension with arguments connection,
enabled.

Added in version 3.2.

Changed in version 3.10: Added the sqlite3.enable_load_extension auditing event.

con.enable_load_extension(True)

Load the fulltext search extension

con.execute("select load_extension('./fts3.so')")

alternatively you can load the extension using an API call:

con.load_extension("./fts3.so")

disable extension loading again

con.enable_load_extension(False)

example from SQLite wiki

con.execute("CREATE VIRTUAL TABLE recipe USING fts3(name, ingredients)")

con.executescript("""

INSERT INTO recipe (name, ingredients) VALUES('broccoli stew',

↪→'broccoli peppers cheese tomatoes');

INSERT INTO recipe (name, ingredients) VALUES('pumpkin stew', 'pumpkin␣

↪→onions garlic celery');

INSERT INTO recipe (name, ingredients) VALUES('broccoli pie',

↪→'broccoli cheese onions flour');

INSERT INTO recipe (name, ingredients) VALUES('pumpkin pie', 'pumpkin␣

↪→sugar flour butter');

""")

for row in con.execute("SELECT rowid, name, ingredients FROM recipe WHERE␣

↪→name MATCH 'pie'"):

print(row)

load_extension(path, / , *, entrypoint=None)
Load an SQLite extension from a shared library. Enable extension loading with
enable_load_extension() before calling this method.

Parameters

• path (str) – The path to the SQLite extension.

• entrypoint (str | None) – Entry point name. If None (the default), SQLite will
come up with an entry point name of its own; see the SQLite docs Loading an Extension
for details.

Raises an auditing event sqlite3.load_extension with arguments connection, path.

Added in version 3.2.

Changed in version 3.10: Added the sqlite3.load_extension auditing event.

Changed in version 3.12: Added the entrypoint parameter.

iterdump(*, filter=None)
Return an iterator to dump the database as SQL source code. Useful when saving an in-memory database
for later restoration. Similar to the .dump command in the sqlite3 shell.

538 Chapter 12. Data Persistence

https://www.sqlite.org/loadext.html#loading_an_extension

The Python Library Reference, Release 3.13.1

Parameters
filter (str | None) – An optional LIKE pattern for database objects to dump, e.g.
prefix_%. If None (the default), all database objects will be included.

Example:

Convert file example.db to SQL dump file dump.sql

con = sqlite3.connect('example.db')

with open('dump.sql', 'w') as f:

for line in con.iterdump():

f.write('%s\n' % line)

con.close()

See also

How to handle non-UTF-8 text encodings

Changed in version 3.13: Added the filter parameter.

backup(target, *, pages=-1, progress=None, name=’main’, sleep=0.250)
Create a backup of an SQLite database.

Works even if the database is being accessed by other clients or concurrently by the same connection.

Parameters

• target (Connection) – The database connection to save the backup to.

• pages (int) – The number of pages to copy at a time. If equal to or less than 0, the
entire database is copied in a single step. Defaults to -1.

• progress (callback | None) – If set to a callable, it is invoked with three integer argu-
ments for every backup iteration: the status of the last iteration, the remaining number
of pages still to be copied, and the total number of pages. Defaults to None.

• name (str) – The name of the database to back up. Either "main" (the default) for the
main database, "temp" for the temporary database, or the name of a custom database
as attached using the ATTACH DATABASE SQL statement.

• sleep (float) – The number of seconds to sleep between successive attempts to back
up remaining pages.

Example 1, copy an existing database into another:

def progress(status, remaining, total):

print(f'Copied {total-remaining} of {total} pages...')

src = sqlite3.connect('example.db')

dst = sqlite3.connect('backup.db')

with dst:

src.backup(dst, pages=1, progress=progress)

dst.close()

src.close()

Example 2, copy an existing database into a transient copy:

src = sqlite3.connect('example.db')

dst = sqlite3.connect(':memory:')

src.backup(dst)

dst.close()

src.close()

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 539

The Python Library Reference, Release 3.13.1

Added in version 3.7.

See also

How to handle non-UTF-8 text encodings

getlimit(category, /)
Get a connection runtime limit.

Parameters
category (int) – The SQLite limit category to be queried.

Return type
int

Raises
ProgrammingError – If category is not recognised by the underlying SQLite library.

Example, query the maximum length of an SQL statement for Connection con (the default is
1000000000):

>>> con.getlimit(sqlite3.SQLITE_LIMIT_SQL_LENGTH)

1000000000

Added in version 3.11.

setlimit(category, limit, /)
Set a connection runtime limit. Attempts to increase a limit above its hard upper bound are silently
truncated to the hard upper bound. Regardless of whether or not the limit was changed, the prior value
of the limit is returned.

Parameters

• category (int) – The SQLite limit category to be set.

• limit (int) – The value of the new limit. If negative, the current limit is unchanged.

Return type
int

Raises
ProgrammingError – If category is not recognised by the underlying SQLite library.

Example, limit the number of attached databases to 1 for Connection con (the default limit is 10):

>>> con.setlimit(sqlite3.SQLITE_LIMIT_ATTACHED, 1)

10

>>> con.getlimit(sqlite3.SQLITE_LIMIT_ATTACHED)

1

Added in version 3.11.

getconfig(op, /)
Query a boolean connection configuration option.

Parameters
op (int) – A SQLITE_DBCONFIG code.

Return type
bool

Added in version 3.12.

540 Chapter 12. Data Persistence

https://www.sqlite.org/c3ref/c_limit_attached.html
https://www.sqlite.org/c3ref/c_limit_attached.html

The Python Library Reference, Release 3.13.1

setconfig(op, enable=True, /)
Set a boolean connection configuration option.

Parameters

• op (int) – A SQLITE_DBCONFIG code.

• enable (bool) – True if the configuration option should be enabled (default); False
if it should be disabled.

Added in version 3.12.

serialize(*, name=’main’)
Serialize a database into a bytes object. For an ordinary on-disk database file, the serialization is just
a copy of the disk file. For an in-memory database or a “temp” database, the serialization is the same
sequence of bytes which would be written to disk if that database were backed up to disk.

Parameters
name (str) – The database name to be serialized. Defaults to "main".

Return type
bytes

Note

This method is only available if the underlying SQLite library has the serialize API.

Added in version 3.11.

deserialize(data, / , *, name=’main’)
Deserialize a serialized database into a Connection. This method causes the database connection
to disconnect from database name, and reopen name as an in-memory database based on the serialization
contained in data.

Parameters

• data (bytes) – A serialized database.

• name (str) – The database name to deserialize into. Defaults to "main".

Raises

• OperationalError – If the database connection is currently involved in a read trans-
action or a backup operation.

• DatabaseError – If data does not contain a valid SQLite database.

• OverflowError – If len(data) is larger than 2**63 - 1.

Note

This method is only available if the underlying SQLite library has the deserialize API.

Added in version 3.11.

autocommit

This attribute controls PEP 249-compliant transaction behaviour. autocommit has three allowed val-
ues:

• False: Select PEP 249-compliant transaction behaviour, implying that sqlite3 ensures a trans-
action is always open. Use commit() and rollback() to close transactions.

This is the recommended value of autocommit.

• True: Use SQLite’s autocommit mode. commit() and rollback() have no effect in this mode.

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 541

https://peps.python.org/pep-0249/
https://peps.python.org/pep-0249/
https://www.sqlite.org/lang_transaction.html#implicit_versus_explicit_transactions

The Python Library Reference, Release 3.13.1

• LEGACY_TRANSACTION_CONTROL: Pre-Python 3.12 (non-PEP 249-compliant) transaction con-
trol. See isolation_level for more details.

This is currently the default value of autocommit.

Changing autocommit to False will open a new transaction, and changing it to True will commit any
pending transaction.

See Transaction control via the autocommit attribute for more details.

Note

The isolation_level attribute has no effect unless autocommit is
LEGACY_TRANSACTION_CONTROL.

Added in version 3.12.

in_transaction

This read-only attribute corresponds to the low-level SQLite autocommit mode.

True if a transaction is active (there are uncommitted changes), False otherwise.

Added in version 3.2.

isolation_level

Controls the legacy transaction handling mode of sqlite3. If set to None, transactions are never im-
plicitly opened. If set to one of "DEFERRED", "IMMEDIATE", or "EXCLUSIVE", corresponding to the
underlying SQLite transaction behaviour, implicit transaction management is performed.

If not overridden by the isolation_level parameter of connect(), the default is "", which is an alias for
"DEFERRED".

Note

Using autocommit to control transaction handling is recommended over using isolation_level.
isolation_level has no effect unless autocommit is set to LEGACY_TRANSACTION_CONTROL
(the default).

row_factory

The initial row_factory for Cursor objects created from this connection. Assigning to this attribute
does not affect the row_factory of existing cursors belonging to this connection, only new ones. Is
None by default, meaning each row is returned as a tuple.

See How to create and use row factories for more details.

text_factory

A callable that accepts a bytes parameter and returns a text representation of it. The callable is invoked
for SQLite values with the TEXT data type. By default, this attribute is set to str.

See How to handle non-UTF-8 text encodings for more details.

total_changes

Return the total number of database rows that have been modified, inserted, or deleted since the database
connection was opened.

Cursor objects

A Cursor object represents a database cursor which is used to execute SQL statements, and manage
the context of a fetch operation. Cursors are created using Connection.cursor(), or by using any
of the connection shortcut methods.

542 Chapter 12. Data Persistence

https://peps.python.org/pep-0249/
https://www.sqlite.org/lang_transaction.html#implicit_versus_explicit_transactions
https://www.sqlite.org/lang_transaction.html#deferred_immediate_and_exclusive_transactions
https://en.wikipedia.org/wiki/Cursor_(databases)

The Python Library Reference, Release 3.13.1

Cursor objects are iterators, meaning that if you execute() a SELECT query, you can simply iterate
over the cursor to fetch the resulting rows:

for row in cur.execute("SELECT t FROM data"):

print(row)

class sqlite3.Cursor

A Cursor instance has the following attributes and methods.

execute(sql, parameters=(), /)
Execute a single SQL statement, optionally binding Python values using placeholders.

Parameters

• sql (str) – A single SQL statement.

• parameters (dict | sequence) – Python values to bind to placeholders in sql. A dict

if named placeholders are used. A sequence if unnamed placeholders are used. SeeHow
to use placeholders to bind values in SQL queries.

Raises
ProgrammingError – If sql contains more than one SQL statement.

If autocommit is LEGACY_TRANSACTION_CONTROL, isolation_level is not None, sql is an
INSERT, UPDATE, DELETE, or REPLACE statement, and there is no open transaction, a transaction is
implicitly opened before executing sql.

Deprecated since version 3.12, will be removed in version 3.14: DeprecationWarning is emitted if
named placeholders are used and parameters is a sequence instead of a dict. Starting with Python 3.14,
ProgrammingError will be raised instead.

Use executescript() to execute multiple SQL statements.

executemany(sql, parameters, /)
For every item in parameters, repeatedly execute the parameterized DML (Data Manipulation Language)
SQL statement sql.

Uses the same implicit transaction handling as execute().

Parameters

• sql (str) – A single SQL DML statement.

• parameters (iterable) – An iterable of parameters to bind with the placeholders in sql.
See How to use placeholders to bind values in SQL queries.

Raises
ProgrammingError – If sql contains more than one SQL statement, or is not a DML
statement.

Example:

rows = [

("row1",),

("row2",),

]

cur is an sqlite3.Cursor object

cur.executemany("INSERT INTO data VALUES(?)", rows)

Note

Any resulting rows are discarded, including DML statements with RETURNING clauses.

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 543

https://www.sqlite.org/lang_returning.html

The Python Library Reference, Release 3.13.1

Deprecated since version 3.12, will be removed in version 3.14: DeprecationWarning is emitted if
named placeholders are used and the items in parameters are sequences instead of dicts. Starting with
Python 3.14, ProgrammingError will be raised instead.

executescript(sql_script, /)
Execute the SQL statements in sql_script. If the autocommit is LEGACY_TRANSACTION_CONTROL
and there is a pending transaction, an implicit COMMIT statement is executed first. No other implicit
transaction control is performed; any transaction control must be added to sql_script.

sql_script must be a string.

Example:

cur is an sqlite3.Cursor object

cur.executescript("""

BEGIN;

CREATE TABLE person(firstname, lastname, age);

CREATE TABLE book(title, author, published);

CREATE TABLE publisher(name, address);

COMMIT;

""")

fetchone()

If row_factory is None, return the next row query result set as a tuple. Else, pass it to the row factory
and return its result. Return None if no more data is available.

fetchmany(size=cursor.arraysize)
Return the next set of rows of a query result as a list. Return an empty list if no more rows are available.

The number of rows to fetch per call is specified by the size parameter. If size is not given, arraysize
determines the number of rows to be fetched. If fewer than size rows are available, as many rows as are
available are returned.

Note there are performance considerations involved with the size parameter. For optimal performance,
it is usually best to use the arraysize attribute. If the size parameter is used, then it is best for it to retain
the same value from one fetchmany() call to the next.

fetchall()

Return all (remaining) rows of a query result as a list. Return an empty list if no rows are available.
Note that the arraysize attribute can affect the performance of this operation.

close()

Close the cursor now (rather than whenever __del__ is called).

The cursor will be unusable from this point forward; a ProgrammingError exception will be raised if
any operation is attempted with the cursor.

setinputsizes(sizes, /)
Required by the DB-API. Does nothing in sqlite3.

setoutputsize(size, column=None, /)
Required by the DB-API. Does nothing in sqlite3.

arraysize

Read/write attribute that controls the number of rows returned by fetchmany(). The default value is
1 which means a single row would be fetched per call.

connection

Read-only attribute that provides the SQLite database Connection belonging to the cursor. A Cursor

object created by calling con.cursor() will have a connection attribute that refers to con:

544 Chapter 12. Data Persistence

The Python Library Reference, Release 3.13.1

>>> con = sqlite3.connect(":memory:")

>>> cur = con.cursor()

>>> cur.connection == con

True

>>> con.close()

description

Read-only attribute that provides the column names of the last query. To remain compatible with the
Python DB API, it returns a 7-tuple for each column where the last six items of each tuple are None.

It is set for SELECT statements without any matching rows as well.

lastrowid

Read-only attribute that provides the row id of the last inserted row. It is only updated after suc-
cessful INSERT or REPLACE statements using the execute() method. For other statements, after
executemany() or executescript(), or if the insertion failed, the value of lastrowid is left
unchanged. The initial value of lastrowid is None.

Note

Inserts into WITHOUT ROWID tables are not recorded.

Changed in version 3.6: Added support for the REPLACE statement.

rowcount

Read-only attribute that provides the number of modified rows for INSERT, UPDATE, DELETE, and
REPLACE statements; is -1 for other statements, including CTE (Common Table Expression) queries.
It is only updated by the execute() and executemany() methods, after the statement has run to
completion. This means that any resulting rows must be fetched in order for rowcount to be updated.

row_factory

Control how a row fetched from this Cursor is represented. If None, a row is represented as a tuple.
Can be set to the included sqlite3.Row; or a callable that accepts two arguments, a Cursor object
and the tuple of row values, and returns a custom object representing an SQLite row.

Defaults to what Connection.row_factory was set to when the Cursor was created. Assigning to
this attribute does not affect Connection.row_factory of the parent connection.

See How to create and use row factories for more details.

Row objects

class sqlite3.Row

A Row instance serves as a highly optimized row_factory for Connection objects. It supports iteration,
equality testing, len(), and mapping access by column name and index.

Two Row objects compare equal if they have identical column names and values.

See How to create and use row factories for more details.

keys()

Return a list of column names as strings. Immediately after a query, it is the first member of each
tuple in Cursor.description.

Changed in version 3.5: Added support of slicing.

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 545

The Python Library Reference, Release 3.13.1

Blob objects

class sqlite3.Blob

Added in version 3.11.

A Blob instance is a file-like object that can read and write data in an SQLite BLOB. Call len(blob) to get
the size (number of bytes) of the blob. Use indices and slices for direct access to the blob data.

Use the Blob as a context manager to ensure that the blob handle is closed after use.

con = sqlite3.connect(":memory:")

con.execute("CREATE TABLE test(blob_col blob)")

con.execute("INSERT INTO test(blob_col) VALUES(zeroblob(13))")

Write to our blob, using two write operations:

with con.blobopen("test", "blob_col", 1) as blob:

blob.write(b"hello, ")

blob.write(b"world.")

Modify the first and last bytes of our blob

blob[0] = ord("H")

blob[-1] = ord("!")

Read the contents of our blob

with con.blobopen("test", "blob_col", 1) as blob:

greeting = blob.read()

print(greeting) # outputs "b'Hello, world!'"

con.close()

close()

Close the blob.

The blob will be unusable from this point onward. An Error (or subclass) exception will be raised if
any further operation is attempted with the blob.

read(length=-1, /)
Read length bytes of data from the blob at the current offset position. If the end of the blob is reached,
the data up to EOF (End of File) will be returned. When length is not specified, or is negative, read()
will read until the end of the blob.

write(data, /)
Write data to the blob at the current offset. This function cannot change the blob length. Writing beyond
the end of the blob will raise ValueError.

tell()

Return the current access position of the blob.

seek(offset, origin=os.SEEK_SET , /)
Set the current access position of the blob to offset. The origin argument defaults to os.SEEK_SET (ab-
solute blob positioning). Other values for origin are os.SEEK_CUR (seek relative to the current position)
and os.SEEK_END (seek relative to the blob’s end).

PrepareProtocol objects

class sqlite3.PrepareProtocol

The PrepareProtocol type’s single purpose is to act as a PEP 246 style adaption protocol for objects that can
adapt themselves to native SQLite types.

546 Chapter 12. Data Persistence

https://peps.python.org/pep-0246/

The Python Library Reference, Release 3.13.1

Exceptions

The exception hierarchy is defined by the DB-API 2.0 (PEP 249).

exception sqlite3.Warning

This exception is not currently raised by the sqlite3 module, but may be raised by applications using
sqlite3, for example if a user-defined function truncates data while inserting. Warning is a subclass of
Exception.

exception sqlite3.Error

The base class of the other exceptions in this module. Use this to catch all errors with one single except
statement. Error is a subclass of Exception.

If the exception originated from within the SQLite library, the following two attributes are added to the ex-
ception:

sqlite_errorcode

The numeric error code from the SQLite API

Added in version 3.11.

sqlite_errorname

The symbolic name of the numeric error code from the SQLite API

Added in version 3.11.

exception sqlite3.InterfaceError

Exception raised for misuse of the low-level SQLite C API. In other words, if this exception is raised, it
probably indicates a bug in the sqlite3 module. InterfaceError is a subclass of Error.

exception sqlite3.DatabaseError

Exception raised for errors that are related to the database. This serves as the base exception for several types of
database errors. It is only raised implicitly through the specialised subclasses. DatabaseError is a subclass
of Error.

exception sqlite3.DataError

Exception raised for errors caused by problems with the processed data, like numeric values out of range, and
strings which are too long. DataError is a subclass of DatabaseError.

exception sqlite3.OperationalError

Exception raised for errors that are related to the database’s operation, and not necessarily under the control
of the programmer. For example, the database path is not found, or a transaction could not be processed.
OperationalError is a subclass of DatabaseError.

exception sqlite3.IntegrityError

Exception raised when the relational integrity of the database is affected, e.g. a foreign key check fails. It is a
subclass of DatabaseError.

exception sqlite3.InternalError

Exception raised when SQLite encounters an internal error. If this is raised, it may indicate that there is a
problem with the runtime SQLite library. InternalError is a subclass of DatabaseError.

exception sqlite3.ProgrammingError

Exception raised for sqlite3 API programming errors, for example supplying the wrong number of bind-
ings to a query, or trying to operate on a closed Connection. ProgrammingError is a subclass of
DatabaseError.

exception sqlite3.NotSupportedError

Exception raised in case a method or database API is not supported by the underlying SQLite library. For
example, setting deterministic to True in create_function(), if the underlying SQLite library does not
support deterministic functions. NotSupportedError is a subclass of DatabaseError.

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 547

https://peps.python.org/pep-0249/
https://sqlite.org/rescode.html
https://sqlite.org/rescode.html

The Python Library Reference, Release 3.13.1

SQLite and Python types

SQLite natively supports the following types: NULL, INTEGER, REAL, TEXT, BLOB.

The following Python types can thus be sent to SQLite without any problem:

Python type SQLite type

None NULL

int INTEGER

float REAL

str TEXT

bytes BLOB

This is how SQLite types are converted to Python types by default:

SQLite type Python type

NULL None

INTEGER int

REAL float

TEXT depends on text_factory, str by default
BLOB bytes

The type system of the sqlite3 module is extensible in two ways: you can store additional Python types in an
SQLite database via object adapters, and you can let the sqlite3 module convert SQLite types to Python types via
converters.

Default adapters and converters (deprecated)

Note

The default adapters and converters are deprecated as of Python 3.12. Instead, use the Adapter and converter
recipes and tailor them to your needs.

The deprecated default adapters and converters consist of:

• An adapter for datetime.date objects to strings in ISO 8601 format.

• An adapter for datetime.datetime objects to strings in ISO 8601 format.

• A converter for declared “date” types to datetime.date objects.

• A converter for declared “timestamp” types to datetime.datetime objects. Fractional parts will be trun-
cated to 6 digits (microsecond precision).

Note

The default “timestamp” converter ignores UTC offsets in the database and always returns a naive datetime.
datetime object. To preserve UTC offsets in timestamps, either leave converters disabled, or register an offset-
aware converter with register_converter().

Deprecated since version 3.12.

548 Chapter 12. Data Persistence

https://en.wikipedia.org/wiki/ISO_8601

The Python Library Reference, Release 3.13.1

Command-line interface

The sqlite3 module can be invoked as a script, using the interpreter’s -m switch, in order to provide a simple
SQLite shell. The argument signature is as follows:

python -m sqlite3 [-h] [-v] [filename] [sql]

Type .quit or CTRL-D to exit the shell.

-h, --help

Print CLI help.

-v, --version

Print underlying SQLite library version.

Added in version 3.12.

12.6.3 How-to guides

How to use placeholders to bind values in SQL queries

SQL operations usually need to use values from Python variables. However, beware of using Python’s string opera-
tions to assemble queries, as they are vulnerable to SQL injection attacks. For example, an attacker can simply close
the single quote and inject OR TRUE to select all rows:

>>> # Never do this -- insecure!

>>> symbol = input()

' OR TRUE; --

>>> sql = "SELECT * FROM stocks WHERE symbol = '%s'" % symbol

>>> print(sql)

SELECT * FROM stocks WHERE symbol = '' OR TRUE; --'

>>> cur.execute(sql)

Instead, use the DB-API’s parameter substitution. To insert a variable into a query string, use a placeholder in the
string, and substitute the actual values into the query by providing them as a tuple of values to the second argument
of the cursor’s execute() method.

An SQL statement may use one of two kinds of placeholders: question marks (qmark style) or named placeholders
(named style). For the qmark style, parameters must be a sequence whose length must match the number of place-
holders, or a ProgrammingError is raised. For the named style, parameters must be an instance of a dict (or a
subclass), which must contain keys for all named parameters; any extra items are ignored. Here’s an example of both
styles:

con = sqlite3.connect(":memory:")

cur = con.execute("CREATE TABLE lang(name, first_appeared)")

This is the named style used with executemany():

data = (

{"name": "C", "year": 1972},

{"name": "Fortran", "year": 1957},

{"name": "Python", "year": 1991},

{"name": "Go", "year": 2009},

)

cur.executemany("INSERT INTO lang VALUES(:name, :year)", data)

This is the qmark style used in a SELECT query:

params = (1972,)

cur.execute("SELECT * FROM lang WHERE first_appeared = ?", params)

print(cur.fetchall())

con.close()

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 549

https://en.wikipedia.org/wiki/SQL_injection

The Python Library Reference, Release 3.13.1

Note

PEP 249 numeric placeholders are not supported. If used, they will be interpreted as named placeholders.

How to adapt custom Python types to SQLite values

SQLite supports only a limited set of data types natively. To store custom Python types in SQLite databases, adapt
them to one of the Python types SQLite natively understands.

There are two ways to adapt Python objects to SQLite types: letting your object adapt itself, or using an adapter
callable. The latter will take precedence above the former. For a library that exports a custom type, it may make
sense to enable that type to adapt itself. As an application developer, it may make more sense to take direct control
by registering custom adapter functions.

How to write adaptable objects

Suppose we have a Point class that represents a pair of coordinates, x and y, in a Cartesian coordinate system. The
coordinate pair will be stored as a text string in the database, using a semicolon to separate the coordinates. This
can be implemented by adding a __conform__(self, protocol)method which returns the adapted value. The
object passed to protocol will be of type PrepareProtocol.

class Point:

def __init__(self, x, y):

self.x, self.y = x, y

def __conform__(self, protocol):

if protocol is sqlite3.PrepareProtocol:

return f"{self.x};{self.y}"

con = sqlite3.connect(":memory:")

cur = con.cursor()

cur.execute("SELECT ?", (Point(4.0, -3.2),))

print(cur.fetchone()[0])

con.close()

How to register adapter callables

The other possibility is to create a function that converts the Python object to an SQLite-compatible type. This
function can then be registered using register_adapter().

class Point:

def __init__(self, x, y):

self.x, self.y = x, y

def adapt_point(point):

return f"{point.x};{point.y}"

sqlite3.register_adapter(Point, adapt_point)

con = sqlite3.connect(":memory:")

cur = con.cursor()

cur.execute("SELECT ?", (Point(1.0, 2.5),))

print(cur.fetchone()[0])

con.close()

550 Chapter 12. Data Persistence

https://peps.python.org/pep-0249/

The Python Library Reference, Release 3.13.1

How to convert SQLite values to custom Python types

Writing an adapter lets you convert from custom Python types to SQLite values. To be able to convert from SQLite
values to custom Python types, we use converters.

Let’s go back to the Point class. We stored the x and y coordinates separated via semicolons as strings in SQLite.

First, we’ll define a converter function that accepts the string as a parameter and constructs a Point object from it.

Note

Converter functions are always passed a bytes object, no matter the underlying SQLite data type.

def convert_point(s):

x, y = map(float, s.split(b";"))

return Point(x, y)

We now need to tell sqlite3 when it should convert a given SQLite value. This is done when connecting to a
database, using the detect_types parameter of connect(). There are three options:

• Implicit: set detect_types to PARSE_DECLTYPES

• Explicit: set detect_types to PARSE_COLNAMES

• Both: set detect_types to sqlite3.PARSE_DECLTYPES | sqlite3.PARSE_COLNAMES. Column names
take precedence over declared types.

The following example illustrates the implicit and explicit approaches:

class Point:

def __init__(self, x, y):

self.x, self.y = x, y

def __repr__(self):

return f"Point({self.x}, {self.y})"

def adapt_point(point):

return f"{point.x};{point.y}"

def convert_point(s):

x, y = list(map(float, s.split(b";")))

return Point(x, y)

Register the adapter and converter

sqlite3.register_adapter(Point, adapt_point)

sqlite3.register_converter("point", convert_point)

1) Parse using declared types

p = Point(4.0, -3.2)

con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES)

cur = con.execute("CREATE TABLE test(p point)")

cur.execute("INSERT INTO test(p) VALUES(?)", (p,))

cur.execute("SELECT p FROM test")

print("with declared types:", cur.fetchone()[0])

cur.close()

con.close()

2) Parse using column names

con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_COLNAMES)
(continues on next page)

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 551

The Python Library Reference, Release 3.13.1

(continued from previous page)

cur = con.execute("CREATE TABLE test(p)")

cur.execute("INSERT INTO test(p) VALUES(?)", (p,))

cur.execute('SELECT p AS "p [point]" FROM test')

print("with column names:", cur.fetchone()[0])

cur.close()

con.close()

Adapter and converter recipes

This section shows recipes for common adapters and converters.

import datetime

import sqlite3

def adapt_date_iso(val):

"""Adapt datetime.date to ISO 8601 date."""

return val.isoformat()

def adapt_datetime_iso(val):

"""Adapt datetime.datetime to timezone-naive ISO 8601 date."""

return val.isoformat()

def adapt_datetime_epoch(val):

"""Adapt datetime.datetime to Unix timestamp."""

return int(val.timestamp())

sqlite3.register_adapter(datetime.date, adapt_date_iso)

sqlite3.register_adapter(datetime.datetime, adapt_datetime_iso)

sqlite3.register_adapter(datetime.datetime, adapt_datetime_epoch)

def convert_date(val):

"""Convert ISO 8601 date to datetime.date object."""

return datetime.date.fromisoformat(val.decode())

def convert_datetime(val):

"""Convert ISO 8601 datetime to datetime.datetime object."""

return datetime.datetime.fromisoformat(val.decode())

def convert_timestamp(val):

"""Convert Unix epoch timestamp to datetime.datetime object."""

return datetime.datetime.fromtimestamp(int(val))

sqlite3.register_converter("date", convert_date)

sqlite3.register_converter("datetime", convert_datetime)

sqlite3.register_converter("timestamp", convert_timestamp)

How to use connection shortcut methods

Using the execute(), executemany(), and executescript() methods of the Connection class, your code
can be written more concisely because you don’t have to create the (often superfluous) Cursor objects explicitly.
Instead, the Cursor objects are created implicitly and these shortcut methods return the cursor objects. This way,
you can execute a SELECT statement and iterate over it directly using only a single call on the Connection object.

Create and fill the table.

con = sqlite3.connect(":memory:")

(continues on next page)

552 Chapter 12. Data Persistence

The Python Library Reference, Release 3.13.1

(continued from previous page)

con.execute("CREATE TABLE lang(name, first_appeared)")

data = [

("C++", 1985),

("Objective-C", 1984),

]

con.executemany("INSERT INTO lang(name, first_appeared) VALUES(?, ?)", data)

Print the table contents

for row in con.execute("SELECT name, first_appeared FROM lang"):

print(row)

print("I just deleted", con.execute("DELETE FROM lang").rowcount, "rows")

close() is not a shortcut method and it's not called automatically;

the connection object should be closed manually

con.close()

How to use the connection context manager

A Connection object can be used as a context manager that automatically commits or rolls back open transactions
when leaving the body of the context manager. If the body of the with statement finishes without exceptions, the
transaction is committed. If this commit fails, or if the body of the with statement raises an uncaught exception,
the transaction is rolled back. If autocommit is False, a new transaction is implicitly opened after committing or
rolling back.

If there is no open transaction upon leaving the body of the with statement, or if autocommit is True, the context
manager does nothing.

Note

The context manager neither implicitly opens a new transaction nor closes the connection. If you need a closing
context manager, consider using contextlib.closing().

con = sqlite3.connect(":memory:")

con.execute("CREATE TABLE lang(id INTEGER PRIMARY KEY, name VARCHAR UNIQUE)")

Successful, con.commit() is called automatically afterwards

with con:

con.execute("INSERT INTO lang(name) VALUES(?)", ("Python",))

con.rollback() is called after the with block finishes with an exception,

the exception is still raised and must be caught

try:

with con:

con.execute("INSERT INTO lang(name) VALUES(?)", ("Python",))

except sqlite3.IntegrityError:

print("couldn't add Python twice")

Connection object used as context manager only commits or rollbacks transactions,

so the connection object should be closed manually

con.close()

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 553

The Python Library Reference, Release 3.13.1

How to work with SQLite URIs

Some useful URI tricks include:

• Open a database in read-only mode:

>>> con = sqlite3.connect("file:tutorial.db?mode=ro", uri=True)

>>> con.execute("CREATE TABLE readonly(data)")

Traceback (most recent call last):

OperationalError: attempt to write a readonly database

>>> con.close()

• Do not implicitly create a new database file if it does not already exist; will raise OperationalError if
unable to create a new file:

>>> con = sqlite3.connect("file:nosuchdb.db?mode=rw", uri=True)

Traceback (most recent call last):

OperationalError: unable to open database file

• Create a shared named in-memory database:

db = "file:mem1?mode=memory&cache=shared"

con1 = sqlite3.connect(db, uri=True)

con2 = sqlite3.connect(db, uri=True)

with con1:

con1.execute("CREATE TABLE shared(data)")

con1.execute("INSERT INTO shared VALUES(28)")

res = con2.execute("SELECT data FROM shared")

assert res.fetchone() == (28,)

con1.close()

con2.close()

More information about this feature, including a list of parameters, can be found in the SQLite URI documentation.

How to create and use row factories

By default, sqlite3 represents each row as a tuple. If a tuple does not suit your needs, you can use the sqlite3.
Row class or a custom row_factory.

While row_factory exists as an attribute both on the Cursor and the Connection, it is recommended to set
Connection.row_factory, so all cursors created from the connection will use the same row factory.

Row provides indexed and case-insensitive named access to columns, with minimal memory overhead and perfor-
mance impact over a tuple. To use Row as a row factory, assign it to the row_factory attribute:

>>> con = sqlite3.connect(":memory:")

>>> con.row_factory = sqlite3.Row

Queries now return Row objects:

>>> res = con.execute("SELECT 'Earth' AS name, 6378 AS radius")

>>> row = res.fetchone()

>>> row.keys()

['name', 'radius']

>>> row[0] # Access by index.

'Earth'

>>> row["name"] # Access by name.

'Earth'

>>> row["RADIUS"] # Column names are case-insensitive.

(continues on next page)

554 Chapter 12. Data Persistence

https://www.sqlite.org/uri.html

The Python Library Reference, Release 3.13.1

(continued from previous page)

6378

>>> con.close()

Note

The FROM clause can be omitted in the SELECT statement, as in the above example. In such cases, SQLite returns
a single row with columns defined by expressions, e.g. literals, with the given aliases expr AS alias.

You can create a custom row_factory that returns each row as a dict, with column names mapped to values:

def dict_factory(cursor, row):

fields = [column[0] for column in cursor.description]

return {key: value for key, value in zip(fields, row)}

Using it, queries now return a dict instead of a tuple:

>>> con = sqlite3.connect(":memory:")

>>> con.row_factory = dict_factory

>>> for row in con.execute("SELECT 1 AS a, 2 AS b"):

... print(row)

{'a': 1, 'b': 2}

>>> con.close()

The following row factory returns a named tuple:

from collections import namedtuple

def namedtuple_factory(cursor, row):

fields = [column[0] for column in cursor.description]

cls = namedtuple("Row", fields)

return cls._make(row)

namedtuple_factory() can be used as follows:

>>> con = sqlite3.connect(":memory:")

>>> con.row_factory = namedtuple_factory

>>> cur = con.execute("SELECT 1 AS a, 2 AS b")

>>> row = cur.fetchone()

>>> row

Row(a=1, b=2)

>>> row[0] # Indexed access.

1

>>> row.b # Attribute access.

2

>>> con.close()

With some adjustments, the above recipe can be adapted to use a dataclass, or any other custom class, instead of
a namedtuple.

How to handle non-UTF-8 text encodings

By default, sqlite3 uses str to adapt SQLite values with the TEXT data type. This works well for UTF-8 encoded
text, but it might fail for other encodings and invalid UTF-8. You can use a custom text_factory to handle such
cases.

Because of SQLite’s flexible typing, it is not uncommon to encounter table columns with the TEXT data type
containing non-UTF-8 encodings, or even arbitrary data. To demonstrate, let’s assume we have a database with

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 555

https://www.sqlite.org/flextypegood.html

The Python Library Reference, Release 3.13.1

ISO-8859-2 (Latin-2) encoded text, for example a table of Czech-English dictionary entries. Assuming we now
have a Connection instance con connected to this database, we can decode the Latin-2 encoded text using this
text_factory:

con.text_factory = lambda data: str(data, encoding="latin2")

For invalid UTF-8 or arbitrary data in stored in TEXT table columns, you can use the following technique, borrowed
from the unicode-howto:

con.text_factory = lambda data: str(data, errors="surrogateescape")

Note

The sqlite3 module API does not support strings containing surrogates.

See also

unicode-howto

12.6.4 Explanation

Transaction control

sqlite3 offers multiple methods of controlling whether, when and how database transactions are opened and closed.
Transaction control via the autocommit attribute is recommended, while Transaction control via the isolation_level
attribute retains the pre-Python 3.12 behaviour.

Transaction control via the autocommit attribute

The recommended way of controlling transaction behaviour is through the Connection.autocommit attribute,
which should preferably be set using the autocommit parameter of connect().

It is suggested to set autocommit to False, which implies PEP 249-compliant transaction control. This means:

• sqlite3 ensures that a transaction is always open, so connect(), Connection.commit(), and
Connection.rollback() will implicitly open a new transaction (immediately after closing the pending
one, for the latter two). sqlite3 uses BEGIN DEFERRED statements when opening transactions.

• Transactions should be committed explicitly using commit().

• Transactions should be rolled back explicitly using rollback().

• An implicit rollback is performed if the database is close()-ed with pending changes.

Set autocommit to True to enable SQLite’s autocommit mode. In this mode, Connection.commit() and
Connection.rollback() have no effect. Note that SQLite’s autocommit mode is distinct from the PEP
249-compliant Connection.autocommit attribute; use Connection.in_transaction to query the low-level
SQLite autocommit mode.

Set autocommit to LEGACY_TRANSACTION_CONTROL to leave transaction control behaviour to the Connection.
isolation_level attribute. See Transaction control via the isolation_level attribute for more information.

Transaction control via the isolation_level attribute

Note

The recommended way of controlling transactions is via the autocommit attribute. See Transaction control via
the autocommit attribute.

556 Chapter 12. Data Persistence

https://peps.python.org/pep-0249/
https://www.sqlite.org/lang_transaction.html#implicit_versus_explicit_transactions
https://peps.python.org/pep-0249/
https://peps.python.org/pep-0249/

The Python Library Reference, Release 3.13.1

If Connection.autocommit is set to LEGACY_TRANSACTION_CONTROL (the default), transaction behaviour is
controlled using the Connection.isolation_level attribute. Otherwise, isolation_level has no effect.

If the connection attribute isolation_level is not None, new transactions are implicitly opened before
execute() and executemany() executes INSERT, UPDATE, DELETE, or REPLACE statements; for other state-
ments, no implicit transaction handling is performed. Use the commit() and rollback() methods to respectively
commit and roll back pending transactions. You can choose the underlying SQLite transaction behaviour — that is,
whether and what type of BEGIN statements sqlite3 implicitly executes – via the isolation_level attribute.

If isolation_level is set to None, no transactions are implicitly opened at all. This leaves the underlying SQLite
library in autocommit mode, but also allows the user to perform their own transaction handling using explicit SQL
statements. The underlying SQLite library autocommit mode can be queried using the in_transaction attribute.

The executescript() method implicitly commits any pending transaction before execution of the given SQL
script, regardless of the value of isolation_level.

Changed in version 3.6: sqlite3 used to implicitly commit an open transaction before DDL statements. This is no
longer the case.

Changed in version 3.12: The recommended way of controlling transactions is now via the autocommit attribute.

12.6. sqlite3— DB-API 2.0 interface for SQLite databases 557

https://www.sqlite.org/lang_transaction.html#deferred_immediate_and_exclusive_transactions
https://www.sqlite.org/lang_transaction.html#implicit_versus_explicit_transactions

The Python Library Reference, Release 3.13.1

558 Chapter 12. Data Persistence

CHAPTER

THIRTEEN

DATA COMPRESSION AND ARCHIVING

The modules described in this chapter support data compression with the zlib, gzip, bzip2 and lzma algorithms, and
the creation of ZIP- and tar-format archives. See also Archiving operations provided by the shutil module.

13.1 zlib— Compression compatible with gzip

For applications that require data compression, the functions in this module allow compression and decompression,
using the zlib library. The zlib library has its own home page at https://www.zlib.net. There are known incompatibil-
ities between the Python module and versions of the zlib library earlier than 1.1.3; 1.1.3 has a security vulnerability,
so we recommend using 1.1.4 or later.

zlib’s functions have many options and often need to be used in a particular order. This documentation doesn’t
attempt to cover all of the permutations; consult the zlib manual at http://www.zlib.net/manual.html for authoritative
information.

For reading and writing .gz files see the gzip module.

The available exception and functions in this module are:

exception zlib.error

Exception raised on compression and decompression errors.

zlib.adler32(data[, value])
Computes an Adler-32 checksum of data. (An Adler-32 checksum is almost as reliable as a CRC32 but can
be computed much more quickly.) The result is an unsigned 32-bit integer. If value is present, it is used as
the starting value of the checksum; otherwise, a default value of 1 is used. Passing in value allows computing
a running checksum over the concatenation of several inputs. The algorithm is not cryptographically strong,
and should not be used for authentication or digital signatures. Since the algorithm is designed for use as a
checksum algorithm, it is not suitable for use as a general hash algorithm.

Changed in version 3.0: The result is always unsigned.

zlib.compress(data, / , level=-1, wbits=MAX_WBITS)
Compresses the bytes in data, returning a bytes object containing compressed data. level is an integer from 0

to 9 or -1 controlling the level of compression; 1 (Z_BEST_SPEED) is fastest and produces the least com-
pression, 9 (Z_BEST_COMPRESSION) is slowest and produces the most. 0 (Z_NO_COMPRESSION) is
no compression. The default value is -1 (Z_DEFAULT_COMPRESSION). Z_DEFAULT_COMPRESSION
represents a default compromise between speed and compression (currently equivalent to level 6).

The wbits argument controls the size of the history buffer (or the “window size”) used when compressing data,
and whether a header and trailer is included in the output. It can take several ranges of values, defaulting to
15 (MAX_WBITS):

• +9 to +15: The base-two logarithm of the window size, which therefore ranges between 512 and 32768.
Larger values produce better compression at the expense of greater memory usage. The resulting output
will include a zlib-specific header and trailer.

559

https://www.zlib.net
https://zlib.net/zlib_faq.html#faq33
http://www.zlib.net/manual.html

The Python Library Reference, Release 3.13.1

• −9 to −15: Uses the absolute value of wbits as the window size logarithm, while producing a raw output
stream with no header or trailing checksum.

• +25 to +31 = 16 + (9 to 15): Uses the low 4 bits of the value as the window size logarithm, while including
a basic gzip header and trailing checksum in the output.

Raises the error exception if any error occurs.

Changed in version 3.6: level can now be used as a keyword parameter.

Changed in version 3.11: The wbits parameter is now available to set window bits and compression type.

zlib.compressobj(level=-1, method=DEFLATED, wbits=MAX_WBITS, memLevel=DEF_MEM_LEVEL,
strategy=Z_DEFAULT_STRATEGY[, zdict])

Returns a compression object, to be used for compressing data streams that won’t fit into memory at once.

level is the compression level – an integer from 0 to 9 or -1. A value of 1 (Z_BEST_SPEED) is fastest and pro-
duces the least compression, while a value of 9 (Z_BEST_COMPRESSION) is slowest and produces the most.
0 (Z_NO_COMPRESSION) is no compression. The default value is -1 (Z_DEFAULT_COMPRESSION).
Z_DEFAULT_COMPRESSION represents a default compromise between speed and compression (currently
equivalent to level 6).

method is the compression algorithm. Currently, the only supported value is DEFLATED.

The wbits parameter controls the size of the history buffer (or the “window size”), and what header and trailer
format will be used. It has the same meaning as described for compress().

The memLevel argument controls the amount of memory used for the internal compression state. Valid values
range from 1 to 9. Higher values use more memory, but are faster and produce smaller output.

strategy is used to tune the compression algorithm. Possible values are Z_DEFAULT_STRATEGY, Z_FILTERED,
Z_HUFFMAN_ONLY, Z_RLE (zlib 1.2.0.1) and Z_FIXED (zlib 1.2.2.2).

zdict is a predefined compression dictionary. This is a sequence of bytes (such as a bytes object) containing
subsequences that are expected to occur frequently in the data that is to be compressed. Those subsequences
that are expected to be most common should come at the end of the dictionary.

Changed in version 3.3: Added the zdict parameter and keyword argument support.

zlib.crc32(data[, value])
Computes a CRC (Cyclic Redundancy Check) checksum of data. The result is an unsigned 32-bit integer. If
value is present, it is used as the starting value of the checksum; otherwise, a default value of 0 is used. Passing
in value allows computing a running checksum over the concatenation of several inputs. The algorithm is not
cryptographically strong, and should not be used for authentication or digital signatures. Since the algorithm
is designed for use as a checksum algorithm, it is not suitable for use as a general hash algorithm.

Changed in version 3.0: The result is always unsigned.

zlib.decompress(data, / , wbits=MAX_WBITS, bufsize=DEF_BUF_SIZE)

Decompresses the bytes in data, returning a bytes object containing the uncompressed data. The wbits param-
eter depends on the format of data, and is discussed further below. If bufsize is given, it is used as the initial
size of the output buffer. Raises the error exception if any error occurs.

The wbits parameter controls the size of the history buffer (or “window size”), and what header and trailer
format is expected. It is similar to the parameter for compressobj(), but accepts more ranges of values:

• +8 to +15: The base-two logarithm of the window size. The input must include a zlib header and trailer.

• 0: Automatically determine the window size from the zlib header. Only supported since zlib 1.2.3.5.

• −8 to −15: Uses the absolute value of wbits as the window size logarithm. The input must be a raw
stream with no header or trailer.

• +24 to +31 = 16 + (8 to 15): Uses the low 4 bits of the value as the window size logarithm. The input
must include a gzip header and trailer.

• +40 to +47 = 32 + (8 to 15): Uses the low 4 bits of the value as the window size logarithm, and automat-
ically accepts either the zlib or gzip format.

560 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

When decompressing a stream, the window size must not be smaller than the size originally used to compress
the stream; using a too-small value may result in an error exception. The default wbits value corresponds to
the largest window size and requires a zlib header and trailer to be included.

bufsize is the initial size of the buffer used to hold decompressed data. If more space is required, the buffer
size will be increased as needed, so you don’t have to get this value exactly right; tuning it will only save a few
calls to malloc().

Changed in version 3.6: wbits and bufsize can be used as keyword arguments.

zlib.decompressobj(wbits=MAX_WBITS[, zdict])
Returns a decompression object, to be used for decompressing data streams that won’t fit into memory at once.

The wbits parameter controls the size of the history buffer (or the “window size”), and what header and trailer
format is expected. It has the same meaning as described for decompress().

The zdict parameter specifies a predefined compression dictionary. If provided, this must be the same dictio-
nary as was used by the compressor that produced the data that is to be decompressed.

Note

If zdict is a mutable object (such as a bytearray), you must not modify its contents between the call to
decompressobj() and the first call to the decompressor’s decompress() method.

Changed in version 3.3: Added the zdict parameter.

Compression objects support the following methods:

Compress.compress(data)
Compress data, returning a bytes object containing compressed data for at least part of the data in data. This
data should be concatenated to the output produced by any preceding calls to the compress()method. Some
input may be kept in internal buffers for later processing.

Compress.flush([mode])
All pending input is processed, and a bytes object containing the remaining compressed output is re-
turned. mode can be selected from the constants Z_NO_FLUSH, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH,
Z_FULL_FLUSH, Z_BLOCK (zlib 1.2.3.4), or Z_FINISH, defaulting to Z_FINISH. Except Z_FINISH, all con-
stants allow compressing further bytestrings of data, while Z_FINISH finishes the compressed stream and
prevents compressing any more data. After calling flush() with mode set to Z_FINISH, the compress()
method cannot be called again; the only realistic action is to delete the object.

Compress.copy()

Returns a copy of the compression object. This can be used to efficiently compress a set of data that share a
common initial prefix.

Changed in version 3.8: Added copy.copy() and copy.deepcopy() support to compression objects.

Decompression objects support the following methods and attributes:

Decompress.unused_data

A bytes object which contains any bytes past the end of the compressed data. That is, this remains b"" until the
last byte that contains compression data is available. If the whole bytestring turned out to contain compressed
data, this is b"", an empty bytes object.

Decompress.unconsumed_tail

Abytes object that contains any data that was not consumed by the last decompress() call because it exceeded
the limit for the uncompressed data buffer. This data has not yet been seen by the zlib machinery, so you must
feed it (possibly with further data concatenated to it) back to a subsequent decompress() method call in
order to get correct output.

13.1. zlib— Compression compatible with gzip 561

The Python Library Reference, Release 3.13.1

Decompress.eof

A boolean indicating whether the end of the compressed data stream has been reached.

This makes it possible to distinguish between a properly formed compressed stream, and an incomplete or
truncated one.

Added in version 3.3.

Decompress.decompress(data, max_length=0)
Decompress data, returning a bytes object containing the uncompressed data corresponding to at least part
of the data in string. This data should be concatenated to the output produced by any preceding calls to the
decompress() method. Some of the input data may be preserved in internal buffers for later processing.

If the optional parametermax_length is non-zero then the return value will be no longer thanmax_length. This
may mean that not all of the compressed input can be processed; and unconsumed data will be stored in the at-
tribute unconsumed_tail. This bytestring must be passed to a subsequent call to decompress() if decom-
pression is to continue. If max_length is zero then the whole input is decompressed, and unconsumed_tail
is empty.

Changed in version 3.6: max_length can be used as a keyword argument.

Decompress.flush([length])
All pending input is processed, and a bytes object containing the remaining uncompressed output is returned.
After calling flush(), the decompress()method cannot be called again; the only realistic action is to delete
the object.

The optional parameter length sets the initial size of the output buffer.

Decompress.copy()

Returns a copy of the decompression object. This can be used to save the state of the decompressor midway
through the data stream in order to speed up random seeks into the stream at a future point.

Changed in version 3.8: Added copy.copy() and copy.deepcopy() support to decompression objects.

Information about the version of the zlib library in use is available through the following constants:

zlib.ZLIB_VERSION

The version string of the zlib library that was used for building the module. This may be different from the
zlib library actually used at runtime, which is available as ZLIB_RUNTIME_VERSION.

zlib.ZLIB_RUNTIME_VERSION

The version string of the zlib library actually loaded by the interpreter.

Added in version 3.3.

See also

Module gzip
Reading and writing gzip-format files.

http://www.zlib.net
The zlib library home page.

http://www.zlib.net/manual.html
The zlib manual explains the semantics and usage of the library’s many functions.

13.2 gzip— Support for gzip files

Source code: Lib/gzip.py

This module provides a simple interface to compress and decompress files just like the GNU programs gzip and
gunzip would.

562 Chapter 13. Data Compression and Archiving

http://www.zlib.net
http://www.zlib.net/manual.html
https://github.com/python/cpython/tree/3.13/Lib/gzip.py

The Python Library Reference, Release 3.13.1

The data compression is provided by the zlib module.

The gzip module provides the GzipFile class, as well as the open(), compress() and decompress() con-
venience functions. The GzipFile class reads and writes gzip-format files, automatically compressing or decom-
pressing the data so that it looks like an ordinary file object.

Note that additional file formats which can be decompressed by the gzip and gunzip programs, such as those
produced by compress and pack, are not supported by this module.

The module defines the following items:

gzip.open(filename, mode=’rb’, compresslevel=9, encoding=None, errors=None, newline=None)
Open a gzip-compressed file in binary or text mode, returning a file object.

The filename argument can be an actual filename (a str or bytes object), or an existing file object to read
from or write to.

Themode argument can be any of 'r', 'rb', 'a', 'ab', 'w', 'wb', 'x' or 'xb' for binary mode, or 'rt',
'at', 'wt', or 'xt' for text mode. The default is 'rb'.

The compresslevel argument is an integer from 0 to 9, as for the GzipFile constructor.

For binary mode, this function is equivalent to the GzipFile constructor: GzipFile(filename, mode,

compresslevel). In this case, the encoding, errors and newline arguments must not be provided.

For text mode, a GzipFile object is created, and wrapped in an io.TextIOWrapper instance with the
specified encoding, error handling behavior, and line ending(s).

Changed in version 3.3: Added support for filename being a file object, support for text mode, and the encoding,
errors and newline arguments.

Changed in version 3.4: Added support for the 'x', 'xb' and 'xt' modes.

Changed in version 3.6: Accepts a path-like object.

exception gzip.BadGzipFile

An exception raised for invalid gzip files. It inherits from OSError. EOFError and zlib.error can also
be raised for invalid gzip files.

Added in version 3.8.

class gzip.GzipFile(filename=None, mode=None, compresslevel=9, fileobj=None, mtime=None)
Constructor for the GzipFile class, which simulates most of the methods of a file object, with the exception
of the truncate() method. At least one of fileobj and filename must be given a non-trivial value.

The new class instance is based on fileobj, which can be a regular file, an io.BytesIO object, or any other
object which simulates a file. It defaults to None, in which case filename is opened to provide a file object.

When fileobj is not None, the filename argument is only used to be included in the gzip file header, which
may include the original filename of the uncompressed file. It defaults to the filename of fileobj, if discernible;
otherwise, it defaults to the empty string, and in this case the original filename is not included in the header.

The mode argument can be any of 'r', 'rb', 'a', 'ab', 'w', 'wb', 'x', or 'xb', depending on whether
the file will be read or written. The default is the mode of fileobj if discernible; otherwise, the default is 'rb'.
In future Python releases the mode of fileobj will not be used. It is better to always specify mode for writing.

Note that the file is always opened in binary mode. To open a compressed file in text mode, use open() (or
wrap your GzipFile with an io.TextIOWrapper).

The compresslevel argument is an integer from 0 to 9 controlling the level of compression; 1 is fastest and
produces the least compression, and 9 is slowest and produces the most compression. 0 is no compression.
The default is 9.

The optional mtime argument is the timestamp requested by gzip. The time is in Unix format, i.e., seconds
since 00:00:00 UTC, January 1, 1970. If mtime is omitted or None, the current time is used. Use mtime = 0
to generate a compressed stream that does not depend on creation time.

See below for the mtime attribute that is set when decompressing.

13.2. gzip— Support for gzip files 563

The Python Library Reference, Release 3.13.1

Calling a GzipFile object’s close() method does not close fileobj, since you might wish to append more
material after the compressed data. This also allows you to pass an io.BytesIO object opened for writing as
fileobj, and retrieve the resulting memory buffer using the io.BytesIO object’s getvalue() method.

GzipFile supports the io.BufferedIOBase interface, including iteration and the with statement. Only
the truncate() method isn’t implemented.

GzipFile also provides the following method and attribute:

peek(n)

Read n uncompressed bytes without advancing the file position. At most one single read on the com-
pressed stream is done to satisfy the call. The number of bytes returned may be more or less than
requested.

Note

While calling peek() does not change the file position of the GzipFile, it may change the position
of the underlying file object (e.g. if the GzipFile was constructed with the fileobj parameter).

Added in version 3.2.

mode

'rb' for reading and 'wb' for writing.

Changed in version 3.13: In previous versions it was an integer 1 or 2.

mtime

When decompressing, this attribute is set to the last timestamp in the most recently read header. It is
an integer, holding the number of seconds since the Unix epoch (00:00:00 UTC, January 1, 1970). The
initial value before reading any headers is None.

name

The path to the gzip file on disk, as a str or bytes. Equivalent to the output of os.fspath() on the
original input path, with no other normalization, resolution or expansion.

Changed in version 3.1: Support for the with statement was added, along with themtime constructor argument
and mtime attribute.

Changed in version 3.2: Support for zero-padded and unseekable files was added.

Changed in version 3.3: The io.BufferedIOBase.read1() method is now implemented.

Changed in version 3.4: Added support for the 'x' and 'xb' modes.

Changed in version 3.5: Added support for writing arbitrary bytes-like objects. The read() method now
accepts an argument of None.

Changed in version 3.6: Accepts a path-like object.

Deprecated since version 3.9: Opening GzipFile for writing without specifying the mode argument is dep-
recated.

Changed in version 3.12: Remove the filename attribute, use the name attribute instead.

gzip.compress(data, compresslevel=9, *, mtime=None)

Compress the data, returning a bytes object containing the compressed data. compresslevel and mtime have
the same meaning as in the GzipFile constructor above.

Added in version 3.2.

Changed in version 3.8: Added the mtime parameter for reproducible output.

Changed in version 3.11: Speed is improved by compressing all data at once instead of in a streamed fashion.
Calls with mtime set to 0 are delegated to zlib.compress() for better speed. In this situation the output

564 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

may contain a gzip header “OS” byte value other than 255 “unknown” as supplied by the underlying zlib
implementation.

Changed in version 3.13: The gzip header OS byte is guaranteed to be set to 255 when this function is used as
was the case in 3.10 and earlier.

gzip.decompress(data)

Decompress the data, returning a bytes object containing the uncompressed data. This function is capable of
decompressing multi-member gzip data (multiple gzip blocks concatenated together). When the data is certain
to contain only one member the zlib.decompress() function with wbits set to 31 is faster.

Added in version 3.2.

Changed in version 3.11: Speed is improved by decompressing members at once in memory instead of in a
streamed fashion.

13.2.1 Examples of usage

Example of how to read a compressed file:

import gzip

with gzip.open('/home/joe/file.txt.gz', 'rb') as f:

file_content = f.read()

Example of how to create a compressed GZIP file:

import gzip

content = b"Lots of content here"

with gzip.open('/home/joe/file.txt.gz', 'wb') as f:

f.write(content)

Example of how to GZIP compress an existing file:

import gzip

import shutil

with open('/home/joe/file.txt', 'rb') as f_in:

with gzip.open('/home/joe/file.txt.gz', 'wb') as f_out:

shutil.copyfileobj(f_in, f_out)

Example of how to GZIP compress a binary string:

import gzip

s_in = b"Lots of content here"

s_out = gzip.compress(s_in)

See also

Module zlib
The basic data compression module needed to support the gzip file format.

13.2.2 Command Line Interface

The gzip module provides a simple command line interface to compress or decompress files.

Once executed the gzip module keeps the input file(s).

Changed in version 3.8: Add a new command line interface with a usage. By default, when you will execute the CLI,
the default compression level is 6.

13.2. gzip— Support for gzip files 565

The Python Library Reference, Release 3.13.1

Command line options

file

If file is not specified, read from sys.stdin.

--fast

Indicates the fastest compression method (less compression).

--best

Indicates the slowest compression method (best compression).

-d, --decompress

Decompress the given file.

-h, --help

Show the help message.

13.3 bz2— Support for bzip2 compression

Source code: Lib/bz2.py

This module provides a comprehensive interface for compressing and decompressing data using the bzip2 compres-
sion algorithm.

The bz2 module contains:

• The open() function and BZ2File class for reading and writing compressed files.

• The BZ2Compressor and BZ2Decompressor classes for incremental (de)compression.

• The compress() and decompress() functions for one-shot (de)compression.

13.3.1 (De)compression of files

bz2.open(filename, mode=’rb’, compresslevel=9, encoding=None, errors=None, newline=None)
Open a bzip2-compressed file in binary or text mode, returning a file object.

As with the constructor for BZ2File, the filename argument can be an actual filename (a str or bytes
object), or an existing file object to read from or write to.

Themode argument can be any of 'r', 'rb', 'w', 'wb', 'x', 'xb', 'a' or 'ab' for binary mode, or 'rt',
'wt', 'xt', or 'at' for text mode. The default is 'rb'.

The compresslevel argument is an integer from 1 to 9, as for the BZ2File constructor.

For binary mode, this function is equivalent to the BZ2File constructor: BZ2File(filename, mode,

compresslevel=compresslevel). In this case, the encoding, errors and newline arguments must not be
provided.

For text mode, a BZ2File object is created, and wrapped in an io.TextIOWrapper instance with the spec-
ified encoding, error handling behavior, and line ending(s).

Added in version 3.3.

Changed in version 3.4: The 'x' (exclusive creation) mode was added.

Changed in version 3.6: Accepts a path-like object.

class bz2.BZ2File(filename, mode=’r’, *, compresslevel=9)

Open a bzip2-compressed file in binary mode.

If filename is a str or bytes object, open the named file directly. Otherwise, filename should be a file object,
which will be used to read or write the compressed data.

566 Chapter 13. Data Compression and Archiving

https://github.com/python/cpython/tree/3.13/Lib/bz2.py

The Python Library Reference, Release 3.13.1

The mode argument can be either 'r' for reading (default), 'w' for overwriting, 'x' for exclusive creation,
or 'a' for appending. These can equivalently be given as 'rb', 'wb', 'xb' and 'ab' respectively.

If filename is a file object (rather than an actual file name), a mode of 'w' does not truncate the file, and is
instead equivalent to 'a'.

If mode is 'w' or 'a', compresslevel can be an integer between 1 and 9 specifying the level of compression:
1 produces the least compression, and 9 (default) produces the most compression.

If mode is 'r', the input file may be the concatenation of multiple compressed streams.

BZ2File provides all of the members specified by the io.BufferedIOBase, except for detach() and
truncate(). Iteration and the with statement are supported.

BZ2File also provides the following methods and attributes:

peek([n])
Return buffered data without advancing the file position. At least one byte of data will be returned (unless
at EOF). The exact number of bytes returned is unspecified.

Note

While calling peek() does not change the file position of the BZ2File, it may change the position of
the underlying file object (e.g. if the BZ2File was constructed by passing a file object for filename).

Added in version 3.3.

fileno()

Return the file descriptor for the underlying file.

Added in version 3.3.

readable()

Return whether the file was opened for reading.

Added in version 3.3.

seekable()

Return whether the file supports seeking.

Added in version 3.3.

writable()

Return whether the file was opened for writing.

Added in version 3.3.

read1(size=-1)
Read up to size uncompressed bytes, while trying to avoid making multiple reads from the underlying
stream. Reads up to a buffer’s worth of data if size is negative.

Returns b'' if the file is at EOF.

Added in version 3.3.

readinto(b)
Read bytes into b.

Returns the number of bytes read (0 for EOF).

Added in version 3.3.

mode

'rb' for reading and 'wb' for writing.

Added in version 3.13.

13.3. bz2— Support for bzip2 compression 567

The Python Library Reference, Release 3.13.1

name

The bzip2 file name. Equivalent to the name attribute of the underlying file object.

Added in version 3.13.

Changed in version 3.1: Support for the with statement was added.

Changed in version 3.3: Support was added for filename being a file object instead of an actual filename.

The 'a' (append) mode was added, along with support for reading multi-stream files.

Changed in version 3.4: The 'x' (exclusive creation) mode was added.

Changed in version 3.5: The read() method now accepts an argument of None.

Changed in version 3.6: Accepts a path-like object.

Changed in version 3.9: The buffering parameter has been removed. It was ignored and deprecated since
Python 3.0. Pass an open file object to control how the file is opened.

The compresslevel parameter became keyword-only.

Changed in version 3.10: This class is thread unsafe in the face of multiple simultaneous readers or writers,
just like its equivalent classes in gzip and lzma have always been.

13.3.2 Incremental (de)compression

class bz2.BZ2Compressor(compresslevel=9)
Create a new compressor object. This object may be used to compress data incrementally. For one-shot
compression, use the compress() function instead.

compresslevel, if given, must be an integer between 1 and 9. The default is 9.

compress(data)
Provide data to the compressor object. Returns a chunk of compressed data if possible, or an empty byte
string otherwise.

When you have finished providing data to the compressor, call the flush() method to finish the com-
pression process.

flush()

Finish the compression process. Returns the compressed data left in internal buffers.

The compressor object may not be used after this method has been called.

class bz2.BZ2Decompressor

Create a new decompressor object. This object may be used to decompress data incrementally. For one-shot
compression, use the decompress() function instead.

Note

This class does not transparently handle inputs containing multiple compressed streams, unlike
decompress() and BZ2File. If you need to decompress a multi-stream input with BZ2Decompressor,
you must use a new decompressor for each stream.

decompress(data, max_length=-1)
Decompress data (a bytes-like object), returning uncompressed data as bytes. Some of data may be
buffered internally, for use in later calls to decompress(). The returned data should be concatenated
with the output of any previous calls to decompress().

If max_length is nonnegative, returns at most max_length bytes of decompressed data. If this limit is
reached and further output can be produced, the needs_input attribute will be set to False. In this
case, the next call to decompress() may provide data as b'' to obtain more of the output.

568 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

If all of the input data was decompressed and returned (either because this was less than max_length
bytes, or because max_length was negative), the needs_input attribute will be set to True.

Attempting to decompress data after the end of stream is reached raises an EOFError. Any data found
after the end of the stream is ignored and saved in the unused_data attribute.

Changed in version 3.5: Added the max_length parameter.

eof

True if the end-of-stream marker has been reached.

Added in version 3.3.

unused_data

Data found after the end of the compressed stream.

If this attribute is accessed before the end of the stream has been reached, its value will be b''.

needs_input

False if the decompress() method can provide more decompressed data before requiring new un-
compressed input.

Added in version 3.5.

13.3.3 One-shot (de)compression

bz2.compress(data, compresslevel=9)
Compress data, a bytes-like object.

compresslevel, if given, must be an integer between 1 and 9. The default is 9.

For incremental compression, use a BZ2Compressor instead.

bz2.decompress(data)
Decompress data, a bytes-like object.

If data is the concatenation of multiple compressed streams, decompress all of the streams.

For incremental decompression, use a BZ2Decompressor instead.

Changed in version 3.3: Support for multi-stream inputs was added.

13.3.4 Examples of usage

Below are some examples of typical usage of the bz2 module.

Using compress() and decompress() to demonstrate round-trip compression:

>>> import bz2

>>> data = b"""\

... Donec rhoncus quis sapien sit amet molestie. Fusce scelerisque vel augue

... nec ullamcorper. Nam rutrum pretium placerat. Aliquam vel tristique lorem,

... sit amet cursus ante. In interdum laoreet mi, sit amet ultrices purus

... pulvinar a. Nam gravida euismod magna, non varius justo tincidunt feugiat.

... Aliquam pharetra lacus non risus vehicula rutrum. Maecenas aliquam leo

... felis. Pellentesque semper nunc sit amet nibh ullamcorper, ac elementum

... dolor luctus. Curabitur lacinia mi ornare consectetur vestibulum."""

>>> c = bz2.compress(data)

>>> len(data) / len(c) # Data compression ratio

1.513595166163142

>>> d = bz2.decompress(c)

>>> data == d # Check equality to original object after round-trip

True

Using BZ2Compressor for incremental compression:

13.3. bz2— Support for bzip2 compression 569

The Python Library Reference, Release 3.13.1

>>> import bz2

>>> def gen_data(chunks=10, chunksize=1000):

... """Yield incremental blocks of chunksize bytes."""

... for _ in range(chunks):

... yield b"z" * chunksize

...

>>> comp = bz2.BZ2Compressor()

>>> out = b""

>>> for chunk in gen_data():

... # Provide data to the compressor object

... out = out + comp.compress(chunk)

...

>>> # Finish the compression process. Call this once you have

>>> # finished providing data to the compressor.

>>> out = out + comp.flush()

The example above uses a very “nonrandom” stream of data (a stream of b"z" chunks). Random data tends to
compress poorly, while ordered, repetitive data usually yields a high compression ratio.

Writing and reading a bzip2-compressed file in binary mode:

>>> import bz2

>>> data = b"""\

... Donec rhoncus quis sapien sit amet molestie. Fusce scelerisque vel augue

... nec ullamcorper. Nam rutrum pretium placerat. Aliquam vel tristique lorem,

... sit amet cursus ante. In interdum laoreet mi, sit amet ultrices purus

... pulvinar a. Nam gravida euismod magna, non varius justo tincidunt feugiat.

... Aliquam pharetra lacus non risus vehicula rutrum. Maecenas aliquam leo

... felis. Pellentesque semper nunc sit amet nibh ullamcorper, ac elementum

... dolor luctus. Curabitur lacinia mi ornare consectetur vestibulum."""

>>> with bz2.open("myfile.bz2", "wb") as f:

... # Write compressed data to file

... unused = f.write(data)

...

>>> with bz2.open("myfile.bz2", "rb") as f:

... # Decompress data from file

... content = f.read()

...

>>> content == data # Check equality to original object after round-trip

True

13.4 lzma— Compression using the LZMA algorithm

Added in version 3.3.

Source code: Lib/lzma.py

This module provides classes and convenience functions for compressing and decompressing data using the LZMA
compression algorithm. Also included is a file interface supporting the .xz and legacy .lzma file formats used by
the xz utility, as well as raw compressed streams.

The interface provided by this module is very similar to that of the bz2 module. Note that LZMAFile and bz2.
BZ2File are not thread-safe, so if you need to use a single LZMAFile instance from multiple threads, it is necessary
to protect it with a lock.

exception lzma.LZMAError

This exception is raised when an error occurs during compression or decompression, or while initializing the
compressor/decompressor state.

570 Chapter 13. Data Compression and Archiving

https://github.com/python/cpython/tree/3.13/Lib/lzma.py

The Python Library Reference, Release 3.13.1

13.4.1 Reading and writing compressed files

lzma.open(filename, mode=’rb’, *, format=None, check=-1, preset=None, filters=None, encoding=None,
errors=None, newline=None)

Open an LZMA-compressed file in binary or text mode, returning a file object.

The filename argument can be either an actual file name (given as a str, bytes or path-like object), in which
case the named file is opened, or it can be an existing file object to read from or write to.

Themode argument can be any of "r", "rb", "w", "wb", "x", "xb", "a" or "ab" for binary mode, or "rt",
"wt", "xt", or "at" for text mode. The default is "rb".

When opening a file for reading, the format and filters arguments have the same meanings as for
LZMADecompressor. In this case, the check and preset arguments should not be used.

When opening a file for writing, the format, check, preset and filters arguments have the same meanings as for
LZMACompressor.

For binary mode, this function is equivalent to the LZMAFile constructor: LZMAFile(filename, mode,

...). In this case, the encoding, errors and newline arguments must not be provided.

For text mode, a LZMAFile object is created, and wrapped in an io.TextIOWrapper instance with the
specified encoding, error handling behavior, and line ending(s).

Changed in version 3.4: Added support for the "x", "xb" and "xt" modes.

Changed in version 3.6: Accepts a path-like object.

class lzma.LZMAFile(filename=None, mode=’r’, *, format=None, check=-1, preset=None, filters=None)
Open an LZMA-compressed file in binary mode.

An LZMAFile can wrap an already-open file object, or operate directly on a named file. The filename argument
specifies either the file object to wrap, or the name of the file to open (as a str, bytes or path-like object).
When wrapping an existing file object, the wrapped file will not be closed when the LZMAFile is closed.

The mode argument can be either "r" for reading (default), "w" for overwriting, "x" for exclusive creation,
or "a" for appending. These can equivalently be given as "rb", "wb", "xb" and "ab" respectively.

If filename is a file object (rather than an actual file name), a mode of "w" does not truncate the file, and is
instead equivalent to "a".

When opening a file for reading, the input file may be the concatenation of multiple separate compressed
streams. These are transparently decoded as a single logical stream.

When opening a file for reading, the format and filters arguments have the same meanings as for
LZMADecompressor. In this case, the check and preset arguments should not be used.

When opening a file for writing, the format, check, preset and filters arguments have the same meanings as for
LZMACompressor.

LZMAFile supports all the members specified by io.BufferedIOBase, except for detach() and
truncate(). Iteration and the with statement are supported.

The following method and attributes are also provided:

peek(size=-1)

Return buffered data without advancing the file position. At least one byte of data will be returned, unless
EOF has been reached. The exact number of bytes returned is unspecified (the size argument is ignored).

Note

While calling peek() does not change the file position of the LZMAFile, it may change the position
of the underlying file object (e.g. if the LZMAFile was constructed by passing a file object for
filename).

13.4. lzma— Compression using the LZMA algorithm 571

The Python Library Reference, Release 3.13.1

mode

'rb' for reading and 'wb' for writing.

Added in version 3.13.

name

The lzma file name. Equivalent to the name attribute of the underlying file object.

Added in version 3.13.

Changed in version 3.4: Added support for the "x" and "xb" modes.

Changed in version 3.5: The read() method now accepts an argument of None.

Changed in version 3.6: Accepts a path-like object.

13.4.2 Compressing and decompressing data in memory

class lzma.LZMACompressor(format=FORMAT_XZ, check=-1, preset=None, filters=None)
Create a compressor object, which can be used to compress data incrementally.

For a more convenient way of compressing a single chunk of data, see compress().

The format argument specifies what container format should be used. Possible values are:

• FORMAT_XZ: The .xz container format.
This is the default format.

• FORMAT_ALONE: The legacy .lzma container format.
This format is more limited than .xz – it does not support integrity checks or multiple filters.

• FORMAT_RAW: A raw data stream, not using any container format.
This format specifier does not support integrity checks, and requires that you always specify a custom
filter chain (for both compression and decompression). Additionally, data compressed in this manner
cannot be decompressed using FORMAT_AUTO (see LZMADecompressor).

The check argument specifies the type of integrity check to include in the compressed data. This check is used
when decompressing, to ensure that the data has not been corrupted. Possible values are:

• CHECK_NONE: No integrity check. This is the default (and the only acceptable value) for FORMAT_ALONE
and FORMAT_RAW.

• CHECK_CRC32: 32-bit Cyclic Redundancy Check.

• CHECK_CRC64: 64-bit Cyclic Redundancy Check. This is the default for FORMAT_XZ.

• CHECK_SHA256: 256-bit Secure Hash Algorithm.

If the specified check is not supported, an LZMAError is raised.

The compression settings can be specified either as a preset compression level (with the preset argument), or
in detail as a custom filter chain (with the filters argument).

The preset argument (if provided) should be an integer between 0 and 9 (inclusive), optionally OR-ed
with the constant PRESET_EXTREME. If neither preset nor filters are given, the default behavior is to use
PRESET_DEFAULT (preset level 6). Higher presets produce smaller output, but make the compression process
slower.

Note

In addition to being more CPU-intensive, compression with higher presets also requires much more mem-
ory (and produces output that needs more memory to decompress). With preset 9 for example, the over-
head for an LZMACompressor object can be as high as 800 MiB. For this reason, it is generally best to
stick with the default preset.

572 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

The filters argument (if provided) should be a filter chain specifier. See Specifying custom filter chains for
details.

compress(data)
Compress data (a bytes object), returning a bytes object containing compressed data for at least part of
the input. Some of data may be buffered internally, for use in later calls to compress() and flush().
The returned data should be concatenated with the output of any previous calls to compress().

flush()

Finish the compression process, returning a bytes object containing any data stored in the compressor’s
internal buffers.

The compressor cannot be used after this method has been called.

class lzma.LZMADecompressor(format=FORMAT_AUTO, memlimit=None, filters=None)
Create a decompressor object, which can be used to decompress data incrementally.

For a more convenient way of decompressing an entire compressed stream at once, see decompress().

The format argument specifies the container format that should be used. The default is FORMAT_AUTO, which
can decompress both .xz and .lzma files. Other possible values are FORMAT_XZ, FORMAT_ALONE, and
FORMAT_RAW.

The memlimit argument specifies a limit (in bytes) on the amount of memory that the decompressor can use.
When this argument is used, decompression will fail with an LZMAError if it is not possible to decompress
the input within the given memory limit.

The filters argument specifies the filter chain that was used to create the stream being decompressed. This
argument is required if format is FORMAT_RAW, but should not be used for other formats. See Specifying
custom filter chains for more information about filter chains.

Note

This class does not transparently handle inputs containing multiple compressed streams, unlike
decompress() and LZMAFile. To decompress a multi-stream input with LZMADecompressor, you
must create a new decompressor for each stream.

decompress(data, max_length=-1)
Decompress data (a bytes-like object), returning uncompressed data as bytes. Some of data may be
buffered internally, for use in later calls to decompress(). The returned data should be concatenated
with the output of any previous calls to decompress().

If max_length is nonnegative, returns at most max_length bytes of decompressed data. If this limit is
reached and further output can be produced, the needs_input attribute will be set to False. In this
case, the next call to decompress() may provide data as b'' to obtain more of the output.

If all of the input data was decompressed and returned (either because this was less than max_length
bytes, or because max_length was negative), the needs_input attribute will be set to True.

Attempting to decompress data after the end of stream is reached raises an EOFError. Any data found
after the end of the stream is ignored and saved in the unused_data attribute.

Changed in version 3.5: Added the max_length parameter.

check

The ID of the integrity check used by the input stream. This may be CHECK_UNKNOWN until enough of
the input has been decoded to determine what integrity check it uses.

eof

True if the end-of-stream marker has been reached.

13.4. lzma— Compression using the LZMA algorithm 573

The Python Library Reference, Release 3.13.1

unused_data

Data found after the end of the compressed stream.

Before the end of the stream is reached, this will be b"".

needs_input

False if the decompress() method can provide more decompressed data before requiring new un-
compressed input.

Added in version 3.5.

lzma.compress(data, format=FORMAT_XZ, check=-1, preset=None, filters=None)
Compress data (a bytes object), returning the compressed data as a bytes object.

See LZMACompressor above for a description of the format, check, preset and filters arguments.

lzma.decompress(data, format=FORMAT_AUTO, memlimit=None, filters=None)
Decompress data (a bytes object), returning the uncompressed data as a bytes object.

If data is the concatenation of multiple distinct compressed streams, decompress all of these streams, and
return the concatenation of the results.

See LZMADecompressor above for a description of the format, memlimit and filters arguments.

13.4.3 Miscellaneous

lzma.is_check_supported(check)
Return True if the given integrity check is supported on this system.

CHECK_NONE and CHECK_CRC32 are always supported. CHECK_CRC64 and CHECK_SHA256may be unavail-
able if you are using a version of liblzma that was compiled with a limited feature set.

13.4.4 Specifying custom filter chains

A filter chain specifier is a sequence of dictionaries, where each dictionary contains the ID and options for a single
filter. Each dictionary must contain the key "id", andmay contain additional keys to specify filter-dependent options.
Valid filter IDs are as follows:

• Compression filters:

– FILTER_LZMA1 (for use with FORMAT_ALONE)

– FILTER_LZMA2 (for use with FORMAT_XZ and FORMAT_RAW)

• Delta filter:

– FILTER_DELTA

• Branch-Call-Jump (BCJ) filters:

– FILTER_X86

– FILTER_IA64

– FILTER_ARM

– FILTER_ARMTHUMB

– FILTER_POWERPC

– FILTER_SPARC

A filter chain can consist of up to 4 filters, and cannot be empty. The last filter in the chain must be a compression
filter, and any other filters must be delta or BCJ filters.

Compression filters support the following options (specified as additional entries in the dictionary representing the
filter):

• preset: A compression preset to use as a source of default values for options that are not specified explicitly.

574 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

• dict_size: Dictionary size in bytes. This should be between 4 KiB and 1.5 GiB (inclusive).

• lc: Number of literal context bits.

• lp: Number of literal position bits. The sum lc + lp must be at most 4.

• pb: Number of position bits; must be at most 4.

• mode: MODE_FAST or MODE_NORMAL.

• nice_len: What should be considered a “nice length” for a match. This should be 273 or less.

• mf: What match finder to use – MF_HC3, MF_HC4, MF_BT2, MF_BT3, or MF_BT4.

• depth: Maximum search depth used by match finder. 0 (default) means to select automatically based on other
filter options.

The delta filter stores the differences between bytes, producing more repetitive input for the compressor in certain
circumstances. It supports one option, dist. This indicates the distance between bytes to be subtracted. The default
is 1, i.e. take the differences between adjacent bytes.

The BCJ filters are intended to be applied to machine code. They convert relative branches, calls and jumps in the
code to use absolute addressing, with the aim of increasing the redundancy that can be exploited by the compressor.
These filters support one option, start_offset. This specifies the address that should be mapped to the beginning
of the input data. The default is 0.

13.4.5 Examples

Reading in a compressed file:

import lzma

with lzma.open("file.xz") as f:

file_content = f.read()

Creating a compressed file:

import lzma

data = b"Insert Data Here"

with lzma.open("file.xz", "w") as f:

f.write(data)

Compressing data in memory:

import lzma

data_in = b"Insert Data Here"

data_out = lzma.compress(data_in)

Incremental compression:

import lzma

lzc = lzma.LZMACompressor()

out1 = lzc.compress(b"Some data\n")

out2 = lzc.compress(b"Another piece of data\n")

out3 = lzc.compress(b"Even more data\n")

out4 = lzc.flush()

Concatenate all the partial results:

result = b"".join([out1, out2, out3, out4])

Writing compressed data to an already-open file:

import lzma

with open("file.xz", "wb") as f:

f.write(b"This data will not be compressed\n")

(continues on next page)

13.4. lzma— Compression using the LZMA algorithm 575

The Python Library Reference, Release 3.13.1

(continued from previous page)

with lzma.open(f, "w") as lzf:

lzf.write(b"This *will* be compressed\n")

f.write(b"Not compressed\n")

Creating a compressed file using a custom filter chain:

import lzma

my_filters = [

{"id": lzma.FILTER_DELTA, "dist": 5},

{"id": lzma.FILTER_LZMA2, "preset": 7 | lzma.PRESET_EXTREME},

]

with lzma.open("file.xz", "w", filters=my_filters) as f:

f.write(b"blah blah blah")

13.5 zipfile—Work with ZIP archives

Source code: Lib/zipfile/

The ZIP file format is a common archive and compression standard. This module provides tools to create, read, write,
append, and list a ZIP file. Any advanced use of this module will require an understanding of the format, as defined
in PKZIP Application Note.

This module does not currently handle multi-disk ZIP files. It can handle ZIP files that use the ZIP64 extensions
(that is ZIP files that are more than 4 GiB in size). It supports decryption of encrypted files in ZIP archives, but it
currently cannot create an encrypted file. Decryption is extremely slow as it is implemented in native Python rather
than C.

The module defines the following items:

exception zipfile.BadZipFile

The error raised for bad ZIP files.

Added in version 3.2.

exception zipfile.BadZipfile

Alias of BadZipFile, for compatibility with older Python versions.

Deprecated since version 3.2.

exception zipfile.LargeZipFile

The error raised when a ZIP file would require ZIP64 functionality but that has not been enabled.

class zipfile.ZipFile

The class for reading and writing ZIP files. See section ZipFile Objects for constructor details.

class zipfile.Path

Class that implements a subset of the interface provided by pathlib.Path, including the full importlib.
resources.abc.Traversable interface.

Added in version 3.8.

class zipfile.PyZipFile

Class for creating ZIP archives containing Python libraries.

class zipfile.ZipInfo(filename=’NoName’, date_time=(1980, 1, 1, 0, 0, 0))

Class used to represent information about a member of an archive. Instances of this class are returned by the
getinfo() and infolist() methods of ZipFile objects. Most users of the zipfile module will not
need to create these, but only use those created by this module. filename should be the full name of the archive

576 Chapter 13. Data Compression and Archiving

https://github.com/python/cpython/tree/3.13/Lib/zipfile/
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

The Python Library Reference, Release 3.13.1

member, and date_time should be a tuple containing six fields which describe the time of the last modification
to the file; the fields are described in section ZipInfo Objects.

Changed in version 3.13: A public compress_level attribute has been added to expose the formerly pro-
tected _compresslevel. The older protected name continues to work as a property for backwards compat-
ibility.

zipfile.is_zipfile(filename)

Returns True if filename is a valid ZIP file based on its magic number, otherwise returns False. filename
may be a file or file-like object too.

Changed in version 3.1: Support for file and file-like objects.

zipfile.ZIP_STORED

The numeric constant for an uncompressed archive member.

zipfile.ZIP_DEFLATED

The numeric constant for the usual ZIP compression method. This requires the zlib module.

zipfile.ZIP_BZIP2

The numeric constant for the BZIP2 compression method. This requires the bz2 module.

Added in version 3.3.

zipfile.ZIP_LZMA

The numeric constant for the LZMA compression method. This requires the lzma module.

Added in version 3.3.

Note

The ZIP file format specification has included support for bzip2 compression since 2001, and for LZMA
compression since 2006. However, some tools (including older Python releases) do not support these
compression methods, and may either refuse to process the ZIP file altogether, or fail to extract individual
files.

See also

PKZIP Application Note
Documentation on the ZIP file format by Phil Katz, the creator of the format and algorithms used.

Info-ZIP Home Page
Information about the Info-ZIP project’s ZIP archive programs and development libraries.

13.5.1 ZipFile Objects

class zipfile.ZipFile(file, mode=’r’, compression=ZIP_STORED, allowZip64=True, compresslevel=None, *,
strict_timestamps=True, metadata_encoding=None)

Open a ZIP file, where file can be a path to a file (a string), a file-like object or a path-like object.

Themode parameter should be 'r' to read an existing file, 'w' to truncate and write a new file, 'a' to append
to an existing file, or 'x' to exclusively create and write a new file. If mode is 'x' and file refers to an existing
file, a FileExistsError will be raised. If mode is 'a' and file refers to an existing ZIP file, then additional
files are added to it. If file does not refer to a ZIP file, then a new ZIP archive is appended to the file. This is
meant for adding a ZIP archive to another file (such as python.exe). If mode is 'a' and the file does not
exist at all, it is created. If mode is 'r' or 'a', the file should be seekable.

compression is the ZIP compression method to use when writing the archive, and should be ZIP_STORED,
ZIP_DEFLATED, ZIP_BZIP2 or ZIP_LZMA; unrecognized values will cause NotImplementedError to be

13.5. zipfile—Work with ZIP archives 577

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://infozip.sourceforge.net/

The Python Library Reference, Release 3.13.1

raised. If ZIP_DEFLATED, ZIP_BZIP2 or ZIP_LZMA is specified but the corresponding module (zlib, bz2
or lzma) is not available, RuntimeError is raised. The default is ZIP_STORED.

If allowZip64 is True (the default) zipfile will create ZIP files that use the ZIP64 extensions when the zipfile
is larger than 4 GiB. If it is false zipfile will raise an exception when the ZIP file would require ZIP64
extensions.

The compresslevel parameter controls the compression level to use when writing files to the archive. When
using ZIP_STORED or ZIP_LZMA it has no effect. When using ZIP_DEFLATED integers 0 through 9 are
accepted (see zlib for more information). When using ZIP_BZIP2 integers 1 through 9 are accepted (see
bz2 for more information).

The strict_timestamps argument, when set to False, allows to zip files older than 1980-01-01 at the cost of
setting the timestamp to 1980-01-01. Similar behavior occurs with files newer than 2107-12-31, the timestamp
is also set to the limit.

When mode is 'r', metadata_encoding may be set to the name of a codec, which will be used to decode
metadata such as the names of members and ZIP comments.

If the file is created with mode 'w', 'x' or 'a' and then closed without adding any files to the archive, the
appropriate ZIP structures for an empty archive will be written to the file.

ZipFile is also a context manager and therefore supports the with statement. In the example, myzip is closed
after the with statement’s suite is finished—even if an exception occurs:

with ZipFile('spam.zip', 'w') as myzip:

myzip.write('eggs.txt')

Note

metadata_encoding is an instance-wide setting for the ZipFile. It is not currently possible to set this on a
per-member basis.

This attribute is a workaround for legacy implementations which produce archives with names in the current
locale encoding or code page (mostly on Windows). According to the .ZIP standard, the encoding of
metadata may be specified to be either IBM code page (default) or UTF-8 by a flag in the archive header.
That flag takes precedence over metadata_encoding, which is a Python-specific extension.

Changed in version 3.2: Added the ability to use ZipFile as a context manager.

Changed in version 3.3: Added support for bzip2 and lzma compression.

Changed in version 3.4: ZIP64 extensions are enabled by default.

Changed in version 3.5: Added support for writing to unseekable streams. Added support for the 'x' mode.

Changed in version 3.6: Previously, a plain RuntimeError was raised for unrecognized compression values.

Changed in version 3.6.2: The file parameter accepts a path-like object.

Changed in version 3.7: Add the compresslevel parameter.

Changed in version 3.8: The strict_timestamps keyword-only parameter.

Changed in version 3.11: Added support for specifying member name encoding for reading metadata in the
zipfile’s directory and file headers.

ZipFile.close()

Close the archive file. You must call close() before exiting your program or essential records will not be
written.

ZipFile.getinfo(name)

Return a ZipInfo object with information about the archive member name. Calling getinfo() for a name
not currently contained in the archive will raise a KeyError.

578 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

ZipFile.infolist()

Return a list containing a ZipInfo object for each member of the archive. The objects are in the same order
as their entries in the actual ZIP file on disk if an existing archive was opened.

ZipFile.namelist()

Return a list of archive members by name.

ZipFile.open(name, mode=’r’, pwd=None, *, force_zip64=False)
Access a member of the archive as a binary file-like object. name can be either the name of a file within the
archive or a ZipInfo object. The mode parameter, if included, must be 'r' (the default) or 'w'. pwd is the
password used to decrypt encrypted ZIP files as a bytes object.

open() is also a context manager and therefore supports the with statement:

with ZipFile('spam.zip') as myzip:

with myzip.open('eggs.txt') as myfile:

print(myfile.read())

With mode 'r' the file-like object (ZipExtFile) is read-only and provides the following methods: read(),
readline(), readlines(), seek(), tell(), __iter__(), __next__(). These objects can operate
independently of the ZipFile.

With mode='w', a writable file handle is returned, which supports the write() method. While a writable
file handle is open, attempting to read or write other files in the ZIP file will raise a ValueError.

In both cases the file-like object has also attributes name, which is equivalent to the name of a file within the
archive, and mode, which is 'rb' or 'wb' depending on the input mode.

When writing a file, if the file size is not known in advance but may exceed 2 GiB, pass force_zip64=True to
ensure that the header format is capable of supporting large files. If the file size is known in advance, construct
a ZipInfo object with file_size set, and use that as the name parameter.

Note

The open(), read() and extract() methods can take a filename or a ZipInfo object. You will
appreciate this when trying to read a ZIP file that contains members with duplicate names.

Changed in version 3.6: Removed support of mode='U'. Use io.TextIOWrapper for reading compressed
text files in universal newlines mode.

Changed in version 3.6: ZipFile.open() can now be used to write files into the archive with the mode='w'
option.

Changed in version 3.6: Calling open() on a closed ZipFile will raise a ValueError. Previously, a
RuntimeError was raised.

Changed in version 3.13: Added attributes name and mode for the writeable file-like object. The value of the
mode attribute for the readable file-like object was changed from 'r' to 'rb'.

ZipFile.extract(member, path=None, pwd=None)

Extract a member from the archive to the current working directory; member must be its full name or a
ZipInfo object. Its file information is extracted as accurately as possible. path specifies a different directory
to extract to. member can be a filename or a ZipInfo object. pwd is the password used for encrypted files as
a bytes object.

Returns the normalized path created (a directory or new file).

Note

If a member filename is an absolute path, a drive/UNC sharepoint and leading (back)slashes will be
stripped, e.g.: ///foo/bar becomes foo/bar on Unix, and C:\foo\bar becomes foo\bar on Win-

13.5. zipfile—Work with ZIP archives 579

The Python Library Reference, Release 3.13.1

dows. And all ".." components in a member filename will be removed, e.g.: ../../foo../../ba..r
becomes foo../ba..r. On Windows illegal characters (:, <, >, |, ", ?, and *) replaced by underscore
(_).

Changed in version 3.6: Calling extract() on a closed ZipFile will raise a ValueError. Previously, a
RuntimeError was raised.

Changed in version 3.6.2: The path parameter accepts a path-like object.

ZipFile.extractall(path=None, members=None, pwd=None)
Extract all members from the archive to the current working directory. path specifies a different directory to
extract to. members is optional and must be a subset of the list returned by namelist(). pwd is the password
used for encrypted files as a bytes object.

Warning

Never extract archives from untrusted sources without prior inspection. It is possible that files are created
outside of path, e.g. members that have absolute filenames starting with "/" or filenames with two dots
"..". This module attempts to prevent that. See extract() note.

Changed in version 3.6: Calling extractall() on a closed ZipFile will raise a ValueError. Previously, a
RuntimeError was raised.

Changed in version 3.6.2: The path parameter accepts a path-like object.

ZipFile.printdir()

Print a table of contents for the archive to sys.stdout.

ZipFile.setpassword(pwd)
Set pwd (a bytes object) as default password to extract encrypted files.

ZipFile.read(name, pwd=None)
Return the bytes of the file name in the archive. name is the name of the file in the archive, or a ZipInfo
object. The archive must be open for read or append. pwd is the password used for encrypted files as a bytes
object and, if specified, overrides the default password set with setpassword(). Calling read() on a ZipFile
that uses a compression method other than ZIP_STORED, ZIP_DEFLATED, ZIP_BZIP2 or ZIP_LZMA will
raise a NotImplementedError. An error will also be raised if the corresponding compression module is not
available.

Changed in version 3.6: Calling read() on a closed ZipFile will raise a ValueError. Previously, a
RuntimeError was raised.

ZipFile.testzip()

Read all the files in the archive and check their CRC’s and file headers. Return the name of the first bad file,
or else return None.

Changed in version 3.6: Calling testzip() on a closed ZipFile will raise a ValueError. Previously, a
RuntimeError was raised.

ZipFile.write(filename, arcname=None, compress_type=None, compresslevel=None)
Write the file named filename to the archive, giving it the archive name arcname (by default, this will be the
same as filename, but without a drive letter and with leading path separators removed). If given, compress_type
overrides the value given for the compression parameter to the constructor for the new entry. Similarly, com-
presslevel will override the constructor if given. The archive must be open with mode 'w', 'x' or 'a'.

Note

The ZIP file standard historically did not specify a metadata encoding, but strongly recommended CP437
(the original IBM PC encoding) for interoperability. Recent versions allow use of UTF-8 (only). In this

580 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

module, UTF-8 will automatically be used to write the member names if they contain any non-ASCII
characters. It is not possible to write member names in any encoding other than ASCII or UTF-8.

Note

Archive names should be relative to the archive root, that is, they should not start with a path separator.

Note

If arcname (or filename, if arcname is not given) contains a null byte, the name of the file in the archive
will be truncated at the null byte.

Note

A leading slash in the filename may lead to the archive being impossible to open in some zip programs on
Windows systems.

Changed in version 3.6: Calling write() on a ZipFile created with mode 'r' or a closed ZipFile will raise
a ValueError. Previously, a RuntimeError was raised.

ZipFile.writestr(zinfo_or_arcname, data, compress_type=None, compresslevel=None)
Write a file into the archive. The contents is data, which may be either a str or a bytes instance; if it is a
str, it is encoded as UTF-8 first. zinfo_or_arcname is either the file name it will be given in the archive, or
a ZipInfo instance. If it’s an instance, at least the filename, date, and time must be given. If it’s a name, the
date and time is set to the current date and time. The archive must be opened with mode 'w', 'x' or 'a'.

If given, compress_type overrides the value given for the compression parameter to the constructor for the new
entry, or in the zinfo_or_arcname (if that is a ZipInfo instance). Similarly, compresslevel will override the
constructor if given.

Note

When passing a ZipInfo instance as the zinfo_or_arcname parameter, the compression method used will
be that specified in the compress_type member of the given ZipInfo instance. By default, the ZipInfo
constructor sets this member to ZIP_STORED.

Changed in version 3.2: The compress_type argument.

Changed in version 3.6: Calling writestr() on a ZipFile created with mode 'r' or a closed ZipFile will
raise a ValueError. Previously, a RuntimeError was raised.

ZipFile.mkdir(zinfo_or_directory, mode=511)

Create a directory inside the archive. If zinfo_or_directory is a string, a directory is created inside the archive
with the mode that is specified in the mode argument. If, however, zinfo_or_directory is a ZipInfo instance
then the mode argument is ignored.

The archive must be opened with mode 'w', 'x' or 'a'.

Added in version 3.11.

The following data attributes are also available:

ZipFile.filename

Name of the ZIP file.

13.5. zipfile—Work with ZIP archives 581

The Python Library Reference, Release 3.13.1

ZipFile.debug

The level of debug output to use. This may be set from 0 (the default, no output) to 3 (the most output).
Debugging information is written to sys.stdout.

ZipFile.comment

The comment associated with the ZIP file as a bytes object. If assigning a comment to a ZipFile instance
created with mode 'w', 'x' or 'a', it should be no longer than 65535 bytes. Comments longer than this will
be truncated.

13.5.2 Path Objects

class zipfile.Path(root, at=”)
Construct a Path object from a root zipfile (which may be a ZipFile instance or file suitable for passing
to the ZipFile constructor).

at specifies the location of this Path within the zipfile, e.g. ‘dir/file.txt’, ‘dir/’, or ‘’. Defaults to the empty string,
indicating the root.

Path objects expose the following features of pathlib.Path objects:

Path objects are traversable using the / operator or joinpath.

Path.name

The final path component.

Path.open(mode=’r’, *, pwd, **)
Invoke ZipFile.open() on the current path. Allows opening for read or write, text or binary through sup-
ported modes: ‘r’, ‘w’, ‘rb’, ‘wb’. Positional and keyword arguments are passed through to io.TextIOWrapper
when opened as text and ignored otherwise. pwd is the pwd parameter to ZipFile.open().

Changed in version 3.9: Added support for text and binary modes for open. Default mode is now text.

Changed in version 3.11.2: The encoding parameter can be supplied as a positional argument without causing
a TypeError. As it could in 3.9. Code needing to be compatible with unpatched 3.10 and 3.11 versions must
pass all io.TextIOWrapper arguments, encoding included, as keywords.

Path.iterdir()

Enumerate the children of the current directory.

Path.is_dir()

Return True if the current context references a directory.

Path.is_file()

Return True if the current context references a file.

Path.is_symlink()

Return True if the current context references a symbolic link.

Added in version 3.12.

Changed in version 3.13: Previously, is_symlink would unconditionally return False.

Path.exists()

Return True if the current context references a file or directory in the zip file.

Path.suffix

The last dot-separated portion of the final component, if any. This is commonly called the file extension.

Added in version 3.11: Added Path.suffix property.

Path.stem

The final path component, without its suffix.

Added in version 3.11: Added Path.stem property.

582 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

Path.suffixes

A list of the path’s suffixes, commonly called file extensions.

Added in version 3.11: Added Path.suffixes property.

Path.read_text(*, **)
Read the current file as unicode text. Positional and keyword arguments are passed through to io.

TextIOWrapper (except buffer, which is implied by the context).

Changed in version 3.11.2: The encoding parameter can be supplied as a positional argument without causing
a TypeError. As it could in 3.9. Code needing to be compatible with unpatched 3.10 and 3.11 versions must
pass all io.TextIOWrapper arguments, encoding included, as keywords.

Path.read_bytes()

Read the current file as bytes.

Path.joinpath(*other)

Return a new Path object with each of the other arguments joined. The following are equivalent:

>>> Path(...).joinpath('child').joinpath('grandchild')

>>> Path(...).joinpath('child', 'grandchild')

>>> Path(...) / 'child' / 'grandchild'

Changed in version 3.10: Prior to 3.10, joinpath was undocumented and accepted exactly one parameter.

The zipp project provides backports of the latest path object functionality to older Pythons. Use zipp.Path in place
of zipfile.Path for early access to changes.

13.5.3 PyZipFile Objects

The PyZipFile constructor takes the same parameters as the ZipFile constructor, and one additional parameter,
optimize.

class zipfile.PyZipFile(file, mode=’r’, compression=ZIP_STORED, allowZip64=True, optimize=-1)
Changed in version 3.2: Added the optimize parameter.

Changed in version 3.4: ZIP64 extensions are enabled by default.

Instances have one method in addition to those of ZipFile objects:

writepy(pathname, basename=” , filterfunc=None)
Search for files *.py and add the corresponding file to the archive.

If the optimize parameter to PyZipFile was not given or -1, the corresponding file is a *.pyc file,
compiling if necessary.

If the optimize parameter to PyZipFile was 0, 1 or 2, only files with that optimization level (see
compile()) are added to the archive, compiling if necessary.

If pathname is a file, the filename must end with .py, and just the (corresponding *.pyc) file is added at
the top level (no path information). If pathname is a file that does not end with .py, a RuntimeError
will be raised. If it is a directory, and the directory is not a package directory, then all the files *.pyc are
added at the top level. If the directory is a package directory, then all *.pyc are added under the package
name as a file path, and if any subdirectories are package directories, all of these are added recursively
in sorted order.

basename is intended for internal use only.

filterfunc, if given, must be a function taking a single string argument. It will be passed each path (in-
cluding each individual full file path) before it is added to the archive. If filterfunc returns a false value,
the path will not be added, and if it is a directory its contents will be ignored. For example, if our test
files are all either in test directories or start with the string test_, we can use a filterfunc to exclude
them:

13.5. zipfile—Work with ZIP archives 583

https://pypi.org/project/zipp/

The Python Library Reference, Release 3.13.1

>>> zf = PyZipFile('myprog.zip')

>>> def notests(s):

... fn = os.path.basename(s)

... return (not (fn == 'test' or fn.startswith('test_')))

...

>>> zf.writepy('myprog', filterfunc=notests)

The writepy() method makes archives with file names like this:

string.pyc # Top level name

test/__init__.pyc # Package directory

test/testall.pyc # Module test.testall

test/bogus/__init__.pyc # Subpackage directory

test/bogus/myfile.pyc # Submodule test.bogus.myfile

Changed in version 3.4: Added the filterfunc parameter.

Changed in version 3.6.2: The pathname parameter accepts a path-like object.

Changed in version 3.7: Recursion sorts directory entries.

13.5.4 ZipInfo Objects

Instances of the ZipInfo class are returned by the getinfo() and infolist() methods of ZipFile objects.
Each object stores information about a single member of the ZIP archive.

There is one classmethod to make a ZipInfo instance for a filesystem file:

classmethod ZipInfo.from_file(filename, arcname=None, *, strict_timestamps=True)
Construct a ZipInfo instance for a file on the filesystem, in preparation for adding it to a zip file.

filename should be the path to a file or directory on the filesystem.

If arcname is specified, it is used as the name within the archive. If arcname is not specified, the name will be
the same as filename, but with any drive letter and leading path separators removed.

The strict_timestamps argument, when set to False, allows to zip files older than 1980-01-01 at the cost of
setting the timestamp to 1980-01-01. Similar behavior occurs with files newer than 2107-12-31, the timestamp
is also set to the limit.

Added in version 3.6.

Changed in version 3.6.2: The filename parameter accepts a path-like object.

Changed in version 3.8: Added the strict_timestamps keyword-only parameter.

Instances have the following methods and attributes:

ZipInfo.is_dir()

Return True if this archive member is a directory.

This uses the entry’s name: directories should always end with /.

Added in version 3.6.

ZipInfo.filename

Name of the file in the archive.

ZipInfo.date_time

The time and date of the last modification to the archive member. This is a tuple of six values:

584 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

Index Value

0 Year (>= 1980)
1 Month (one-based)
2 Day of month (one-based)
3 Hours (zero-based)
4 Minutes (zero-based)
5 Seconds (zero-based)

Note

The ZIP file format does not support timestamps before 1980.

ZipInfo.compress_type

Type of compression for the archive member.

ZipInfo.comment

Comment for the individual archive member as a bytes object.

ZipInfo.extra

Expansion field data. The PKZIP Application Note contains some comments on the internal structure of the
data contained in this bytes object.

ZipInfo.create_system

System which created ZIP archive.

ZipInfo.create_version

PKZIP version which created ZIP archive.

ZipInfo.extract_version

PKZIP version needed to extract archive.

ZipInfo.reserved

Must be zero.

ZipInfo.flag_bits

ZIP flag bits.

ZipInfo.volume

Volume number of file header.

ZipInfo.internal_attr

Internal attributes.

ZipInfo.external_attr

External file attributes.

ZipInfo.header_offset

Byte offset to the file header.

ZipInfo.CRC

CRC-32 of the uncompressed file.

ZipInfo.compress_size

Size of the compressed data.

ZipInfo.file_size

Size of the uncompressed file.

13.5. zipfile—Work with ZIP archives 585

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

The Python Library Reference, Release 3.13.1

13.5.5 Command-Line Interface

The zipfile module provides a simple command-line interface to interact with ZIP archives.

If you want to create a new ZIP archive, specify its name after the -c option and then list the filename(s) that should
be included:

$ python -m zipfile -c monty.zip spam.txt eggs.txt

Passing a directory is also acceptable:

$ python -m zipfile -c monty.zip life-of-brian_1979/

If you want to extract a ZIP archive into the specified directory, use the -e option:

$ python -m zipfile -e monty.zip target-dir/

For a list of the files in a ZIP archive, use the -l option:

$ python -m zipfile -l monty.zip

Command-line options

-l <zipfile>

--list <zipfile>

List files in a zipfile.

-c <zipfile> <source1> ... <sourceN>

--create <zipfile> <source1> ... <sourceN>

Create zipfile from source files.

-e <zipfile> <output_dir>

--extract <zipfile> <output_dir>

Extract zipfile into target directory.

-t <zipfile>

--test <zipfile>

Test whether the zipfile is valid or not.

--metadata-encoding <encoding>

Specify encoding of member names for -l, -e and -t.

Added in version 3.11.

13.5.6 Decompression pitfalls

The extraction in zipfile module might fail due to some pitfalls listed below.

From file itself

Decompressionmay fail due to incorrect password / CRC checksum / ZIP format or unsupported compressionmethod
/ decryption.

File System limitations

Exceeding limitations on different file systems can cause decompression failed. Such as allowable characters in the
directory entries, length of the file name, length of the pathname, size of a single file, and number of files, etc.

586 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

Resources limitations

The lack of memory or disk volume would lead to decompression failed. For example, decompression bombs (aka
ZIP bomb) apply to zipfile library that can cause disk volume exhaustion.

Interruption

Interruption during the decompression, such as pressing control-C or killing the decompression process may result
in incomplete decompression of the archive.

Default behaviors of extraction

Not knowing the default extraction behaviors can cause unexpected decompression results. For example, when ex-
tracting the same archive twice, it overwrites files without asking.

13.6 tarfile— Read and write tar archive files

Source code: Lib/tarfile.py

The tarfile module makes it possible to read and write tar archives, including those using gzip, bz2 and lzma
compression. Use the zipfile module to read or write .zip files, or the higher-level functions in shutil.

Some facts and figures:

• reads and writes gzip, bz2 and lzma compressed archives if the respective modules are available.

• read/write support for the POSIX.1-1988 (ustar) format.

• read/write support for the GNU tar format including longname and longlink extensions, read-only support for
all variants of the sparse extension including restoration of sparse files.

• read/write support for the POSIX.1-2001 (pax) format.

• handles directories, regular files, hardlinks, symbolic links, fifos, character devices and block devices and is
able to acquire and restore file information like timestamp, access permissions and owner.

Changed in version 3.3: Added support for lzma compression.

Changed in version 3.12: Archives are extracted using a filter, which makes it possible to either limit surpris-
ing/dangerous features, or to acknowledge that they are expected and the archive is fully trusted. By default, archives
are fully trusted, but this default is deprecated and slated to change in Python 3.14.

tarfile.open(name=None, mode=’r’, fileobj=None, bufsize=10240, **kwargs)

Return a TarFile object for the pathname name. For detailed information on TarFile objects and the
keyword arguments that are allowed, see TarFile Objects.

mode has to be a string of the form 'filemode[:compression]', it defaults to 'r'. Here is a full list of
mode combinations:

13.6. tarfile— Read and write tar archive files 587

https://en.wikipedia.org/wiki/Zip_bomb
https://github.com/python/cpython/tree/3.13/Lib/tarfile.py

The Python Library Reference, Release 3.13.1

mode action

'r' or

'r:*'

Open for reading with transparent compression (recommended).

'r:' Open for reading exclusively without compression.
'r:gz' Open for reading with gzip compression.
'r:bz2' Open for reading with bzip2 compression.
'r:xz' Open for reading with lzma compression.
'x' or 'x:' Create a tarfile exclusively without compression. Raise a FileExistsError exception

if it already exists.
'x:gz' Create a tarfile with gzip compression. Raise a FileExistsError exception if it already

exists.
'x:bz2' Create a tarfile with bzip2 compression. Raise a FileExistsError exception if it al-

ready exists.
'x:xz' Create a tarfile with lzma compression. Raise a FileExistsError exception if it already

exists.
'a' or

'a:'

Open for appending with no compression. The file is created if it does not exist.

'w' or

'w:'

Open for uncompressed writing.

'w:gz' Open for gzip compressed writing.
'w:bz2' Open for bzip2 compressed writing.
'w:xz' Open for lzma compressed writing.

Note that 'a:gz', 'a:bz2' or 'a:xz' is not possible. Ifmode is not suitable to open a certain (compressed)
file for reading, ReadError is raised. Use mode 'r' to avoid this. If a compression method is not supported,
CompressionError is raised.

If fileobj is specified, it is used as an alternative to a file object opened in binary mode for name. It is supposed
to be at position 0.

For modes 'w:gz', 'x:gz', 'w|gz', 'w:bz2', 'x:bz2', 'w|bz2', tarfile.open() accepts the key-
word argument compresslevel (default 9) to specify the compression level of the file.

For modes 'w:xz' and 'x:xz', tarfile.open() accepts the keyword argument preset to specify the com-
pression level of the file.

For special purposes, there is a second format formode: 'filemode|[compression]'. tarfile.open()
will return a TarFile object that processes its data as a stream of blocks. No random seeking will be done on
the file. If given, fileobj may be any object that has a read() or write() method (depending on the mode)
that works with bytes. bufsize specifies the blocksize and defaults to 20 * 512 bytes. Use this variant in
combination with e.g. sys.stdin.buffer, a socket file object or a tape device. However, such a TarFile
object is limited in that it does not allow random access, see Examples. The currently possible modes:

Mode Action

'r|*' Open a stream of tar blocks for reading with transparent compression.
'r|' Open a stream of uncompressed tar blocks for reading.
'r|gz' Open a gzip compressed stream for reading.
'r|bz2' Open a bzip2 compressed stream for reading.
'r|xz' Open an lzma compressed stream for reading.
'w|' Open an uncompressed stream for writing.
'w|gz' Open a gzip compressed stream for writing.
'w|bz2' Open a bzip2 compressed stream for writing.
'w|xz' Open an lzma compressed stream for writing.

Changed in version 3.5: The 'x' (exclusive creation) mode was added.

Changed in version 3.6: The name parameter accepts a path-like object.

588 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

Changed in version 3.12: The compresslevel keyword argument also works for streams.

class tarfile.TarFile

Class for reading and writing tar archives. Do not use this class directly: use tarfile.open() instead. See
TarFile Objects.

tarfile.is_tarfile(name)

Return True if name is a tar archive file, that the tarfile module can read. name may be a str, file, or
file-like object.

Changed in version 3.9: Support for file and file-like objects.

The tarfile module defines the following exceptions:

exception tarfile.TarError

Base class for all tarfile exceptions.

exception tarfile.ReadError

Is raised when a tar archive is opened, that either cannot be handled by the tarfile module or is somehow
invalid.

exception tarfile.CompressionError

Is raised when a compression method is not supported or when the data cannot be decoded properly.

exception tarfile.StreamError

Is raised for the limitations that are typical for stream-like TarFile objects.

exception tarfile.ExtractError

Is raised for non-fatal errors when using TarFile.extract(), but only if TarFile.errorlevel== 2.

exception tarfile.HeaderError

Is raised by TarInfo.frombuf() if the buffer it gets is invalid.

exception tarfile.FilterError

Base class for members refused by filters.

tarinfo

Information about the member that the filter refused to extract, as TarInfo.

exception tarfile.AbsolutePathError

Raised to refuse extracting a member with an absolute path.

exception tarfile.OutsideDestinationError

Raised to refuse extracting a member outside the destination directory.

exception tarfile.SpecialFileError

Raised to refuse extracting a special file (e.g. a device or pipe).

exception tarfile.AbsoluteLinkError

Raised to refuse extracting a symbolic link with an absolute path.

exception tarfile.LinkOutsideDestinationError

Raised to refuse extracting a symbolic link pointing outside the destination directory.

The following constants are available at the module level:

tarfile.ENCODING

The default character encoding: 'utf-8' on Windows, the value returned by sys.

getfilesystemencoding() otherwise.

tarfile.REGTYPE

tarfile.AREGTYPE

A regular file type.

13.6. tarfile— Read and write tar archive files 589

The Python Library Reference, Release 3.13.1

tarfile.LNKTYPE

A link (inside tarfile) type.

tarfile.SYMTYPE

A symbolic link type.

tarfile.CHRTYPE

A character special device type.

tarfile.BLKTYPE

A block special device type.

tarfile.DIRTYPE

A directory type.

tarfile.FIFOTYPE

A FIFO special device type.

tarfile.CONTTYPE

A contiguous file type.

tarfile.GNUTYPE_LONGNAME

A GNU tar longname type.

tarfile.GNUTYPE_LONGLINK

A GNU tar longlink type.

tarfile.GNUTYPE_SPARSE

A GNU tar sparse file type.

Each of the following constants defines a tar archive format that the tarfile module is able to create. See section
Supported tar formats for details.

tarfile.USTAR_FORMAT

POSIX.1-1988 (ustar) format.

tarfile.GNU_FORMAT

GNU tar format.

tarfile.PAX_FORMAT

POSIX.1-2001 (pax) format.

tarfile.DEFAULT_FORMAT

The default format for creating archives. This is currently PAX_FORMAT.

Changed in version 3.8: The default format for new archives was changed to PAX_FORMAT from GNU_FORMAT.

See also

Module zipfile
Documentation of the zipfile standard module.

Archiving operations
Documentation of the higher-level archiving facilities provided by the standard shutil module.

GNU tar manual, Basic Tar Format
Documentation for tar archive files, including GNU tar extensions.

590 Chapter 13. Data Compression and Archiving

https://www.gnu.org/software/tar/manual/html_node/Standard.html

The Python Library Reference, Release 3.13.1

13.6.1 TarFile Objects

The TarFile object provides an interface to a tar archive. A tar archive is a sequence of blocks. An archive member
(a stored file) is made up of a header block followed by data blocks. It is possible to store a file in a tar archive several
times. Each archive member is represented by a TarInfo object, see TarInfo Objects for details.

A TarFile object can be used as a context manager in a with statement. It will automatically be closed when the
block is completed. Please note that in the event of an exception an archive opened for writing will not be finalized;
only the internally used file object will be closed. See the Examples section for a use case.

Added in version 3.2: Added support for the context management protocol.

class tarfile.TarFile(name=None, mode=’r’, fileobj=None, format=DEFAULT_FORMAT , tarinfo=TarInfo,
dereference=False, ignore_zeros=False, encoding=ENCODING,
errors=’surrogateescape’, pax_headers=None, debug=0, errorlevel=1, stream=False)

All following arguments are optional and can be accessed as instance attributes as well.

name is the pathname of the archive. name may be a path-like object. It can be omitted if fileobj is given. In
this case, the file object’s name attribute is used if it exists.

mode is either 'r' to read from an existing archive, 'a' to append data to an existing file, 'w' to create a new
file overwriting an existing one, or 'x' to create a new file only if it does not already exist.

If fileobj is given, it is used for reading or writing data. If it can be determined, mode is overridden by fileobj’s
mode. fileobj will be used from position 0.

Note

fileobj is not closed, when TarFile is closed.

format controls the archive format for writing. It must be one of the constants USTAR_FORMAT, GNU_FORMAT
or PAX_FORMAT that are defined at module level. When reading, format will be automatically detected, even
if different formats are present in a single archive.

The tarinfo argument can be used to replace the default TarInfo class with a different one.

If dereference is False, add symbolic and hard links to the archive. If it is True, add the content of the target
files to the archive. This has no effect on systems that do not support symbolic links.

If ignore_zeros is False, treat an empty block as the end of the archive. If it is True, skip empty (and invalid)
blocks and try to get as many members as possible. This is only useful for reading concatenated or damaged
archives.

debug can be set from 0 (no debug messages) up to 3 (all debug messages). The messages are written to
sys.stderr.

errorlevel controls how extraction errors are handled, see the corresponding attribute.

The encoding and errors arguments define the character encoding to be used for reading or writing the archive
and how conversion errors are going to be handled. The default settings will work for most users. See section
Unicode issues for in-depth information.

The pax_headers argument is an optional dictionary of strings which will be added as a pax global header if
format is PAX_FORMAT.

If stream is set to True then while reading the archive info about files in the archive are not cached, saving
memory.

Changed in version 3.2: Use 'surrogateescape' as the default for the errors argument.

Changed in version 3.5: The 'x' (exclusive creation) mode was added.

Changed in version 3.6: The name parameter accepts a path-like object.

Changed in version 3.13: Add the stream parameter.

13.6. tarfile— Read and write tar archive files 591

The Python Library Reference, Release 3.13.1

classmethod TarFile.open(...)
Alternative constructor. The tarfile.open() function is actually a shortcut to this classmethod.

TarFile.getmember(name)

Return a TarInfo object for member name. If name can not be found in the archive, KeyError is raised.

Note

If a member occurs more than once in the archive, its last occurrence is assumed to be the most up-to-date
version.

TarFile.getmembers()

Return the members of the archive as a list of TarInfo objects. The list has the same order as the members
in the archive.

TarFile.getnames()

Return the members as a list of their names. It has the same order as the list returned by getmembers().

TarFile.list(verbose=True, *, members=None)
Print a table of contents to sys.stdout. If verbose is False, only the names of the members are printed. If
it is True, output similar to that of ls -l is produced. If optional members is given, it must be a subset of
the list returned by getmembers().

Changed in version 3.5: Added the members parameter.

TarFile.next()

Return the next member of the archive as a TarInfo object, when TarFile is opened for reading. Return
None if there is no more available.

TarFile.extractall(path=’.’, members=None, *, numeric_owner=False, filter=None)
Extract all members from the archive to the current working directory or directory path. If optional members
is given, it must be a subset of the list returned by getmembers(). Directory information like owner, mod-
ification time and permissions are set after all members have been extracted. This is done to work around
two problems: A directory’s modification time is reset each time a file is created in it. And, if a directory’s
permissions do not allow writing, extracting files to it will fail.

If numeric_owner is True, the uid and gid numbers from the tarfile are used to set the owner/group for the
extracted files. Otherwise, the named values from the tarfile are used.

The filter argument specifies how members are modified or rejected before extraction. See Extraction filters
for details. It is recommended to set this explicitly depending on which tar features you need to support.

Warning

Never extract archives from untrusted sources without prior inspection. It is possible that files are created
outside of path, e.g. members that have absolute filenames starting with "/" or filenames with two dots
"..".

Set filter='data' to prevent the most dangerous security issues, and read the Extraction filters section
for details.

Changed in version 3.5: Added the numeric_owner parameter.

Changed in version 3.6: The path parameter accepts a path-like object.

Changed in version 3.12: Added the filter parameter.

TarFile.extract(member, path=” , set_attrs=True, *, numeric_owner=False, filter=None)
Extract a member from the archive to the current working directory, using its full name. Its file information
is extracted as accurately as possible. member may be a filename or a TarInfo object. You can specify a

592 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

different directory using path. path may be a path-like object. File attributes (owner, mtime, mode) are set
unless set_attrs is false.

The numeric_owner and filter arguments are the same as for extractall().

Note

The extract()method does not take care of several extraction issues. In most cases you should consider
using the extractall() method.

Warning

See the warning for extractall().

Set filter='data' to prevent the most dangerous security issues, and read the Extraction filters section
for details.

Changed in version 3.2: Added the set_attrs parameter.

Changed in version 3.5: Added the numeric_owner parameter.

Changed in version 3.6: The path parameter accepts a path-like object.

Changed in version 3.12: Added the filter parameter.

TarFile.extractfile(member)
Extract a member from the archive as a file object. membermay be a filename or a TarInfo object. Ifmember
is a regular file or a link, an io.BufferedReader object is returned. For all other existing members, None
is returned. If member does not appear in the archive, KeyError is raised.

Changed in version 3.3: Return an io.BufferedReader object.

Changed in version 3.13: The returned io.BufferedReader object has the mode attribute which is always
equal to 'rb'.

TarFile.errorlevel: int

If errorlevel is 0, errors are ignored when using TarFile.extract() and TarFile.extractall(). Nev-
ertheless, they appear as error messages in the debug output when debug is greater than 0. If 1 (the default),
all fatal errors are raised as OSError or FilterError exceptions. If 2, all non-fatal errors are raised as
TarError exceptions as well.

Some exceptions, e.g. ones caused by wrong argument types or data corruption, are always raised.

Custom extraction filters should raise FilterError for fatal errors and ExtractError for non-fatal ones.

Note that when an exception is raised, the archive may be partially extracted. It is the user’s responsibility to
clean up.

TarFile.extraction_filter

Added in version 3.12.

The extraction filter used as a default for the filter argument of extract() and extractall().

The attribute may be None or a callable. String names are not allowed for this attribute, unlike the filter
argument to extract().

If extraction_filter is None (the default), calling an extractionmethodwithout a filter argument will raise
a DeprecationWarning, and fall back to the fully_trusted filter, whose dangerous behavior matches
previous versions of Python.

In Python 3.14+, leaving extraction_filter=None will cause extraction methods to use the data filter
by default.

13.6. tarfile— Read and write tar archive files 593

The Python Library Reference, Release 3.13.1

The attribute may be set on instances or overridden in subclasses. It also is possible to set it on the TarFile
class itself to set a global default, although, since it affects all uses of tarfile, it is best practice to only do so in
top-level applications or site configuration. To set a global default this way, a filter function needs to
be wrapped in staticmethod() to prevent injection of a self argument.

TarFile.add(name, arcname=None, recursive=True, *, filter=None)
Add the file name to the archive. name may be any type of file (directory, fifo, symbolic link, etc.). If given,
arcname specifies an alternative name for the file in the archive. Directories are added recursively by default.
This can be avoided by setting recursive to False. Recursion adds entries in sorted order. If filter is given,
it should be a function that takes a TarInfo object argument and returns the changed TarInfo object. If it
instead returns None the TarInfo object will be excluded from the archive. See Examples for an example.

Changed in version 3.2: Added the filter parameter.

Changed in version 3.7: Recursion adds entries in sorted order.

TarFile.addfile(tarinfo, fileobj=None)
Add the TarInfo object tarinfo to the archive. If tarinfo represents a non zero-size regular file, the fileobj
argument should be a binary file, and tarinfo.size bytes are read from it and added to the archive. You
can create TarInfo objects directly, or by using gettarinfo().

Changed in version 3.13: fileobj must be given for non-zero-sized regular files.

TarFile.gettarinfo(name=None, arcname=None, fileobj=None)
Create a TarInfo object from the result of os.stat() or equivalent on an existing file. The file is either
named by name, or specified as a file object fileobj with a file descriptor. name may be a path-like object.
If given, arcname specifies an alternative name for the file in the archive, otherwise, the name is taken from
fileobj’s name attribute, or the name argument. The name should be a text string.

You can modify some of the TarInfo’s attributes before you add it using addfile(). If the file object is
not an ordinary file object positioned at the beginning of the file, attributes such as sizemay need modifying.
This is the case for objects such as GzipFile. The name may also be modified, in which case arcname could
be a dummy string.

Changed in version 3.6: The name parameter accepts a path-like object.

TarFile.close()

Close the TarFile. In write mode, two finishing zero blocks are appended to the archive.

TarFile.pax_headers: dict

A dictionary containing key-value pairs of pax global headers.

13.6.2 TarInfo Objects

A TarInfo object represents one member in a TarFile. Aside from storing all required attributes of a file (like file
type, size, time, permissions, owner etc.), it provides some useful methods to determine its type. It does not contain
the file’s data itself.

TarInfo objects are returned by TarFile’s methods getmember(), getmembers() and gettarinfo().

Modifying the objects returned by getmember() or getmembers() will affect all subsequent operations on the
archive. For cases where this is unwanted, you can use copy.copy() or call the replace() method to create a
modified copy in one step.

Several attributes can be set to None to indicate that a piece of metadata is unused or unknown. Different TarInfo
methods handle None differently:

• The extract() or extractall()methods will ignore the correspondingmetadata, leaving it set to a default.

• addfile() will fail.

• list() will print a placeholder string.

class tarfile.TarInfo(name=”)
Create a TarInfo object.

594 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

classmethod TarInfo.frombuf(buf, encoding, errors)
Create and return a TarInfo object from string buffer buf.

Raises HeaderError if the buffer is invalid.

classmethod TarInfo.fromtarfile(tarfile)

Read the next member from the TarFile object tarfile and return it as a TarInfo object.

TarInfo.tobuf(format=DEFAULT_FORMAT , encoding=ENCODING, errors=’surrogateescape’)
Create a string buffer from a TarInfo object. For information on the arguments see the constructor of the
TarFile class.

Changed in version 3.2: Use 'surrogateescape' as the default for the errors argument.

A TarInfo object has the following public data attributes:

TarInfo.name: str

Name of the archive member.

TarInfo.size: int

Size in bytes.

TarInfo.mtime: int | float

Time of last modification in seconds since the epoch, as in os.stat_result.st_mtime.

Changed in version 3.12: Can be set to None for extract() and extractall(), causing extraction to skip
applying this attribute.

TarInfo.mode: int

Permission bits, as for os.chmod().

Changed in version 3.12: Can be set to None for extract() and extractall(), causing extraction to skip
applying this attribute.

TarInfo.type

File type. type is usually one of these constants: REGTYPE, AREGTYPE, LNKTYPE, SYMTYPE, DIRTYPE,
FIFOTYPE, CONTTYPE, CHRTYPE, BLKTYPE, GNUTYPE_SPARSE. To determine the type of a TarInfo object
more conveniently, use the is*() methods below.

TarInfo.linkname: str

Name of the target file name, which is only present in TarInfo objects of type LNKTYPE and SYMTYPE.

For symbolic links (SYMTYPE), the linkname is relative to the directory that contains the link. For hard links
(LNKTYPE), the linkname is relative to the root of the archive.

TarInfo.uid: int

User ID of the user who originally stored this member.

Changed in version 3.12: Can be set to None for extract() and extractall(), causing extraction to skip
applying this attribute.

TarInfo.gid: int

Group ID of the user who originally stored this member.

Changed in version 3.12: Can be set to None for extract() and extractall(), causing extraction to skip
applying this attribute.

TarInfo.uname: str

User name.

Changed in version 3.12: Can be set to None for extract() and extractall(), causing extraction to skip
applying this attribute.

13.6. tarfile— Read and write tar archive files 595

The Python Library Reference, Release 3.13.1

TarInfo.gname: str

Group name.

Changed in version 3.12: Can be set to None for extract() and extractall(), causing extraction to skip
applying this attribute.

TarInfo.chksum: int

Header checksum.

TarInfo.devmajor: int

Device major number.

TarInfo.devminor: int

Device minor number.

TarInfo.offset: int

The tar header starts here.

TarInfo.offset_data: int

The file’s data starts here.

TarInfo.sparse

Sparse member information.

TarInfo.pax_headers: dict

A dictionary containing key-value pairs of an associated pax extended header.

TarInfo.replace(name=..., mtime=..., mode=..., linkname=..., uid=..., gid=..., uname=..., gname=...,
deep=True)

Added in version 3.12.

Return a new copy of the TarInfo object with the given attributes changed. For example, to return a TarInfo
with the group name set to 'staff', use:

new_tarinfo = old_tarinfo.replace(gname='staff')

By default, a deep copy is made. If deep is false, the copy is shallow, i.e. pax_headers and any custom
attributes are shared with the original TarInfo object.

A TarInfo object also provides some convenient query methods:

TarInfo.isfile()

Return True if the TarInfo object is a regular file.

TarInfo.isreg()

Same as isfile().

TarInfo.isdir()

Return True if it is a directory.

TarInfo.issym()

Return True if it is a symbolic link.

TarInfo.islnk()

Return True if it is a hard link.

TarInfo.ischr()

Return True if it is a character device.

TarInfo.isblk()

Return True if it is a block device.

TarInfo.isfifo()

Return True if it is a FIFO.

596 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

TarInfo.isdev()

Return True if it is one of character device, block device or FIFO.

13.6.3 Extraction filters

Added in version 3.12.

The tar format is designed to capture all details of a UNIX-like filesystem, which makes it very powerful. Unfor-
tunately, the features make it easy to create tar files that have unintended – and possibly malicious – effects when
extracted. For example, extracting a tar file can overwrite arbitrary files in various ways (e.g. by using absolute paths,
.. path components, or symlinks that affect later members).

In most cases, the full functionality is not needed. Therefore, tarfile supports extraction filters: a mechanism to limit
functionality, and thus mitigate some of the security issues.

See also

PEP 706
Contains further motivation and rationale behind the design.

The filter argument to TarFile.extract() or extractall() can be:

• the string 'fully_trusted': Honor all metadata as specified in the archive. Should be used if the user trusts
the archive completely, or implements their own complex verification.

• the string 'tar': Honor most tar-specific features (i.e. features of UNIX-like filesystems), but block features
that are very likely to be surprising or malicious. See tar_filter() for details.

• the string 'data': Ignore or block most features specific to UNIX-like filesystems. Intended for extracting
cross-platform data archives. See data_filter() for details.

• None (default): Use TarFile.extraction_filter.

If that is also None (the default), raise a DeprecationWarning, and fall back to the 'fully_trusted'
filter, whose dangerous behavior matches previous versions of Python.

In Python 3.14, the 'data' filter will become the default instead. It’s possible to switch earlier; see TarFile.
extraction_filter.

• A callable which will be called for each extracted member with a TarInfo describing the member and the
destination path to where the archive is extracted (i.e. the same path is used for all members):

filter(member: TarInfo, path: str, /) -> TarInfo | None

The callable is called just before each member is extracted, so it can take the current state of the disk into
account. It can:

– return a TarInfo object which will be used instead of the metadata in the archive, or

– return None, in which case the member will be skipped, or

– raise an exception to abort the operation or skip themember, depending on errorlevel. Note that when
extraction is aborted, extractall() may leave the archive partially extracted. It does not attempt to
clean up.

Default named filters

The pre-defined, named filters are available as functions, so they can be reused in custom filters:

tarfile.fully_trusted_filter(member, path)
Return member unchanged.

This implements the 'fully_trusted' filter.

13.6. tarfile— Read and write tar archive files 597

https://peps.python.org/pep-0706/

The Python Library Reference, Release 3.13.1

tarfile.tar_filter(member, path)
Implements the 'tar' filter.

• Strip leading slashes (/ and os.sep) from filenames.

• Refuse to extract files with absolute paths (in case the name is absolute even after stripping slashes, e.g.
C:/foo on Windows). This raises AbsolutePathError.

• Refuse to extract files whose absolute path (after following symlinks) would end up outside the destination.
This raises OutsideDestinationError.

• Clear high mode bits (setuid, setgid, sticky) and group/other write bits (S_IWGRP | S_IWOTH).

Return the modified TarInfo member.

tarfile.data_filter(member, path)
Implements the 'data' filter. In addition to what tar_filter does:

• Refuse to extract links (hard or soft) that link to absolute paths, or ones that link outside the destination.

This raises AbsoluteLinkError or LinkOutsideDestinationError.

Note that such files are refused even on platforms that do not support symbolic links.

• Refuse to extract device files (including pipes). This raises SpecialFileError.

• For regular files, including hard links:

– Set the owner read and write permissions (S_IRUSR | S_IWUSR).

– Remove the group & other executable permission (S_IXGRP | S_IXOTH) if the owner doesn’t have
it (S_IXUSR).

• For other files (directories), set mode to None, so that extraction methods skip applying permission bits.

• Set user and group info (uid, gid, uname, gname) to None, so that extraction methods skip setting it.

Return the modified TarInfo member.

Filter errors

When a filter refuses to extract a file, it will raise an appropriate exception, a subclass of FilterError. This will
abort the extraction if TarFile.errorlevel is 1 or more. With errorlevel=0 the error will be logged and the
member will be skipped, but extraction will continue.

Hints for further verification

Even with filter='data', tarfile is not suited for extracting untrusted files without prior inspection. Among other
issues, the pre-defined filters do not prevent denial-of-service attacks. Users should do additional checks.

Here is an incomplete list of things to consider:

• Extract to a new temporary directory to prevent e.g. exploiting pre-existing links, and to make it easier
to clean up after a failed extraction.

• When working with untrusted data, use external (e.g. OS-level) limits on disk, memory and CPU usage.

• Check filenames against an allow-list of characters (to filter out control characters, confusables, foreign path
separators, etc.).

• Check that filenames have expected extensions (discouraging files that execute when you “click on them”, or
extension-less files like Windows special device names).

• Limit the number of extracted files, total size of extracted data, filename length (including symlink length),
and size of individual files.

• Check for files that would be shadowed on case-insensitive filesystems.

Also note that:

598 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

• Tar files may contain multiple versions of the same file. Later ones are expected to overwrite any earlier ones.
This feature is crucial to allow updating tape archives, but can be abused maliciously.

• tarfile does not protect against issues with “live” data, e.g. an attacker tinkering with the destination (or source)
directory while extraction (or archiving) is in progress.

Supporting older Python versions

Extraction filters were added to Python 3.12, but may be backported to older versions as security updates. To check
whether the feature is available, use e.g. hasattr(tarfile, 'data_filter') rather than checking the Python
version.

The following examples show how to support Python versions with and without the feature. Note that setting
extraction_filter will affect any subsequent operations.

• Fully trusted archive:

my_tarfile.extraction_filter = (lambda member, path: member)

my_tarfile.extractall()

• Use the 'data' filter if available, but revert to Python 3.11 behavior ('fully_trusted') if this feature is
not available:

my_tarfile.extraction_filter = getattr(tarfile, 'data_filter',

(lambda member, path: member))

my_tarfile.extractall()

• Use the 'data' filter; fail if it is not available:

my_tarfile.extractall(filter=tarfile.data_filter)

or:

my_tarfile.extraction_filter = tarfile.data_filter

my_tarfile.extractall()

• Use the 'data' filter; warn if it is not available:

if hasattr(tarfile, 'data_filter'):

my_tarfile.extractall(filter='data')

else:

remove this when no longer needed

warn_the_user('Extracting may be unsafe; consider updating Python')

my_tarfile.extractall()

Stateful extraction filter example

While tarfile’s extraction methods take a simple filter callable, custom filters may be more complex objects with an
internal state. It may be useful to write these as context managers, to be used like this:

with StatefulFilter() as filter_func:

tar.extractall(path, filter=filter_func)

Such a filter can be written as, for example:

class StatefulFilter:

def __init__(self):

self.file_count = 0

def __enter__(self):

(continues on next page)

13.6. tarfile— Read and write tar archive files 599

The Python Library Reference, Release 3.13.1

(continued from previous page)

return self

def __call__(self, member, path):

self.file_count += 1

return member

def __exit__(self, *exc_info):

print(f'{self.file_count} files extracted')

13.6.4 Command-Line Interface

Added in version 3.4.

The tarfile module provides a simple command-line interface to interact with tar archives.

If you want to create a new tar archive, specify its name after the -c option and then list the filename(s) that should
be included:

$ python -m tarfile -c monty.tar spam.txt eggs.txt

Passing a directory is also acceptable:

$ python -m tarfile -c monty.tar life-of-brian_1979/

If you want to extract a tar archive into the current directory, use the -e option:

$ python -m tarfile -e monty.tar

You can also extract a tar archive into a different directory by passing the directory’s name:

$ python -m tarfile -e monty.tar other-dir/

For a list of the files in a tar archive, use the -l option:

$ python -m tarfile -l monty.tar

Command-line options

-l <tarfile>

--list <tarfile>

List files in a tarfile.

-c <tarfile> <source1> ... <sourceN>

--create <tarfile> <source1> ... <sourceN>

Create tarfile from source files.

-e <tarfile> [<output_dir>]

--extract <tarfile> [<output_dir>]

Extract tarfile into the current directory if output_dir is not specified.

-t <tarfile>

--test <tarfile>

Test whether the tarfile is valid or not.

-v, --verbose

Verbose output.

600 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

--filter <filtername>

Specifies the filter for --extract. See Extraction filters for details. Only string names are accepted (that is,
fully_trusted, tar, and data).

13.6.5 Examples

How to extract an entire tar archive to the current working directory:

import tarfile

tar = tarfile.open("sample.tar.gz")

tar.extractall(filter='data')

tar.close()

How to extract a subset of a tar archive with TarFile.extractall() using a generator function instead of a list:

import os

import tarfile

def py_files(members):

for tarinfo in members:

if os.path.splitext(tarinfo.name)[1] == ".py":

yield tarinfo

tar = tarfile.open("sample.tar.gz")

tar.extractall(members=py_files(tar))

tar.close()

How to create an uncompressed tar archive from a list of filenames:

import tarfile

tar = tarfile.open("sample.tar", "w")

for name in ["foo", "bar", "quux"]:

tar.add(name)

tar.close()

The same example using the with statement:

import tarfile

with tarfile.open("sample.tar", "w") as tar:

for name in ["foo", "bar", "quux"]:

tar.add(name)

How to read a gzip compressed tar archive and display some member information:

import tarfile

tar = tarfile.open("sample.tar.gz", "r:gz")

for tarinfo in tar:

print(tarinfo.name, "is", tarinfo.size, "bytes in size and is ", end="")

if tarinfo.isreg():

print("a regular file.")

elif tarinfo.isdir():

print("a directory.")

else:

print("something else.")

tar.close()

How to create an archive and reset the user information using the filter parameter in TarFile.add():

13.6. tarfile— Read and write tar archive files 601

The Python Library Reference, Release 3.13.1

import tarfile

def reset(tarinfo):

tarinfo.uid = tarinfo.gid = 0

tarinfo.uname = tarinfo.gname = "root"

return tarinfo

tar = tarfile.open("sample.tar.gz", "w:gz")

tar.add("foo", filter=reset)

tar.close()

13.6.6 Supported tar formats

There are three tar formats that can be created with the tarfile module:

• The POSIX.1-1988 ustar format (USTAR_FORMAT). It supports filenames up to a length of at best 256 char-
acters and linknames up to 100 characters. The maximum file size is 8 GiB. This is an old and limited but
widely supported format.

• The GNU tar format (GNU_FORMAT). It supports long filenames and linknames, files bigger than 8 GiB and
sparse files. It is the de facto standard on GNU/Linux systems. tarfile fully supports the GNU tar extensions
for long names, sparse file support is read-only.

• The POSIX.1-2001 pax format (PAX_FORMAT). It is the most flexible format with virtually no limits. It sup-
ports long filenames and linknames, large files and stores pathnames in a portable way. Modern tar imple-
mentations, including GNU tar, bsdtar/libarchive and star, fully support extended pax features; some old or
unmaintained libraries may not, but should treat pax archives as if they were in the universally supported ustar
format. It is the current default format for new archives.

It extends the existing ustar format with extra headers for information that cannot be stored otherwise. There
are two flavours of pax headers: Extended headers only affect the subsequent file header, global headers are
valid for the complete archive and affect all following files. All the data in a pax header is encoded in UTF-8
for portability reasons.

There are some more variants of the tar format which can be read, but not created:

• The ancient V7 format. This is the first tar format from Unix Seventh Edition, storing only regular files and
directories. Names must not be longer than 100 characters, there is no user/group name information. Some
archives have miscalculated header checksums in case of fields with non-ASCII characters.

• The SunOS tar extended format. This format is a variant of the POSIX.1-2001 pax format, but is not compat-
ible.

13.6.7 Unicode issues

The tar format was originally conceived to make backups on tape drives with the main focus on preserving file
system information. Nowadays tar archives are commonly used for file distribution and exchanging archives over
networks. One problem of the original format (which is the basis of all other formats) is that there is no concept of
supporting different character encodings. For example, an ordinary tar archive created on a UTF-8 system cannot be
read correctly on a Latin-1 system if it contains non-ASCII characters. Textual metadata (like filenames, linknames,
user/group names) will appear damaged. Unfortunately, there is no way to autodetect the encoding of an archive. The
pax format was designed to solve this problem. It stores non-ASCII metadata using the universal character encoding
UTF-8.

The details of character conversion in tarfile are controlled by the encoding and errors keyword arguments of the
TarFile class.

encoding defines the character encoding to use for the metadata in the archive. The default value is sys.

getfilesystemencoding() or 'ascii' as a fallback. Depending on whether the archive is read or written,
the metadata must be either decoded or encoded. If encoding is not set appropriately, this conversion may fail.

The errors argument defines how characters are treated that cannot be converted. Possible values are listed in section
Error Handlers. The default scheme is 'surrogateescape' which Python also uses for its file system calls, see
File Names, Command Line Arguments, and Environment Variables.

602 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.13.1

For PAX_FORMAT archives (the default), encoding is generally not needed because all the metadata is stored using
UTF-8. encoding is only used in the rare cases when binary pax headers are decoded or when strings with surrogate
characters are stored.

13.6. tarfile— Read and write tar archive files 603

The Python Library Reference, Release 3.13.1

604 Chapter 13. Data Compression and Archiving

CHAPTER

FOURTEEN

FILE FORMATS

The modules described in this chapter parse various miscellaneous file formats that aren’t markup languages and are
not related to e-mail.

14.1 csv— CSV File Reading and Writing

Source code: Lib/csv.py

The so-called CSV (Comma Separated Values) format is the most common import and export format for spreadsheets
and databases. CSV format was used for many years prior to attempts to describe the format in a standardized way
in RFC 4180. The lack of a well-defined standard means that subtle differences often exist in the data produced
and consumed by different applications. These differences can make it annoying to process CSV files from multiple
sources. Still, while the delimiters and quoting characters vary, the overall format is similar enough that it is possible
to write a single module which can efficiently manipulate such data, hiding the details of reading and writing the data
from the programmer.

The csv module implements classes to read and write tabular data in CSV format. It allows programmers to say,
“write this data in the format preferred by Excel,” or “read data from this file which was generated by Excel,” without
knowing the precise details of the CSV format used by Excel. Programmers can also describe the CSV formats
understood by other applications or define their own special-purpose CSV formats.

The csv module’s reader and writer objects read and write sequences. Programmers can also read and write data
in dictionary form using the DictReader and DictWriter classes.

See also

PEP 305 - CSV File API
The Python Enhancement Proposal which proposed this addition to Python.

14.1.1 Module Contents

The csv module defines the following functions:

csv.reader(csvfile, dialect=’excel’, **fmtparams)
Return a reader object that will process lines from the given csvfile. A csvfile must be an iterable of strings, each
in the reader’s defined csv format. A csvfile is most commonly a file-like object or list. If csvfile is a file object,
it should be opened with newline=''.1 An optional dialect parameter can be given which is used to define a
set of parameters specific to a particular CSV dialect. It may be an instance of a subclass of the Dialect class
or one of the strings returned by the list_dialects() function. The other optional fmtparams keyword
arguments can be given to override individual formatting parameters in the current dialect. For full details
about the dialect and formatting parameters, see section Dialects and Formatting Parameters.

1 If newline='' is not specified, newlines embedded inside quoted fields will not be interpreted correctly, and on platforms that use \r\n
linendings on write an extra \r will be added. It should always be safe to specify newline='', since the csv module does its own (universal)
newline handling.

605

https://github.com/python/cpython/tree/3.13/Lib/csv.py
https://datatracker.ietf.org/doc/html/rfc4180.html
https://peps.python.org/pep-0305/

The Python Library Reference, Release 3.13.1

Each row read from the csv file is returned as a list of strings. No automatic data type conversion is performed
unless the QUOTE_NONNUMERIC format option is specified (in which case unquoted fields are transformed into
floats).

A short usage example:

>>> import csv

>>> with open('eggs.csv', newline='') as csvfile:

... spamreader = csv.reader(csvfile, delimiter=' ', quotechar='|')

... for row in spamreader:

... print(', '.join(row))

Spam, Spam, Spam, Spam, Spam, Baked Beans

Spam, Lovely Spam, Wonderful Spam

csv.writer(csvfile, dialect=’excel’, **fmtparams)
Return a writer object responsible for converting the user’s data into delimited strings on the given file-like
object. csvfile can be any object with a write() method. If csvfile is a file object, it should be opened with
newline=''Page 605, 1. An optional dialect parameter can be given which is used to define a set of parameters
specific to a particular CSV dialect. It may be an instance of a subclass of the Dialect class or one of the
strings returned by the list_dialects() function. The other optional fmtparams keyword arguments can
be given to override individual formatting parameters in the current dialect. For full details about dialects and
formatting parameters, see the Dialects and Formatting Parameters section. To make it as easy as possible to
interface with modules which implement the DB API, the value None is written as the empty string. While
this isn’t a reversible transformation, it makes it easier to dump SQL NULL data values to CSV files without
preprocessing the data returned from a cursor.fetch* call. All other non-string data are stringified with
str() before being written.

A short usage example:

import csv

with open('eggs.csv', 'w', newline='') as csvfile:

spamwriter = csv.writer(csvfile, delimiter=' ',

quotechar='|', quoting=csv.QUOTE_MINIMAL)

spamwriter.writerow(['Spam'] * 5 + ['Baked Beans'])

spamwriter.writerow(['Spam', 'Lovely Spam', 'Wonderful Spam'])

csv.register_dialect(name[, dialect[, **fmtparams]])
Associate dialect with name. name must be a string. The dialect can be specified either by passing a sub-class
of Dialect, or by fmtparams keyword arguments, or both, with keyword arguments overriding parameters
of the dialect. For full details about dialects and formatting parameters, see section Dialects and Formatting
Parameters.

csv.unregister_dialect(name)

Delete the dialect associated with name from the dialect registry. An Error is raised if name is not a registered
dialect name.

csv.get_dialect(name)

Return the dialect associated with name. An Error is raised if name is not a registered dialect name. This
function returns an immutable Dialect.

csv.list_dialects()

Return the names of all registered dialects.

csv.field_size_limit([new_limit])
Returns the current maximum field size allowed by the parser. If new_limit is given, this becomes the new
limit.

The csv module defines the following classes:

606 Chapter 14. File Formats

The Python Library Reference, Release 3.13.1

class csv.DictReader(f, fieldnames=None, restkey=None, restval=None, dialect=’excel’, *args, **kwds)
Create an object that operates like a regular reader but maps the information in each row to a dict whose keys
are given by the optional fieldnames parameter.

The fieldnames parameter is a sequence. If fieldnames is omitted, the values in the first row of file f will be
used as the fieldnames and will be omitted from the results. If fieldnames is provided, they will be used and
the first row will be included in the results. Regardless of how the fieldnames are determined, the dictionary
preserves their original ordering.

If a row has more fields than fieldnames, the remaining data is put in a list and stored with the fieldname
specified by restkey (which defaults to None). If a non-blank row has fewer fields than fieldnames, the missing
values are filled-in with the value of restval (which defaults to None).

All other optional or keyword arguments are passed to the underlying reader instance.

If the argument passed to fieldnames is an iterator, it will be coerced to a list.

Changed in version 3.6: Returned rows are now of type OrderedDict.

Changed in version 3.8: Returned rows are now of type dict.

A short usage example:

>>> import csv

>>> with open('names.csv', newline='') as csvfile:

... reader = csv.DictReader(csvfile)

... for row in reader:

... print(row['first_name'], row['last_name'])

...

Eric Idle

John Cleese

>>> print(row)

{'first_name': 'John', 'last_name': 'Cleese'}

class csv.DictWriter(f, fieldnames, restval=” , extrasaction=’raise’, dialect=’excel’, *args, **kwds)
Create an object which operates like a regular writer but maps dictionaries onto output rows. The field-
names parameter is a sequence of keys that identify the order in which values in the dictionary passed to the
writerow() method are written to file f. The optional restval parameter specifies the value to be written if
the dictionary is missing a key in fieldnames. If the dictionary passed to the writerow() method contains
a key not found in fieldnames, the optional extrasaction parameter indicates what action to take. If it is set to
'raise', the default value, a ValueError is raised. If it is set to 'ignore', extra values in the dictionary
are ignored. Any other optional or keyword arguments are passed to the underlying writer instance.

Note that unlike the DictReader class, the fieldnames parameter of the DictWriter class is not optional.

If the argument passed to fieldnames is an iterator, it will be coerced to a list.

A short usage example:

import csv

with open('names.csv', 'w', newline='') as csvfile:

fieldnames = ['first_name', 'last_name']

writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

writer.writeheader()

writer.writerow({'first_name': 'Baked', 'last_name': 'Beans'})

writer.writerow({'first_name': 'Lovely', 'last_name': 'Spam'})

writer.writerow({'first_name': 'Wonderful', 'last_name': 'Spam'})

class csv.Dialect

The Dialect class is a container class whose attributes contain information for how to handle doublequotes,

14.1. csv— CSV File Reading and Writing 607

The Python Library Reference, Release 3.13.1

whitespace, delimiters, etc. Due to the lack of a strict CSV specification, different applications produce subtly
different CSV data. Dialect instances define how reader and writer instances behave.

All available Dialect names are returned by list_dialects(), and they can be registered with specific
reader and writer classes through their initializer (__init__) functions like this:

import csv

with open('students.csv', 'w', newline='') as csvfile:

writer = csv.writer(csvfile, dialect='unix')

class csv.excel

The excel class defines the usual properties of an Excel-generated CSV file. It is registered with the dialect
name 'excel'.

class csv.excel_tab

The excel_tab class defines the usual properties of an Excel-generated TAB-delimited file. It is registered
with the dialect name 'excel-tab'.

class csv.unix_dialect

The unix_dialect class defines the usual properties of a CSV file generated on UNIX systems, i.e. using
'\n' as line terminator and quoting all fields. It is registered with the dialect name 'unix'.

Added in version 3.2.

class csv.Sniffer

The Sniffer class is used to deduce the format of a CSV file.

The Sniffer class provides two methods:

sniff(sample, delimiters=None)
Analyze the given sample and return a Dialect subclass reflecting the parameters found. If the optional
delimiters parameter is given, it is interpreted as a string containing possible valid delimiter characters.

has_header(sample)
Analyze the sample text (presumed to be in CSV format) and return True if the first row appears to be a
series of column headers. Inspecting each column, one of two key criteria will be considered to estimate
if the sample contains a header:

• the second through n-th rows contain numeric values

• the second through n-th rows contain strings where at least one value’s length differs from that of the
putative header of that column.

Twenty rows after the first row are sampled; if more than half of columns + rows meet the criteria, True
is returned.

Note

This method is a rough heuristic and may produce both false positives and negatives.

An example for Sniffer use:

with open('example.csv', newline='') as csvfile:

dialect = csv.Sniffer().sniff(csvfile.read(1024))

csvfile.seek(0)

reader = csv.reader(csvfile, dialect)

... process CSV file contents here ...

The csv module defines the following constants:

608 Chapter 14. File Formats

The Python Library Reference, Release 3.13.1

csv.QUOTE_ALL

Instructs writer objects to quote all fields.

csv.QUOTE_MINIMAL

Instructs writer objects to only quote those fields which contain special characters such as delimiter, quotechar
or any of the characters in lineterminator.

csv.QUOTE_NONNUMERIC

Instructs writer objects to quote all non-numeric fields.

Instructs reader objects to convert all non-quoted fields to type float.

csv.QUOTE_NONE

Instructs writer objects to never quote fields. When the current delimiter occurs in output data it is preceded
by the current escapechar character. If escapechar is not set, the writer will raise Error if any characters that
require escaping are encountered.

Instructs reader objects to perform no special processing of quote characters.

csv.QUOTE_NOTNULL

Instructs writer objects to quote all fields which are not None. This is similar to QUOTE_ALL, except that if
a field value is None an empty (unquoted) string is written.

Instructs reader objects to interpret an empty (unquoted) field as None and to otherwise behave as
QUOTE_ALL.

Added in version 3.12.

csv.QUOTE_STRINGS

Instructs writer objects to always place quotes around fields which are strings. This is similar to
QUOTE_NONNUMERIC, except that if a field value is None an empty (unquoted) string is written.

Instructs reader objects to interpret an empty (unquoted) string as None and to otherwise behave as
QUOTE_NONNUMERIC.

Added in version 3.12.

The csv module defines the following exception:

exception csv.Error

Raised by any of the functions when an error is detected.

14.1.2 Dialects and Formatting Parameters

To make it easier to specify the format of input and output records, specific formatting parameters are grouped
together into dialects. A dialect is a subclass of the Dialect class containing various attributes describing the
format of the CSV file. When creating reader or writer objects, the programmer can specify a string or a subclass
of the Dialect class as the dialect parameter. In addition to, or instead of, the dialect parameter, the programmer
can also specify individual formatting parameters, which have the same names as the attributes defined below for the
Dialect class.

Dialects support the following attributes:

Dialect.delimiter

A one-character string used to separate fields. It defaults to ','.

Dialect.doublequote

Controls how instances of quotechar appearing inside a field should themselves be quoted. When True, the
character is doubled. When False, the escapechar is used as a prefix to the quotechar. It defaults to True.

On output, if doublequote is False and no escapechar is set, Error is raised if a quotechar is found in a field.

14.1. csv— CSV File Reading and Writing 609

The Python Library Reference, Release 3.13.1

Dialect.escapechar

A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and the
quotechar if doublequote is False. On reading, the escapechar removes any special meaning from the follow-
ing character. It defaults to None, which disables escaping.

Changed in version 3.11: An empty escapechar is not allowed.

Dialect.lineterminator

The string used to terminate lines produced by the writer. It defaults to '\r\n'.

Note

The reader is hard-coded to recognise either '\r' or '\n' as end-of-line, and ignores lineterminator.
This behavior may change in the future.

Dialect.quotechar

A one-character string used to quote fields containing special characters, such as the delimiter or quotechar, or
which contain new-line characters. It defaults to '"'.

Changed in version 3.11: An empty quotechar is not allowed.

Dialect.quoting

Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants and defaults to QUOTE_MINIMAL.

Dialect.skipinitialspace

When True, spaces immediately following the delimiter are ignored. The default is False.

Dialect.strict

When True, raise exception Error on bad CSV input. The default is False.

14.1.3 Reader Objects

Reader objects (DictReader instances and objects returned by the reader() function) have the following public
methods:

csvreader.__next__()

Return the next row of the reader’s iterable object as a list (if the object was returned from reader()) or a
dict (if it is a DictReader instance), parsed according to the current Dialect. Usually you should call this
as next(reader).

Reader objects have the following public attributes:

csvreader.dialect

A read-only description of the dialect in use by the parser.

csvreader.line_num

The number of lines read from the source iterator. This is not the same as the number of records returned, as
records can span multiple lines.

DictReader objects have the following public attribute:

DictReader.fieldnames

If not passed as a parameter when creating the object, this attribute is initialized upon first access or when the
first record is read from the file.

14.1.4 Writer Objects

writer objects (DictWriter instances and objects returned by the writer() function) have the following public
methods. A rowmust be an iterable of strings or numbers for writer objects and a dictionary mapping fieldnames to
strings or numbers (by passing them through str() first) for DictWriter objects. Note that complex numbers are

610 Chapter 14. File Formats

The Python Library Reference, Release 3.13.1

written out surrounded by parens. This may cause some problems for other programs which read CSV files (assuming
they support complex numbers at all).

csvwriter.writerow(row)
Write the row parameter to the writer’s file object, formatted according to the current Dialect. Return the
return value of the call to the write method of the underlying file object.

Changed in version 3.5: Added support of arbitrary iterables.

csvwriter.writerows(rows)

Write all elements in rows (an iterable of row objects as described above) to the writer’s file object, formatted
according to the current dialect.

Writer objects have the following public attribute:

csvwriter.dialect

A read-only description of the dialect in use by the writer.

DictWriter objects have the following public method:

DictWriter.writeheader()

Write a row with the field names (as specified in the constructor) to the writer’s file object, formatted according
to the current dialect. Return the return value of the csvwriter.writerow() call used internally.

Added in version 3.2.

Changed in version 3.8: writeheader() now also returns the value returned by the csvwriter.

writerow() method it uses internally.

14.1.5 Examples

The simplest example of reading a CSV file:

import csv

with open('some.csv', newline='') as f:

reader = csv.reader(f)

for row in reader:

print(row)

Reading a file with an alternate format:

import csv

with open('passwd', newline='') as f:

reader = csv.reader(f, delimiter=':', quoting=csv.QUOTE_NONE)

for row in reader:

print(row)

The corresponding simplest possible writing example is:

import csv

with open('some.csv', 'w', newline='') as f:

writer = csv.writer(f)

writer.writerows(someiterable)

Since open() is used to open a CSV file for reading, the file will by default be decoded into unicode using the system
default encoding (see locale.getencoding()). To decode a file using a different encoding, use the encoding
argument of open:

import csv

with open('some.csv', newline='', encoding='utf-8') as f:

reader = csv.reader(f)

(continues on next page)

14.1. csv— CSV File Reading and Writing 611

The Python Library Reference, Release 3.13.1

(continued from previous page)

for row in reader:

print(row)

The same applies to writing in something other than the system default encoding: specify the encoding argument
when opening the output file.

Registering a new dialect:

import csv

csv.register_dialect('unixpwd', delimiter=':', quoting=csv.QUOTE_NONE)

with open('passwd', newline='') as f:

reader = csv.reader(f, 'unixpwd')

A slightly more advanced use of the reader — catching and reporting errors:

import csv, sys

filename = 'some.csv'

with open(filename, newline='') as f:

reader = csv.reader(f)

try:

for row in reader:

print(row)

except csv.Error as e:

sys.exit('file {}, line {}: {}'.format(filename, reader.line_num, e))

And while the module doesn’t directly support parsing strings, it can easily be done:

import csv

for row in csv.reader(['one,two,three']):

print(row)

14.2 configparser— Configuration file parser

Source code: Lib/configparser.py

This module provides the ConfigParser class which implements a basic configuration language which provides a
structure similar to what’s found in Microsoft Windows INI files. You can use this to write Python programs which
can be customized by end users easily.

Note

This library does not interpret or write the value-type prefixes used in the Windows Registry extended version of
INI syntax.

See also

Module tomllib
TOML is a well-specified format for application configuration files. It is specifically designed to be an
improved version of INI.

Module shlex
Support for creating Unix shell-like mini-languages which can also be used for application configuration
files.

612 Chapter 14. File Formats

https://github.com/python/cpython/tree/3.13/Lib/configparser.py

The Python Library Reference, Release 3.13.1

Module json
The json module implements a subset of JavaScript syntax which is sometimes used for configuration,
but does not support comments.

14.2.1 Quick Start

Let’s take a very basic configuration file that looks like this:

[DEFAULT]

ServerAliveInterval = 45

Compression = yes

CompressionLevel = 9

ForwardX11 = yes

[forge.example]

User = hg

[topsecret.server.example]

Port = 50022

ForwardX11 = no

The structure of INI files is described in the following section. Essentially, the file consists of sections, each of which
contains keys with values. configparser classes can read and write such files. Let’s start by creating the above
configuration file programmatically.

>>> import configparser

>>> config = configparser.ConfigParser()

>>> config['DEFAULT'] = {'ServerAliveInterval': '45',

... 'Compression': 'yes',

... 'CompressionLevel': '9'}

>>> config['forge.example'] = {}

>>> config['forge.example']['User'] = 'hg'

>>> config['topsecret.server.example'] = {}

>>> topsecret = config['topsecret.server.example']

>>> topsecret['Port'] = '50022' # mutates the parser

>>> topsecret['ForwardX11'] = 'no' # same here

>>> config['DEFAULT']['ForwardX11'] = 'yes'

>>> with open('example.ini', 'w') as configfile:

... config.write(configfile)

...

As you can see, we can treat a config parser much like a dictionary. There are differences, outlined later, but the
behavior is very close to what you would expect from a dictionary.

Now that we have created and saved a configuration file, let’s read it back and explore the data it holds.

>>> config = configparser.ConfigParser()

>>> config.sections()

[]

>>> config.read('example.ini')

['example.ini']

>>> config.sections()

['forge.example', 'topsecret.server.example']

>>> 'forge.example' in config

True

>>> 'python.org' in config

False

(continues on next page)

14.2. configparser— Configuration file parser 613

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> config['forge.example']['User']

'hg'

>>> config['DEFAULT']['Compression']

'yes'

>>> topsecret = config['topsecret.server.example']

>>> topsecret['ForwardX11']

'no'

>>> topsecret['Port']

'50022'

>>> for key in config['forge.example']:

... print(key)

user

compressionlevel

serveraliveinterval

compression

forwardx11

>>> config['forge.example']['ForwardX11']

'yes'

As we can see above, the API is pretty straightforward. The only bit of magic involves the DEFAULT section which
provides default values for all other sections1. Note also that keys in sections are case-insensitive and stored in
lowercase1.

It is possible to read several configurations into a single ConfigParser, where the most recently added configuration
has the highest priority. Any conflicting keys are taken from the more recent configuration while the previously
existing keys are retained. The example below reads in an override.ini file, which will override any conflicting
keys from the example.ini file.

[DEFAULT]

ServerAliveInterval = -1

>>> config_override = configparser.ConfigParser()

>>> config_override['DEFAULT'] = {'ServerAliveInterval': '-1'}

>>> with open('override.ini', 'w') as configfile:

... config_override.write(configfile)

...

>>> config_override = configparser.ConfigParser()

>>> config_override.read(['example.ini', 'override.ini'])

['example.ini', 'override.ini']

>>> print(config_override.get('DEFAULT', 'ServerAliveInterval'))

-1

This behaviour is equivalent to a ConfigParser.read() call with several files passed to the filenames parameter.

14.2.2 Supported Datatypes

Config parsers do not guess datatypes of values in configuration files, always storing them internally as strings. This
means that if you need other datatypes, you should convert on your own:

>>> int(topsecret['Port'])

50022

>>> float(topsecret['CompressionLevel'])

9.0

Since this task is so common, config parsers provide a range of handy getter methods to handle integers, floats
and booleans. The last one is the most interesting because simply passing the value to bool() would do no

1 Config parsers allow for heavy customization. If you are interested in changing the behaviour outlined by the footnote reference, consult the
Customizing Parser Behaviour section.

614 Chapter 14. File Formats

The Python Library Reference, Release 3.13.1

good since bool('False') is still True. This is why config parsers also provide getboolean(). This
method is case-insensitive and recognizes Boolean values from 'yes'/'no', 'on'/'off', 'true'/'false' and
'1'/'0'Page 614, 1. For example:

>>> topsecret.getboolean('ForwardX11')

False

>>> config['forge.example'].getboolean('ForwardX11')

True

>>> config.getboolean('forge.example', 'Compression')

True

Apart from getboolean(), config parsers also provide equivalent getint() and getfloat()methods. You can
register your own converters and customize the provided ones.Page 614, 1

14.2.3 Fallback Values

As with a dictionary, you can use a section’s get() method to provide fallback values:

>>> topsecret.get('Port')

'50022'

>>> topsecret.get('CompressionLevel')

'9'

>>> topsecret.get('Cipher')

>>> topsecret.get('Cipher', '3des-cbc')

'3des-cbc'

Please note that default values have precedence over fallback values. For instance, in our example the
'CompressionLevel' key was specified only in the 'DEFAULT' section. If we try to get it from the section
'topsecret.server.example', we will always get the default, even if we specify a fallback:

>>> topsecret.get('CompressionLevel', '3')

'9'

One more thing to be aware of is that the parser-level get() method provides a custom, more complex interface,
maintained for backwards compatibility. When using this method, a fallback value can be provided via the fallback
keyword-only argument:

>>> config.get('forge.example', 'monster',

... fallback='No such things as monsters')

'No such things as monsters'

The same fallback argument can be used with the getint(), getfloat() and getboolean() methods, for
example:

>>> 'BatchMode' in topsecret

False

>>> topsecret.getboolean('BatchMode', fallback=True)

True

>>> config['DEFAULT']['BatchMode'] = 'no'

>>> topsecret.getboolean('BatchMode', fallback=True)

False

14.2.4 Supported INI File Structure

A configuration file consists of sections, each led by a [section] header, followed by key/value entries separated
by a specific string (= or : by defaultPage 614, 1). By default, section names are case sensitive but keys are notPage 614, 1.
Leading and trailing whitespace is removed from keys and values. Values can be omitted if the parser is configured
to allow itPage 614, 1, in which case the key/value delimiter may also be left out. Values can also span multiple lines,

14.2. configparser— Configuration file parser 615

The Python Library Reference, Release 3.13.1

as long as they are indented deeper than the first line of the value. Depending on the parser’s mode, blank lines may
be treated as parts of multiline values or ignored.

By default, a valid section name can be any string that does not contain ‘\n’. To change this, see ConfigParser.
SECTCRE.

The first section name may be omitted if the parser is configured to allow an unnamed top level section with
allow_unnamed_section=True. In this case, the keys/values may be retrieved by UNNAMED_SECTION as in
config[UNNAMED_SECTION].

Configuration files may include comments, prefixed by specific characters (# and ; by defaultPage 614, 1). Comments
may appear on their own on an otherwise empty line, possibly indented.Page 614, 1

For example:

[Simple Values]

key=value

spaces in keys=allowed

spaces in values=allowed as well

spaces around the delimiter = obviously

you can also use : to delimit keys from values

[All Values Are Strings]

values like this: 1000000

or this: 3.14159265359

are they treated as numbers? : no

integers, floats and booleans are held as: strings

can use the API to get converted values directly: true

[Multiline Values]

chorus: I'm a lumberjack, and I'm okay

I sleep all night and I work all day

[No Values]

key_without_value

empty string value here =

[You can use comments]

like this

; or this

By default only in an empty line.

Inline comments can be harmful because they prevent users

from using the delimiting characters as parts of values.

That being said, this can be customized.

[Sections Can Be Indented]

can_values_be_as_well = True

does_that_mean_anything_special = False

purpose = formatting for readability

multiline_values = are

handled just fine as

long as they are indented

deeper than the first line

of a value

Did I mention we can indent comments, too?

616 Chapter 14. File Formats

The Python Library Reference, Release 3.13.1

14.2.5 Unnamed Sections

The name of the first section (or unique) may be omitted and values retrieved by the UNNAMED_SECTION attribute.

>>> config = """

... option = value

...

... [Section 2]

... another = val

... """

>>> unnamed = configparser.ConfigParser(allow_unnamed_section=True)

>>> unnamed.read_string(config)

>>> unnamed.get(configparser.UNNAMED_SECTION, 'option')

'value'

14.2.6 Interpolation of values

On top of the core functionality, ConfigParser supports interpolation. This means values can be preprocessed
before returning them from get() calls.

class configparser.BasicInterpolation

The default implementation used by ConfigParser. It enables values to contain format strings which refer
to other values in the same section, or values in the special default sectionPage 614, 1. Additional default values
can be provided on initialization.

For example:

[Paths]

home_dir: /Users

my_dir: %(home_dir)s/lumberjack

my_pictures: %(my_dir)s/Pictures

[Escape]

use a %% to escape the % sign (% is the only character that needs to be␣

↪→escaped):

gain: 80%%

In the example above, ConfigParser with interpolation set to BasicInterpolation() would resolve
%(home_dir)s to the value of home_dir (/Users in this case). %(my_dir)s in effect would resolve to
/Users/lumberjack. All interpolations are done on demand so keys used in the chain of references do not
have to be specified in any specific order in the configuration file.

With interpolation set to None, the parser would simply return %(my_dir)s/Pictures as the value of
my_pictures and %(home_dir)s/lumberjack as the value of my_dir.

class configparser.ExtendedInterpolation

An alternative handler for interpolation which implements a more advanced syntax, used for instance in zc.
buildout. Extended interpolation is using ${section:option} to denote a value from a foreign section.
Interpolation can spanmultiple levels. For convenience, if the section: part is omitted, interpolation defaults
to the current section (and possibly the default values from the special section).

For example, the configuration specified above with basic interpolation, would look like this with extended
interpolation:

[Paths]

home_dir: /Users

my_dir: ${home_dir}/lumberjack

my_pictures: ${my_dir}/Pictures

[Escape]

(continues on next page)

14.2. configparser— Configuration file parser 617

The Python Library Reference, Release 3.13.1

(continued from previous page)

use a $$ to escape the $ sign ($ is the only character that needs to be␣

↪→escaped):

cost: $$80

Values from other sections can be fetched as well:

[Common]

home_dir: /Users

library_dir: /Library

system_dir: /System

macports_dir: /opt/local

[Frameworks]

Python: 3.2

path: ${Common:system_dir}/Library/Frameworks/

[Arthur]

nickname: Two Sheds

last_name: Jackson

my_dir: ${Common:home_dir}/twosheds

my_pictures: ${my_dir}/Pictures

python_dir: ${Frameworks:path}/Python/Versions/${Frameworks:Python}

14.2.7 Mapping Protocol Access

Added in version 3.2.

Mapping protocol access is a generic name for functionality that enables using custom objects as if
they were dictionaries. In case of configparser, the mapping interface implementation is using the
parser['section']['option'] notation.

parser['section'] in particular returns a proxy for the section’s data in the parser. This means that the values
are not copied but they are taken from the original parser on demand. What’s even more important is that when
values are changed on a section proxy, they are actually mutated in the original parser.

configparser objects behave as close to actual dictionaries as possible. The mapping interface is complete and
adheres to the MutableMapping ABC. However, there are a few differences that should be taken into account:

• By default, all keys in sections are accessible in a case-insensitive mannerPage 614, 1. E.g. for option in

parser["section"] yields only optionxform’ed option key names. This means lowercased keys by de-
fault. At the same time, for a section that holds the key 'a', both expressions return True:

"a" in parser["section"]

"A" in parser["section"]

• All sections include DEFAULTSECT values as well which means that .clear() on a section may not leave the
section visibly empty. This is because default values cannot be deleted from the section (because technically
they are not there). If they are overridden in the section, deleting causes the default value to be visible again.
Trying to delete a default value causes a KeyError.

• DEFAULTSECT cannot be removed from the parser:

– trying to delete it raises ValueError,

– parser.clear() leaves it intact,

– parser.popitem() never returns it.

• parser.get(section, option, **kwargs) - the second argument is not a fallback value. Note how-
ever that the section-level get() methods are compatible both with the mapping protocol and the classic
configparser API.

618 Chapter 14. File Formats

The Python Library Reference, Release 3.13.1

• parser.items() is compatible with the mapping protocol (returns a list of section_name, section_proxy
pairs including the DEFAULTSECT). However, this method can also be invoked with arguments: parser.
items(section, raw, vars). The latter call returns a list of option, value pairs for a specified section,
with all interpolations expanded (unless raw=True is provided).

The mapping protocol is implemented on top of the existing legacy API so that subclasses overriding the original
interface still should have mappings working as expected.

14.2.8 Customizing Parser Behaviour

There are nearly as many INI format variants as there are applications using it. configparser goes a long way
to provide support for the largest sensible set of INI styles available. The default functionality is mainly dictated by
historical background and it’s very likely that you will want to customize some of the features.

The most common way to change the way a specific config parser works is to use the __init__() options:

• defaults, default value: None

This option accepts a dictionary of key-value pairs which will be initially put in the DEFAULT section. This
makes for an elegant way to support concise configuration files that don’t specify values which are the same as
the documented default.

Hint: if you want to specify default values for a specific section, use read_dict() before you read the actual
file.

• dict_type, default value: dict

This option has a major impact on how the mapping protocol will behave and how the written configuration
files look. With the standard dictionary, every section is stored in the order they were added to the parser.
Same goes for options within sections.

An alternative dictionary type can be used for example to sort sections and options on write-back.

Please note: there are ways to add a set of key-value pairs in a single operation. When you use a regular
dictionary in those operations, the order of the keys will be ordered. For example:

>>> parser = configparser.ConfigParser()

>>> parser.read_dict({'section1': {'key1': 'value1',

... 'key2': 'value2',

... 'key3': 'value3'},

... 'section2': {'keyA': 'valueA',

... 'keyB': 'valueB',

... 'keyC': 'valueC'},

... 'section3': {'foo': 'x',

... 'bar': 'y',

... 'baz': 'z'}

... })

>>> parser.sections()

['section1', 'section2', 'section3']

>>> [option for option in parser['section3']]

['foo', 'bar', 'baz']

• allow_no_value, default value: False

Some configuration files are known to include settings without values, but which otherwise conform to the
syntax supported by configparser. The allow_no_value parameter to the constructor can be used to indicate
that such values should be accepted:

>>> import configparser

>>> sample_config = """

... [mysqld]

... user = mysql

(continues on next page)

14.2. configparser— Configuration file parser 619

The Python Library Reference, Release 3.13.1

(continued from previous page)

... pid-file = /var/run/mysqld/mysqld.pid

... skip-external-locking

... old_passwords = 1

... skip-bdb

... # we don't need ACID today

... skip-innodb

... """

>>> config = configparser.ConfigParser(allow_no_value=True)

>>> config.read_string(sample_config)

>>> # Settings with values are treated as before:

>>> config["mysqld"]["user"]

'mysql'

>>> # Settings without values provide None:

>>> config["mysqld"]["skip-bdb"]

>>> # Settings which aren't specified still raise an error:

>>> config["mysqld"]["does-not-exist"]

Traceback (most recent call last):

...

KeyError: 'does-not-exist'

• delimiters, default value: ('=', ':')

Delimiters are substrings that delimit keys from values within a section. The first occurrence of a delimiting
substring on a line is considered a delimiter. This means values (but not keys) can contain the delimiters.

See also the space_around_delimiters argument to ConfigParser.write().

• comment_prefixes, default value: ('#', ';')

• inline_comment_prefixes, default value: None

Comment prefixes are strings that indicate the start of a valid comment within a config file. comment_prefixes
are used only on otherwise empty lines (optionally indented) whereas inline_comment_prefixes can be used
after every valid value (e.g. section names, options and empty lines as well). By default inline comments are
disabled and '#' and ';' are used as prefixes for whole line comments.

Changed in version 3.2: In previous versions of configparser behaviour matched
comment_prefixes=('#',';') and inline_comment_prefixes=(';',).

Please note that config parsers don’t support escaping of comment prefixes so using inline_comment_prefixes
may prevent users from specifying option values with characters used as comment prefixes. When in doubt,
avoid setting inline_comment_prefixes. In any circumstances, the only way of storing comment prefix characters
at the beginning of a line in multiline values is to interpolate the prefix, for example:

>>> from configparser import ConfigParser, ExtendedInterpolation

>>> parser = ConfigParser(interpolation=ExtendedInterpolation())

>>> # the default BasicInterpolation could be used as well

>>> parser.read_string("""

... [DEFAULT]

... hash = #

...

... [hashes]

... shebang =

... ${hash}!/usr/bin/env python

... ${hash} -*- coding: utf-8 -*-

...

... extensions =

(continues on next page)

620 Chapter 14. File Formats

The Python Library Reference, Release 3.13.1

(continued from previous page)

... enabled_extension

... another_extension

... #disabled_by_comment

... yet_another_extension

...

... interpolation not necessary = if # is not at line start

... even in multiline values = line #1

... line #2

... line #3

... """)

>>> print(parser['hashes']['shebang'])

#!/usr/bin/env python

-*- coding: utf-8 -*-

>>> print(parser['hashes']['extensions'])

enabled_extension

another_extension

yet_another_extension

>>> print(parser['hashes']['interpolation not necessary'])

if # is not at line start

>>> print(parser['hashes']['even in multiline values'])

line #1

line #2

line #3

• strict, default value: True

When set to True, the parser will not allow for any section or option duplicates while reading from a single
source (using read_file(), read_string() or read_dict()). It is recommended to use strict parsers
in new applications.

Changed in version 3.2: In previous versions of configparser behaviour matched strict=False.

• empty_lines_in_values, default value: True

In config parsers, values can span multiple lines as long as they are indented more than the key that holds them.
By default parsers also let empty lines to be parts of values. At the same time, keys can be arbitrarily indented
themselves to improve readability. In consequence, when configuration files get big and complex, it is easy for
the user to lose track of the file structure. Take for instance:

[Section]

key = multiline

value with a gotcha

this = is still a part of the multiline value of 'key'

This can be especially problematic for the user to see if she’s using a proportional font to edit the file. That is
why when your application does not need values with empty lines, you should consider disallowing them. This
will make empty lines split keys every time. In the example above, it would produce two keys, key and this.

• default_section, default value: configparser.DEFAULTSECT (that is: "DEFAULT")

The convention of allowing a special section of default values for other sections or interpolation purposes
is a powerful concept of this library, letting users create complex declarative configurations. This section is
normally called "DEFAULT" but this can be customized to point to any other valid section name. Some typical
values include: "general" or "common". The name provided is used for recognizing default sections when
reading from any source and is used when writing configuration back to a file. Its current value can be retrieved
using the parser_instance.default_section attribute and may be modified at runtime (i.e. to convert
files from one format to another).

14.2. configparser— Configuration file parser 621

The Python Library Reference, Release 3.13.1

• interpolation, default value: configparser.BasicInterpolation

Interpolation behaviour may be customized by providing a custom handler through the interpolation argu-
ment. None can be used to turn off interpolation completely, ExtendedInterpolation() provides a more
advanced variant inspired by zc.buildout. More on the subject in the dedicated documentation section.
RawConfigParser has a default value of None.

• converters, default value: not set

Config parsers provide option value getters that perform type conversion. By default getint(),
getfloat(), and getboolean() are implemented. Should other getters be desirable, users may de-
fine them in a subclass or pass a dictionary where each key is a name of the converter and each value
is a callable implementing said conversion. For instance, passing {'decimal': decimal.Decimal}

would add getdecimal() on both the parser object and all section proxies. In other words, it will
be possible to write both parser_instance.getdecimal('section', 'key', fallback=0) and
parser_instance['section'].getdecimal('key', 0).

If the converter needs to access the state of the parser, it can be implemented as a method on a config parser
subclass. If the name of this method starts with get, it will be available on all section proxies, in the dict-
compatible form (see the getdecimal() example above).

More advanced customization may be achieved by overriding default values of these parser attributes. The defaults
are defined on the classes, so they may be overridden by subclasses or by attribute assignment.

ConfigParser.BOOLEAN_STATES

By default when using getboolean(), config parsers consider the following values True: '1', 'yes',
'true', 'on' and the following values False: '0', 'no', 'false', 'off'. You can override this by
specifying a custom dictionary of strings and their Boolean outcomes. For example:

>>> custom = configparser.ConfigParser()

>>> custom['section1'] = {'funky': 'nope'}

>>> custom['section1'].getboolean('funky')

Traceback (most recent call last):

...

ValueError: Not a boolean: nope

>>> custom.BOOLEAN_STATES = {'sure': True, 'nope': False}

>>> custom['section1'].getboolean('funky')

False

Other typical Boolean pairs include accept/reject or enabled/disabled.

ConfigParser.optionxform(option)
This method transforms option names on every read, get, or set operation. The default converts the name to
lowercase. This also means that when a configuration file gets written, all keys will be lowercase. Override this
method if that’s unsuitable. For example:

>>> config = """

... [Section1]

... Key = Value

...

... [Section2]

... AnotherKey = Value

... """

>>> typical = configparser.ConfigParser()

>>> typical.read_string(config)

>>> list(typical['Section1'].keys())

['key']

>>> list(typical['Section2'].keys())

['anotherkey']

>>> custom = configparser.RawConfigParser()

>>> custom.optionxform = lambda option: option

(continues on next page)

622 Chapter 14. File Formats

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> custom.read_string(config)

>>> list(custom['Section1'].keys())

['Key']

>>> list(custom['Section2'].keys())

['AnotherKey']

Note

The optionxform function transforms option names to a canonical form. This should be an idempotent
function: if the name is already in canonical form, it should be returned unchanged.

ConfigParser.SECTCRE

A compiled regular expression used to parse section headers. The default matches [section] to the name
"section". Whitespace is considered part of the section name, thus [larch] will be read as a section of
name " larch ". Override this attribute if that’s unsuitable. For example:

>>> import re

>>> config = """

... [Section 1]

... option = value

...

... [Section 2]

... another = val

... """

>>> typical = configparser.ConfigParser()

>>> typical.read_string(config)

>>> typical.sections()

['Section 1', ' Section 2 ']

>>> custom = configparser.ConfigParser()

>>> custom.SECTCRE = re.compile(r"\[*(?P<header>[^]]+?) *\]")

>>> custom.read_string(config)

>>> custom.sections()

['Section 1', 'Section 2']

Note

While ConfigParser objects also use an OPTCRE attribute for recognizing option lines, it’s not recommended
to override it because that would interfere with constructor options allow_no_value and delimiters.

14.2.9 Legacy API Examples

Mainly because of backwards compatibility concerns, configparser provides also a legacy API with explicit
get/set methods. While there are valid use cases for the methods outlined below, mapping protocol access is
preferred for new projects. The legacy API is at times more advanced, low-level and downright counterintuitive.

An example of writing to a configuration file:

import configparser

config = configparser.RawConfigParser()

Please note that using RawConfigParser's set functions, you can assign

non-string values to keys internally, but will receive an error when

attempting to write to a file or when you get it in non-raw mode. Setting

(continues on next page)

14.2. configparser— Configuration file parser 623

The Python Library Reference, Release 3.13.1

(continued from previous page)

values using the mapping protocol or ConfigParser's set() does not allow

such assignments to take place.

config.add_section('Section1')

config.set('Section1', 'an_int', '15')

config.set('Section1', 'a_bool', 'true')

config.set('Section1', 'a_float', '3.1415')

config.set('Section1', 'baz', 'fun')

config.set('Section1', 'bar', 'Python')

config.set('Section1', 'foo', '%(bar)s is %(baz)s!')

Writing our configuration file to 'example.cfg'

with open('example.cfg', 'w') as configfile:

config.write(configfile)

An example of reading the configuration file again:

import configparser

config = configparser.RawConfigParser()

config.read('example.cfg')

getfloat() raises an exception if the value is not a float

getint() and getboolean() also do this for their respective types

a_float = config.getfloat('Section1', 'a_float')

an_int = config.getint('Section1', 'an_int')

print(a_float + an_int)

Notice that the next output does not interpolate '%(bar)s' or '%(baz)s'.

This is because we are using a RawConfigParser().

if config.getboolean('Section1', 'a_bool'):

print(config.get('Section1', 'foo'))

To get interpolation, use ConfigParser:

import configparser

cfg = configparser.ConfigParser()

cfg.read('example.cfg')

Set the optional *raw* argument of get() to True if you wish to disable

interpolation in a single get operation.

print(cfg.get('Section1', 'foo', raw=False)) # -> "Python is fun!"

print(cfg.get('Section1', 'foo', raw=True)) # -> "%(bar)s is %(baz)s!"

The optional *vars* argument is a dict with members that will take

precedence in interpolation.

print(cfg.get('Section1', 'foo', vars={'bar': 'Documentation',

'baz': 'evil'}))

The optional *fallback* argument can be used to provide a fallback value

print(cfg.get('Section1', 'foo'))

-> "Python is fun!"

print(cfg.get('Section1', 'foo', fallback='Monty is not.'))

-> "Python is fun!"

print(cfg.get('Section1', 'monster', fallback='No such things as monsters.'))
(continues on next page)

624 Chapter 14. File Formats

The Python Library Reference, Release 3.13.1

(continued from previous page)

-> "No such things as monsters."

A bare print(cfg.get('Section1', 'monster')) would raise NoOptionError

but we can also use:

print(cfg.get('Section1', 'monster', fallback=None))

-> None

Default values are available in both types of ConfigParsers. They are used in interpolation if an option used is not
defined elsewhere.

import configparser

New instance with 'bar' and 'baz' defaulting to 'Life' and 'hard' each

config = configparser.ConfigParser({'bar': 'Life', 'baz': 'hard'})

config.read('example.cfg')

print(config.get('Section1', 'foo')) # -> "Python is fun!"

config.remove_option('Section1', 'bar')

config.remove_option('Section1', 'baz')

print(config.get('Section1', 'foo')) # -> "Life is hard!"

14.2.10 ConfigParser Objects

class configparser.ConfigParser(defaults=None, dict_type=dict, allow_no_value=False, *,
delimiters=(’=’, ’:’), comment_prefixes=(’#’, ’;’),
inline_comment_prefixes=None, strict=True,
empty_lines_in_values=True,
default_section=configparser.DEFAULTSECT ,
interpolation=BasicInterpolation(), converters={},
allow_unnamed_section=False)

The main configuration parser. When defaults is given, it is initialized into the dictionary of intrinsic defaults.
When dict_type is given, it will be used to create the dictionary objects for the list of sections, for the options
within a section, and for the default values.

When delimiters is given, it is used as the set of substrings that divide keys from values. When comment_prefixes
is given, it will be used as the set of substrings that prefix comments in otherwise empty lines. Comments can be
indented. When inline_comment_prefixes is given, it will be used as the set of substrings that prefix comments
in non-empty lines.

When strict is True (the default), the parser won’t allow for any section or option duplicates while reading from
a single source (file, string or dictionary), raising DuplicateSectionError or DuplicateOptionError.
When empty_lines_in_values is False (default: True), each empty linemarks the end of an option. Otherwise,
internal empty lines of a multiline option are kept as part of the value. When allow_no_value is True (default:
False), options without values are accepted; the value held for these is None and they are serialized without
the trailing delimiter.

When default_section is given, it specifies the name for the special section holding default values for other
sections and interpolation purposes (normally named "DEFAULT"). This value can be retrieved and changed
at runtime using the default_section instance attribute. This won’t re-evaluate an already parsed config
file, but will be used when writing parsed settings to a new config file.

Interpolation behaviour may be customized by providing a custom handler through the interpolation argu-
ment. None can be used to turn off interpolation completely, ExtendedInterpolation() provides a more
advanced variant inspired by zc.buildout. More on the subject in the dedicated documentation section.

All option names used in interpolation will be passed through the optionxform()method just like any other
option name reference. For example, using the default implementation of optionxform() (which converts
option names to lower case), the values foo %(bar)s and foo %(BAR)s are equivalent.

14.2. configparser— Configuration file parser 625

The Python Library Reference, Release 3.13.1

When converters is given, it should be a dictionary where each key represents the name of a type converter and
each value is a callable implementing the conversion from string to the desired datatype. Every converter gets
its own corresponding get*() method on the parser object and section proxies.

When allow_unnamed_section is True (default: False), the first section name can be omitted. See the “Un-
named Sections” section.

It is possible to read several configurations into a single ConfigParser, where the most recently added con-
figuration has the highest priority. Any conflicting keys are taken from the more recent configuration while the
previously existing keys are retained. The example below reads in an override.ini file, which will override
any conflicting keys from the example.ini file.

[DEFAULT]

ServerAliveInterval = -1

>>> config_override = configparser.ConfigParser()

>>> config_override['DEFAULT'] = {'ServerAliveInterval': '-1'}

>>> with open('override.ini', 'w') as configfile:

... config_override.write(configfile)

...

>>> config_override = configparser.ConfigParser()

>>> config_override.read(['example.ini', 'override.ini'])

['example.ini', 'override.ini']

>>> print(config_override.get('DEFAULT', 'ServerAliveInterval'))

-1

Changed in version 3.1: The default dict_type is collections.OrderedDict.

Changed in version 3.2: allow_no_value, delimiters, comment_prefixes, strict, empty_lines_in_values, de-
fault_section and interpolation were added.

Changed in version 3.5: The converters argument was added.

Changed in version 3.7: The defaults argument is read with read_dict(), providing consistent behavior
across the parser: non-string keys and values are implicitly converted to strings.

Changed in version 3.8: The default dict_type is dict, since it now preserves insertion order.

Changed in version 3.13: Raise a MultilineContinuationError when allow_no_value is True, and a
key without a value is continued with an indented line.

Changed in version 3.13: The allow_unnamed_section argument was added.

defaults()

Return a dictionary containing the instance-wide defaults.

sections()

Return a list of the sections available; the default section is not included in the list.

add_section(section)

Add a section named section to the instance. If a section by the given name already exists,
DuplicateSectionError is raised. If the default section name is passed, ValueError is raised.
The name of the section must be a string; if not, TypeError is raised.

Changed in version 3.2: Non-string section names raise TypeError.

has_section(section)
Indicates whether the named section is present in the configuration. The default section is not acknowl-
edged.

options(section)

Return a list of options available in the specified section.

626 Chapter 14. File Formats

The Python Library Reference, Release 3.13.1

has_option(section, option)
If the given section exists, and contains the given option, return True; otherwise return False. If the
specified section is None or an empty string, DEFAULT is assumed.

read(filenames, encoding=None)
Attempt to read and parse an iterable of filenames, returning a list of filenames which were successfully
parsed.

If filenames is a string, a bytes object or a path-like object, it is treated as a single filename. If a file
named in filenames cannot be opened, that file will be ignored. This is designed so that you can specify
an iterable of potential configuration file locations (for example, the current directory, the user’s home
directory, and some system-wide directory), and all existing configuration files in the iterable will be read.

If none of the named files exist, the ConfigParser instance will contain an empty dataset. An appli-
cation which requires initial values to be loaded from a file should load the required file or files using
read_file() before calling read() for any optional files:

import configparser, os

config = configparser.ConfigParser()

config.read_file(open('defaults.cfg'))

config.read(['site.cfg', os.path.expanduser('~/.myapp.cfg')],

encoding='cp1250')

Changed in version 3.2: Added the encoding parameter. Previously, all files were read using the default
encoding for open().

Changed in version 3.6.1: The filenames parameter accepts a path-like object.

Changed in version 3.7: The filenames parameter accepts a bytes object.

read_file(f, source=None)
Read and parse configuration data from f whichmust be an iterable yielding Unicode strings (for example
files opened in text mode).

Optional argument source specifies the name of the file being read. If not given and f has a name attribute,
that is used for source; the default is '<???>'.

Added in version 3.2: Replaces readfp().

read_string(string, source=’<string>’)
Parse configuration data from a string.

Optional argument source specifies a context-specific name of the string passed. If not given,
'<string>' is used. This should commonly be a filesystem path or a URL.

Added in version 3.2.

read_dict(dictionary, source=’<dict>’)
Load configuration from any object that provides a dict-like items() method. Keys are section names,
values are dictionaries with keys and values that should be present in the section. If the used dictionary
type preserves order, sections and their keys will be added in order. Values are automatically converted
to strings.

Optional argument source specifies a context-specific name of the dictionary passed. If not given, <dict>
is used.

This method can be used to copy state between parsers.

Added in version 3.2.

get(section, option, *, raw=False, vars=None[, fallback])
Get an option value for the named section. If vars is provided, it must be a dictionary. The option is
looked up in vars (if provided), section, and in DEFAULTSECT in that order. If the key is not found and
fallback is provided, it is used as a fallback value. None can be provided as a fallback value.

14.2. configparser— Configuration file parser 627

The Python Library Reference, Release 3.13.1

All the '%' interpolations are expanded in the return values, unless the raw argument is true. Values for
interpolation keys are looked up in the same manner as the option.

Changed in version 3.2: Arguments raw, vars and fallback are keyword only to protect users from trying
to use the third argument as the fallback fallback (especially when using the mapping protocol).

getint(section, option, *, raw=False, vars=None[, fallback])
A convenience method which coerces the option in the specified section to an integer. See get() for
explanation of raw, vars and fallback.

getfloat(section, option, *, raw=False, vars=None[, fallback])
A convenience method which coerces the option in the specified section to a floating-point number. See
get() for explanation of raw, vars and fallback.

getboolean(section, option, *, raw=False, vars=None[, fallback])
A convenience method which coerces the option in the specified section to a Boolean value. Note that the
accepted values for the option are '1', 'yes', 'true', and 'on', which cause this method to return
True, and '0', 'no', 'false', and 'off', which cause it to return False. These string values are
checked in a case-insensitive manner. Any other value will cause it to raise ValueError. See get()
for explanation of raw, vars and fallback.

items(raw=False, vars=None)
items(section, raw=False, vars=None)

When section is not given, return a list of section_name, section_proxy pairs, including DEFAULTSECT.

Otherwise, return a list of name, value pairs for the options in the given section. Optional arguments have
the same meaning as for the get() method.

Changed in version 3.8: Items present in vars no longer appear in the result. The previous behaviour
mixed actual parser options with variables provided for interpolation.

set(section, option, value)
If the given section exists, set the given option to the specified value; otherwise raise NoSectionError.
option and value must be strings; if not, TypeError is raised.

write(fileobject, space_around_delimiters=True)
Write a representation of the configuration to the specified file object, which must be opened in
text mode (accepting strings). This representation can be parsed by a future read() call. If
space_around_delimiters is true, delimiters between keys and values are surrounded by spaces.

Note

Comments in the original configuration file are not preserved when writing the configuration back. What
is considered a comment, depends on the given values for comment_prefix and inline_comment_prefix.

remove_option(section, option)
Remove the specified option from the specified section. If the section does not exist, raise
NoSectionError. If the option existed to be removed, return True; otherwise return False.

remove_section(section)

Remove the specified section from the configuration. If the section in fact existed, return True. Otherwise
return False.

optionxform(option)
Transforms the option name option as found in an input file or as passed in by client code to the form
that should be used in the internal structures. The default implementation returns a lower-case version of
option; subclasses may override this or client code can set an attribute of this name on instances to affect
this behavior.

628 Chapter 14. File Formats

The Python Library Reference, Release 3.13.1

You don’t need to subclass the parser to use this method, you can also set it on an instance, to a function
that takes a string argument and returns a string. Setting it to str, for example, would make option names
case sensitive:

cfgparser = ConfigParser()

cfgparser.optionxform = str

Note that when reading configuration files, whitespace around the option names is stripped before
optionxform() is called.

configparser.UNNAMED_SECTION

A special object representing a section name used to reference the unnamed section (see Unnamed Sections).

configparser.MAX_INTERPOLATION_DEPTH

The maximum depth for recursive interpolation for get() when the raw parameter is false. This is relevant
only when the default interpolation is used.

14.2.11 RawConfigParser Objects

class configparser.RawConfigParser(defaults=None, dict_type=dict, allow_no_value=False, *,
delimiters=(’=’, ’:’), comment_prefixes=(’#’, ’;’),
inline_comment_prefixes=None, strict=True,
empty_lines_in_values=True,
default_section=configparser.DEFAULTSECT ,
interpolation=BasicInterpolation(), converters={},
allow_unnamed_section=False)

Legacy variant of the ConfigParser. It has interpolation disabled by default and allows for non-string sec-
tion names, option names, and values via its unsafe add_section and set methods, as well as the legacy
defaults= keyword argument handling.

Changed in version 3.2: allow_no_value, delimiters, comment_prefixes, strict, empty_lines_in_values, de-
fault_section and interpolation were added.

Changed in version 3.5: The converters argument was added.

Changed in version 3.8: The default dict_type is dict, since it now preserves insertion order.

Changed in version 3.13: The allow_unnamed_section argument was added.

Note

Consider using ConfigParser instead which checks types of the values to be stored internally. If you
don’t want interpolation, you can use ConfigParser(interpolation=None).

add_section(section)
Add a section named section to the instance. If a section by the given name already exists,
DuplicateSectionError is raised. If the default section name is passed, ValueError is raised.

Type of section is not checked which lets users create non-string named sections. This behaviour is
unsupported and may cause internal errors.

set(section, option, value)
If the given section exists, set the given option to the specified value; otherwise raise NoSectionError.
While it is possible to use RawConfigParser (or ConfigParser with raw parameters set to true) for
internal storage of non-string values, full functionality (including interpolation and output to files) can
only be achieved using string values.

This method lets users assign non-string values to keys internally. This behaviour is unsupported and will
cause errors when attempting to write to a file or get it in non-raw mode. Use the mapping protocol
API which does not allow such assignments to take place.

14.2. configparser— Configuration file parser 629

The Python Library Reference, Release 3.13.1

14.2.12 Exceptions

exception configparser.Error

Base class for all other configparser exceptions.

exception configparser.NoSectionError

Exception raised when a specified section is not found.

exception configparser.DuplicateSectionError

Exception raised if add_section() is called with the name of a section that is already present or in strict
parsers when a section if found more than once in a single input file, string or dictionary.

Changed in version 3.2: Added the optional source and lineno attributes and parameters to __init__().

exception configparser.DuplicateOptionError

Exception raised by strict parsers if a single option appears twice during reading from a single file, string or
dictionary. This catches misspellings and case sensitivity-related errors, e.g. a dictionary may have two keys
representing the same case-insensitive configuration key.

exception configparser.NoOptionError

Exception raised when a specified option is not found in the specified section.

exception configparser.InterpolationError

Base class for exceptions raised when problems occur performing string interpolation.

exception configparser.InterpolationDepthError

Exception raised when string interpolation cannot be completed because the number of iterations exceeds
MAX_INTERPOLATION_DEPTH. Subclass of InterpolationError.

exception configparser.InterpolationMissingOptionError

Exception raised when an option referenced from a value does not exist. Subclass of InterpolationError.

exception configparser.InterpolationSyntaxError

Exception raised when the source text into which substitutions are made does not conform to the required
syntax. Subclass of InterpolationError.

exception configparser.MissingSectionHeaderError

Exception raised when attempting to parse a file which has no section headers.

exception configparser.ParsingError

Exception raised when errors occur attempting to parse a file.

Changed in version 3.12: The filename attribute and __init__() constructor argument were removed.
They have been available using the name source since 3.2.

exception configparser.MultilineContinuationError

Exception raised when a key without a corresponding value is continued with an indented line.

Added in version 3.13.

14.3 tomllib— Parse TOML files

Added in version 3.11.

Source code: Lib/tomllib

This module provides an interface for parsing TOML 1.0.0 (Tom’s ObviousMinimal Language, https://toml.io). This
module does not support writing TOML.

630 Chapter 14. File Formats

https://github.com/python/cpython/tree/3.13/Lib/tomllib
https://toml.io/en/

The Python Library Reference, Release 3.13.1

See also

The Tomli-W package is a TOML writer that can be used in conjunction with this module, providing a write API
familiar to users of the standard library marshal and pickle modules.

See also

The TOML Kit package is a style-preserving TOML library with both read and write capability. It is a recom-
mended replacement for this module for editing already existing TOML files.

This module defines the following functions:

tomllib.load(fp, / , *, parse_float=float)
Read a TOML file. The first argument should be a readable and binary file object. Return a dict. Convert
TOML types to Python using this conversion table.

parse_float will be called with the string of every TOML float to be decoded. By default, this is equivalent
to float(num_str). This can be used to use another datatype or parser for TOML floats (e.g. decimal.
Decimal). The callable must not return a dict or a list, else a ValueError is raised.

A TOMLDecodeError will be raised on an invalid TOML document.

tomllib.loads(s, / , *, parse_float=float)
Load TOML from a str object. Return a dict. Convert TOML types to Python using this conversion table.
The parse_float argument has the same meaning as in load().

A TOMLDecodeError will be raised on an invalid TOML document.

The following exceptions are available:

exception tomllib.TOMLDecodeError

Subclass of ValueError.

14.3.1 Examples

Parsing a TOML file:

import tomllib

with open("pyproject.toml", "rb") as f:

data = tomllib.load(f)

Parsing a TOML string:

import tomllib

toml_str = """

python-version = "3.11.0"

python-implementation = "CPython"

"""

data = tomllib.loads(toml_str)

14.3. tomllib— Parse TOML files 631

https://pypi.org/project/tomli-w/
https://pypi.org/project/tomlkit/

The Python Library Reference, Release 3.13.1

14.3.2 Conversion Table

TOML Python

TOML document dict
string str
integer int
float float (configurable with parse_float)
boolean bool
offset date-time datetime.datetime (tzinfo attribute set to an instance of datetime.timezone)
local date-time datetime.datetime (tzinfo attribute set to None)
local date datetime.date
local time datetime.time
array list
table dict
inline table dict
array of tables list of dicts

14.4 netrc— netrc file processing

Source code: Lib/netrc.py

The netrc class parses and encapsulates the netrc file format used by the Unix ftp program and other FTP clients.

class netrc.netrc([file])
A netrc instance or subclass instance encapsulates data from a netrc file. The initialization argument, if
present, specifies the file to parse. If no argument is given, the file .netrc in the user’s home directory – as
determined by os.path.expanduser() – will be read. Otherwise, a FileNotFoundError exception will
be raised. Parse errors will raise NetrcParseError with diagnostic information including the file name, line
number, and terminating token. If no argument is specified on a POSIX system, the presence of passwords in
the .netrc file will raise a NetrcParseError if the file ownership or permissions are insecure (owned by a
user other than the user running the process, or accessible for read or write by any other user). This implements
security behavior equivalent to that of ftp and other programs that use .netrc.

Changed in version 3.4: Added the POSIX permission check.

Changed in version 3.7: os.path.expanduser() is used to find the location of the .netrc file when file
is not passed as argument.

Changed in version 3.10: netrc try UTF-8 encoding before using locale specific encoding. The entry in the
netrc file no longer needs to contain all tokens. The missing tokens’ value default to an empty string. All the
tokens and their values now can contain arbitrary characters, like whitespace and non-ASCII characters. If the
login name is anonymous, it won’t trigger the security check.

exception netrc.NetrcParseError

Exception raised by the netrc class when syntactical errors are encountered in source text. Instances of this
exception provide three interesting attributes:

msg

Textual explanation of the error.

filename

The name of the source file.

lineno

The line number on which the error was found.

632 Chapter 14. File Formats

https://github.com/python/cpython/tree/3.13/Lib/netrc.py

The Python Library Reference, Release 3.13.1

14.4.1 netrc Objects

A netrc instance has the following methods:

netrc.authenticators(host)
Return a 3-tuple (login, account, password) of authenticators for host. If the netrc file did not contain
an entry for the given host, return the tuple associated with the ‘default’ entry. If neither matching host nor
default entry is available, return None.

netrc.__repr__()

Dump the class data as a string in the format of a netrc file. (This discards comments and may reorder the
entries.)

Instances of netrc have public instance variables:

netrc.hosts

Dictionary mapping host names to (login, account, password) tuples. The ‘default’ entry, if any, is
represented as a pseudo-host by that name.

netrc.macros

Dictionary mapping macro names to string lists.

14.5 plistlib— Generate and parse Apple .plist files

Source code: Lib/plistlib.py

This module provides an interface for reading and writing the “property list” files used by Apple, primarily on macOS
and iOS. This module supports both binary and XML plist files.

The property list (.plist) file format is a simple serialization supporting basic object types, like dictionaries, lists,
numbers and strings. Usually the top level object is a dictionary.

To write out and to parse a plist file, use the dump() and load() functions.

To work with plist data in bytes or string objects, use dumps() and loads().

Values can be strings, integers, floats, booleans, tuples, lists, dictionaries (but only with string keys), bytes,
bytearray or datetime.datetime objects.

Changed in version 3.4: New API, old API deprecated. Support for binary format plists added.

Changed in version 3.8: Support added for reading and writing UID tokens in binary plists as used by
NSKeyedArchiver and NSKeyedUnarchiver.

Changed in version 3.9: Old API removed.

See also

PList manual page
Apple’s documentation of the file format.

This module defines the following functions:

plistlib.load(fp, *, fmt=None, dict_type=dict, aware_datetime=False)

Read a plist file. fp should be a readable and binary file object. Return the unpacked root object (which usually
is a dictionary).

The fmt is the format of the file and the following values are valid:

• None: Autodetect the file format

• FMT_XML: XML file format

14.5. plistlib— Generate and parse Apple .plist files 633

https://github.com/python/cpython/tree/3.13/Lib/plistlib.py
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/

The Python Library Reference, Release 3.13.1

• FMT_BINARY: Binary plist format

The dict_type is the type used for dictionaries that are read from the plist file.

When aware_datetime is true, fields with type datetime.datetime will be created as aware object, with
tzinfo as datetime.UTC.

XML data for the FMT_XML format is parsed using the Expat parser from xml.parsers.expat – see its
documentation for possible exceptions on ill-formed XML. Unknown elements will simply be ignored by the
plist parser.

The parser for the binary format raises InvalidFileException when the file cannot be parsed.

Added in version 3.4.

Changed in version 3.13: The keyword-only parameter aware_datetime has been added.

plistlib.loads(data, *, fmt=None, dict_type=dict, aware_datetime=False)

Load a plist from a bytes or string object. See load() for an explanation of the keyword arguments.

Added in version 3.4.

Changed in version 3.13: data can be a string when fmt equals FMT_XML.

plistlib.dump(value, fp, *, fmt=FMT_XML, sort_keys=True, skipkeys=False, aware_datetime=False)

Write value to a plist file. Fp should be a writable, binary file object.

The fmt argument specifies the format of the plist file and can be one of the following values:

• FMT_XML: XML formatted plist file

• FMT_BINARY: Binary formatted plist file

When sort_keys is true (the default) the keys for dictionaries will be written to the plist in sorted order, otherwise
they will be written in the iteration order of the dictionary.

When skipkeys is false (the default) the function raises TypeError when a key of a dictionary is not a string,
otherwise such keys are skipped.

When aware_datetime is true and any field with type datetime.datetime is set as an aware object, it will
convert to UTC timezone before writing it.

A TypeError will be raised if the object is of an unsupported type or a container that contains objects of
unsupported types.

An OverflowError will be raised for integer values that cannot be represented in (binary) plist files.

Added in version 3.4.

Changed in version 3.13: The keyword-only parameter aware_datetime has been added.

plistlib.dumps(value, *, fmt=FMT_XML, sort_keys=True, skipkeys=False, aware_datetime=False)
Return value as a plist-formatted bytes object. See the documentation for dump() for an explanation of the
keyword arguments of this function.

Added in version 3.4.

The following classes are available:

class plistlib.UID(data)
Wraps an int. This is used when reading or writing NSKeyedArchiver encoded data, which contains UID
(see PList manual).

It has one attribute, data, which can be used to retrieve the int value of the UID. data must be in the range
0 <= data < 2**64.

Added in version 3.8.

The following constants are available:

634 Chapter 14. File Formats

The Python Library Reference, Release 3.13.1

plistlib.FMT_XML

The XML format for plist files.

Added in version 3.4.

plistlib.FMT_BINARY

The binary format for plist files

Added in version 3.4.

14.5.1 Examples

Generating a plist:

import datetime

import plistlib

pl = dict(

aString = "Doodah",

aList = ["A", "B", 12, 32.1, [1, 2, 3]],

aFloat = 0.1,

anInt = 728,

aDict = dict(

anotherString = "<hello & hi there!>",

aThirdString = "M\xe4ssig, Ma\xdf",

aTrueValue = True,

aFalseValue = False,

),

someData = b"<binary gunk>",

someMoreData = b"<lots of binary gunk>" * 10,

aDate = datetime.datetime.now()

)

print(plistlib.dumps(pl).decode())

Parsing a plist:

import plistlib

plist = b"""<plist version="1.0">

<dict>

<key>foo</key>

<string>bar</string>

</dict>

</plist>"""

pl = plistlib.loads(plist)

print(pl["foo"])

14.5. plistlib— Generate and parse Apple .plist files 635

The Python Library Reference, Release 3.13.1

636 Chapter 14. File Formats

CHAPTER

FIFTEEN

CRYPTOGRAPHIC SERVICES

The modules described in this chapter implement various algorithms of a cryptographic nature. They are available
at the discretion of the installation. Here’s an overview:

15.1 hashlib— Secure hashes and message digests

Source code: Lib/hashlib.py

This module implements a common interface to many different secure hash and message digest algorithms. Included
are the FIPS secure hash algorithms SHA1, SHA224, SHA256, SHA384, SHA512, (defined in the FIPS 180-4
standard), the SHA-3 series (defined in the FIPS 202 standard) as well as RSA’s MD5 algorithm (defined in internet
RFC 1321). The terms “secure hash” and “message digest” are interchangeable. Older algorithms were called
message digests. The modern term is secure hash.

Note

If you want the adler32 or crc32 hash functions, they are available in the zlib module.

15.1.1 Hash algorithms

There is one constructor method named for each type of hash. All return a hash object with the same simple interface.
For example: use sha256() to create a SHA-256 hash object. You can now feed this object with bytes-like objects
(normally bytes) using the update method. At any point you can ask it for the digest of the concatenation of the
data fed to it so far using the digest() or hexdigest() methods.

To allow multithreading, the Python GIL is released while computing a hash supplied more than 2047 bytes of data
at once in its constructor or .update method.

Constructors for hash algorithms that are always present in this module are sha1(), sha224(), sha256(),
sha384(), sha512(), sha3_224(), sha3_256(), sha3_384(), sha3_512(), shake_128(),
shake_256(), blake2b(), and blake2s(). md5() is normally available as well, though it may be missing or
blocked if you are using a rare “FIPS compliant” build of Python. These correspond to algorithms_guaranteed.

Additional algorithms may also be available if your Python distribution’s hashlib was linked against a build of
OpenSSL that provides others. Others are not guaranteed available on all installations and will only be accessible by
name via new(). See algorithms_available.

Warning

Some algorithms have known hash collision weaknesses (including MD5 and SHA1). Refer to Attacks on cryp-
tographic hash algorithms and the hashlib-seealso section at the end of this document.

Added in version 3.6: SHA3 (Keccak) and SHAKE constructors sha3_224(), sha3_256(), sha3_384(),
sha3_512(), shake_128(), shake_256() were added. blake2b() and blake2s() were added. Changed in

637

https://github.com/python/cpython/tree/3.13/Lib/hashlib.py
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/202/final
https://datatracker.ietf.org/doc/html/rfc1321.html
https://en.wikipedia.org/wiki/Cryptographic_hash_function#Attacks_on_cryptographic_hash_algorithms
https://en.wikipedia.org/wiki/Cryptographic_hash_function#Attacks_on_cryptographic_hash_algorithms

The Python Library Reference, Release 3.13.1

version 3.9: All hashlib constructors take a keyword-only argument usedforsecurity with default value True. A false
value allows the use of insecure and blocked hashing algorithms in restricted environments. False indicates that the
hashing algorithm is not used in a security context, e.g. as a non-cryptographic one-way compression function.

Changed in version 3.9: Hashlib now uses SHA3 and SHAKE from OpenSSL if it provides it.

Changed in version 3.12: For any of the MD5, SHA1, SHA2, or SHA3 algorithms that the linked OpenSSL does
not provide we fall back to a verified implementation from the HACL* project.

15.1.2 Usage

To obtain the digest of the byte string b"Nobody inspects the spammish repetition":

>>> import hashlib

>>> m = hashlib.sha256()

>>> m.update(b"Nobody inspects")

>>> m.update(b" the spammish repetition")

>>> m.digest()

b'\x03\x1e\xdd}Ae\x15\x93\xc5\xfe\\\x00o\xa5u+7\xfd\xdf\xf7\xbcN\x84:\xa6\xaf\x0c\

↪→x95\x0fK\x94\x06'

>>> m.hexdigest()

'031edd7d41651593c5fe5c006fa5752b37fddff7bc4e843aa6af0c950f4b9406'

More condensed:

>>> hashlib.sha256(b"Nobody inspects the spammish repetition").hexdigest()

'031edd7d41651593c5fe5c006fa5752b37fddff7bc4e843aa6af0c950f4b9406'

15.1.3 Constructors

hashlib.new(name, [data,]*, usedforsecurity=True)
Is a generic constructor that takes the string name of the desired algorithm as its first parameter. It also exists
to allow access to the above listed hashes as well as any other algorithms that your OpenSSL library may offer.

Using new() with an algorithm name:

>>> h = hashlib.new('sha256')

>>> h.update(b"Nobody inspects the spammish repetition")

>>> h.hexdigest()

'031edd7d41651593c5fe5c006fa5752b37fddff7bc4e843aa6af0c950f4b9406'

hashlib.md5([data,]*, usedforsecurity=True)

hashlib.sha1([data,]*, usedforsecurity=True)

hashlib.sha224([data,]*, usedforsecurity=True)

hashlib.sha256([data,]*, usedforsecurity=True)

hashlib.sha384([data,]*, usedforsecurity=True)

hashlib.sha512([data,]*, usedforsecurity=True)

hashlib.sha3_224([data,]*, usedforsecurity=True)

hashlib.sha3_256([data,]*, usedforsecurity=True)

hashlib.sha3_384([data,]*, usedforsecurity=True)

638 Chapter 15. Cryptographic Services

https://github.com/hacl-star/hacl-star

The Python Library Reference, Release 3.13.1

hashlib.sha3_512([data,]*, usedforsecurity=True)
Named constructors such as these are faster than passing an algorithm name to new().

15.1.4 Attributes

Hashlib provides the following constant module attributes:

hashlib.algorithms_guaranteed

A set containing the names of the hash algorithms guaranteed to be supported by this module on all platforms.
Note that ‘md5’ is in this list despite some upstream vendors offering an odd “FIPS compliant” Python build
that excludes it.

Added in version 3.2.

hashlib.algorithms_available

A set containing the names of the hash algorithms that are available in the running Python interpreter. These
names will be recognized when passed to new(). algorithms_guaranteed will always be a subset. The
same algorithm may appear multiple times in this set under different names (thanks to OpenSSL).

Added in version 3.2.

15.1.5 Hash Objects

The following values are provided as constant attributes of the hash objects returned by the constructors:

hash.digest_size

The size of the resulting hash in bytes.

hash.block_size

The internal block size of the hash algorithm in bytes.

A hash object has the following attributes:

hash.name

The canonical name of this hash, always lowercase and always suitable as a parameter to new() to create
another hash of this type.

Changed in version 3.4: The name attribute has been present in CPython since its inception, but until Python
3.4 was not formally specified, so may not exist on some platforms.

A hash object has the following methods:

hash.update(data)

Update the hash object with the bytes-like object. Repeated calls are equivalent to a single call with the con-
catenation of all the arguments: m.update(a); m.update(b) is equivalent to m.update(a+b).

hash.digest()

Return the digest of the data passed to the update() method so far. This is a bytes object of size
digest_size which may contain bytes in the whole range from 0 to 255.

hash.hexdigest()

Like digest() except the digest is returned as a string object of double length, containing only hexadecimal
digits. This may be used to exchange the value safely in email or other non-binary environments.

hash.copy()

Return a copy (“clone”) of the hash object. This can be used to efficiently compute the digests of data sharing
a common initial substring.

15.1. hashlib— Secure hashes and message digests 639

The Python Library Reference, Release 3.13.1

15.1.6 SHAKE variable length digests

hashlib.shake_128([data,]*, usedforsecurity=True)

hashlib.shake_256([data,]*, usedforsecurity=True)
The shake_128() and shake_256() algorithms provide variable length digests with length_in_bits//2 up to 128
or 256 bits of security. As such, their digest methods require a length. Maximum length is not limited by the SHAKE
algorithm.

shake.digest(length)
Return the digest of the data passed to the update()method so far. This is a bytes object of size length which
may contain bytes in the whole range from 0 to 255.

shake.hexdigest(length)

Like digest() except the digest is returned as a string object of double length, containing only hexadecimal
digits. This may be used to exchange the value in email or other non-binary environments.

Example use:

>>> h = hashlib.shake_256(b'Nobody inspects the spammish repetition')

>>> h.hexdigest(20)

'44709d6fcb83d92a76dcb0b668c98e1b1d3dafe7'

15.1.7 File hashing

The hashlib module provides a helper function for efficient hashing of a file or file-like object.

hashlib.file_digest(fileobj, digest, /)
Return a digest object that has been updated with contents of file object.

fileobjmust be a file-like object opened for reading in binary mode. It accepts file objects from builtin open(),
BytesIO instances, SocketIO objects from socket.socket.makefile(), and similar. The function may
bypass Python’s I/O and use the file descriptor from fileno() directly. fileobj must be assumed to be in an
unknown state after this function returns or raises. It is up to the caller to close fileobj.

digest must either be a hash algorithm name as a str, a hash constructor, or a callable that returns a hash object.

Example:

>>> import io, hashlib, hmac

>>> with open(hashlib.__file__, "rb") as f:

... digest = hashlib.file_digest(f, "sha256")

...

>>> digest.hexdigest()

'...'

>>> buf = io.BytesIO(b"somedata")

>>> mac1 = hmac.HMAC(b"key", digestmod=hashlib.sha512)

>>> digest = hashlib.file_digest(buf, lambda: mac1)

>>> digest is mac1

True

>>> mac2 = hmac.HMAC(b"key", b"somedata", digestmod=hashlib.sha512)

>>> mac1.digest() == mac2.digest()

True

Added in version 3.11.

640 Chapter 15. Cryptographic Services

The Python Library Reference, Release 3.13.1

15.1.8 Key derivation

Key derivation and key stretching algorithms are designed for secure password hashing. Naive algorithms such as
sha1(password) are not resistant against brute-force attacks. A good password hashing function must be tunable,
slow, and include a salt.

hashlib.pbkdf2_hmac(hash_name, password, salt, iterations, dklen=None)
The function provides PKCS#5 password-based key derivation function 2. It uses HMAC as pseudorandom
function.

The string hash_name is the desired name of the hash digest algorithm for HMAC, e.g. ‘sha1’ or ‘sha256’.
password and salt are interpreted as buffers of bytes. Applications and libraries should limit password to a
sensible length (e.g. 1024). salt should be about 16 or more bytes from a proper source, e.g. os.urandom().

The number of iterations should be chosen based on the hash algorithm and computing power. As of 2022,
hundreds of thousands of iterations of SHA-256 are suggested. For rationale as to why and how to choose what
is best for your application, read Appendix A.2.2 of NIST-SP-800-132. The answers on the stackexchange
pbkdf2 iterations question explain in detail.

dklen is the length of the derived key in bytes. If dklen is None then the digest size of the hash algorithm
hash_name is used, e.g. 64 for SHA-512.

>>> from hashlib import pbkdf2_hmac

>>> our_app_iters = 500_000 # Application specific, read above.

>>> dk = pbkdf2_hmac('sha256', b'password', b'bad salt' * 2, our_app_iters)

>>> dk.hex()

'15530bba69924174860db778f2c6f8104d3aaf9d26241840c8c4a641c8d000a9'

Function only available when Python is compiled with OpenSSL.

Added in version 3.4.

Changed in version 3.12: Function now only available when Python is built with OpenSSL. The slow pure
Python implementation has been removed.

hashlib.scrypt(password, *, salt, n, r, p, maxmem=0, dklen=64)
The function provides scrypt password-based key derivation function as defined in RFC 7914.

password and salt must be bytes-like objects. Applications and libraries should limit password to a sensible
length (e.g. 1024). salt should be about 16 or more bytes from a proper source, e.g. os.urandom().

n is the CPU/Memory cost factor, r the block size, p parallelization factor and maxmem limits memory
(OpenSSL 1.1.0 defaults to 32 MiB). dklen is the length of the derived key in bytes.

Added in version 3.6.

15.1.9 BLAKE2

BLAKE2 is a cryptographic hash function defined in RFC 7693 that comes in two flavors:

• BLAKE2b, optimized for 64-bit platforms and produces digests of any size between 1 and 64 bytes,

• BLAKE2s, optimized for 8- to 32-bit platforms and produces digests of any size between 1 and 32 bytes.

BLAKE2 supports keyed mode (a faster and simpler replacement for HMAC), salted hashing, personalization,
and tree hashing.

Hash objects from this module follow the API of standard library’s hashlib objects.

Creating hash objects

New hash objects are created by calling constructor functions:

hashlib.blake2b(data=b” , *, digest_size=64, key=b” , salt=b” , person=b” , fanout=1, depth=1, leaf_size=0,
node_offset=0, node_depth=0, inner_size=0, last_node=False, usedforsecurity=True)

15.1. hashlib— Secure hashes and message digests 641

https://en.wikipedia.org/wiki/Salt_%28cryptography%29
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://security.stackexchange.com/questions/3959/recommended-of-iterations-when-using-pbkdf2-sha256/
https://security.stackexchange.com/questions/3959/recommended-of-iterations-when-using-pbkdf2-sha256/
https://datatracker.ietf.org/doc/html/rfc7914.html
https://www.blake2.net
https://datatracker.ietf.org/doc/html/rfc7693.html
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

The Python Library Reference, Release 3.13.1

hashlib.blake2s(data=b” , *, digest_size=32, key=b” , salt=b” , person=b” , fanout=1, depth=1, leaf_size=0,
node_offset=0, node_depth=0, inner_size=0, last_node=False, usedforsecurity=True)

These functions return the corresponding hash objects for calculating BLAKE2b or BLAKE2s. They optionally take
these general parameters:

• data: initial chunk of data to hash, whichmust be bytes-like object. It can be passed only as positional argument.

• digest_size: size of output digest in bytes.

• key: key for keyed hashing (up to 64 bytes for BLAKE2b, up to 32 bytes for BLAKE2s).

• salt: salt for randomized hashing (up to 16 bytes for BLAKE2b, up to 8 bytes for BLAKE2s).

• person: personalization string (up to 16 bytes for BLAKE2b, up to 8 bytes for BLAKE2s).

The following table shows limits for general parameters (in bytes):

Hash digest_size len(key) len(salt) len(person)

BLAKE2b 64 64 16 16
BLAKE2s 32 32 8 8

Note

BLAKE2 specification defines constant lengths for salt and personalization parameters, however, for convenience,
this implementation accepts byte strings of any size up to the specified length. If the length of the parameter is
less than specified, it is padded with zeros, thus, for example, b'salt' and b'salt\x00' is the same value.
(This is not the case for key.)

These sizes are available as module constants described below.

Constructor functions also accept the following tree hashing parameters:

• fanout: fanout (0 to 255, 0 if unlimited, 1 in sequential mode).

• depth: maximal depth of tree (1 to 255, 255 if unlimited, 1 in sequential mode).

• leaf_size: maximal byte length of leaf (0 to 2**32-1, 0 if unlimited or in sequential mode).

• node_offset: node offset (0 to 2**64-1 for BLAKE2b, 0 to 2**48-1 for BLAKE2s, 0 for the first, leftmost,
leaf, or in sequential mode).

• node_depth: node depth (0 to 255, 0 for leaves, or in sequential mode).

• inner_size: inner digest size (0 to 64 for BLAKE2b, 0 to 32 for BLAKE2s, 0 in sequential mode).

• last_node: boolean indicating whether the processed node is the last one (False for sequential mode).

See section 2.10 in BLAKE2 specification for comprehensive review of tree hashing.

Constants

blake2b.SALT_SIZE

blake2s.SALT_SIZE

Salt length (maximum length accepted by constructors).

blake2b.PERSON_SIZE

blake2s.PERSON_SIZE

Personalization string length (maximum length accepted by constructors).

642 Chapter 15. Cryptographic Services

https://www.blake2.net/blake2_20130129.pdf

The Python Library Reference, Release 3.13.1

blake2b.MAX_KEY_SIZE

blake2s.MAX_KEY_SIZE

Maximum key size.

blake2b.MAX_DIGEST_SIZE

blake2s.MAX_DIGEST_SIZE

Maximum digest size that the hash function can output.

Examples

Simple hashing

To calculate hash of some data, you should first construct a hash object by calling the appropriate constructor function
(blake2b() or blake2s()), then update it with the data by calling update() on the object, and, finally, get the
digest out of the object by calling digest() (or hexdigest() for hex-encoded string).

>>> from hashlib import blake2b

>>> h = blake2b()

>>> h.update(b'Hello world')

>>> h.hexdigest()

↪→'6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183

↪→'

As a shortcut, you can pass the first chunk of data to update directly to the constructor as the positional argument:

>>> from hashlib import blake2b

>>> blake2b(b'Hello world').hexdigest()

(continues on next page)

15.1. hashlib— Secure hashes and message digests 643

The Python Library Reference, Release 3.13.1

(continued from previous page)

↪→'6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183

↪→'

You can call hash.update() as many times as you need to iteratively update the hash:

>>> from hashlib import blake2b

>>> items = [b'Hello', b' ', b'world']

>>> h = blake2b()

>>> for item in items:

... h.update(item)

...

>>> h.hexdigest()

↪→'6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183

↪→'

Using different digest sizes

BLAKE2 has configurable size of digests up to 64 bytes for BLAKE2b and up to 32 bytes for BLAKE2s. For
example, to replace SHA-1 with BLAKE2b without changing the size of output, we can tell BLAKE2b to produce
20-byte digests:

>>> from hashlib import blake2b

>>> h = blake2b(digest_size=20)

>>> h.update(b'Replacing SHA1 with the more secure function')

>>> h.hexdigest()

'd24f26cf8de66472d58d4e1b1774b4c9158b1f4c'

>>> h.digest_size

20

>>> len(h.digest())

20

Hash objects with different digest sizes have completely different outputs (shorter hashes are not prefixes of longer
hashes); BLAKE2b and BLAKE2s produce different outputs even if the output length is the same:

>>> from hashlib import blake2b, blake2s

>>> blake2b(digest_size=10).hexdigest()

'6fa1d8fcfd719046d762'

>>> blake2b(digest_size=11).hexdigest()

'eb6ec15daf9546254f0809'

>>> blake2s(digest_size=10).hexdigest()

'1bf21a98c78a1c376ae9'

>>> blake2s(digest_size=11).hexdigest()

'567004bf96e4a25773ebf4'

Keyed hashing

Keyed hashing can be used for authentication as a faster and simpler replacement for Hash-based message authenti-
cation code (HMAC). BLAKE2 can be securely used in prefix-MAC mode thanks to the indifferentiability property
inherited from BLAKE.

This example shows how to get a (hex-encoded) 128-bit authentication code for message b'message data' with
key b'pseudorandom key':

>>> from hashlib import blake2b

>>> h = blake2b(key=b'pseudorandom key', digest_size=16)

(continues on next page)

644 Chapter 15. Cryptographic Services

https://en.wikipedia.org/wiki/HMAC
https://en.wikipedia.org/wiki/HMAC

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> h.update(b'message data')

>>> h.hexdigest()

'3d363ff7401e02026f4a4687d4863ced'

As a practical example, a web application can symmetrically sign cookies sent to users and later verify them to make
sure they weren’t tampered with:

>>> from hashlib import blake2b

>>> from hmac import compare_digest

>>>

>>> SECRET_KEY = b'pseudorandomly generated server secret key'

>>> AUTH_SIZE = 16

>>>

>>> def sign(cookie):

... h = blake2b(digest_size=AUTH_SIZE, key=SECRET_KEY)

... h.update(cookie)

... return h.hexdigest().encode('utf-8')

>>>

>>> def verify(cookie, sig):

... good_sig = sign(cookie)

... return compare_digest(good_sig, sig)

>>>

>>> cookie = b'user-alice'

>>> sig = sign(cookie)

>>> print("{0},{1}".format(cookie.decode('utf-8'), sig))

user-alice,b'43b3c982cf697e0c5ab22172d1ca7421'

>>> verify(cookie, sig)

True

>>> verify(b'user-bob', sig)

False

>>> verify(cookie, b'0102030405060708090a0b0c0d0e0f00')

False

Even though there’s a native keyed hashing mode, BLAKE2 can, of course, be used in HMAC construction with
hmac module:

>>> import hmac, hashlib

>>> m = hmac.new(b'secret key', digestmod=hashlib.blake2s)

>>> m.update(b'message')

>>> m.hexdigest()

'e3c8102868d28b5ff85fc35dda07329970d1a01e273c37481326fe0c861c8142'

Randomized hashing

By setting salt parameter users can introduce randomization to the hash function. Randomized hashing is useful for
protecting against collision attacks on the hash function used in digital signatures.

Randomized hashing is designed for situations where one party, the message preparer, generates all
or part of a message to be signed by a second party, the message signer. If the message preparer is
able to find cryptographic hash function collisions (i.e., two messages producing the same hash value),
then they might prepare meaningful versions of the message that would produce the same hash value
and digital signature, but with different results (e.g., transferring $1,000,000 to an account, rather than
$10). Cryptographic hash functions have been designed with collision resistance as a major goal, but
the current concentration on attacking cryptographic hash functions may result in a given cryptographic
hash function providing less collision resistance than expected. Randomized hashing offers the signer
additional protection by reducing the likelihood that a preparer can generate two or more messages
that ultimately yield the same hash value during the digital signature generation process — even if it is

15.1. hashlib— Secure hashes and message digests 645

The Python Library Reference, Release 3.13.1

practical to find collisions for the hash function. However, the use of randomized hashing may reduce
the amount of security provided by a digital signature when all portions of the message are prepared by
the signer.

(NIST SP-800-106 “Randomized Hashing for Digital Signatures”)

In BLAKE2 the salt is processed as a one-time input to the hash function during initialization, rather than as an input
to each compression function.

Warning

Salted hashing (or just hashing) with BLAKE2 or any other general-purpose cryptographic hash function, such
as SHA-256, is not suitable for hashing passwords. See BLAKE2 FAQ for more information.

>>> import os

>>> from hashlib import blake2b

>>> msg = b'some message'

>>> # Calculate the first hash with a random salt.

>>> salt1 = os.urandom(blake2b.SALT_SIZE)

>>> h1 = blake2b(salt=salt1)

>>> h1.update(msg)

>>> # Calculate the second hash with a different random salt.

>>> salt2 = os.urandom(blake2b.SALT_SIZE)

>>> h2 = blake2b(salt=salt2)

>>> h2.update(msg)

>>> # The digests are different.

>>> h1.digest() != h2.digest()

True

Personalization

Sometimes it is useful to force hash function to produce different digests for the same input for different purposes.
Quoting the authors of the Skein hash function:

We recommend that all application designers seriously consider doing this; we have seen many protocols
where a hash that is computed in one part of the protocol can be used in an entirely different part because
two hash computations were done on similar or related data, and the attacker can force the application to
make the hash inputs the same. Personalizing each hash function used in the protocol summarily stops
this type of attack.

(The Skein Hash Function Family, p. 21)

BLAKE2 can be personalized by passing bytes to the person argument:

>>> from hashlib import blake2b

>>> FILES_HASH_PERSON = b'MyApp Files Hash'

>>> BLOCK_HASH_PERSON = b'MyApp Block Hash'

>>> h = blake2b(digest_size=32, person=FILES_HASH_PERSON)

>>> h.update(b'the same content')

>>> h.hexdigest()

'20d9cd024d4fb086aae819a1432dd2466de12947831b75c5a30cf2676095d3b4'

>>> h = blake2b(digest_size=32, person=BLOCK_HASH_PERSON)

>>> h.update(b'the same content')

>>> h.hexdigest()

'cf68fb5761b9c44e7878bfb2c4c9aea52264a80b75005e65619778de59f383a3'

Personalization together with the keyed mode can also be used to derive different keys from a single one.

646 Chapter 15. Cryptographic Services

https://csrc.nist.gov/pubs/sp/800/106/final
https://www.blake2.net/#qa
https://www.schneier.com/wp-content/uploads/2016/02/skein.pdf

The Python Library Reference, Release 3.13.1

>>> from hashlib import blake2s

>>> from base64 import b64decode, b64encode

>>> orig_key = b64decode(b'Rm5EPJai72qcK3RGBpW3vPNfZy5OZothY+kHY6h21KM=')

>>> enc_key = blake2s(key=orig_key, person=b'kEncrypt').digest()

>>> mac_key = blake2s(key=orig_key, person=b'kMAC').digest()

>>> print(b64encode(enc_key).decode('utf-8'))

rbPb15S/Z9t+agffno5wuhB77VbRi6F9Iv2qIxU7WHw=

>>> print(b64encode(mac_key).decode('utf-8'))

G9GtHFE1YluXY1zWPlYk1e/nWfu0WSEb0KRcjhDeP/o=

Tree mode

Here’s an example of hashing a minimal tree with two leaf nodes:

10

/ \

00 01

This example uses 64-byte internal digests, and returns the 32-byte final digest:

>>> from hashlib import blake2b

>>>

>>> FANOUT = 2

>>> DEPTH = 2

>>> LEAF_SIZE = 4096

>>> INNER_SIZE = 64

>>>

>>> buf = bytearray(6000)

>>>

>>> # Left leaf

... h00 = blake2b(buf[0:LEAF_SIZE], fanout=FANOUT, depth=DEPTH,

... leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,

... node_offset=0, node_depth=0, last_node=False)

>>> # Right leaf

... h01 = blake2b(buf[LEAF_SIZE:], fanout=FANOUT, depth=DEPTH,

... leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,

... node_offset=1, node_depth=0, last_node=True)

>>> # Root node

... h10 = blake2b(digest_size=32, fanout=FANOUT, depth=DEPTH,

... leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,

... node_offset=0, node_depth=1, last_node=True)

>>> h10.update(h00.digest())

>>> h10.update(h01.digest())

>>> h10.hexdigest()

'3ad2a9b37c6070e374c7a8c508fe20ca86b6ed54e286e93a0318e95e881db5aa'

Credits

BLAKE2 was designed by Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian Winnerlein
based on SHA-3 finalist BLAKE created by Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W.
Phan.

It uses core algorithm from ChaCha cipher designed by Daniel J. Bernstein.

The stdlib implementation is based on pyblake2 module. It was written by Dmitry Chestnykh based on C implemen-
tation written by Samuel Neves. The documentation was copied from pyblake2 and written by Dmitry Chestnykh.

The C code was partly rewritten for Python by Christian Heimes.

15.1. hashlib— Secure hashes and message digests 647

https://www.blake2.net
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
https://web.archive.org/web/20200918190133/https://131002.net/blake/
https://cr.yp.to/chacha.html
https://pythonhosted.org/pyblake2/
https://pythonhosted.org/pyblake2/

The Python Library Reference, Release 3.13.1

The following public domain dedication applies for both C hash function implementation, extension code, and this
documentation:

To the extent possible under law, the author(s) have dedicated all copyright and related and neighboring
rights to this software to the public domain worldwide. This software is distributed without any warranty.

You should have received a copy of the CC0 Public Domain Dedication along with this software. If not,
see https://creativecommons.org/publicdomain/zero/1.0/.

The following people have helped with development or contributed their changes to the project and the public domain
according to the Creative Commons Public Domain Dedication 1.0 Universal:

• Alexandr Sokolovskiy

See also

Module hmac
A module to generate message authentication codes using hashes.

Module base64
Another way to encode binary hashes for non-binary environments.

https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.180-4.pdf
The FIPS 180-4 publication on Secure Hash Algorithms.

https://csrc.nist.gov/pubs/fips/202/final
The FIPS 202 publication on the SHA-3 Standard.

https://www.blake2.net/
Official BLAKE2 website.

https://en.wikipedia.org/wiki/Cryptographic_hash_function
Wikipedia article with information on which algorithms have known issues and what that means regarding
their use.

https://www.ietf.org/rfc/rfc8018.txt
PKCS #5: Password-Based Cryptography Specification Version 2.1

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
NIST Recommendation for Password-Based Key Derivation.

15.2 hmac— Keyed-Hashing for Message Authentication

Source code: Lib/hmac.py

This module implements the HMAC algorithm as described by RFC 2104.

hmac.new(key, msg=None, digestmod)

Return a new hmac object. key is a bytes or bytearray object giving the secret key. Ifmsg is present, the method
call update(msg) is made. digestmod is the digest name, digest constructor or module for the HMAC object
to use. It may be any name suitable to hashlib.new(). Despite its argument position, it is required.

Changed in version 3.4: Parameter key can be a bytes or bytearray object. Parameter msg can be of any type
supported by hashlib. Parameter digestmod can be the name of a hash algorithm.

Changed in version 3.8: The digestmod argument is now required. Pass it as a keyword argument to avoid
awkwardness when you do not have an initial msg.

hmac.digest(key, msg, digest)
Return digest of msg for given secret key and digest. The function is equivalent to HMAC(key, msg,

digest).digest(), but uses an optimized C or inline implementation, which is faster for messages that
fit into memory. The parameters key, msg, and digest have the same meaning as in new().

648 Chapter 15. Cryptographic Services

https://creativecommons.org/publicdomain/zero/1.0/
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.180-4.pdf
https://csrc.nist.gov/pubs/fips/202/final
https://www.blake2.net/
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://www.ietf.org/rfc/rfc8018.txt
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://github.com/python/cpython/tree/3.13/Lib/hmac.py
https://datatracker.ietf.org/doc/html/rfc2104.html

The Python Library Reference, Release 3.13.1

CPython implementation detail, the optimized C implementation is only used when digest is a string and name
of a digest algorithm, which is supported by OpenSSL.

Added in version 3.7.

An HMAC object has the following methods:

HMAC.update(msg)

Update the hmac object with msg. Repeated calls are equivalent to a single call with the concatenation of all
the arguments: m.update(a); m.update(b) is equivalent to m.update(a + b).

Changed in version 3.4: Parameter msg can be of any type supported by hashlib.

HMAC.digest()

Return the digest of the bytes passed to the update()method so far. This bytes object will be the same length
as the digest_size of the digest given to the constructor. It may contain non-ASCII bytes, including NUL bytes.

Warning

When comparing the output of digest() to an externally supplied digest during a verification routine,
it is recommended to use the compare_digest() function instead of the == operator to reduce the
vulnerability to timing attacks.

HMAC.hexdigest()

Like digest() except the digest is returned as a string twice the length containing only hexadecimal digits.
This may be used to exchange the value safely in email or other non-binary environments.

Warning

When comparing the output of hexdigest() to an externally supplied digest during a verification routine,
it is recommended to use the compare_digest() function instead of the == operator to reduce the
vulnerability to timing attacks.

HMAC.copy()

Return a copy (“clone”) of the hmac object. This can be used to efficiently compute the digests of strings that
share a common initial substring.

A hash object has the following attributes:

HMAC.digest_size

The size of the resulting HMAC digest in bytes.

HMAC.block_size

The internal block size of the hash algorithm in bytes.

Added in version 3.4.

HMAC.name

The canonical name of this HMAC, always lowercase, e.g. hmac-md5.

Added in version 3.4.

Changed in version 3.10: Removed the undocumented attributes HMAC.digest_cons, HMAC.inner, and HMAC.
outer.

This module also provides the following helper function:

hmac.compare_digest(a, b)
Return a == b. This function uses an approach designed to prevent timing analysis by avoiding content-based
short circuiting behaviour, making it appropriate for cryptography. a and b must both be of the same type:
either str (ASCII only, as e.g. returned by HMAC.hexdigest()), or a bytes-like object.

15.2. hmac— Keyed-Hashing for Message Authentication 649

The Python Library Reference, Release 3.13.1

Note

If a and b are of different lengths, or if an error occurs, a timing attack could theoretically reveal information
about the types and lengths of a and b—but not their values.

Added in version 3.3.

Changed in version 3.10: The function uses OpenSSL’s CRYPTO_memcmp() internally when available.

See also

Module hashlib
The Python module providing secure hash functions.

15.3 secrets — Generate secure random numbers for managing
secrets

Added in version 3.6.

Source code: Lib/secrets.py

The secrets module is used for generating cryptographically strong random numbers suitable for managing data
such as passwords, account authentication, security tokens, and related secrets.

In particular, secrets should be used in preference to the default pseudo-random number generator in the random
module, which is designed for modelling and simulation, not security or cryptography.

See also

PEP 506

15.3.1 Random numbers

The secretsmodule provides access to the most secure source of randomness that your operating system provides.

class secrets.SystemRandom

A class for generating random numbers using the highest-quality sources provided by the operating system.
See random.SystemRandom for additional details.

secrets.choice(seq)

Return a randomly chosen element from a non-empty sequence.

secrets.randbelow(exclusive_upper_bound)
Return a random int in the range [0, exclusive_upper_bound).

secrets.randbits(k)
Return a non-negative int with k random bits.

15.3.2 Generating tokens

The secrets module provides functions for generating secure tokens, suitable for applications such as password
resets, hard-to-guess URLs, and similar.

650 Chapter 15. Cryptographic Services

https://github.com/python/cpython/tree/3.13/Lib/secrets.py
https://peps.python.org/pep-0506/

The Python Library Reference, Release 3.13.1

secrets.token_bytes([nbytes=None])
Return a random byte string containing nbytes number of bytes. If nbytes is None or not supplied, a reasonable
default is used.

>>> token_bytes(16)

b'\xebr\x17D*t\xae\xd4\xe3S\xb6\xe2\xebP1\x8b'

secrets.token_hex([nbytes=None])
Return a random text string, in hexadecimal. The string has nbytes random bytes, each byte converted to two
hex digits. If nbytes is None or not supplied, a reasonable default is used.

>>> token_hex(16)

'f9bf78b9a18ce6d46a0cd2b0b86df9da'

secrets.token_urlsafe([nbytes=None])
Return a random URL-safe text string, containing nbytes random bytes. The text is Base64 encoded, so on
average each byte results in approximately 1.3 characters. If nbytes is None or not supplied, a reasonable
default is used.

>>> token_urlsafe(16)

'Drmhze6EPcv0fN_81Bj-nA'

How many bytes should tokens use?

To be secure against brute-force attacks, tokens need to have sufficient randomness. Unfortunately, what is considered
sufficient will necessarily increase as computers get more powerful and able to make more guesses in a shorter period.
As of 2015, it is believed that 32 bytes (256 bits) of randomness is sufficient for the typical use-case expected for the
secrets module.

For those who want to manage their own token length, you can explicitly specify how much randomness is used for
tokens by giving an int argument to the various token_* functions. That argument is taken as the number of bytes
of randomness to use.

Otherwise, if no argument is provided, or if the argument is None, the token_* functions will use a reasonable
default instead.

Note

That default is subject to change at any time, including during maintenance releases.

15.3.3 Other functions

secrets.compare_digest(a, b)
Return True if strings or bytes-like objects a and b are equal, otherwise False, using a “constant-time compare”
to reduce the risk of timing attacks. See hmac.compare_digest() for additional details.

15.3.4 Recipes and best practices

This section shows recipes and best practices for using secrets to manage a basic level of security.

Generate an eight-character alphanumeric password:

import string

import secrets

alphabet = string.ascii_letters + string.digits

password = ''.join(secrets.choice(alphabet) for i in range(8))

15.3. secrets— Generate secure random numbers for managing secrets 651

https://en.wikipedia.org/wiki/Brute-force_attack
https://codahale.com/a-lesson-in-timing-attacks/

The Python Library Reference, Release 3.13.1

Note

Applications should not store passwords in a recoverable format, whether plain text or encrypted. They should
be salted and hashed using a cryptographically strong one-way (irreversible) hash function.

Generate a ten-character alphanumeric password with at least one lowercase character, at least one uppercase char-
acter, and at least three digits:

import string

import secrets

alphabet = string.ascii_letters + string.digits

while True:

password = ''.join(secrets.choice(alphabet) for i in range(10))

if (any(c.islower() for c in password)

and any(c.isupper() for c in password)

and sum(c.isdigit() for c in password) >= 3):

break

Generate an XKCD-style passphrase:

import secrets

On standard Linux systems, use a convenient dictionary file.

Other platforms may need to provide their own word-list.

with open('/usr/share/dict/words') as f:

words = [word.strip() for word in f]

password = ' '.join(secrets.choice(words) for i in range(4))

Generate a hard-to-guess temporary URL containing a security token suitable for password recovery applications:

import secrets

url = 'https://example.com/reset=' + secrets.token_urlsafe()

652 Chapter 15. Cryptographic Services

https://cwe.mitre.org/data/definitions/257.html
https://xkcd.com/936/

CHAPTER

SIXTEEN

GENERIC OPERATING SYSTEM SERVICES

The modules described in this chapter provide interfaces to operating system features that are available on (almost)
all operating systems, such as files and a clock. The interfaces are generally modeled after the Unix or C interfaces,
but they are available on most other systems as well. Here’s an overview:

16.1 os—Miscellaneous operating system interfaces

Source code: Lib/os.py

This module provides a portable way of using operating system dependent functionality. If you just want to read or
write a file see open(), if you want to manipulate paths, see the os.path module, and if you want to read all the
lines in all the files on the command line see the fileinput module. For creating temporary files and directories
see the tempfile module, and for high-level file and directory handling see the shutil module.

Notes on the availability of these functions:

• The design of all built-in operating system dependent modules of Python is such that as long as the same
functionality is available, it uses the same interface; for example, the function os.stat(path) returns stat
information about path in the same format (which happens to have originated with the POSIX interface).

• Extensions peculiar to a particular operating system are also available through the os module, but using them
is of course a threat to portability.

• All functions accepting path or file names accept both bytes and string objects, and result in an object of the
same type, if a path or file name is returned.

• On VxWorks, os.popen, os.fork, os.execv and os.spawn*p* are not supported.

• On WebAssembly platforms, Android and iOS, large parts of the os module are not available or behave dif-
ferently. APIs related to processes (e.g. fork(), execve()) and resources (e.g. nice()) are not available.
Others like getuid() and getpid() are emulated or stubs. WebAssembly platforms also lack support for
signals (e.g. kill(), wait()).

Note

All functions in this module raise OSError (or subclasses thereof) in the case of invalid or inaccessible file names
and paths, or other arguments that have the correct type, but are not accepted by the operating system.

exception os.error

An alias for the built-in OSError exception.

os.name

The name of the operating system dependent module imported. The following names have currently been
registered: 'posix', 'nt', 'java'.

653

https://github.com/python/cpython/tree/3.13/Lib/os.py

The Python Library Reference, Release 3.13.1

See also

sys.platform has a finer granularity. os.uname() gives system-dependent version information.

The platform module provides detailed checks for the system’s identity.

16.1.1 File Names, Command Line Arguments, and Environment Variables

In Python, file names, command line arguments, and environment variables are represented using the string
type. On some systems, decoding these strings to and from bytes is necessary before passing them to the op-
erating system. Python uses the filesystem encoding and error handler to perform this conversion (see sys.

getfilesystemencoding()).

The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read() function: see
filesystem_encoding and filesystem_errors members of PyConfig.

Changed in version 3.1: On some systems, conversion using the file system encoding may fail. In this case, Python
uses the surrogateescape encoding error handler, which means that undecodable bytes are replaced by a Unicode
character U+DCxx on decoding, and these are again translated to the original byte on encoding.

The file system encoding must guarantee to successfully decode all bytes below 128. If the file system encoding fails
to provide this guarantee, API functions can raise UnicodeError.

See also the locale encoding.

16.1.2 Python UTF-8 Mode

Added in version 3.7: See PEP 540 for more details.

The Python UTF-8 Mode ignores the locale encoding and forces the usage of the UTF-8 encoding:

• Use UTF-8 as the filesystem encoding.

• sys.getfilesystemencoding() returns 'utf-8'.

• locale.getpreferredencoding() returns 'utf-8' (the do_setlocale argument has no effect).

• sys.stdin, sys.stdout, and sys.stderr all use UTF-8 as their text encoding, with the
surrogateescape error handler being enabled for sys.stdin and sys.stdout (sys.stderr contin-
ues to use backslashreplace as it does in the default locale-aware mode)

• On Unix, os.device_encoding() returns 'utf-8' rather than the device encoding.

Note that the standard stream settings in UTF-8 mode can be overridden by PYTHONIOENCODING (just as they can
be in the default locale-aware mode).

As a consequence of the changes in those lower level APIs, other higher level APIs also exhibit different default
behaviours:

• Command line arguments, environment variables and filenames are decoded to text using the UTF-8 encoding.

• os.fsdecode() and os.fsencode() use the UTF-8 encoding.

• open(), io.open(), and codecs.open() use the UTF-8 encoding by default. However, they still use the
strict error handler by default so that attempting to open a binary file in text mode is likely to raise an exception
rather than producing nonsense data.

The Python UTF-8 Mode is enabled if the LC_CTYPE locale is C or POSIX at Python startup (see the
PyConfig_Read() function).

It can be enabled or disabled using the -X utf8 command line option and the PYTHONUTF8 environment variable.

If the PYTHONUTF8 environment variable is not set at all, then the interpreter defaults to using the cur-
rent locale settings, unless the current locale is identified as a legacy ASCII-based locale (as described for
PYTHONCOERCECLOCALE), and locale coercion is either disabled or fails. In such legacy locales, the interpreter
will default to enabling UTF-8 mode unless explicitly instructed not to do so.

654 Chapter 16. Generic Operating System Services

https://peps.python.org/pep-0540/

The Python Library Reference, Release 3.13.1

The Python UTF-8 Mode can only be enabled at the Python startup. Its value can be read from sys.flags.

utf8_mode.

See also the UTF-8 mode on Windows and the filesystem encoding and error handler.

See also

PEP 686
Python 3.15 will make Python UTF-8 Mode default.

16.1.3 Process Parameters

These functions and data items provide information and operate on the current process and user.

os.ctermid()

Return the filename corresponding to the controlling terminal of the process.

Availability: Unix, not WASI.

os.environ

A mapping object where keys and values are strings that represent the process environment. For exam-
ple, environ['HOME'] is the pathname of your home directory (on some platforms), and is equivalent to
getenv("HOME") in C.

This mapping is captured the first time the os module is imported, typically during Python startup as part
of processing site.py. Changes to the environment made after this time are not reflected in os.environ,
except for changes made by modifying os.environ directly.

This mapping may be used to modify the environment as well as query the environment. putenv() will be
called automatically when the mapping is modified.

On Unix, keys and values use sys.getfilesystemencoding() and 'surrogateescape' error handler.
Use environb if you would like to use a different encoding.

On Windows, the keys are converted to uppercase. This also applies when getting, setting, or deleting an item.
For example, environ['monty'] = 'python' maps the key 'MONTY' to the value 'python'.

Note

Calling putenv() directly does not change os.environ, so it’s better to modify os.environ.

Note

On some platforms, including FreeBSD and macOS, setting environ may cause memory leaks. Refer to
the system documentation for putenv().

You can delete items in this mapping to unset environment variables. unsetenv()will be called automatically
when an item is deleted from os.environ, and when one of the pop() or clear() methods is called.

Changed in version 3.9: Updated to support PEP 584’s merge (|) and update (|=) operators.

os.environb

Bytes version of environ: a mapping object where both keys and values are bytes objects representing the
process environment. environ and environb are synchronized (modifying environb updates environ,
and vice versa).

environb is only available if supports_bytes_environ is True.

Added in version 3.2.

16.1. os—Miscellaneous operating system interfaces 655

https://peps.python.org/pep-0686/
https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.13.1

Changed in version 3.9: Updated to support PEP 584’s merge (|) and update (|=) operators.

os.chdir(path)
os.fchdir(fd)

os.getcwd()

These functions are described in Files and Directories.

os.fsencode(filename)
Encode path-like filename to the filesystem encoding and error handler; return bytes unchanged.

fsdecode() is the reverse function.

Added in version 3.2.

Changed in version 3.6: Support added to accept objects implementing the os.PathLike interface.

os.fsdecode(filename)
Decode the path-like filename from the filesystem encoding and error handler; return str unchanged.

fsencode() is the reverse function.

Added in version 3.2.

Changed in version 3.6: Support added to accept objects implementing the os.PathLike interface.

os.fspath(path)
Return the file system representation of the path.

If str or bytes is passed in, it is returned unchanged. Otherwise __fspath__() is called and its value is
returned as long as it is a str or bytes object. In all other cases, TypeError is raised.

Added in version 3.6.

class os.PathLike

An abstract base class for objects representing a file system path, e.g. pathlib.PurePath.

Added in version 3.6.

abstractmethod __fspath__()

Return the file system path representation of the object.

The method should only return a str or bytes object, with the preference being for str.

os.getenv(key, default=None)
Return the value of the environment variable key as a string if it exists, or default if it doesn’t. key is a string.
Note that since getenv() uses os.environ, the mapping of getenv() is similarly also captured on import,
and the function may not reflect future environment changes.

On Unix, keys and values are decoded with sys.getfilesystemencoding() and 'surrogateescape'
error handler. Use os.getenvb() if you would like to use a different encoding.

Availability: Unix, Windows.

os.getenvb(key, default=None)
Return the value of the environment variable key as bytes if it exists, or default if it doesn’t. keymust be bytes.
Note that since getenvb() uses os.environb, the mapping of getenvb() is similarly also captured on
import, and the function may not reflect future environment changes.

getenvb() is only available if supports_bytes_environ is True.

Availability: Unix.

Added in version 3.2.

656 Chapter 16. Generic Operating System Services

https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.13.1

os.get_exec_path(env=None)
Returns the list of directories that will be searched for a named executable, similar to a shell, when launching a
process. env, when specified, should be an environment variable dictionary to lookup the PATH in. By default,
when env is None, environ is used.

Added in version 3.2.

os.getegid()

Return the effective group id of the current process. This corresponds to the “set id” bit on the file being
executed in the current process.

Availability: Unix, not WASI.

os.geteuid()

Return the current process’s effective user id.

Availability: Unix, not WASI.

os.getgid()

Return the real group id of the current process.

Availability: Unix.

The function is a stub on WASI, seeWebAssembly platforms for more information.

os.getgrouplist(user, group, /)
Return list of group ids that user belongs to. If group is not in the list, it is included; typically, group is specified
as the group ID field from the password record for user, because that group ID will otherwise be potentially
omitted.

Availability: Unix, not WASI.

Added in version 3.3.

os.getgroups()

Return list of supplemental group ids associated with the current process.

Availability: Unix, not WASI.

Note

OnmacOS, getgroups() behavior differs somewhat from other Unix platforms. If the Python interpreter
was built with a deployment target of 10.5 or earlier, getgroups() returns the list of effective group ids
associated with the current user process; this list is limited to a system-defined number of entries, typically
16, and may be modified by calls to setgroups() if suitably privileged. If built with a deployment target
greater than 10.5, getgroups() returns the current group access list for the user associated with the
effective user id of the process; the group access list may change over the lifetime of the process, it is
not affected by calls to setgroups(), and its length is not limited to 16. The deployment target value,
MACOSX_DEPLOYMENT_TARGET, can be obtained with sysconfig.get_config_var().

os.getlogin()

Return the name of the user logged in on the controlling terminal of the process. For most purposes, it is more
useful to use getpass.getuser() since the latter checks the environment variables LOGNAME or USERNAME
to find out who the user is, and falls back to pwd.getpwuid(os.getuid())[0] to get the login name of
the current real user id.

Availability: Unix, Windows, not WASI.

os.getpgid(pid)
Return the process group id of the process with process id pid. If pid is 0, the process group id of the current
process is returned.

Availability: Unix, not WASI.

16.1. os—Miscellaneous operating system interfaces 657

The Python Library Reference, Release 3.13.1

os.getpgrp()

Return the id of the current process group.

Availability: Unix, not WASI.

os.getpid()

Return the current process id.

The function is a stub on WASI, seeWebAssembly platforms for more information.

os.getppid()

Return the parent’s process id. When the parent process has exited, on Unix the id returned is the one of the
init process (1), on Windows it is still the same id, which may be already reused by another process.

Availability: Unix, Windows, not WASI.

Changed in version 3.2: Added support for Windows.

os.getpriority(which, who)
Get program scheduling priority. The value which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER,
and who is interpreted relative to which (a process identifier for PRIO_PROCESS, process group identifier for
PRIO_PGRP, and a user ID for PRIO_USER). A zero value for who denotes (respectively) the calling process,
the process group of the calling process, or the real user ID of the calling process.

Availability: Unix, not WASI.

Added in version 3.3.

os.PRIO_PROCESS

os.PRIO_PGRP

os.PRIO_USER

Parameters for the getpriority() and setpriority() functions.

Availability: Unix, not WASI.

Added in version 3.3.

os.PRIO_DARWIN_THREAD

os.PRIO_DARWIN_PROCESS

os.PRIO_DARWIN_BG

os.PRIO_DARWIN_NONUI

Parameters for the getpriority() and setpriority() functions.

Availability: macOS

Added in version 3.12.

os.getresuid()

Return a tuple (ruid, euid, suid) denoting the current process’s real, effective, and saved user ids.

Availability: Unix, not WASI.

Added in version 3.2.

os.getresgid()

Return a tuple (rgid, egid, sgid) denoting the current process’s real, effective, and saved group ids.

Availability: Unix, not WASI.

Added in version 3.2.

os.getuid()

Return the current process’s real user id.

Availability: Unix.

The function is a stub on WASI, seeWebAssembly platforms for more information.

658 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

os.initgroups(username, gid, /)
Call the system initgroups() to initialize the group access list with all of the groups of which the specified
username is a member, plus the specified group id.

Availability: Unix, not WASI, not Android.

Added in version 3.2.

os.putenv(key, value, /)
Set the environment variable named key to the string value. Such changes to the environment affect subpro-
cesses started with os.system(), popen() or fork() and execv().

Assignments to items in os.environ are automatically translated into corresponding calls to putenv();
however, calls to putenv() don’t update os.environ, so it is actually preferable to assign to items of os.
environ. This also applies to getenv() and getenvb(), which respectively use os.environ and os.

environb in their implementations.

Note

On some platforms, including FreeBSD and macOS, setting environ may cause memory leaks. Refer to
the system documentation for putenv().

Raises an auditing event os.putenv with arguments key, value.

Changed in version 3.9: The function is now always available.

os.setegid(egid, /)
Set the current process’s effective group id.

Availability: Unix, not WASI, not Android.

os.seteuid(euid, /)
Set the current process’s effective user id.

Availability: Unix, not WASI, not Android.

os.setgid(gid, /)
Set the current process’ group id.

Availability: Unix, not WASI, not Android.

os.setgroups(groups, /)
Set the list of supplemental group ids associated with the current process to groups. groupsmust be a sequence,
and each element must be an integer identifying a group. This operation is typically available only to the
superuser.

Availability: Unix, not WASI.

Note

On macOS, the length of groups may not exceed the system-defined maximum number of effective group
ids, typically 16. See the documentation for getgroups() for cases where it may not return the same
group list set by calling setgroups().

os.setns(fd, nstype=0)
Reassociate the current thread with a Linux namespace. See the setns(2) and namespaces(7) man pages
for more details.

If fd refers to a /proc/pid/ns/ link, setns() reassociates the calling thread with the namespace associated
with that link, and nstype may be set to one of the CLONE_NEW* constants to impose constraints on the
operation (0 means no constraints).

16.1. os—Miscellaneous operating system interfaces 659

https://manpages.debian.org/setns(2)
https://manpages.debian.org/namespaces(7)

The Python Library Reference, Release 3.13.1

Since Linux 5.8, fd may refer to a PID file descriptor obtained from pidfd_open(). In this case, setns()
reassociates the calling thread into one or more of the same namespaces as the thread referred to by fd. This is
subject to any constraints imposed by nstype, which is a bit mask combining one or more of the CLONE_NEW*
constants, e.g. setns(fd, os.CLONE_NEWUTS | os.CLONE_NEWPID). The caller’s memberships in un-
specified namespaces are left unchanged.

fd can be any object with a fileno() method, or a raw file descriptor.

This example reassociates the thread with the init process’s network namespace:

fd = os.open("/proc/1/ns/net", os.O_RDONLY)

os.setns(fd, os.CLONE_NEWNET)

os.close(fd)

Availability: Linux >= 3.0 with glibc >= 2.14.

Added in version 3.12.

See also

The unshare() function.

os.setpgrp()

Call the system call setpgrp() or setpgrp(0, 0) depending on which version is implemented (if any).
See the Unix manual for the semantics.

Availability: Unix, not WASI.

os.setpgid(pid, pgrp, /)
Call the system call setpgid() to set the process group id of the process with id pid to the process group
with id pgrp. See the Unix manual for the semantics.

Availability: Unix, not WASI.

os.setpriority(which, who, priority)
Set program scheduling priority. The value which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER,
and who is interpreted relative to which (a process identifier for PRIO_PROCESS, process group identifier for
PRIO_PGRP, and a user ID for PRIO_USER). A zero value for who denotes (respectively) the calling process,
the process group of the calling process, or the real user ID of the calling process. priority is a value in the
range -20 to 19. The default priority is 0; lower priorities cause more favorable scheduling.

Availability: Unix, not WASI.

Added in version 3.3.

os.setregid(rgid, egid, /)
Set the current process’s real and effective group ids.

Availability: Unix, not WASI, not Android.

os.setresgid(rgid, egid, sgid, /)
Set the current process’s real, effective, and saved group ids.

Availability: Unix, not WASI, not Android.

Added in version 3.2.

os.setresuid(ruid, euid, suid, /)
Set the current process’s real, effective, and saved user ids.

Availability: Unix, not WASI, not Android.

Added in version 3.2.

660 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

os.setreuid(ruid, euid, /)
Set the current process’s real and effective user ids.

Availability: Unix, not WASI, not Android.

os.getsid(pid, /)
Call the system call getsid(). See the Unix manual for the semantics.

Availability: Unix, not WASI.

os.setsid()

Call the system call setsid(). See the Unix manual for the semantics.

Availability: Unix, not WASI.

os.setuid(uid, /)
Set the current process’s user id.

Availability: Unix, not WASI, not Android.

os.strerror(code, /)
Return the error message corresponding to the error code in code. On platforms where strerror() returns
NULL when given an unknown error number, ValueError is raised.

os.supports_bytes_environ

True if the native OS type of the environment is bytes (eg. False on Windows).

Added in version 3.2.

os.umask(mask, /)
Set the current numeric umask and return the previous umask.

The function is a stub on WASI, seeWebAssembly platforms for more information.

os.uname()

Returns information identifying the current operating system. The return value is an object with five attributes:

• sysname - operating system name

• nodename - name of machine on network (implementation-defined)

• release - operating system release

• version - operating system version

• machine - hardware identifier

For backwards compatibility, this object is also iterable, behaving like a five-tuple containing sysname,
nodename, release, version, and machine in that order.

Some systems truncate nodename to 8 characters or to the leading component; a better way to get the hostname
is socket.gethostname() or even socket.gethostbyaddr(socket.gethostname()).

On macOS, iOS and Android, this returns the kernel name and version (i.e., 'Darwin' on macOS and iOS;
'Linux' on Android). platform.uname() can be used to get the user-facing operating system name and
version on iOS and Android.

Availability: Unix.

Changed in version 3.3: Return type changed from a tuple to a tuple-like object with named attributes.

os.unsetenv(key, /)
Unset (delete) the environment variable named key. Such changes to the environment affect subprocesses
started with os.system(), popen() or fork() and execv().

Deletion of items in os.environ is automatically translated into a corresponding call to unsetenv(); how-
ever, calls to unsetenv() don’t update os.environ, so it is actually preferable to delete items of os.
environ.

16.1. os—Miscellaneous operating system interfaces 661

The Python Library Reference, Release 3.13.1

Raises an auditing event os.unsetenv with argument key.

Changed in version 3.9: The function is now always available and is also available on Windows.

os.unshare(flags)
Disassociate parts of the process execution context, and move them into a newly created namespace. See the
unshare(2) man page for more details. The flags argument is a bit mask, combining zero or more of the
CLONE_* constants, that specifies which parts of the execution context should be unshared from their existing
associations and moved to a new namespace. If the flags argument is 0, no changes are made to the calling
process’s execution context.

Availability: Linux >= 2.6.16.

Added in version 3.12.

See also

The setns() function.

Flags to the unshare() function, if the implementation supports them. See unshare(2) in the Linux manual for
their exact effect and availability.

os.CLONE_FILES

os.CLONE_FS

os.CLONE_NEWCGROUP

os.CLONE_NEWIPC

os.CLONE_NEWNET

os.CLONE_NEWNS

os.CLONE_NEWPID

os.CLONE_NEWTIME

os.CLONE_NEWUSER

os.CLONE_NEWUTS

os.CLONE_SIGHAND

os.CLONE_SYSVSEM

os.CLONE_THREAD

os.CLONE_VM

16.1.4 File Object Creation

These functions create new file objects. (See also open() for opening file descriptors.)

os.fdopen(fd, *args, **kwargs)
Return an open file object connected to the file descriptor fd. This is an alias of the open() built-in function
and accepts the same arguments. The only difference is that the first argument of fdopen() must always be
an integer.

16.1.5 File Descriptor Operations

These functions operate on I/O streams referenced using file descriptors.

File descriptors are small integers corresponding to a file that has been opened by the current process. For example,
standard input is usually file descriptor 0, standard output is 1, and standard error is 2. Further files opened by a
process will then be assigned 3, 4, 5, and so forth. The name “file descriptor” is slightly deceptive; on Unix platforms,
sockets and pipes are also referenced by file descriptors.

The fileno() method can be used to obtain the file descriptor associated with a file object when required. Note
that using the file descriptor directly will bypass the file object methods, ignoring aspects such as internal buffering
of data.

662 Chapter 16. Generic Operating System Services

https://manpages.debian.org/unshare(2)
https://manpages.debian.org/unshare(2)

The Python Library Reference, Release 3.13.1

os.close(fd)
Close file descriptor fd.

Note

This function is intended for low-level I/O and must be applied to a file descriptor as returned by os.
open() or pipe(). To close a “file object” returned by the built-in function open() or by popen() or
fdopen(), use its close() method.

os.closerange(fd_low, fd_high, /)
Close all file descriptors from fd_low (inclusive) to fd_high (exclusive), ignoring errors. Equivalent to (but
much faster than):

for fd in range(fd_low, fd_high):

try:

os.close(fd)

except OSError:

pass

os.copy_file_range(src, dst, count, offset_src=None, offset_dst=None)
Copy count bytes from file descriptor src, starting from offset offset_src, to file descriptor dst, starting from
offset offset_dst. If offset_src is None, then src is read from the current position; respectively for offset_dst.

In Linux kernel older than 5.3, the files pointed to by src and dst must reside in the same filesystem, otherwise
an OSError is raised with errno set to errno.EXDEV .

This copy is done without the additional cost of transferring data from the kernel to user space and then back
into the kernel. Additionally, some filesystems could implement extra optimizations, such as the use of reflinks
(i.e., two or more inodes that share pointers to the same copy-on-write disk blocks; supported file systems
include btrfs and XFS) and server-side copy (in the case of NFS).

The function copies bytes between two file descriptors. Text options, like the encoding and the line ending,
are ignored.

The return value is the amount of bytes copied. This could be less than the amount requested.

Note

On Linux, os.copy_file_range() should not be used for copying a range of a pseudo file from a
special filesystem like procfs and sysfs. It will always copy no bytes and return 0 as if the file was empty
because of a known Linux kernel issue.

Availability: Linux >= 4.5 with glibc >= 2.27.

Added in version 3.8.

os.device_encoding(fd)

Return a string describing the encoding of the device associated with fd if it is connected to a terminal; else
return None.

On Unix, if the Python UTF-8 Mode is enabled, return 'UTF-8' rather than the device encoding.

Changed in version 3.10: On Unix, the function now implements the Python UTF-8 Mode.

os.dup(fd, /)
Return a duplicate of file descriptor fd. The new file descriptor is non-inheritable.

On Windows, when duplicating a standard stream (0: stdin, 1: stdout, 2: stderr), the new file descriptor is
inheritable.

Availability: not WASI.

16.1. os—Miscellaneous operating system interfaces 663

The Python Library Reference, Release 3.13.1

Changed in version 3.4: The new file descriptor is now non-inheritable.

os.dup2(fd, fd2, inheritable=True)
Duplicate file descriptor fd to fd2, closing the latter first if necessary. Return fd2. The new file descriptor is
inheritable by default or non-inheritable if inheritable is False.

Availability: not WASI.

Changed in version 3.4: Add the optional inheritable parameter.

Changed in version 3.7: Return fd2 on success. Previously, None was always returned.

os.fchmod(fd, mode)
Change the mode of the file given by fd to the numeric mode. See the docs for chmod() for possible values
of mode. As of Python 3.3, this is equivalent to os.chmod(fd, mode).

Raises an auditing event os.chmod with arguments path, mode, dir_fd.

Availability: Unix, Windows.

The function is limited on WASI, seeWebAssembly platforms for more information.

Changed in version 3.13: Added support on Windows.

os.fchown(fd, uid, gid)
Change the owner and group id of the file given by fd to the numeric uid and gid. To leave one of the ids
unchanged, set it to -1. See chown(). As of Python 3.3, this is equivalent to os.chown(fd, uid, gid).

Raises an auditing event os.chown with arguments path, uid, gid, dir_fd.

Availability: Unix.

The function is limited on WASI, seeWebAssembly platforms for more information.

os.fdatasync(fd)
Force write of file with filedescriptor fd to disk. Does not force update of metadata.

Availability: Unix.

Note

This function is not available on MacOS.

os.fpathconf(fd, name, /)
Return system configuration information relevant to an open file. name specifies the configuration value to
retrieve; it may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX.1, Unix 95, Unix 98, and others). Some platforms define additional names as well. The
names known to the host operating system are given in the pathconf_names dictionary. For configuration
variables not included in that mapping, passing an integer for name is also accepted.

If name is a string and is not known, ValueError is raised. If a specific value for name is not supported by
the host system, even if it is included in pathconf_names, an OSError is raised with errno.EINVAL for
the error number.

As of Python 3.3, this is equivalent to os.pathconf(fd, name).

Availability: Unix.

os.fstat(fd)
Get the status of the file descriptor fd. Return a stat_result object.

As of Python 3.3, this is equivalent to os.stat(fd).

664 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

See also

The stat() function.

os.fstatvfs(fd, /)
Return information about the filesystem containing the file associated with file descriptor fd, like statvfs().
As of Python 3.3, this is equivalent to os.statvfs(fd).

Availability: Unix.

os.fsync(fd)
Force write of file with filedescriptor fd to disk. On Unix, this calls the native fsync() function; onWindows,
the MS _commit() function.

If you’re starting with a buffered Python file object f, first do f.flush(), and then do os.fsync(f.

fileno()), to ensure that all internal buffers associated with f are written to disk.

Availability: Unix, Windows.

os.ftruncate(fd, length, /)
Truncate the file corresponding to file descriptor fd, so that it is at most length bytes in size. As of Python 3.3,
this is equivalent to os.truncate(fd, length).

Raises an auditing event os.truncate with arguments fd, length.

Availability: Unix, Windows.

Changed in version 3.5: Added support for Windows

os.get_blocking(fd, /)
Get the blocking mode of the file descriptor: False if the O_NONBLOCK flag is set, True if the flag is cleared.

See also set_blocking() and socket.socket.setblocking().

Availability: Unix, Windows.

The function is limited on WASI, seeWebAssembly platforms for more information.

On Windows, this function is limited to pipes.

Added in version 3.5.

Changed in version 3.12: Added support for pipes on Windows.

os.grantpt(fd, /)
Grant access to the slave pseudo-terminal device associated with the master pseudo-terminal device to which
the file descriptor fd refers. The file descriptor fd is not closed upon failure.

Calls the C standard library function grantpt().

Availability: Unix, not WASI.

Added in version 3.13.

os.isatty(fd, /)
Return True if the file descriptor fd is open and connected to a tty(-like) device, else False.

os.lockf(fd, cmd, len, /)
Apply, test or remove a POSIX lock on an open file descriptor. fd is an open file descriptor. cmd specifies
the command to use - one of F_LOCK, F_TLOCK, F_ULOCK or F_TEST. len specifies the section of the file to
lock.

Raises an auditing event os.lockf with arguments fd, cmd, len.

Availability: Unix.

Added in version 3.3.

16.1. os—Miscellaneous operating system interfaces 665

The Python Library Reference, Release 3.13.1

os.F_LOCK

os.F_TLOCK

os.F_ULOCK

os.F_TEST

Flags that specify what action lockf() will take.

Availability: Unix.

Added in version 3.3.

os.login_tty(fd, /)
Prepare the tty of which fd is a file descriptor for a new login session. Make the calling process a session leader;
make the tty the controlling tty, the stdin, the stdout, and the stderr of the calling process; close fd.

Availability: Unix, not WASI.

Added in version 3.11.

os.lseek(fd, pos, whence, /)
Set the current position of file descriptor fd to position pos, modified by whence, and return the new position
in bytes relative to the start of the file. Valid values for whence are:

• SEEK_SET or 0 – set pos relative to the beginning of the file

• SEEK_CUR or 1 – set pos relative to the current file position

• SEEK_END or 2 – set pos relative to the end of the file

• SEEK_HOLE – set pos to the next data location, relative to pos

• SEEK_DATA – set pos to the next data hole, relative to pos

Changed in version 3.3: Add support for SEEK_HOLE and SEEK_DATA.

os.SEEK_SET

os.SEEK_CUR

os.SEEK_END

Parameters to the lseek() function and the seek() method on file-like objects, for whence to adjust the file
position indicator.

SEEK_SET

Adjust the file position relative to the beginning of the file.

SEEK_CUR

Adjust the file position relative to the current file position.

SEEK_END

Adjust the file position relative to the end of the file.

Their values are 0, 1, and 2, respectively.

os.SEEK_HOLE

os.SEEK_DATA

Parameters to the lseek() function and the seek()method on file-like objects, for seeking file data and holes
on sparsely allocated files.

SEEK_DATA

Adjust the file offset to the next location containing data, relative to the seek position.

SEEK_HOLE

Adjust the file offset to the next location containing a hole, relative to the seek position. A hole is defined
as a sequence of zeros.

666 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

Note

These operations only make sense for filesystems that support them.

Availability: Linux >= 3.1, macOS, Unix

Added in version 3.3.

os.open(path, flags, mode=0o777, *, dir_fd=None)
Open the file path and set various flags according to flags and possibly its mode according to mode. When
computing mode, the current umask value is first masked out. Return the file descriptor for the newly opened
file. The new file descriptor is non-inheritable.

For a description of the flag andmode values, see the C run-time documentation; flag constants (like O_RDONLY
and O_WRONLY) are defined in the osmodule. In particular, on Windows adding O_BINARY is needed to open
files in binary mode.

This function can support paths relative to directory descriptors with the dir_fd parameter.

Raises an auditing event open with arguments path, mode, flags.

Changed in version 3.4: The new file descriptor is now non-inheritable.

Note

This function is intended for low-level I/O. For normal usage, use the built-in function open(), which
returns a file object with read() and write() methods (and many more). To wrap a file descriptor in a
file object, use fdopen().

Changed in version 3.3: Added the dir_fd parameter.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the
function now retries the system call instead of raising an InterruptedError exception (see PEP 475 for
the rationale).

Changed in version 3.6: Accepts a path-like object.

The following constants are options for the flags parameter to the open() function. They can be combined using
the bitwise OR operator |. Some of them are not available on all platforms. For descriptions of their availability and
use, consult the open(2) manual page on Unix or the MSDN on Windows.

os.O_RDONLY

os.O_WRONLY

os.O_RDWR

os.O_APPEND

os.O_CREAT

os.O_EXCL

os.O_TRUNC

The above constants are available on Unix and Windows.

os.O_DSYNC

os.O_RSYNC

os.O_SYNC

os.O_NDELAY

os.O_NONBLOCK

os.O_NOCTTY

16.1. os—Miscellaneous operating system interfaces 667

https://peps.python.org/pep-0475/
https://manpages.debian.org/open(2)
https://msdn.microsoft.com/en-us/library/z0kc8e3z.aspx

The Python Library Reference, Release 3.13.1

os.O_CLOEXEC

The above constants are only available on Unix.

Changed in version 3.3: Add O_CLOEXEC constant.

os.O_BINARY

os.O_NOINHERIT

os.O_SHORT_LIVED

os.O_TEMPORARY

os.O_RANDOM

os.O_SEQUENTIAL

os.O_TEXT

The above constants are only available on Windows.

os.O_EVTONLY

os.O_FSYNC

os.O_SYMLINK

os.O_NOFOLLOW_ANY

The above constants are only available on macOS.

Changed in version 3.10: Add O_EVTONLY, O_FSYNC, O_SYMLINK and O_NOFOLLOW_ANY constants.

os.O_ASYNC

os.O_DIRECT

os.O_DIRECTORY

os.O_NOFOLLOW

os.O_NOATIME

os.O_PATH

os.O_TMPFILE

os.O_SHLOCK

os.O_EXLOCK

The above constants are extensions and not present if they are not defined by the C library.

Changed in version 3.4: Add O_PATH on systems that support it. Add O_TMPFILE, only available on Linux
Kernel 3.11 or newer.

os.openpty()

Open a new pseudo-terminal pair. Return a pair of file descriptors (master, slave) for the pty and the
tty, respectively. The new file descriptors are non-inheritable. For a (slightly) more portable approach, use the
pty module.

Availability: Unix, not WASI.

Changed in version 3.4: The new file descriptors are now non-inheritable.

os.pipe()

Create a pipe. Return a pair of file descriptors (r, w) usable for reading and writing, respectively. The new
file descriptor is non-inheritable.

Availability: Unix, Windows.

Changed in version 3.4: The new file descriptors are now non-inheritable.

os.pipe2(flags, /)
Create a pipe with flags set atomically. flags can be constructed by ORing together one or more of these
values: O_NONBLOCK, O_CLOEXEC. Return a pair of file descriptors (r, w) usable for reading and writing,
respectively.

Availability: Unix, not WASI.

Added in version 3.3.

668 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

os.posix_fallocate(fd, offset, len, /)
Ensures that enough disk space is allocated for the file specified by fd starting from offset and continuing for
len bytes.

Availability: Unix.

Added in version 3.3.

os.posix_fadvise(fd, offset, len, advice, /)
Announces an intention to access data in a specific pattern thus allowing the kernel to make optimizations. The
advice applies to the region of the file specified by fd starting at offset and continuing for len bytes. advice is one
of POSIX_FADV_NORMAL, POSIX_FADV_SEQUENTIAL, POSIX_FADV_RANDOM , POSIX_FADV_NOREUSE,
POSIX_FADV_WILLNEED or POSIX_FADV_DONTNEED.

Availability: Unix.

Added in version 3.3.

os.POSIX_FADV_NORMAL

os.POSIX_FADV_SEQUENTIAL

os.POSIX_FADV_RANDOM

os.POSIX_FADV_NOREUSE

os.POSIX_FADV_WILLNEED

os.POSIX_FADV_DONTNEED

Flags that can be used in advice in posix_fadvise() that specify the access pattern that is likely to be used.

Availability: Unix.

Added in version 3.3.

os.pread(fd, n, offset, /)
Read at most n bytes from file descriptor fd at a position of offset, leaving the file offset unchanged.

Return a bytestring containing the bytes read. If the end of the file referred to by fd has been reached, an
empty bytes object is returned.

Availability: Unix.

Added in version 3.3.

os.posix_openpt(oflag, /)
Open and return a file descriptor for a master pseudo-terminal device.

Calls the C standard library function posix_openpt(). The oflag argument is used to set file status flags and
file access modes as specified in the manual page of posix_openpt() of your system.

The returned file descriptor is non-inheritable. If the value O_CLOEXEC is available on the system, it is added
to oflag.

Availability: Unix, not WASI.

Added in version 3.13.

os.preadv(fd, buffers, offset, flags=0, /)
Read from a file descriptor fd at a position of offset into mutable bytes-like objects buffers, leaving the file offset
unchanged. Transfer data into each buffer until it is full and then move on to the next buffer in the sequence to
hold the rest of the data.

The flags argument contains a bitwise OR of zero or more of the following flags:

• RWF_HIPRI

• RWF_NOWAIT

16.1. os—Miscellaneous operating system interfaces 669

The Python Library Reference, Release 3.13.1

Return the total number of bytes actually read which can be less than the total capacity of all the objects.

The operating system may set a limit (sysconf() value 'SC_IOV_MAX') on the number of buffers that can
be used.

Combine the functionality of os.readv() and os.pread().

Availability: Linux >= 2.6.30, FreeBSD >= 6.0, OpenBSD >= 2.7, AIX >= 7.1.

Using flags requires Linux >= 4.6.

Added in version 3.7.

os.RWF_NOWAIT

Do not wait for data which is not immediately available. If this flag is specified, the system call will return
instantly if it would have to read data from the backing storage or wait for a lock.

If some data was successfully read, it will return the number of bytes read. If no bytes were read, it will return
-1 and set errno to errno.EAGAIN.

Availability: Linux >= 4.14.

Added in version 3.7.

os.RWF_HIPRI

High priority read/write. Allows block-based filesystems to use polling of the device, which provides lower
latency, but may use additional resources.

Currently, on Linux, this feature is usable only on a file descriptor opened using the O_DIRECT flag.

Availability: Linux >= 4.6.

Added in version 3.7.

os.ptsname(fd, /)
Return the name of the slave pseudo-terminal device associated with the master pseudo-terminal device to
which the file descriptor fd refers. The file descriptor fd is not closed upon failure.

Calls the reentrant C standard library function ptsname_r() if it is available; otherwise, the C standard library
function ptsname(), which is not guaranteed to be thread-safe, is called.

Availability: Unix, not WASI.

Added in version 3.13.

os.pwrite(fd, str, offset, /)
Write the bytestring in str to file descriptor fd at position of offset, leaving the file offset unchanged.

Return the number of bytes actually written.

Availability: Unix.

Added in version 3.3.

os.pwritev(fd, buffers, offset, flags=0, /)
Write the buffers contents to file descriptor fd at an offset offset, leaving the file offset unchanged. buffers must
be a sequence of bytes-like objects. Buffers are processed in array order. Entire contents of the first buffer is
written before proceeding to the second, and so on.

The flags argument contains a bitwise OR of zero or more of the following flags:

• RWF_DSYNC

• RWF_SYNC

• RWF_APPEND

Return the total number of bytes actually written.

The operating system may set a limit (sysconf() value 'SC_IOV_MAX') on the number of buffers that can
be used.

670 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

Combine the functionality of os.writev() and os.pwrite().

Availability: Linux >= 2.6.30, FreeBSD >= 6.0, OpenBSD >= 2.7, AIX >= 7.1.

Using flags requires Linux >= 4.6.

Added in version 3.7.

os.RWF_DSYNC

Provide a per-write equivalent of the O_DSYNC os.open() flag. This flag effect applies only to the data range
written by the system call.

Availability: Linux >= 4.7.

Added in version 3.7.

os.RWF_SYNC

Provide a per-write equivalent of the O_SYNC os.open() flag. This flag effect applies only to the data range
written by the system call.

Availability: Linux >= 4.7.

Added in version 3.7.

os.RWF_APPEND

Provide a per-write equivalent of the O_APPEND os.open() flag. This flag is meaningful only for os.
pwritev(), and its effect applies only to the data range written by the system call. The offset argument
does not affect the write operation; the data is always appended to the end of the file. However, if the offset
argument is -1, the current file offset is updated.

Availability: Linux >= 4.16.

Added in version 3.10.

os.read(fd, n, /)
Read at most n bytes from file descriptor fd.

Return a bytestring containing the bytes read. If the end of the file referred to by fd has been reached, an
empty bytes object is returned.

Note

This function is intended for low-level I/O and must be applied to a file descriptor as returned by os.
open() or pipe(). To read a “file object” returned by the built-in function open() or by popen() or
fdopen(), or sys.stdin, use its read() or readline() methods.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the
function now retries the system call instead of raising an InterruptedError exception (see PEP 475 for
the rationale).

os.sendfile(out_fd, in_fd, offset, count)
os.sendfile(out_fd, in_fd, offset, count, headers=(), trailers=(), flags=0)

Copy count bytes from file descriptor in_fd to file descriptor out_fd starting at offset. Return the number of
bytes sent. When EOF is reached return 0.

The first function notation is supported by all platforms that define sendfile().

On Linux, if offset is given as None, the bytes are read from the current position of in_fd and the position of
in_fd is updated.

The second case may be used on macOS and FreeBSD where headers and trailers are arbitrary sequences of
buffers that are written before and after the data from in_fd is written. It returns the same as the first case.

On macOS and FreeBSD, a value of 0 for count specifies to send until the end of in_fd is reached.

16.1. os—Miscellaneous operating system interfaces 671

https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.13.1

All platforms support sockets as out_fd file descriptor, and some platforms allow other types (e.g. regular file,
pipe) as well.

Cross-platform applications should not use headers, trailers and flags arguments.

Availability: Unix, not WASI.

Note

For a higher-level wrapper of sendfile(), see socket.socket.sendfile().

Added in version 3.3.

Changed in version 3.9: Parameters out and in was renamed to out_fd and in_fd.

os.SF_NODISKIO

os.SF_MNOWAIT

os.SF_SYNC

Parameters to the sendfile() function, if the implementation supports them.

Availability: Unix, not WASI.

Added in version 3.3.

os.SF_NOCACHE

Parameter to the sendfile() function, if the implementation supports it. The data won’t be cached in the
virtual memory and will be freed afterwards.

Availability: Unix, not WASI.

Added in version 3.11.

os.set_blocking(fd, blocking, /)
Set the blocking mode of the specified file descriptor. Set the O_NONBLOCK flag if blocking is False, clear
the flag otherwise.

See also get_blocking() and socket.socket.setblocking().

Availability: Unix, Windows.

The function is limited on WASI, seeWebAssembly platforms for more information.

On Windows, this function is limited to pipes.

Added in version 3.5.

Changed in version 3.12: Added support for pipes on Windows.

os.splice(src, dst, count, offset_src=None, offset_dst=None)
Transfer count bytes from file descriptor src, starting from offset offset_src, to file descriptor dst, starting from
offset offset_dst. At least one of the file descriptors must refer to a pipe. If offset_src is None, then src is read
from the current position; respectively for offset_dst. The offset associated to the file descriptor that refers to
a pipe must be None. The files pointed to by src and dst must reside in the same filesystem, otherwise an
OSError is raised with errno set to errno.EXDEV .

This copy is done without the additional cost of transferring data from the kernel to user space and then back
into the kernel. Additionally, some filesystems could implement extra optimizations. The copy is done as if
both files are opened as binary.

Upon successful completion, returns the number of bytes spliced to or from the pipe. A return value of 0
means end of input. If src refers to a pipe, then this means that there was no data to transfer, and it would not
make sense to block because there are no writers connected to the write end of the pipe.

Availability: Linux >= 2.6.17 with glibc >= 2.5

Added in version 3.10.

672 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

os.SPLICE_F_MOVE

os.SPLICE_F_NONBLOCK

os.SPLICE_F_MORE

Added in version 3.10.

os.readv(fd, buffers, /)
Read from a file descriptor fd into a number of mutable bytes-like objects buffers. Transfer data into each buffer
until it is full and then move on to the next buffer in the sequence to hold the rest of the data.

Return the total number of bytes actually read which can be less than the total capacity of all the objects.

The operating system may set a limit (sysconf() value 'SC_IOV_MAX') on the number of buffers that can
be used.

Availability: Unix.

Added in version 3.3.

os.tcgetpgrp(fd, /)
Return the process group associated with the terminal given by fd (an open file descriptor as returned by
os.open()).

Availability: Unix, not WASI.

os.tcsetpgrp(fd, pg, /)
Set the process group associated with the terminal given by fd (an open file descriptor as returned by os.
open()) to pg.

Availability: Unix, not WASI.

os.ttyname(fd, /)
Return a string which specifies the terminal device associated with file descriptor fd. If fd is not associated
with a terminal device, an exception is raised.

Availability: Unix.

os.unlockpt(fd, /)
Unlock the slave pseudo-terminal device associated with the master pseudo-terminal device to which the file
descriptor fd refers. The file descriptor fd is not closed upon failure.

Calls the C standard library function unlockpt().

Availability: Unix, not WASI.

Added in version 3.13.

os.write(fd, str, /)
Write the bytestring in str to file descriptor fd.

Return the number of bytes actually written.

Note

This function is intended for low-level I/O and must be applied to a file descriptor as returned by os.
open() or pipe(). To write a “file object” returned by the built-in function open() or by popen() or
fdopen(), or sys.stdout or sys.stderr, use its write() method.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the
function now retries the system call instead of raising an InterruptedError exception (see PEP 475 for
the rationale).

16.1. os—Miscellaneous operating system interfaces 673

https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.13.1

os.writev(fd, buffers, /)
Write the contents of buffers to file descriptor fd. buffers must be a sequence of bytes-like objects. Buffers are
processed in array order. Entire contents of the first buffer is written before proceeding to the second, and so
on.

Returns the total number of bytes actually written.

The operating system may set a limit (sysconf() value 'SC_IOV_MAX') on the number of buffers that can
be used.

Availability: Unix.

Added in version 3.3.

Querying the size of a terminal

Added in version 3.3.

os.get_terminal_size(fd=STDOUT_FILENO, /)
Return the size of the terminal window as (columns, lines), tuple of type terminal_size.

The optional argument fd (default STDOUT_FILENO, or standard output) specifies which file descriptor should
be queried.

If the file descriptor is not connected to a terminal, an OSError is raised.

shutil.get_terminal_size() is the high-level function which should normally be used, os.

get_terminal_size is the low-level implementation.

Availability: Unix, Windows.

class os.terminal_size

A subclass of tuple, holding (columns, lines) of the terminal window size.

columns

Width of the terminal window in characters.

lines

Height of the terminal window in characters.

Inheritance of File Descriptors

Added in version 3.4.

A file descriptor has an “inheritable” flag which indicates if the file descriptor can be inherited by child processes.
Since Python 3.4, file descriptors created by Python are non-inheritable by default.

On UNIX, non-inheritable file descriptors are closed in child processes at the execution of a new program, other file
descriptors are inherited.

On Windows, non-inheritable handles and file descriptors are closed in child processes, except for standard streams
(file descriptors 0, 1 and 2: stdin, stdout and stderr), which are always inherited. Using spawn* functions, all inher-
itable handles and all inheritable file descriptors are inherited. Using the subprocess module, all file descriptors
except standard streams are closed, and inheritable handles are only inherited if the close_fds parameter is False.

On WebAssembly platforms, the file descriptor cannot be modified.

os.get_inheritable(fd, /)
Get the “inheritable” flag of the specified file descriptor (a boolean).

os.set_inheritable(fd, inheritable, /)
Set the “inheritable” flag of the specified file descriptor.

674 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

os.get_handle_inheritable(handle, /)
Get the “inheritable” flag of the specified handle (a boolean).

Availability: Windows.

os.set_handle_inheritable(handle, inheritable, /)
Set the “inheritable” flag of the specified handle.

Availability: Windows.

16.1.6 Files and Directories

On some Unix platforms, many of these functions support one or more of these features:

• specifying a file descriptor: Normally the path argument provided to functions in the os module must be a
string specifying a file path. However, some functions now alternatively accept an open file descriptor for their
path argument. The function will then operate on the file referred to by the descriptor. (For POSIX systems,
Python will call the variant of the function prefixed with f (e.g. call fchdir instead of chdir).)

You can check whether or not path can be specified as a file descriptor for a particular function on your platform
using os.supports_fd. If this functionality is unavailable, using it will raise a NotImplementedError.

If the function also supports dir_fd or follow_symlinks arguments, it’s an error to specify one of those when
supplying path as a file descriptor.

• paths relative to directory descriptors: If dir_fd is not None, it should be a file descriptor referring to a
directory, and the path to operate on should be relative; path will then be relative to that directory. If the path
is absolute, dir_fd is ignored. (For POSIX systems, Python will call the variant of the function with an at
suffix and possibly prefixed with f (e.g. call faccessat instead of access).

You can check whether or not dir_fd is supported for a particular function on your platform using os.

supports_dir_fd. If it’s unavailable, using it will raise a NotImplementedError.

• not following symlinks: If follow_symlinks is False, and the last element of the path to operate on is a
symbolic link, the function will operate on the symbolic link itself rather than the file pointed to by the link.
(For POSIX systems, Python will call the l... variant of the function.)

You can check whether or not follow_symlinks is supported for a particular function on your platform using
os.supports_follow_symlinks. If it’s unavailable, using it will raise a NotImplementedError.

os.access(path, mode, *, dir_fd=None, effective_ids=False, follow_symlinks=True)
Use the real uid/gid to test for access to path. Note that most operations will use the effective uid/gid, therefore
this routine can be used in a suid/sgid environment to test if the invoking user has the specified access to path.
mode should be F_OK to test the existence of path, or it can be the inclusive OR of one or more of R_OK,
W_OK, and X_OK to test permissions. Return True if access is allowed, False if not. See the Unix man page
access(2) for more information.

This function can support specifying paths relative to directory descriptors and not following symlinks.

If effective_ids is True, access() will perform its access checks using the effective uid/gid instead of the real
uid/gid. effective_idsmay not be supported on your platform; you can check whether or not it is available using
os.supports_effective_ids. If it is unavailable, using it will raise a NotImplementedError.

Note

Using access() to check if a user is authorized to e.g. open a file before actually doing so using open()
creates a security hole, because the user might exploit the short time interval between checking and opening
the file to manipulate it. It’s preferable to use EAFP techniques. For example:

if os.access("myfile", os.R_OK):

with open("myfile") as fp:

return fp.read()

return "some default data"

16.1. os—Miscellaneous operating system interfaces 675

https://manpages.debian.org/access(2)

The Python Library Reference, Release 3.13.1

is better written as:

try:

fp = open("myfile")

except PermissionError:

return "some default data"

else:

with fp:

return fp.read()

Note

I/O operations may fail even when access() indicates that they would succeed, particularly for operations
on network filesystems which may have permissions semantics beyond the usual POSIX permission-bit
model.

Changed in version 3.3: Added the dir_fd, effective_ids, and follow_symlinks parameters.

Changed in version 3.6: Accepts a path-like object.

os.F_OK

os.R_OK

os.W_OK

os.X_OK

Values to pass as the mode parameter of access() to test the existence, readability, writability and exe-
cutability of path, respectively.

os.chdir(path)
Change the current working directory to path.

This function can support specifying a file descriptor. The descriptor must refer to an opened directory, not an
open file.

This function can raise OSError and subclasses such as FileNotFoundError, PermissionError, and
NotADirectoryError.

Raises an auditing event os.chdir with argument path.

Changed in version 3.3: Added support for specifying path as a file descriptor on some platforms.

Changed in version 3.6: Accepts a path-like object.

os.chflags(path, flags, *, follow_symlinks=True)
Set the flags of path to the numeric flags. flags may take a combination (bitwise OR) of the following values
(as defined in the stat module):

• stat.UF_NODUMP

• stat.UF_IMMUTABLE

• stat.UF_APPEND

• stat.UF_OPAQUE

• stat.UF_NOUNLINK

• stat.UF_COMPRESSED

• stat.UF_HIDDEN

• stat.SF_ARCHIVED

• stat.SF_IMMUTABLE

676 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

• stat.SF_APPEND

• stat.SF_NOUNLINK

• stat.SF_SNAPSHOT

This function can support not following symlinks.

Raises an auditing event os.chflags with arguments path, flags.

Availability: Unix, not WASI.

Changed in version 3.3: Added the follow_symlinks parameter.

Changed in version 3.6: Accepts a path-like object.

os.chmod(path, mode, *, dir_fd=None, follow_symlinks=True)

Change the mode of path to the numeric mode. mode may take one of the following values (as defined in the
stat module) or bitwise ORed combinations of them:

• stat.S_ISUID

• stat.S_ISGID

• stat.S_ENFMT

• stat.S_ISVTX

• stat.S_IREAD

• stat.S_IWRITE

• stat.S_IEXEC

• stat.S_IRWXU

• stat.S_IRUSR

• stat.S_IWUSR

• stat.S_IXUSR

• stat.S_IRWXG

• stat.S_IRGRP

• stat.S_IWGRP

• stat.S_IXGRP

• stat.S_IRWXO

• stat.S_IROTH

• stat.S_IWOTH

• stat.S_IXOTH

This function can support specifying a file descriptor, paths relative to directory descriptors and not following
symlinks.

Note

Although Windows supports chmod(), you can only set the file’s read-only flag with it (via the stat.
S_IWRITE and stat.S_IREAD constants or a corresponding integer value). All other bits are ignored.
The default value of follow_symlinks is False on Windows.

The function is limited on WASI, seeWebAssembly platforms for more information.

Raises an auditing event os.chmod with arguments path, mode, dir_fd.

16.1. os—Miscellaneous operating system interfaces 677

The Python Library Reference, Release 3.13.1

Changed in version 3.3: Added support for specifying path as an open file descriptor, and the dir_fd and
follow_symlinks arguments.

Changed in version 3.6: Accepts a path-like object.

Changed in version 3.13: Added support for a file descriptor and the follow_symlinks argument on Windows.

os.chown(path, uid, gid, *, dir_fd=None, follow_symlinks=True)

Change the owner and group id of path to the numeric uid and gid. To leave one of the ids unchanged, set it
to -1.

This function can support specifying a file descriptor, paths relative to directory descriptors and not following
symlinks.

See shutil.chown() for a higher-level function that accepts names in addition to numeric ids.

Raises an auditing event os.chown with arguments path, uid, gid, dir_fd.

Availability: Unix.

The function is limited on WASI, seeWebAssembly platforms for more information.

Changed in version 3.3: Added support for specifying path as an open file descriptor, and the dir_fd and
follow_symlinks arguments.

Changed in version 3.6: Supports a path-like object.

os.chroot(path)
Change the root directory of the current process to path.

Availability: Unix, not WASI, not Android.

Changed in version 3.6: Accepts a path-like object.

os.fchdir(fd)
Change the current working directory to the directory represented by the file descriptor fd. The descriptor
must refer to an opened directory, not an open file. As of Python 3.3, this is equivalent to os.chdir(fd).

Raises an auditing event os.chdir with argument path.

Availability: Unix.

os.getcwd()

Return a string representing the current working directory.

os.getcwdb()

Return a bytestring representing the current working directory.

Changed in version 3.8: The function now uses the UTF-8 encoding on Windows, rather than the ANSI code
page: see PEP 529 for the rationale. The function is no longer deprecated on Windows.

os.lchflags(path, flags)
Set the flags of path to the numeric flags, like chflags(), but do not follow symbolic links. As of Python
3.3, this is equivalent to os.chflags(path, flags, follow_symlinks=False).

Raises an auditing event os.chflags with arguments path, flags.

Availability: Unix, not WASI.

Changed in version 3.6: Accepts a path-like object.

os.lchmod(path, mode)

Change the mode of path to the numeric mode. If path is a symlink, this affects the symlink rather than
the target. See the docs for chmod() for possible values of mode. As of Python 3.3, this is equivalent to
os.chmod(path, mode, follow_symlinks=False).

lchmod() is not part of POSIX, but Unix implementations may have it if changing the mode of symbolic
links is supported.

678 Chapter 16. Generic Operating System Services

https://peps.python.org/pep-0529/

The Python Library Reference, Release 3.13.1

Raises an auditing event os.chmod with arguments path, mode, dir_fd.

Availability: Unix, Windows, not Linux, FreeBSD >= 1.3, NetBSD >= 1.3, not OpenBSD

Changed in version 3.6: Accepts a path-like object.

Changed in version 3.13: Added support on Windows.

os.lchown(path, uid, gid)
Change the owner and group id of path to the numeric uid and gid. This function will not follow symbolic links.
As of Python 3.3, this is equivalent to os.chown(path, uid, gid, follow_symlinks=False).

Raises an auditing event os.chown with arguments path, uid, gid, dir_fd.

Availability: Unix.

Changed in version 3.6: Accepts a path-like object.

os.link(src, dst, *, src_dir_fd=None, dst_dir_fd=None, follow_symlinks=True)

Create a hard link pointing to src named dst.

This function can support specifying src_dir_fd and/or dst_dir_fd to supply paths relative to directory descrip-
tors, and not following symlinks.

Raises an auditing event os.link with arguments src, dst, src_dir_fd, dst_dir_fd.

Availability: Unix, Windows.

Changed in version 3.2: Added Windows support.

Changed in version 3.3: Added the src_dir_fd, dst_dir_fd, and follow_symlinks parameters.

Changed in version 3.6: Accepts a path-like object for src and dst.

os.listdir(path=’.’)
Return a list containing the names of the entries in the directory given by path. The list is in arbitrary order, and
does not include the special entries '.' and '..' even if they are present in the directory. If a file is removed
from or added to the directory during the call of this function, whether a name for that file be included is
unspecified.

pathmay be a path-like object. If path is of type bytes (directly or indirectly through the PathLike interface),
the filenames returned will also be of type bytes; in all other circumstances, they will be of type str.

This function can also support specifying a file descriptor; the file descriptor must refer to a directory.

Raises an auditing event os.listdir with argument path.

Note

To encode str filenames to bytes, use fsencode().

See also

The scandir() function returns directory entries along with file attribute information, giving better per-
formance for many common use cases.

Changed in version 3.2: The path parameter became optional.

Changed in version 3.3: Added support for specifying path as an open file descriptor.

Changed in version 3.6: Accepts a path-like object.

16.1. os—Miscellaneous operating system interfaces 679

The Python Library Reference, Release 3.13.1

os.listdrives()

Return a list containing the names of drives on a Windows system.

A drive name typically looks like 'C:\\'. Not every drive name will be associated with a volume, and some
may be inaccessible for a variety of reasons, including permissions, network connectivity or missing media.
This function does not test for access.

May raise OSError if an error occurs collecting the drive names.

Raises an auditing event os.listdrives with no arguments.

Availability: Windows

Added in version 3.12.

os.listmounts(volume)

Return a list containing the mount points for a volume on a Windows system.

volume must be represented as a GUID path, like those returned by os.listvolumes(). Volumes may be
mounted in multiple locations or not at all. In the latter case, the list will be empty. Mount points that are not
associated with a volume will not be returned by this function.

The mount points return by this function will be absolute paths, and may be longer than the drive name.

Raises OSError if the volume is not recognized or if an error occurs collecting the paths.

Raises an auditing event os.listmounts with argument volume.

Availability: Windows

Added in version 3.12.

os.listvolumes()

Return a list containing the volumes in the system.

Volumes are typically represented as a GUID path that looks like \\?\

Volume{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}\. Files can usually be accessed through a
GUID path, permissions allowing. However, users are generally not familiar with them, and so the
recommended use of this function is to retrieve mount points using os.listmounts().

May raise OSError if an error occurs collecting the volumes.

Raises an auditing event os.listvolumes with no arguments.

Availability: Windows

Added in version 3.12.

os.lstat(path, *, dir_fd=None)
Perform the equivalent of an lstat() system call on the given path. Similar to stat(), but does not follow
symbolic links. Return a stat_result object.

On platforms that do not support symbolic links, this is an alias for stat().

As of Python 3.3, this is equivalent to os.stat(path, dir_fd=dir_fd, follow_symlinks=False).

This function can also support paths relative to directory descriptors.

See also

The stat() function.

Changed in version 3.2: Added support for Windows 6.0 (Vista) symbolic links.

Changed in version 3.3: Added the dir_fd parameter.

Changed in version 3.6: Accepts a path-like object.

680 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

Changed in version 3.8: OnWindows, now opens reparse points that represent another path (name surrogates),
including symbolic links and directory junctions. Other kinds of reparse points are resolved by the operating
system as for stat().

os.mkdir(path, mode=0o777, *, dir_fd=None)
Create a directory named path with numeric mode mode.

If the directory already exists, FileExistsError is raised. If a parent directory in the path does not exist,
FileNotFoundError is raised.

On some systems, mode is ignored. Where it is used, the current umask value is first masked out. If bits
other than the last 9 (i.e. the last 3 digits of the octal representation of the mode) are set, their meaning is
platform-dependent. On some platforms, they are ignored and you should call chmod() explicitly to set them.

On Windows, a mode of 0o700 is specifically handled to apply access control to the new directory such that
only the current user and administrators have access. Other values of mode are ignored.

This function can also support paths relative to directory descriptors.

It is also possible to create temporary directories; see the tempfile module’s tempfile.mkdtemp() func-
tion.

Raises an auditing event os.mkdir with arguments path, mode, dir_fd.

Changed in version 3.3: Added the dir_fd parameter.

Changed in version 3.6: Accepts a path-like object.

Changed in version 3.13: Windows now handles a mode of 0o700.

os.makedirs(name, mode=0o777, exist_ok=False)
Recursive directory creation function. Like mkdir(), but makes all intermediate-level directories needed to
contain the leaf directory.

The mode parameter is passed to mkdir() for creating the leaf directory; see the mkdir() description for how
it is interpreted. To set the file permission bits of any newly created parent directories you can set the umask
before invoking makedirs(). The file permission bits of existing parent directories are not changed.

If exist_ok is False (the default), a FileExistsError is raised if the target directory already exists.

Note

makedirs() will become confused if the path elements to create include pardir (eg. “..” on UNIX
systems).

This function handles UNC paths correctly.

Raises an auditing event os.mkdir with arguments path, mode, dir_fd.

Changed in version 3.2: Added the exist_ok parameter.

Changed in version 3.4.1: Before Python 3.4.1, if exist_ok was True and the directory existed, makedirs()
would still raise an error if mode did not match the mode of the existing directory. Since this behavior was
impossible to implement safely, it was removed in Python 3.4.1. See bpo-21082.

Changed in version 3.6: Accepts a path-like object.

Changed in version 3.7: The mode argument no longer affects the file permission bits of newly created
intermediate-level directories.

os.mkfifo(path, mode=0o666, *, dir_fd=None)
Create a FIFO (a named pipe) named path with numeric mode mode. The current umask value is first masked
out from the mode.

This function can also support paths relative to directory descriptors.

16.1. os—Miscellaneous operating system interfaces 681

https://bugs.python.org/issue?@action=redirect&bpo=21082

The Python Library Reference, Release 3.13.1

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server” type processes: the
server opens the FIFO for reading, and the client opens it for writing. Note that mkfifo() doesn’t open the
FIFO — it just creates the rendezvous point.

Availability: Unix, not WASI.

Changed in version 3.3: Added the dir_fd parameter.

Changed in version 3.6: Accepts a path-like object.

os.mknod(path, mode=0o600, device=0, *, dir_fd=None)
Create a filesystem node (file, device special file or named pipe) named path. mode specifies both the
permissions to use and the type of node to be created, being combined (bitwise OR) with one of stat.
S_IFREG, stat.S_IFCHR, stat.S_IFBLK, and stat.S_IFIFO (those constants are available in stat).
For stat.S_IFCHR and stat.S_IFBLK, device defines the newly created device special file (probably using
os.makedev()), otherwise it is ignored.

This function can also support paths relative to directory descriptors.

Availability: Unix, not WASI.

Changed in version 3.3: Added the dir_fd parameter.

Changed in version 3.6: Accepts a path-like object.

os.major(device, /)
Extract the devicemajor number from a raw device number (usually the st_dev or st_rdev field from stat).

os.minor(device, /)
Extract the device minor number from a raw device number (usually the st_dev or st_rdev field from
stat).

os.makedev(major, minor, /)
Compose a raw device number from the major and minor device numbers.

os.pathconf(path, name)
Return system configuration information relevant to a named file. name specifies the configuration value to
retrieve; it may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX.1, Unix 95, Unix 98, and others). Some platforms define additional names as well. The
names known to the host operating system are given in the pathconf_names dictionary. For configuration
variables not included in that mapping, passing an integer for name is also accepted.

If name is a string and is not known, ValueError is raised. If a specific value for name is not supported by
the host system, even if it is included in pathconf_names, an OSError is raised with errno.EINVAL for
the error number.

This function can support specifying a file descriptor.

Availability: Unix.

Changed in version 3.6: Accepts a path-like object.

os.pathconf_names

Dictionary mapping names accepted by pathconf() and fpathconf() to the integer values defined for
those names by the host operating system. This can be used to determine the set of names known to the
system.

Availability: Unix.

os.readlink(path, *, dir_fd=None)
Return a string representing the path to which the symbolic link points. The result may be either an absolute
or relative pathname; if it is relative, it may be converted to an absolute pathname using os.path.join(os.
path.dirname(path), result).

682 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

If the path is a string object (directly or indirectly through a PathLike interface), the result will also be a
string object, and the call may raise a UnicodeDecodeError. If the path is a bytes object (direct or indirectly),
the result will be a bytes object.

This function can also support paths relative to directory descriptors.

When trying to resolve a path that may contain links, use realpath() to properly handle recursion and
platform differences.

Availability: Unix, Windows.

Changed in version 3.2: Added support for Windows 6.0 (Vista) symbolic links.

Changed in version 3.3: Added the dir_fd parameter.

Changed in version 3.6: Accepts a path-like object on Unix.

Changed in version 3.8: Accepts a path-like object and a bytes object on Windows.

Added support for directory junctions, and changed to return the substitution path (which typically includes
\\?\ prefix) rather than the optional “print name” field that was previously returned.

os.remove(path, *, dir_fd=None)
Remove (delete) the file path. If path is a directory, an OSError is raised. Use rmdir() to remove directories.
If the file does not exist, a FileNotFoundError is raised.

This function can support paths relative to directory descriptors.

On Windows, attempting to remove a file that is in use causes an exception to be raised; on Unix, the directory
entry is removed but the storage allocated to the file is not made available until the original file is no longer in
use.

This function is semantically identical to unlink().

Raises an auditing event os.remove with arguments path, dir_fd.

Changed in version 3.3: Added the dir_fd parameter.

Changed in version 3.6: Accepts a path-like object.

os.removedirs(name)
Remove directories recursively. Works like rmdir() except that, if the leaf directory is successfully re-
moved, removedirs() tries to successively remove every parent directory mentioned in path until an error
is raised (which is ignored, because it generally means that a parent directory is not empty). For example, os.
removedirs('foo/bar/baz') will first remove the directory 'foo/bar/baz', and then remove 'foo/
bar' and 'foo' if they are empty. Raises OSError if the leaf directory could not be successfully removed.

Raises an auditing event os.remove with arguments path, dir_fd.

Changed in version 3.6: Accepts a path-like object.

os.rename(src, dst, *, src_dir_fd=None, dst_dir_fd=None)
Rename the file or directory src to dst. If dst exists, the operation will fail with an OSError subclass in a
number of cases:

On Windows, if dst exists a FileExistsError is always raised. The operation may fail if src and dst are on
different filesystems. Use shutil.move() to support moves to a different filesystem.

On Unix, if src is a file and dst is a directory or vice-versa, an IsADirectoryError or a
NotADirectoryError will be raised respectively. If both are directories and dst is empty, dst will be silently
replaced. If dst is a non-empty directory, an OSError is raised. If both are files, dst will be replaced silently if
the user has permission. The operation may fail on some Unix flavors if src and dst are on different filesystems.
If successful, the renaming will be an atomic operation (this is a POSIX requirement).

This function can support specifying src_dir_fd and/or dst_dir_fd to supply paths relative to directory descrip-
tors.

If you want cross-platform overwriting of the destination, use replace().

16.1. os—Miscellaneous operating system interfaces 683

The Python Library Reference, Release 3.13.1

Raises an auditing event os.rename with arguments src, dst, src_dir_fd, dst_dir_fd.

Changed in version 3.3: Added the src_dir_fd and dst_dir_fd parameters.

Changed in version 3.6: Accepts a path-like object for src and dst.

os.renames(old, new)
Recursive directory or file renaming function. Works like rename(), except creation of any intermediate
directories needed to make the new pathname good is attempted first. After the rename, directories corre-
sponding to rightmost path segments of the old name will be pruned away using removedirs().

Note

This function can fail with the new directory structure made if you lack permissions needed to remove the
leaf directory or file.

Raises an auditing event os.rename with arguments src, dst, src_dir_fd, dst_dir_fd.

Changed in version 3.6: Accepts a path-like object for old and new.

os.replace(src, dst, *, src_dir_fd=None, dst_dir_fd=None)
Rename the file or directory src to dst. If dst is a non-empty directory, OSError will be raised. If dst exists
and is a file, it will be replaced silently if the user has permission. The operation may fail if src and dst are on
different filesystems. If successful, the renaming will be an atomic operation (this is a POSIX requirement).

This function can support specifying src_dir_fd and/or dst_dir_fd to supply paths relative to directory descrip-
tors.

Raises an auditing event os.rename with arguments src, dst, src_dir_fd, dst_dir_fd.

Added in version 3.3.

Changed in version 3.6: Accepts a path-like object for src and dst.

os.rmdir(path, *, dir_fd=None)
Remove (delete) the directory path. If the directory does not exist or is not empty, a FileNotFoundError
or an OSError is raised respectively. In order to remove whole directory trees, shutil.rmtree() can be
used.

This function can support paths relative to directory descriptors.

Raises an auditing event os.rmdir with arguments path, dir_fd.

Changed in version 3.3: Added the dir_fd parameter.

Changed in version 3.6: Accepts a path-like object.

os.scandir(path=’.’)
Return an iterator of os.DirEntry objects corresponding to the entries in the directory given by path. The
entries are yielded in arbitrary order, and the special entries '.' and '..' are not included. If a file is removed
from or added to the directory after creating the iterator, whether an entry for that file be included is unspecified.

Using scandir() instead of listdir() can significantly increase the performance of code that also needs
file type or file attribute information, because os.DirEntry objects expose this information if the operating
system provides it when scanning a directory. All os.DirEntry methods may perform a system call, but
is_dir() and is_file() usually only require a system call for symbolic links; os.DirEntry.stat()
always requires a system call on Unix but only requires one for symbolic links on Windows.

pathmay be a path-like object. If path is of type bytes (directly or indirectly through the PathLike interface),
the type of the name and path attributes of each os.DirEntry will be bytes; in all other circumstances,
they will be of type str.

This function can also support specifying a file descriptor; the file descriptor must refer to a directory.

Raises an auditing event os.scandir with argument path.

684 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

The scandir() iterator supports the context manager protocol and has the following method:

scandir.close()

Close the iterator and free acquired resources.

This is called automatically when the iterator is exhausted or garbage collected, or when an error happens
during iterating. However it is advisable to call it explicitly or use the with statement.

Added in version 3.6.

The following example shows a simple use of scandir() to display all the files (excluding directories) in the
given path that don’t start with '.'. The entry.is_file() call will generally not make an additional system
call:

with os.scandir(path) as it:

for entry in it:

if not entry.name.startswith('.') and entry.is_file():

print(entry.name)

Note

On Unix-based systems, scandir() uses the system’s opendir() and readdir() functions. On Windows, it
uses the Win32 FindFirstFileW and FindNextFileW functions.

Added in version 3.5.

Changed in version 3.6: Added support for the context manager protocol and the close() method. If a
scandir() iterator is neither exhausted nor explicitly closed a ResourceWarning will be emitted in its
destructor.

The function accepts a path-like object.

Changed in version 3.7: Added support for file descriptors on Unix.

class os.DirEntry

Object yielded by scandir() to expose the file path and other file attributes of a directory entry.

scandir()will provide as much of this information as possible without making additional system calls. When
a stat() or lstat() system call is made, the os.DirEntry object will cache the result.

os.DirEntry instances are not intended to be stored in long-lived data structures; if you know the file meta-
data has changed or if a long time has elapsed since calling scandir(), call os.stat(entry.path) to
fetch up-to-date information.

Because the os.DirEntry methods can make operating system calls, they may also raise OSError. If you
need very fine-grained control over errors, you can catch OSError when calling one of the os.DirEntry
methods and handle as appropriate.

To be directly usable as a path-like object, os.DirEntry implements the PathLike interface.

Attributes and methods on a os.DirEntry instance are as follows:

name

The entry’s base filename, relative to the scandir() path argument.

The name attribute will be bytes if the scandir() path argument is of type bytes and str otherwise.
Use fsdecode() to decode byte filenames.

path

The entry’s full path name: equivalent to os.path.join(scandir_path, entry.name) where
scandir_path is the scandir() path argument. The path is only absolute if the scandir() path ar-
gument was absolute. If the scandir() path argument was a file descriptor, the path attribute is the
same as the name attribute.

16.1. os—Miscellaneous operating system interfaces 685

https://pubs.opengroup.org/onlinepubs/009695399/functions/opendir.html
https://pubs.opengroup.org/onlinepubs/009695399/functions/readdir_r.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364428(v=vs.85).aspx

The Python Library Reference, Release 3.13.1

The path attribute will be bytes if the scandir() path argument is of type bytes and str otherwise.
Use fsdecode() to decode byte filenames.

inode()

Return the inode number of the entry.

The result is cached on the os.DirEntry object. Use os.stat(entry.path,

follow_symlinks=False).st_ino to fetch up-to-date information.

On the first, uncached call, a system call is required on Windows but not on Unix.

is_dir(*, follow_symlinks=True)

Return True if this entry is a directory or a symbolic link pointing to a directory; return False if the
entry is or points to any other kind of file, or if it doesn’t exist anymore.

If follow_symlinks is False, return True only if this entry is a directory (without following symlinks);
return False if the entry is any other kind of file or if it doesn’t exist anymore.

The result is cached on the os.DirEntry object, with a separate cache for follow_symlinks True and
False. Call os.stat() along with stat.S_ISDIR() to fetch up-to-date information.

On the first, uncached call, no system call is required in most cases. Specifically, for non-symlinks, neither
Windows or Unix require a system call, except on certain Unix file systems, such as network file systems,
that return dirent.d_type == DT_UNKNOWN. If the entry is a symlink, a system call will be required
to follow the symlink unless follow_symlinks is False.

This method can raise OSError, such as PermissionError, but FileNotFoundError is caught and
not raised.

is_file(*, follow_symlinks=True)
Return True if this entry is a file or a symbolic link pointing to a file; return False if the entry is or
points to a directory or other non-file entry, or if it doesn’t exist anymore.

If follow_symlinks is False, return True only if this entry is a file (without following symlinks); return
False if the entry is a directory or other non-file entry, or if it doesn’t exist anymore.

The result is cached on the os.DirEntry object. Caching, system calls made, and exceptions raised are
as per is_dir().

is_symlink()

Return True if this entry is a symbolic link (even if broken); return False if the entry points to a
directory or any kind of file, or if it doesn’t exist anymore.

The result is cached on the os.DirEntry object. Call os.path.islink() to fetch up-to-date infor-
mation.

On the first, uncached call, no system call is required in most cases. Specifically, neither Windows or
Unix require a system call, except on certain Unix file systems, such as network file systems, that return
dirent.d_type == DT_UNKNOWN.

This method can raise OSError, such as PermissionError, but FileNotFoundError is caught and
not raised.

is_junction()

Return True if this entry is a junction (even if broken); return False if the entry points to a regular
directory, any kind of file, a symlink, or if it doesn’t exist anymore.

The result is cached on the os.DirEntry object. Call os.path.isjunction() to fetch up-to-date
information.

Added in version 3.12.

stat(*, follow_symlinks=True)

Return a stat_result object for this entry. This method follows symbolic links by default; to stat a
symbolic link add the follow_symlinks=False argument.

686 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

On Unix, this method always requires a system call. On Windows, it only requires a system call if fol-
low_symlinks is True and the entry is a reparse point (for example, a symbolic link or directory junction).

On Windows, the st_ino, st_dev and st_nlink attributes of the stat_result are always set to
zero. Call os.stat() to get these attributes.

The result is cached on the os.DirEntry object, with a separate cache for follow_symlinks True and
False. Call os.stat() to fetch up-to-date information.

Note that there is a nice correspondence between several attributes and methods of os.DirEntry and of
pathlib.Path. In particular, the name attribute has the same meaning, as do the is_dir(), is_file(),
is_symlink(), is_junction(), and stat() methods.

Added in version 3.5.

Changed in version 3.6: Added support for the PathLike interface. Added support for bytes paths on
Windows.

Changed in version 3.12: The st_ctime attribute of a stat result is deprecated on Windows. The file creation
time is properly available as st_birthtime, and in the future st_ctime may be changed to return zero or
the metadata change time, if available.

os.stat(path, *, dir_fd=None, follow_symlinks=True)

Get the status of a file or a file descriptor. Perform the equivalent of a stat() system call on the given path.
path may be specified as either a string or bytes – directly or indirectly through the PathLike interface – or
as an open file descriptor. Return a stat_result object.

This function normally follows symlinks; to stat a symlink add the argument follow_symlinks=False, or
use lstat().

This function can support specifying a file descriptor and not following symlinks.

On Windows, passing follow_symlinks=False will disable following all name-surrogate reparse points,
which includes symlinks and directory junctions. Other types of reparse points that do not resemble links or
that the operating system is unable to follow will be opened directly. When following a chain of multiple links,
this may result in the original link being returned instead of the non-link that prevented full traversal. To obtain
stat results for the final path in this case, use the os.path.realpath() function to resolve the path name as
far as possible and call lstat() on the result. This does not apply to dangling symlinks or junction points,
which will raise the usual exceptions.

Example:

>>> import os

>>> statinfo = os.stat('somefile.txt')

>>> statinfo

os.stat_result(st_mode=33188, st_ino=7876932, st_dev=234881026,

st_nlink=1, st_uid=501, st_gid=501, st_size=264, st_atime=1297230295,

st_mtime=1297230027, st_ctime=1297230027)

>>> statinfo.st_size

264

See also

fstat() and lstat() functions.

Changed in version 3.3: Added the dir_fd and follow_symlinks parameters, specifying a file descriptor instead
of a path.

Changed in version 3.6: Accepts a path-like object.

Changed in version 3.8: On Windows, all reparse points that can be resolved by the operating system are now
followed, and passing follow_symlinks=False disables following all name surrogate reparse points. If the

16.1. os—Miscellaneous operating system interfaces 687

The Python Library Reference, Release 3.13.1

operating system reaches a reparse point that it is not able to follow, stat now returns the information for the
original path as if follow_symlinks=False had been specified instead of raising an error.

class os.stat_result

Object whose attributes correspond roughly to the members of the stat structure. It is used for the result of
os.stat(), os.fstat() and os.lstat().

Attributes:

st_mode

File mode: file type and file mode bits (permissions).

st_ino

Platform dependent, but if non-zero, uniquely identifies the file for a given value of st_dev. Typically:

• the inode number on Unix,

• the file index on Windows

st_dev

Identifier of the device on which this file resides.

st_nlink

Number of hard links.

st_uid

User identifier of the file owner.

st_gid

Group identifier of the file owner.

st_size

Size of the file in bytes, if it is a regular file or a symbolic link. The size of a symbolic link is the length
of the pathname it contains, without a terminating null byte.

Timestamps:

st_atime

Time of most recent access expressed in seconds.

st_mtime

Time of most recent content modification expressed in seconds.

st_ctime

Time of most recent metadata change expressed in seconds.

Changed in version 3.12: st_ctime is deprecated onWindows. Use st_birthtime for the file creation
time. In the future, st_ctime will contain the time of the most recent metadata change, as for other
platforms.

st_atime_ns

Time of most recent access expressed in nanoseconds as an integer.

Added in version 3.3.

st_mtime_ns

Time of most recent content modification expressed in nanoseconds as an integer.

Added in version 3.3.

st_ctime_ns

Time of most recent metadata change expressed in nanoseconds as an integer.

Added in version 3.3.

688 Chapter 16. Generic Operating System Services

https://msdn.microsoft.com/en-us/library/aa363788

The Python Library Reference, Release 3.13.1

Changed in version 3.12: st_ctime_ns is deprecated on Windows. Use st_birthtime_ns for the
file creation time. In the future, st_ctime will contain the time of the most recent metadata change, as
for other platforms.

st_birthtime

Time of file creation expressed in seconds. This attribute is not always available, and may raise
AttributeError.

Changed in version 3.12: st_birthtime is now available on Windows.

st_birthtime_ns

Time of file creation expressed in nanoseconds as an integer. This attribute is not always available, and
may raise AttributeError.

Added in version 3.12.

Note

The exact meaning and resolution of the st_atime, st_mtime, st_ctime and st_birthtime at-
tributes depend on the operating system and the file system. For example, on Windows systems using
the FAT32 file systems, st_mtime has 2-second resolution, and st_atime has only 1-day resolution.
See your operating system documentation for details.

Similarly, although st_atime_ns, st_mtime_ns, st_ctime_ns and st_birthtime_ns are always
expressed in nanoseconds, many systems do not provide nanosecond precision. On systems that do pro-
vide nanosecond precision, the floating-point object used to store st_atime, st_mtime, st_ctime and
st_birthtime cannot preserve all of it, and as such will be slightly inexact. If you need the exact times-
tamps you should always use st_atime_ns, st_mtime_ns, st_ctime_ns and st_birthtime_ns.

On some Unix systems (such as Linux), the following attributes may also be available:

st_blocks

Number of 512-byte blocks allocated for file. This may be smaller than st_size/512 when the file has
holes.

st_blksize

“Preferred” blocksize for efficient file system I/O. Writing to a file in smaller chunks may cause an inef-
ficient read-modify-rewrite.

st_rdev

Type of device if an inode device.

st_flags

User defined flags for file.

On other Unix systems (such as FreeBSD), the following attributes may be available (but may be only filled
out if root tries to use them):

st_gen

File generation number.

On Solaris and derivatives, the following attributes may also be available:

st_fstype

String that uniquely identifies the type of the filesystem that contains the file.

On macOS systems, the following attributes may also be available:

st_rsize

Real size of the file.

st_creator

Creator of the file.

16.1. os—Miscellaneous operating system interfaces 689

The Python Library Reference, Release 3.13.1

st_type

File type.

On Windows systems, the following attributes are also available:

st_file_attributes

Windows file attributes: dwFileAttributes member of the BY_HANDLE_FILE_INFORMATION

structure returned by GetFileInformationByHandle(). See the FILE_ATTRIBUTE_* <stat.

FILE_ATTRIBUTE_ARCHIVE> constants in the stat module.

Added in version 3.5.

st_reparse_tag

When st_file_attributes has the FILE_ATTRIBUTE_REPARSE_POINT set, this field contains the
tag identifying the type of reparse point. See the IO_REPARSE_TAG_* constants in the stat module.

The standard module stat defines functions and constants that are useful for extracting information from a
stat structure. (On Windows, some items are filled with dummy values.)

For backward compatibility, a stat_result instance is also accessible as a tuple of at least 10 integers giving
the most important (and portable) members of the stat structure, in the order st_mode, st_ino, st_dev,
st_nlink, st_uid, st_gid, st_size, st_atime, st_mtime, st_ctime. More items may be added at
the end by some implementations. For compatibility with older Python versions, accessing stat_result as
a tuple always returns integers.

Changed in version 3.5: Windows now returns the file index as st_ino when available.

Changed in version 3.7: Added the st_fstype member to Solaris/derivatives.

Changed in version 3.8: Added the st_reparse_tag member on Windows.

Changed in version 3.8: OnWindows, the st_modemember now identifies special files as S_IFCHR, S_IFIFO
or S_IFBLK as appropriate.

Changed in version 3.12: On Windows, st_ctime is deprecated. Eventually, it will contain the last metadata
change time, for consistency with other platforms, but for now still contains creation time. Use st_birthtime
for the creation time.

On Windows, st_ino may now be up to 128 bits, depending on the file system. Previously it would not be
above 64 bits, and larger file identifiers would be arbitrarily packed.

On Windows, st_rdev no longer returns a value. Previously it would contain the same as st_dev, which
was incorrect.

Added the st_birthtime member on Windows.

os.statvfs(path)
Perform a statvfs() system call on the given path. The return value is an object whose attributes describe
the filesystem on the given path, and correspond to the members of the statvfs structure, namely: f_bsize,
f_frsize, f_blocks, f_bfree, f_bavail, f_files, f_ffree, f_favail, f_flag, f_namemax,
f_fsid.

Twomodule-level constants are defined for the f_flag attribute’s bit-flags: if ST_RDONLY is set, the filesystem
ismounted read-only, and if ST_NOSUID is set, the semantics of setuid/setgid bits are disabled or not supported.

Additional module-level constants are defined for GNU/glibc based systems. These are ST_NODEV

(disallow access to device special files), ST_NOEXEC (disallow program execution), ST_SYNCHRONOUS
(writes are synced at once), ST_MANDLOCK (allow mandatory locks on an FS), ST_WRITE (write on
file/directory/symlink), ST_APPEND (append-only file), ST_IMMUTABLE (immutable file), ST_NOATIME (do
not update access times), ST_NODIRATIME (do not update directory access times), ST_RELATIME (update
atime relative to mtime/ctime).

This function can support specifying a file descriptor.

Availability: Unix.

Changed in version 3.2: The ST_RDONLY and ST_NOSUID constants were added.

690 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

Changed in version 3.3: Added support for specifying path as an open file descriptor.

Changed in version 3.4: The ST_NODEV, ST_NOEXEC, ST_SYNCHRONOUS, ST_MANDLOCK, ST_WRITE,
ST_APPEND, ST_IMMUTABLE, ST_NOATIME, ST_NODIRATIME, and ST_RELATIME constants were added.

Changed in version 3.6: Accepts a path-like object.

Changed in version 3.7: Added the f_fsid attribute.

os.supports_dir_fd

A set object indicating which functions in the os module accept an open file descriptor for their dir_fd
parameter. Different platforms provide different features, and the underlying functionality Python uses to
implement the dir_fd parameter is not available on all platforms Python supports. For consistency’s sake,
functions that may support dir_fd always allow specifying the parameter, but will throw an exception if the
functionality is used when it’s not locally available. (Specifying None for dir_fd is always supported on all
platforms.)

To check whether a particular function accepts an open file descriptor for its dir_fd parameter, use the in
operator on supports_dir_fd. As an example, this expression evaluates to True if os.stat() accepts
open file descriptors for dir_fd on the local platform:

os.stat in os.supports_dir_fd

Currently dir_fd parameters only work on Unix platforms; none of them work on Windows.

Added in version 3.3.

os.supports_effective_ids

A set object indicating whether os.access() permits specifying True for its effective_ids parameter on the
local platform. (Specifying False for effective_ids is always supported on all platforms.) If the local platform
supports it, the collection will contain os.access(); otherwise it will be empty.

This expression evaluates to True if os.access() supports effective_ids=True on the local platform:

os.access in os.supports_effective_ids

Currently effective_ids is only supported on Unix platforms; it does not work on Windows.

Added in version 3.3.

os.supports_fd

A set object indicating which functions in the osmodule permit specifying their path parameter as an open file
descriptor on the local platform. Different platforms provide different features, and the underlying functionality
Python uses to accept open file descriptors as path arguments is not available on all platforms Python supports.

To determine whether a particular function permits specifying an open file descriptor for its path parameter,
use the in operator on supports_fd. As an example, this expression evaluates to True if os.chdir()
accepts open file descriptors for path on your local platform:

os.chdir in os.supports_fd

Added in version 3.3.

os.supports_follow_symlinks

A set object indicating which functions in the os module accept False for their follow_symlinks parameter
on the local platform. Different platforms provide different features, and the underlying functionality Python
uses to implement follow_symlinks is not available on all platforms Python supports. For consistency’s sake,
functions that may support follow_symlinks always allow specifying the parameter, but will throw an exception
if the functionality is used when it’s not locally available. (Specifying True for follow_symlinks is always
supported on all platforms.)

To check whether a particular function accepts False for its follow_symlinks parameter, use the in operator
on supports_follow_symlinks. As an example, this expression evaluates to True if you may specify
follow_symlinks=False when calling os.stat() on the local platform:

16.1. os—Miscellaneous operating system interfaces 691

The Python Library Reference, Release 3.13.1

os.stat in os.supports_follow_symlinks

Added in version 3.3.

os.symlink(src, dst, target_is_directory=False, *, dir_fd=None)
Create a symbolic link pointing to src named dst.

On Windows, a symlink represents either a file or a directory, and does not morph to the target dynamically. If
the target is present, the type of the symlink will be created to match. Otherwise, the symlink will be created as
a directory if target_is_directory is True or a file symlink (the default) otherwise. On non-Windows platforms,
target_is_directory is ignored.

This function can support paths relative to directory descriptors.

Note

On newer versions of Windows 10, unprivileged accounts can create symlinks if Developer Mode is en-
abled. When Developer Mode is not available/enabled, the SeCreateSymbolicLinkPrivilege privilege is re-
quired, or the process must be run as an administrator.

OSError is raised when the function is called by an unprivileged user.

Raises an auditing event os.symlink with arguments src, dst, dir_fd.

Availability: Unix, Windows.

The function is limited on WASI, seeWebAssembly platforms for more information.

Changed in version 3.2: Added support for Windows 6.0 (Vista) symbolic links.

Changed in version 3.3: Added the dir_fd parameter, and now allow target_is_directory on non-Windows
platforms.

Changed in version 3.6: Accepts a path-like object for src and dst.

Changed in version 3.8: Added support for unelevated symlinks on Windows with Developer Mode.

os.sync()

Force write of everything to disk.

Availability: Unix.

Added in version 3.3.

os.truncate(path, length)
Truncate the file corresponding to path, so that it is at most length bytes in size.

This function can support specifying a file descriptor.

Raises an auditing event os.truncate with arguments path, length.

Availability: Unix, Windows.

Added in version 3.3.

Changed in version 3.5: Added support for Windows

Changed in version 3.6: Accepts a path-like object.

os.unlink(path, *, dir_fd=None)
Remove (delete) the file path. This function is semantically identical to remove(); the unlink name is its
traditional Unix name. Please see the documentation for remove() for further information.

Raises an auditing event os.remove with arguments path, dir_fd.

Changed in version 3.3: Added the dir_fd parameter.

Changed in version 3.6: Accepts a path-like object.

692 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

os.utime(path, times=None, *, [ns,]dir_fd=None, follow_symlinks=True)
Set the access and modified times of the file specified by path.

utime() takes two optional parameters, times and ns. These specify the times set on path and are used as
follows:

• If ns is specified, it must be a 2-tuple of the form (atime_ns, mtime_ns) where each member is an
int expressing nanoseconds.

• If times is not None, it must be a 2-tuple of the form (atime, mtime) where each member is an int or
float expressing seconds.

• If times is None and ns is unspecified, this is equivalent to specifying ns=(atime_ns, mtime_ns)

where both times are the current time.

It is an error to specify tuples for both times and ns.

Note that the exact times you set here may not be returned by a subsequent stat() call, depending on the
resolution with which your operating system records access and modification times; see stat(). The best
way to preserve exact times is to use the st_atime_ns and st_mtime_ns fields from the os.stat() result object
with the ns parameter to utime().

This function can support specifying a file descriptor, paths relative to directory descriptors and not following
symlinks.

Raises an auditing event os.utime with arguments path, times, ns, dir_fd.

Changed in version 3.3: Added support for specifying path as an open file descriptor, and the dir_fd, fol-
low_symlinks, and ns parameters.

Changed in version 3.6: Accepts a path-like object.

os.walk(top, topdown=True, onerror=None, followlinks=False)
Generate the file names in a directory tree by walking the tree either top-down or bottom-up. For each di-
rectory in the tree rooted at directory top (including top itself), it yields a 3-tuple (dirpath, dirnames,

filenames).

dirpath is a string, the path to the directory. dirnames is a list of the names of the subdirectories in dirpath
(including symlinks to directories, and excluding '.' and '..'). filenames is a list of the names of the non-
directory files in dirpath. Note that the names in the lists contain no path components. To get a full path (which
begins with top) to a file or directory in dirpath, do os.path.join(dirpath, name). Whether or not the
lists are sorted depends on the file system. If a file is removed from or added to the dirpath directory during
generating the lists, whether a name for that file be included is unspecified.

If optional argument topdown is True or not specified, the triple for a directory is generated before the triples
for any of its subdirectories (directories are generated top-down). If topdown is False, the triple for a directory
is generated after the triples for all of its subdirectories (directories are generated bottom-up). No matter the
value of topdown, the list of subdirectories is retrieved before the tuples for the directory and its subdirectories
are generated.

When topdown is True, the caller can modify the dirnames list in-place (perhaps using del or slice assign-
ment), and walk() will only recurse into the subdirectories whose names remain in dirnames; this can be
used to prune the search, impose a specific order of visiting, or even to inform walk() about directories the
caller creates or renames before it resumes walk() again. Modifying dirnames when topdown is False has
no effect on the behavior of the walk, because in bottom-up mode the directories in dirnames are generated
before dirpath itself is generated.

By default, errors from the scandir() call are ignored. If optional argument onerror is specified, it should
be a function; it will be called with one argument, an OSError instance. It can report the error to continue
with the walk, or raise the exception to abort the walk. Note that the filename is available as the filename
attribute of the exception object.

By default, walk() will not walk down into symbolic links that resolve to directories. Set followlinks to True
to visit directories pointed to by symlinks, on systems that support them.

16.1. os—Miscellaneous operating system interfaces 693

The Python Library Reference, Release 3.13.1

Note

Be aware that setting followlinks to True can lead to infinite recursion if a link points to a parent directory
of itself. walk() does not keep track of the directories it visited already.

Note

If you pass a relative pathname, don’t change the current working directory between resumptions of
walk(). walk() never changes the current directory, and assumes that its caller doesn’t either.

This example displays the number of bytes taken by non-directory files in each directory under the starting
directory, except that it doesn’t look under any CVS subdirectory:

import os

from os.path import join, getsize

for root, dirs, files in os.walk('python/Lib/email'):

print(root, "consumes", end=" ")

print(sum(getsize(join(root, name)) for name in files), end=" ")

print("bytes in", len(files), "non-directory files")

if 'CVS' in dirs:

dirs.remove('CVS') # don't visit CVS directories

In the next example (simple implementation of shutil.rmtree()), walking the tree bottom-up is essential,
rmdir() doesn’t allow deleting a directory before the directory is empty:

Delete everything reachable from the directory named in "top",

assuming there are no symbolic links.

CAUTION: This is dangerous! For example, if top == '/', it

could delete all your disk files.

import os

for root, dirs, files in os.walk(top, topdown=False):

for name in files:

os.remove(os.path.join(root, name))

for name in dirs:

os.rmdir(os.path.join(root, name))

os.rmdir(top)

Raises an auditing event os.walk with arguments top, topdown, onerror, followlinks.

Changed in version 3.5: This function now calls os.scandir() instead of os.listdir(), making it faster
by reducing the number of calls to os.stat().

Changed in version 3.6: Accepts a path-like object.

os.fwalk(top=’.’, topdown=True, onerror=None, *, follow_symlinks=False, dir_fd=None)
This behaves exactly like walk(), except that it yields a 4-tuple (dirpath, dirnames, filenames,

dirfd), and it supports dir_fd.

dirpath, dirnames and filenames are identical to walk() output, and dirfd is a file descriptor referring to the
directory dirpath.

This function always supports paths relative to directory descriptors and not following symlinks. Note however
that, unlike other functions, the fwalk() default value for follow_symlinks is False.

Note

694 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

Since fwalk() yields file descriptors, those are only valid until the next iteration step, so you should
duplicate them (e.g. with dup()) if you want to keep them longer.

This example displays the number of bytes taken by non-directory files in each directory under the starting
directory, except that it doesn’t look under any CVS subdirectory:

import os

for root, dirs, files, rootfd in os.fwalk('python/Lib/email'):

print(root, "consumes", end="")

print(sum([os.stat(name, dir_fd=rootfd).st_size for name in files]),

end="")

print("bytes in", len(files), "non-directory files")

if 'CVS' in dirs:

dirs.remove('CVS') # don't visit CVS directories

In the next example, walking the tree bottom-up is essential: rmdir() doesn’t allow deleting a directory before
the directory is empty:

Delete everything reachable from the directory named in "top",

assuming there are no symbolic links.

CAUTION: This is dangerous! For example, if top == '/', it

could delete all your disk files.

import os

for root, dirs, files, rootfd in os.fwalk(top, topdown=False):

for name in files:

os.unlink(name, dir_fd=rootfd)

for name in dirs:

os.rmdir(name, dir_fd=rootfd)

Raises an auditing event os.fwalkwith arguments top, topdown, onerror, follow_symlinks, dir_fd.

Availability: Unix.

Added in version 3.3.

Changed in version 3.6: Accepts a path-like object.

Changed in version 3.7: Added support for bytes paths.

os.memfd_create(name[, flags=os.MFD_CLOEXEC])
Create an anonymous file and return a file descriptor that refers to it. flags must be one of the os.MFD_*
constants available on the system (or a bitwise ORed combination of them). By default, the new file descriptor
is non-inheritable.

The name supplied in name is used as a filename and will be displayed as the target of the corresponding
symbolic link in the directory /proc/self/fd/. The displayed name is always prefixed with memfd: and
serves only for debugging purposes. Names do not affect the behavior of the file descriptor, and as suchmultiple
files can have the same name without any side effects.

Availability: Linux >= 3.17 with glibc >= 2.27.

Added in version 3.8.

os.MFD_CLOEXEC

os.MFD_ALLOW_SEALING

os.MFD_HUGETLB

os.MFD_HUGE_SHIFT

os.MFD_HUGE_MASK

os.MFD_HUGE_64KB

os.MFD_HUGE_512KB

16.1. os—Miscellaneous operating system interfaces 695

The Python Library Reference, Release 3.13.1

os.MFD_HUGE_1MB

os.MFD_HUGE_2MB

os.MFD_HUGE_8MB

os.MFD_HUGE_16MB

os.MFD_HUGE_32MB

os.MFD_HUGE_256MB

os.MFD_HUGE_512MB

os.MFD_HUGE_1GB

os.MFD_HUGE_2GB

os.MFD_HUGE_16GB

These flags can be passed to memfd_create().

Availability: Linux >= 3.17 with glibc >= 2.27

The MFD_HUGE* flags are only available since Linux 4.14.

Added in version 3.8.

os.eventfd(initval[, flags=os.EFD_CLOEXEC])
Create and return an event file descriptor. The file descriptors supports raw read() and write()with a buffer
size of 8, select(), poll() and similar. See man page eventfd(2) for more information. By default, the
new file descriptor is non-inheritable.

initval is the initial value of the event counter. The initial value must be a 32 bit unsigned integer. Please note
that the initial value is limited to a 32 bit unsigned int although the event counter is an unsigned 64 bit integer
with a maximum value of 264-2.

flags can be constructed from EFD_CLOEXEC, EFD_NONBLOCK, and EFD_SEMAPHORE.

If EFD_SEMAPHORE is specified and the event counter is non-zero, eventfd_read() returns 1 and decre-
ments the counter by one.

If EFD_SEMAPHORE is not specified and the event counter is non-zero, eventfd_read() returns the current
event counter value and resets the counter to zero.

If the event counter is zero and EFD_NONBLOCK is not specified, eventfd_read() blocks.

eventfd_write() increments the event counter. Write blocks if the write operation would increment the
counter to a value larger than 264-2.

Example:

import os

semaphore with start value '1'

fd = os.eventfd(1, os.EFD_SEMAPHORE | os.EFC_CLOEXEC)

try:

acquire semaphore

v = os.eventfd_read(fd)

try:

do_work()

finally:

release semaphore

os.eventfd_write(fd, v)

finally:

os.close(fd)

Availability: Linux >= 2.6.27 with glibc >= 2.8

Added in version 3.10.

696 Chapter 16. Generic Operating System Services

https://manpages.debian.org/eventfd(2)

The Python Library Reference, Release 3.13.1

os.eventfd_read(fd)
Read value from an eventfd() file descriptor and return a 64 bit unsigned int. The function does not verify
that fd is an eventfd().

Availability: Linux >= 2.6.27

Added in version 3.10.

os.eventfd_write(fd, value)
Add value to an eventfd() file descriptor. value must be a 64 bit unsigned int. The function does not verify
that fd is an eventfd().

Availability: Linux >= 2.6.27

Added in version 3.10.

os.EFD_CLOEXEC

Set close-on-exec flag for new eventfd() file descriptor.

Availability: Linux >= 2.6.27

Added in version 3.10.

os.EFD_NONBLOCK

Set O_NONBLOCK status flag for new eventfd() file descriptor.

Availability: Linux >= 2.6.27

Added in version 3.10.

os.EFD_SEMAPHORE

Provide semaphore-like semantics for reads from an eventfd() file descriptor. On read the internal counter
is decremented by one.

Availability: Linux >= 2.6.30

Added in version 3.10.

Timer File Descriptors

Added in version 3.13.

These functions provide support for Linux’s timer file descriptor API. Naturally, they are all only available on Linux.

os.timerfd_create(clockid, / , *, flags=0)
Create and return a timer file descriptor (timerfd).

The file descriptor returned by timerfd_create() supports:

• read()

• select()

• poll()

The file descriptor’s read()method can be called with a buffer size of 8. If the timer has already expired one
or more times, read() returns the number of expirations with the host’s endianness, which may be converted
to an int by int.from_bytes(x, byteorder=sys.byteorder).

select() and poll() can be used to wait until timer expires and the file descriptor is readable.

clockid must be a valid clock ID, as defined in the time module:

• time.CLOCK_REALTIME

• time.CLOCK_MONOTONIC

• time.CLOCK_BOOTTIME (Since Linux 3.15 for timerfd_create)

16.1. os—Miscellaneous operating system interfaces 697

The Python Library Reference, Release 3.13.1

If clockid is time.CLOCK_REALTIME, a settable system-wide real-time clock is used. If system clock
is changed, timer setting need to be updated. To cancel timer when system clock is changed, see
TFD_TIMER_CANCEL_ON_SET.

If clockid is time.CLOCK_MONOTONIC, a non-settable monotonically increasing clock is used. Even if the
system clock is changed, the timer setting will not be affected.

If clockid is time.CLOCK_BOOTTIME, same as time.CLOCK_MONOTONIC except it includes any time that
the system is suspended.

The file descriptor’s behaviour can be modified by specifying a flags value. Any of the following variables may
used, combined using bitwise OR (the | operator):

• TFD_NONBLOCK

• TFD_CLOEXEC

If TFD_NONBLOCK is not set as a flag, read() blocks until the timer expires. If it is set as a flag, read()
doesn’t block, but If there hasn’t been an expiration since the last call to read, read() raises OSError with
errno is set to errno.EAGAIN.

TFD_CLOEXEC is always set by Python automatically.

The file descriptor must be closed with os.close() when it is no longer needed, or else the file descriptor
will be leaked.

See also

The timerfd_create(2) man page.

Availability: Linux >= 2.6.27 with glibc >= 2.8

Added in version 3.13.

os.timerfd_settime(fd, / , *, flags=flags, initial=0.0, interval=0.0)
Alter a timer file descriptor’s internal timer. This function operates the same interval timer as
timerfd_settime_ns().

fd must be a valid timer file descriptor.

The timer’s behaviour can be modified by specifying a flags value. Any of the following variables may used,
combined using bitwise OR (the | operator):

• TFD_TIMER_ABSTIME

• TFD_TIMER_CANCEL_ON_SET

The timer is disabled by setting initial to zero (0). If initial is equal to or greater than zero, the timer is enabled.
If initial is less than zero, it raises an OSError exception with errno set to errno.EINVAL

By default the timer will fire when initial seconds have elapsed. (If initial is zero, timer will fire immediately.)

However, if the TFD_TIMER_ABSTIME flag is set, the timer will fire when the timer’s clock (set by clockid in
timerfd_create()) reaches initial seconds.

The timer’s interval is set by the interval float. If interval is zero, the timer only fires once, on the initial
expiration. If interval is greater than zero, the timer fires every time interval seconds have elapsed since the
previous expiration. If interval is less than zero, it raises OSError with errno set to errno.EINVAL

If the TFD_TIMER_CANCEL_ON_SET flag is set along with TFD_TIMER_ABSTIME and the clock for this timer
is time.CLOCK_REALTIME, the timer is marked as cancelable if the real-time clock is changed discontinu-
ously. Reading the descriptor is aborted with the error ECANCELED.

Linux manages system clock as UTC. A daylight-savings time transition is done by changing time offset only
and doesn’t cause discontinuous system clock change.

Discontinuous system clock change will be caused by the following events:

698 Chapter 16. Generic Operating System Services

https://manpages.debian.org/timerfd_create(2)

The Python Library Reference, Release 3.13.1

• settimeofday

• clock_settime

• set the system date and time by date command

Return a two-item tuple of (next_expiration, interval) from the previous timer state, before this func-
tion executed.

See also

timerfd_create(2), timerfd_settime(2), settimeofday(2), clock_settime(2), and
date(1).

Availability: Linux >= 2.6.27 with glibc >= 2.8

Added in version 3.13.

os.timerfd_settime_ns(fd, / , *, flags=0, initial=0, interval=0)
Similar to timerfd_settime(), but use time as nanoseconds. This function operates the same interval timer
as timerfd_settime().

Availability: Linux >= 2.6.27 with glibc >= 2.8

Added in version 3.13.

os.timerfd_gettime(fd, /)
Return a two-item tuple of floats (next_expiration, interval).

next_expiration denotes the relative time until next the timer next fires, regardless of if the
TFD_TIMER_ABSTIME flag is set.

interval denotes the timer’s interval. If zero, the timer will only fire once, after next_expiration seconds
have elapsed.

See also

timerfd_gettime(2)

Availability: Linux >= 2.6.27 with glibc >= 2.8

Added in version 3.13.

os.timerfd_gettime_ns(fd, /)
Similar to timerfd_gettime(), but return time as nanoseconds.

Availability: Linux >= 2.6.27 with glibc >= 2.8

Added in version 3.13.

os.TFD_NONBLOCK

A flag for the timerfd_create() function, which sets the O_NONBLOCK status flag for the new timer file
descriptor. If TFD_NONBLOCK is not set as a flag, read() blocks.

Availability: Linux >= 2.6.27 with glibc >= 2.8

Added in version 3.13.

os.TFD_CLOEXEC

A flag for the timerfd_create() function, If TFD_CLOEXEC is set as a flag, set close-on-exec flag for new
file descriptor.

Availability: Linux >= 2.6.27 with glibc >= 2.8

Added in version 3.13.

16.1. os—Miscellaneous operating system interfaces 699

https://manpages.debian.org/timerfd_create(2)
https://manpages.debian.org/timerfd_settime(2)
https://manpages.debian.org/settimeofday(2)
https://manpages.debian.org/clock_settime(2)
https://manpages.debian.org/date(1)
https://manpages.debian.org/timerfd_gettime(2)

The Python Library Reference, Release 3.13.1

os.TFD_TIMER_ABSTIME

A flag for the timerfd_settime() and timerfd_settime_ns() functions. If this flag is set, initial is
interpreted as an absolute value on the timer’s clock (in UTC seconds or nanoseconds since the Unix Epoch).

Availability: Linux >= 2.6.27 with glibc >= 2.8

Added in version 3.13.

os.TFD_TIMER_CANCEL_ON_SET

A flag for the timerfd_settime() and timerfd_settime_ns() functions along with
TFD_TIMER_ABSTIME. The timer is cancelled when the time of the underlying clock changes discon-
tinuously.

Availability: Linux >= 2.6.27 with glibc >= 2.8

Added in version 3.13.

Linux extended attributes

Added in version 3.3.

These functions are all available on Linux only.

os.getxattr(path, attribute, *, follow_symlinks=True)
Return the value of the extended filesystem attribute attribute for path. attribute can be bytes or str (directly or
indirectly through the PathLike interface). If it is str, it is encoded with the filesystem encoding.

This function can support specifying a file descriptor and not following symlinks.

Raises an auditing event os.getxattr with arguments path, attribute.

Changed in version 3.6: Accepts a path-like object for path and attribute.

os.listxattr(path=None, *, follow_symlinks=True)
Return a list of the extended filesystem attributes on path. The attributes in the list are represented as strings
decoded with the filesystem encoding. If path is None, listxattr() will examine the current directory.

This function can support specifying a file descriptor and not following symlinks.

Raises an auditing event os.listxattr with argument path.

Changed in version 3.6: Accepts a path-like object.

os.removexattr(path, attribute, *, follow_symlinks=True)

Removes the extended filesystem attribute attribute from path. attribute should be bytes or str (directly or
indirectly through the PathLike interface). If it is a string, it is encoded with the filesystem encoding and
error handler.

This function can support specifying a file descriptor and not following symlinks.

Raises an auditing event os.removexattr with arguments path, attribute.

Changed in version 3.6: Accepts a path-like object for path and attribute.

os.setxattr(path, attribute, value, flags=0, *, follow_symlinks=True)
Set the extended filesystem attribute attribute on path to value. attributemust be a bytes or str with no embedded
NULs (directly or indirectly through the PathLike interface). If it is a str, it is encoded with the filesystem
encoding and error handler. flags may be XATTR_REPLACE or XATTR_CREATE. If XATTR_REPLACE is given
and the attribute does not exist, ENODATA will be raised. If XATTR_CREATE is given and the attribute already
exists, the attribute will not be created and EEXISTS will be raised.

This function can support specifying a file descriptor and not following symlinks.

Note

Abug in Linux kernel versions less than 2.6.39 caused the flags argument to be ignored on some filesystems.

700 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

Raises an auditing event os.setxattr with arguments path, attribute, value, flags.

Changed in version 3.6: Accepts a path-like object for path and attribute.

os.XATTR_SIZE_MAX

The maximum size the value of an extended attribute can be. Currently, this is 64 KiB on Linux.

os.XATTR_CREATE

This is a possible value for the flags argument in setxattr(). It indicates the operation must create an
attribute.

os.XATTR_REPLACE

This is a possible value for the flags argument in setxattr(). It indicates the operation must replace an
existing attribute.

16.1.7 Process Management

These functions may be used to create and manage processes.

The various exec* functions take a list of arguments for the new program loaded into the process. In each case,
the first of these arguments is passed to the new program as its own name rather than as an argument a user may
have typed on a command line. For the C programmer, this is the argv[0] passed to a program’s main(). For
example, os.execv('/bin/echo', ['foo', 'bar']) will only print bar on standard output; foo will seem
to be ignored.

os.abort()

Generate a SIGABRT signal to the current process. On Unix, the default behavior is to produce a core dump;
on Windows, the process immediately returns an exit code of 3. Be aware that calling this function will not
call the Python signal handler registered for SIGABRT with signal.signal().

os.add_dll_directory(path)
Add a path to the DLL search path.

This search path is used when resolving dependencies for imported extension modules (the module itself is
resolved through sys.path), and also by ctypes.

Remove the directory by calling close() on the returned object or using it in a with statement.

See the Microsoft documentation for more information about how DLLs are loaded.

Raises an auditing event os.add_dll_directory with argument path.

Availability: Windows.

Added in version 3.8: Previous versions of CPython would resolve DLLs using the default behavior for the
current process. This led to inconsistencies, such as only sometimes searching PATH or the current working
directory, and OS functions such as AddDllDirectory having no effect.

In 3.8, the two primary ways DLLs are loaded now explicitly override the process-wide behavior to ensure
consistency. See the porting notes for information on updating libraries.

os.execl(path, arg0, arg1, ...)
os.execle(path, arg0, arg1, ..., env)
os.execlp(file, arg0, arg1, ...)
os.execlpe(file, arg0, arg1, ..., env)
os.execv(path, args)
os.execve(path, args, env)
os.execvp(file, args)
os.execvpe(file, args, env)

These functions all execute a new program, replacing the current process; they do not return. On Unix, the
new executable is loaded into the current process, and will have the same process id as the caller. Errors will
be reported as OSError exceptions.

16.1. os—Miscellaneous operating system interfaces 701

https://msdn.microsoft.com/44228cf2-6306-466c-8f16-f513cd3ba8b5

The Python Library Reference, Release 3.13.1

The current process is replaced immediately. Open file objects and descriptors are not flushed, so if there may
be data buffered on these open files, you should flush them using sys.stdout.flush() or os.fsync()
before calling an exec* function.

The “l” and “v” variants of the exec* functions differ in how command-line arguments are passed. The “l”
variants are perhaps the easiest to work with if the number of parameters is fixed when the code is written;
the individual parameters simply become additional parameters to the execl*() functions. The “v” variants
are good when the number of parameters is variable, with the arguments being passed in a list or tuple as the
args parameter. In either case, the arguments to the child process should start with the name of the command
being run, but this is not enforced.

The variants which include a “p” near the end (execlp(), execlpe(), execvp(), and execvpe()) will
use the PATH environment variable to locate the program file. When the environment is being replaced (using
one of the exec*e variants, discussed in the next paragraph), the new environment is used as the source of the
PATH variable. The other variants, execl(), execle(), execv(), and execve(), will not use the PATH
variable to locate the executable; path must contain an appropriate absolute or relative path. Relative paths
must include at least one slash, even on Windows, as plain names will not be resolved.

For execle(), execlpe(), execve(), and execvpe() (note that these all end in “e”), the env parameter
must be a mapping which is used to define the environment variables for the new process (these are used instead
of the current process’ environment); the functions execl(), execlp(), execv(), and execvp() all cause
the new process to inherit the environment of the current process.

For execve() on some platforms, path may also be specified as an open file descriptor. This functionality
may not be supported on your platform; you can check whether or not it is available using os.supports_fd.
If it is unavailable, using it will raise a NotImplementedError.

Raises an auditing event os.exec with arguments path, args, env.

Availability: Unix, Windows, not WASI, not Android, not iOS.

Changed in version 3.3: Added support for specifying path as an open file descriptor for execve().

Changed in version 3.6: Accepts a path-like object.

os._exit(n)
Exit the process with status n, without calling cleanup handlers, flushing stdio buffers, etc.

Note

The standard way to exit is sys.exit(n). _exit() should normally only be used in the child process
after a fork().

The following exit codes are defined and can be used with _exit(), although they are not required. These are
typically used for system programs written in Python, such as a mail server’s external command delivery program.

Note

Some of these may not be available on all Unix platforms, since there is some variation. These constants are
defined where they are defined by the underlying platform.

os.EX_OK

Exit code that means no error occurred. May be taken from the defined value of EXIT_SUCCESS on some
platforms. Generally has a value of zero.

Availability: Unix, Windows.

os.EX_USAGE

Exit code that means the command was used incorrectly, such as when the wrong number of arguments are
given.

Availability: Unix, not WASI.

702 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

os.EX_DATAERR

Exit code that means the input data was incorrect.

Availability: Unix, not WASI.

os.EX_NOINPUT

Exit code that means an input file did not exist or was not readable.

Availability: Unix, not WASI.

os.EX_NOUSER

Exit code that means a specified user did not exist.

Availability: Unix, not WASI.

os.EX_NOHOST

Exit code that means a specified host did not exist.

Availability: Unix, not WASI.

os.EX_UNAVAILABLE

Exit code that means that a required service is unavailable.

Availability: Unix, not WASI.

os.EX_SOFTWARE

Exit code that means an internal software error was detected.

Availability: Unix, not WASI.

os.EX_OSERR

Exit code that means an operating system error was detected, such as the inability to fork or create a pipe.

Availability: Unix, not WASI.

os.EX_OSFILE

Exit code that means some system file did not exist, could not be opened, or had some other kind of error.

Availability: Unix, not WASI.

os.EX_CANTCREAT

Exit code that means a user specified output file could not be created.

Availability: Unix, not WASI.

os.EX_IOERR

Exit code that means that an error occurred while doing I/O on some file.

Availability: Unix, not WASI.

os.EX_TEMPFAIL

Exit code that means a temporary failure occurred. This indicates something that may not really be an error,
such as a network connection that couldn’t be made during a retryable operation.

Availability: Unix, not WASI.

os.EX_PROTOCOL

Exit code that means that a protocol exchange was illegal, invalid, or not understood.

Availability: Unix, not WASI.

os.EX_NOPERM

Exit code that means that there were insufficient permissions to perform the operation (but not intended for
file system problems).

Availability: Unix, not WASI.

16.1. os—Miscellaneous operating system interfaces 703

The Python Library Reference, Release 3.13.1

os.EX_CONFIG

Exit code that means that some kind of configuration error occurred.

Availability: Unix, not WASI.

os.EX_NOTFOUND

Exit code that means something like “an entry was not found”.

Availability: Unix, not WASI.

os.fork()

Fork a child process. Return 0 in the child and the child’s process id in the parent. If an error occurs OSError
is raised.

Note that some platforms including FreeBSD <= 6.3 and Cygwin have known issues when using fork() from
a thread.

Raises an auditing event os.fork with no arguments.

Warning

If you use TLS sockets in an application calling fork(), see the warning in the ssl documentation.

Warning

On macOS the use of this function is unsafe when mixed with using higher-level system APIs, and that
includes using urllib.request.

Changed in version 3.8: Calling fork() in a subinterpreter is no longer supported (RuntimeError is raised).

Changed in version 3.12: If Python is able to detect that your process has multiple threads, os.fork() now
raises a DeprecationWarning.

We chose to surface this as a warning, when detectable, to better inform developers of a design problem that
the POSIX platform specifically notes as not supported. Even in code that appears to work, it has never been
safe to mix threading with os.fork() on POSIX platforms. The CPython runtime itself has always made
API calls that are not safe for use in the child process when threads existed in the parent (such as malloc and
free).

Users of macOS or users of libc or malloc implementations other than those typically found in glibc to date
are among those already more likely to experience deadlocks running such code.

See this discussion on fork being incompatible with threads for technical details of why we’re surfacing this
longstanding platform compatibility problem to developers.

Availability: POSIX, not WASI, not Android, not iOS.

os.forkpty()

Fork a child process, using a new pseudo-terminal as the child’s controlling terminal. Return a pair of (pid,
fd), where pid is 0 in the child, the new child’s process id in the parent, and fd is the file descriptor of the
master end of the pseudo-terminal. For a more portable approach, use the pty module. If an error occurs
OSError is raised.

Raises an auditing event os.forkpty with no arguments.

Warning

On macOS the use of this function is unsafe when mixed with using higher-level system APIs, and that
includes using urllib.request.

704 Chapter 16. Generic Operating System Services

https://discuss.python.org/t/33555

The Python Library Reference, Release 3.13.1

Changed in version 3.8: Calling forkpty() in a subinterpreter is no longer supported (RuntimeError is
raised).

Changed in version 3.12: If Python is able to detect that your process has multiple threads, this now raises a
DeprecationWarning. See the longer explanation on os.fork().

Availability: Unix, not WASI, not Android, not iOS.

os.kill(pid, sig, /)
Send signal sig to the process pid. Constants for the specific signals available on the host platform are defined
in the signal module.

Windows: The signal.CTRL_C_EVENT and signal.CTRL_BREAK_EVENT signals are special signals which
can only be sent to console processes which share a common console window, e.g., some subprocesses. Any
other value for sig will cause the process to be unconditionally killed by the TerminateProcess API, and the
exit code will be set to sig.

See also signal.pthread_kill().

Raises an auditing event os.kill with arguments pid, sig.

Availability: Unix, Windows, not WASI, not iOS.

Changed in version 3.2: Added Windows support.

os.killpg(pgid, sig, /)
Send the signal sig to the process group pgid.

Raises an auditing event os.killpg with arguments pgid, sig.

Availability: Unix, not WASI, not iOS.

os.nice(increment, /)
Add increment to the process’s “niceness”. Return the new niceness.

Availability: Unix, not WASI.

os.pidfd_open(pid, flags=0)
Return a file descriptor referring to the process pid with flags set. This descriptor can be used to perform
process management without races and signals.

See the pidfd_open(2) man page for more details.

Availability: Linux >= 5.3, Android >= build-time API level 31

Added in version 3.9.

os.PIDFD_NONBLOCK

This flag indicates that the file descriptor will be non-blocking. If the process referred to by the file
descriptor has not yet terminated, then an attempt to wait on the file descriptor using waitid(2) will
immediately return the error EAGAIN rather than blocking.

Availability: Linux >= 5.10

Added in version 3.12.

os.plock(op, /)
Lock program segments into memory. The value of op (defined in <sys/lock.h>) determines which seg-
ments are locked.

Availability: Unix, not WASI, not iOS.

os.popen(cmd, mode=’r’, buffering=-1)
Open a pipe to or from command cmd. The return value is an open file object connected to the pipe, which
can be read or written depending on whether mode is 'r' (default) or 'w'. The buffering argument have the
same meaning as the corresponding argument to the built-in open() function. The returned file object reads
or writes text strings rather than bytes.

16.1. os—Miscellaneous operating system interfaces 705

https://manpages.debian.org/pidfd_open(2)
https://manpages.debian.org/waitid(2)

The Python Library Reference, Release 3.13.1

The closemethod returns None if the subprocess exited successfully, or the subprocess’s return code if there
was an error. On POSIX systems, if the return code is positive it represents the return value of the process left-
shifted by one byte. If the return code is negative, the process was terminated by the signal given by the negated
value of the return code. (For example, the return value might be - signal.SIGKILL if the subprocess was
killed.) On Windows systems, the return value contains the signed integer return code from the child process.

On Unix, waitstatus_to_exitcode() can be used to convert the close method result (exit status) into
an exit code if it is not None. On Windows, the close method result is directly the exit code (or None).

This is implemented using subprocess.Popen; see that class’s documentation for more powerful ways to
manage and communicate with subprocesses.

Availability: not WASI, not Android, not iOS.

Note

The Python UTF-8 Mode affects encodings used for cmd and pipe contents.

popen() is a simple wrapper around subprocess.Popen. Use subprocess.Popen or subprocess.
run() to control options like encodings.

os.posix_spawn(path, argv, env, *, file_actions=None, setpgroup=None, resetids=False, setsid=False,
setsigmask=(), setsigdef=(), scheduler=None)

Wraps the posix_spawn() C library API for use from Python.

Most users should use subprocess.run() instead of posix_spawn().

The positional-only arguments path, args, and env are similar to execve(). env is allowed to be None, in
which case current process’ environment is used.

The path parameter is the path to the executable file. The path should contain a directory. Use
posix_spawnp() to pass an executable file without directory.

The file_actions argument may be a sequence of tuples describing actions to take on specific file descriptors
in the child process between the C library implementation’s fork() and exec() steps. The first item in each
tuple must be one of the three type indicator listed below describing the remaining tuple elements:

os.POSIX_SPAWN_OPEN

(os.POSIX_SPAWN_OPEN, fd, path, flags, mode)

Performs os.dup2(os.open(path, flags, mode), fd).

os.POSIX_SPAWN_CLOSE

(os.POSIX_SPAWN_CLOSE, fd)

Performs os.close(fd).

os.POSIX_SPAWN_DUP2

(os.POSIX_SPAWN_DUP2, fd, new_fd)

Performs os.dup2(fd, new_fd).

os.POSIX_SPAWN_CLOSEFROM

(os.POSIX_SPAWN_CLOSEFROM, fd)

Performs os.closerange(fd, INF).

These tuples correspond to the C library posix_spawn_file_actions_addopen(),
posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(), and
posix_spawn_file_actions_addclosefrom_np() API calls used to prepare for the posix_spawn()
call itself.

The setpgroup argument will set the process group of the child to the value specified. If the value speci-
fied is 0, the child’s process group ID will be made the same as its process ID. If the value of setpgroup

706 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

is not set, the child will inherit the parent’s process group ID. This argument corresponds to the C library
POSIX_SPAWN_SETPGROUP flag.

If the resetids argument is True it will reset the effective UID and GID of the child to the real UID and GID
of the parent process. If the argument is False, then the child retains the effective UID and GID of the
parent. In either case, if the set-user-ID and set-group-ID permission bits are enabled on the executable file,
their effect will override the setting of the effective UID and GID. This argument corresponds to the C library
POSIX_SPAWN_RESETIDS flag.

If the setsid argument is True, it will create a new session ID for posix_spawn. setsid requires
POSIX_SPAWN_SETSID or POSIX_SPAWN_SETSID_NP flag. Otherwise, NotImplementedError is raised.

The setsigmask argument will set the signal mask to the signal set specified. If the parameter is not
used, then the child inherits the parent’s signal mask. This argument corresponds to the C library
POSIX_SPAWN_SETSIGMASK flag.

The sigdef argument will reset the disposition of all signals in the set specified. This argument corresponds to
the C library POSIX_SPAWN_SETSIGDEF flag.

The scheduler argument must be a tuple containing the (optional) scheduler policy and an instance of
sched_param with the scheduler parameters. A value of None in the place of the scheduler policy indicates
that is not being provided. This argument is a combination of the C library POSIX_SPAWN_SETSCHEDPARAM
and POSIX_SPAWN_SETSCHEDULER flags.

Raises an auditing event os.posix_spawn with arguments path, argv, env.

Added in version 3.8.

Changed in version 3.13: env parameter accepts None. os.POSIX_SPAWN_CLOSEFROM is available on plat-
forms where posix_spawn_file_actions_addclosefrom_np() exists.

Availability: Unix, not WASI, not Android, not iOS.

os.posix_spawnp(path, argv, env, *, file_actions=None, setpgroup=None, resetids=False, setsid=False,
setsigmask=(), setsigdef=(), scheduler=None)

Wraps the posix_spawnp() C library API for use from Python.

Similar to posix_spawn() except that the system searches for the executable file in the list of directories
specified by the PATH environment variable (in the same way as for execvp(3)).

Raises an auditing event os.posix_spawn with arguments path, argv, env.

Added in version 3.8.

Availability: POSIX, not WASI, not Android, not iOS.

See posix_spawn() documentation.

os.register_at_fork(*, before=None, after_in_parent=None, after_in_child=None)
Register callables to be executed when a new child process is forked using os.fork() or similar process
cloning APIs. The parameters are optional and keyword-only. Each specifies a different call point.

• before is a function called before forking a child process.

• after_in_parent is a function called from the parent process after forking a child process.

• after_in_child is a function called from the child process.

These calls are only made if control is expected to return to the Python interpreter. A typical subprocess
launch will not trigger them as the child is not going to re-enter the interpreter.

Functions registered for execution before forking are called in reverse registration order. Functions registered
for execution after forking (either in the parent or in the child) are called in registration order.

Note that fork() calls made by third-party C code may not call those functions, unless it explicitly calls
PyOS_BeforeFork(), PyOS_AfterFork_Parent() and PyOS_AfterFork_Child().

There is no way to unregister a function.

Availability: Unix, not WASI, not Android, not iOS.

16.1. os—Miscellaneous operating system interfaces 707

The Python Library Reference, Release 3.13.1

Added in version 3.7.

os.spawnl(mode, path, ...)
os.spawnle(mode, path, ..., env)
os.spawnlp(mode, file, ...)
os.spawnlpe(mode, file, ..., env)
os.spawnv(mode, path, args)
os.spawnve(mode, path, args, env)
os.spawnvp(mode, file, args)
os.spawnvpe(mode, file, args, env)

Execute the program path in a new process.

(Note that the subprocessmodule provides more powerful facilities for spawning new processes and retriev-
ing their results; using that module is preferable to using these functions. Check especially the Replacing Older
Functions with the subprocess Module section.)

If mode is P_NOWAIT, this function returns the process id of the new process; if mode is P_WAIT, returns
the process’s exit code if it exits normally, or -signal, where signal is the signal that killed the process. On
Windows, the process id will actually be the process handle, so can be used with the waitpid() function.

Note on VxWorks, this function doesn’t return -signal when the new process is killed. Instead it raises
OSError exception.

The “l” and “v” variants of the spawn* functions differ in how command-line arguments are passed. The “l”
variants are perhaps the easiest to work with if the number of parameters is fixed when the code is written; the
individual parameters simply become additional parameters to the spawnl*() functions. The “v” variants are
good when the number of parameters is variable, with the arguments being passed in a list or tuple as the args
parameter. In either case, the arguments to the child process must start with the name of the command being
run.

The variants which include a second “p” near the end (spawnlp(), spawnlpe(), spawnvp(), and
spawnvpe()) will use the PATH environment variable to locate the program file. When the environment
is being replaced (using one of the spawn*e variants, discussed in the next paragraph), the new environ-
ment is used as the source of the PATH variable. The other variants, spawnl(), spawnle(), spawnv(),
and spawnve(), will not use the PATH variable to locate the executable; path must contain an appropriate
absolute or relative path.

For spawnle(), spawnlpe(), spawnve(), and spawnvpe() (note that these all end in “e”), the env pa-
rameter must be a mapping which is used to define the environment variables for the new process (they are
used instead of the current process’ environment); the functions spawnl(), spawnlp(), spawnv(), and
spawnvp() all cause the new process to inherit the environment of the current process. Note that keys and
values in the env dictionary must be strings; invalid keys or values will cause the function to fail, with a return
value of 127.

As an example, the following calls to spawnlp() and spawnvpe() are equivalent:

import os

os.spawnlp(os.P_WAIT, 'cp', 'cp', 'index.html', '/dev/null')

L = ['cp', 'index.html', '/dev/null']

os.spawnvpe(os.P_WAIT, 'cp', L, os.environ)

Raises an auditing event os.spawn with arguments mode, path, args, env.

Availability: Unix, Windows, not WASI, not Android, not iOS.

spawnlp(), spawnlpe(), spawnvp() and spawnvpe() are not available on Windows. spawnle() and
spawnve() are not thread-safe on Windows; we advise you to use the subprocess module instead.

Changed in version 3.6: Accepts a path-like object.

os.P_NOWAIT

708 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

os.P_NOWAITO

Possible values for the mode parameter to the spawn* family of functions. If either of these values is given,
the spawn* functions will return as soon as the new process has been created, with the process id as the return
value.

Availability: Unix, Windows.

os.P_WAIT

Possible value for themode parameter to the spawn* family of functions. If this is given asmode, the spawn*
functions will not return until the new process has run to completion and will return the exit code of the process
the run is successful, or -signal if a signal kills the process.

Availability: Unix, Windows.

os.P_DETACH

os.P_OVERLAY

Possible values for the mode parameter to the spawn* family of functions. These are less portable than those
listed above. P_DETACH is similar to P_NOWAIT, but the new process is detached from the console of the
calling process. If P_OVERLAY is used, the current process will be replaced; the spawn* function will not
return.

Availability: Windows.

os.startfile(path[, operation][, arguments][, cwd][, show_cmd])
Start a file with its associated application.

When operation is not specified, this acts like double-clicking the file in Windows Explorer, or giving the file
name as an argument to the start command from the interactive command shell: the file is opened with
whatever application (if any) its extension is associated.

When another operation is given, it must be a “command verb” that specifies what should be done with the file.
Common verbs documented by Microsoft are 'open', 'print' and 'edit' (to be used on files) as well as
'explore' and 'find' (to be used on directories).

When launching an application, specify arguments to be passed as a single string. This argument may have no
effect when using this function to launch a document.

The default working directory is inherited, but may be overridden by the cwd argument. This should be an
absolute path. A relative path will be resolved against this argument.

Use show_cmd to override the default window style. Whether this has any effect will depend on the application
being launched. Values are integers as supported by the Win32 ShellExecute() function.

startfile() returns as soon as the associated application is launched. There is no option to wait for the
application to close, and no way to retrieve the application’s exit status. The path parameter is relative to the
current directory or cwd. If you want to use an absolute path, make sure the first character is not a slash ('/')
Use pathlib or the os.path.normpath() function to ensure that paths are properly encoded for Win32.

To reduce interpreter startup overhead, the Win32 ShellExecute() function is not resolved until this func-
tion is first called. If the function cannot be resolved, NotImplementedError will be raised.

Raises an auditing event os.startfile with arguments path, operation.

Raises an auditing event os.startfile/2 with arguments path, operation, arguments, cwd,
show_cmd.

Availability: Windows.

Changed in version 3.10: Added the arguments, cwd and show_cmd arguments, and the os.startfile/2
audit event.

os.system(command)
Execute the command (a string) in a subshell. This is implemented by calling the Standard C function
system(), and has the same limitations. Changes to sys.stdin, etc. are not reflected in the environ-
ment of the executed command. If command generates any output, it will be sent to the interpreter standard

16.1. os—Miscellaneous operating system interfaces 709

The Python Library Reference, Release 3.13.1

output stream. The C standard does not specify the meaning of the return value of the C function, so the return
value of the Python function is system-dependent.

On Unix, the return value is the exit status of the process encoded in the format specified for wait().

On Windows, the return value is that returned by the system shell after running command. The shell is given
by the Windows environment variable COMSPEC: it is usually cmd.exe, which returns the exit status of the
command run; on systems using a non-native shell, consult your shell documentation.

The subprocess module provides more powerful facilities for spawning new processes and retrieving their
results; using that module is preferable to using this function. See the Replacing Older Functions with the
subprocess Module section in the subprocess documentation for some helpful recipes.

On Unix, waitstatus_to_exitcode() can be used to convert the result (exit status) into an exit code. On
Windows, the result is directly the exit code.

Raises an auditing event os.system with argument command.

Availability: Unix, Windows, not WASI, not Android, not iOS.

os.times()

Returns the current global process times. The return value is an object with five attributes:

• user - user time

• system - system time

• children_user - user time of all child processes

• children_system - system time of all child processes

• elapsed - elapsed real time since a fixed point in the past

For backwards compatibility, this object also behaves like a five-tuple containing user, system,
children_user, children_system, and elapsed in that order.

See the Unix manual page times(2) and times(3) manual page on Unix or the GetProcessTimes MSDN on
Windows. On Windows, only user and system are known; the other attributes are zero.

Availability: Unix, Windows.

Changed in version 3.3: Return type changed from a tuple to a tuple-like object with named attributes.

os.wait()

Wait for completion of a child process, and return a tuple containing its pid and exit status indication: a 16-bit
number, whose low byte is the signal number that killed the process, and whose high byte is the exit status (if
the signal number is zero); the high bit of the low byte is set if a core file was produced.

If there are no children that could be waited for, ChildProcessError is raised.

waitstatus_to_exitcode() can be used to convert the exit status into an exit code.

Availability: Unix, not WASI, not Android, not iOS.

See also

The other wait*() functions documented below can be used to wait for the completion of a specific child
process and have more options. waitpid() is the only one also available on Windows.

os.waitid(idtype, id, options, /)
Wait for the completion of a child process.

idtype can be P_PID, P_PGID, P_ALL, or (on Linux) P_PIDFD. The interpretation of id depends on it; see
their individual descriptions.

options is an OR combination of flags. At least one of WEXITED, WSTOPPED or WCONTINUED is required;
WNOHANG and WNOWAIT are additional optional flags.

710 Chapter 16. Generic Operating System Services

https://manpages.debian.org/times(2)
https://man.freebsd.org/cgi/man.cgi?time(3)
https://docs.microsoft.com/windows/win32/api/processthreadsapi/nf-processthreadsapi-getprocesstimes

The Python Library Reference, Release 3.13.1

The return value is an object representing the data contained in the siginfo_t structure with the following
attributes:

• si_pid (process ID)

• si_uid (real user ID of the child)

• si_signo (always SIGCHLD)

• si_status (the exit status or signal number, depending on si_code)

• si_code (see CLD_EXITED for possible values)

If WNOHANG is specified and there are no matching children in the requested state, None is returned. Otherwise,
if there are no matching children that could be waited for, ChildProcessError is raised.

Availability: Unix, not WASI, not Android, not iOS.

Added in version 3.3.

Changed in version 3.13: This function is now available on macOS as well.

os.waitpid(pid, options, /)
The details of this function differ on Unix and Windows.

On Unix: Wait for completion of a child process given by process id pid, and return a tuple containing its
process id and exit status indication (encoded as for wait()). The semantics of the call are affected by the
value of the integer options, which should be 0 for normal operation.

If pid is greater than 0, waitpid() requests status information for that specific process. If pid is 0, the request
is for the status of any child in the process group of the current process. If pid is -1, the request pertains to
any child of the current process. If pid is less than -1, status is requested for any process in the process group
-pid (the absolute value of pid).

options is an OR combination of flags. If it contains WNOHANG and there are no matching children in the
requested state, (0, 0) is returned. Otherwise, if there are no matching children that could be waited for,
ChildProcessError is raised. Other options that can be used are WUNTRACED and WCONTINUED.

On Windows: Wait for completion of a process given by process handle pid, and return a tuple containing pid,
and its exit status shifted left by 8 bits (shifting makes cross-platform use of the function easier). A pid less
than or equal to 0 has no special meaning on Windows, and raises an exception. The value of integer options
has no effect. pid can refer to any process whose id is known, not necessarily a child process. The spawn*
functions called with P_NOWAIT return suitable process handles.

waitstatus_to_exitcode() can be used to convert the exit status into an exit code.

Availability: Unix, Windows, not WASI, not Android, not iOS.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the
function now retries the system call instead of raising an InterruptedError exception (see PEP 475 for
the rationale).

os.wait3(options)

Similar to waitpid(), except no process id argument is given and a 3-element tuple containing the child’s pro-
cess id, exit status indication, and resource usage information is returned. Refer to resource.getrusage()
for details on resource usage information. The options argument is the same as that provided to waitpid()
and wait4().

waitstatus_to_exitcode() can be used to convert the exit status into an exitcode.

Availability: Unix, not WASI, not Android, not iOS.

os.wait4(pid, options)
Similar to waitpid(), except a 3-element tuple, containing the child’s process id, exit status indication, and
resource usage information is returned. Refer to resource.getrusage() for details on resource usage
information. The arguments to wait4() are the same as those provided to waitpid().

waitstatus_to_exitcode() can be used to convert the exit status into an exitcode.

16.1. os—Miscellaneous operating system interfaces 711

https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.13.1

Availability: Unix, not WASI, not Android, not iOS.

os.P_PID

os.P_PGID

os.P_ALL

os.P_PIDFD

These are the possible values for idtype in waitid(). They affect how id is interpreted:

• P_PID - wait for the child whose PID is id.

• P_PGID - wait for any child whose progress group ID is id.

• P_ALL - wait for any child; id is ignored.

• P_PIDFD - wait for the child identified by the file descriptor id (a process file descriptor created with
pidfd_open()).

Availability: Unix, not WASI, not Android, not iOS.

Note

P_PIDFD is only available on Linux >= 5.4.

Added in version 3.3.

Added in version 3.9: The P_PIDFD constant.

os.WCONTINUED

This options flag for waitpid(), wait3(), wait4(), and waitid() causes child processes to be reported
if they have been continued from a job control stop since they were last reported.

Availability: Unix, not WASI, not Android, not iOS.

os.WEXITED

This options flag for waitid() causes child processes that have terminated to be reported.

The other wait* functions always report children that have terminated, so this option is not available for them.

Availability: Unix, not WASI, not Android, not iOS.

Added in version 3.3.

os.WSTOPPED

This options flag for waitid() causes child processes that have been stopped by the delivery of a signal to be
reported.

This option is not available for the other wait* functions.

Availability: Unix, not WASI, not Android, not iOS.

Added in version 3.3.

os.WUNTRACED

This options flag for waitpid(), wait3(), and wait4() causes child processes to also be reported if they
have been stopped but their current state has not been reported since they were stopped.

This option is not available for waitid().

Availability: Unix, not WASI, not Android, not iOS.

os.WNOHANG

This options flag causes waitpid(), wait3(), wait4(), and waitid() to return right away if no child
process status is available immediately.

Availability: Unix, not WASI, not Android, not iOS.

712 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

os.WNOWAIT

This options flag causes waitid() to leave the child in a waitable state, so that a later wait*() call can be
used to retrieve the child status information again.

This option is not available for the other wait* functions.

Availability: Unix, not WASI, not Android, not iOS.

os.CLD_EXITED

os.CLD_KILLED

os.CLD_DUMPED

os.CLD_TRAPPED

os.CLD_STOPPED

os.CLD_CONTINUED

These are the possible values for si_code in the result returned by waitid().

Availability: Unix, not WASI, not Android, not iOS.

Added in version 3.3.

Changed in version 3.9: Added CLD_KILLED and CLD_STOPPED values.

os.waitstatus_to_exitcode(status)
Convert a wait status to an exit code.

On Unix:

• If the process exited normally (if WIFEXITED(status) is true), return the process exit status (return
WEXITSTATUS(status)): result greater than or equal to 0.

• If the process was terminated by a signal (if WIFSIGNALED(status) is true), return -signum where
signum is the number of the signal that caused the process to terminate (return -WTERMSIG(status)):
result less than 0.

• Otherwise, raise a ValueError.

On Windows, return status shifted right by 8 bits.

On Unix, if the process is being traced or if waitpid() was called with WUNTRACED option, the caller must
first check if WIFSTOPPED(status) is true. This function must not be called if WIFSTOPPED(status) is
true.

See also

WIFEXITED(), WEXITSTATUS(), WIFSIGNALED(), WTERMSIG(), WIFSTOPPED(), WSTOPSIG()
functions.

Availability: Unix, Windows, not WASI, not Android, not iOS.

Added in version 3.9.

The following functions take a process status code as returned by system(), wait(), or waitpid() as a parameter.
They may be used to determine the disposition of a process.

os.WCOREDUMP(status, /)
Return True if a core dump was generated for the process, otherwise return False.

This function should be employed only if WIFSIGNALED() is true.

Availability: Unix, not WASI, not Android, not iOS.

16.1. os—Miscellaneous operating system interfaces 713

The Python Library Reference, Release 3.13.1

os.WIFCONTINUED(status)
Return True if a stopped child has been resumed by delivery of SIGCONT (if the process has been continued
from a job control stop), otherwise return False.

See WCONTINUED option.

Availability: Unix, not WASI, not Android, not iOS.

os.WIFSTOPPED(status)
Return True if the process was stopped by delivery of a signal, otherwise return False.

WIFSTOPPED() only returns True if the waitpid() call was done using WUNTRACED option or when the
process is being traced (see ptrace(2)).

Availability: Unix, not WASI, not Android, not iOS.

os.WIFSIGNALED(status)

Return True if the process was terminated by a signal, otherwise return False.

Availability: Unix, not WASI, not Android, not iOS.

os.WIFEXITED(status)
Return True if the process exited terminated normally, that is, by calling exit() or _exit(), or by returning
from main(); otherwise return False.

Availability: Unix, not WASI, not Android, not iOS.

os.WEXITSTATUS(status)
Return the process exit status.

This function should be employed only if WIFEXITED() is true.

Availability: Unix, not WASI, not Android, not iOS.

os.WSTOPSIG(status)
Return the signal which caused the process to stop.

This function should be employed only if WIFSTOPPED() is true.

Availability: Unix, not WASI, not Android, not iOS.

os.WTERMSIG(status)
Return the number of the signal that caused the process to terminate.

This function should be employed only if WIFSIGNALED() is true.

Availability: Unix, not WASI, not Android, not iOS.

16.1.8 Interface to the scheduler

These functions control how a process is allocated CPU time by the operating system. They are only available on
some Unix platforms. For more detailed information, consult your Unix manpages.

Added in version 3.3.

The following scheduling policies are exposed if they are supported by the operating system.

os.SCHED_OTHER

The default scheduling policy.

os.SCHED_BATCH

Scheduling policy for CPU-intensive processes that tries to preserve interactivity on the rest of the computer.

os.SCHED_IDLE

Scheduling policy for extremely low priority background tasks.

714 Chapter 16. Generic Operating System Services

https://manpages.debian.org/ptrace(2)

The Python Library Reference, Release 3.13.1

os.SCHED_SPORADIC

Scheduling policy for sporadic server programs.

os.SCHED_FIFO

A First In First Out scheduling policy.

os.SCHED_RR

A round-robin scheduling policy.

os.SCHED_RESET_ON_FORK

This flag can be OR’ed with any other scheduling policy. When a process with this flag set forks, its child’s
scheduling policy and priority are reset to the default.

class os.sched_param(sched_priority)

This class represents tunable scheduling parameters used in sched_setparam(),
sched_setscheduler(), and sched_getparam(). It is immutable.

At the moment, there is only one possible parameter:

sched_priority

The scheduling priority for a scheduling policy.

os.sched_get_priority_min(policy)

Get the minimum priority value for policy. policy is one of the scheduling policy constants above.

os.sched_get_priority_max(policy)
Get the maximum priority value for policy. policy is one of the scheduling policy constants above.

os.sched_setscheduler(pid, policy, param, /)
Set the scheduling policy for the process with PID pid. A pid of 0 means the calling process. policy is one of
the scheduling policy constants above. param is a sched_param instance.

os.sched_getscheduler(pid, /)
Return the scheduling policy for the process with PID pid. A pid of 0 means the calling process. The result is
one of the scheduling policy constants above.

os.sched_setparam(pid, param, /)
Set the scheduling parameters for the process with PID pid. A pid of 0 means the calling process. param is a
sched_param instance.

os.sched_getparam(pid, /)
Return the scheduling parameters as a sched_param instance for the process with PID pid. A pid of 0 means
the calling process.

os.sched_rr_get_interval(pid, /)
Return the round-robin quantum in seconds for the process with PID pid. A pid of 0 means the calling process.

os.sched_yield()

Voluntarily relinquish the CPU.

os.sched_setaffinity(pid, mask, /)
Restrict the process with PID pid (or the current process if zero) to a set of CPUs. mask is an iterable of
integers representing the set of CPUs to which the process should be restricted.

os.sched_getaffinity(pid, /)
Return the set of CPUs the process with PID pid is restricted to.

If pid is zero, return the set of CPUs the calling thread of the current process is restricted to.

See also the process_cpu_count() function.

16.1. os—Miscellaneous operating system interfaces 715

The Python Library Reference, Release 3.13.1

16.1.9 Miscellaneous System Information

os.confstr(name, /)
Return string-valued system configuration values. name specifies the configuration value to retrieve; it may
be a string which is the name of a defined system value; these names are specified in a number of standards
(POSIX, Unix 95, Unix 98, and others). Some platforms define additional names as well. The names known to
the host operating system are given as the keys of the confstr_names dictionary. For configuration variables
not included in that mapping, passing an integer for name is also accepted.

If the configuration value specified by name isn’t defined, None is returned.

If name is a string and is not known, ValueError is raised. If a specific value for name is not supported by
the host system, even if it is included in confstr_names, an OSError is raised with errno.EINVAL for the
error number.

Availability: Unix.

os.confstr_names

Dictionary mapping names accepted by confstr() to the integer values defined for those names by the host
operating system. This can be used to determine the set of names known to the system.

Availability: Unix.

os.cpu_count()

Return the number of logical CPUs in the system. Returns None if undetermined.

The process_cpu_count() function can be used to get the number of logical CPUs usable by the calling
thread of the current process.

Added in version 3.4.

Changed in version 3.13: If -X cpu_count is given or PYTHON_CPU_COUNT is set, cpu_count() returns
the overridden value n.

os.getloadavg()

Return the number of processes in the system run queue averaged over the last 1, 5, and 15 minutes or raises
OSError if the load average was unobtainable.

Availability: Unix.

os.process_cpu_count()

Get the number of logical CPUs usable by the calling thread of the current process. Returns None if unde-
termined. It can be less than cpu_count() depending on the CPU affinity.

The cpu_count() function can be used to get the number of logical CPUs in the system.

If -X cpu_count is given or PYTHON_CPU_COUNT is set, process_cpu_count() returns the overridden
value n.

See also the sched_getaffinity() function.

Added in version 3.13.

os.sysconf(name, /)
Return integer-valued system configuration values. If the configuration value specified by name isn’t defined,
-1 is returned. The comments regarding the name parameter for confstr() apply here as well; the dictionary
that provides information on the known names is given by sysconf_names.

Availability: Unix.

os.sysconf_names

Dictionary mapping names accepted by sysconf() to the integer values defined for those names by the host
operating system. This can be used to determine the set of names known to the system.

Availability: Unix.

Changed in version 3.11: Add 'SC_MINSIGSTKSZ' name.

716 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

The following data values are used to support path manipulation operations. These are defined for all platforms.

Higher-level operations on pathnames are defined in the os.path module.

os.curdir

The constant string used by the operating system to refer to the current directory. This is '.' for Windows
and POSIX. Also available via os.path.

os.pardir

The constant string used by the operating system to refer to the parent directory. This is '..' for Windows
and POSIX. Also available via os.path.

os.sep

The character used by the operating system to separate pathname components. This is '/' for POSIX and
'\\' for Windows. Note that knowing this is not sufficient to be able to parse or concatenate pathnames —
use os.path.split() and os.path.join()— but it is occasionally useful. Also available via os.path.

os.altsep

An alternative character used by the operating system to separate pathname components, or None if only one
separator character exists. This is set to '/' on Windows systems where sep is a backslash. Also available
via os.path.

os.extsep

The character which separates the base filename from the extension; for example, the '.' in os.py. Also
available via os.path.

os.pathsep

The character conventionally used by the operating system to separate search path components (as in PATH),
such as ':' for POSIX or ';' for Windows. Also available via os.path.

os.defpath

The default search path used by exec*p* and spawn*p* if the environment doesn’t have a 'PATH' key. Also
available via os.path.

os.linesep

The string used to separate (or, rather, terminate) lines on the current platform. This may be a single character,
such as '\n' for POSIX, or multiple characters, for example, '\r\n' for Windows. Do not use os.linesep as a
line terminator when writing files opened in text mode (the default); use a single '\n' instead, on all platforms.

os.devnull

The file path of the null device. For example: '/dev/null' for POSIX, 'nul' for Windows. Also available
via os.path.

os.RTLD_LAZY

os.RTLD_NOW

os.RTLD_GLOBAL

os.RTLD_LOCAL

os.RTLD_NODELETE

os.RTLD_NOLOAD

os.RTLD_DEEPBIND

Flags for use with the setdlopenflags() and getdlopenflags() functions. See the Unix manual page
dlopen(3) for what the different flags mean.

Added in version 3.3.

16.1.10 Random numbers

16.1. os—Miscellaneous operating system interfaces 717

https://manpages.debian.org/dlopen(3)

The Python Library Reference, Release 3.13.1

os.getrandom(size, flags=0)
Get up to size random bytes. The function can return less bytes than requested.

These bytes can be used to seed user-space random number generators or for cryptographic purposes.

getrandom() relies on entropy gathered from device drivers and other sources of environmental noise. Un-
necessarily reading large quantities of data will have a negative impact on other users of the /dev/random
and /dev/urandom devices.

The flags argument is a bit mask that can contain zero or more of the following values ORed together: os.
GRND_RANDOM and GRND_NONBLOCK.

See also the Linux getrandom() manual page.

Availability: Linux >= 3.17.

Added in version 3.6.

os.urandom(size, /)
Return a bytestring of size random bytes suitable for cryptographic use.

This function returns random bytes from an OS-specific randomness source. The returned data should be un-
predictable enough for cryptographic applications, though its exact quality depends on the OS implementation.

On Linux, if the getrandom() syscall is available, it is used in blockingmode: block until the system urandom
entropy pool is initialized (128 bits of entropy are collected by the kernel). See the PEP 524 for the rationale.
On Linux, the getrandom() function can be used to get random bytes in non-blocking mode (using the
GRND_NONBLOCK flag) or to poll until the system urandom entropy pool is initialized.

On a Unix-like system, random bytes are read from the /dev/urandom device. If the /dev/urandom device
is not available or not readable, the NotImplementedError exception is raised.

On Windows, it will use BCryptGenRandom().

See also

The secrets module provides higher level functions. For an easy-to-use interface to the random number
generator provided by your platform, please see random.SystemRandom.

Changed in version 3.5: On Linux 3.17 and newer, the getrandom() syscall is now used when available. On
OpenBSD 5.6 and newer, the C getentropy() function is now used. These functions avoid the usage of an
internal file descriptor.

Changed in version 3.5.2: On Linux, if the getrandom() syscall blocks (the urandom entropy pool is not
initialized yet), fall back on reading /dev/urandom.

Changed in version 3.6: On Linux, getrandom() is now used in blocking mode to increase the security.

Changed in version 3.11: OnWindows, BCryptGenRandom() is used instead of CryptGenRandom()which
is deprecated.

os.GRND_NONBLOCK

By default, when reading from /dev/random, getrandom() blocks if no random bytes are available, and
when reading from /dev/urandom, it blocks if the entropy pool has not yet been initialized.

If the GRND_NONBLOCK flag is set, then getrandom() does not block in these cases, but instead immediately
raises BlockingIOError.

Added in version 3.6.

os.GRND_RANDOM

If this bit is set, then random bytes are drawn from the /dev/random pool instead of the /dev/urandom
pool.

Added in version 3.6.

718 Chapter 16. Generic Operating System Services

https://man7.org/linux/man-pages/man2/getrandom.2.html
https://peps.python.org/pep-0524/

The Python Library Reference, Release 3.13.1

16.2 io— Core tools for working with streams

Source code: Lib/io.py

16.2.1 Overview

The iomodule provides Python’s main facilities for dealing with various types of I/O. There are three main types of
I/O: text I/O, binary I/O and raw I/O. These are generic categories, and various backing stores can be used for each of
them. A concrete object belonging to any of these categories is called a file object. Other common terms are stream
and file-like object.

Independent of its category, each concrete stream object will also have various capabilities: it can be read-only, write-
only, or read-write. It can also allow arbitrary random access (seeking forwards or backwards to any location), or
only sequential access (for example in the case of a socket or pipe).

All streams are careful about the type of data you give to them. For example giving a str object to the write()
method of a binary stream will raise a TypeError. So will giving a bytes object to the write() method of a text
stream.

Changed in version 3.3: Operations that used to raise IOError now raise OSError, since IOError is now an alias
of OSError.

Text I/O

Text I/O expects and produces str objects. This means that whenever the backing store is natively made of bytes
(such as in the case of a file), encoding and decoding of data is made transparently as well as optional translation of
platform-specific newline characters.

The easiest way to create a text stream is with open(), optionally specifying an encoding:

f = open("myfile.txt", "r", encoding="utf-8")

In-memory text streams are also available as StringIO objects:

f = io.StringIO("some initial text data")

The text stream API is described in detail in the documentation of TextIOBase.

Binary I/O

Binary I/O (also called buffered I/O) expects bytes-like objects and produces bytes objects. No encoding, decoding,
or newline translation is performed. This category of streams can be used for all kinds of non-text data, and also
when manual control over the handling of text data is desired.

The easiest way to create a binary stream is with open() with 'b' in the mode string:

f = open("myfile.jpg", "rb")

In-memory binary streams are also available as BytesIO objects:

f = io.BytesIO(b"some initial binary data: \x00\x01")

The binary stream API is described in detail in the docs of BufferedIOBase.

Other library modules may provide additional ways to create text or binary streams. See socket.socket.

makefile() for example.

16.2. io— Core tools for working with streams 719

https://github.com/python/cpython/tree/3.13/Lib/io.py

The Python Library Reference, Release 3.13.1

Raw I/O

Raw I/O (also called unbuffered I/O) is generally used as a low-level building-block for binary and text streams; it
is rarely useful to directly manipulate a raw stream from user code. Nevertheless, you can create a raw stream by
opening a file in binary mode with buffering disabled:

f = open("myfile.jpg", "rb", buffering=0)

The raw stream API is described in detail in the docs of RawIOBase.

16.2.2 Text Encoding

The default encoding of TextIOWrapper and open() is locale-specific (locale.getencoding()).

However, many developers forget to specify the encoding when opening text files encoded in UTF-8 (e.g. JSON,
TOML, Markdown, etc…) since most Unix platforms use UTF-8 locale by default. This causes bugs because the
locale encoding is not UTF-8 for most Windows users. For example:

May not work on Windows when non-ASCII characters in the file.

with open("README.md") as f:

long_description = f.read()

Accordingly, it is highly recommended that you specify the encoding explicitly when opening text files. If you want
to use UTF-8, pass encoding="utf-8". To use the current locale encoding, encoding="locale" is supported
since Python 3.10.

See also

Python UTF-8 Mode
Python UTF-8 Mode can be used to change the default encoding to UTF-8 from locale-specific encoding.

PEP 686
Python 3.15 will make Python UTF-8 Mode default.

Opt-in EncodingWarning

Added in version 3.10: See PEP 597 for more details.

To find where the default locale encoding is used, you can enable the -X warn_default_encoding command line
option or set the PYTHONWARNDEFAULTENCODING environment variable, which will emit an EncodingWarning
when the default encoding is used.

If you are providing an API that uses open() or TextIOWrapper and passes encoding=None as a parameter,
you can use text_encoding() so that callers of the API will emit an EncodingWarning if they don’t pass an
encoding. However, please consider using UTF-8 by default (i.e. encoding="utf-8") for new APIs.

16.2.3 High-level Module Interface

io.DEFAULT_BUFFER_SIZE

An int containing the default buffer size used by the module’s buffered I/O classes. open() uses the file’s
blksize (as obtained by os.stat()) if possible.

io.open(file, mode=’r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)
This is an alias for the builtin open() function.

This function raises an auditing event openwith arguments path,mode andflags. Themode andflags arguments
may have been modified or inferred from the original call.

720 Chapter 16. Generic Operating System Services

https://peps.python.org/pep-0686/
https://peps.python.org/pep-0597/

The Python Library Reference, Release 3.13.1

io.open_code(path)
Opens the provided file with mode 'rb'. This function should be used when the intent is to treat the contents
as executable code.

path should be a str and an absolute path.

The behavior of this function may be overridden by an earlier call to the PyFile_SetOpenCodeHook().
However, assuming that path is a str and an absolute path, open_code(path) should always behave the
same as open(path, 'rb'). Overriding the behavior is intended for additional validation or preprocessing
of the file.

Added in version 3.8.

io.text_encoding(encoding, stacklevel=2, /)
This is a helper function for callables that use open() or TextIOWrapper and have an encoding=None
parameter.

This function returns encoding if it is not None. Otherwise, it returns "locale" or "utf-8" depending on
UTF-8 Mode.

This function emits an EncodingWarning if sys.flags.warn_default_encoding is true and encoding
is None. stacklevel specifies where the warning is emitted. For example:

def read_text(path, encoding=None):

encoding = io.text_encoding(encoding) # stacklevel=2

with open(path, encoding) as f:

return f.read()

In this example, an EncodingWarning is emitted for the caller of read_text().

See Text Encoding for more information.

Added in version 3.10.

Changed in version 3.11: text_encoding() returns “utf-8” when UTF-8 mode is enabled and encoding is
None.

exception io.BlockingIOError

This is a compatibility alias for the builtin BlockingIOError exception.

exception io.UnsupportedOperation

An exception inheriting OSError and ValueError that is raised when an unsupported operation is called on
a stream.

See also

sys

contains the standard IO streams: sys.stdin, sys.stdout, and sys.stderr.

16.2.4 Class hierarchy

The implementation of I/O streams is organized as a hierarchy of classes. First abstract base classes (ABCs), which
are used to specify the various categories of streams, then concrete classes providing the standard stream implemen-
tations.

Note

The abstract base classes also provide default implementations of some methods in order to help implemen-
tation of concrete stream classes. For example, BufferedIOBase provides unoptimized implementations of
readinto() and readline().

16.2. io— Core tools for working with streams 721

The Python Library Reference, Release 3.13.1

At the top of the I/O hierarchy is the abstract base class IOBase. It defines the basic interface to a stream. Note,
however, that there is no separation between reading and writing to streams; implementations are allowed to raise
UnsupportedOperation if they do not support a given operation.

The RawIOBaseABC extends IOBase. It deals with the reading and writing of bytes to a stream. FileIO subclasses
RawIOBase to provide an interface to files in the machine’s file system.

The BufferedIOBaseABC extends IOBase. It deals with buffering on a raw binary stream (RawIOBase). Its sub-
classes, BufferedWriter, BufferedReader, and BufferedRWPair buffer raw binary streams that are writable,
readable, and both readable and writable, respectively. BufferedRandom provides a buffered interface to seekable
streams. Another BufferedIOBase subclass, BytesIO, is a stream of in-memory bytes.

The TextIOBase ABC extends IOBase. It deals with streams whose bytes represent text, and handles encoding
and decoding to and from strings. TextIOWrapper, which extends TextIOBase, is a buffered text interface to a
buffered raw stream (BufferedIOBase). Finally, StringIO is an in-memory stream for text.

Argument names are not part of the specification, and only the arguments of open() are intended to be used as
keyword arguments.

The following table summarizes the ABCs provided by the io module:

ABC Inherits Stub
Methods

Mixin Methods and Properties

IOBase fileno,
seek, and
truncate

close, closed, __enter__, __exit__, flush,
isatty, __iter__, __next__, readable, readline,
readlines, seekable, tell, writable, and
writelines

RawIOBase IOBase readinto

and write
Inherited IOBase methods, read, and readall

BufferedIOBase IOBase detach,
read,
read1, and
write

Inherited IOBase methods, readinto, and readinto1

TextIOBase IOBase detach,
read,
readline,
and write

Inherited IOBase methods, encoding, errors, and
newlines

I/O Base Classes

class io.IOBase

The abstract base class for all I/O classes.

This class provides empty abstract implementations for many methods that derived classes can override selec-
tively; the default implementations represent a file that cannot be read, written or seeked.

Even though IOBase does not declare read() or write() because their signatures will vary, implemen-
tations and clients should consider those methods part of the interface. Also, implementations may raise a
ValueError (or UnsupportedOperation) when operations they do not support are called.

The basic type used for binary data read from or written to a file is bytes. Other bytes-like objects are accepted
as method arguments too. Text I/O classes work with str data.

Note that calling any method (even inquiries) on a closed stream is undefined. Implementations may raise
ValueError in this case.

IOBase (and its subclasses) supports the iterator protocol, meaning that an IOBase object can be iterated over
yielding the lines in a stream. Lines are defined slightly differently depending on whether the stream is a binary
stream (yielding bytes), or a text stream (yielding character strings). See readline() below.

IOBase is also a context manager and therefore supports the with statement. In this example, file is closed
after the with statement’s suite is finished—even if an exception occurs:

722 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

with open('spam.txt', 'w') as file:

file.write('Spam and eggs!')

IOBase provides these data attributes and methods:

close()

Flush and close this stream. This method has no effect if the file is already closed. Once the file is closed,
any operation on the file (e.g. reading or writing) will raise a ValueError.

As a convenience, it is allowed to call this method more than once; only the first call, however, will have
an effect.

closed

True if the stream is closed.

fileno()

Return the underlying file descriptor (an integer) of the stream if it exists. An OSError is raised if the
IO object does not use a file descriptor.

flush()

Flush the write buffers of the stream if applicable. This does nothing for read-only and non-blocking
streams.

isatty()

Return True if the stream is interactive (i.e., connected to a terminal/tty device).

readable()

Return True if the stream can be read from. If False, read() will raise OSError.

readline(size=-1, /)
Read and return one line from the stream. If size is specified, at most size bytes will be read.

The line terminator is always b'\n' for binary files; for text files, the newline argument to open() can
be used to select the line terminator(s) recognized.

readlines(hint=-1, /)
Read and return a list of lines from the stream. hint can be specified to control the number of lines read:
no more lines will be read if the total size (in bytes/characters) of all lines so far exceeds hint.

hint values of 0 or less, as well as None, are treated as no hint.

Note that it’s already possible to iterate on file objects using for line in file: ... without calling
file.readlines().

seek(offset, whence=os.SEEK_SET , /)
Change the stream position to the given byte offset, interpreted relative to the position indicated by
whence, and return the new absolute position. Values for whence are:

• os.SEEK_SET or 0 – start of the stream (the default); offset should be zero or positive

• os.SEEK_CUR or 1 – current stream position; offset may be negative

• os.SEEK_END or 2 – end of the stream; offset is usually negative

Added in version 3.1: The SEEK_* constants.

Added in version 3.3: Some operating systems could support additional values, like os.SEEK_HOLE or
os.SEEK_DATA. The valid values for a file could depend on it being open in text or binary mode.

seekable()

Return True if the stream supports random access. If False, seek(), tell() and truncate() will
raise OSError.

tell()

Return the current stream position.

16.2. io— Core tools for working with streams 723

The Python Library Reference, Release 3.13.1

truncate(size=None, /)
Resize the stream to the given size in bytes (or the current position if size is not specified). The current
stream position isn’t changed. This resizing can extend or reduce the current file size. In case of extension,
the contents of the new file area depend on the platform (onmost systems, additional bytes are zero-filled).
The new file size is returned.

Changed in version 3.5: Windows will now zero-fill files when extending.

writable()

Return True if the stream supports writing. If False, write() and truncate() will raise OSError.

writelines(lines, /)
Write a list of lines to the stream. Line separators are not added, so it is usual for each of the lines
provided to have a line separator at the end.

__del__()

Prepare for object destruction. IOBase provides a default implementation of this method that calls the
instance’s close() method.

class io.RawIOBase

Base class for raw binary streams. It inherits from IOBase.

Raw binary streams typically provide low-level access to an underlying OS device or API, and do not try to
encapsulate it in high-level primitives (this functionality is done at a higher-level in buffered binary streams
and text streams, described later in this page).

RawIOBase provides these methods in addition to those from IOBase:

read(size=-1, /)
Read up to size bytes from the object and return them. As a convenience, if size is unspecified or -1, all
bytes until EOF are returned. Otherwise, only one system call is ever made. Fewer than size bytes may
be returned if the operating system call returns fewer than size bytes.

If 0 bytes are returned, and size was not 0, this indicates end of file. If the object is in non-blocking mode
and no bytes are available, None is returned.

The default implementation defers to readall() and readinto().

readall()

Read and return all the bytes from the stream until EOF, using multiple calls to the stream if necessary.

readinto(b, /)
Read bytes into a pre-allocated, writable bytes-like object b, and return the number of bytes read. For
example, b might be a bytearray. If the object is in non-blocking mode and no bytes are available,
None is returned.

write(b, /)
Write the given bytes-like object, b, to the underlying raw stream, and return the number of bytes written.
This can be less than the length of b in bytes, depending on specifics of the underlying raw stream, and
especially if it is in non-blocking mode. None is returned if the raw stream is set not to block and no
single byte could be readily written to it. The caller may release or mutate b after this method returns, so
the implementation should only access b during the method call.

class io.BufferedIOBase

Base class for binary streams that support some kind of buffering. It inherits from IOBase.

The main difference with RawIOBase is that methods read(), readinto() and write() will try (respec-
tively) to read as much input as requested or to consume all given output, at the expense of making perhaps
more than one system call.

In addition, those methods can raise BlockingIOError if the underlying raw stream is in non-blocking mode
and cannot take or give enough data; unlike their RawIOBase counterparts, they will never return None.

Besides, the read() method does not have a default implementation that defers to readinto().

724 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

A typical BufferedIOBase implementation should not inherit from a RawIOBase implementation, but wrap
one, like BufferedWriter and BufferedReader do.

BufferedIOBase provides or overrides these data attributes and methods in addition to those from IOBase:

raw

The underlying raw stream (a RawIOBase instance) that BufferedIOBase deals with. This is not part
of the BufferedIOBase API and may not exist on some implementations.

detach()

Separate the underlying raw stream from the buffer and return it.

After the raw stream has been detached, the buffer is in an unusable state.

Some buffers, like BytesIO, do not have the concept of a single raw stream to return from this method.
They raise UnsupportedOperation.

Added in version 3.1.

read(size=-1, /)
Read and return up to size bytes. If the argument is omitted, None, or negative, data is read and returned
until EOF is reached. An empty bytes object is returned if the stream is already at EOF.

If the argument is positive, and the underlying raw stream is not interactive, multiple raw reads may be
issued to satisfy the byte count (unless EOF is reached first). But for interactive raw streams, at most one
raw read will be issued, and a short result does not imply that EOF is imminent.

A BlockingIOError is raised if the underlying raw stream is in non blocking-mode, and has no data
available at the moment.

read1(size=-1, /)
Read and return up to size bytes, with at most one call to the underlying raw stream’s read() (or
readinto()) method. This can be useful if you are implementing your own buffering on top of a
BufferedIOBase object.

If size is -1 (the default), an arbitrary number of bytes are returned (more than zero unless EOF is
reached).

readinto(b, /)
Read bytes into a pre-allocated, writable bytes-like object b and return the number of bytes read. For
example, b might be a bytearray.

Like read(), multiple reads may be issued to the underlying raw stream, unless the latter is interactive.

A BlockingIOError is raised if the underlying raw stream is in non blocking-mode, and has no data
available at the moment.

readinto1(b, /)
Read bytes into a pre-allocated, writable bytes-like object b, using at most one call to the underlying raw
stream’s read() (or readinto()) method. Return the number of bytes read.

A BlockingIOError is raised if the underlying raw stream is in non blocking-mode, and has no data
available at the moment.

Added in version 3.5.

write(b, /)
Write the given bytes-like object, b, and return the number of bytes written (always equal to the length of
b in bytes, since if the write fails an OSError will be raised). Depending on the actual implementation,
these bytes may be readily written to the underlying stream, or held in a buffer for performance and
latency reasons.

When in non-blocking mode, a BlockingIOError is raised if the data needed to be written to the raw
stream but it couldn’t accept all the data without blocking.

16.2. io— Core tools for working with streams 725

The Python Library Reference, Release 3.13.1

The caller may release or mutate b after this method returns, so the implementation should only access b
during the method call.

Raw File I/O

class io.FileIO(name, mode=’r’, closefd=True, opener=None)
A raw binary stream representing an OS-level file containing bytes data. It inherits from RawIOBase.

The name can be one of two things:

• a character string or bytes object representing the path to the file which will be opened. In this case
closefd must be True (the default) otherwise an error will be raised.

• an integer representing the number of an existing OS-level file descriptor to which the resulting FileIO
object will give access. When the FileIO object is closed this fd will be closed as well, unless closefd is
set to False.

The mode can be 'r', 'w', 'x' or 'a' for reading (default), writing, exclusive creation or appending. The
file will be created if it doesn’t exist when opened for writing or appending; it will be truncated when opened
for writing. FileExistsError will be raised if it already exists when opened for creating. Opening a file
for creating implies writing, so this mode behaves in a similar way to 'w'. Add a '+' to the mode to allow
simultaneous reading and writing.

The read() (when called with a positive argument), readinto() and write() methods on this class will
only make one system call.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object
is then obtained by calling opener with (name, flags). opener must return an open file descriptor (passing
os.open as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

See the open() built-in function for examples on using the opener parameter.

Changed in version 3.3: The opener parameter was added. The 'x' mode was added.

Changed in version 3.4: The file is now non-inheritable.

FileIO provides these data attributes in addition to those from RawIOBase and IOBase:

mode

The mode as given in the constructor.

name

The file name. This is the file descriptor of the file when no name is given in the constructor.

Buffered Streams

Buffered I/O streams provide a higher-level interface to an I/O device than raw I/O does.

class io.BytesIO(initial_bytes=b”)

A binary stream using an in-memory bytes buffer. It inherits from BufferedIOBase. The buffer is discarded
when the close() method is called.

The optional argument initial_bytes is a bytes-like object that contains initial data.

BytesIO provides or overrides these methods in addition to those from BufferedIOBase and IOBase:

getbuffer()

Return a readable and writable view over the contents of the buffer without copying them. Also, mutating
the view will transparently update the contents of the buffer:

>>> b = io.BytesIO(b"abcdef")

>>> view = b.getbuffer()

>>> view[2:4] = b"56"

(continues on next page)

726 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> b.getvalue()

b'ab56ef'

Note

As long as the view exists, the BytesIO object cannot be resized or closed.

Added in version 3.2.

getvalue()

Return bytes containing the entire contents of the buffer.

read1(size=-1, /)
In BytesIO, this is the same as read().

Changed in version 3.7: The size argument is now optional.

readinto1(b, /)
In BytesIO, this is the same as readinto().

Added in version 3.5.

class io.BufferedReader(raw, buffer_size=DEFAULT_BUFFER_SIZE)
A buffered binary stream providing higher-level access to a readable, non seekable RawIOBase raw binary
stream. It inherits from BufferedIOBase.

When reading data from this object, a larger amount of data may be requested from the underlying raw stream,
and kept in an internal buffer. The buffered data can then be returned directly on subsequent reads.

The constructor creates a BufferedReader for the given readable raw stream and buffer_size. If buffer_size
is omitted, DEFAULT_BUFFER_SIZE is used.

BufferedReader provides or overrides these methods in addition to those from BufferedIOBase and
IOBase:

peek(size=0, /)
Return bytes from the stream without advancing the position. At most one single read on the raw stream
is done to satisfy the call. The number of bytes returned may be less or more than requested.

read(size=-1, /)
Read and return size bytes, or if size is not given or negative, until EOF or if the read call would block in
non-blocking mode.

read1(size=-1, /)
Read and return up to size bytes with only one call on the raw stream. If at least one byte is buffered, only
buffered bytes are returned. Otherwise, one raw stream read call is made.

Changed in version 3.7: The size argument is now optional.

class io.BufferedWriter(raw, buffer_size=DEFAULT_BUFFER_SIZE)

A buffered binary stream providing higher-level access to a writeable, non seekable RawIOBase raw binary
stream. It inherits from BufferedIOBase.

When writing to this object, data is normally placed into an internal buffer. The buffer will be written out to
the underlying RawIOBase object under various conditions, including:

• when the buffer gets too small for all pending data;

• when flush() is called;

• when a seek() is requested (for BufferedRandom objects);

• when the BufferedWriter object is closed or destroyed.

16.2. io— Core tools for working with streams 727

The Python Library Reference, Release 3.13.1

The constructor creates a BufferedWriter for the given writeable raw stream. If the buffer_size is not given,
it defaults to DEFAULT_BUFFER_SIZE.

BufferedWriter provides or overrides these methods in addition to those from BufferedIOBase and
IOBase:

flush()

Force bytes held in the buffer into the raw stream. A BlockingIOError should be raised if the raw
stream blocks.

write(b, /)
Write the bytes-like object, b, and return the number of bytes written. When in non-blocking mode, a
BlockingIOError is raised if the buffer needs to be written out but the raw stream blocks.

class io.BufferedRandom(raw, buffer_size=DEFAULT_BUFFER_SIZE)

A buffered binary stream providing higher-level access to a seekable RawIOBase raw binary stream. It inherits
from BufferedReader and BufferedWriter.

The constructor creates a reader and writer for a seekable raw stream, given in the first argument. If the
buffer_size is omitted it defaults to DEFAULT_BUFFER_SIZE.

BufferedRandom is capable of anything BufferedReader or BufferedWriter can do. In addition,
seek() and tell() are guaranteed to be implemented.

class io.BufferedRWPair(reader, writer, buffer_size=DEFAULT_BUFFER_SIZE, /)
A buffered binary stream providing higher-level access to two non seekable RawIOBase raw binary streams—
one readable, the other writeable. It inherits from BufferedIOBase.

reader and writer are RawIOBase objects that are readable and writeable respectively. If the buffer_size is
omitted it defaults to DEFAULT_BUFFER_SIZE.

BufferedRWPair implements all of BufferedIOBase’s methods except for detach(), which raises
UnsupportedOperation.

Warning

BufferedRWPair does not attempt to synchronize accesses to its underlying raw streams. You should
not pass it the same object as reader and writer; use BufferedRandom instead.

Text I/O

class io.TextIOBase

Base class for text streams. This class provides a character and line based interface to stream I/O. It inherits
from IOBase.

TextIOBase provides or overrides these data attributes and methods in addition to those from IOBase:

encoding

The name of the encoding used to decode the stream’s bytes into strings, and to encode strings into bytes.

errors

The error setting of the decoder or encoder.

newlines

A string, a tuple of strings, or None, indicating the newlines translated so far. Depending on the imple-
mentation and the initial constructor flags, this may not be available.

buffer

The underlying binary buffer (a BufferedIOBase instance) that TextIOBase deals with. This is not
part of the TextIOBase API and may not exist in some implementations.

728 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

detach()

Separate the underlying binary buffer from the TextIOBase and return it.

After the underlying buffer has been detached, the TextIOBase is in an unusable state.

Some TextIOBase implementations, like StringIO, may not have the concept of an underlying buffer
and calling this method will raise UnsupportedOperation.

Added in version 3.1.

read(size=-1, /)
Read and return at most size characters from the stream as a single str. If size is negative or None, reads
until EOF.

readline(size=-1, /)
Read until newline or EOF and return a single str. If the stream is already at EOF, an empty string is
returned.

If size is specified, at most size characters will be read.

seek(offset, whence=SEEK_SET , /)
Change the stream position to the given offset. Behaviour depends on the whence parameter. The default
value for whence is SEEK_SET.

• SEEK_SET or 0: seek from the start of the stream (the default); offset must either be a number
returned by TextIOBase.tell(), or zero. Any other offset value produces undefined behaviour.

• SEEK_CUR or 1: “seek” to the current position; offset must be zero, which is a no-operation (all other
values are unsupported).

• SEEK_END or 2: seek to the end of the stream; offset must be zero (all other values are unsupported).

Return the new absolute position as an opaque number.

Added in version 3.1: The SEEK_* constants.

tell()

Return the current stream position as an opaque number. The number does not usually represent a number
of bytes in the underlying binary storage.

write(s, /)
Write the string s to the stream and return the number of characters written.

class io.TextIOWrapper(buffer, encoding=None, errors=None, newline=None, line_buffering=False,
write_through=False)

A buffered text stream providing higher-level access to a BufferedIOBase buffered binary stream. It inherits
from TextIOBase.

encoding gives the name of the encoding that the stream will be decoded or encoded with. It defaults to
locale.getencoding(). encoding="locale" can be used to specify the current locale’s encoding ex-
plicitly. See Text Encoding for more information.

errors is an optional string that specifies how encoding and decoding errors are to be handled. Pass 'strict'
to raise a ValueError exception if there is an encoding error (the default of None has the same effect), or pass
'ignore' to ignore errors. (Note that ignoring encoding errors can lead to data loss.) 'replace' causes a re-
placement marker (such as '?') to be inserted where there is malformed data. 'backslashreplace' causes
malformed data to be replaced by a backslashed escape sequence. When writing, 'xmlcharrefreplace'
(replace with the appropriate XML character reference) or 'namereplace' (replace with \N{...} es-
cape sequences) can be used. Any other error handling name that has been registered with codecs.

register_error() is also valid.

newline controls how line endings are handled. It can be None, '', '\n', '\r', and '\r\n'. It works as
follows:

16.2. io— Core tools for working with streams 729

The Python Library Reference, Release 3.13.1

• When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in
the input can end in '\n', '\r', or '\r\n', and these are translated into '\n' before being returned
to the caller. If newline is '', universal newlines mode is enabled, but line endings are returned to the
caller untranslated. If newline has any of the other legal values, input lines are only terminated by the
given string, and the line ending is returned to the caller untranslated.

• When writing output to the stream, if newline is None, any '\n' characters written are translated to
the system default line separator, os.linesep. If newline is '' or '\n', no translation takes place. If
newline is any of the other legal values, any '\n' characters written are translated to the given string.

If line_buffering is True, flush() is implied when a call to write contains a newline character or a carriage
return.

If write_through is True, calls to write() are guaranteed not to be buffered: any data written on the
TextIOWrapper object is immediately handled to its underlying binary buffer.

Changed in version 3.3: The write_through argument has been added.

Changed in version 3.3: The default encoding is now locale.getpreferredencoding(False) instead
of locale.getpreferredencoding(). Don’t change temporary the locale encoding using locale.

setlocale(), use the current locale encoding instead of the user preferred encoding.

Changed in version 3.10: The encoding argument now supports the "locale" dummy encoding name.

TextIOWrapper provides these data attributes and methods in addition to those from TextIOBase and
IOBase:

line_buffering

Whether line buffering is enabled.

write_through

Whether writes are passed immediately to the underlying binary buffer.

Added in version 3.7.

reconfigure(*, encoding=None, errors=None, newline=None, line_buffering=None, write_through=None)
Reconfigure this text stream using new settings for encoding, errors, newline, line_buffering and
write_through.

Parameters not specified keep current settings, except errors='strict' is used when encoding is
specified but errors is not specified.

It is not possible to change the encoding or newline if some data has already been read from the stream.
On the other hand, changing encoding after write is possible.

This method does an implicit stream flush before setting the new parameters.

Added in version 3.7.

Changed in version 3.11: The method supports encoding="locale" option.

seek(cookie, whence=os.SEEK_SET , /)
Set the stream position. Return the new stream position as an int.

Four operations are supported, given by the following argument combinations:

• seek(0, SEEK_SET): Rewind to the start of the stream.

• seek(cookie, SEEK_SET): Restore a previous position; cookie must be a number returned by
tell().

• seek(0, SEEK_END): Fast-forward to the end of the stream.

• seek(0, SEEK_CUR): Leave the current stream position unchanged.

Any other argument combinations are invalid, and may raise exceptions.

730 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

See also

os.SEEK_SET, os.SEEK_CUR, and os.SEEK_END.

tell()

Return the stream position as an opaque number. The return value of tell() can be given as input to
seek(), to restore a previous stream position.

class io.StringIO(initial_value=” , newline=’\n’)
A text stream using an in-memory text buffer. It inherits from TextIOBase.

The text buffer is discarded when the close() method is called.

The initial value of the buffer can be set by providing initial_value. If newline translation is enabled, newlines
will be encoded as if by write(). The stream is positioned at the start of the buffer which emulates opening an
existing file in a w+mode, making it ready for an immediate write from the beginning or for a write that would
overwrite the initial value. To emulate opening a file in an a+ mode ready for appending, use f.seek(0,
io.SEEK_END) to reposition the stream at the end of the buffer.

The newline argument works like that of TextIOWrapper, except that when writing output to the stream, if
newline is None, newlines are written as \n on all platforms.

StringIO provides this method in addition to those from TextIOBase and IOBase:

getvalue()

Return a str containing the entire contents of the buffer. Newlines are decoded as if by read(), al-
though the stream position is not changed.

Example usage:

import io

output = io.StringIO()

output.write('First line.\n')

print('Second line.', file=output)

Retrieve file contents -- this will be

'First line.\nSecond line.\n'

contents = output.getvalue()

Close object and discard memory buffer --

.getvalue() will now raise an exception.

output.close()

class io.IncrementalNewlineDecoder

A helper codec that decodes newlines for universal newlines mode. It inherits from codecs.

IncrementalDecoder.

16.2.5 Performance

This section discusses the performance of the provided concrete I/O implementations.

Binary I/O

By reading and writing only large chunks of data even when the user asks for a single byte, buffered I/O hides any
inefficiency in calling and executing the operating system’s unbuffered I/O routines. The gain depends on the OS and
the kind of I/O which is performed. For example, on some modern OSes such as Linux, unbuffered disk I/O can be
as fast as buffered I/O. The bottom line, however, is that buffered I/O offers predictable performance regardless of the
platform and the backing device. Therefore, it is almost always preferable to use buffered I/O rather than unbuffered
I/O for binary data.

16.2. io— Core tools for working with streams 731

The Python Library Reference, Release 3.13.1

Text I/O

Text I/O over a binary storage (such as a file) is significantly slower than binary I/O over the same storage, because it
requires conversions between unicode and binary data using a character codec. This can become noticeable handling
huge amounts of text data like large log files. Also, tell() and seek() are both quite slow due to the reconstruction
algorithm used.

StringIO, however, is a native in-memory unicode container and will exhibit similar speed to BytesIO.

Multi-threading

FileIO objects are thread-safe to the extent that the operating system calls (such as read(2) under Unix) they wrap
are thread-safe too.

Binary buffered objects (instances of BufferedReader, BufferedWriter, BufferedRandom and
BufferedRWPair) protect their internal structures using a lock; it is therefore safe to call them from multi-
ple threads at once.

TextIOWrapper objects are not thread-safe.

Reentrancy

Binary buffered objects (instances of BufferedReader, BufferedWriter, BufferedRandom and
BufferedRWPair) are not reentrant. While reentrant calls will not happen in normal situations, they can
arise from doing I/O in a signal handler. If a thread tries to re-enter a buffered object which it is already accessing,
a RuntimeError is raised. Note this doesn’t prohibit a different thread from entering the buffered object.

The above implicitly extends to text files, since the open() function will wrap a buffered object inside a
TextIOWrapper. This includes standard streams and therefore affects the built-in print() function as well.

16.3 time— Time access and conversions

Thismodule provides various time-related functions. For related functionality, see also the datetime and calendar
modules.

Although this module is always available, not all functions are available on all platforms. Most of the functions
defined in this module call platform C library functions with the same name. It may sometimes be helpful to consult
the platform documentation, because the semantics of these functions varies among platforms.

An explanation of some terminology and conventions is in order.

• The epoch is the point where the time starts, the return value of time.gmtime(0). It is January 1, 1970,
00:00:00 (UTC) on all platforms.

• The term seconds since the epoch refers to the total number of elapsed seconds since the epoch, typically
excluding leap seconds. Leap seconds are excluded from this total on all POSIX-compliant platforms.

• The functions in this module may not handle dates and times before the epoch or far in the future. The cut-off
point in the future is determined by the C library; for 32-bit systems, it is typically in 2038.

• Function strptime() can parse 2-digit years when given %y format code. When 2-digit years are parsed,
they are converted according to the POSIX and ISO C standards: values 69–99 are mapped to 1969–1999,
and values 0–68 are mapped to 2000–2068.

• UTC is Coordinated Universal Time (formerly known as GreenwichMean Time, or GMT). The acronymUTC
is not a mistake but a compromise between English and French.

• DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year.
DST rules are magic (determined by local law) and can change from year to year. The C library has a table
containing the local rules (often it is read from a system file for flexibility) and is the only source of True
Wisdom in this respect.

732 Chapter 16. Generic Operating System Services

https://manpages.debian.org/read(2)
https://en.wikipedia.org/wiki/Leap_second

The Python Library Reference, Release 3.13.1

• The precision of the various real-time functions may be less than suggested by the units in which their value
or argument is expressed. E.g. on most Unix systems, the clock “ticks” only 50 or 100 times a second.

• On the other hand, the precision of time() and sleep() is better than their Unix equivalents: times
are expressed as floating-point numbers, time() returns the most accurate time available (using Unix
gettimeofday()where available), and sleep()will accept a time with a nonzero fraction (Unix select()
is used to implement this, where available).

• The time value as returned by gmtime(), localtime(), and strptime(), and accepted by asctime(),
mktime() and strftime(), is a sequence of 9 integers. The return values of gmtime(), localtime(),
and strptime() also offer attribute names for individual fields.

See struct_time for a description of these objects.

Changed in version 3.3: The struct_time type was extended to provide the tm_gmtoff and tm_zone

attributes when platform supports corresponding struct tm members.

Changed in version 3.6: The struct_time attributes tm_gmtoff and tm_zone are now available on all
platforms.

• Use the following functions to convert between time representations:

From To Use

seconds since the epoch struct_time in UTC gmtime()

seconds since the epoch struct_time in local time localtime()

struct_time in UTC seconds since the epoch calendar.timegm()

struct_time in local time seconds since the epoch mktime()

16.3.1 Functions

time.asctime([t])
Convert a tuple or struct_time representing a time as returned by gmtime() or localtime() to a string
of the following form: 'Sun Jun 20 23:21:05 1993'. The day field is two characters long and is space
padded if the day is a single digit, e.g.: 'Wed Jun 9 04:26:40 1993'.

If t is not provided, the current time as returned by localtime() is used. Locale information is not used by
asctime().

Note

Unlike the C function of the same name, asctime() does not add a trailing newline.

time.pthread_getcpuclockid(thread_id)
Return the clk_id of the thread-specific CPU-time clock for the specified thread_id.

Use threading.get_ident() or the ident attribute of threading.Thread objects to get a suitable
value for thread_id.

Warning

Passing an invalid or expired thread_id may result in undefined behavior, such as segmentation fault.

Availability: Unix

See the man page for pthread_getcpuclockid(3) for further information.

Added in version 3.7.

16.3. time— Time access and conversions 733

https://manpages.debian.org/pthread_getcpuclockid(3)

The Python Library Reference, Release 3.13.1

time.clock_getres(clk_id)
Return the resolution (precision) of the specified clock clk_id. Refer to Clock ID Constants for a list of accepted
values for clk_id.

Availability: Unix.

Added in version 3.3.

time.clock_gettime(clk_id)→ float
Return the time of the specified clock clk_id. Refer to Clock ID Constants for a list of accepted values for
clk_id.

Use clock_gettime_ns() to avoid the precision loss caused by the float type.

Availability: Unix.

Added in version 3.3.

time.clock_gettime_ns(clk_id)→ int

Similar to clock_gettime() but return time as nanoseconds.

Availability: Unix.

Added in version 3.7.

time.clock_settime(clk_id, time: float)
Set the time of the specified clock clk_id. Currently, CLOCK_REALTIME is the only accepted value for clk_id.

Use clock_settime_ns() to avoid the precision loss caused by the float type.

Availability: Unix, not Android, not iOS.

Added in version 3.3.

time.clock_settime_ns(clk_id, time: int)
Similar to clock_settime() but set time with nanoseconds.

Availability: Unix, not Android, not iOS.

Added in version 3.7.

time.ctime([secs])
Convert a time expressed in seconds since the epoch to a string of a form: 'Sun Jun 20 23:21:05 1993'

representing local time. The day field is two characters long and is space padded if the day is a single digit,
e.g.: 'Wed Jun 9 04:26:40 1993'.

If secs is not provided or None, the current time as returned by time() is used. ctime(secs) is equivalent
to asctime(localtime(secs)). Locale information is not used by ctime().

time.get_clock_info(name)
Get information on the specified clock as a namespace object. Supported clock names and the corresponding
functions to read their value are:

• 'monotonic': time.monotonic()

• 'perf_counter': time.perf_counter()

• 'process_time': time.process_time()

• 'thread_time': time.thread_time()

• 'time': time.time()

The result has the following attributes:

• adjustable: True if the clock can be changed automatically (e.g. by a NTP daemon) or manually by the
system administrator, False otherwise

• implementation: The name of the underlying C function used to get the clock value. Refer to Clock ID
Constants for possible values.

734 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

• monotonic: True if the clock cannot go backward, False otherwise

• resolution: The resolution of the clock in seconds (float)

Added in version 3.3.

time.gmtime([secs])
Convert a time expressed in seconds since the epoch to a struct_time in UTC in which the dst flag is always
zero. If secs is not provided or None, the current time as returned by time() is used. Fractions of a second are
ignored. See above for a description of the struct_time object. See calendar.timegm() for the inverse
of this function.

time.localtime([secs])
Like gmtime() but converts to local time. If secs is not provided or None, the current time as returned by
time() is used. The dst flag is set to 1 when DST applies to the given time.

localtime() may raise OverflowError, if the timestamp is outside the range of values supported by the
platform C localtime() or gmtime() functions, and OSError on localtime() or gmtime() failure.
It’s common for this to be restricted to years between 1970 and 2038.

time.mktime(t)

This is the inverse function of localtime(). Its argument is the struct_time or full 9-tuple (since the
dst flag is needed; use -1 as the dst flag if it is unknown) which expresses the time in local time, not UTC. It
returns a floating-point number, for compatibility with time(). If the input value cannot be represented as
a valid time, either OverflowError or ValueError will be raised (which depends on whether the invalid
value is caught by Python or the underlying C libraries). The earliest date for which it can generate a time is
platform-dependent.

time.monotonic()→ float
Return the value (in fractional seconds) of a monotonic clock, i.e. a clock that cannot go backwards. The clock
is not affected by system clock updates. The reference point of the returned value is undefined, so that only
the difference between the results of two calls is valid.

Clock:

• On Windows, call QueryPerformanceCounter() and QueryPerformanceFrequency().

• On macOS, call mach_absolute_time() and mach_timebase_info().

• On HP-UX, call gethrtime().

• Call clock_gettime(CLOCK_HIGHRES) if available.

• Otherwise, call clock_gettime(CLOCK_MONOTONIC).

Use monotonic_ns() to avoid the precision loss caused by the float type.

Added in version 3.3.

Changed in version 3.5: The function is now always available and always system-wide.

Changed in version 3.10: On macOS, the function is now system-wide.

time.monotonic_ns()→ int
Similar to monotonic(), but return time as nanoseconds.

Added in version 3.7.

time.perf_counter()→ float
Return the value (in fractional seconds) of a performance counter, i.e. a clock with the highest available
resolution to measure a short duration. It does include time elapsed during sleep and is system-wide. The
reference point of the returned value is undefined, so that only the difference between the results of two calls
is valid.

CPython implementation detail: On CPython, use the same clock as time.monotonic() and is a mono-
tonic clock, i.e. a clock that cannot go backwards.

Use perf_counter_ns() to avoid the precision loss caused by the float type.

16.3. time— Time access and conversions 735

The Python Library Reference, Release 3.13.1

Added in version 3.3.

Changed in version 3.10: On Windows, the function is now system-wide.

Changed in version 3.13: Use the same clock as time.monotonic().

time.perf_counter_ns()→ int

Similar to perf_counter(), but return time as nanoseconds.

Added in version 3.7.

time.process_time()→ float

Return the value (in fractional seconds) of the sum of the system and user CPU time of the current process. It
does not include time elapsed during sleep. It is process-wide by definition. The reference point of the returned
value is undefined, so that only the difference between the results of two calls is valid.

Use process_time_ns() to avoid the precision loss caused by the float type.

Added in version 3.3.

time.process_time_ns()→ int
Similar to process_time() but return time as nanoseconds.

Added in version 3.7.

time.sleep(secs)
Suspend execution of the calling thread for the given number of seconds. The argument may be a floating-point
number to indicate a more precise sleep time.

If the sleep is interrupted by a signal and no exception is raised by the signal handler, the sleep is restarted with
a recomputed timeout.

The suspension time may be longer than requested by an arbitrary amount, because of the scheduling of other
activity in the system.

On Windows, if secs is zero, the thread relinquishes the remainder of its time slice to any other thread that is
ready to run. If there are no other threads ready to run, the function returns immediately, and the thread con-
tinues execution. On Windows 8.1 and newer the implementation uses a high-resolution timer which provides
resolution of 100 nanoseconds. If secs is zero, Sleep(0) is used.

Unix implementation:

• Use clock_nanosleep() if available (resolution: 1 nanosecond);

• Or use nanosleep() if available (resolution: 1 nanosecond);

• Or use select() (resolution: 1 microsecond).

Raises an auditing event time.sleep with argument secs.

Changed in version 3.5: The function now sleeps at least secs even if the sleep is interrupted by a signal, except
if the signal handler raises an exception (see PEP 475 for the rationale).

Changed in version 3.11: On Unix, the clock_nanosleep() and nanosleep() functions are now used if
available. On Windows, a waitable timer is now used.

Changed in version 3.13: Raises an auditing event.

time.strftime(format[, t])
Convert a tuple or struct_time representing a time as returned by gmtime() or localtime() to a string
as specified by the format argument. If t is not provided, the current time as returned by localtime() is
used. format must be a string. ValueError is raised if any field in t is outside of the allowed range.

0 is a legal argument for any position in the time tuple; if it is normally illegal the value is forced to a correct
one.

The following directives can be embedded in the format string. They are shown without the optional field
width and precision specification, and are replaced by the indicated characters in the strftime() result:

736 Chapter 16. Generic Operating System Services

https://learn.microsoft.com/windows-hardware/drivers/kernel/high-resolution-timers
https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.13.1

Directive Meaning Notes

%a Locale’s abbreviated weekday
name.

%A Locale’s full weekday name.
%b Locale’s abbreviated month

name.
%B Locale’s full month name.
%c Locale’s appropriate date and

time representation.
%d Day of the month as a decimal

number [01,31].
%f

Microseconds as a decimal
number

[000000,999999].

(1)

%H Hour (24-hour clock) as a deci-
mal number [00,23].

%I Hour (12-hour clock) as a deci-
mal number [01,12].

%j Day of the year as a decimal num-
ber [001,366].

%m Month as a decimal number
[01,12].

%M Minute as a decimal number
[00,59].

%p Locale’s equivalent of either AM
or PM.

(2)

%S Second as a decimal number
[00,61].

(3)

%U Week number of the year (Sun-
day as the first day of the week)
as a decimal number [00,53]. All
days in a new year preceding the
first Sunday are considered to be
in week 0.

(4)

%u Day of the week (Monday is 1;
Sunday is 7) as a decimal number
[1, 7].

%w Weekday as a decimal number
[0(Sunday),6].

%W Week number of the year (Mon-
day as the first day of the week)
as a decimal number [00,53]. All
days in a new year preceding the
first Monday are considered to be
in week 0.

(4)

%x Locale’s appropriate date repre-
sentation.

%X Locale’s appropriate time repre-
sentation.

%y Year without century as a decimal
number [00,99].

%Y Year with century as a decimal
number.

%z Time zone offset indicating a
positive or negative time differ-
ence fromUTC/GMT of the form
+HHMM or -HHMM, where H
represents decimal hour digits
and M represents decimal minute
digits [-23:59, +23:59].1

%Z Time zone name (no characters
if no time zone exists). Depre-
cated.Page 738, 1

%G ISO 8601 year (similar to %Y

but follows the rules for the ISO
8601 calendar year). The year
starts with the week that contains
the first Thursday of the calendar
year.

%V ISO 8601 week number (as a dec-
imal number [01,53]). The first
week of the year is the one that
contains the first Thursday of the
year. Weeks start on Monday.

%% A literal '%' character.

16.3. time— Time access and conversions 737

The Python Library Reference, Release 3.13.1

Notes:

(1) The %f format directive only applies to strptime(), not to strftime(). However, see also
datetime.datetime.strptime() and datetime.datetime.strftime() where the %f format
directive applies to microseconds.

(2) When used with the strptime() function, the %p directive only affects the output hour field if the %I
directive is used to parse the hour.

(3) The range really is 0 to 61; value 60 is valid in timestamps representing leap seconds and value 61 is
supported for historical reasons.

(4) When used with the strptime() function, %U and %W are only used in calculations when the day of the
week and the year are specified.

Here is an example, a format for dates compatible with that specified in theRFC 2822 Internet email standard.1

>>> from time import gmtime, strftime

>>> strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())

'Thu, 28 Jun 2001 14:17:15 +0000'

Additional directives may be supported on certain platforms, but only the ones listed here have a meaning stan-
dardized by ANSI C. To see the full set of format codes supported on your platform, consult the strftime(3)
documentation.

On some platforms, an optional field width and precision specification can immediately follow the initial '%'
of a directive in the following order; this is also not portable. The field width is normally 2 except for %j where
it is 3.

time.strptime(string[, format])
Parse a string representing a time according to a format. The return value is a struct_time as returned by
gmtime() or localtime().

The format parameter uses the same directives as those used by strftime(); it defaults to "%a %b %d

%H:%M:%S %Y" which matches the formatting returned by ctime(). If string cannot be parsed according
to format, or if it has excess data after parsing, ValueError is raised. The default values used to fill in any
missing data when more accurate values cannot be inferred are (1900, 1, 1, 0, 0, 0, 0, 1, -1).
Both string and format must be strings.

For example:

>>> import time

>>> time.strptime("30 Nov 00", "%d %b %y")

time.struct_time(tm_year=2000, tm_mon=11, tm_mday=30, tm_hour=0, tm_min=0,

tm_sec=0, tm_wday=3, tm_yday=335, tm_isdst=-1)

Support for the %Z directive is based on the values contained in tzname and whether daylight is true.
Because of this, it is platform-specific except for recognizing UTC and GMT which are always known (and
are considered to be non-daylight savings timezones).

Only the directives specified in the documentation are supported. Because strftime() is implemented per
platform it can sometimes offer more directives than those listed. But strptime() is independent of any
platform and thus does not necessarily support all directives available that are not documented as supported.

class time.struct_time

The type of the time value sequence returned by gmtime(), localtime(), and strptime(). It is an object
with a named tuple interface: values can be accessed by index and by attribute name. The following values are
present:

1 The use of %Z is now deprecated, but the %z escape that expands to the preferred hour/minute offset is not supported by all ANSI C libraries.
Also, a strict reading of the original 1982RFC 822 standard calls for a two-digit year (%y rather than %Y), but practice moved to 4-digit years long
before the year 2000. After that, RFC 822 became obsolete and the 4-digit year has been first recommended by RFC 1123 and then mandated
by RFC 2822.

738 Chapter 16. Generic Operating System Services

https://en.wikipedia.org/wiki/Leap_second
https://datatracker.ietf.org/doc/html/rfc2822.html
https://manpages.debian.org/strftime(3)
https://datatracker.ietf.org/doc/html/rfc822.html
https://datatracker.ietf.org/doc/html/rfc822.html
https://datatracker.ietf.org/doc/html/rfc1123.html
https://datatracker.ietf.org/doc/html/rfc2822.html

The Python Library Reference, Release 3.13.1

Index Attribute Values
0

tm_year
(for example, 1993)

1
tm_mon

range [1, 12]

2
tm_mday

range [1, 31]

3
tm_hour

range [0, 23]

4
tm_min

range [0, 59]

5
tm_sec

range [0, 61]; see Note (2) in
strftime()

6
tm_wday

range [0, 6]; Monday is 0

7
tm_yday

range [1, 366]

8
tm_isdst

0, 1 or -1; see below

N/A
tm_zone

abbreviation of timezone name

N/A
tm_gmtoff

offset east of UTC in seconds

Note that unlike the C structure, the month value is a range of [1, 12], not [0, 11].

In calls to mktime(), tm_isdst may be set to 1 when daylight savings time is in effect, and 0 when it is not.
A value of -1 indicates that this is not known, and will usually result in the correct state being filled in.

When a tuple with an incorrect length is passed to a function expecting a struct_time, or having elements
of the wrong type, a TypeError is raised.

time.time()→ float
Return the time in seconds since the epoch as a floating-point number. The handling of leap seconds is platform
dependent. OnWindows and most Unix systems, the leap seconds are not counted towards the time in seconds
since the epoch. This is commonly referred to as Unix time.

Note that even though the time is always returned as a floating-point number, not all systems provide time with
a better precision than 1 second. While this function normally returns non-decreasing values, it can return a
lower value than a previous call if the system clock has been set back between the two calls.

The number returned by time() may be converted into a more common time format (i.e. year, month, day,
hour, etc…) in UTC by passing it to gmtime() function or in local time by passing it to the localtime()
function. In both cases a struct_time object is returned, from which the components of the calendar date
may be accessed as attributes.

Clock:

• On Windows, call GetSystemTimeAsFileTime().

16.3. time— Time access and conversions 739

https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Unix_time

The Python Library Reference, Release 3.13.1

• Call clock_gettime(CLOCK_REALTIME) if available.

• Otherwise, call gettimeofday().

Use time_ns() to avoid the precision loss caused by the float type.

time.time_ns()→ int

Similar to time() but returns time as an integer number of nanoseconds since the epoch.

Added in version 3.7.

time.thread_time()→ float

Return the value (in fractional seconds) of the sum of the system and user CPU time of the current thread.
It does not include time elapsed during sleep. It is thread-specific by definition. The reference point of the
returned value is undefined, so that only the difference between the results of two calls in the same thread is
valid.

Use thread_time_ns() to avoid the precision loss caused by the float type.

Availability: Linux, Unix, Windows.

Unix systems supporting CLOCK_THREAD_CPUTIME_ID.

Added in version 3.7.

time.thread_time_ns()→ int
Similar to thread_time() but return time as nanoseconds.

Added in version 3.7.

time.tzset()

Reset the time conversion rules used by the library routines. The environment variable TZ specifies how this is
done. It will also set the variables tzname (from the TZ environment variable), timezone (non-DST seconds
West of UTC), altzone (DST seconds west of UTC) and daylight (to 0 if this timezone does not have any
daylight saving time rules, or to nonzero if there is a time, past, present or future when daylight saving time
applies).

Availability: Unix.

Note

Although in many cases, changing the TZ environment variable may affect the output of functions like
localtime() without calling tzset(), this behavior should not be relied on.

The TZ environment variable should contain no whitespace.

The standard format of the TZ environment variable is (whitespace added for clarity):

std offset [dst [offset [,start[/time], end[/time]]]]

Where the components are:

std and dst
Three or more alphanumerics giving the timezone abbreviations. These will be propagated into
time.tzname

offset

The offset has the form: ± hh[:mm[:ss]]. This indicates the value added the local time to arrive at
UTC. If preceded by a ‘-’, the timezone is east of the Prime Meridian; otherwise, it is west. If no offset
follows dst, summer time is assumed to be one hour ahead of standard time.

start[/time], end[/time]

Indicates when to change to and back from DST. The format of the start and end dates are one of the
following:

740 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

Jn

The Julian day n (1 <= n <= 365). Leap days are not counted, so in all years February 28 is day 59
and March 1 is day 60.

n

The zero-based Julian day (0 <= n <= 365). Leap days are counted, and it is possible to refer to
February 29.

Mm.n.d

The d’th day (0 <= d <= 6) of week n of month m of the year (1 <= n <= 5, 1 <= m <= 12, where
week 5 means “the last d day in month m” which may occur in either the fourth or the fifth week).
Week 1 is the first week in which the d’th day occurs. Day zero is a Sunday.

time has the same format as offset except that no leading sign (‘-’ or ‘+’) is allowed. The default, if
time is not given, is 02:00:00.

>>> os.environ['TZ'] = 'EST+05EDT,M4.1.0,M10.5.0'

>>> time.tzset()

>>> time.strftime('%X %x %Z')

'02:07:36 05/08/03 EDT'

>>> os.environ['TZ'] = 'AEST-10AEDT-11,M10.5.0,M3.5.0'

>>> time.tzset()

>>> time.strftime('%X %x %Z')

'16:08:12 05/08/03 AEST'

Onmany Unix systems (including *BSD, Linux, Solaris, and Darwin), it is more convenient to use the system’s
zoneinfo (tzfile(5)) database to specify the timezone rules. To do this, set the TZ environment variable to
the path of the required timezone datafile, relative to the root of the systems ‘zoneinfo’ timezone database,
usually located at /usr/share/zoneinfo. For example, 'US/Eastern', 'Australia/Melbourne',
'Egypt' or 'Europe/Amsterdam'.

>>> os.environ['TZ'] = 'US/Eastern'

>>> time.tzset()

>>> time.tzname

('EST', 'EDT')

>>> os.environ['TZ'] = 'Egypt'

>>> time.tzset()

>>> time.tzname

('EET', 'EEST')

16.3.2 Clock ID Constants

These constants are used as parameters for clock_getres() and clock_gettime().

time.CLOCK_BOOTTIME

Identical to CLOCK_MONOTONIC, except it also includes any time that the system is suspended.

This allows applications to get a suspend-aware monotonic clock without having to deal with the complications
of CLOCK_REALTIME, which may have discontinuities if the time is changed using settimeofday() or
similar.

Availability: Linux >= 2.6.39.

Added in version 3.7.

time.CLOCK_HIGHRES

The Solaris OS has a CLOCK_HIGHRES timer that attempts to use an optimal hardware source, and may give
close to nanosecond resolution. CLOCK_HIGHRES is the nonadjustable, high-resolution clock.

Availability: Solaris.

Added in version 3.3.

16.3. time— Time access and conversions 741

https://manpages.debian.org/tzfile(5)

The Python Library Reference, Release 3.13.1

time.CLOCK_MONOTONIC

Clock that cannot be set and represents monotonic time since some unspecified starting point.

Availability: Unix.

Added in version 3.3.

time.CLOCK_MONOTONIC_RAW

Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-based time that is not subject to NTP
adjustments.

Availability: Linux >= 2.6.28, macOS >= 10.12.

Added in version 3.3.

time.CLOCK_MONOTONIC_RAW_APPROX

Similar to CLOCK_MONOTONIC_RAW , but reads a value cached by the system at context switch and hence has
less accuracy.

Availability: macOS >= 10.12.

Added in version 3.13.

time.CLOCK_PROCESS_CPUTIME_ID

High-resolution per-process timer from the CPU.

Availability: Unix.

Added in version 3.3.

time.CLOCK_PROF

High-resolution per-process timer from the CPU.

Availability: FreeBSD, NetBSD >= 7, OpenBSD.

Added in version 3.7.

time.CLOCK_TAI

International Atomic Time

The system must have a current leap second table in order for this to give the correct answer. PTP or NTP
software can maintain a leap second table.

Availability: Linux.

Added in version 3.9.

time.CLOCK_THREAD_CPUTIME_ID

Thread-specific CPU-time clock.

Availability: Unix.

Added in version 3.3.

time.CLOCK_UPTIME

Time whose absolute value is the time the system has been running and not suspended, providing accurate
uptime measurement, both absolute and interval.

Availability: FreeBSD, OpenBSD >= 5.5.

Added in version 3.7.

time.CLOCK_UPTIME_RAW

Clock that increments monotonically, tracking the time since an arbitrary point, unaffected by frequency or
time adjustments and not incremented while the system is asleep.

Availability: macOS >= 10.12.

Added in version 3.8.

742 Chapter 16. Generic Operating System Services

https://www.nist.gov/pml/time-and-frequency-division/nist-time-frequently-asked-questions-faq#tai

The Python Library Reference, Release 3.13.1

time.CLOCK_UPTIME_RAW_APPROX

Like CLOCK_UPTIME_RAW , but the value is cached by the system at context switches and therefore has less
accuracy.

Availability: macOS >= 10.12.

Added in version 3.13.

The following constant is the only parameter that can be sent to clock_settime().

time.CLOCK_REALTIME

System-wide real-time clock. Setting this clock requires appropriate privileges.

Availability: Unix.

Added in version 3.3.

16.3.3 Timezone Constants

time.altzone

The offset of the local DST timezone, in seconds west of UTC, if one is defined. This is negative if the local
DST timezone is east of UTC (as inWestern Europe, including the UK). Only use this if daylight is nonzero.
See note below.

time.daylight

Nonzero if a DST timezone is defined. See note below.

time.timezone

The offset of the local (non-DST) timezone, in seconds west of UTC (negative in most of Western Europe,
positive in the US, zero in the UK). See note below.

time.tzname

A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name of the local
DST timezone. If no DST timezone is defined, the second string should not be used. See note below.

Note

For the above Timezone constants (altzone, daylight, timezone, and tzname), the value is determined
by the timezone rules in effect at module load time or the last time tzset() is called and may be incorrect for
times in the past. It is recommended to use the tm_gmtoff and tm_zone results from localtime() to obtain
timezone information.

See also

Module datetime
More object-oriented interface to dates and times.

Module locale
Internationalization services. The locale setting affects the interpretation of many format specifiers in
strftime() and strptime().

Module calendar
General calendar-related functions. timegm() is the inverse of gmtime() from this module.

16.4 logging— Logging facility for Python

Source code: Lib/logging/__init__.py

16.4. logging— Logging facility for Python 743

https://github.com/python/cpython/tree/3.13/Lib/logging/__init__.py

The Python Library Reference, Release 3.13.1

Important

This page contains the API reference information. For tutorial information and discussion of more advanced
topics, see

• Basic Tutorial

• Advanced Tutorial

• Logging Cookbook

This module defines functions and classes which implement a flexible event logging system for applications and
libraries.

The key benefit of having the logging API provided by a standard library module is that all Python modules can
participate in logging, so your application log can include your own messages integrated with messages from third-
party modules.

Here’s a simple example of idiomatic usage:

myapp.py

import logging

import mylib

logger = logging.getLogger(__name__)

def main():

logging.basicConfig(filename='myapp.log', level=logging.INFO)

logger.info('Started')

mylib.do_something()

logger.info('Finished')

if __name__ == '__main__':

main()

mylib.py

import logging

logger = logging.getLogger(__name__)

def do_something():

logger.info('Doing something')

If you run myapp.py, you should see this in myapp.log:

INFO:__main__:Started

INFO:mylib:Doing something

INFO:__main__:Finished

The key feature of this idiomatic usage is that the majority of code is simply creating a module level logger with
getLogger(__name__), and using that logger to do any needed logging. This is concise, while allowing down-
stream code fine-grained control if needed. Logged messages to the module-level logger get forwarded to handlers
of loggers in higher-level modules, all the way up to the highest-level logger known as the root logger; this approach
is known as hierarchical logging.

For logging to be useful, it needs to be configured: setting the levels and destinations for each logger, potentially
changing how specific modules log, often based on command-line arguments or application configuration. In most
cases, like the one above, only the root logger needs to be so configured, since all the lower level loggers at module
level eventually forward their messages to its handlers. basicConfig() provides a quick way to configure the root
logger that handles many use cases.

744 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

The module provides a lot of functionality and flexibility. If you are unfamiliar with logging, the best way to get to
grips with it is to view the tutorials (see the links above and on the right).

The basic classes defined by the module, together with their attributes and methods, are listed in the sections below.

• Loggers expose the interface that application code directly uses.

• Handlers send the log records (created by loggers) to the appropriate destination.

• Filters provide a finer grained facility for determining which log records to output.

• Formatters specify the layout of log records in the final output.

16.4.1 Logger Objects

Loggers have the following attributes and methods. Note that Loggers should NEVER be instantiated directly, but
always through the module-level function logging.getLogger(name). Multiple calls to getLogger() with the
same name will always return a reference to the same Logger object.

The name is potentially a period-separated hierarchical value, like foo.bar.baz (though it could also be just plain
foo, for example). Loggers that are further down in the hierarchical list are children of loggers higher up in the list.
For example, given a logger with a name of foo, loggers with names of foo.bar, foo.bar.baz, and foo.bam
are all descendants of foo. In addition, all loggers are descendants of the root logger. The logger name hierarchy
is analogous to the Python package hierarchy, and identical to it if you organise your loggers on a per-module basis
using the recommended construction logging.getLogger(__name__). That’s because in a module, __name__
is the module’s name in the Python package namespace.

class logging.Logger

name

This is the logger’s name, and is the value that was passed to getLogger() to obtain the logger.

Note

This attribute should be treated as read-only.

level

The threshold of this logger, as set by the setLevel() method.

Note

Do not set this attribute directly - always use setLevel(), which has checks for the level passed to
it.

parent

The parent logger of this logger. It may change based on later instantiation of loggers which are higher
up in the namespace hierarchy.

Note

This value should be treated as read-only.

propagate

If this attribute evaluates to true, events logged to this logger will be passed to the handlers of higher level
(ancestor) loggers, in addition to any handlers attached to this logger. Messages are passed directly to the
ancestor loggers’ handlers - neither the level nor filters of the ancestor loggers in question are considered.

If this evaluates to false, logging messages are not passed to the handlers of ancestor loggers.

16.4. logging— Logging facility for Python 745

The Python Library Reference, Release 3.13.1

Spelling it out with an example: If the propagate attribute of the logger named A.B.C evaluates to true,
any event logged to A.B.C via a method call such as logging.getLogger('A.B.C').error(...)
will [subject to passing that logger’s level and filter settings] be passed in turn to any handlers attached
to loggers named A.B, A and the root logger, after first being passed to any handlers attached to A.B.C.
If any logger in the chain A.B.C, A.B, A has its propagate attribute set to false, then that is the last
logger whose handlers are offered the event to handle, and propagation stops at that point.

The constructor sets this attribute to True.

Note

If you attach a handler to a logger and one or more of its ancestors, it may emit the same record
multiple times. In general, you should not need to attach a handler to more than one logger - if you
just attach it to the appropriate logger which is highest in the logger hierarchy, then it will see all
events logged by all descendant loggers, provided that their propagate setting is left set to True. A
common scenario is to attach handlers only to the root logger, and to let propagation take care of the
rest.

handlers

The list of handlers directly attached to this logger instance.

Note

This attribute should be treated as read-only; it is normally changed via the addHandler() and
removeHandler() methods, which use locks to ensure thread-safe operation.

disabled

This attribute disables handling of any events. It is set to False in the initializer, and only changed by
logging configuration code.

Note

This attribute should be treated as read-only.

setLevel(level)

Sets the threshold for this logger to level. Logging messages which are less severe than level will be
ignored; logging messages which have severity level or higher will be emitted by whichever handler or
handlers service this logger, unless a handler’s level has been set to a higher severity level than level.

When a logger is created, the level is set to NOTSET (which causes all messages to be processed when
the logger is the root logger, or delegation to the parent when the logger is a non-root logger). Note that
the root logger is created with level WARNING.

The term ‘delegation to the parent’ means that if a logger has a level of NOTSET, its chain of ancestor
loggers is traversed until either an ancestor with a level other than NOTSET is found, or the root is
reached.

If an ancestor is found with a level other than NOTSET, then that ancestor’s level is treated as the effective
level of the logger where the ancestor search began, and is used to determine how a logging event is
handled.

If the root is reached, and it has a level of NOTSET, then all messages will be processed. Otherwise, the
root’s level will be used as the effective level.

See Logging Levels for a list of levels.

Changed in version 3.2: The level parameter now accepts a string representation of the level such as
‘INFO’ as an alternative to the integer constants such as INFO. Note, however, that levels are internally

746 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

stored as integers, and methods such as e.g. getEffectiveLevel() and isEnabledFor() will re-
turn/expect to be passed integers.

isEnabledFor(level)
Indicates if a message of severity level would be processed by this logger. This method checks first the
module-level level set by logging.disable(level) and then the logger’s effective level as determined
by getEffectiveLevel().

getEffectiveLevel()

Indicates the effective level for this logger. If a value other than NOTSET has been set using setLevel(),
it is returned. Otherwise, the hierarchy is traversed towards the root until a value other than NOTSET is
found, and that value is returned. The value returned is an integer, typically one of logging.DEBUG,
logging.INFO etc.

getChild(suffix)
Returns a logger which is a descendant to this logger, as determined by the suffix. Thus, logging.
getLogger('abc').getChild('def.ghi') would return the same logger as would be returned
by logging.getLogger('abc.def.ghi'). This is a convenience method, useful when the parent
logger is named using e.g. __name__ rather than a literal string.

Added in version 3.2.

getChildren()

Returns a set of loggers which are immediate children of this logger. So for example logging.

getLogger().getChildren() might return a set containing loggers named foo and bar, but a
logger named foo.bar wouldn’t be included in the set. Likewise, logging.getLogger('foo').
getChildren() might return a set including a logger named foo.bar, but it wouldn’t include one
named foo.bar.baz.

Added in version 3.12.

debug(msg, *args, **kwargs)
Logs a message with level DEBUG on this logger. The msg is the message format string, and the args are
the arguments which are merged intomsg using the string formatting operator. (Note that this means that
you can use keywords in the format string, together with a single dictionary argument.) No % formatting
operation is performed on msg when no args are supplied.

There are four keyword arguments in kwargs which are inspected: exc_info, stack_info, stacklevel and
extra.

If exc_info does not evaluate as false, it causes exception information to be added to the logging message.
If an exception tuple (in the format returned by sys.exc_info()) or an exception instance is provided,
it is used; otherwise, sys.exc_info() is called to get the exception information.

The second optional keyword argument is stack_info, which defaults to False. If true, stack information
is added to the logging message, including the actual logging call. Note that this is not the same stack
information as that displayed through specifying exc_info: The former is stack frames from the bottom of
the stack up to the logging call in the current thread, whereas the latter is information about stack frames
which have been unwound, following an exception, while searching for exception handlers.

You can specify stack_info independently of exc_info, e.g. to just show how you got to a certain point in
your code, even when no exceptions were raised. The stack frames are printed following a header line
which says:

Stack (most recent call last):

This mimics the Traceback (most recent call last): which is used when displaying exception
frames.

The third optional keyword argument is stacklevel, which defaults to 1. If greater than 1, the correspond-
ing number of stack frames are skipped when computing the line number and function name set in the
LogRecord created for the logging event. This can be used in logging helpers so that the function name,

16.4. logging— Logging facility for Python 747

The Python Library Reference, Release 3.13.1

filename and line number recorded are not the information for the helper function/method, but rather its
caller. The name of this parameter mirrors the equivalent one in the warnings module.

The fourth keyword argument is extrawhich can be used to pass a dictionary which is used to populate the
__dict__ of the LogRecord created for the logging event with user-defined attributes. These custom
attributes can then be used as you like. For example, they could be incorporated into logged messages.
For example:

FORMAT = '%(asctime)s %(clientip)-15s %(user)-8s %(message)s'

logging.basicConfig(format=FORMAT)

d = {'clientip': '192.168.0.1', 'user': 'fbloggs'}

logger = logging.getLogger('tcpserver')

logger.warning('Protocol problem: %s', 'connection reset', extra=d)

would print something like

2006-02-08 22:20:02,165 192.168.0.1 fbloggs Protocol problem: connection␣

↪→reset

The keys in the dictionary passed in extra should not clash with the keys used by the logging system. (See
the section on LogRecord attributes for more information on which keys are used by the logging system.)

If you choose to use these attributes in logged messages, you need to exercise some care. In the above
example, for instance, the Formatter has been set up with a format string which expects ‘clientip’ and
‘user’ in the attribute dictionary of the LogRecord. If these are missing, the message will not be logged
because a string formatting exception will occur. So in this case, you always need to pass the extra
dictionary with these keys.

While this might be annoying, this feature is intended for use in specialized circumstances, such as multi-
threaded servers where the same code executes in many contexts, and interesting conditions which arise
are dependent on this context (such as remote client IP address and authenticated user name, in the above
example). In such circumstances, it is likely that specialized Formatters would be used with particular
Handlers.

If no handler is attached to this logger (or any of its ancestors, taking into account the relevant Logger.
propagate attributes), the message will be sent to the handler set on lastResort.

Changed in version 3.2: The stack_info parameter was added.

Changed in version 3.5: The exc_info parameter can now accept exception instances.

Changed in version 3.8: The stacklevel parameter was added.

info(msg, *args, **kwargs)

Logs a message with level INFO on this logger. The arguments are interpreted as for debug().

warning(msg, *args, **kwargs)
Logs a message with level WARNING on this logger. The arguments are interpreted as for debug().

Note

There is an obsoletemethod warnwhich is functionally identical to warning. As warn is deprecated,
please do not use it - use warning instead.

error(msg, *args, **kwargs)
Logs a message with level ERROR on this logger. The arguments are interpreted as for debug().

critical(msg, *args, **kwargs)

Logs a message with level CRITICAL on this logger. The arguments are interpreted as for debug().

748 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

log(level, msg, *args, **kwargs)
Logs a message with integer level level on this logger. The other arguments are interpreted as for
debug().

exception(msg, *args, **kwargs)
Logs a message with level ERROR on this logger. The arguments are interpreted as for debug(). Ex-
ception info is added to the logging message. This method should only be called from an exception
handler.

addFilter(filter)
Adds the specified filter filter to this logger.

removeFilter(filter)
Removes the specified filter filter from this logger.

filter(record)
Apply this logger’s filters to the record and return True if the record is to be processed. The filters are
consulted in turn, until one of them returns a false value. If none of them return a false value, the record
will be processed (passed to handlers). If one returns a false value, no further processing of the record
occurs.

addHandler(hdlr)
Adds the specified handler hdlr to this logger.

removeHandler(hdlr)
Removes the specified handler hdlr from this logger.

findCaller(stack_info=False, stacklevel=1)
Finds the caller’s source filename and line number. Returns the filename, line number, function name
and stack information as a 4-element tuple. The stack information is returned as None unless stack_info
is True.

The stacklevel parameter is passed from code calling the debug() and other APIs. If greater than 1,
the excess is used to skip stack frames before determining the values to be returned. This will generally
be useful when calling logging APIs from helper/wrapper code, so that the information in the event log
refers not to the helper/wrapper code, but to the code that calls it.

handle(record)
Handles a record by passing it to all handlers associated with this logger and its ancestors (until a false
value of propagate is found). This method is used for unpickled records received from a socket, as well
as those created locally. Logger-level filtering is applied using filter().

makeRecord(name, level, fn, lno, msg, args, exc_info, func=None, extra=None, sinfo=None)
This is a factory method which can be overridden in subclasses to create specialized LogRecord in-
stances.

hasHandlers()

Checks to see if this logger has any handlers configured. This is done by looking for handlers in this
logger and its parents in the logger hierarchy. Returns True if a handler was found, else False. The
method stops searching up the hierarchy whenever a logger with the ‘propagate’ attribute set to false is
found - that will be the last logger which is checked for the existence of handlers.

Added in version 3.2.

Changed in version 3.7: Loggers can now be pickled and unpickled.

16.4.2 Logging Levels

The numeric values of logging levels are given in the following table. These are primarily of interest if you want to
define your own levels, and need them to have specific values relative to the predefined levels. If you define a level
with the same numeric value, it overwrites the predefined value; the predefined name is lost.

16.4. logging— Logging facility for Python 749

The Python Library Reference, Release 3.13.1

Level Numeric value What it means / When to use it

logging.NOTSET
0 When set on a logger, indicates that

ancestor loggers are to be consulted
to determine the effective level. If
that still resolves to NOTSET, then
all events are logged. When set on
a handler, all events are handled.

logging.DEBUG
10 Detailed information, typically only

of interest to a developer trying to
diagnose a problem.

logging.INFO
20 Confirmation that things are work-

ing as expected.

logging.WARNING
30 An indication that something unex-

pected happened, or that a problem
might occur in the near future (e.g.
‘disk space low’). The software is
still working as expected.

logging.ERROR
40 Due to a more serious problem, the

software has not been able to per-
form some function.

logging.CRITICAL
50 A serious error, indicating that the

program itself may be unable to
continue running.

16.4.3 Handler Objects

Handlers have the following attributes and methods. Note that Handler is never instantiated directly; this class
acts as a base for more useful subclasses. However, the __init__() method in subclasses needs to call Handler.
__init__().

class logging.Handler

__init__(level=NOTSET)
Initializes the Handler instance by setting its level, setting the list of filters to the empty list and creating
a lock (using createLock()) for serializing access to an I/O mechanism.

createLock()

Initializes a thread lock which can be used to serialize access to underlying I/O functionality which may
not be threadsafe.

acquire()

Acquires the thread lock created with createLock().

release()

Releases the thread lock acquired with acquire().

setLevel(level)
Sets the threshold for this handler to level. Logging messages which are less severe than level will be ig-
nored. When a handler is created, the level is set to NOTSET (which causes all messages to be processed).

See Logging Levels for a list of levels.

Changed in version 3.2: The level parameter now accepts a string representation of the level such as
‘INFO’ as an alternative to the integer constants such as INFO.

setFormatter(fmt)
Sets the Formatter for this handler to fmt.

750 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

addFilter(filter)
Adds the specified filter filter to this handler.

removeFilter(filter)

Removes the specified filter filter from this handler.

filter(record)

Apply this handler’s filters to the record and return True if the record is to be processed. The filters are
consulted in turn, until one of them returns a false value. If none of them return a false value, the record
will be emitted. If one returns a false value, the handler will not emit the record.

flush()

Ensure all logging output has been flushed. This version does nothing and is intended to be implemented
by subclasses.

close()

Tidy up any resources used by the handler. This version does no output but removes the handler from an
internal list of handlers which is closed when shutdown() is called. Subclasses should ensure that this
gets called from overridden close() methods.

handle(record)
Conditionally emits the specified logging record, depending on filters which may have been added to the
handler. Wraps the actual emission of the record with acquisition/release of the I/O thread lock.

handleError(record)
This method should be called from handlers when an exception is encountered during an emit() call.
If the module-level attribute raiseExceptions is False, exceptions get silently ignored. This is what
is mostly wanted for a logging system - most users will not care about errors in the logging system, they
are more interested in application errors. You could, however, replace this with a custom handler if you
wish. The specified record is the one which was being processed when the exception occurred. (The
default value of raiseExceptions is True, as that is more useful during development).

format(record)
Do formatting for a record - if a formatter is set, use it. Otherwise, use the default formatter for the
module.

emit(record)
Do whatever it takes to actually log the specified logging record. This version is intended to be imple-
mented by subclasses and so raises a NotImplementedError.

Warning

Thismethod is called after a handler-level lock is acquired, which is released after thismethod returns.
When you override this method, note that you should be careful when calling anything that invokes
other parts of the logging API which might do locking, because that might result in a deadlock.
Specifically:

• Logging configuration APIs acquire the module-level lock, and then individual handler-level
locks as those handlers are configured.

• Many logging APIs lock the module-level lock. If such an API is called from this method, it
could cause a deadlock if a configuration call is made on another thread, because that thread
will try to acquire the module-level lock before the handler-level lock, whereas this thread
tries to acquire the module-level lock after the handler-level lock (because in this method, the
handler-level lock has already been acquired).

For a list of handlers included as standard, see logging.handlers.

16.4. logging— Logging facility for Python 751

The Python Library Reference, Release 3.13.1

16.4.4 Formatter Objects

class logging.Formatter(fmt=None, datefmt=None, style=’%’, validate=True, *, defaults=None)
Responsible for converting a LogRecord to an output string to be interpreted by a human or external system.

Parameters

• fmt (str) – A format string in the given style for the logged output as a whole. The
possible mapping keys are drawn from the LogRecord object’s LogRecord attributes. If
not specified, '%(message)s' is used, which is just the logged message.

• datefmt (str) – A format string in the given style for the date/time portion of the logged
output. If not specified, the default described in formatTime() is used.

• style (str) – Can be one of '%', '{' or '$' and determines how the format string
will be merged with its data: using one of printf-style String Formatting (%), str.
format() ({) or string.Template ($). This only applies to fmt and datefmt (e.g.
'%(message)s' versus '{message}'), not to the actual log messages passed to the
logging methods. However, there are other ways to use {- and $-formatting for log mes-
sages.

• validate (bool) – If True (the default), incorrect or mismatched fmt and style
will raise a ValueError; for example, logging.Formatter('%(asctime)s -

%(message)s', style='{').

• defaults (dict[str, Any]) – A dictionary with default values to use in
custom fields. For example, logging.Formatter('%(ip)s %(message)s',

defaults={"ip": None})

Changed in version 3.2: Added the style parameter.

Changed in version 3.8: Added the validate parameter.

Changed in version 3.10: Added the defaults parameter.

format(record)
The record’s attribute dictionary is used as the operand to a string formatting operation. Returns
the resulting string. Before formatting the dictionary, a couple of preparatory steps are carried out.
The message attribute of the record is computed using msg % args. If the formatting string contains
'(asctime)', formatTime() is called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message. Note that the formatted ex-
ception information is cached in attribute exc_text. This is useful because the exception information can
be pickled and sent across the wire, but you should be careful if you have more than one Formatter
subclass which customizes the formatting of exception information. In this case, you will have to clear
the cached value (by setting the exc_text attribute to None) after a formatter has done its formatting, so
that the next formatter to handle the event doesn’t use the cached value, but recalculates it afresh.

If stack information is available, it’s appended after the exception information, using formatStack()
to transform it if necessary.

formatTime(record, datefmt=None)

This method should be called from format() by a formatter which wants to make use of a formatted
time. This method can be overridden in formatters to provide for any specific requirement, but the basic
behavior is as follows: if datefmt (a string) is specified, it is used with time.strftime() to format the
creation time of the record. Otherwise, the format ‘%Y-%m-%d %H:%M:%S,uuu’ is used, where the
uuu part is a millisecond value and the other letters are as per the time.strftime() documentation.
An example time in this format is 2003-01-23 00:29:50,411. The resulting string is returned.

This function uses a user-configurable function to convert the creation time to a tuple. By default, time.
localtime() is used; to change this for a particular formatter instance, set the converter attribute
to a function with the same signature as time.localtime() or time.gmtime(). To change it for all
formatters, for example if you want all logging times to be shown in GMT, set the converter attribute
in the Formatter class.

752 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

Changed in version 3.3: Previously, the default format was hard-coded as in this example: 2010-09-06
22:38:15,292 where the part before the comma is handled by a strptime format string ('%Y-%m-%d
%H:%M:%S'), and the part after the comma is a millisecond value. Because strptime does not have a
format placeholder for milliseconds, the millisecond value is appended using another format string, '%s,
%03d' — and both of these format strings have been hardcoded into this method. With the change,
these strings are defined as class-level attributes which can be overridden at the instance level when
desired. The names of the attributes are default_time_format (for the strptime format string) and
default_msec_format (for appending the millisecond value).

Changed in version 3.9: The default_msec_format can be None.

formatException(exc_info)
Formats the specified exception information (a standard exception tuple as returned by sys.

exc_info()) as a string. This default implementation just uses traceback.print_exception().
The resulting string is returned.

formatStack(stack_info)
Formats the specified stack information (a string as returned by traceback.print_stack(), but with
the last newline removed) as a string. This default implementation just returns the input value.

class logging.BufferingFormatter(linefmt=None)

A base formatter class suitable for subclassing when you want to format a number of records. You can pass a
Formatter instance which you want to use to format each line (that corresponds to a single record). If not
specified, the default formatter (which just outputs the event message) is used as the line formatter.

formatHeader(records)
Return a header for a list of records. The base implementation just returns the empty string. You will
need to override this method if you want specific behaviour, e.g. to show the count of records, a title or
a separator line.

formatFooter(records)
Return a footer for a list of records. The base implementation just returns the empty string. You will need
to override this method if you want specific behaviour, e.g. to show the count of records or a separator
line.

format(records)
Return formatted text for a list of records. The base implementation just returns the empty string if there
are no records; otherwise, it returns the concatenation of the header, each record formatted with the line
formatter, and the footer.

16.4.5 Filter Objects

Filters can be used by Handlers and Loggers formore sophisticated filtering than is provided by levels. The base
filter class only allows events which are below a certain point in the logger hierarchy. For example, a filter initialized
with ‘A.B’ will allow events logged by loggers ‘A.B’, ‘A.B.C’, ‘A.B.C.D’, ‘A.B.D’ etc. but not ‘A.BB’, ‘B.A.B’ etc. If
initialized with the empty string, all events are passed.

class logging.Filter(name=”)

Returns an instance of the Filter class. If name is specified, it names a logger which, together with its
children, will have its events allowed through the filter. If name is the empty string, allows every event.

filter(record)
Is the specified record to be logged? Returns false for no, true for yes. Filters can eithermodify log records
in-place or return a completely different record instance which will replace the original log record in any
future processing of the event.

Note that filters attached to handlers are consulted before an event is emitted by the handler, whereas filters attached
to loggers are consulted whenever an event is logged (using debug(), info(), etc.), before sending an event to
handlers. This means that events which have been generated by descendant loggers will not be filtered by a logger’s
filter setting, unless the filter has also been applied to those descendant loggers.

16.4. logging— Logging facility for Python 753

The Python Library Reference, Release 3.13.1

You don’t actually need to subclass Filter: you can pass any instance which has a filter method with the same
semantics.

Changed in version 3.2: You don’t need to create specialized Filter classes, or use other classes with a filter
method: you can use a function (or other callable) as a filter. The filtering logic will check to see if the filter object
has a filter attribute: if it does, it’s assumed to be a Filter and its filter() method is called. Otherwise, it’s
assumed to be a callable and called with the record as the single parameter. The returned value should conform to
that returned by filter().

Changed in version 3.12: You can now return a LogRecord instance from filters to replace the log record rather
than modifying it in place. This allows filters attached to a Handler to modify the log record before it is emitted,
without having side effects on other handlers.

Although filters are used primarily to filter records based on more sophisticated criteria than levels, they get to see
every record which is processed by the handler or logger they’re attached to: this can be useful if you want to do things
like counting how many records were processed by a particular logger or handler, or adding, changing or removing
attributes in the LogRecord being processed. Obviously changing the LogRecord needs to be done with some care,
but it does allow the injection of contextual information into logs (see filters-contextual).

16.4.6 LogRecord Objects

LogRecord instances are created automatically by the Logger every time something is logged, and can be created
manually via makeLogRecord() (for example, from a pickled event received over the wire).

class logging.LogRecord(name, level, pathname, lineno, msg, args, exc_info, func=None, sinfo=None)
Contains all the information pertinent to the event being logged.

The primary information is passed in msg and args, which are combined using msg % args to create the
message attribute of the record.

Parameters

• name (str) – The name of the logger used to log the event represented by this
LogRecord. Note that the logger name in the LogRecord will always have this value,
even though it may be emitted by a handler attached to a different (ancestor) logger.

• level (int) – The numeric level of the logging event (such as 10 for DEBUG, 20 for
INFO, etc). Note that this is converted to two attributes of the LogRecord: levelno for
the numeric value and levelname for the corresponding level name.

• pathname (str) – The full string path of the source file where the logging call was made.

• lineno (int) – The line number in the source file where the logging call was made.

• msg (Any) – The event description message, which can be a %-format string with place-
holders for variable data, or an arbitrary object (see arbitrary-object-messages).

• args (tuple | dict[str, Any]) – Variable data to merge into the msg argument to
obtain the event description.

• exc_info (tuple[type[BaseException], BaseException, types.

TracebackType] | None) – An exception tuple with the current exception in-
formation, as returned by sys.exc_info(), or None if no exception information is
available.

• func (str | None) – The name of the function or method from which the logging call
was invoked.

• sinfo (str | None) – A text string representing stack information from the base of the
stack in the current thread, up to the logging call.

getMessage()

Returns the message for this LogRecord instance after merging any user-supplied arguments with the
message. If the user-supplied message argument to the logging call is not a string, str() is called on it
to convert it to a string. This allows use of user-defined classes as messages, whose __str__ method
can return the actual format string to be used.

754 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

Changed in version 3.2: The creation of a LogRecord has been made more configurable by providing a
factory which is used to create the record. The factory can be set using getLogRecordFactory() and
setLogRecordFactory() (see this for the factory’s signature).

This functionality can be used to inject your own values into a LogRecord at creation time. You can use the
following pattern:

old_factory = logging.getLogRecordFactory()

def record_factory(*args, **kwargs):

record = old_factory(*args, **kwargs)

record.custom_attribute = 0xdecafbad

return record

logging.setLogRecordFactory(record_factory)

With this pattern, multiple factories could be chained, and as long as they don’t overwrite each other’s attributes
or unintentionally overwrite the standard attributes listed above, there should be no surprises.

16.4.7 LogRecord attributes

The LogRecord has a number of attributes, most of which are derived from the parameters to the constructor. (Note
that the names do not always correspond exactly between the LogRecord constructor parameters and the LogRecord
attributes.) These attributes can be used to merge data from the record into the format string. The following table
lists (in alphabetical order) the attribute names, their meanings and the corresponding placeholder in a %-style format
string.

If you are using {}-formatting (str.format()), you can use {attrname} as the placeholder in the format string.
If you are using $-formatting (string.Template), use the form ${attrname}. In both cases, of course, replace
attrname with the actual attribute name you want to use.

In the case of {}-formatting, you can specify formatting flags by placing them after the attribute name, separated from
it with a colon. For example: a placeholder of {msecs:03.0f}would format a millisecond value of 4 as 004. Refer
to the str.format() documentation for full details on the options available to you.

16.4. logging— Logging facility for Python 755

The Python Library Reference, Release 3.13.1

At-
tribute
name

Format Description

args You shouldn’t
need to format
this yourself.

The tuple of arguments merged into msg to produce message, or a dict whose
values are used for the merge (when there is only one argument, and it is a dictio-
nary).

asc-
time

%(asctime)s Human-readable time when the LogRecord was created. By default this is of the
form ‘2003-07-08 16:49:45,896’ (the numbers after the comma are millisecond
portion of the time).

cre-
ated

%(created)f Time when the LogRecord was created (as returned by time.time_ns() / 1e9).

exc_info You shouldn’t
need to format
this yourself.

Exception tuple (à la sys.exc_info) or, if no exception has occurred, None.

file-
name

%(filename)s Filename portion of pathname.

func-
Name

%(funcName)s Name of function containing the logging call.

level-
name

%(levelname)s Text logging level for the message ('DEBUG', 'INFO', 'WARNING', 'ERROR',
'CRITICAL').

lev-
elno

%(levelno)s Numeric logging level for the message (DEBUG, INFO, WARNING, ERROR,
CRITICAL).

lineno %(lineno)d Source line number where the logging call was issued (if available).
mes-
sage

%(message)s The logged message, computed as msg % args. This is set when Formatter.
format() is invoked.

mod-
ule

%(module)s Module (name portion of filename).

msecs %(msecs)d Millisecond portion of the time when the LogRecord was created.
msg You shouldn’t

need to format
this yourself.

The format string passed in the original logging call. Merged with args to produce
message, or an arbitrary object (see arbitrary-object-messages).

name %(name)s Name of the logger used to log the call.
path-
name

%(pathname)s Full pathname of the source file where the logging call was issued (if available).

pro-
cess

%(process)d Process ID (if available).

pro-
cess-
Name

%(processName)sProcess name (if available).

rela-
tive-
Cre-
ated

%(relativeCreated)dTime in milliseconds when the LogRecord was created, relative to the time the
logging module was loaded.

stack_infoYou shouldn’t
need to format
this yourself.

Stack frame information (where available) from the bottom of the stack in the cur-
rent thread, up to and including the stack frame of the logging call which resulted
in the creation of this record.

thread %(thread)d Thread ID (if available).
thread-
Name

%(threadName)s Thread name (if available).

taskName%(taskName)s asyncio.Task name (if available).

Changed in version 3.1: processName was added.

Changed in version 3.12: taskName was added.

756 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

16.4.8 LoggerAdapter Objects

LoggerAdapter instances are used to conveniently pass contextual information into logging calls. For a usage
example, see the section on adding contextual information to your logging output.

class logging.LoggerAdapter(logger, extra, merge_extra=False)
Returns an instance of LoggerAdapter initialized with an underlying Logger instance, a dict-like object
(extra), and a boolean (merge_extra) indicating whether or not the extra argument of individual log calls should
be merged with the LoggerAdapter extra. The default behavior is to ignore the extra argument of individual
log calls and only use the one of the LoggerAdapter instance

process(msg, kwargs)
Modifies the message and/or keyword arguments passed to a logging call in order to insert contextual
information. This implementation takes the object passed as extra to the constructor and adds it to kwargs
using key ‘extra’. The return value is a (msg, kwargs) tuple which has the (possibly modified) versions of
the arguments passed in.

manager

Delegates to the underlying manager on logger.

_log

Delegates to the underlying _log() method on logger.

In addition to the above, LoggerAdapter supports the following methods of Logger: debug(),
info(), warning(), error(), exception(), critical(), log(), isEnabledFor(),
getEffectiveLevel(), setLevel() and hasHandlers(). These methods have the same signa-
tures as their counterparts in Logger, so you can use the two types of instances interchangeably.

Changed in version 3.2: The isEnabledFor(), getEffectiveLevel(), setLevel() and
hasHandlers() methods were added to LoggerAdapter. These methods delegate to the underly-
ing logger.

Changed in version 3.6: Attribute manager and method _log()were added, which delegate to the underlying
logger and allow adapters to be nested.

Changed in version 3.13: The merge_extra argument was added.

16.4.9 Thread Safety

The logging module is intended to be thread-safe without any special work needing to be done by its clients. It
achieves this though using threading locks; there is one lock to serialize access to the module’s shared data, and each
handler also creates a lock to serialize access to its underlying I/O.

If you are implementing asynchronous signal handlers using the signalmodule, you may not be able to use logging
fromwithin such handlers. This is because lock implementations in the threadingmodule are not always re-entrant,
and so cannot be invoked from such signal handlers.

16.4.10 Module-Level Functions

In addition to the classes described above, there are a number of module-level functions.

logging.getLogger(name=None)
Return a logger with the specified name or, if name is None, return the root logger of the hierarchy. If
specified, the name is typically a dot-separated hierarchical name like ‘a’, ‘a.b’ or ‘a.b.c.d’. Choice of these
names is entirely up to the developer who is using logging, though it is recommended that __name__ be used
unless you have a specific reason for not doing that, as mentioned in Logger Objects.

All calls to this function with a given name return the same logger instance. This means that logger instances
never need to be passed between different parts of an application.

logging.getLoggerClass()

Return either the standard Logger class, or the last class passed to setLoggerClass(). This function may
be called from within a new class definition, to ensure that installing a customized Logger class will not undo
customizations already applied by other code. For example:

16.4. logging— Logging facility for Python 757

The Python Library Reference, Release 3.13.1

class MyLogger(logging.getLoggerClass()):

... override behaviour here

logging.getLogRecordFactory()

Return a callable which is used to create a LogRecord.

Added in version 3.2: This function has been provided, along with setLogRecordFactory(), to allow
developers more control over how the LogRecord representing a logging event is constructed.

See setLogRecordFactory() for more information about the how the factory is called.

logging.debug(msg, *args, **kwargs)

This is a convenience function that calls Logger.debug(), on the root logger. The handling of the arguments
is in every way identical to what is described in that method.

The only difference is that if the root logger has no handlers, then basicConfig() is called, prior to calling
debug on the root logger.

For very short scripts or quick demonstrations of logging facilities, debug and the other module-level func-
tions may be convenient. However, most programs will want to carefully and explicitly control the logging
configuration, and should therefore prefer creating a module-level logger and calling Logger.debug() (or
other level-specific methods) on it, as described at the beginnning of this documentation.

logging.info(msg, *args, **kwargs)
Logs a message with level INFO on the root logger. The arguments and behavior are otherwise the same as for
debug().

logging.warning(msg, *args, **kwargs)
Logs a message with level WARNING on the root logger. The arguments and behavior are otherwise the same
as for debug().

Note

There is an obsolete function warn which is functionally identical to warning. As warn is deprecated,
please do not use it - use warning instead.

logging.error(msg, *args, **kwargs)
Logs a message with level ERROR on the root logger. The arguments and behavior are otherwise the same as
for debug().

logging.critical(msg, *args, **kwargs)

Logs a message with level CRITICAL on the root logger. The arguments and behavior are otherwise the same
as for debug().

logging.exception(msg, *args, **kwargs)

Logs a message with level ERROR on the root logger. The arguments and behavior are otherwise the same as
for debug(). Exception info is added to the logging message. This function should only be called from an
exception handler.

logging.log(level, msg, *args, **kwargs)

Logs a message with level level on the root logger. The arguments and behavior are otherwise the same as for
debug().

logging.disable(level=CRITICAL)
Provides an overriding level level for all loggers which takes precedence over the logger’s own level. When
the need arises to temporarily throttle logging output down across the whole application, this function can be
useful. Its effect is to disable all logging calls of severity level and below, so that if you call it with a value of
INFO, then all INFO and DEBUG events would be discarded, whereas those of severityWARNING and above
would be processed according to the logger’s effective level. If logging.disable(logging.NOTSET) is

758 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

called, it effectively removes this overriding level, so that logging output again depends on the effective levels
of individual loggers.

Note that if you have defined any custom logging level higher than CRITICAL (this is not recommended), you
won’t be able to rely on the default value for the level parameter, but will have to explicitly supply a suitable
value.

Changed in version 3.7: The level parameter was defaulted to level CRITICAL. See bpo-28524 for more
information about this change.

logging.addLevelName(level, levelName)
Associates level level with text levelName in an internal dictionary, which is used to map numeric levels to a
textual representation, for example when a Formatter formats a message. This function can also be used
to define your own levels. The only constraints are that all levels used must be registered using this function,
levels should be positive integers and they should increase in increasing order of severity.

Note

If you are thinking of defining your own levels, please see the section on custom-levels.

logging.getLevelNamesMapping()

Returns a mapping from level names to their corresponding logging levels. For example, the string “CRIT-
ICAL” maps to CRITICAL. The returned mapping is copied from an internal mapping on each call to this
function.

Added in version 3.11.

logging.getLevelName(level)
Returns the textual or numeric representation of logging level level.

If level is one of the predefined levels CRITICAL, ERROR, WARNING, INFO or DEBUG then you get the corre-
sponding string. If you have associated levels with names using addLevelName() then the name you have
associated with level is returned. If a numeric value corresponding to one of the defined levels is passed in,
the corresponding string representation is returned.

The level parameter also accepts a string representation of the level such as ‘INFO’. In such cases, this functions
returns the corresponding numeric value of the level.

If no matching numeric or string value is passed in, the string ‘Level %s’ % level is returned.

Note

Levels are internally integers (as they need to be compared in the logging logic). This function is used to
convert between an integer level and the level name displayed in the formatted log output by means of the
%(levelname)s format specifier (see LogRecord attributes), and vice versa.

Changed in version 3.4: In Python versions earlier than 3.4, this function could also be passed a text level, and
would return the corresponding numeric value of the level. This undocumented behaviour was considered a
mistake, and was removed in Python 3.4, but reinstated in 3.4.2 due to retain backward compatibility.

logging.getHandlerByName(name)
Returns a handler with the specified name, or None if there is no handler with that name.

Added in version 3.12.

logging.getHandlerNames()

Returns an immutable set of all known handler names.

Added in version 3.12.

16.4. logging— Logging facility for Python 759

https://bugs.python.org/issue?@action=redirect&bpo=28524

The Python Library Reference, Release 3.13.1

logging.makeLogRecord(attrdict)
Creates and returns a new LogRecord instance whose attributes are defined by attrdict. This function is useful
for taking a pickled LogRecord attribute dictionary, sent over a socket, and reconstituting it as a LogRecord
instance at the receiving end.

logging.basicConfig(**kwargs)
Does basic configuration for the logging system by creating a StreamHandler with a default Formatter
and adding it to the root logger. The functions debug(), info(), warning(), error() and critical()
will call basicConfig() automatically if no handlers are defined for the root logger.

This function does nothing if the root logger already has handlers configured, unless the keyword argument
force is set to True.

Note

This function should be called from the main thread before other threads are started. In versions of Python
prior to 2.7.1 and 3.2, if this function is called from multiple threads, it is possible (in rare circumstances)
that a handler will be added to the root logger more than once, leading to unexpected results such as
messages being duplicated in the log.

The following keyword arguments are supported.

Format Description

filename Specifies that a FileHandler be created, using the specified filename, rather than a
StreamHandler.

filemode If filename is specified, open the file in this mode. Defaults to 'a'.
format Use the specified format string for the handler. Defaults to attributes levelname, name and

message separated by colons.
datefmt Use the specified date/time format, as accepted by time.strftime().
style If format is specified, use this style for the format string. One of '%', '{' or '$' for

printf-style, str.format() or string.Template respectively. Defaults to '%'.
level Set the root logger level to the specified level.
stream Use the specified stream to initialize the StreamHandler. Note that this argument is

incompatible with filename - if both are present, a ValueError is raised.
handlers If specified, this should be an iterable of already created handlers to add to the root logger.

Any handlers which don’t already have a formatter set will be assigned the default formatter
created in this function. Note that this argument is incompatible with filename or stream - if
both are present, a ValueError is raised.

force If this keyword argument is specified as true, any existing handlers attached to the root
logger are removed and closed, before carrying out the configuration as specified by the
other arguments.

encoding If this keyword argument is specified along with filename, its value is used when the
FileHandler is created, and thus used when opening the output file.

errors If this keyword argument is specified along with filename, its value is used when the
FileHandler is created, and thus used when opening the output file. If not specified, the
value ‘backslashreplace’ is used. Note that if None is specified, it will be passed as such to
open(), which means that it will be treated the same as passing ‘errors’.

Changed in version 3.2: The style argument was added.

Changed in version 3.3: The handlers argument was added. Additional checks were added to catch situations
where incompatible arguments are specified (e.g. handlers together with stream or filename, or stream together
with filename).

Changed in version 3.8: The force argument was added.

Changed in version 3.9: The encoding and errors arguments were added.

760 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

logging.shutdown()

Informs the logging system to perform an orderly shutdown by flushing and closing all handlers. This should
be called at application exit and no further use of the logging system should be made after this call.

When the logging module is imported, it registers this function as an exit handler (see atexit), so normally
there’s no need to do that manually.

logging.setLoggerClass(klass)
Tells the logging system to use the class klasswhen instantiating a logger. The class should define __init__()
such that only a name argument is required, and the __init__() should call Logger.__init__(). This
function is typically called before any loggers are instantiated by applications which need to use custom logger
behavior. After this call, as at any other time, do not instantiate loggers directly using the subclass: continue
to use the logging.getLogger() API to get your loggers.

logging.setLogRecordFactory(factory)
Set a callable which is used to create a LogRecord.

Parameters
factory – The factory callable to be used to instantiate a log record.

Added in version 3.2: This function has been provided, along with getLogRecordFactory(), to allow
developers more control over how the LogRecord representing a logging event is constructed.

The factory has the following signature:

factory(name, level, fn, lno, msg, args, exc_info, func=None, sinfo=None,

**kwargs)

name
The logger name.

level
The logging level (numeric).

fn
The full pathname of the file where the logging call was made.

lno
The line number in the file where the logging call was made.

msg
The logging message.

args
The arguments for the logging message.

exc_info
An exception tuple, or None.

func
The name of the function or method which invoked the logging call.

sinfo
A stack traceback such as is provided by traceback.print_stack(), showing
the call hierarchy.

kwargs
Additional keyword arguments.

16.4.11 Module-Level Attributes

logging.lastResort

A “handler of last resort” is available through this attribute. This is a StreamHandlerwriting to sys.stderr
with a level of WARNING, and is used to handle logging events in the absence of any logging configuration. The
end result is to just print the message to sys.stderr. This replaces the earlier error message saying that “no

16.4. logging— Logging facility for Python 761

The Python Library Reference, Release 3.13.1

handlers could be found for logger XYZ”. If you need the earlier behaviour for some reason, lastResort
can be set to None.

Added in version 3.2.

logging.raiseExceptions

Used to see if exceptions during handling should be propagated.

Default: True.

If raiseExceptions is False, exceptions get silently ignored. This is what is mostly wanted for a logging
system - most users will not care about errors in the logging system, they are more interested in application
errors.

16.4.12 Integration with the warnings module

The captureWarnings() function can be used to integrate logging with the warnings module.

logging.captureWarnings(capture)
This function is used to turn the capture of warnings by logging on and off.

If capture is True, warnings issued by the warningsmodule will be redirected to the logging system. Specif-
ically, a warning will be formatted using warnings.formatwarning() and the resulting string logged to a
logger named 'py.warnings' with a severity of WARNING.

If capture is False, the redirection of warnings to the logging system will stop, and warnings will be redirected
to their original destinations (i.e. those in effect before captureWarnings(True) was called).

See also

Module logging.config
Configuration API for the logging module.

Module logging.handlers
Useful handlers included with the logging module.

PEP 282 - A Logging System
The proposal which described this feature for inclusion in the Python standard library.

Original Python logging package
This is the original source for the logging package. The version of the package available from this site
is suitable for use with Python 1.5.2, 2.1.x and 2.2.x, which do not include the logging package in the
standard library.

16.5 logging.config— Logging configuration

Source code: Lib/logging/config.py

Important

This page contains only reference information. For tutorials, please see

• Basic Tutorial

• Advanced Tutorial

• Logging Cookbook

This section describes the API for configuring the logging module.

762 Chapter 16. Generic Operating System Services

https://peps.python.org/pep-0282/
https://old.red-dove.com/python_logging.html
https://github.com/python/cpython/tree/3.13/Lib/logging/config.py

The Python Library Reference, Release 3.13.1

16.5.1 Configuration functions

The following functions configure the logging module. They are located in the logging.config module. Their
use is optional — you can configure the logging module using these functions or by making calls to the main API
(defined in logging itself) and defining handlers which are declared either in logging or logging.handlers.

logging.config.dictConfig(config)
Takes the logging configuration from a dictionary. The contents of this dictionary are described inConfiguration
dictionary schema below.

If an error is encountered during configuration, this function will raise a ValueError, TypeError,
AttributeError or ImportError with a suitably descriptive message. The following is a (possibly in-
complete) list of conditions which will raise an error:

• A level which is not a string or which is a string not corresponding to an actual logging level.

• A propagate value which is not a boolean.

• An id which does not have a corresponding destination.

• A non-existent handler id found during an incremental call.

• An invalid logger name.

• Inability to resolve to an internal or external object.

Parsing is performed by the DictConfigurator class, whose constructor is passed the dictionary used
for configuration, and has a configure() method. The logging.config module has a callable at-
tribute dictConfigClass which is initially set to DictConfigurator. You can replace the value of
dictConfigClass with a suitable implementation of your own.

dictConfig() calls dictConfigClass passing the specified dictionary, and then calls the configure()
method on the returned object to put the configuration into effect:

def dictConfig(config):

dictConfigClass(config).configure()

For example, a subclass of DictConfigurator could call DictConfigurator.__init__() in its own
__init__(), then set up custom prefixes which would be usable in the subsequent configure() call.
dictConfigClass would be bound to this new subclass, and then dictConfig() could be called exactly
as in the default, uncustomized state.

Added in version 3.2.

logging.config.fileConfig(fname, defaults=None, disable_existing_loggers=True, encoding=None)
Reads the logging configuration from a configparser-format file. The format of the file should be as de-
scribed in Configuration file format. This function can be called several times from an application, allowing an
end user to select from various pre-canned configurations (if the developer provides a mechanism to present
the choices and load the chosen configuration).

It will raise FileNotFoundError if the file doesn’t exist and RuntimeError if the file is invalid or empty.

Parameters

• fname – A filename, or a file-like object, or an instance derived from
RawConfigParser. If a RawConfigParser-derived instance is passed, it is
used as is. Otherwise, a ConfigParser is instantiated, and the configuration read by it
from the object passed in fname. If that has a readline() method, it is assumed to be
a file-like object and read using read_file(); otherwise, it is assumed to be a filename
and passed to read().

• defaults – Defaults to be passed to the ConfigParser can be specified in this argu-
ment.

• disable_existing_loggers – If specified as False, loggers which exist when this
call is made are left enabled. The default is True because this enables old behaviour in

16.5. logging.config— Logging configuration 763

The Python Library Reference, Release 3.13.1

a backward-compatible way. This behaviour is to disable any existing non-root loggers
unless they or their ancestors are explicitly named in the logging configuration.

• encoding – The encoding used to open file when fname is filename.

Changed in version 3.4: An instance of a subclass of RawConfigParser is now accepted as a value for
fname. This facilitates:

• Use of a configuration file where logging configuration is just part of the overall application configuration.

• Use of a configuration read from a file, and then modified by the using application (e.g. based
on command-line parameters or other aspects of the runtime environment) before being passed to
fileConfig.

Changed in version 3.10: Added the encoding parameter.

Changed in version 3.12: An exception will be thrown if the provided file doesn’t exist or is invalid or empty.

logging.config.listen(port=DEFAULT_LOGGING_CONFIG_PORT , verify=None)
Starts up a socket server on the specified port, and listens for new configurations. If no port is specified, the
module’s default DEFAULT_LOGGING_CONFIG_PORT is used. Logging configurations will be sent as a file
suitable for processing by dictConfig() or fileConfig(). Returns a Thread instance on which you
can call start() to start the server, and which you can join() when appropriate. To stop the server, call
stopListening().

The verify argument, if specified, should be a callable which should verify whether bytes received across the
socket are valid and should be processed. This could be done by encrypting and/or signing what is sent across
the socket, such that the verify callable can perform signature verification and/or decryption. The verify
callable is called with a single argument - the bytes received across the socket - and should return the bytes to
be processed, or None to indicate that the bytes should be discarded. The returned bytes could be the same
as the passed in bytes (e.g. when only verification is done), or they could be completely different (perhaps if
decryption were performed).

To send a configuration to the socket, read in the configuration file and send it to the socket as a sequence of
bytes preceded by a four-byte length string packed in binary using struct.pack('>L', n).

Note

Because portions of the configuration are passed through eval(), use of this function may open its users
to a security risk. While the function only binds to a socket on localhost, and so does not accept con-
nections from remote machines, there are scenarios where untrusted code could be run under the account
of the process which calls listen(). Specifically, if the process calling listen() runs on a multi-user
machine where users cannot trust each other, then a malicious user could arrange to run essentially arbi-
trary code in a victim user’s process, simply by connecting to the victim’s listen() socket and sending a
configuration which runs whatever code the attacker wants to have executed in the victim’s process. This
is especially easy to do if the default port is used, but not hard even if a different port is used. To avoid
the risk of this happening, use the verify argument to listen() to prevent unrecognised configurations
from being applied.

Changed in version 3.4: The verify argument was added.

Note

If you want to send configurations to the listener which don’t disable existing loggers, you will need to use a
JSON format for the configuration, which will use dictConfig() for configuration. This method allows
you to specify disable_existing_loggers as False in the configuration you send.

logging.config.stopListening()

Stops the listening server which was created with a call to listen(). This is typically called before calling
join() on the return value from listen().

764 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

16.5.2 Security considerations

The logging configuration functionality tries to offer convenience, and in part this is done by offering the ability to
convert text in configuration files into Python objects used in logging configuration - for example, as described in
User-defined objects. However, these same mechanisms (importing callables from user-defined modules and calling
them with parameters from the configuration) could be used to invoke any code you like, and for this reason you
should treat configuration files from untrusted sources with extreme caution and satisfy yourself that nothing bad can
happen if you load them, before actually loading them.

16.5.3 Configuration dictionary schema

Describing a logging configuration requires listing the various objects to create and the connections between them; for
example, you may create a handler named ‘console’ and then say that the logger named ‘startup’ will send its messages
to the ‘console’ handler. These objects aren’t limited to those provided by the logging module because you might
write your own formatter or handler class. The parameters to these classes may also need to include external objects
such as sys.stderr. The syntax for describing these objects and connections is defined in Object connections below.

Dictionary Schema Details

The dictionary passed to dictConfig() must contain the following keys:

• version - to be set to an integer value representing the schema version. The only valid value at present is 1, but
having this key allows the schema to evolve while still preserving backwards compatibility.

All other keys are optional, but if present they will be interpreted as described below. In all cases below where a
‘configuring dict’ is mentioned, it will be checked for the special '()' key to see if a custom instantiation is required.
If so, the mechanism described in User-defined objects below is used to create an instance; otherwise, the context is
used to determine what to instantiate.

• formatters - the corresponding value will be a dict in which each key is a formatter id and each value is a dict
describing how to configure the corresponding Formatter instance.

The configuring dict is searched for the following optional keys which correspond to the arguments passed to
create a Formatter object:

– format

– datefmt

– style

– validate (since version >=3.8)

– defaults (since version >=3.12)

An optional class key indicates the name of the formatter’s class (as a dotted module and class name). The
instantiation arguments are as for Formatter, thus this key is most useful for instantiating a customised
subclass of Formatter. For example, the alternative class might present exception tracebacks in an expanded
or condensed format. If your formatter requires different or extra configuration keys, you should use User-
defined objects.

• filters - the corresponding value will be a dict in which each key is a filter id and each value is a dict describing
how to configure the corresponding Filter instance.

The configuring dict is searched for the key name (defaulting to the empty string) and this is used to construct
a logging.Filter instance.

• handlers - the corresponding value will be a dict in which each key is a handler id and each value is a dict
describing how to configure the corresponding Handler instance.

The configuring dict is searched for the following keys:

– class (mandatory). This is the fully qualified name of the handler class.

– level (optional). The level of the handler.

– formatter (optional). The id of the formatter for this handler.

16.5. logging.config— Logging configuration 765

The Python Library Reference, Release 3.13.1

– filters (optional). A list of ids of the filters for this handler.

Changed in version 3.11: filters can take filter instances in addition to ids.

All other keys are passed through as keyword arguments to the handler’s constructor. For example, given the
snippet:

handlers:

console:

class : logging.StreamHandler

formatter: brief

level : INFO

filters: [allow_foo]

stream : ext://sys.stdout

file:

class : logging.handlers.RotatingFileHandler

formatter: precise

filename: logconfig.log

maxBytes: 1024

backupCount: 3

the handler with id console is instantiated as a logging.StreamHandler, using sys.

stdout as the underlying stream. The handler with id file is instantiated as a logging.

handlers.RotatingFileHandler with the keyword arguments filename='logconfig.log',

maxBytes=1024, backupCount=3.

• loggers - the corresponding value will be a dict in which each key is a logger name and each value is a dict
describing how to configure the corresponding Logger instance.

The configuring dict is searched for the following keys:

– level (optional). The level of the logger.

– propagate (optional). The propagation setting of the logger.

– filters (optional). A list of ids of the filters for this logger.

Changed in version 3.11: filters can take filter instances in addition to ids.

– handlers (optional). A list of ids of the handlers for this logger.

The specified loggers will be configured according to the level, propagation, filters and handlers specified.

• root - this will be the configuration for the root logger. Processing of the configuration will be as for any logger,
except that the propagate setting will not be applicable.

• incremental - whether the configuration is to be interpreted as incremental to the existing configuration. This
value defaults to False, which means that the specified configuration replaces the existing configuration with
the same semantics as used by the existing fileConfig() API.

If the specified value is True, the configuration is processed as described in the section on Incremental Con-
figuration.

• disable_existing_loggers - whether any existing non-root loggers are to be disabled. This setting mirrors the
parameter of the same name in fileConfig(). If absent, this parameter defaults to True. This value is
ignored if incremental is True.

Incremental Configuration

It is difficult to provide complete flexibility for incremental configuration. For example, because objects such as filters
and formatters are anonymous, once a configuration is set up, it is not possible to refer to such anonymous objects
when augmenting a configuration.

Furthermore, there is not a compelling case for arbitrarily altering the object graph of loggers, handlers, filters,
formatters at run-time, once a configuration is set up; the verbosity of loggers and handlers can be controlled just by
setting levels (and, in the case of loggers, propagation flags). Changing the object graph arbitrarily in a safe way is

766 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

problematic in a multi-threaded environment; while not impossible, the benefits are not worth the complexity it adds
to the implementation.

Thus, when the incremental key of a configuration dict is present and is True, the system will completely ignore
any formatters and filters entries, and process only the level settings in the handlers entries, and the level
and propagate settings in the loggers and root entries.

Using a value in the configuration dict lets configurations to be sent over the wire as pickled dicts to a socket listener.
Thus, the logging verbosity of a long-running application can be altered over time with no need to stop and restart
the application.

Object connections

The schema describes a set of logging objects - loggers, handlers, formatters, filters - which are connected to each
other in an object graph. Thus, the schema needs to represent connections between the objects. For example, say that,
once configured, a particular logger has attached to it a particular handler. For the purposes of this discussion, we can
say that the logger represents the source, and the handler the destination, of a connection between the two. Of course
in the configured objects this is represented by the logger holding a reference to the handler. In the configuration
dict, this is done by giving each destination object an id which identifies it unambiguously, and then using the id in
the source object’s configuration to indicate that a connection exists between the source and the destination object
with that id.

So, for example, consider the following YAML snippet:

formatters:

brief:

configuration for formatter with id 'brief' goes here

precise:

configuration for formatter with id 'precise' goes here

handlers:

h1: #This is an id

configuration of handler with id 'h1' goes here

formatter: brief

h2: #This is another id

configuration of handler with id 'h2' goes here

formatter: precise

loggers:

foo.bar.baz:

other configuration for logger 'foo.bar.baz'

handlers: [h1, h2]

(Note: YAML used here because it’s a little more readable than the equivalent Python source form for the dictionary.)

The ids for loggers are the logger names which would be used programmatically to obtain a reference to those loggers,
e.g. foo.bar.baz. The ids for Formatters and Filters can be any string value (such as brief, precise above) and
they are transient, in that they are only meaningful for processing the configuration dictionary and used to determine
connections between objects, and are not persisted anywhere when the configuration call is complete.

The above snippet indicates that logger named foo.bar.baz should have two handlers attached to it, which are
described by the handler ids h1 and h2. The formatter for h1 is that described by id brief, and the formatter for
h2 is that described by id precise.

User-defined objects

The schema supports user-defined objects for handlers, filters and formatters. (Loggers do not need to have different
types for different instances, so there is no support in this configuration schema for user-defined logger classes.)

Objects to be configured are described by dictionaries which detail their configuration. In some places, the logging
system will be able to infer from the context how an object is to be instantiated, but when a user-defined object is
to be instantiated, the system will not know how to do this. In order to provide complete flexibility for user-defined
object instantiation, the user needs to provide a ‘factory’ - a callable which is called with a configuration dictionary

16.5. logging.config— Logging configuration 767

The Python Library Reference, Release 3.13.1

and which returns the instantiated object. This is signalled by an absolute import path to the factory being made
available under the special key '()'. Here’s a concrete example:

formatters:

brief:

format: '%(message)s'

default:

format: '%(asctime)s %(levelname)-8s %(name)-15s %(message)s'

datefmt: '%Y-%m-%d %H:%M:%S'

custom:

(): my.package.customFormatterFactory

bar: baz

spam: 99.9

answer: 42

The above YAML snippet defines three formatters. The first, with id brief, is a standard logging.Formatter
instance with the specified format string. The second, with id default, has a longer format and also defines the
time format explicitly, and will result in a logging.Formatter initialized with those two format strings. Shown in
Python source form, the brief and default formatters have configuration sub-dictionaries:

{

'format' : '%(message)s'

}

and:

{

'format' : '%(asctime)s %(levelname)-8s %(name)-15s %(message)s',

'datefmt' : '%Y-%m-%d %H:%M:%S'

}

respectively, and as these dictionaries do not contain the special key '()', the instantiation is inferred from the
context: as a result, standard logging.Formatter instances are created. The configuration sub-dictionary for the
third formatter, with id custom, is:

{

'()' : 'my.package.customFormatterFactory',

'bar' : 'baz',

'spam' : 99.9,

'answer' : 42

}

and this contains the special key '()', which means that user-defined instantiation is wanted. In this case, the
specified factory callable will be used. If it is an actual callable it will be used directly - otherwise, if you specify a
string (as in the example) the actual callable will be located using normal import mechanisms. The callable will be
called with the remaining items in the configuration sub-dictionary as keyword arguments. In the above example,
the formatter with id custom will be assumed to be returned by the call:

my.package.customFormatterFactory(bar='baz', spam=99.9, answer=42)

Warning

The values for keys such as bar, spam and answer in the above example should not be configuration dictionar-
ies or references such as cfg://foo or ext://bar, because they will not be processed by the configuration
machinery, but passed to the callable as-is.

The key '()' has been used as the special key because it is not a valid keyword parameter name, and so will not
clash with the names of the keyword arguments used in the call. The '()' also serves as a mnemonic that the

768 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

corresponding value is a callable.

Changed in version 3.11: The filters member of handlers and loggers can take filter instances in addition to
ids.

You can also specify a special key '.' whose value is a dictionary is a mapping of attribute names to values. If
found, the specified attributes will be set on the user-defined object before it is returned. Thus, with the following
configuration:

{

'()' : 'my.package.customFormatterFactory',

'bar' : 'baz',

'spam' : 99.9,

'answer' : 42,

'.' {

'foo': 'bar',

'baz': 'bozz'

}

}

the returned formatter will have attribute foo set to 'bar' and attribute baz set to 'bozz'.

Warning

The values for attributes such as foo and baz in the above example should not be configuration dictionaries or ref-
erences such as cfg://foo or ext://bar, because they will not be processed by the configuration machinery,
but set as attribute values as-is.

Handler configuration order

Handlers are configured in alphabetical order of their keys, and a configured handler replaces the configuration
dictionary in (a working copy of) the handlers dictionary in the schema. If you use a construct such as cfg:/
/handlers.foo, then initially handlers['foo'] points to the configuration dictionary for the handler named
foo, and later (once that handler has been configured) it points to the configured handler instance. Thus, cfg://
handlers.foo could resolve to either a dictionary or a handler instance. In general, it is wise to name handlers in
a way such that dependent handlers are configured _after_ any handlers they depend on; that allows something like
cfg://handlers.foo to be used in configuring a handler that depends on handler foo. If that dependent handler
were named bar, problems would result, because the configuration of bar would be attempted before that of foo,
and foo would not yet have been configured. However, if the dependent handler were named foobar, it would be
configured after foo, with the result that cfg://handlers.foo would resolve to configured handler foo, and not
its configuration dictionary.

Access to external objects

There are times where a configuration needs to refer to objects external to the configuration, for example sys.
stderr. If the configuration dict is constructed using Python code, this is straightforward, but a problem arises
when the configuration is provided via a text file (e.g. JSON, YAML). In a text file, there is no standard way to
distinguish sys.stderr from the literal string 'sys.stderr'. To facilitate this distinction, the configuration
system looks for certain special prefixes in string values and treat them specially. For example, if the literal string
'ext://sys.stderr' is provided as a value in the configuration, then the ext:// will be stripped off and the
remainder of the value processed using normal import mechanisms.

The handling of such prefixes is done in a way analogous to protocol handling: there is a generic mechanism to
look for prefixes which match the regular expression ^(?P<prefix>[a-z]+)://(?P<suffix>.*)$ whereby, if
the prefix is recognised, the suffix is processed in a prefix-dependent manner and the result of the processing
replaces the string value. If the prefix is not recognised, then the string value will be left as-is.

16.5. logging.config— Logging configuration 769

The Python Library Reference, Release 3.13.1

Access to internal objects

As well as external objects, there is sometimes also a need to refer to objects in the configuration. This will be done
implicitly by the configuration system for things that it knows about. For example, the string value 'DEBUG' for a
level in a logger or handler will automatically be converted to the value logging.DEBUG, and the handlers,
filters and formatter entries will take an object id and resolve to the appropriate destination object.

However, a more generic mechanism is needed for user-defined objects which are not known to the loggingmodule.
For example, consider logging.handlers.MemoryHandler, which takes a target argument which is another
handler to delegate to. Since the system already knows about this class, then in the configuration, the given target
just needs to be the object id of the relevant target handler, and the system will resolve to the handler from the id.
If, however, a user defines a my.package.MyHandler which has an alternate handler, the configuration system
would not know that the alternate referred to a handler. To cater for this, a generic resolution system allows the
user to specify:

handlers:

file:

configuration of file handler goes here

custom:

(): my.package.MyHandler

alternate: cfg://handlers.file

The literal string 'cfg://handlers.file'will be resolved in an analogous way to strings with the ext:// prefix,
but looking in the configuration itself rather than the import namespace. The mechanism allows access by dot or by
index, in a similar way to that provided by str.format. Thus, given the following snippet:

handlers:

email:

class: logging.handlers.SMTPHandler

mailhost: localhost

fromaddr: my_app@domain.tld

toaddrs:

- support_team@domain.tld

- dev_team@domain.tld

subject: Houston, we have a problem.

in the configuration, the string 'cfg://handlers' would resolve to the dict with key handlers, the string
'cfg://handlers.email would resolve to the dict with key email in the handlers dict, and so on. The
string 'cfg://handlers.email.toaddrs[1] would resolve to 'dev_team@domain.tld' and the string
'cfg://handlers.email.toaddrs[0]' would resolve to the value 'support_team@domain.tld'. The
subject value could be accessed using either 'cfg://handlers.email.subject' or, equivalently, 'cfg:/
/handlers.email[subject]'. The latter form only needs to be used if the key contains spaces or non-
alphanumeric characters. Please note that the characters [and] are not allowed in the keys. If an index value
consists only of decimal digits, access will be attempted using the corresponding integer value, falling back to the
string value if needed.

Given a string cfg://handlers.myhandler.mykey.123, this will resolve to
config_dict['handlers']['myhandler']['mykey']['123']. If the string is speci-
fied as cfg://handlers.myhandler.mykey[123], the system will attempt to retrieve the
value from config_dict['handlers']['myhandler']['mykey'][123], and fall back to
config_dict['handlers']['myhandler']['mykey']['123'] if that fails.

Import resolution and custom importers

Import resolution, by default, uses the builtin __import__() function to do its importing. You may want to replace
this with your own importing mechanism: if so, you can replace the importer attribute of the DictConfigurator
or its superclass, the BaseConfigurator class. However, you need to be careful because of the way functions are
accessed from classes via descriptors. If you are using a Python callable to do your imports, and you want to define
it at class level rather than instance level, you need to wrap it with staticmethod(). For example:

770 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

from importlib import import_module

from logging.config import BaseConfigurator

BaseConfigurator.importer = staticmethod(import_module)

You don’t need to wrap with staticmethod() if you’re setting the import callable on a configurator instance.

Configuring QueueHandler and QueueListener

If you want to configure a QueueHandler, noting that this is normally used in conjunction with a QueueListener,
you can configure both together. After the configuration, the QueueListener instance will be available as the
listener attribute of the created handler, and that in turn will be available to you using getHandlerByName()
and passing the name you have used for the QueueHandler in your configuration. The dictionary schema for
configuring the pair is shown in the example YAML snippet below.

handlers:

qhand:

class: logging.handlers.QueueHandler

queue: my.module.queue_factory

listener: my.package.CustomListener

handlers:

- hand_name_1

- hand_name_2

...

The queue and listener keys are optional.

If the queue key is present, the corresponding value can be one of the following:

• An object implementing the Queue.put_nowait and Queue.get public API. For instance, this may be
an actual instance of queue.Queue or a subclass thereof, or a proxy obtained by multiprocessing.

managers.SyncManager.Queue().

This is of course only possible if you are constructing or modifying the configuration dictionary in code.

• A string that resolves to a callable which, when called with no arguments, returns the queue instance to use.
That callable could be a queue.Queue subclass or a function which returns a suitable queue instance, such as
my.module.queue_factory().

• A dict with a '()' key which is constructed in the usual way as discussed in User-defined objects. The result
of this construction should be a queue.Queue instance.

If the queue key is absent, a standard unbounded queue.Queue instance is created and used.

If the listener key is present, the corresponding value can be one of the following:

• A subclass of logging.handlers.QueueListener. This is of course only possible if you are constructing
or modifying the configuration dictionary in code.

• A string which resolves to a class which is a subclass of QueueListener, such as 'my.package.

CustomListener'.

• A dict with a '()' key which is constructed in the usual way as discussed in User-defined objects. The result
of this construction should be a callable with the same signature as the QueueListener initializer.

If the listener key is absent, logging.handlers.QueueListener is used.

The values under the handlers key are the names of other handlers in the configuration (not shown in the above
snippet) which will be passed to the queue listener.

Any custom queue handler and listener classes will need to be defined with the same initialization signatures as
QueueHandler and QueueListener.

Added in version 3.12.

16.5. logging.config— Logging configuration 771

The Python Library Reference, Release 3.13.1

16.5.4 Configuration file format

The configuration file format understood by fileConfig() is based on configparser functionality. The file
must contain sections called [loggers], [handlers] and [formatters] which identify by name the entities of
each type which are defined in the file. For each such entity, there is a separate section which identifies how that
entity is configured. Thus, for a logger named log01 in the [loggers] section, the relevant configuration details
are held in a section [logger_log01]. Similarly, a handler called hand01 in the [handlers] section will have its
configuration held in a section called [handler_hand01], while a formatter called form01 in the [formatters]
section will have its configuration specified in a section called [formatter_form01]. The root logger configuration
must be specified in a section called [logger_root].

Note

The fileConfig() API is older than the dictConfig() API and does not provide functionality to cover
certain aspects of logging. For example, you cannot configure Filter objects, which provide for filtering of
messages beyond simple integer levels, using fileConfig(). If you need to have instances of Filter in your
logging configuration, you will need to use dictConfig(). Note that future enhancements to configuration
functionality will be added to dictConfig(), so it’s worth considering transitioning to this newer API when it’s
convenient to do so.

Examples of these sections in the file are given below.

[loggers]

keys=root,log02,log03,log04,log05,log06,log07

[handlers]

keys=hand01,hand02,hand03,hand04,hand05,hand06,hand07,hand08,hand09

[formatters]

keys=form01,form02,form03,form04,form05,form06,form07,form08,form09

The root logger must specify a level and a list of handlers. An example of a root logger section is given below.

[logger_root]

level=NOTSET

handlers=hand01

The level entry can be one of DEBUG, INFO, WARNING, ERROR, CRITICAL or NOTSET. For the root logger
only, NOTSET means that all messages will be logged. Level values are evaluated in the context of the logging
package’s namespace.

The handlers entry is a comma-separated list of handler names, which must appear in the [handlers] section.
These names must appear in the [handlers] section and have corresponding sections in the configuration file.

For loggers other than the root logger, some additional information is required. This is illustrated by the following
example.

[logger_parser]

level=DEBUG

handlers=hand01

propagate=1

qualname=compiler.parser

The level and handlers entries are interpreted as for the root logger, except that if a non-root logger’s level is
specified as NOTSET, the system consults loggers higher up the hierarchy to determine the effective level of the logger.
The propagate entry is set to 1 to indicate that messages must propagate to handlers higher up the logger hierarchy
from this logger, or 0 to indicate that messages are not propagated to handlers up the hierarchy. The qualname
entry is the hierarchical channel name of the logger, that is to say the name used by the application to get the logger.

Sections which specify handler configuration are exemplified by the following.

772 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

[handler_hand01]

class=StreamHandler

level=NOTSET

formatter=form01

args=(sys.stdout,)

The class entry indicates the handler’s class (as determined by eval() in the logging package’s namespace). The
level is interpreted as for loggers, and NOTSET is taken to mean ‘log everything’.

The formatter entry indicates the key name of the formatter for this handler. If blank, a default formatter
(logging._defaultFormatter) is used. If a name is specified, it must appear in the [formatters] section
and have a corresponding section in the configuration file.

The args entry, when evaluated in the context of the logging package’s namespace, is the list of arguments to the
constructor for the handler class. Refer to the constructors for the relevant handlers, or to the examples below, to see
how typical entries are constructed. If not provided, it defaults to ().

The optional kwargs entry, when evaluated in the context of the logging package’s namespace, is the keyword
argument dict to the constructor for the handler class. If not provided, it defaults to {}.

[handler_hand02]

class=FileHandler

level=DEBUG

formatter=form02

args=('python.log', 'w')

[handler_hand03]

class=handlers.SocketHandler

level=INFO

formatter=form03

args=('localhost', handlers.DEFAULT_TCP_LOGGING_PORT)

[handler_hand04]

class=handlers.DatagramHandler

level=WARN

formatter=form04

args=('localhost', handlers.DEFAULT_UDP_LOGGING_PORT)

[handler_hand05]

class=handlers.SysLogHandler

level=ERROR

formatter=form05

args=(('localhost', handlers.SYSLOG_UDP_PORT), handlers.SysLogHandler.LOG_USER)

[handler_hand06]

class=handlers.NTEventLogHandler

level=CRITICAL

formatter=form06

args=('Python Application', '', 'Application')

[handler_hand07]

class=handlers.SMTPHandler

level=WARN

formatter=form07

args=('localhost', 'from@abc', ['user1@abc', 'user2@xyz'], 'Logger Subject')

kwargs={'timeout': 10.0}

[handler_hand08]

(continues on next page)

16.5. logging.config— Logging configuration 773

The Python Library Reference, Release 3.13.1

(continued from previous page)

class=handlers.MemoryHandler

level=NOTSET

formatter=form08

target=

args=(10, ERROR)

[handler_hand09]

class=handlers.HTTPHandler

level=NOTSET

formatter=form09

args=('localhost:9022', '/log', 'GET')

kwargs={'secure': True}

Sections which specify formatter configuration are typified by the following.

[formatter_form01]

format=F1 %(asctime)s %(levelname)s %(message)s %(customfield)s

datefmt=

style=%

validate=True

defaults={'customfield': 'defaultvalue'}

class=logging.Formatter

The arguments for the formatter configuration are the same as the keys in the dictionary schema formatters section.

The defaults entry, when evaluated in the context of the logging package’s namespace, is a dictionary of default
values for custom formatting fields. If not provided, it defaults to None.

Note

Due to the use of eval() as described above, there are potential security risks which result from using the
listen() to send and receive configurations via sockets. The risks are limited to where multiple users with no
mutual trust run code on the same machine; see the listen() documentation for more information.

See also

Module logging
API reference for the logging module.

Module logging.handlers
Useful handlers included with the logging module.

16.6 logging.handlers— Logging handlers

Source code: Lib/logging/handlers.py

Important

This page contains only reference information. For tutorials, please see

• Basic Tutorial

• Advanced Tutorial

• Logging Cookbook

774 Chapter 16. Generic Operating System Services

https://github.com/python/cpython/tree/3.13/Lib/logging/handlers.py

The Python Library Reference, Release 3.13.1

The following useful handlers are provided in the package. Note that three of the handlers (StreamHandler,
FileHandler and NullHandler) are actually defined in the logging module itself, but have been documented
here along with the other handlers.

16.6.1 StreamHandler

The StreamHandler class, located in the core logging package, sends logging output to streams such as sys.stdout,
sys.stderr or any file-like object (or, more precisely, any object which supports write() and flush() methods).

class logging.StreamHandler(stream=None)

Returns a new instance of the StreamHandler class. If stream is specified, the instance will use it for logging
output; otherwise, sys.stderr will be used.

emit(record)
If a formatter is specified, it is used to format the record. The record is then written to the stream
followed by terminator. If exception information is present, it is formatted using traceback.

print_exception() and appended to the stream.

flush()

Flushes the stream by calling its flush() method. Note that the close() method is inherited from
Handler and so does no output, so an explicit flush() call may be needed at times.

setStream(stream)
Sets the instance’s stream to the specified value, if it is different. The old stream is flushed before the new
stream is set.

Parameters
stream – The stream that the handler should use.

Returns
the old stream, if the stream was changed, or None if it wasn’t.

Added in version 3.7.

terminator

String used as the terminator when writing a formatted record to a stream. Default value is '\n'.

If you don’t want a newline termination, you can set the handler instance’s terminator attribute to the
empty string.

In earlier versions, the terminator was hardcoded as '\n'.

Added in version 3.2.

16.6.2 FileHandler

The FileHandler class, located in the core logging package, sends logging output to a disk file. It inherits the
output functionality from StreamHandler.

class logging.FileHandler(filename, mode=’a’, encoding=None, delay=False, errors=None)
Returns a new instance of the FileHandler class. The specified file is opened and used as the stream for
logging. If mode is not specified, 'a' is used. If encoding is not None, it is used to open the file with that
encoding. If delay is true, then file opening is deferred until the first call to emit(). By default, the file grows
indefinitely. If errors is specified, it’s used to determine how encoding errors are handled.

Changed in version 3.6: As well as string values, Path objects are also accepted for the filename argument.

Changed in version 3.9: The errors parameter was added.

close()

Closes the file.

16.6. logging.handlers— Logging handlers 775

The Python Library Reference, Release 3.13.1

emit(record)
Outputs the record to the file.

Note that if the file was closed due to logging shutdown at exit and the file mode is ‘w’, the record will
not be emitted (see bpo-42378).

16.6.3 NullHandler

Added in version 3.1.

The NullHandler class, located in the core logging package, does not do any formatting or output. It is essentially
a ‘no-op’ handler for use by library developers.

class logging.NullHandler

Returns a new instance of the NullHandler class.

emit(record)

This method does nothing.

handle(record)
This method does nothing.

createLock()

This method returns None for the lock, since there is no underlying I/O to which access needs to be
serialized.

See library-config for more information on how to use NullHandler.

16.6.4 WatchedFileHandler

The WatchedFileHandler class, located in the logging.handlers module, is a FileHandler which watches
the file it is logging to. If the file changes, it is closed and reopened using the file name.

A file change can happen because of usage of programs such as newsyslog and logrotate which perform log file
rotation. This handler, intended for use under Unix/Linux, watches the file to see if it has changed since the last emit.
(A file is deemed to have changed if its device or inode have changed.) If the file has changed, the old file stream is
closed, and the file opened to get a new stream.

This handler is not appropriate for use under Windows, because under Windows open log files cannot be moved or
renamed - logging opens the files with exclusive locks - and so there is no need for such a handler. Furthermore,
ST_INO is not supported under Windows; stat() always returns zero for this value.

class logging.handlers.WatchedFileHandler(filename, mode=’a’, encoding=None, delay=False,
errors=None)

Returns a new instance of the WatchedFileHandler class. The specified file is opened and used as the
stream for logging. If mode is not specified, 'a' is used. If encoding is not None, it is used to open the file
with that encoding. If delay is true, then file opening is deferred until the first call to emit(). By default, the
file grows indefinitely. If errors is provided, it determines how encoding errors are handled.

Changed in version 3.6: As well as string values, Path objects are also accepted for the filename argument.

Changed in version 3.9: The errors parameter was added.

reopenIfNeeded()

Checks to see if the file has changed. If it has, the existing stream is flushed and closed and the file
opened again, typically as a precursor to outputting the record to the file.

Added in version 3.6.

emit(record)

Outputs the record to the file, but first calls reopenIfNeeded() to reopen the file if it has changed.

776 Chapter 16. Generic Operating System Services

https://bugs.python.org/issue?@action=redirect&bpo=42378

The Python Library Reference, Release 3.13.1

16.6.5 BaseRotatingHandler

The BaseRotatingHandler class, located in the logging.handlers module, is the base class for the rotating
file handlers, RotatingFileHandler and TimedRotatingFileHandler. You should not need to instantiate
this class, but it has attributes and methods you may need to override.

class logging.handlers.BaseRotatingHandler(filename, mode, encoding=None, delay=False,
errors=None)

The parameters are as for FileHandler. The attributes are:

namer

If this attribute is set to a callable, the rotation_filename() method delegates to this callable. The
parameters passed to the callable are those passed to rotation_filename().

Note

The namer function is called quite a few times during rollover, so it should be as simple and as fast
as possible. It should also return the same output every time for a given input, otherwise the rollover
behaviour may not work as expected.

It’s also worth noting that care should be taken when using a namer to preserve certain attributes
in the filename which are used during rotation. For example, RotatingFileHandler expects to
have a set of log files whose names contain successive integers, so that rotation works as expected,
and TimedRotatingFileHandler deletes old log files (based on the backupCount parameter
passed to the handler’s initializer) by determining the oldest files to delete. For this to happen, the
filenames should be sortable using the date/time portion of the filename, and a namer needs to respect
this. (If a namer is wanted that doesn’t respect this scheme, it will need to be used in a subclass of
TimedRotatingFileHandler which overrides the getFilesToDelete() method to fit in with
the custom naming scheme.)

Added in version 3.3.

rotator

If this attribute is set to a callable, the rotate() method delegates to this callable. The parameters
passed to the callable are those passed to rotate().

Added in version 3.3.

rotation_filename(default_name)
Modify the filename of a log file when rotating.

This is provided so that a custom filename can be provided.

The default implementation calls the ‘namer’ attribute of the handler, if it’s callable, passing the default
name to it. If the attribute isn’t callable (the default is None), the name is returned unchanged.

Parameters
default_name – The default name for the log file.

Added in version 3.3.

rotate(source, dest)
When rotating, rotate the current log.

The default implementation calls the ‘rotator’ attribute of the handler, if it’s callable, passing the source
and dest arguments to it. If the attribute isn’t callable (the default is None), the source is simply renamed
to the destination.

Parameters

• source – The source filename. This is normally the base filename, e.g. ‘test.log’.

• dest – The destination filename. This is normally what the source is rotated to, e.g.
‘test.log.1’.

16.6. logging.handlers— Logging handlers 777

The Python Library Reference, Release 3.13.1

Added in version 3.3.

The reason the attributes exist is to save you having to subclass - you can use the same callables for instances
of RotatingFileHandler and TimedRotatingFileHandler. If either the namer or rotator callable raises
an exception, this will be handled in the same way as any other exception during an emit() call, i.e. via the
handleError() method of the handler.

If you need to make more significant changes to rotation processing, you can override the methods.

For an example, see cookbook-rotator-namer.

16.6.6 RotatingFileHandler

The RotatingFileHandler class, located in the logging.handlersmodule, supports rotation of disk log files.

class logging.handlers.RotatingFileHandler(filename, mode=’a’, maxBytes=0, backupCount=0,
encoding=None, delay=False, errors=None)

Returns a new instance of the RotatingFileHandler class. The specified file is opened and used as the
stream for logging. If mode is not specified, 'a' is used. If encoding is not None, it is used to open the file
with that encoding. If delay is true, then file opening is deferred until the first call to emit(). By default, the
file grows indefinitely. If errors is provided, it determines how encoding errors are handled.

You can use the maxBytes and backupCount values to allow the file to rollover at a predetermined size. When
the size is about to be exceeded, the file is closed and a new file is silently opened for output. Rollover occurs
whenever the current log file is nearly maxBytes in length; but if either of maxBytes or backupCount is zero,
rollover never occurs, so you generally want to set backupCount to at least 1, and have a non-zero maxBytes.
When backupCount is non-zero, the system will save old log files by appending the extensions ‘.1’, ‘.2’ etc., to
the filename. For example, with a backupCount of 5 and a base file name of app.log, you would get app.
log, app.log.1, app.log.2, up to app.log.5. The file being written to is always app.log. When this
file is filled, it is closed and renamed to app.log.1, and if files app.log.1, app.log.2, etc. exist, then
they are renamed to app.log.2, app.log.3 etc. respectively.

Changed in version 3.6: As well as string values, Path objects are also accepted for the filename argument.

Changed in version 3.9: The errors parameter was added.

doRollover()

Does a rollover, as described above.

emit(record)

Outputs the record to the file, catering for rollover as described previously.

16.6.7 TimedRotatingFileHandler

The TimedRotatingFileHandler class, located in the logging.handlers module, supports rotation of disk
log files at certain timed intervals.

class logging.handlers.TimedRotatingFileHandler(filename, when=’h’, interval=1, backupCount=0,
encoding=None, delay=False, utc=False,
atTime=None, errors=None)

Returns a new instance of the TimedRotatingFileHandler class. The specified file is opened and used as
the stream for logging. On rotating it also sets the filename suffix. Rotating happens based on the product of
when and interval.

You can use the when to specify the type of interval. The list of possible values is below. Note that they are
not case sensitive.

778 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

Value Type of interval If/how atTime is used

'S' Seconds Ignored
'M' Minutes Ignored
'H' Hours Ignored
'D' Days Ignored
'W0'-'W6' Weekday (0=Monday) Used to compute initial rollover

time
'midnight' Roll over at midnight, if atTime not specified, else at time

atTime
Used to compute initial rollover
time

When using weekday-based rotation, specify ‘W0’ for Monday, ‘W1’ for Tuesday, and so on up to ‘W6’ for
Sunday. In this case, the value passed for interval isn’t used.

The system will save old log files by appending extensions to the filename. The extensions are date-and-time
based, using the strftime format %Y-%m-%d_%H-%M-%S or a leading portion thereof, depending on the rollover
interval.

When computing the next rollover time for the first time (when the handler is created), the last modification
time of an existing log file, or else the current time, is used to compute when the next rotation will occur.

If the utc argument is true, times in UTC will be used; otherwise local time is used.

If backupCount is nonzero, at most backupCount files will be kept, and if more would be created when rollover
occurs, the oldest one is deleted. The deletion logic uses the interval to determine which files to delete, so
changing the interval may leave old files lying around.

If delay is true, then file opening is deferred until the first call to emit().

If atTime is not None, it must be a datetime.time instance which specifies the time of day when rollover
occurs, for the cases where rollover is set to happen “at midnight” or “on a particular weekday”. Note that in
these cases, the atTime value is effectively used to compute the initial rollover, and subsequent rollovers would
be calculated via the normal interval calculation.

If errors is specified, it’s used to determine how encoding errors are handled.

Note

Calculation of the initial rollover time is done when the handler is initialised. Calculation of subsequent
rollover times is done only when rollover occurs, and rollover occurs only when emitting output. If this is
not kept in mind, it might lead to some confusion. For example, if an interval of “every minute” is set, that
does not mean you will always see log files with times (in the filename) separated by a minute; if, during
application execution, logging output is generated more frequently than once a minute, then you can expect
to see log files with times separated by a minute. If, on the other hand, logging messages are only output
once every five minutes (say), then there will be gaps in the file times corresponding to the minutes where
no output (and hence no rollover) occurred.

Changed in version 3.4: atTime parameter was added.

Changed in version 3.6: As well as string values, Path objects are also accepted for the filename argument.

Changed in version 3.9: The errors parameter was added.

doRollover()

Does a rollover, as described above.

emit(record)
Outputs the record to the file, catering for rollover as described above.

getFilesToDelete()

Returns a list of filenames which should be deleted as part of rollover. These are the absolute paths of
the oldest backup log files written by the handler.

16.6. logging.handlers— Logging handlers 779

The Python Library Reference, Release 3.13.1

16.6.8 SocketHandler

The SocketHandler class, located in the logging.handlers module, sends logging output to a network socket.
The base class uses a TCP socket.

class logging.handlers.SocketHandler(host, port)
Returns a new instance of the SocketHandler class intended to communicate with a remote machine whose
address is given by host and port.

Changed in version 3.4: If port is specified as None, a Unix domain socket is created using the value in host
- otherwise, a TCP socket is created.

close()

Closes the socket.

emit()

Pickles the record’s attribute dictionary andwrites it to the socket in binary format. If there is an error with
the socket, silently drops the packet. If the connection was previously lost, re-establishes the connection.
To unpickle the record at the receiving end into a LogRecord, use the makeLogRecord() function.

handleError()

Handles an error which has occurred during emit(). The most likely cause is a lost connection. Closes
the socket so that we can retry on the next event.

makeSocket()

This is a factory method which allows subclasses to define the precise type of socket they want. The
default implementation creates a TCP socket (socket.SOCK_STREAM).

makePickle(record)
Pickles the record’s attribute dictionary in binary format with a length prefix, and returns it ready for
transmission across the socket. The details of this operation are equivalent to:

data = pickle.dumps(record_attr_dict, 1)

datalen = struct.pack('>L', len(data))

return datalen + data

Note that pickles aren’t completely secure. If you are concerned about security, you may want to override
this method to implement a more secure mechanism. For example, you can sign pickles using HMAC
and then verify them on the receiving end, or alternatively you can disable unpickling of global objects
on the receiving end.

send(packet)
Send a pickled byte-string packet to the socket. The format of the sent byte-string is as described in the
documentation for makePickle().

This function allows for partial sends, which can happen when the network is busy.

createSocket()

Tries to create a socket; on failure, uses an exponential back-off algorithm. On initial failure, the handler
will drop the message it was trying to send. When subsequent messages are handled by the same instance,
it will not try connecting until some time has passed. The default parameters are such that the initial delay
is one second, and if after that delay the connection still can’t be made, the handler will double the delay
each time up to a maximum of 30 seconds.

This behaviour is controlled by the following handler attributes:

• retryStart (initial delay, defaulting to 1.0 seconds).

• retryFactor (multiplier, defaulting to 2.0).

• retryMax (maximum delay, defaulting to 30.0 seconds).

This means that if the remote listener starts up after the handler has been used, you could lose messages
(since the handler won’t even attempt a connection until the delay has elapsed, but just silently drop
messages during the delay period).

780 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

16.6.9 DatagramHandler

The DatagramHandler class, located in the logging.handlersmodule, inherits from SocketHandler to sup-
port sending logging messages over UDP sockets.

class logging.handlers.DatagramHandler(host, port)
Returns a new instance of the DatagramHandler class intended to communicate with a remote machine
whose address is given by host and port.

Note

As UDP is not a streaming protocol, there is no persistent connection between an instance of this handler
and host. For this reason, when using a network socket, a DNS lookup might have to be made each time an
event is logged, which can introduce some latency into the system. If this affects you, you can do a lookup
yourself and initialize this handler using the looked-up IP address rather than the hostname.

Changed in version 3.4: If port is specified as None, a Unix domain socket is created using the value in host
- otherwise, a UDP socket is created.

emit()

Pickles the record’s attribute dictionary and writes it to the socket in binary format. If there is an error
with the socket, silently drops the packet. To unpickle the record at the receiving end into a LogRecord,
use the makeLogRecord() function.

makeSocket()

The factory method of SocketHandler is here overridden to create a UDP socket (socket.
SOCK_DGRAM).

send(s)
Send a pickled byte-string to a socket. The format of the sent byte-string is as described in the documen-
tation for SocketHandler.makePickle().

16.6.10 SysLogHandler

The SysLogHandler class, located in the logging.handlers module, supports sending logging messages to a
remote or local Unix syslog.

class logging.handlers.SysLogHandler(address=(’localhost’, SYSLOG_UDP_PORT),
facility=LOG_USER, socktype=socket.SOCK_DGRAM)

Returns a new instance of the SysLogHandler class intended to communicate with a remote Unix ma-
chine whose address is given by address in the form of a (host, port) tuple. If address is not specified,
('localhost', 514) is used. The address is used to open a socket. An alternative to providing a (host,
port) tuple is providing an address as a string, for example ‘/dev/log’. In this case, a Unix domain socket
is used to send the message to the syslog. If facility is not specified, LOG_USER is used. The type of socket
opened depends on the socktype argument, which defaults to socket.SOCK_DGRAM and thus opens a UDP
socket. To open a TCP socket (for use with the newer syslog daemons such as rsyslog), specify a value of
socket.SOCK_STREAM .

Note that if your server is not listening on UDP port 514, SysLogHandler may appear not to work. In that
case, check what address you should be using for a domain socket - it’s system dependent. For example, on
Linux it’s usually ‘/dev/log’ but on OS/X it’s ‘/var/run/syslog’. You’ll need to check your platform and use the
appropriate address (you may need to do this check at runtime if your application needs to run on several
platforms). On Windows, you pretty much have to use the UDP option.

Note

On macOS 12.x (Monterey), Apple has changed the behaviour of their syslog daemon - it no longer listens
on a domain socket. Therefore, you cannot expect SysLogHandler to work on this system.

16.6. logging.handlers— Logging handlers 781

The Python Library Reference, Release 3.13.1

See gh-91070 for more information.

Changed in version 3.2: socktype was added.

close()

Closes the socket to the remote host.

createSocket()

Tries to create a socket and, if it’s not a datagram socket, connect it to the other end. This method is
called during handler initialization, but it’s not regarded as an error if the other end isn’t listening at this
point - the method will be called again when emitting an event, if there is no socket at that point.

Added in version 3.11.

emit(record)

The record is formatted, and then sent to the syslog server. If exception information is present, it is not
sent to the server.

Changed in version 3.2.1: (See: bpo-12168.) In earlier versions, the message sent to the syslog daemons
was always terminated with a NUL byte, because early versions of these daemons expected a NUL
terminated message - even though it’s not in the relevant specification (RFC 5424). More recent versions
of these daemons don’t expect the NUL byte but strip it off if it’s there, and even more recent daemons
(which adhere more closely to RFC 5424) pass the NUL byte on as part of the message.

To enable easier handling of syslog messages in the face of all these differing daemon behaviours, the
appending of the NUL byte has been made configurable, through the use of a class-level attribute,
append_nul. This defaults to True (preserving the existing behaviour) but can be set to False on
a SysLogHandler instance in order for that instance to not append the NUL terminator.

Changed in version 3.3: (See: bpo-12419.) In earlier versions, there was no facility for an “ident” or
“tag” prefix to identify the source of the message. This can now be specified using a class-level attribute,
defaulting to "" to preserve existing behaviour, but which can be overridden on a SysLogHandler
instance in order for that instance to prepend the ident to every message handled. Note that the provided
ident must be text, not bytes, and is prepended to the message exactly as is.

encodePriority(facility, priority)
Encodes the facility and priority into an integer. You can pass in strings or integers - if strings are passed,
internal mapping dictionaries are used to convert them to integers.

The symbolic LOG_ values are defined in SysLogHandler and mirror the values defined in the sys/
syslog.h header file.

Priorities

Name (string) Symbolic value

alert LOG_ALERT
crit or critical LOG_CRIT
debug LOG_DEBUG
emerg or panic LOG_EMERG
err or error LOG_ERR
info LOG_INFO
notice LOG_NOTICE
warn or warning LOG_WARNING

Facilities

782 Chapter 16. Generic Operating System Services

https://github.com/python/cpython/issues/91070
https://bugs.python.org/issue?@action=redirect&bpo=12168
https://datatracker.ietf.org/doc/html/rfc5424.html
https://bugs.python.org/issue?@action=redirect&bpo=12419

The Python Library Reference, Release 3.13.1

Name (string) Symbolic value

auth LOG_AUTH
authpriv LOG_AUTHPRIV
cron LOG_CRON
daemon LOG_DAEMON
ftp LOG_FTP
kern LOG_KERN
lpr LOG_LPR
mail LOG_MAIL
news LOG_NEWS
syslog LOG_SYSLOG
user LOG_USER
uucp LOG_UUCP
local0 LOG_LOCAL0
local1 LOG_LOCAL1
local2 LOG_LOCAL2
local3 LOG_LOCAL3
local4 LOG_LOCAL4
local5 LOG_LOCAL5
local6 LOG_LOCAL6
local7 LOG_LOCAL7

mapPriority(levelname)
Maps a logging level name to a syslog priority name. Youmay need to override this if you are using custom
levels, or if the default algorithm is not suitable for your needs. The default algorithmmaps DEBUG, INFO,
WARNING, ERROR and CRITICAL to the equivalent syslog names, and all other level names to ‘warning’.

16.6.11 NTEventLogHandler

The NTEventLogHandler class, located in the logging.handlers module, supports sending logging messages
to a local Windows NT, Windows 2000 or Windows XP event log. Before you can use it, you need Mark Hammond’s
Win32 extensions for Python installed.

class logging.handlers.NTEventLogHandler(appname, dllname=None, logtype=’Application’)
Returns a new instance of the NTEventLogHandler class. The appname is used to define the application
name as it appears in the event log. An appropriate registry entry is created using this name. The dllname
should give the fully qualified pathname of a .dll or .exe which contains message definitions to hold in the log
(if not specified, 'win32service.pyd' is used - this is installed with the Win32 extensions and contains
some basic placeholder message definitions. Note that use of these placeholders will make your event logs big,
as the entire message source is held in the log. If you want slimmer logs, you have to pass in the name of your
own .dll or .exe which contains the message definitions you want to use in the event log). The logtype is one of
'Application', 'System' or 'Security', and defaults to 'Application'.

close()

At this point, you can remove the application name from the registry as a source of event log entries.
However, if you do this, you will not be able to see the events as you intended in the Event Log Viewer -
it needs to be able to access the registry to get the .dll name. The current version does not do this.

emit(record)
Determines the message ID, event category and event type, and then logs the message in the NT event
log.

getEventCategory(record)
Returns the event category for the record. Override this if you want to specify your own categories. This
version returns 0.

16.6. logging.handlers— Logging handlers 783

The Python Library Reference, Release 3.13.1

getEventType(record)
Returns the event type for the record. Override this if you want to specify your own types. This version
does a mapping using the handler’s typemap attribute, which is set up in __init__() to a dictionary
which contains mappings for DEBUG, INFO, WARNING, ERROR and CRITICAL. If you are using your own
levels, you will either need to override this method or place a suitable dictionary in the handler’s typemap
attribute.

getMessageID(record)
Returns the message ID for the record. If you are using your own messages, you could do this by having
the msg passed to the logger being an ID rather than a format string. Then, in here, you could use
a dictionary lookup to get the message ID. This version returns 1, which is the base message ID in
win32service.pyd.

16.6.12 SMTPHandler

The SMTPHandler class, located in the logging.handlers module, supports sending logging messages to an
email address via SMTP.

class logging.handlers.SMTPHandler(mailhost, fromaddr, toaddrs, subject, credentials=None,
secure=None, timeout=1.0)

Returns a new instance of the SMTPHandler class. The instance is initialized with the from and to addresses
and subject line of the email. The toaddrs should be a list of strings. To specify a non-standard SMTP port,
use the (host, port) tuple format for themailhost argument. If you use a string, the standard SMTP port is used.
If your SMTP server requires authentication, you can specify a (username, password) tuple for the credentials
argument.

To specify the use of a secure protocol (TLS), pass in a tuple to the secure argument. This will only be used
when authentication credentials are supplied. The tuple should be either an empty tuple, or a single-value tuple
with the name of a keyfile, or a 2-value tuple with the names of the keyfile and certificate file. (This tuple is
passed to the smtplib.SMTP.starttls() method.)

A timeout can be specified for communication with the SMTP server using the timeout argument.

Changed in version 3.3: Added the timeout parameter.

emit(record)
Formats the record and sends it to the specified addressees.

getSubject(record)
If you want to specify a subject line which is record-dependent, override this method.

16.6.13 MemoryHandler

The MemoryHandler class, located in the logging.handlers module, supports buffering of logging records in
memory, periodically flushing them to a target handler. Flushing occurs whenever the buffer is full, or when an event
of a certain severity or greater is seen.

MemoryHandler is a subclass of the more general BufferingHandler, which is an abstract class. This buffers
logging records inmemory. Whenever each record is added to the buffer, a check is made by calling shouldFlush()
to see if the buffer should be flushed. If it should, then flush() is expected to do the flushing.

class logging.handlers.BufferingHandler(capacity)

Initializes the handler with a buffer of the specified capacity. Here, capacity means the number of logging
records buffered.

emit(record)
Append the record to the buffer. If shouldFlush() returns true, call flush() to process the buffer.

flush()

For a BufferingHandler instance, flushing means that it sets the buffer to an empty list. This method
can be overwritten to implement more useful flushing behavior.

784 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

shouldFlush(record)
Return True if the buffer is up to capacity. This method can be overridden to implement custom flushing
strategies.

class logging.handlers.MemoryHandler(capacity, flushLevel=ERROR, target=None, flushOnClose=True)
Returns a new instance of the MemoryHandler class. The instance is initialized with a buffer size of capacity
(number of records buffered). If flushLevel is not specified, ERROR is used. If no target is specified, the target
will need to be set using setTarget() before this handler does anything useful. If flushOnClose is specified
as False, then the buffer is not flushed when the handler is closed. If not specified or specified as True, the
previous behaviour of flushing the buffer will occur when the handler is closed.

Changed in version 3.6: The flushOnClose parameter was added.

close()

Calls flush(), sets the target to None and clears the buffer.

flush()

For a MemoryHandler instance, flushing means just sending the buffered records to the target, if there
is one. The buffer is also cleared when buffered records are sent to the target. Override if you want
different behavior.

setTarget(target)
Sets the target handler for this handler.

shouldFlush(record)
Checks for buffer full or a record at the flushLevel or higher.

16.6.14 HTTPHandler

The HTTPHandler class, located in the logging.handlers module, supports sending logging messages to a web
server, using either GET or POST semantics.

class logging.handlers.HTTPHandler(host, url, method=’GET’, secure=False, credentials=None,
context=None)

Returns a new instance of the HTTPHandler class. The host can be of the form host:port, should you need
to use a specific port number. If nomethod is specified, GET is used. If secure is true, a HTTPS connection will
be used. The context parameter may be set to a ssl.SSLContext instance to configure the SSL settings used
for the HTTPS connection. If credentials is specified, it should be a 2-tuple consisting of userid and password,
which will be placed in a HTTP ‘Authorization’ header using Basic authentication. If you specify credentials,
you should also specify secure=True so that your userid and password are not passed in cleartext across the
wire.

Changed in version 3.5: The context parameter was added.

mapLogRecord(record)

Provides a dictionary, based on record, which is to be URL-encoded and sent to the web server. The
default implementation just returns record.__dict__. This method can be overridden if e.g. only a
subset of LogRecord is to be sent to the web server, or if more specific customization of what’s sent to
the server is required.

emit(record)
Sends the record to the web server as a URL-encoded dictionary. The mapLogRecord() method is
used to convert the record to the dictionary to be sent.

Note

Since preparing a record for sending it to a web server is not the same as a generic formatting operation,
using setFormatter() to specify a Formatter for a HTTPHandler has no effect. Instead of calling
format(), this handler calls mapLogRecord() and then urllib.parse.urlencode() to encode the
dictionary in a form suitable for sending to a web server.

16.6. logging.handlers— Logging handlers 785

The Python Library Reference, Release 3.13.1

16.6.15 QueueHandler

Added in version 3.2.

The QueueHandler class, located in the logging.handlers module, supports sending logging messages to a
queue, such as those implemented in the queue or multiprocessing modules.

Along with the QueueListener class, QueueHandler can be used to let handlers do their work on a separate
thread from the one which does the logging. This is important in web applications and also other service applications
where threads servicing clients need to respond as quickly as possible, while any potentially slow operations (such as
sending an email via SMTPHandler) are done on a separate thread.

class logging.handlers.QueueHandler(queue)
Returns a new instance of the QueueHandler class. The instance is initialized with the queue to sendmessages
to. The queue can be any queue-like object; it’s used as-is by the enqueue() method, which needs to know
how to send messages to it. The queue is not required to have the task tracking API, which means that you can
use SimpleQueue instances for queue.

Note

If you are using multiprocessing, you should avoid using SimpleQueue and instead use
multiprocessing.Queue.

emit(record)
Enqueues the result of preparing the LogRecord. Should an exception occur (e.g. because a bounded
queue has filled up), the handleError() method is called to handle the error. This can result in the
record silently being dropped (if logging.raiseExceptions is False) or a message printed to sys.
stderr (if logging.raiseExceptions is True).

prepare(record)
Prepares a record for queuing. The object returned by this method is enqueued.

The base implementation formats the record to merge the message, arguments, exception and stack
information, if present. It also removes unpickleable items from the record in-place. Specifically, it
overwrites the record’s msg and message attributes with the merged message (obtained by calling the
handler’s format() method), and sets the args, exc_info and exc_text attributes to None.

You might want to override this method if you want to convert the record to a dict or JSON string, or
send a modified copy of the record while leaving the original intact.

Note

The base implementation formats the message with arguments, sets the message and msg attributes
to the formatted message and sets the args and exc_text attributes to None to allow pickling and
to prevent further attempts at formatting. This means that a handler on the QueueListener side
won’t have the information to do custom formatting, e.g. of exceptions. You may wish to subclass
QueueHandler and override this method to e.g. avoid setting exc_text to None. Note that the
message / msg / args changes are related to ensuring the record is pickleable, and you might or
might not be able to avoid doing that depending on whether your args are pickleable. (Note that you
may have to consider not only your own code but also code in any libraries that you use.)

enqueue(record)
Enqueues the record on the queue using put_nowait(); you may want to override this if you want to
use blocking behaviour, or a timeout, or a customized queue implementation.

listener

When created via configuration using dictConfig(), this attribute will contain a QueueListener
instance for use with this handler. Otherwise, it will be None.

Added in version 3.12.

786 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

16.6.16 QueueListener

Added in version 3.2.

The QueueListener class, located in the logging.handlersmodule, supports receiving logging messages from
a queue, such as those implemented in the queue or multiprocessing modules. The messages are received
from a queue in an internal thread and passed, on the same thread, to one or more handlers for processing. While
QueueListener is not itself a handler, it is documented here because it works hand-in-hand with QueueHandler.

Along with the QueueHandler class, QueueListener can be used to let handlers do their work on a separate
thread from the one which does the logging. This is important in web applications and also other service applications
where threads servicing clients need to respond as quickly as possible, while any potentially slow operations (such as
sending an email via SMTPHandler) are done on a separate thread.

class logging.handlers.QueueListener(queue, *handlers, respect_handler_level=False)
Returns a new instance of the QueueListener class. The instance is initialized with the queue to send
messages to and a list of handlers which will handle entries placed on the queue. The queue can be any queue-
like object; it’s passed as-is to the dequeue()method, which needs to know how to get messages from it. The
queue is not required to have the task tracking API (though it’s used if available), which means that you can
use SimpleQueue instances for queue.

Note

If you are using multiprocessing, you should avoid using SimpleQueue and instead use
multiprocessing.Queue.

If respect_handler_level is True, a handler’s level is respected (compared with the level for themessage)
when deciding whether to pass messages to that handler; otherwise, the behaviour is as in previous Python
versions - to always pass each message to each handler.

Changed in version 3.5: The respect_handler_level argument was added.

dequeue(block)
Dequeues a record and return it, optionally blocking.

The base implementation uses get(). You may want to override this method if you want to use timeouts
or work with custom queue implementations.

prepare(record)
Prepare a record for handling.

This implementation just returns the passed-in record. You may want to override this method if you need
to do any custom marshalling or manipulation of the record before passing it to the handlers.

handle(record)
Handle a record.

This just loops through the handlers offering them the record to handle. The actual object passed to the
handlers is that which is returned from prepare().

start()

Starts the listener.

This starts up a background thread to monitor the queue for LogRecords to process.

stop()

Stops the listener.

This asks the thread to terminate, and then waits for it to do so. Note that if you don’t call this before
your application exits, there may be some records still left on the queue, which won’t be processed.

16.6. logging.handlers— Logging handlers 787

The Python Library Reference, Release 3.13.1

enqueue_sentinel()

Writes a sentinel to the queue to tell the listener to quit. This implementation uses put_nowait(). You
may want to override this method if you want to use timeouts or work with custom queue implementa-
tions.

Added in version 3.3.

See also

Module logging
API reference for the logging module.

Module logging.config
Configuration API for the logging module.

16.7 platform— Access to underlying platform’s identifying data

Source code: Lib/platform.py

Note

Specific platforms listed alphabetically, with Linux included in the Unix section.

16.7.1 Cross Platform

platform.architecture(executable=sys.executable, bits=” , linkage=”)
Queries the given executable (defaults to the Python interpreter binary) for various architecture information.

Returns a tuple (bits, linkage) which contain information about the bit architecture and the linkage
format used for the executable. Both values are returned as strings.

Values that cannot be determined are returned as given by the parameter presets. If bits is given as '', the
sizeof(pointer) (or sizeof(long) on Python version < 1.5.2) is used as indicator for the supported
pointer size.

The function relies on the system’s file command to do the actual work. This is available on most if not all
Unix platforms and some non-Unix platforms and then only if the executable points to the Python interpreter.
Reasonable defaults are used when the above needs are not met.

Note

On macOS (and perhaps other platforms), executable files may be universal files containing multiple ar-
chitectures.

To get at the “64-bitness” of the current interpreter, it is more reliable to query the sys.maxsize attribute:

is_64bits = sys.maxsize > 2**32

platform.machine()

Returns the machine type, e.g. 'AMD64'. An empty string is returned if the value cannot be determined.

platform.node()

Returns the computer’s network name (may not be fully qualified!). An empty string is returned if the value
cannot be determined.

788 Chapter 16. Generic Operating System Services

https://github.com/python/cpython/tree/3.13/Lib/platform.py

The Python Library Reference, Release 3.13.1

platform.platform(aliased=False, terse=False)
Returns a single string identifying the underlying platform with as much useful information as possible.

The output is intended to be human readable rather than machine parseable. It may look different on different
platforms and this is intended.

If aliased is true, the function will use aliases for various platforms that report system names which differ from
their common names, for example SunOS will be reported as Solaris. The system_alias() function is used
to implement this.

Setting terse to true causes the function to return only the absolute minimum information needed to identify
the platform.

Changed in version 3.8: On macOS, the function now uses mac_ver(), if it returns a non-empty release
string, to get the macOS version rather than the darwin version.

platform.processor()

Returns the (real) processor name, e.g. 'amdk6'.

An empty string is returned if the value cannot be determined. Note that many platforms do not provide this
information or simply return the same value as for machine(). NetBSD does this.

platform.python_build()

Returns a tuple (buildno, builddate) stating the Python build number and date as strings.

platform.python_compiler()

Returns a string identifying the compiler used for compiling Python.

platform.python_branch()

Returns a string identifying the Python implementation SCM branch.

platform.python_implementation()

Returns a string identifying the Python implementation. Possible return values are: ‘CPython’, ‘IronPython’,
‘Jython’, ‘PyPy’.

platform.python_revision()

Returns a string identifying the Python implementation SCM revision.

platform.python_version()

Returns the Python version as string 'major.minor.patchlevel'.

Note that unlike the Python sys.version, the returned value will always include the patchlevel (it defaults
to 0).

platform.python_version_tuple()

Returns the Python version as tuple (major, minor, patchlevel) of strings.

Note that unlike the Python sys.version, the returned value will always include the patchlevel (it defaults
to '0').

platform.release()

Returns the system’s release, e.g. '2.2.0' or 'NT'. An empty string is returned if the value cannot be
determined.

platform.system()

Returns the system/OS name, such as 'Linux', 'Darwin', 'Java', 'Windows'. An empty string is re-
turned if the value cannot be determined.

On iOS and Android, this returns the user-facing OS name (i.e, 'iOS, 'iPadOS' or 'Android'). To obtain
the kernel name ('Darwin' or 'Linux'), use os.uname().

platform.system_alias(system, release, version)
Returns (system, release, version) aliased to common marketing names used for some systems. It
also does some reordering of the information in some cases where it would otherwise cause confusion.

16.7. platform— Access to underlying platform’s identifying data 789

The Python Library Reference, Release 3.13.1

platform.version()

Returns the system’s release version, e.g. '#3 on degas'. An empty string is returned if the value cannot
be determined.

On iOS and Android, this is the user-facing OS version. To obtain the Darwin or Linux kernel version, use
os.uname().

platform.uname()

Fairly portable uname interface. Returns a namedtuple() containing six attributes: system, node,
release, version, machine, and processor.

processor is resolved late, on demand.

Note: the first two attribute names differ from the names presented by os.uname(), where they are named
sysname and nodename.

Entries which cannot be determined are set to ''.

Changed in version 3.3: Result changed from a tuple to a namedtuple().

Changed in version 3.9: processor is resolved late instead of immediately.

16.7.2 Java Platform

platform.java_ver(release=” , vendor=” , vminfo=(”, ”, ”), osinfo=(”, ”, ”))
Version interface for Jython.

Returns a tuple (release, vendor, vminfo, osinfo) with vminfo being a tuple (vm_name,

vm_release, vm_vendor) and osinfo being a tuple (os_name, os_version, os_arch). Values
which cannot be determined are set to the defaults given as parameters (which all default to '').

Deprecated since version 3.13, will be removed in version 3.15: It was largely untested, had a confusing API,
and was only useful for Jython support.

16.7.3 Windows Platform

platform.win32_ver(release=” , version=” , csd=” , ptype=”)
Get additional version information from the Windows Registry and return a tuple (release, version,

csd, ptype) referring to OS release, version number, CSD level (service pack) and OS type (multi/single
processor). Values which cannot be determined are set to the defaults given as parameters (which all default
to an empty string).

As a hint: ptype is 'Uniprocessor Free' on single processor NT machines and 'Multiprocessor

Free' on multi processor machines. The 'Free' refers to the OS version being free of debugging code.
It could also state 'Checked' which means the OS version uses debugging code, i.e. code that checks argu-
ments, ranges, etc.

platform.win32_edition()

Returns a string representing the current Windows edition, or None if the value cannot be determined.
Possible values include but are not limited to 'Enterprise', 'IoTUAP', 'ServerStandard', and
'nanoserver'.

Added in version 3.8.

platform.win32_is_iot()

Return True if the Windows edition returned by win32_edition() is recognized as an IoT edition.

Added in version 3.8.

790 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

16.7.4 macOS Platform

platform.mac_ver(release=” , versioninfo=(”, ”, ”), machine=”)

Get macOS version information and return it as tuple (release, versioninfo, machine) with version-
info being a tuple (version, dev_stage, non_release_version).

Entries which cannot be determined are set to ''. All tuple entries are strings.

16.7.5 iOS Platform

platform.ios_ver(system=” , release=” , model=” , is_simulator=False)
Get iOS version information and return it as a namedtuple() with the following attributes:

• system is the OS name; either 'iOS' or 'iPadOS'.

• release is the iOS version number as a string (e.g., '17.2').

• model is the device model identifier; this will be a string like 'iPhone13,2' for a physical device, or
'iPhone' on a simulator.

• is_simulator is a boolean describing if the app is running on a simulator or a physical device.

Entries which cannot be determined are set to the defaults given as parameters.

16.7.6 Unix Platforms

platform.libc_ver(executable=sys.executable, lib=” , version=” , chunksize=16384)
Tries to determine the libc version against which the file executable (defaults to the Python interpreter) is
linked. Returns a tuple of strings (lib, version) which default to the given parameters in case the lookup
fails.

Note that this function has intimate knowledge of how different libc versions add symbols to the executable is
probably only usable for executables compiled using gcc.

The file is read and scanned in chunks of chunksize bytes.

16.7.7 Linux Platforms

platform.freedesktop_os_release()

Get operating system identification from os-release file and return it as a dict. The os-release file is a
freedesktop.org standard and is available in most Linux distributions. A noticeable exception is Android and
Android-based distributions.

Raises OSError or subclass when neither /etc/os-release nor /usr/lib/os-release can be read.

On success, the function returns a dictionary where keys and values are strings. Values have their special
characters like " and $ unquoted. The fields NAME, ID, and PRETTY_NAME are always defined according to
the standard. All other fields are optional. Vendors may include additional fields.

Note that fields like NAME, VERSION, and VARIANT are strings suitable for presentation to users. Programs
should use fields like ID, ID_LIKE, VERSION_ID, or VARIANT_ID to identify Linux distributions.

Example:

def get_like_distro():

info = platform.freedesktop_os_release()

ids = [info["ID"]]

if "ID_LIKE" in info:

ids are space separated and ordered by precedence

ids.extend(info["ID_LIKE"].split())

return ids

Added in version 3.10.

16.7. platform— Access to underlying platform’s identifying data 791

https://www.freedesktop.org/software/systemd/man/os-release.html

The Python Library Reference, Release 3.13.1

16.7.8 Android Platform

platform.android_ver(release=” , api_level=0, manufacturer=” , model=” , device=” , is_emulator=False)
Get Android device information. Returns a namedtuple()with the following attributes. Values which cannot
be determined are set to the defaults given as parameters.

• release - Android version, as a string (e.g. "14").

• api_level - API level of the running device, as an integer (e.g. 34 for Android 14). To get the API
level which Python was built against, see sys.getandroidapilevel().

• manufacturer - Manufacturer name.

• model - Model name – typically the marketing name or model number.

• device - Device name – typically the model number or a codename.

• is_emulator - True if the device is an emulator; False if it’s a physical device.

Google maintains a list of known model and device names.

Added in version 3.13.

16.8 errno— Standard errno system symbols

This module makes available standard errno system symbols. The value of each symbol is the corresponding integer
value. The names and descriptions are borrowed from linux/include/errno.h, which should be all-inclusive.

errno.errorcode

Dictionary providing a mapping from the errno value to the string name in the underlying system. For instance,
errno.errorcode[errno.EPERM] maps to 'EPERM'.

To translate a numeric error code to an error message, use os.strerror().

Of the following list, symbols that are not used on the current platform are not defined by the module. The specific
list of defined symbols is available as errno.errorcode.keys(). Symbols available can include:

errno.EPERM

Operation not permitted. This error is mapped to the exception PermissionError.

errno.ENOENT

No such file or directory. This error is mapped to the exception FileNotFoundError.

errno.ESRCH

No such process. This error is mapped to the exception ProcessLookupError.

errno.EINTR

Interrupted system call. This error is mapped to the exception InterruptedError.

errno.EIO

I/O error

errno.ENXIO

No such device or address

errno.E2BIG

Arg list too long

errno.ENOEXEC

Exec format error

errno.EBADF

Bad file number

792 Chapter 16. Generic Operating System Services

https://developer.android.com/reference/android/os/Build#MANUFACTURER
https://developer.android.com/reference/android/os/Build#MODEL
https://developer.android.com/reference/android/os/Build#DEVICE
https://storage.googleapis.com/play_public/supported_devices.html

The Python Library Reference, Release 3.13.1

errno.ECHILD

No child processes. This error is mapped to the exception ChildProcessError.

errno.EAGAIN

Try again. This error is mapped to the exception BlockingIOError.

errno.ENOMEM

Out of memory

errno.EACCES

Permission denied. This error is mapped to the exception PermissionError.

errno.EFAULT

Bad address

errno.ENOTBLK

Block device required

errno.EBUSY

Device or resource busy

errno.EEXIST

File exists. This error is mapped to the exception FileExistsError.

errno.EXDEV

Cross-device link

errno.ENODEV

No such device

errno.ENOTDIR

Not a directory. This error is mapped to the exception NotADirectoryError.

errno.EISDIR

Is a directory. This error is mapped to the exception IsADirectoryError.

errno.EINVAL

Invalid argument

errno.ENFILE

File table overflow

errno.EMFILE

Too many open files

errno.ENOTTY

Not a typewriter

errno.ETXTBSY

Text file busy

errno.EFBIG

File too large

errno.ENOSPC

No space left on device

errno.ESPIPE

Illegal seek

errno.EROFS

Read-only file system

16.8. errno— Standard errno system symbols 793

The Python Library Reference, Release 3.13.1

errno.EMLINK

Too many links

errno.EPIPE

Broken pipe. This error is mapped to the exception BrokenPipeError.

errno.EDOM

Math argument out of domain of func

errno.ERANGE

Math result not representable

errno.EDEADLK

Resource deadlock would occur

errno.ENAMETOOLONG

File name too long

errno.ENOLCK

No record locks available

errno.ENOSYS

Function not implemented

errno.ENOTEMPTY

Directory not empty

errno.ELOOP

Too many symbolic links encountered

errno.EWOULDBLOCK

Operation would block. This error is mapped to the exception BlockingIOError.

errno.ENOMSG

No message of desired type

errno.EIDRM

Identifier removed

errno.ECHRNG

Channel number out of range

errno.EL2NSYNC

Level 2 not synchronized

errno.EL3HLT

Level 3 halted

errno.EL3RST

Level 3 reset

errno.ELNRNG

Link number out of range

errno.EUNATCH

Protocol driver not attached

errno.ENOCSI

No CSI structure available

errno.EL2HLT

Level 2 halted

794 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

errno.EBADE

Invalid exchange

errno.EBADR

Invalid request descriptor

errno.EXFULL

Exchange full

errno.ENOANO

No anode

errno.EBADRQC

Invalid request code

errno.EBADSLT

Invalid slot

errno.EDEADLOCK

File locking deadlock error

errno.EBFONT

Bad font file format

errno.ENOSTR

Device not a stream

errno.ENODATA

No data available

errno.ETIME

Timer expired

errno.ENOSR

Out of streams resources

errno.ENONET

Machine is not on the network

errno.ENOPKG

Package not installed

errno.EREMOTE

Object is remote

errno.ENOLINK

Link has been severed

errno.EADV

Advertise error

errno.ESRMNT

Srmount error

errno.ECOMM

Communication error on send

errno.EPROTO

Protocol error

errno.EMULTIHOP

Multihop attempted

16.8. errno— Standard errno system symbols 795

The Python Library Reference, Release 3.13.1

errno.EDOTDOT

RFS specific error

errno.EBADMSG

Not a data message

errno.EOVERFLOW

Value too large for defined data type

errno.ENOTUNIQ

Name not unique on network

errno.EBADFD

File descriptor in bad state

errno.EREMCHG

Remote address changed

errno.ELIBACC

Can not access a needed shared library

errno.ELIBBAD

Accessing a corrupted shared library

errno.ELIBSCN

.lib section in a.out corrupted

errno.ELIBMAX

Attempting to link in too many shared libraries

errno.ELIBEXEC

Cannot exec a shared library directly

errno.EILSEQ

Illegal byte sequence

errno.ERESTART

Interrupted system call should be restarted

errno.ESTRPIPE

Streams pipe error

errno.EUSERS

Too many users

errno.ENOTSOCK

Socket operation on non-socket

errno.EDESTADDRREQ

Destination address required

errno.EMSGSIZE

Message too long

errno.EPROTOTYPE

Protocol wrong type for socket

errno.ENOPROTOOPT

Protocol not available

errno.EPROTONOSUPPORT

Protocol not supported

796 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

errno.ESOCKTNOSUPPORT

Socket type not supported

errno.EOPNOTSUPP

Operation not supported on transport endpoint

errno.ENOTSUP

Operation not supported

Added in version 3.2.

errno.EPFNOSUPPORT

Protocol family not supported

errno.EAFNOSUPPORT

Address family not supported by protocol

errno.EADDRINUSE

Address already in use

errno.EADDRNOTAVAIL

Cannot assign requested address

errno.ENETDOWN

Network is down

errno.ENETUNREACH

Network is unreachable

errno.ENETRESET

Network dropped connection because of reset

errno.ECONNABORTED

Software caused connection abort. This error is mapped to the exception ConnectionAbortedError.

errno.ECONNRESET

Connection reset by peer. This error is mapped to the exception ConnectionResetError.

errno.ENOBUFS

No buffer space available

errno.EISCONN

Transport endpoint is already connected

errno.ENOTCONN

Transport endpoint is not connected

errno.ESHUTDOWN

Cannot send after transport endpoint shutdown. This error is mapped to the exception BrokenPipeError.

errno.ETOOMANYREFS

Too many references: cannot splice

errno.ETIMEDOUT

Connection timed out. This error is mapped to the exception TimeoutError.

errno.ECONNREFUSED

Connection refused. This error is mapped to the exception ConnectionRefusedError.

errno.EHOSTDOWN

Host is down

16.8. errno— Standard errno system symbols 797

The Python Library Reference, Release 3.13.1

errno.EHOSTUNREACH

No route to host

errno.EALREADY

Operation already in progress. This error is mapped to the exception BlockingIOError.

errno.EINPROGRESS

Operation now in progress. This error is mapped to the exception BlockingIOError.

errno.ESTALE

Stale NFS file handle

errno.EUCLEAN

Structure needs cleaning

errno.ENOTNAM

Not a XENIX named type file

errno.ENAVAIL

No XENIX semaphores available

errno.EISNAM

Is a named type file

errno.EREMOTEIO

Remote I/O error

errno.EDQUOT

Quota exceeded

errno.EQFULL

Interface output queue is full

Added in version 3.11.

errno.ENOTCAPABLE

Capabilities insufficient. This error is mapped to the exception PermissionError.

Availability: WASI, FreeBSD

Added in version 3.11.1.

errno.ECANCELED

Operation canceled

Added in version 3.2.

errno.EOWNERDEAD

Owner died

Added in version 3.2.

errno.ENOTRECOVERABLE

State not recoverable

Added in version 3.2.

16.9 ctypes— A foreign function library for Python

Source code: Lib/ctypes

ctypes is a foreign function library for Python. It provides C compatible data types, and allows calling functions in
DLLs or shared libraries. It can be used to wrap these libraries in pure Python.

798 Chapter 16. Generic Operating System Services

https://github.com/python/cpython/tree/3.13/Lib/ctypes

The Python Library Reference, Release 3.13.1

16.9.1 ctypes tutorial

Note: The code samples in this tutorial use doctest to make sure that they actually work. Since some code samples
behave differently under Linux, Windows, or macOS, they contain doctest directives in comments.

Note: Some code samples reference the ctypes c_int type. On platforms where sizeof(long) ==

sizeof(int) it is an alias to c_long. So, you should not be confused if c_long is printed if you would ex-
pect c_int— they are actually the same type.

Loading dynamic link libraries

ctypes exports the cdll, and on Windows windll and oledll objects, for loading dynamic link libraries.

You load libraries by accessing them as attributes of these objects. cdll loads libraries which export functions using
the standard cdecl calling convention, while windll libraries call functions using the stdcall calling convention.
oledll also uses the stdcall calling convention, and assumes the functions return a Windows HRESULT error code.
The error code is used to automatically raise an OSError exception when the function call fails.

Changed in version 3.3: Windows errors used to raise WindowsError, which is now an alias of OSError.

Here are some examples for Windows. Note that msvcrt is the MS standard C library containing most standard C
functions, and uses the cdecl calling convention:

>>> from ctypes import *

>>> print(windll.kernel32)

<WinDLL 'kernel32', handle ... at ...>

>>> print(cdll.msvcrt)

<CDLL 'msvcrt', handle ... at ...>

>>> libc = cdll.msvcrt

>>>

Windows appends the usual .dll file suffix automatically.

Note

Accessing the standard C library through cdll.msvcrt will use an outdated version of the library that may be
incompatible with the one being used by Python. Where possible, use native Python functionality, or else import
and use the msvcrt module.

On Linux, it is required to specify the filename including the extension to load a library, so attribute access can not
be used to load libraries. Either the LoadLibrary() method of the dll loaders should be used, or you should load
the library by creating an instance of CDLL by calling the constructor:

>>> cdll.LoadLibrary("libc.so.6")

<CDLL 'libc.so.6', handle ... at ...>

>>> libc = CDLL("libc.so.6")

>>> libc

<CDLL 'libc.so.6', handle ... at ...>

>>>

Accessing functions from loaded dlls

Functions are accessed as attributes of dll objects:

>>> libc.printf

<_FuncPtr object at 0x...>

>>> print(windll.kernel32.GetModuleHandleA)

<_FuncPtr object at 0x...>

>>> print(windll.kernel32.MyOwnFunction)

(continues on next page)

16.9. ctypes— A foreign function library for Python 799

The Python Library Reference, Release 3.13.1

(continued from previous page)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "ctypes.py", line 239, in __getattr__

func = _StdcallFuncPtr(name, self)

AttributeError: function 'MyOwnFunction' not found

>>>

Note that win32 system dlls like kernel32 and user32 often export ANSI as well as UNICODE versions of a
function. The UNICODE version is exported with a W appended to the name, while the ANSI version is exported
with an A appended to the name. The win32 GetModuleHandle function, which returns amodule handle for a given
module name, has the following C prototype, and a macro is used to expose one of them as GetModuleHandle
depending on whether UNICODE is defined or not:

/* ANSI version */

HMODULE GetModuleHandleA(LPCSTR lpModuleName);

/* UNICODE version */

HMODULE GetModuleHandleW(LPCWSTR lpModuleName);

windll does not try to select one of them by magic, you must access the version you need by specifying
GetModuleHandleA or GetModuleHandleW explicitly, and then call it with bytes or string objects respectively.

Sometimes, dlls export functions with names which aren’t valid Python identifiers, like "??2@YAPAXI@Z". In this
case you have to use getattr() to retrieve the function:

>>> getattr(cdll.msvcrt, "??2@YAPAXI@Z")

<_FuncPtr object at 0x...>

>>>

On Windows, some dlls export functions not by name but by ordinal. These functions can be accessed by indexing
the dll object with the ordinal number:

>>> cdll.kernel32[1]

<_FuncPtr object at 0x...>

>>> cdll.kernel32[0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "ctypes.py", line 310, in __getitem__

func = _StdcallFuncPtr(name, self)

AttributeError: function ordinal 0 not found

>>>

Calling functions

You can call these functions like any other Python callable. This example uses the rand() function, which takes no
arguments and returns a pseudo-random integer:

>>> print(libc.rand())

1804289383

On Windows, you can call the GetModuleHandleA() function, which returns a win32 module handle (passing
None as single argument to call it with a NULL pointer):

>>> print(hex(windll.kernel32.GetModuleHandleA(None)))

0x1d000000

>>>

ValueError is raised when you call an stdcall function with the cdecl calling convention, or vice versa:

800 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

>>> cdll.kernel32.GetModuleHandleA(None)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: Procedure probably called with not enough arguments (4 bytes missing)

>>>

>>> windll.msvcrt.printf(b"spam")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: Procedure probably called with too many arguments (4 bytes in excess)

>>>

To find out the correct calling convention you have to look into the C header file or the documentation for the function
you want to call.

On Windows, ctypes uses win32 structured exception handling to prevent crashes from general protection faults
when functions are called with invalid argument values:

>>> windll.kernel32.GetModuleHandleA(32)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

OSError: exception: access violation reading 0x00000020

>>>

There are, however, enough ways to crash Python with ctypes, so you should be careful anyway. The
faulthandler module can be helpful in debugging crashes (e.g. from segmentation faults produced by erroneous
C library calls).

None, integers, bytes objects and (unicode) strings are the only native Python objects that can directly be used as
parameters in these function calls. None is passed as a C NULL pointer, bytes objects and strings are passed as pointer
to the memory block that contains their data (char* or wchar_t*). Python integers are passed as the platform’s
default C int type, their value is masked to fit into the C type.

Before we move on calling functions with other parameter types, we have to learn more about ctypes data types.

Fundamental data types

ctypes defines a number of primitive C compatible data types:

16.9. ctypes— A foreign function library for Python 801

The Python Library Reference, Release 3.13.1

ctypes type C type Python type

c_bool _Bool bool (1)
c_char char 1-character bytes object
c_wchar wchar_t 1-character string
c_byte char int
c_ubyte unsigned char int
c_short short int
c_ushort unsigned short int
c_int int int
c_uint unsigned int int
c_long long int
c_ulong unsigned long int
c_longlong __int64 or long long int
c_ulonglong unsigned __int64 or unsigned long long int
c_size_t size_t int
c_ssize_t ssize_t or Py_ssize_t int
c_time_t time_t int
c_float float float
c_double double float
c_longdouble long double float
c_char_p char* (NUL terminated) bytes object or None
c_wchar_p wchar_t* (NUL terminated) string or None
c_void_p void* int or None

(1) The constructor accepts any object with a truth value.

All these types can be created by calling them with an optional initializer of the correct type and value:

>>> c_int()

c_long(0)

>>> c_wchar_p("Hello, World")

c_wchar_p(140018365411392)

>>> c_ushort(-3)

c_ushort(65533)

>>>

Since these types are mutable, their value can also be changed afterwards:

>>> i = c_int(42)

>>> print(i)

c_long(42)

>>> print(i.value)

42

>>> i.value = -99

>>> print(i.value)

-99

>>>

Assigning a new value to instances of the pointer types c_char_p, c_wchar_p, and c_void_p changes the mem-
ory location they point to, not the contents of the memory block (of course not, because Python bytes objects are
immutable):

>>> s = "Hello, World"

>>> c_s = c_wchar_p(s)

>>> print(c_s)

c_wchar_p(139966785747344)

>>> print(c_s.value)

(continues on next page)

802 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

Hello World

>>> c_s.value = "Hi, there"

>>> print(c_s) # the memory location has changed

c_wchar_p(139966783348904)

>>> print(c_s.value)

Hi, there

>>> print(s) # first object is unchanged

Hello, World

>>>

You should be careful, however, not to pass them to functions expecting pointers to mutable memory. If you need
mutable memory blocks, ctypes has a create_string_buffer() function which creates these in various ways.
The current memory block contents can be accessed (or changed) with the raw property; if you want to access it as
NUL terminated string, use the value property:

>>> from ctypes import *

>>> p = create_string_buffer(3) # create a 3 byte buffer, initialized␣

↪→to NUL bytes

>>> print(sizeof(p), repr(p.raw))

3 b'\x00\x00\x00'

>>> p = create_string_buffer(b"Hello") # create a buffer containing a NUL␣

↪→terminated string

>>> print(sizeof(p), repr(p.raw))

6 b'Hello\x00'

>>> print(repr(p.value))

b'Hello'

>>> p = create_string_buffer(b"Hello", 10) # create a 10 byte buffer

>>> print(sizeof(p), repr(p.raw))

10 b'Hello\x00\x00\x00\x00\x00'

>>> p.value = b"Hi"

>>> print(sizeof(p), repr(p.raw))

10 b'Hi\x00lo\x00\x00\x00\x00\x00'

>>>

The create_string_buffer() function replaces the old c_buffer() function (which is still available as
an alias). To create a mutable memory block containing unicode characters of the C type wchar_t, use the
create_unicode_buffer() function.

Calling functions, continued

Note that printf prints to the real standard output channel, not to sys.stdout, so these examples will only work at
the console prompt, not from within IDLE or PythonWin:

>>> printf = libc.printf

>>> printf(b"Hello, %s\n", b"World!")

Hello, World!

14

>>> printf(b"Hello, %S\n", "World!")

Hello, World!

14

>>> printf(b"%d bottles of beer\n", 42)

42 bottles of beer

19

>>> printf(b"%f bottles of beer\n", 42.5)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ctypes.ArgumentError: argument 2: TypeError: Don't know how to convert parameter 2

(continues on next page)

16.9. ctypes— A foreign function library for Python 803

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>>

As has been mentioned before, all Python types except integers, strings, and bytes objects have to be wrapped in their
corresponding ctypes type, so that they can be converted to the required C data type:

>>> printf(b"An int %d, a double %f\n", 1234, c_double(3.14))

An int 1234, a double 3.140000

31

>>>

Calling variadic functions

On a lot of platforms calling variadic functions through ctypes is exactly the same as calling functions with a fixed
number of parameters. On some platforms, and in particular ARM64 for Apple Platforms, the calling convention for
variadic functions is different than that for regular functions.

On those platforms it is required to specify the argtypes attribute for the regular, non-variadic, function arguments:

libc.printf.argtypes = [ctypes.c_char_p]

Because specifying the attribute does not inhibit portability it is advised to always specify argtypes for all variadic
functions.

Calling functions with your own custom data types

You can also customize ctypes argument conversion to allow instances of your own classes be used as function
arguments. ctypes looks for an _as_parameter_ attribute and uses this as the function argument. The attribute
must be an integer, string, bytes, a ctypes instance, or an object with an _as_parameter_ attribute:

>>> class Bottles:

... def __init__(self, number):

... self._as_parameter_ = number

...

>>> bottles = Bottles(42)

>>> printf(b"%d bottles of beer\n", bottles)

42 bottles of beer

19

>>>

If you don’t want to store the instance’s data in the _as_parameter_ instance variable, you could define a property
which makes the attribute available on request.

Specifying the required argument types (function prototypes)

It is possible to specify the required argument types of functions exported from DLLs by setting the argtypes
attribute.

argtypesmust be a sequence of C data types (the printf() function is probably not a good example here, because
it takes a variable number and different types of parameters depending on the format string, on the other hand this is
quite handy to experiment with this feature):

>>> printf.argtypes = [c_char_p, c_char_p, c_int, c_double]

>>> printf(b"String '%s', Int %d, Double %f\n", b"Hi", 10, 2.2)

String 'Hi', Int 10, Double 2.200000

37

>>>

Specifying a format protects against incompatible argument types (just as a prototype for a C function), and tries to
convert the arguments to valid types:

804 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

>>> printf(b"%d %d %d", 1, 2, 3)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ctypes.ArgumentError: argument 2: TypeError: 'int' object cannot be interpreted as␣

↪→ctypes.c_char_p

>>> printf(b"%s %d %f\n", b"X", 2, 3)

X 2 3.000000

13

>>>

If you have defined your own classes which you pass to function calls, you have to implement a from_param() class
method for them to be able to use them in the argtypes sequence. The from_param() class method receives the
Python object passed to the function call, it should do a typecheck or whatever is needed to make sure this object is
acceptable, and then return the object itself, its _as_parameter_ attribute, or whatever you want to pass as the C
function argument in this case. Again, the result should be an integer, string, bytes, a ctypes instance, or an object
with an _as_parameter_ attribute.

Return types

By default functions are assumed to return the C int type. Other return types can be specified by setting the restype
attribute of the function object.

The C prototype of time() is time_t time(time_t *). Because time_t might be of a different type than the
default return type int, you should specify the restype attribute:

>>> libc.time.restype = c_time_t

The argument types can be specified using argtypes:

>>> libc.time.argtypes = (POINTER(c_time_t),)

To call the function with a NULL pointer as first argument, use None:

>>> print(libc.time(None))

1150640792

Here is a more advanced example, it uses the strchr() function, which expects a string pointer and a char, and
returns a pointer to a string:

>>> strchr = libc.strchr

>>> strchr(b"abcdef", ord("d"))

8059983

>>> strchr.restype = c_char_p # c_char_p is a pointer to a string

>>> strchr(b"abcdef", ord("d"))

b'def'

>>> print(strchr(b"abcdef", ord("x")))

None

>>>

If you want to avoid the ord("x") calls above, you can set the argtypes attribute, and the second argument will
be converted from a single character Python bytes object into a C char:

>>> strchr.restype = c_char_p

>>> strchr.argtypes = [c_char_p, c_char]

>>> strchr(b"abcdef", b"d")

b'def'

>>> strchr(b"abcdef", b"def")

Traceback (most recent call last):

ctypes.ArgumentError: argument 2: TypeError: one character bytes, bytearray or␣

(continues on next page)

16.9. ctypes— A foreign function library for Python 805

The Python Library Reference, Release 3.13.1

(continued from previous page)

↪→integer expected

>>> print(strchr(b"abcdef", b"x"))

None

>>> strchr(b"abcdef", b"d")

b'def'

>>>

You can also use a callable Python object (a function or a class for example) as the restype attribute, if the foreign
function returns an integer. The callable will be called with the integer the C function returns, and the result of this
call will be used as the result of your function call. This is useful to check for error return values and automatically
raise an exception:

>>> GetModuleHandle = windll.kernel32.GetModuleHandleA

>>> def ValidHandle(value):

... if value == 0:

... raise WinError()

... return value

...

>>>

>>> GetModuleHandle.restype = ValidHandle

>>> GetModuleHandle(None)

486539264

>>> GetModuleHandle("something silly")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 3, in ValidHandle

OSError: [Errno 126] The specified module could not be found.

>>>

WinError is a function which will call Windows FormatMessage() api to get the string representation of an
error code, and returns an exception. WinError takes an optional error code parameter, if no one is used, it calls
GetLastError() to retrieve it.

Please note that a much more powerful error checking mechanism is available through the errcheck attribute; see
the reference manual for details.

Passing pointers (or: passing parameters by reference)

Sometimes a C api function expects a pointer to a data type as parameter, probably to write into the corresponding
location, or if the data is too large to be passed by value. This is also known as passing parameters by reference.

ctypes exports the byref() function which is used to pass parameters by reference. The same effect can be
achieved with the pointer() function, although pointer() does a lot more work since it constructs a real pointer
object, so it is faster to use byref() if you don’t need the pointer object in Python itself:

>>> i = c_int()

>>> f = c_float()

>>> s = create_string_buffer(b'\000' * 32)

>>> print(i.value, f.value, repr(s.value))

0 0.0 b''

>>> libc.sscanf(b"1 3.14 Hello", b"%d %f %s",

... byref(i), byref(f), s)

3

>>> print(i.value, f.value, repr(s.value))

1 3.1400001049 b'Hello'

>>>

806 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

Structures and unions

Structures and unions must derive from the Structure and Union base classes which are defined in the ctypes
module. Each subclass must define a _fields_ attribute. _fields_ must be a list of 2-tuples, containing a field
name and a field type.

The field type must be a ctypes type like c_int, or any other derived ctypes type: structure, union, array, pointer.

Here is a simple example of a POINT structure, which contains two integers named x and y, and also shows how to
initialize a structure in the constructor:

>>> from ctypes import *

>>> class POINT(Structure):

... _fields_ = [("x", c_int),

... ("y", c_int)]

...

>>> point = POINT(10, 20)

>>> print(point.x, point.y)

10 20

>>> point = POINT(y=5)

>>> print(point.x, point.y)

0 5

>>> POINT(1, 2, 3)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: too many initializers

>>>

You can, however, build much more complicated structures. A structure can itself contain other structures by using
a structure as a field type.

Here is a RECT structure which contains two POINTs named upperleft and lowerright:

>>> class RECT(Structure):

... _fields_ = [("upperleft", POINT),

... ("lowerright", POINT)]

...

>>> rc = RECT(point)

>>> print(rc.upperleft.x, rc.upperleft.y)

0 5

>>> print(rc.lowerright.x, rc.lowerright.y)

0 0

>>>

Nested structures can also be initialized in the constructor in several ways:

>>> r = RECT(POINT(1, 2), POINT(3, 4))

>>> r = RECT((1, 2), (3, 4))

Field descriptors can be retrieved from the class, they are useful for debugging because they can provide useful
information:

>>> print(POINT.x)

<Field type=c_long, ofs=0, size=4>

>>> print(POINT.y)

<Field type=c_long, ofs=4, size=4>

>>>

16.9. ctypes— A foreign function library for Python 807

The Python Library Reference, Release 3.13.1

Warning

ctypes does not support passing unions or structures with bit-fields to functions by value. While this may work
on 32-bit x86, it’s not guaranteed by the library to work in the general case. Unions and structures with bit-fields
should always be passed to functions by pointer.

Structure/union alignment and byte order

By default, Structure and Union fields are aligned in the same way the C compiler does it. It is possible to override
this behavior by specifying a _pack_ class attribute in the subclass definition. This must be set to a positive integer
and specifies the maximum alignment for the fields. This is what #pragma pack(n) also does in MSVC. It is also
possible to set a minimum alignment for how the subclass itself is packed in the same way #pragma align(n)

works in MSVC. This can be achieved by specifying a :_align_ class attribute in the subclass definition.

ctypes uses the native byte order for Structures and Unions. To build structures with non-native byte or-
der, you can use one of the BigEndianStructure, LittleEndianStructure, BigEndianUnion, and
LittleEndianUnion base classes. These classes cannot contain pointer fields.

Bit fields in structures and unions

It is possible to create structures and unions containing bit fields. Bit fields are only possible for integer fields, the bit
width is specified as the third item in the _fields_ tuples:

>>> class Int(Structure):

... _fields_ = [("first_16", c_int, 16),

... ("second_16", c_int, 16)]

...

>>> print(Int.first_16)

<Field type=c_long, ofs=0:0, bits=16>

>>> print(Int.second_16)

<Field type=c_long, ofs=0:16, bits=16>

>>>

Arrays

Arrays are sequences, containing a fixed number of instances of the same type.

The recommended way to create array types is by multiplying a data type with a positive integer:

TenPointsArrayType = POINT * 10

Here is an example of a somewhat artificial data type, a structure containing 4 POINTs among other stuff:

>>> from ctypes import *

>>> class POINT(Structure):

... _fields_ = ("x", c_int), ("y", c_int)

...

>>> class MyStruct(Structure):

... _fields_ = [("a", c_int),

... ("b", c_float),

... ("point_array", POINT * 4)]

>>>

>>> print(len(MyStruct().point_array))

4

>>>

Instances are created in the usual way, by calling the class:

808 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

arr = TenPointsArrayType()

for pt in arr:

print(pt.x, pt.y)

The above code print a series of 0 0 lines, because the array contents is initialized to zeros.

Initializers of the correct type can also be specified:

>>> from ctypes import *

>>> TenIntegers = c_int * 10

>>> ii = TenIntegers(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

>>> print(ii)

<c_long_Array_10 object at 0x...>

>>> for i in ii: print(i, end=" ")

...

1 2 3 4 5 6 7 8 9 10

>>>

Pointers

Pointer instances are created by calling the pointer() function on a ctypes type:

>>> from ctypes import *

>>> i = c_int(42)

>>> pi = pointer(i)

>>>

Pointer instances have a contents attribute which returns the object to which the pointer points, the i object above:

>>> pi.contents

c_long(42)

>>>

Note that ctypes does not have OOR (original object return), it constructs a new, equivalent object each time you
retrieve an attribute:

>>> pi.contents is i

False

>>> pi.contents is pi.contents

False

>>>

Assigning another c_int instance to the pointer’s contents attribute would cause the pointer to point to the memory
location where this is stored:

>>> i = c_int(99)

>>> pi.contents = i

>>> pi.contents

c_long(99)

>>>

Pointer instances can also be indexed with integers:

>>> pi[0]

99

>>>

Assigning to an integer index changes the pointed to value:

16.9. ctypes— A foreign function library for Python 809

The Python Library Reference, Release 3.13.1

>>> print(i)

c_long(99)

>>> pi[0] = 22

>>> print(i)

c_long(22)

>>>

It is also possible to use indexes different from 0, but you must know what you’re doing, just as in C: You can access
or change arbitrary memory locations. Generally you only use this feature if you receive a pointer from a C function,
and you know that the pointer actually points to an array instead of a single item.

Behind the scenes, the pointer() function does more than simply create pointer instances, it has to create pointer
types first. This is done with the POINTER() function, which accepts any ctypes type, and returns a new type:

>>> PI = POINTER(c_int)

>>> PI

<class 'ctypes.LP_c_long'>

>>> PI(42)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: expected c_long instead of int

>>> PI(c_int(42))

<ctypes.LP_c_long object at 0x...>

>>>

Calling the pointer type without an argument creates a NULL pointer. NULL pointers have a False boolean value:

>>> null_ptr = POINTER(c_int)()

>>> print(bool(null_ptr))

False

>>>

ctypes checks for NULL when dereferencing pointers (but dereferencing invalid non-NULL pointers would crash
Python):

>>> null_ptr[0]

Traceback (most recent call last):

....

ValueError: NULL pointer access

>>>

>>> null_ptr[0] = 1234

Traceback (most recent call last):

....

ValueError: NULL pointer access

>>>

Type conversions

Usually, ctypes does strict type checking. This means, if you have POINTER(c_int) in the argtypes list of
a function or as the type of a member field in a structure definition, only instances of exactly the same type are
accepted. There are some exceptions to this rule, where ctypes accepts other objects. For example, you can pass
compatible array instances instead of pointer types. So, for POINTER(c_int), ctypes accepts an array of c_int:

>>> class Bar(Structure):

... _fields_ = [("count", c_int), ("values", POINTER(c_int))]

...

>>> bar = Bar()

(continues on next page)

810 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> bar.values = (c_int * 3)(1, 2, 3)

>>> bar.count = 3

>>> for i in range(bar.count):

... print(bar.values[i])

...

1

2

3

>>>

In addition, if a function argument is explicitly declared to be a pointer type (such as POINTER(c_int)) in
argtypes, an object of the pointed type (c_int in this case) can be passed to the function. ctypes will apply
the required byref() conversion in this case automatically.

To set a POINTER type field to NULL, you can assign None:

>>> bar.values = None

>>>

Sometimes you have instances of incompatible types. In C, you can cast one type into another type. ctypes provides
a cast() function which can be used in the same way. The Bar structure defined above accepts POINTER(c_int)
pointers or c_int arrays for its values field, but not instances of other types:

>>> bar.values = (c_byte * 4)()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: incompatible types, c_byte_Array_4 instance instead of LP_c_long␣

↪→instance

>>>

For these cases, the cast() function is handy.

The cast() function can be used to cast a ctypes instance into a pointer to a different ctypes data type. cast()
takes two parameters, a ctypes object that is or can be converted to a pointer of some kind, and a ctypes pointer type.
It returns an instance of the second argument, which references the same memory block as the first argument:

>>> a = (c_byte * 4)()

>>> cast(a, POINTER(c_int))

<ctypes.LP_c_long object at ...>

>>>

So, cast() can be used to assign to the values field of Bar the structure:

>>> bar = Bar()

>>> bar.values = cast((c_byte * 4)(), POINTER(c_int))

>>> print(bar.values[0])

0

>>>

Incomplete Types

Incomplete Types are structures, unions or arrays whose members are not yet specified. In C, they are specified by
forward declarations, which are defined later:

struct cell; /* forward declaration */

struct cell {

char *name;

(continues on next page)

16.9. ctypes— A foreign function library for Python 811

The Python Library Reference, Release 3.13.1

(continued from previous page)

struct cell *next;

};

The straightforward translation into ctypes code would be this, but it does not work:

>>> class cell(Structure):

... _fields_ = [("name", c_char_p),

... ("next", POINTER(cell))]

...

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in cell

NameError: name 'cell' is not defined

>>>

because the new class cell is not available in the class statement itself. In ctypes, we can define the cell class
and set the _fields_ attribute later, after the class statement:

>>> from ctypes import *

>>> class cell(Structure):

... pass

...

>>> cell._fields_ = [("name", c_char_p),

... ("next", POINTER(cell))]

>>>

Let’s try it. We create two instances of cell, and let them point to each other, and finally follow the pointer chain a
few times:

>>> c1 = cell()

>>> c1.name = b"foo"

>>> c2 = cell()

>>> c2.name = b"bar"

>>> c1.next = pointer(c2)

>>> c2.next = pointer(c1)

>>> p = c1

>>> for i in range(8):

... print(p.name, end=" ")

... p = p.next[0]

...

foo bar foo bar foo bar foo bar

>>>

Callback functions

ctypes allows creating C callable function pointers from Python callables. These are sometimes called callback
functions.

First, you must create a class for the callback function. The class knows the calling convention, the return type, and
the number and types of arguments this function will receive.

The CFUNCTYPE() factory function creates types for callback functions using the cdecl calling convention. On
Windows, the WINFUNCTYPE() factory function creates types for callback functions using the stdcall calling
convention.

Both of these factory functions are called with the result type as first argument, and the callback functions expected
argument types as the remaining arguments.

812 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

I will present an example here which uses the standard C library’s qsort() function, that is used to sort items with
the help of a callback function. qsort() will be used to sort an array of integers:

>>> IntArray5 = c_int * 5

>>> ia = IntArray5(5, 1, 7, 33, 99)

>>> qsort = libc.qsort

>>> qsort.restype = None

>>>

qsort()must be called with a pointer to the data to sort, the number of items in the data array, the size of one item,
and a pointer to the comparison function, the callback. The callback will then be called with two pointers to items,
and it must return a negative integer if the first item is smaller than the second, a zero if they are equal, and a positive
integer otherwise.

So our callback function receives pointers to integers, and must return an integer. First we create the type for the
callback function:

>>> CMPFUNC = CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))

>>>

To get started, here is a simple callback that shows the values it gets passed:

>>> def py_cmp_func(a, b):

... print("py_cmp_func", a[0], b[0])

... return 0

...

>>> cmp_func = CMPFUNC(py_cmp_func)

>>>

The result:

>>> qsort(ia, len(ia), sizeof(c_int), cmp_func)

py_cmp_func 5 1

py_cmp_func 33 99

py_cmp_func 7 33

py_cmp_func 5 7

py_cmp_func 1 7

>>>

Now we can actually compare the two items and return a useful result:

>>> def py_cmp_func(a, b):

... print("py_cmp_func", a[0], b[0])

... return a[0] - b[0]

...

>>>

>>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func))

py_cmp_func 5 1

py_cmp_func 33 99

py_cmp_func 7 33

py_cmp_func 1 7

py_cmp_func 5 7

>>>

As we can easily check, our array is sorted now:

>>> for i in ia: print(i, end=" ")

...

1 5 7 33 99

>>>

16.9. ctypes— A foreign function library for Python 813

The Python Library Reference, Release 3.13.1

The function factories can be used as decorator factories, so we may as well write:

>>> @CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))

... def py_cmp_func(a, b):

... print("py_cmp_func", a[0], b[0])

... return a[0] - b[0]

...

>>> qsort(ia, len(ia), sizeof(c_int), py_cmp_func)

py_cmp_func 5 1

py_cmp_func 33 99

py_cmp_func 7 33

py_cmp_func 1 7

py_cmp_func 5 7

>>>

Note

Make sure you keep references to CFUNCTYPE() objects as long as they are used from C code. ctypes doesn’t,
and if you don’t, they may be garbage collected, crashing your program when a callback is made.

Also, note that if the callback function is called in a thread created outside of Python’s control (e.g. by the foreign
code that calls the callback), ctypes creates a new dummy Python thread on every invocation. This behavior
is correct for most purposes, but it means that values stored with threading.local will not survive across
different callbacks, even when those calls are made from the same C thread.

Accessing values exported from dlls

Some shared libraries not only export functions, they also export variables. An example in the Python library itself
is the Py_Version, Python runtime version number encoded in a single constant integer.

ctypes can access values like this with the in_dll() class methods of the type. pythonapi is a predefined symbol
giving access to the Python C api:

>>> version = ctypes.c_int.in_dll(ctypes.pythonapi, "Py_Version")

>>> print(hex(version.value))

0x30c00a0

An extended example which also demonstrates the use of pointers accesses the PyImport_FrozenModules pointer
exported by Python.

Quoting the docs for that value:

This pointer is initialized to point to an array of _frozen records, terminated by one whose members
are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code
could play tricks with this to provide a dynamically created collection of frozen modules.

So manipulating this pointer could even prove useful. To restrict the example size, we show only how this table can
be read with ctypes:

>>> from ctypes import *

>>>

>>> class struct_frozen(Structure):

... _fields_ = [("name", c_char_p),

... ("code", POINTER(c_ubyte)),

... ("size", c_int),

... ("get_code", POINTER(c_ubyte)), # Function pointer

...]

...

>>>

814 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

We have defined the _frozen data type, so we can get the pointer to the table:

>>> FrozenTable = POINTER(struct_frozen)

>>> table = FrozenTable.in_dll(pythonapi, "_PyImport_FrozenBootstrap")

>>>

Since table is a pointer to the array of struct_frozen records, we can iterate over it, but we just have to make
sure that our loop terminates, because pointers have no size. Sooner or later it would probably crash with an access
violation or whatever, so it’s better to break out of the loop when we hit the NULL entry:

>>> for item in table:

... if item.name is None:

... break

... print(item.name.decode("ascii"), item.size)

...

_frozen_importlib 31764

_frozen_importlib_external 41499

zipimport 12345

>>>

The fact that standard Python has a frozen module and a frozen package (indicated by the negative size member)
is not well known, it is only used for testing. Try it out with import __hello__ for example.

Surprises

There are some edges in ctypes where you might expect something other than what actually happens.

Consider the following example:

>>> from ctypes import *

>>> class POINT(Structure):

... _fields_ = ("x", c_int), ("y", c_int)

...

>>> class RECT(Structure):

... _fields_ = ("a", POINT), ("b", POINT)

...

>>> p1 = POINT(1, 2)

>>> p2 = POINT(3, 4)

>>> rc = RECT(p1, p2)

>>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)

1 2 3 4

>>> # now swap the two points

>>> rc.a, rc.b = rc.b, rc.a

>>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)

3 4 3 4

>>>

Hm. We certainly expected the last statement to print 3 4 1 2. What happened? Here are the steps of the rc.a,
rc.b = rc.b, rc.a line above:

>>> temp0, temp1 = rc.b, rc.a

>>> rc.a = temp0

>>> rc.b = temp1

>>>

Note that temp0 and temp1 are objects still using the internal buffer of the rc object above. So executing rc.a =

temp0 copies the buffer contents of temp0 into rc ‘s buffer. This, in turn, changes the contents of temp1. So, the
last assignment rc.b = temp1, doesn’t have the expected effect.

16.9. ctypes— A foreign function library for Python 815

The Python Library Reference, Release 3.13.1

Keep in mind that retrieving sub-objects from Structure, Unions, and Arrays doesn’t copy the sub-object, instead it
retrieves a wrapper object accessing the root-object’s underlying buffer.

Another example that may behave differently from what one would expect is this:

>>> s = c_char_p()

>>> s.value = b"abc def ghi"

>>> s.value

b'abc def ghi'

>>> s.value is s.value

False

>>>

Note

Objects instantiated from c_char_p can only have their value set to bytes or integers.

Why is it printing False? ctypes instances are objects containing a memory block plus some descriptors accessing
the contents of the memory. Storing a Python object in the memory block does not store the object itself, instead the
contents of the object is stored. Accessing the contents again constructs a new Python object each time!

Variable-sized data types

ctypes provides some support for variable-sized arrays and structures.

The resize() function can be used to resize the memory buffer of an existing ctypes object. The function takes the
object as first argument, and the requested size in bytes as the second argument. The memory block cannot be made
smaller than the natural memory block specified by the objects type, a ValueError is raised if this is tried:

>>> short_array = (c_short * 4)()

>>> print(sizeof(short_array))

8

>>> resize(short_array, 4)

Traceback (most recent call last):

...

ValueError: minimum size is 8

>>> resize(short_array, 32)

>>> sizeof(short_array)

32

>>> sizeof(type(short_array))

8

>>>

This is nice and fine, but how would one access the additional elements contained in this array? Since the type still
only knows about 4 elements, we get errors accessing other elements:

>>> short_array[:]

[0, 0, 0, 0]

>>> short_array[7]

Traceback (most recent call last):

...

IndexError: invalid index

>>>

Another way to use variable-sized data types with ctypes is to use the dynamic nature of Python, and (re-)define
the data type after the required size is already known, on a case by case basis.

816 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

16.9.2 ctypes reference

Finding shared libraries

When programming in a compiled language, shared libraries are accessed when compiling/linking a program, and
when the program is run.

The purpose of the find_library() function is to locate a library in a way similar to what the compiler or runtime
loader does (on platforms with several versions of a shared library the most recent should be loaded), while the ctypes
library loaders act like when a program is run, and call the runtime loader directly.

The ctypes.util module provides a function which can help to determine the library to load.

ctypes.util.find_library(name)
Try to find a library and return a pathname. name is the library name without any prefix like lib, suffix like
.so, .dylib or version number (this is the form used for the posix linker option -l). If no library can be
found, returns None.

The exact functionality is system dependent.

On Linux, find_library() tries to run external programs (/sbin/ldconfig, gcc, objdump and ld) to find the
library file. It returns the filename of the library file.

Changed in version 3.6: On Linux, the value of the environment variable LD_LIBRARY_PATH is used when searching
for libraries, if a library cannot be found by any other means.

Here are some examples:

>>> from ctypes.util import find_library

>>> find_library("m")

'libm.so.6'

>>> find_library("c")

'libc.so.6'

>>> find_library("bz2")

'libbz2.so.1.0'

>>>

On macOS and Android, find_library() uses the system’s standard naming schemes and paths to locate the
library, and returns a full pathname if successful:

>>> from ctypes.util import find_library

>>> find_library("c")

'/usr/lib/libc.dylib'

>>> find_library("m")

'/usr/lib/libm.dylib'

>>> find_library("bz2")

'/usr/lib/libbz2.dylib'

>>> find_library("AGL")

'/System/Library/Frameworks/AGL.framework/AGL'

>>>

On Windows, find_library() searches along the system search path, and returns the full pathname, but since
there is no predefined naming scheme a call like find_library("c") will fail and return None.

If wrapping a shared library with ctypes, it may be better to determine the shared library name at development
time, and hardcode that into the wrapper module instead of using find_library() to locate the library at runtime.

Loading shared libraries

There are several ways to load shared libraries into the Python process. One way is to instantiate one of the following
classes:

16.9. ctypes— A foreign function library for Python 817

The Python Library Reference, Release 3.13.1

class ctypes.CDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False, use_last_error=False,
winmode=None)

Instances of this class represent loaded shared libraries. Functions in these libraries use the standard C calling
convention, and are assumed to return int.

On Windows creating a CDLL instance may fail even if the DLL name exists. When a dependent DLL of the
loaded DLL is not found, a OSError error is raised with the message “[WinError 126] The specified module
could not be found”. This error message does not contain the name of the missing DLL because the Windows
API does not return this information making this error hard to diagnose. To resolve this error and determine
which DLL is not found, you need to find the list of dependent DLLs and determine which one is not found
using Windows debugging and tracing tools.

Changed in version 3.12: The name parameter can now be a path-like object.

See also

Microsoft DUMPBIN tool – A tool to find DLL dependents.

class ctypes.OleDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False, use_last_error=False,
winmode=None)

Instances of this class represent loaded shared libraries, functions in these libraries use the stdcall calling
convention, and are assumed to return the windows specific HRESULT code. HRESULT values contain infor-
mation specifying whether the function call failed or succeeded, together with additional error code. If the
return value signals a failure, an OSError is automatically raised.

Availability: Windows

Changed in version 3.3: WindowsError used to be raised, which is now an alias of OSError.

Changed in version 3.12: The name parameter can now be a path-like object.

class ctypes.WinDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False, use_last_error=False,
winmode=None)

Instances of this class represent loaded shared libraries, functions in these libraries use the stdcall calling
convention, and are assumed to return int by default.

Availability: Windows

Changed in version 3.12: The name parameter can now be a path-like object.

The Python global interpreter lock is released before calling any function exported by these libraries, and reacquired
afterwards.

class ctypes.PyDLL(name, mode=DEFAULT_MODE, handle=None)
Instances of this class behave like CDLL instances, except that the PythonGIL is not released during the function
call, and after the function execution the Python error flag is checked. If the error flag is set, a Python exception
is raised.

Thus, this is only useful to call Python C api functions directly.

Changed in version 3.12: The name parameter can now be a path-like object.

All these classes can be instantiated by calling them with at least one argument, the pathname of the shared library.
If you have an existing handle to an already loaded shared library, it can be passed as the handle named parameter,
otherwise the underlying platform’s dlopen() or LoadLibrary() function is used to load the library into the
process, and to get a handle to it.

The mode parameter can be used to specify how the library is loaded. For details, consult the dlopen(3)manpage.
On Windows, mode is ignored. On posix systems, RTLD_NOW is always added, and is not configurable.

The use_errno parameter, when set to true, enables a ctypes mechanism that allows accessing the system errno

error number in a safe way. ctypesmaintains a thread-local copy of the system’s errno variable; if you call foreign

818 Chapter 16. Generic Operating System Services

https://docs.microsoft.com/cpp/build/reference/dependents
https://manpages.debian.org/dlopen(3)

The Python Library Reference, Release 3.13.1

functions created with use_errno=True then the errno value before the function call is swapped with the ctypes
private copy, the same happens immediately after the function call.

The function ctypes.get_errno() returns the value of the ctypes private copy, and the function ctypes.

set_errno() changes the ctypes private copy to a new value and returns the former value.

The use_last_error parameter, when set to true, enables the same mechanism for the Windows error code
which is managed by the GetLastError() and SetLastError() Windows API functions; ctypes.

get_last_error() and ctypes.set_last_error() are used to request and change the ctypes private copy of
the windows error code.

The winmode parameter is used on Windows to specify how the library is loaded (since mode is ignored). It takes
any value that is valid for the Win32 API LoadLibraryEx flags parameter. When omitted, the default is to use the
flags that result in the most secure DLL load, which avoids issues such as DLL hijacking. Passing the full path to the
DLL is the safest way to ensure the correct library and dependencies are loaded.

Changed in version 3.8: Added winmode parameter.

ctypes.RTLD_GLOBAL

Flag to use as mode parameter. On platforms where this flag is not available, it is defined as the integer zero.

ctypes.RTLD_LOCAL

Flag to use as mode parameter. On platforms where this is not available, it is the same as RTLD_GLOBAL.

ctypes.DEFAULT_MODE

The default mode which is used to load shared libraries. On OSX 10.3, this is RTLD_GLOBAL, otherwise it
is the same as RTLD_LOCAL.

Instances of these classes have no public methods. Functions exported by the shared library can be accessed as
attributes or by index. Please note that accessing the function through an attribute caches the result and therefore
accessing it repeatedly returns the same object each time. On the other hand, accessing it through an index returns a
new object each time:

>>> from ctypes import CDLL

>>> libc = CDLL("libc.so.6") # On Linux

>>> libc.time == libc.time

True

>>> libc['time'] == libc['time']

False

The following public attributes are available, their name starts with an underscore to not clash with exported function
names:

PyDLL._handle

The system handle used to access the library.

PyDLL._name

The name of the library passed in the constructor.

Shared libraries can also be loaded by using one of the prefabricated objects, which are instances of the
LibraryLoader class, either by calling the LoadLibrary() method, or by retrieving the library as attribute of
the loader instance.

class ctypes.LibraryLoader(dlltype)
Class which loads shared libraries. dlltype should be one of the CDLL, PyDLL, WinDLL, or OleDLL types.

__getattr__() has special behavior: It allows loading a shared library by accessing it as attribute of a library
loader instance. The result is cached, so repeated attribute accesses return the same library each time.

LoadLibrary(name)
Load a shared library into the process and return it. This method always returns a new instance of the
library.

These prefabricated library loaders are available:

16.9. ctypes— A foreign function library for Python 819

The Python Library Reference, Release 3.13.1

ctypes.cdll

Creates CDLL instances.

ctypes.windll

Creates WinDLL instances.

Availability: Windows

ctypes.oledll

Creates OleDLL instances.

Availability: Windows

ctypes.pydll

Creates PyDLL instances.

For accessing the C Python api directly, a ready-to-use Python shared library object is available:

ctypes.pythonapi

An instance of PyDLL that exposes Python C API functions as attributes. Note that all these functions are
assumed to return C int, which is of course not always the truth, so you have to assign the correct restype
attribute to use these functions.

Loading a library through any of these objects raises an auditing event ctypes.dlopen with string argument name,
the name used to load the library.

Accessing a function on a loaded library raises an auditing event ctypes.dlsym with arguments library (the
library object) and name (the symbol’s name as a string or integer).

In cases when only the library handle is available rather than the object, accessing a function raises an auditing event
ctypes.dlsym/handle with arguments handle (the raw library handle) and name.

Foreign functions

As explained in the previous section, foreign functions can be accessed as attributes of loaded shared libraries. The
function objects created in this way by default accept any number of arguments, accept any ctypes data instances as
arguments, and return the default result type specified by the library loader.

They are instances of a private local class _FuncPtr (not exposed in ctypes) which inherits from the private
_CFuncPtr class:

>>> import ctypes

>>> lib = ctypes.CDLL(None)

>>> issubclass(lib._FuncPtr, ctypes._CFuncPtr)

True

>>> lib._FuncPtr is ctypes._CFuncPtr

False

class ctypes._CFuncPtr

Base class for C callable foreign functions.

Instances of foreign functions are also C compatible data types; they represent C function pointers.

This behavior can be customized by assigning to special attributes of the foreign function object.

restype

Assign a ctypes type to specify the result type of the foreign function. Use None for void, a function
not returning anything.

820 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

It is possible to assign a callable Python object that is not a ctypes type, in this case the function is assumed
to return a C int, and the callable will be called with this integer, allowing further processing or error
checking. Using this is deprecated, for more flexible post processing or error checking use a ctypes data
type as restype and assign a callable to the errcheck attribute.

argtypes

Assign a tuple of ctypes types to specify the argument types that the function accepts. Functions using
the stdcall calling convention can only be called with the same number of arguments as the length of
this tuple; functions using the C calling convention accept additional, unspecified arguments as well.

When a foreign function is called, each actual argument is passed to the from_param() class method
of the items in the argtypes tuple, this method allows adapting the actual argument to an object that
the foreign function accepts. For example, a c_char_p item in the argtypes tuple will convert a string
passed as argument into a bytes object using ctypes conversion rules.

New: It is now possible to put items in argtypes which are not ctypes types, but each item must have a
from_param()method which returns a value usable as argument (integer, string, ctypes instance). This
allows defining adapters that can adapt custom objects as function parameters.

errcheck

Assign a Python function or another callable to this attribute. The callable will be called with three or
more arguments:

callable(result, func, arguments)
result is what the foreign function returns, as specified by the restype attribute.

func is the foreign function object itself, this allows reusing the same callable object to check or post
process the results of several functions.

arguments is a tuple containing the parameters originally passed to the function call, this allows
specializing the behavior on the arguments used.

The object that this function returns will be returned from the foreign function call, but it can also check
the result value and raise an exception if the foreign function call failed.

exception ctypes.ArgumentError

This exception is raised when a foreign function call cannot convert one of the passed arguments.

On Windows, when a foreign function call raises a system exception (for example, due to an access violation), it will
be captured and replaced with a suitable Python exception. Further, an auditing event ctypes.set_exception
with argument code will be raised, allowing an audit hook to replace the exception with its own.

Some ways to invoke foreign function calls may raise an auditing event ctypes.call_function with arguments
function pointer and arguments.

Function prototypes

Foreign functions can also be created by instantiating function prototypes. Function prototypes are similar to func-
tion prototypes in C; they describe a function (return type, argument types, calling convention) without defining an
implementation. The factory functions must be called with the desired result type and the argument types of the
function, and can be used as decorator factories, and as such, be applied to functions through the @wrapper syntax.
See Callback functions for examples.

ctypes.CFUNCTYPE(restype, *argtypes, use_errno=False, use_last_error=False)
The returned function prototype creates functions that use the standard C calling convention. The function
will release the GIL during the call. If use_errno is set to true, the ctypes private copy of the system errno

variable is exchanged with the real errno value before and after the call; use_last_error does the same for the
Windows error code.

16.9. ctypes— A foreign function library for Python 821

The Python Library Reference, Release 3.13.1

ctypes.WINFUNCTYPE(restype, *argtypes, use_errno=False, use_last_error=False)
The returned function prototype creates functions that use the stdcall calling convention. The function will
release the GIL during the call. use_errno and use_last_error have the same meaning as above.

Availability: Windows

ctypes.PYFUNCTYPE(restype, *argtypes)
The returned function prototype creates functions that use the Python calling convention. The function will
not release the GIL during the call.

Function prototypes created by these factory functions can be instantiated in different ways, depending on the type
and number of the parameters in the call:

prototype(address)
Returns a foreign function at the specified address which must be an integer.

prototype(callable)

Create a C callable function (a callback function) from a Python callable.

prototype(func_spec[, paramflags])
Returns a foreign function exported by a shared library. func_spec must be a 2-tuple (name_or_ordinal,
library). The first item is the name of the exported function as string, or the ordinal of the exported function
as small integer. The second item is the shared library instance.

prototype(vtbl_index, name[, paramflags[, iid]])
Returns a foreign function that will call a COM method. vtbl_index is the index into the virtual function table,
a small non-negative integer. name is name of the COM method. iid is an optional pointer to the interface
identifier which is used in extended error reporting.

COMmethods use a special calling convention: They require a pointer to the COM interface as first argument,
in addition to those parameters that are specified in the argtypes tuple.

The optional paramflags parameter creates foreign function wrappers with much more functionality than the features
described above.

paramflags must be a tuple of the same length as argtypes.

Each item in this tuple contains further information about a parameter, it must be a tuple containing one, two, or
three items.

The first item is an integer containing a combination of direction flags for the parameter:

1
Specifies an input parameter to the function.

2
Output parameter. The foreign function fills in a value.

4
Input parameter which defaults to the integer zero.

The optional second item is the parameter name as string. If this is specified, the foreign function can be called with
named parameters.

The optional third item is the default value for this parameter.

The following example demonstrates how to wrap the Windows MessageBoxW function so that it supports default
parameters and named arguments. The C declaration from the windows header file is this:

WINUSERAPI int WINAPI

MessageBoxW(

HWND hWnd,

LPCWSTR lpText,

LPCWSTR lpCaption,

UINT uType);

822 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

Here is the wrapping with ctypes:

>>> from ctypes import c_int, WINFUNCTYPE, windll

>>> from ctypes.wintypes import HWND, LPCWSTR, UINT

>>> prototype = WINFUNCTYPE(c_int, HWND, LPCWSTR, LPCWSTR, UINT)

>>> paramflags = (1, "hwnd", 0), (1, "text", "Hi"), (1, "caption", "Hello from␣

↪→ctypes"), (1, "flags", 0)

>>> MessageBox = prototype(("MessageBoxW", windll.user32), paramflags)

The MessageBox foreign function can now be called in these ways:

>>> MessageBox()

>>> MessageBox(text="Spam, spam, spam")

>>> MessageBox(flags=2, text="foo bar")

A second example demonstrates output parameters. The win32 GetWindowRect function retrieves the dimensions
of a specified window by copying them into RECT structure that the caller has to supply. Here is the C declaration:

WINUSERAPI BOOL WINAPI

GetWindowRect(

HWND hWnd,

LPRECT lpRect);

Here is the wrapping with ctypes:

>>> from ctypes import POINTER, WINFUNCTYPE, windll, WinError

>>> from ctypes.wintypes import BOOL, HWND, RECT

>>> prototype = WINFUNCTYPE(BOOL, HWND, POINTER(RECT))

>>> paramflags = (1, "hwnd"), (2, "lprect")

>>> GetWindowRect = prototype(("GetWindowRect", windll.user32), paramflags)

>>>

Functions with output parameters will automatically return the output parameter value if there is a single one, or a
tuple containing the output parameter values when there are more than one, so the GetWindowRect function now
returns a RECT instance, when called.

Output parameters can be combined with the errcheck protocol to do further output processing and error checking.
The win32 GetWindowRect api function returns a BOOL to signal success or failure, so this function could do the
error checking, and raises an exception when the api call failed:

>>> def errcheck(result, func, args):

... if not result:

... raise WinError()

... return args

...

>>> GetWindowRect.errcheck = errcheck

>>>

If the errcheck function returns the argument tuple it receives unchanged, ctypes continues the normal processing
it does on the output parameters. If you want to return a tuple of window coordinates instead of a RECT instance,
you can retrieve the fields in the function and return them instead, the normal processing will no longer take place:

>>> def errcheck(result, func, args):

... if not result:

... raise WinError()

... rc = args[1]

... return rc.left, rc.top, rc.bottom, rc.right

...

>>> GetWindowRect.errcheck = errcheck

>>>

16.9. ctypes— A foreign function library for Python 823

The Python Library Reference, Release 3.13.1

Utility functions

ctypes.addressof(obj)
Returns the address of the memory buffer as integer. obj must be an instance of a ctypes type.

Raises an auditing event ctypes.addressof with argument obj.

ctypes.alignment(obj_or_type)
Returns the alignment requirements of a ctypes type. obj_or_type must be a ctypes type or instance.

ctypes.byref(obj[, offset])
Returns a light-weight pointer to obj, which must be an instance of a ctypes type. offset defaults to zero, and
must be an integer that will be added to the internal pointer value.

byref(obj, offset) corresponds to this C code:

(((char *)&obj) + offset)

The returned object can only be used as a foreign function call parameter. It behaves similar to pointer(obj),
but the construction is a lot faster.

ctypes.cast(obj, type)
This function is similar to the cast operator in C. It returns a new instance of type which points to the same
memory block as obj. typemust be a pointer type, and objmust be an object that can be interpreted as a pointer.

ctypes.create_string_buffer(init_or_size, size=None)
This function creates a mutable character buffer. The returned object is a ctypes array of c_char.

init_or_size must be an integer which specifies the size of the array, or a bytes object which will be used to
initialize the array items.

If a bytes object is specified as first argument, the buffer is made one item larger than its length so that the
last element in the array is a NUL termination character. An integer can be passed as second argument which
allows specifying the size of the array if the length of the bytes should not be used.

Raises an auditing event ctypes.create_string_buffer with arguments init, size.

ctypes.create_unicode_buffer(init_or_size, size=None)
This function creates a mutable unicode character buffer. The returned object is a ctypes array of c_wchar.

init_or_size must be an integer which specifies the size of the array, or a string which will be used to initialize
the array items.

If a string is specified as first argument, the buffer is made one item larger than the length of the string so that
the last element in the array is a NUL termination character. An integer can be passed as second argument
which allows specifying the size of the array if the length of the string should not be used.

Raises an auditing event ctypes.create_unicode_buffer with arguments init, size.

ctypes.DllCanUnloadNow()

This function is a hook which allows implementing in-process COM servers with ctypes. It is called from the
DllCanUnloadNow function that the _ctypes extension dll exports.

Availability: Windows

ctypes.DllGetClassObject()

This function is a hook which allows implementing in-process COM servers with ctypes. It is called from the
DllGetClassObject function that the _ctypes extension dll exports.

Availability: Windows

ctypes.util.find_library(name)
Try to find a library and return a pathname. name is the library name without any prefix like lib, suffix like
.so, .dylib or version number (this is the form used for the posix linker option -l). If no library can be
found, returns None.

The exact functionality is system dependent.

824 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

ctypes.util.find_msvcrt()

Returns the filename of the VC runtime library used by Python, and by the extension modules. If the name of
the library cannot be determined, None is returned.

If you need to free memory, for example, allocated by an extension module with a call to the free(void *),
it is important that you use the function in the same library that allocated the memory.

Availability: Windows

ctypes.FormatError([code])
Returns a textual description of the error code code. If no error code is specified, the last error code is used
by calling the Windows api function GetLastError.

Availability: Windows

ctypes.GetLastError()

Returns the last error code set by Windows in the calling thread. This function calls the Windows
GetLastError() function directly, it does not return the ctypes-private copy of the error code.

Availability: Windows

ctypes.get_errno()

Returns the current value of the ctypes-private copy of the system errno variable in the calling thread.

Raises an auditing event ctypes.get_errno with no arguments.

ctypes.get_last_error()

Returns the current value of the ctypes-private copy of the system LastError variable in the calling thread.

Availability: Windows

Raises an auditing event ctypes.get_last_error with no arguments.

ctypes.memmove(dst, src, count)
Same as the standard C memmove library function: copies count bytes from src to dst. dst and src must be
integers or ctypes instances that can be converted to pointers.

ctypes.memset(dst, c, count)
Same as the standard C memset library function: fills the memory block at address dst with count bytes of
value c. dst must be an integer specifying an address, or a ctypes instance.

ctypes.POINTER(type, /)
Create and return a new ctypes pointer type. Pointer types are cached and reused internally, so calling this
function repeatedly is cheap. type must be a ctypes type.

ctypes.pointer(obj, /)
Create a new pointer instance, pointing to obj. The returned object is of the type POINTER(type(obj)).

Note: If you just want to pass a pointer to an object to a foreign function call, you should use byref(obj)
which is much faster.

ctypes.resize(obj, size)
This function resizes the internal memory buffer of obj, which must be an instance of a ctypes type. It is not
possible to make the buffer smaller than the native size of the objects type, as given by sizeof(type(obj)),
but it is possible to enlarge the buffer.

ctypes.set_errno(value)

Set the current value of the ctypes-private copy of the system errno variable in the calling thread to value and
return the previous value.

Raises an auditing event ctypes.set_errno with argument errno.

16.9. ctypes— A foreign function library for Python 825

The Python Library Reference, Release 3.13.1

ctypes.set_last_error(value)
Sets the current value of the ctypes-private copy of the system LastError variable in the calling thread to
value and return the previous value.

Availability: Windows

Raises an auditing event ctypes.set_last_error with argument error.

ctypes.sizeof(obj_or_type)
Returns the size in bytes of a ctypes type or instance memory buffer. Does the same as the C sizeof operator.

ctypes.string_at(ptr, size=-1)
Return the byte string at void *ptr. If size is specified, it is used as size, otherwise the string is assumed to be
zero-terminated.

Raises an auditing event ctypes.string_at with arguments ptr, size.

ctypes.WinError(code=None, descr=None)
This function is probably the worst-named thing in ctypes. It creates an instance of OSError. If code is not
specified, GetLastError is called to determine the error code. If descr is not specified, FormatError() is
called to get a textual description of the error.

Availability: Windows

Changed in version 3.3: An instance of WindowsError used to be created, which is now an alias of OSError.

ctypes.wstring_at(ptr, size=-1)
Return the wide-character string at void *ptr. If size is specified, it is used as the number of characters of the
string, otherwise the string is assumed to be zero-terminated.

Raises an auditing event ctypes.wstring_at with arguments ptr, size.

Data types

class ctypes._CData

This non-public class is the common base class of all ctypes data types. Among other things, all ctypes type
instances contain a memory block that hold C compatible data; the address of the memory block is returned
by the addressof() helper function. Another instance variable is exposed as _objects; this contains other
Python objects that need to be kept alive in case the memory block contains pointers.

Common methods of ctypes data types, these are all class methods (to be exact, they are methods of the
metaclass):

from_buffer(source[, offset])
This method returns a ctypes instance that shares the buffer of the source object. The source object must
support the writeable buffer interface. The optional offset parameter specifies an offset into the source
buffer in bytes; the default is zero. If the source buffer is not large enough a ValueError is raised.

Raises an auditing event ctypes.cdata/buffer with arguments pointer, size, offset.

from_buffer_copy(source[, offset])
This method creates a ctypes instance, copying the buffer from the source object buffer which must be
readable. The optional offset parameter specifies an offset into the source buffer in bytes; the default is
zero. If the source buffer is not large enough a ValueError is raised.

Raises an auditing event ctypes.cdata/buffer with arguments pointer, size, offset.

from_address(address)
This method returns a ctypes type instance using the memory specified by address which must be an
integer.

This method, and others that indirectly call this method, raises an auditing event ctypes.cdata with
argument address.

826 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

from_param(obj)
This method adapts obj to a ctypes type. It is called with the actual object used in a foreign function call
when the type is present in the foreign function’s argtypes tuple; it must return an object that can be
used as a function call parameter.

All ctypes data types have a default implementation of this classmethod that normally returns obj if that
is an instance of the type. Some types accept other objects as well.

in_dll(library, name)

This method returns a ctypes type instance exported by a shared library. name is the name of the symbol
that exports the data, library is the loaded shared library.

Common instance variables of ctypes data types:

_b_base_

Sometimes ctypes data instances do not own the memory block they contain, instead they share part of
the memory block of a base object. The _b_base_ read-only member is the root ctypes object that owns
the memory block.

_b_needsfree_

This read-only variable is true when the ctypes data instance has allocated the memory block itself, false
otherwise.

_objects

This member is either None or a dictionary containing Python objects that need to be kept alive so that
the memory block contents is kept valid. This object is only exposed for debugging; never modify the
contents of this dictionary.

Fundamental data types

class ctypes._SimpleCData

This non-public class is the base class of all fundamental ctypes data types. It is mentioned here because it
contains the common attributes of the fundamental ctypes data types. _SimpleCData is a subclass of _CData,
so it inherits their methods and attributes. ctypes data types that are not and do not contain pointers can now
be pickled.

Instances have a single attribute:

value

This attribute contains the actual value of the instance. For integer and pointer types, it is an integer, for
character types, it is a single character bytes object or string, for character pointer types it is a Python
bytes object or string.

When the value attribute is retrieved from a ctypes instance, usually a new object is returned each time.
ctypes does not implement original object return, always a new object is constructed. The same is true
for all other ctypes object instances.

Fundamental data types, when returned as foreign function call results, or, for example, by retrieving structure field
members or array items, are transparently converted to native Python types. In other words, if a foreign function has
a restype of c_char_p, you will always receive a Python bytes object, not a c_char_p instance.

Subclasses of fundamental data types do not inherit this behavior. So, if a foreign functions restype is a subclass
of c_void_p, you will receive an instance of this subclass from the function call. Of course, you can get the value
of the pointer by accessing the value attribute.

These are the fundamental ctypes data types:

class ctypes.c_byte

Represents the C signed char datatype, and interprets the value as small integer. The constructor accepts
an optional integer initializer; no overflow checking is done.

16.9. ctypes— A foreign function library for Python 827

The Python Library Reference, Release 3.13.1

class ctypes.c_char

Represents the C char datatype, and interprets the value as a single character. The constructor accepts an
optional string initializer, the length of the string must be exactly one character.

class ctypes.c_char_p

Represents the C char* datatype when it points to a zero-terminated string. For a general character pointer
that may also point to binary data, POINTER(c_char) must be used. The constructor accepts an integer
address, or a bytes object.

class ctypes.c_double

Represents the C double datatype. The constructor accepts an optional float initializer.

class ctypes.c_longdouble

Represents the C long double datatype. The constructor accepts an optional float initializer. On platforms
where sizeof(long double) == sizeof(double) it is an alias to c_double.

class ctypes.c_float

Represents the C float datatype. The constructor accepts an optional float initializer.

class ctypes.c_int

Represents the C signed int datatype. The constructor accepts an optional integer initializer; no overflow
checking is done. On platforms where sizeof(int) == sizeof(long) it is an alias to c_long.

class ctypes.c_int8

Represents the C 8-bit signed int datatype. Usually an alias for c_byte.

class ctypes.c_int16

Represents the C 16-bit signed int datatype. Usually an alias for c_short.

class ctypes.c_int32

Represents the C 32-bit signed int datatype. Usually an alias for c_int.

class ctypes.c_int64

Represents the C 64-bit signed int datatype. Usually an alias for c_longlong.

class ctypes.c_long

Represents the C signed long datatype. The constructor accepts an optional integer initializer; no overflow
checking is done.

class ctypes.c_longlong

Represents the C signed long long datatype. The constructor accepts an optional integer initializer; no
overflow checking is done.

class ctypes.c_short

Represents the C signed short datatype. The constructor accepts an optional integer initializer; no overflow
checking is done.

class ctypes.c_size_t

Represents the C size_t datatype.

class ctypes.c_ssize_t

Represents the C ssize_t datatype.

Added in version 3.2.

class ctypes.c_time_t

Represents the C time_t datatype.

Added in version 3.12.

class ctypes.c_ubyte

Represents the C unsigned char datatype, it interprets the value as small integer. The constructor accepts
an optional integer initializer; no overflow checking is done.

828 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

class ctypes.c_uint

Represents the C unsigned int datatype. The constructor accepts an optional integer initializer; no overflow
checking is done. On platforms where sizeof(int) == sizeof(long) it is an alias for c_ulong.

class ctypes.c_uint8

Represents the C 8-bit unsigned int datatype. Usually an alias for c_ubyte.

class ctypes.c_uint16

Represents the C 16-bit unsigned int datatype. Usually an alias for c_ushort.

class ctypes.c_uint32

Represents the C 32-bit unsigned int datatype. Usually an alias for c_uint.

class ctypes.c_uint64

Represents the C 64-bit unsigned int datatype. Usually an alias for c_ulonglong.

class ctypes.c_ulong

Represents the C unsigned long datatype. The constructor accepts an optional integer initializer; no over-
flow checking is done.

class ctypes.c_ulonglong

Represents the C unsigned long long datatype. The constructor accepts an optional integer initializer; no
overflow checking is done.

class ctypes.c_ushort

Represents the C unsigned short datatype. The constructor accepts an optional integer initializer; no
overflow checking is done.

class ctypes.c_void_p

Represents the C void* type. The value is represented as integer. The constructor accepts an optional integer
initializer.

class ctypes.c_wchar

Represents the C wchar_t datatype, and interprets the value as a single character unicode string. The con-
structor accepts an optional string initializer, the length of the string must be exactly one character.

class ctypes.c_wchar_p

Represents the C wchar_t* datatype, which must be a pointer to a zero-terminated wide character string.
The constructor accepts an integer address, or a string.

class ctypes.c_bool

Represent the C bool datatype (more accurately, _Bool from C99). Its value can be True or False, and the
constructor accepts any object that has a truth value.

class ctypes.HRESULT

Represents a HRESULT value, which contains success or error information for a function or method call.

Availability: Windows

class ctypes.py_object

Represents the C PyObject* datatype. Calling this without an argument creates a NULL PyObject* pointer.

The ctypes.wintypesmodule provides quite some otherWindows specific data types, for example HWND, WPARAM,
or DWORD. Some useful structures like MSG or RECT are also defined.

Structured data types

class ctypes.Union(*args, **kw)
Abstract base class for unions in native byte order.

16.9. ctypes— A foreign function library for Python 829

The Python Library Reference, Release 3.13.1

class ctypes.BigEndianUnion(*args, **kw)
Abstract base class for unions in big endian byte order.

Added in version 3.11.

class ctypes.LittleEndianUnion(*args, **kw)
Abstract base class for unions in little endian byte order.

Added in version 3.11.

class ctypes.BigEndianStructure(*args, **kw)
Abstract base class for structures in big endian byte order.

class ctypes.LittleEndianStructure(*args, **kw)
Abstract base class for structures in little endian byte order.

Structures and unions with non-native byte order cannot contain pointer type fields, or any other data types containing
pointer type fields.

class ctypes.Structure(*args, **kw)
Abstract base class for structures in native byte order.

Concrete structure and union types must be created by subclassing one of these types, and at least define a
fields class variable. ctypes will create descriptors which allow reading and writing the fields by direct
attribute accesses. These are the

fields

A sequence defining the structure fields. The items must be 2-tuples or 3-tuples. The first item is the
name of the field, the second item specifies the type of the field; it can be any ctypes data type.

For integer type fields like c_int, a third optional item can be given. It must be a small positive integer
defining the bit width of the field.

Field names must be unique within one structure or union. This is not checked, only one field can be
accessed when names are repeated.

It is possible to define the _fields_ class variable after the class statement that defines the Structure
subclass, this allows creating data types that directly or indirectly reference themselves:

class List(Structure):

pass

List._fields_ = [("pnext", POINTER(List)),

...

]

The _fields_ class variable must, however, be defined before the type is first used (an instance is
created, sizeof() is called on it, and so on). Later assignments to the _fields_ class variable will
raise an AttributeError.

It is possible to define sub-subclasses of structure types, they inherit the fields of the base class plus the
fields defined in the sub-subclass, if any.

pack

An optional small integer that allows overriding the alignment of structure fields in the instance. _pack_
must already be definedwhen _fields_ is assigned, otherwise it will have no effect. Setting this attribute
to 0 is the same as not setting it at all.

align

An optional small integer that allows overriding the alignment of the structure when being packed or
unpacked to/from memory. Setting this attribute to 0 is the same as not setting it at all.

Added in version 3.13.

830 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.13.1

anonymous

An optional sequence that lists the names of unnamed (anonymous) fields. _anonymous_ must be al-
ready defined when _fields_ is assigned, otherwise it will have no effect.

The fields listed in this variable must be structure or union type fields. ctypes will create descriptors in
the structure type that allows accessing the nested fields directly, without the need to create the structure
or union field.

Here is an example type (Windows):

class _U(Union):

fields = [("lptdesc", POINTER(TYPEDESC)),

("lpadesc", POINTER(ARRAYDESC)),

("hreftype", HREFTYPE)]

class TYPEDESC(Structure):

anonymous = ("u",)

fields = [("u", _U),

("vt", VARTYPE)]

The TYPEDESC structure describes a COM data type, the vt field specifies which one of the union fields
is valid. Since the u field is defined as anonymous field, it is now possible to access the members directly
off the TYPEDESC instance. td.lptdesc and td.u.lptdesc are equivalent, but the former is faster
since it does not need to create a temporary union instance:

td = TYPEDESC()

td.vt = VT_PTR

td.lptdesc = POINTER(some_type)

td.u.lptdesc = POINTER(some_type)

It is possible to define sub-subclasses of structures, they inherit the fields of the base class. If the subclass
definition has a separate _fields_ variable, the fields specified in this are appended to the fields of the base
class.

Structure and union constructors accept both positional and keyword arguments. Positional arguments are
used to initialize member fields in the same order as they are appear in _fields_. Keyword arguments in the
constructor are interpreted as attribute assignments, so they will initialize _fields_ with the same name, or
create new attributes for names not present in _fields_.

Arrays and pointers

class ctypes.Array(*args)
Abstract base class for arrays.

The recommended way to create concrete array types is by multiplying any ctypes data type with a non-
negative integer. Alternatively, you can subclass this type and define _length_ and _type_ class variables.
Array elements can be read and written using standard subscript and slice accesses; for slice reads, the resulting
object is not itself an Array.

length

A positive integer specifying the number of elements in the array. Out-of-range subscripts result in an
IndexError. Will be returned by len().

type

Specifies the type of each element in the array.

Array subclass constructors accept positional arguments, used to initialize the elements in order.

ctypes.ARRAY(type, length)
Create an array. Equivalent to type * length, where type is a ctypes data type and length an integer.

This function is soft deprecated in favor of multiplication. There are no plans to remove it.

16.9. ctypes— A foreign function library for Python 831

The Python Library Reference, Release 3.13.1

class ctypes._Pointer

Private, abstract base class for pointers.

Concrete pointer types are created by calling POINTER() with the type that will be pointed to; this is done
automatically by pointer().

If a pointer points to an array, its elements can be read and written using standard subscript and slice accesses.
Pointer objects have no size, so len() will raise TypeError. Negative subscripts will read from the memory
before the pointer (as in C), and out-of-range subscripts will probably crash with an access violation (if you’re
lucky).

type

Specifies the type pointed to.

contents

Returns the object to which to pointer points. Assigning to this attribute changes the pointer to point to
the assigned object.

832 Chapter 16. Generic Operating System Services

CHAPTER

SEVENTEEN

COMMAND LINE INTERFACE LIBRARIES

The modules described in this chapter assist with implementing command line and terminal interfaces for applica-
tions.

Here’s an overview:

17.1 argparse— Parser for command-line options, arguments and
subcommands

Added in version 3.2.

Source code: Lib/argparse.py

Note

While argparse is the default recommended standard library module for implementing basic command line
applications, authors with more exacting requirements for exactly how their command line applications behave
may find it doesn’t provide the necessary level of control. Refer to Choosing an argument parsing library for
alternatives to consider when argparse doesn’t support behaviors that the application requires (such as entirely
disabling support for interspersed options and positional arguments, or accepting option parameter values that
start with - even when they correspond to another defined option).

Tutorial

This page contains the API reference information. For a more gentle introduction to Python command-line
parsing, have a look at the argparse tutorial.

The argparse module makes it easy to write user-friendly command-line interfaces. The program defines what
arguments it requires, and argparse will figure out how to parse those out of sys.argv. The argparse module
also automatically generates help and usage messages. The module will also issue errors when users give the program
invalid arguments.

The argparse module’s support for command-line interfaces is built around an instance of argparse.

ArgumentParser. It is a container for argument specifications and has options that apply to the parser as whole:

parser = argparse.ArgumentParser(

prog='ProgramName',

description='What the program does',

epilog='Text at the bottom of help')

The ArgumentParser.add_argument() method attaches individual argument specifications to the parser. It
supports positional arguments, options that accept values, and on/off flags:

833

https://github.com/python/cpython/tree/3.13/Lib/argparse.py

The Python Library Reference, Release 3.13.1

parser.add_argument('filename') # positional argument

parser.add_argument('-c', '--count') # option that takes a value

parser.add_argument('-v', '--verbose',

action='store_true') # on/off flag

The ArgumentParser.parse_args() method runs the parser and places the extracted data in a argparse.
Namespace object:

args = parser.parse_args()

print(args.filename, args.count, args.verbose)

Note

If you’re looking for a guide about how to upgrade optparse code to argparse, see Upgrading Optparse Code.

17.1.1 ArgumentParser objects

class argparse.ArgumentParser(prog=None, usage=None, description=None, epilog=None, parents=[],
formatter_class=argparse.HelpFormatter, prefix_chars=’-’,
fromfile_prefix_chars=None, argument_default=None,
conflict_handler=’error’, add_help=True, allow_abbrev=True,
exit_on_error=True)

Create a new ArgumentParser object. All parameters should be passed as keyword arguments. Each pa-
rameter has its own more detailed description below, but in short they are:

• prog - The name of the program (default: os.path.basename(sys.argv[0]))

• usage - The string describing the program usage (default: generated from arguments added to parser)

• description - Text to display before the argument help (by default, no text)

• epilog - Text to display after the argument help (by default, no text)

• parents - A list of ArgumentParser objects whose arguments should also be included

• formatter_class - A class for customizing the help output

• prefix_chars - The set of characters that prefix optional arguments (default: ‘-‘)

• fromfile_prefix_chars - The set of characters that prefix files from which additional arguments should be
read (default: None)

• argument_default - The global default value for arguments (default: None)

• conflict_handler - The strategy for resolving conflicting optionals (usually unnecessary)

• add_help - Add a -h/--help option to the parser (default: True)

• allow_abbrev - Allows long options to be abbreviated if the abbreviation is unambiguous. (default: True)

• exit_on_error - Determines whether or not ArgumentParser exits with error info when an error occurs.
(default: True)

Changed in version 3.5: allow_abbrev parameter was added.

Changed in version 3.8: In previous versions, allow_abbrev also disabled grouping of short flags such as -vv
to mean -v -v.

Changed in version 3.9: exit_on_error parameter was added.

The following sections describe how each of these are used.

834 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

prog

By default, ArgumentParser calculates the name of the program to display in help messages depending on the way
the Python interpreter was run:

• The base name of sys.argv[0] if a file was passed as argument.

• The Python interpreter name followed by sys.argv[0] if a directory or a zipfile was passed as argument.

• The Python interpreter name followed by -m followed by the module or package name if the -m option was
used.

This default is almost always desirable because it will make the help messages match the string that was used to
invoke the program on the command line. However, to change this default behavior, another value can be supplied
using the prog= argument to ArgumentParser:

>>> parser = argparse.ArgumentParser(prog='myprogram')

>>> parser.print_help()

usage: myprogram [-h]

options:

-h, --help show this help message and exit

Note that the program name, whether determined from sys.argv[0] or from the prog= argument, is available to
help messages using the %(prog)s format specifier.

>>> parser = argparse.ArgumentParser(prog='myprogram')

>>> parser.add_argument('--foo', help='foo of the %(prog)s program')

>>> parser.print_help()

usage: myprogram [-h] [--foo FOO]

options:

-h, --help show this help message and exit

--foo FOO foo of the myprogram program

usage

By default, ArgumentParser calculates the usage message from the arguments it contains. The default message
can be overridden with the usage= keyword argument:

>>> parser = argparse.ArgumentParser(prog='PROG', usage='%(prog)s [options]')

>>> parser.add_argument('--foo', nargs='?', help='foo help')

>>> parser.add_argument('bar', nargs='+', help='bar help')

>>> parser.print_help()

usage: PROG [options]

positional arguments:

bar bar help

options:

-h, --help show this help message and exit

--foo [FOO] foo help

The %(prog)s format specifier is available to fill in the program name in your usage messages.

description

Most calls to the ArgumentParser constructor will use the description= keyword argument. This argument
gives a brief description of what the program does and how it works. In help messages, the description is displayed
between the command-line usage string and the help messages for the various arguments.

17.1. argparse— Parser for command-line options, arguments and subcommands 835

The Python Library Reference, Release 3.13.1

By default, the description will be line-wrapped so that it fits within the given space. To change this behavior, see the
formatter_class argument.

epilog

Some programs like to display additional description of the program after the description of the arguments. Such
text can be specified using the epilog= argument to ArgumentParser:

>>> parser = argparse.ArgumentParser(

... description='A foo that bars',

... epilog="And that's how you'd foo a bar")

>>> parser.print_help()

usage: argparse.py [-h]

A foo that bars

options:

-h, --help show this help message and exit

And that's how you'd foo a bar

As with the description argument, the epilog= text is by default line-wrapped, but this behavior can be adjusted
with the formatter_class argument to ArgumentParser.

parents

Sometimes, several parsers share a common set of arguments. Rather than repeating the definitions of these argu-
ments, a single parser with all the shared arguments and passed to parents= argument to ArgumentParser can
be used. The parents= argument takes a list of ArgumentParser objects, collects all the positional and optional
actions from them, and adds these actions to the ArgumentParser object being constructed:

>>> parent_parser = argparse.ArgumentParser(add_help=False)

>>> parent_parser.add_argument('--parent', type=int)

>>> foo_parser = argparse.ArgumentParser(parents=[parent_parser])

>>> foo_parser.add_argument('foo')

>>> foo_parser.parse_args(['--parent', '2', 'XXX'])

Namespace(foo='XXX', parent=2)

>>> bar_parser = argparse.ArgumentParser(parents=[parent_parser])

>>> bar_parser.add_argument('--bar')

>>> bar_parser.parse_args(['--bar', 'YYY'])

Namespace(bar='YYY', parent=None)

Note that most parent parsers will specify add_help=False. Otherwise, the ArgumentParser will see two -h/
--help options (one in the parent and one in the child) and raise an error.

Note

You must fully initialize the parsers before passing them via parents=. If you change the parent parsers after
the child parser, those changes will not be reflected in the child.

formatter_class

ArgumentParser objects allow the help formatting to be customized by specifying an alternate formatting class.
Currently, there are four such classes:

class argparse.RawDescriptionHelpFormatter

836 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

class argparse.RawTextHelpFormatter

class argparse.ArgumentDefaultsHelpFormatter

class argparse.MetavarTypeHelpFormatter

RawDescriptionHelpFormatter and RawTextHelpFormatter give more control over how textual descrip-
tions are displayed. By default, ArgumentParser objects line-wrap the description and epilog texts in command-line
help messages:

>>> parser = argparse.ArgumentParser(

... prog='PROG',

... description='''this description

... was indented weird

... but that is okay''',

... epilog='''

... likewise for this epilog whose whitespace will

... be cleaned up and whose words will be wrapped

... across a couple lines''')

>>> parser.print_help()

usage: PROG [-h]

this description was indented weird but that is okay

options:

-h, --help show this help message and exit

likewise for this epilog whose whitespace will be cleaned up and whose words

will be wrapped across a couple lines

Passing RawDescriptionHelpFormatter as formatter_class= indicates that description and epilog are al-
ready correctly formatted and should not be line-wrapped:

>>> parser = argparse.ArgumentParser(

... prog='PROG',

... formatter_class=argparse.RawDescriptionHelpFormatter,

... description=textwrap.dedent('''\

... Please do not mess up this text!

... --------------------------------

... I have indented it

... exactly the way

... I want it

... '''))

>>> parser.print_help()

usage: PROG [-h]

Please do not mess up this text!

I have indented it

exactly the way

I want it

options:

-h, --help show this help message and exit

RawTextHelpFormattermaintains whitespace for all sorts of help text, including argument descriptions. However,
multiple newlines are replacedwith one. If youwish to preservemultiple blank lines, add spaces between the newlines.

ArgumentDefaultsHelpFormatter automatically adds information about default values to each of the argument
help messages:

17.1. argparse— Parser for command-line options, arguments and subcommands 837

The Python Library Reference, Release 3.13.1

>>> parser = argparse.ArgumentParser(

... prog='PROG',

... formatter_class=argparse.ArgumentDefaultsHelpFormatter)

>>> parser.add_argument('--foo', type=int, default=42, help='FOO!')

>>> parser.add_argument('bar', nargs='*', default=[1, 2, 3], help='BAR!')

>>> parser.print_help()

usage: PROG [-h] [--foo FOO] [bar ...]

positional arguments:

bar BAR! (default: [1, 2, 3])

options:

-h, --help show this help message and exit

--foo FOO FOO! (default: 42)

MetavarTypeHelpFormatter uses the name of the type argument for each argument as the display name for its
values (rather than using the dest as the regular formatter does):

>>> parser = argparse.ArgumentParser(

... prog='PROG',

... formatter_class=argparse.MetavarTypeHelpFormatter)

>>> parser.add_argument('--foo', type=int)

>>> parser.add_argument('bar', type=float)

>>> parser.print_help()

usage: PROG [-h] [--foo int] float

positional arguments:

float

options:

-h, --help show this help message and exit

--foo int

prefix_chars

Most command-line options will use - as the prefix, e.g. -f/--foo. Parsers that need to support different or
additional prefix characters, e.g. for options like +f or /foo, may specify them using the prefix_chars= argument
to the ArgumentParser constructor:

>>> parser = argparse.ArgumentParser(prog='PROG', prefix_chars='-+')

>>> parser.add_argument('+f')

>>> parser.add_argument('++bar')

>>> parser.parse_args('+f X ++bar Y'.split())

Namespace(bar='Y', f='X')

The prefix_chars= argument defaults to '-'. Supplying a set of characters that does not include - will cause
-f/--foo options to be disallowed.

fromfile_prefix_chars

Sometimes, when dealing with a particularly long argument list, it may make sense to keep the list of arguments in
a file rather than typing it out at the command line. If the fromfile_prefix_chars= argument is given to the
ArgumentParser constructor, then arguments that start with any of the specified characters will be treated as files,
and will be replaced by the arguments they contain. For example:

>>> with open('args.txt', 'w', encoding=sys.getfilesystemencoding()) as fp:

... fp.write('-f\nbar')

(continues on next page)

838 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

(continued from previous page)

...

>>> parser = argparse.ArgumentParser(fromfile_prefix_chars='@')

>>> parser.add_argument('-f')

>>> parser.parse_args(['-f', 'foo', '@args.txt'])

Namespace(f='bar')

Arguments read from a file must by default be one per line (but see also convert_arg_line_to_args()) and
are treated as if they were in the same place as the original file referencing argument on the command line. So
in the example above, the expression ['-f', 'foo', '@args.txt'] is considered equivalent to the expression
['-f', 'foo', '-f', 'bar'].

ArgumentParser uses filesystem encoding and error handler to read the file containing arguments.

The fromfile_prefix_chars= argument defaults to None, meaning that arguments will never be treated as file
references.

Changed in version 3.12: ArgumentParser changed encoding and errors to read arguments files from default
(e.g. locale.getpreferredencoding(False) and "strict") to the filesystem encoding and error handler.
Arguments file should be encoded in UTF-8 instead of ANSI Codepage on Windows.

argument_default

Generally, argument defaults are specified either by passing a default to add_argument() or by calling the
set_defaults()methods with a specific set of name-value pairs. Sometimes however, it may be useful to specify
a single parser-wide default for arguments. This can be accomplished by passing the argument_default= keyword
argument to ArgumentParser. For example, to globally suppress attribute creation on parse_args() calls, we
supply argument_default=SUPPRESS:

>>> parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS)

>>> parser.add_argument('--foo')

>>> parser.add_argument('bar', nargs='?')

>>> parser.parse_args(['--foo', '1', 'BAR'])

Namespace(bar='BAR', foo='1')

>>> parser.parse_args([])

Namespace()

allow_abbrev

Normally, when you pass an argument list to the parse_args() method of an ArgumentParser, it recognizes
abbreviations of long options.

This feature can be disabled by setting allow_abbrev to False:

>>> parser = argparse.ArgumentParser(prog='PROG', allow_abbrev=False)

>>> parser.add_argument('--foobar', action='store_true')

>>> parser.add_argument('--foonley', action='store_false')

>>> parser.parse_args(['--foon'])

usage: PROG [-h] [--foobar] [--foonley]

PROG: error: unrecognized arguments: --foon

Added in version 3.5.

conflict_handler

ArgumentParser objects do not allow two actions with the same option string. By default, ArgumentParser
objects raise an exception if an attempt is made to create an argument with an option string that is already in use:

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> parser.add_argument('-f', '--foo', help='old foo help')

(continues on next page)

17.1. argparse— Parser for command-line options, arguments and subcommands 839

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> parser.add_argument('--foo', help='new foo help')

Traceback (most recent call last):

..

ArgumentError: argument --foo: conflicting option string(s): --foo

Sometimes (e.g. when using parents) it may be useful to simply override any older arguments with the same op-
tion string. To get this behavior, the value 'resolve' can be supplied to the conflict_handler= argument of
ArgumentParser:

>>> parser = argparse.ArgumentParser(prog='PROG', conflict_handler='resolve')

>>> parser.add_argument('-f', '--foo', help='old foo help')

>>> parser.add_argument('--foo', help='new foo help')

>>> parser.print_help()

usage: PROG [-h] [-f FOO] [--foo FOO]

options:

-h, --help show this help message and exit

-f FOO old foo help

--foo FOO new foo help

Note that ArgumentParser objects only remove an action if all of its option strings are overridden. So, in the
example above, the old -f/--foo action is retained as the -f action, because only the --foo option string was
overridden.

add_help

By default, ArgumentParser objects add an option which simply displays the parser’s help message. If -h or
--help is supplied at the command line, the ArgumentParser help will be printed.

Occasionally, it may be useful to disable the addition of this help option. This can be achieved by passing False as
the add_help= argument to ArgumentParser:

>>> parser = argparse.ArgumentParser(prog='PROG', add_help=False)

>>> parser.add_argument('--foo', help='foo help')

>>> parser.print_help()

usage: PROG [--foo FOO]

options:

--foo FOO foo help

The help option is typically -h/--help. The exception to this is if the prefix_chars= is specified and does not
include -, in which case -h and --help are not valid options. In this case, the first character in prefix_chars is
used to prefix the help options:

>>> parser = argparse.ArgumentParser(prog='PROG', prefix_chars='+/')

>>> parser.print_help()

usage: PROG [+h]

options:

+h, ++help show this help message and exit

exit_on_error

Normally, when you pass an invalid argument list to the parse_args() method of an ArgumentParser, it will
print a message to sys.stderr and exit with a status code of 2.

If the user would like to catch errors manually, the feature can be enabled by setting exit_on_error to False:

840 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

>>> parser = argparse.ArgumentParser(exit_on_error=False)

>>> parser.add_argument('--integers', type=int)

_StoreAction(option_strings=['--integers'], dest='integers', nargs=None,␣

↪→const=None, default=None, type=<class 'int'>, choices=None, help=None,␣

↪→metavar=None)

>>> try:

... parser.parse_args('--integers a'.split())

... except argparse.ArgumentError:

... print('Catching an argumentError')

...

Catching an argumentError

Added in version 3.9.

17.1.2 The add_argument() method

ArgumentParser.add_argument(name or flags..., *[, action][, nargs][, const][, default][, type][, choices
][, required][, help][, metavar][, dest][, deprecated])

Define how a single command-line argument should be parsed. Each parameter has its own more detailed
description below, but in short they are:

• name or flags - Either a name or a list of option strings, e.g. 'foo' or '-f', '--foo'.

• action - The basic type of action to be taken when this argument is encountered at the command line.

• nargs - The number of command-line arguments that should be consumed.

• const - A constant value required by some action and nargs selections.

• default - The value produced if the argument is absent from the command line and if it is absent from
the namespace object.

• type - The type to which the command-line argument should be converted.

• choices - A sequence of the allowable values for the argument.

• required - Whether or not the command-line option may be omitted (optionals only).

• help - A brief description of what the argument does.

• metavar - A name for the argument in usage messages.

• dest - The name of the attribute to be added to the object returned by parse_args().

• deprecated - Whether or not use of the argument is deprecated.

The following sections describe how each of these are used.

name or flags

The add_argument() method must know whether an optional argument, like -f or --foo, or a positional argu-
ment, like a list of filenames, is expected. The first arguments passed to add_argument() must therefore be either
a series of flags, or a simple argument name.

For example, an optional argument could be created like:

>>> parser.add_argument('-f', '--foo')

while a positional argument could be created like:

>>> parser.add_argument('bar')

When parse_args() is called, optional arguments will be identified by the - prefix, and the remaining arguments
will be assumed to be positional:

17.1. argparse— Parser for command-line options, arguments and subcommands 841

The Python Library Reference, Release 3.13.1

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> parser.add_argument('-f', '--foo')

>>> parser.add_argument('bar')

>>> parser.parse_args(['BAR'])

Namespace(bar='BAR', foo=None)

>>> parser.parse_args(['BAR', '--foo', 'FOO'])

Namespace(bar='BAR', foo='FOO')

>>> parser.parse_args(['--foo', 'FOO'])

usage: PROG [-h] [-f FOO] bar

PROG: error: the following arguments are required: bar

action

ArgumentParser objects associate command-line arguments with actions. These actions can do just about anything
with the command-line arguments associated with them, though most actions simply add an attribute to the object
returned by parse_args(). The action keyword argument specifies how the command-line arguments should be
handled. The supplied actions are:

• 'store' - This just stores the argument’s value. This is the default action.

• 'store_const' - This stores the value specified by the const keyword argument; note that the const keyword
argument defaults to None. The 'store_const' action is most commonly used with optional arguments that
specify some sort of flag. For example:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', action='store_const', const=42)

>>> parser.parse_args(['--foo'])

Namespace(foo=42)

• 'store_true' and 'store_false' - These are special cases of 'store_const' used for storing the
values True and False respectively. In addition, they create default values of False and True respectively:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', action='store_true')

>>> parser.add_argument('--bar', action='store_false')

>>> parser.add_argument('--baz', action='store_false')

>>> parser.parse_args('--foo --bar'.split())

Namespace(foo=True, bar=False, baz=True)

• 'append' - This stores a list, and appends each argument value to the list. It is useful to allow an option to be
specified multiple times. If the default value is non-empty, the default elements will be present in the parsed
value for the option, with any values from the command line appended after those default values. Example
usage:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', action='append')

>>> parser.parse_args('--foo 1 --foo 2'.split())

Namespace(foo=['1', '2'])

• 'append_const' - This stores a list, and appends the value specified by the const keyword argument to the
list; note that the const keyword argument defaults to None. The 'append_const' action is typically useful
when multiple arguments need to store constants to the same list. For example:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--str', dest='types', action='append_const',␣

↪→const=str)

>>> parser.add_argument('--int', dest='types', action='append_const',␣

↪→const=int)

(continues on next page)

842 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> parser.parse_args('--str --int'.split())

Namespace(types=[<class 'str'>, <class 'int'>])

• 'extend' - This stores a list and appends each item from the multi-value argument list to it. The 'extend'
action is typically used with the nargs keyword argument value '+' or '*'. Note that when nargs is None
(the default) or '?', each character of the argument string will be appended to the list. Example usage:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument("--foo", action="extend", nargs="+", type=str)

>>> parser.parse_args(["--foo", "f1", "--foo", "f2", "f3", "f4"])

Namespace(foo=['f1', 'f2', 'f3', 'f4'])

Added in version 3.8.

• 'count' - This counts the number of times a keyword argument occurs. For example, this is useful for
increasing verbosity levels:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--verbose', '-v', action='count', default=0)

>>> parser.parse_args(['-vvv'])

Namespace(verbose=3)

Note, the default will be None unless explicitly set to 0.

• 'help' - This prints a complete help message for all the options in the current parser and then exits. By
default a help action is automatically added to the parser. See ArgumentParser for details of how the output
is created.

• 'version' - This expects a version= keyword argument in the add_argument() call, and prints version
information and exits when invoked:

>>> import argparse

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> parser.add_argument('--version', action='version', version='%(prog)s 2.0')

>>> parser.parse_args(['--version'])

PROG 2.0

Only actions that consume command-line arguments (e.g. 'store', 'append' or 'extend') can be used with
positional arguments.

class argparse.BooleanOptionalAction

You may also specify an arbitrary action by passing an Action subclass or other object that implements the
same interface. The BooleanOptionalAction is available in argparse and adds support for boolean
actions such as --foo and --no-foo:

>>> import argparse

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', action=argparse.BooleanOptionalAction)

>>> parser.parse_args(['--no-foo'])

Namespace(foo=False)

Added in version 3.9.

The recommended way to create a custom action is to extend Action, overriding the __call__() method and
optionally the __init__() and format_usage() methods. You can also register custom actions using the
register() method and reference them by their registered name.

An example of a custom action:

17.1. argparse— Parser for command-line options, arguments and subcommands 843

The Python Library Reference, Release 3.13.1

>>> class FooAction(argparse.Action):

... def __init__(self, option_strings, dest, nargs=None, **kwargs):

... if nargs is not None:

... raise ValueError("nargs not allowed")

... super().__init__(option_strings, dest, **kwargs)

... def __call__(self, parser, namespace, values, option_string=None):

... print('%r %r %r' % (namespace, values, option_string))

... setattr(namespace, self.dest, values)

...

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', action=FooAction)

>>> parser.add_argument('bar', action=FooAction)

>>> args = parser.parse_args('1 --foo 2'.split())

Namespace(bar=None, foo=None) '1' None

Namespace(bar='1', foo=None) '2' '--foo'

>>> args

Namespace(bar='1', foo='2')

For more details, see Action.

nargs

ArgumentParser objects usually associate a single command-line argument with a single action to be taken. The
nargs keyword argument associates a different number of command-line arguments with a single action. See also
Specifying ambiguous arguments. The supported values are:

• N (an integer). N arguments from the command line will be gathered together into a list. For example:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', nargs=2)

>>> parser.add_argument('bar', nargs=1)

>>> parser.parse_args('c --foo a b'.split())

Namespace(bar=['c'], foo=['a', 'b'])

Note that nargs=1 produces a list of one item. This is different from the default, in which the item is produced
by itself.

• '?'. One argument will be consumed from the command line if possible, and produced as a single item. If no
command-line argument is present, the value from default will be produced. Note that for optional arguments,
there is an additional case - the option string is present but not followed by a command-line argument. In this
case the value from const will be produced. Some examples to illustrate this:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', nargs='?', const='c', default='d')

>>> parser.add_argument('bar', nargs='?', default='d')

>>> parser.parse_args(['XX', '--foo', 'YY'])

Namespace(bar='XX', foo='YY')

>>> parser.parse_args(['XX', '--foo'])

Namespace(bar='XX', foo='c')

>>> parser.parse_args([])

Namespace(bar='d', foo='d')

One of the more common uses of nargs='?' is to allow optional input and output files:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('infile', nargs='?', type=argparse.FileType('r'),

... default=sys.stdin)

>>> parser.add_argument('outfile', nargs='?', type=argparse.FileType('w'),

... default=sys.stdout)

(continues on next page)

844 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> parser.parse_args(['input.txt', 'output.txt'])

Namespace(infile=<_io.TextIOWrapper name='input.txt' encoding='UTF-8'>,

outfile=<_io.TextIOWrapper name='output.txt' encoding='UTF-8'>)

>>> parser.parse_args([])

Namespace(infile=<_io.TextIOWrapper name='<stdin>' encoding='UTF-8'>,

outfile=<_io.TextIOWrapper name='<stdout>' encoding='UTF-8'>)

• '*'. All command-line arguments present are gathered into a list. Note that it generally doesn’t make much
sense to have more than one positional argument with nargs='*', but multiple optional arguments with
nargs='*' is possible. For example:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', nargs='*')

>>> parser.add_argument('--bar', nargs='*')

>>> parser.add_argument('baz', nargs='*')

>>> parser.parse_args('a b --foo x y --bar 1 2'.split())

Namespace(bar=['1', '2'], baz=['a', 'b'], foo=['x', 'y'])

• '+'. Just like '*', all command-line args present are gathered into a list. Additionally, an error message will
be generated if there wasn’t at least one command-line argument present. For example:

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> parser.add_argument('foo', nargs='+')

>>> parser.parse_args(['a', 'b'])

Namespace(foo=['a', 'b'])

>>> parser.parse_args([])

usage: PROG [-h] foo [foo ...]

PROG: error: the following arguments are required: foo

If the nargs keyword argument is not provided, the number of arguments consumed is determined by the action.
Generally this means a single command-line argument will be consumed and a single item (not a list) will be produced.
Actions that do not consume command-line arguments (e.g. 'store_const') set nargs=0.

const

The const argument of add_argument() is used to hold constant values that are not read from the command line
but are required for the various ArgumentParser actions. The two most common uses of it are:

• When add_argument() is called with action='store_const' or action='append_const'. These
actions add the const value to one of the attributes of the object returned by parse_args(). See the action
description for examples. If const is not provided to add_argument(), it will receive a default value of
None.

• When add_argument() is called with option strings (like -f or --foo) and nargs='?'. This creates an
optional argument that can be followed by zero or one command-line arguments. When parsing the command
line, if the option string is encountered with no command-line argument following it, the value of const will
be assumed to be None instead. See the nargs description for examples.

Changed in version 3.11: const=None by default, including when action='append_const' or
action='store_const'.

default

All optional arguments and some positional arguments may be omitted at the command line. The default keyword
argument of add_argument(), whose value defaults to None, specifies what value should be used if the command-
line argument is not present. For optional arguments, the default value is used when the option string was not
present at the command line:

17.1. argparse— Parser for command-line options, arguments and subcommands 845

The Python Library Reference, Release 3.13.1

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', default=42)

>>> parser.parse_args(['--foo', '2'])

Namespace(foo='2')

>>> parser.parse_args([])

Namespace(foo=42)

If the target namespace already has an attribute set, the action default will not overwrite it:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', default=42)

>>> parser.parse_args([], namespace=argparse.Namespace(foo=101))

Namespace(foo=101)

If the default value is a string, the parser parses the value as if it were a command-line argument. In particular,
the parser applies any type conversion argument, if provided, before setting the attribute on the Namespace return
value. Otherwise, the parser uses the value as is:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--length', default='10', type=int)

>>> parser.add_argument('--width', default=10.5, type=int)

>>> parser.parse_args()

Namespace(length=10, width=10.5)

For positional arguments with nargs equal to ? or *, the default value is used when no command-line argument
was present:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('foo', nargs='?', default=42)

>>> parser.parse_args(['a'])

Namespace(foo='a')

>>> parser.parse_args([])

Namespace(foo=42)

For required arguments, the default value is ignored. For example, this applies to positional arguments with nargs
values other than ? or *, or optional arguments marked as required=True.

Providing default=argparse.SUPPRESS causes no attribute to be added if the command-line argument was not
present:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', default=argparse.SUPPRESS)

>>> parser.parse_args([])

Namespace()

>>> parser.parse_args(['--foo', '1'])

Namespace(foo='1')

type

By default, the parser reads command-line arguments in as simple strings. However, quite often the command-
line string should instead be interpreted as another type, such as a float or int. The type keyword for
add_argument() allows any necessary type-checking and type conversions to be performed.

If the type keyword is used with the default keyword, the type converter is only applied if the default is a string.

The argument to type can be a callable that accepts a single string or the name of a registered type (see register())
If the function raises ArgumentTypeError, TypeError, or ValueError, the exception is caught and a nicely
formatted error message is displayed. Other exception types are not handled.

Common built-in types and functions can be used as type converters:

846 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

import argparse

import pathlib

parser = argparse.ArgumentParser()

parser.add_argument('count', type=int)

parser.add_argument('distance', type=float)

parser.add_argument('street', type=ascii)

parser.add_argument('code_point', type=ord)

parser.add_argument('dest_file', type=argparse.FileType('w', encoding='latin-1'))

parser.add_argument('datapath', type=pathlib.Path)

User defined functions can be used as well:

>>> def hyphenated(string):

... return '-'.join([word[:4] for word in string.casefold().split()])

...

>>> parser = argparse.ArgumentParser()

>>> _ = parser.add_argument('short_title', type=hyphenated)

>>> parser.parse_args(['"The Tale of Two Cities"'])

Namespace(short_title='"the-tale-of-two-citi')

The bool() function is not recommended as a type converter. All it does is convert empty strings to False and
non-empty strings to True. This is usually not what is desired.

In general, the type keyword is a convenience that should only be used for simple conversions that can only raise one
of the three supported exceptions. Anything with more interesting error-handling or resource management should
be done downstream after the arguments are parsed.

For example, JSON or YAML conversions have complex error cases that require better reporting than can be given
by the type keyword. A JSONDecodeError would not be well formatted and a FileNotFoundError exception
would not be handled at all.

Even FileType has its limitations for use with the type keyword. If one argument uses FileType and then a
subsequent argument fails, an error is reported but the file is not automatically closed. In this case, it would be better
to wait until after the parser has run and then use the with-statement to manage the files.

For type checkers that simply check against a fixed set of values, consider using the choices keyword instead.

choices

Some command-line arguments should be selected from a restricted set of values. These can be handled by passing a
sequence object as the choices keyword argument to add_argument(). When the command line is parsed, argument
values will be checked, and an error message will be displayed if the argument was not one of the acceptable values:

>>> parser = argparse.ArgumentParser(prog='game.py')

>>> parser.add_argument('move', choices=['rock', 'paper', 'scissors'])

>>> parser.parse_args(['rock'])

Namespace(move='rock')

>>> parser.parse_args(['fire'])

usage: game.py [-h] {rock,paper,scissors}

game.py: error: argument move: invalid choice: 'fire' (choose from 'rock',

'paper', 'scissors')

Note that inclusion in the choices sequence is checked after any type conversions have been performed, so the type
of the objects in the choices sequence should match the type specified.

Any sequence can be passed as the choices value, so list objects, tuple objects, and custom sequences are all
supported.

Use of enum.Enum is not recommended because it is difficult to control its appearance in usage, help, and error
messages.

17.1. argparse— Parser for command-line options, arguments and subcommands 847

The Python Library Reference, Release 3.13.1

Formatted choices override the default metavar which is normally derived from dest. This is usually what you want
because the user never sees the dest parameter. If this display isn’t desirable (perhaps because there aremany choices),
just specify an explicit metavar.

required

In general, the argparse module assumes that flags like -f and --bar indicate optional arguments, which can
always be omitted at the command line. To make an option required, True can be specified for the required=
keyword argument to add_argument():

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', required=True)

>>> parser.parse_args(['--foo', 'BAR'])

Namespace(foo='BAR')

>>> parser.parse_args([])

usage: [-h] --foo FOO

: error: the following arguments are required: --foo

As the example shows, if an option is marked as required, parse_args() will report an error if that option is
not present at the command line.

Note

Required options are generally considered bad form because users expect options to be optional, and thus they
should be avoided when possible.

help

The help value is a string containing a brief description of the argument. When a user requests help (usually by
using -h or --help at the command line), these help descriptions will be displayed with each argument.

The help strings can include various format specifiers to avoid repetition of things like the program name or the
argument default. The available specifiers include the program name, %(prog)s and most keyword arguments to
add_argument(), e.g. %(default)s, %(type)s, etc.:

>>> parser = argparse.ArgumentParser(prog='frobble')

>>> parser.add_argument('bar', nargs='?', type=int, default=42,

... help='the bar to %(prog)s (default: %(default)s)')

>>> parser.print_help()

usage: frobble [-h] [bar]

positional arguments:

bar the bar to frobble (default: 42)

options:

-h, --help show this help message and exit

As the help string supports %-formatting, if you want a literal % to appear in the help string, you must escape it as
%%.

argparse supports silencing the help entry for certain options, by setting the help value to argparse.SUPPRESS:

>>> parser = argparse.ArgumentParser(prog='frobble')

>>> parser.add_argument('--foo', help=argparse.SUPPRESS)

>>> parser.print_help()

usage: frobble [-h]

options:

-h, --help show this help message and exit

848 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

metavar

When ArgumentParser generates help messages, it needs some way to refer to each expected argument. By default,
ArgumentParser objects use the dest value as the “name” of each object. By default, for positional argument actions,
the dest value is used directly, and for optional argument actions, the dest value is uppercased. So, a single positional
argument with dest='bar' will be referred to as bar. A single optional argument --foo that should be followed
by a single command-line argument will be referred to as FOO. An example:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo')

>>> parser.add_argument('bar')

>>> parser.parse_args('X --foo Y'.split())

Namespace(bar='X', foo='Y')

>>> parser.print_help()

usage: [-h] [--foo FOO] bar

positional arguments:

bar

options:

-h, --help show this help message and exit

--foo FOO

An alternative name can be specified with metavar:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', metavar='YYY')

>>> parser.add_argument('bar', metavar='XXX')

>>> parser.parse_args('X --foo Y'.split())

Namespace(bar='X', foo='Y')

>>> parser.print_help()

usage: [-h] [--foo YYY] XXX

positional arguments:

XXX

options:

-h, --help show this help message and exit

--foo YYY

Note that metavar only changes the displayed name - the name of the attribute on the parse_args() object is still
determined by the dest value.

Different values of nargs may cause the metavar to be used multiple times. Providing a tuple to metavar specifies
a different display for each of the arguments:

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> parser.add_argument('-x', nargs=2)

>>> parser.add_argument('--foo', nargs=2, metavar=('bar', 'baz'))

>>> parser.print_help()

usage: PROG [-h] [-x X X] [--foo bar baz]

options:

-h, --help show this help message and exit

-x X X

--foo bar baz

17.1. argparse— Parser for command-line options, arguments and subcommands 849

The Python Library Reference, Release 3.13.1

dest

Most ArgumentParser actions add some value as an attribute of the object returned by parse_args(). The
name of this attribute is determined by the dest keyword argument of add_argument(). For positional argument
actions, dest is normally supplied as the first argument to add_argument():

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('bar')

>>> parser.parse_args(['XXX'])

Namespace(bar='XXX')

For optional argument actions, the value of dest is normally inferred from the option strings. ArgumentParser
generates the value of dest by taking the first long option string and stripping away the initial -- string. If no long
option strings were supplied, destwill be derived from the first short option string by stripping the initial - character.
Any internal - characters will be converted to _ characters to make sure the string is a valid attribute name. The
examples below illustrate this behavior:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('-f', '--foo-bar', '--foo')

>>> parser.add_argument('-x', '-y')

>>> parser.parse_args('-f 1 -x 2'.split())

Namespace(foo_bar='1', x='2')

>>> parser.parse_args('--foo 1 -y 2'.split())

Namespace(foo_bar='1', x='2')

dest allows a custom attribute name to be provided:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', dest='bar')

>>> parser.parse_args('--foo XXX'.split())

Namespace(bar='XXX')

deprecated

During a project’s lifetime, some arguments may need to be removed from the command line. Before removing
them, you should inform your users that the arguments are deprecated and will be removed. The deprecated
keyword argument of add_argument(), which defaults to False, specifies if the argument is deprecated and will
be removed in the future. For arguments, if deprecated is True, then a warning will be printed to sys.stderr
when the argument is used:

>>> import argparse

>>> parser = argparse.ArgumentParser(prog='snake.py')

>>> parser.add_argument('--legs', default=0, type=int, deprecated=True)

>>> parser.parse_args([])

Namespace(legs=0)

>>> parser.parse_args(['--legs', '4'])

snake.py: warning: option '--legs' is deprecated

Namespace(legs=4)

Added in version 3.13.

Action classes

Action classes implement the Action API, a callable which returns a callable which processes arguments from the
command-line. Any object which follows this API may be passed as the action parameter to add_argument().

class argparse.Action(option_strings, dest, nargs=None, const=None, default=None, type=None,
choices=None, required=False, help=None, metavar=None)

Action objects are used by an ArgumentParser to represent the information needed to parse a single argu-
ment from one or more strings from the command line. The Action class must accept the two positional argu-

850 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

ments plus any keyword arguments passed to ArgumentParser.add_argument() except for the action
itself.

Instances of Action (or return value of any callable to the action parameter) should have attributes dest,
option_strings, default, type, required, help, etc. defined. The easiest way to ensure these at-
tributes are defined is to call Action.__init__().

__call__(parser, namespace, values, option_string=None)
Action instances should be callable, so subclasses must override the __call__()method, which should
accept four parameters:

• parser - The ArgumentParser object which contains this action.

• namespace - The Namespace object that will be returned by parse_args(). Most actions add an
attribute to this object using setattr().

• values - The associated command-line arguments, with any type conversions applied. Type conver-
sions are specified with the type keyword argument to add_argument().

• option_string - The option string that was used to invoke this action. The option_string argument
is optional, and will be absent if the action is associated with a positional argument.

The __call__() method may perform arbitrary actions, but will typically set attributes on the
namespace based on dest and values.

format_usage()

Action subclasses can define a format_usage() method that takes no argument and return a string
which will be used when printing the usage of the program. If such method is not provided, a sensible
default will be used.

17.1.3 The parse_args() method

ArgumentParser.parse_args(args=None, namespace=None)
Convert argument strings to objects and assign them as attributes of the namespace. Return the populated
namespace.

Previous calls to add_argument() determine exactly what objects are created and how they are assigned.
See the documentation for add_argument() for details.

• args - List of strings to parse. The default is taken from sys.argv.

• namespace - An object to take the attributes. The default is a new empty Namespace object.

Option value syntax

The parse_args() method supports several ways of specifying the value of an option (if it takes one). In the
simplest case, the option and its value are passed as two separate arguments:

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> parser.add_argument('-x')

>>> parser.add_argument('--foo')

>>> parser.parse_args(['-x', 'X'])

Namespace(foo=None, x='X')

>>> parser.parse_args(['--foo', 'FOO'])

Namespace(foo='FOO', x=None)

For long options (options with names longer than a single character), the option and value can also be passed as a
single command-line argument, using = to separate them:

>>> parser.parse_args(['--foo=FOO'])

Namespace(foo='FOO', x=None)

For short options (options only one character long), the option and its value can be concatenated:

17.1. argparse— Parser for command-line options, arguments and subcommands 851

The Python Library Reference, Release 3.13.1

>>> parser.parse_args(['-xX'])

Namespace(foo=None, x='X')

Several short options can be joined together, using only a single - prefix, as long as only the last option (or none of
them) requires a value:

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> parser.add_argument('-x', action='store_true')

>>> parser.add_argument('-y', action='store_true')

>>> parser.add_argument('-z')

>>> parser.parse_args(['-xyzZ'])

Namespace(x=True, y=True, z='Z')

Invalid arguments

While parsing the command line, parse_args() checks for a variety of errors, including ambiguous options, invalid
types, invalid options, wrong number of positional arguments, etc. When it encounters such an error, it exits and prints
the error along with a usage message:

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> parser.add_argument('--foo', type=int)

>>> parser.add_argument('bar', nargs='?')

>>> # invalid type

>>> parser.parse_args(['--foo', 'spam'])

usage: PROG [-h] [--foo FOO] [bar]

PROG: error: argument --foo: invalid int value: 'spam'

>>> # invalid option

>>> parser.parse_args(['--bar'])

usage: PROG [-h] [--foo FOO] [bar]

PROG: error: no such option: --bar

>>> # wrong number of arguments

>>> parser.parse_args(['spam', 'badger'])

usage: PROG [-h] [--foo FOO] [bar]

PROG: error: extra arguments found: badger

Arguments containing -

The parse_args()method attempts to give errors whenever the user has clearlymade amistake, but some situations
are inherently ambiguous. For example, the command-line argument -1 could either be an attempt to specify an
option or an attempt to provide a positional argument. The parse_args() method is cautious here: positional
arguments may only begin with - if they look like negative numbers and there are no options in the parser that look
like negative numbers:

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> parser.add_argument('-x')

>>> parser.add_argument('foo', nargs='?')

>>> # no negative number options, so -1 is a positional argument

>>> parser.parse_args(['-x', '-1'])

Namespace(foo=None, x='-1')

>>> # no negative number options, so -1 and -5 are positional arguments

>>> parser.parse_args(['-x', '-1', '-5'])

Namespace(foo='-5', x='-1')

(continues on next page)

852 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> parser.add_argument('-1', dest='one')

>>> parser.add_argument('foo', nargs='?')

>>> # negative number options present, so -1 is an option

>>> parser.parse_args(['-1', 'X'])

Namespace(foo=None, one='X')

>>> # negative number options present, so -2 is an option

>>> parser.parse_args(['-2'])

usage: PROG [-h] [-1 ONE] [foo]

PROG: error: no such option: -2

>>> # negative number options present, so both -1s are options

>>> parser.parse_args(['-1', '-1'])

usage: PROG [-h] [-1 ONE] [foo]

PROG: error: argument -1: expected one argument

If you have positional arguments that must begin with - and don’t look like negative numbers, you can insert the
pseudo-argument '--' which tells parse_args() that everything after that is a positional argument:

>>> parser.parse_args(['--', '-f'])

Namespace(foo='-f', one=None)

See also the argparse howto on ambiguous arguments for more details.

Argument abbreviations (prefix matching)

The parse_args() method by default allows long options to be abbreviated to a prefix, if the abbreviation is
unambiguous (the prefix matches a unique option):

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> parser.add_argument('-bacon')

>>> parser.add_argument('-badger')

>>> parser.parse_args('-bac MMM'.split())

Namespace(bacon='MMM', badger=None)

>>> parser.parse_args('-bad WOOD'.split())

Namespace(bacon=None, badger='WOOD')

>>> parser.parse_args('-ba BA'.split())

usage: PROG [-h] [-bacon BACON] [-badger BADGER]

PROG: error: ambiguous option: -ba could match -badger, -bacon

An error is produced for arguments that could produce more than one options. This feature can be disabled by setting
allow_abbrev to False.

Beyond sys.argv

Sometimes it may be useful to have an ArgumentParser parse arguments other than those of sys.argv. This can
be accomplished by passing a list of strings to parse_args(). This is useful for testing at the interactive prompt:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument(

... 'integers', metavar='int', type=int, choices=range(10),

... nargs='+', help='an integer in the range 0..9')

>>> parser.add_argument(

... '--sum', dest='accumulate', action='store_const', const=sum,

(continues on next page)

17.1. argparse— Parser for command-line options, arguments and subcommands 853

The Python Library Reference, Release 3.13.1

(continued from previous page)

... default=max, help='sum the integers (default: find the max)')

>>> parser.parse_args(['1', '2', '3', '4'])

Namespace(accumulate=<built-in function max>, integers=[1, 2, 3, 4])

>>> parser.parse_args(['1', '2', '3', '4', '--sum'])

Namespace(accumulate=<built-in function sum>, integers=[1, 2, 3, 4])

The Namespace object

class argparse.Namespace

Simple class used by default by parse_args() to create an object holding attributes and return it.

This class is deliberately simple, just an object subclass with a readable string representation. If you prefer
to have dict-like view of the attributes, you can use the standard Python idiom, vars():

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo')

>>> args = parser.parse_args(['--foo', 'BAR'])

>>> vars(args)

{'foo': 'BAR'}

It may also be useful to have an ArgumentParser assign attributes to an already existing object, rather than
a new Namespace object. This can be achieved by specifying the namespace= keyword argument:

>>> class C:

... pass

...

>>> c = C()

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo')

>>> parser.parse_args(args=['--foo', 'BAR'], namespace=c)

>>> c.foo

'BAR'

17.1.4 Other utilities

Sub-commands

ArgumentParser.add_subparsers(*[, title][, description][, prog][, parser_class][, action][, dest][,
required][, help][, metavar])

Many programs split up their functionality into a number of subcommands, for example, the svn program can
invoke subcommands like svn checkout, svn update, and svn commit. Splitting up functionality this
way can be a particularly good idea when a program performs several different functions which require different
kinds of command-line arguments. ArgumentParser supports the creation of such subcommands with the
add_subparsers() method. The add_subparsers() method is normally called with no arguments and
returns a special action object. This object has a single method, add_parser(), which takes a command
name and any ArgumentParser constructor arguments, and returns an ArgumentParser object that can be
modified as usual.

Description of parameters:

• title - title for the sub-parser group in help output; by default “subcommands” if description is provided,
otherwise uses title for positional arguments

• description - description for the sub-parser group in help output, by default None

• prog - usage information that will be displayed with sub-command help, by default the name of the
program and any positional arguments before the subparser argument

854 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

• parser_class - class which will be used to create sub-parser instances, by default the class of the current
parser (e.g. ArgumentParser)

• action - the basic type of action to be taken when this argument is encountered at the command line

• dest - name of the attribute under which sub-command name will be stored; by default None and no value
is stored

• required - Whether or not a subcommand must be provided, by default False (added in 3.7)

• help - help for sub-parser group in help output, by default None

• metavar - string presenting available subcommands in help; by default it is None and presents subcom-
mands in form {cmd1, cmd2, ..}

Some example usage:

>>> # create the top-level parser

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> parser.add_argument('--foo', action='store_true', help='foo help')

>>> subparsers = parser.add_subparsers(help='subcommand help')

>>>

>>> # create the parser for the "a" command

>>> parser_a = subparsers.add_parser('a', help='a help')

>>> parser_a.add_argument('bar', type=int, help='bar help')

>>>

>>> # create the parser for the "b" command

>>> parser_b = subparsers.add_parser('b', help='b help')

>>> parser_b.add_argument('--baz', choices=('X', 'Y', 'Z'), help='baz help')

>>>

>>> # parse some argument lists

>>> parser.parse_args(['a', '12'])

Namespace(bar=12, foo=False)

>>> parser.parse_args(['--foo', 'b', '--baz', 'Z'])

Namespace(baz='Z', foo=True)

Note that the object returned by parse_args() will only contain attributes for the main parser and the
subparser that was selected by the command line (and not any other subparsers). So in the example above,
when the a command is specified, only the foo and bar attributes are present, and when the b command is
specified, only the foo and baz attributes are present.

Similarly, when a help message is requested from a subparser, only the help for that particular parser will be
printed. The help message will not include parent parser or sibling parser messages. (A help message for each
subparser command, however, can be given by supplying the help= argument to add_parser() as above.)

>>> parser.parse_args(['--help'])

usage: PROG [-h] [--foo] {a,b} ...

positional arguments:

{a,b} subcommand help

a a help

b b help

options:

-h, --help show this help message and exit

--foo foo help

>>> parser.parse_args(['a', '--help'])

usage: PROG a [-h] bar

positional arguments:

(continues on next page)

17.1. argparse— Parser for command-line options, arguments and subcommands 855

The Python Library Reference, Release 3.13.1

(continued from previous page)

bar bar help

options:

-h, --help show this help message and exit

>>> parser.parse_args(['b', '--help'])

usage: PROG b [-h] [--baz {X,Y,Z}]

options:

-h, --help show this help message and exit

--baz {X,Y,Z} baz help

The add_subparsers()method also supports title and description keyword arguments. When either
is present, the subparser’s commands will appear in their own group in the help output. For example:

>>> parser = argparse.ArgumentParser()

>>> subparsers = parser.add_subparsers(title='subcommands',

... description='valid subcommands',

... help='additional help')

>>> subparsers.add_parser('foo')

>>> subparsers.add_parser('bar')

>>> parser.parse_args(['-h'])

usage: [-h] {foo,bar} ...

options:

-h, --help show this help message and exit

subcommands:

valid subcommands

{foo,bar} additional help

Furthermore, add_parser() supports an additional aliases argument, which allows multiple strings to refer
to the same subparser. This example, like svn, aliases co as a shorthand for checkout:

>>> parser = argparse.ArgumentParser()

>>> subparsers = parser.add_subparsers()

>>> checkout = subparsers.add_parser('checkout', aliases=['co'])

>>> checkout.add_argument('foo')

>>> parser.parse_args(['co', 'bar'])

Namespace(foo='bar')

add_parser() supports also an additional deprecated argument, which allows to deprecate the subparser.

>>> import argparse

>>> parser = argparse.ArgumentParser(prog='chicken.py')

>>> subparsers = parser.add_subparsers()

>>> run = subparsers.add_parser('run')

>>> fly = subparsers.add_parser('fly', deprecated=True)

>>> parser.parse_args(['fly'])

chicken.py: warning: command 'fly' is deprecated

Namespace()

Added in version 3.13.

One particularly effective way of handling subcommands is to combine the use of the add_subparsers()
method with calls to set_defaults() so that each subparser knows which Python function it should execute.
For example:

856 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

>>> # subcommand functions

>>> def foo(args):

... print(args.x * args.y)

...

>>> def bar(args):

... print('((%s))' % args.z)

...

>>> # create the top-level parser

>>> parser = argparse.ArgumentParser()

>>> subparsers = parser.add_subparsers(required=True)

>>>

>>> # create the parser for the "foo" command

>>> parser_foo = subparsers.add_parser('foo')

>>> parser_foo.add_argument('-x', type=int, default=1)

>>> parser_foo.add_argument('y', type=float)

>>> parser_foo.set_defaults(func=foo)

>>>

>>> # create the parser for the "bar" command

>>> parser_bar = subparsers.add_parser('bar')

>>> parser_bar.add_argument('z')

>>> parser_bar.set_defaults(func=bar)

>>>

>>> # parse the args and call whatever function was selected

>>> args = parser.parse_args('foo 1 -x 2'.split())

>>> args.func(args)

2.0

>>>

>>> # parse the args and call whatever function was selected

>>> args = parser.parse_args('bar XYZYX'.split())

>>> args.func(args)

((XYZYX))

This way, you can let parse_args() do the job of calling the appropriate function after argument parsing is
complete. Associating functions with actions like this is typically the easiest way to handle the different actions
for each of your subparsers. However, if it is necessary to check the name of the subparser that was invoked,
the dest keyword argument to the add_subparsers() call will work:

>>> parser = argparse.ArgumentParser()

>>> subparsers = parser.add_subparsers(dest='subparser_name')

>>> subparser1 = subparsers.add_parser('1')

>>> subparser1.add_argument('-x')

>>> subparser2 = subparsers.add_parser('2')

>>> subparser2.add_argument('y')

>>> parser.parse_args(['2', 'frobble'])

Namespace(subparser_name='2', y='frobble')

Changed in version 3.7: New required keyword-only parameter.

FileType objects

class argparse.FileType(mode=’r’, bufsize=-1, encoding=None, errors=None)
The FileType factory creates objects that can be passed to the type argument of ArgumentParser.
add_argument(). Arguments that have FileType objects as their type will open command-line arguments
as files with the requested modes, buffer sizes, encodings and error handling (see the open() function for
more details):

17.1. argparse— Parser for command-line options, arguments and subcommands 857

The Python Library Reference, Release 3.13.1

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--raw', type=argparse.FileType('wb', 0))

>>> parser.add_argument('out', type=argparse.FileType('w', encoding='UTF-8'))

>>> parser.parse_args(['--raw', 'raw.dat', 'file.txt'])

Namespace(out=<_io.TextIOWrapper name='file.txt' mode='w' encoding='UTF-8'>,␣

↪→raw=<_io.FileIO name='raw.dat' mode='wb'>)

FileType objects understand the pseudo-argument '-' and automatically convert this into sys.stdin for
readable FileType objects and sys.stdout for writable FileType objects:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('infile', type=argparse.FileType('r'))

>>> parser.parse_args(['-'])

Namespace(infile=<_io.TextIOWrapper name='<stdin>' encoding='UTF-8'>)

Changed in version 3.4: Added the encodings and errors parameters.

Argument groups

ArgumentParser.add_argument_group(title=None, description=None, *[, argument_default][,
conflict_handler])

By default, ArgumentParser groups command-line arguments into “positional arguments” and “options”
when displaying help messages. When there is a better conceptual grouping of arguments than this default
one, appropriate groups can be created using the add_argument_group() method:

>>> parser = argparse.ArgumentParser(prog='PROG', add_help=False)

>>> group = parser.add_argument_group('group')

>>> group.add_argument('--foo', help='foo help')

>>> group.add_argument('bar', help='bar help')

>>> parser.print_help()

usage: PROG [--foo FOO] bar

group:

bar bar help

--foo FOO foo help

The add_argument_group() method returns an argument group object which has an add_argument()
method just like a regular ArgumentParser. When an argument is added to the group, the parser treats
it just like a normal argument, but displays the argument in a separate group for help messages. The
add_argument_group() method accepts title and description arguments which can be used to customize
this display:

>>> parser = argparse.ArgumentParser(prog='PROG', add_help=False)

>>> group1 = parser.add_argument_group('group1', 'group1 description')

>>> group1.add_argument('foo', help='foo help')

>>> group2 = parser.add_argument_group('group2', 'group2 description')

>>> group2.add_argument('--bar', help='bar help')

>>> parser.print_help()

usage: PROG [--bar BAR] foo

group1:

group1 description

foo foo help

group2:

group2 description

(continues on next page)

858 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

(continued from previous page)

--bar BAR bar help

The optional, keyword-only parameters argument_default and conflict_handler allow for finer-grained control
of the behavior of the argument group. These parameters have the same meaning as in the ArgumentParser
constructor, but apply specifically to the argument group rather than the entire parser.

Note that any arguments not in your user-defined groups will end up back in the usual “positional arguments”
and “optional arguments” sections.

Changed in version 3.11: Calling add_argument_group() on an argument group is deprecated. This feature
was never supported and does not always work correctly. The function exists on the API by accident through
inheritance and will be removed in the future.

Mutual exclusion

ArgumentParser.add_mutually_exclusive_group(required=False)
Create a mutually exclusive group. argparse will make sure that only one of the arguments in the mutually
exclusive group was present on the command line:

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> group = parser.add_mutually_exclusive_group()

>>> group.add_argument('--foo', action='store_true')

>>> group.add_argument('--bar', action='store_false')

>>> parser.parse_args(['--foo'])

Namespace(bar=True, foo=True)

>>> parser.parse_args(['--bar'])

Namespace(bar=False, foo=False)

>>> parser.parse_args(['--foo', '--bar'])

usage: PROG [-h] [--foo | --bar]

PROG: error: argument --bar: not allowed with argument --foo

The add_mutually_exclusive_group()method also accepts a required argument, to indicate that at least
one of the mutually exclusive arguments is required:

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> group = parser.add_mutually_exclusive_group(required=True)

>>> group.add_argument('--foo', action='store_true')

>>> group.add_argument('--bar', action='store_false')

>>> parser.parse_args([])

usage: PROG [-h] (--foo | --bar)

PROG: error: one of the arguments --foo --bar is required

Note that currently mutually exclusive argument groups do not support the title and description arguments of
add_argument_group(). However, a mutually exclusive group can be added to an argument group that has
a title and description. For example:

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> group = parser.add_argument_group('Group title', 'Group description')

>>> exclusive_group = group.add_mutually_exclusive_group(required=True)

>>> exclusive_group.add_argument('--foo', help='foo help')

>>> exclusive_group.add_argument('--bar', help='bar help')

>>> parser.print_help()

usage: PROG [-h] (--foo FOO | --bar BAR)

options:

-h, --help show this help message and exit

(continues on next page)

17.1. argparse— Parser for command-line options, arguments and subcommands 859

The Python Library Reference, Release 3.13.1

(continued from previous page)

Group title:

Group description

--foo FOO foo help

--bar BAR bar help

Changed in version 3.11: Calling add_argument_group() or add_mutually_exclusive_group() on a
mutually exclusive group is deprecated. These features were never supported and do not always work correctly.
The functions exist on the API by accident through inheritance and will be removed in the future.

Parser defaults

ArgumentParser.set_defaults(**kwargs)
Most of the time, the attributes of the object returned by parse_args()will be fully determined by inspecting
the command-line arguments and the argument actions. set_defaults() allows some additional attributes
that are determined without any inspection of the command line to be added:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('foo', type=int)

>>> parser.set_defaults(bar=42, baz='badger')

>>> parser.parse_args(['736'])

Namespace(bar=42, baz='badger', foo=736)

Note that parser-level defaults always override argument-level defaults:

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', default='bar')

>>> parser.set_defaults(foo='spam')

>>> parser.parse_args([])

Namespace(foo='spam')

Parser-level defaults can be particularly useful when working with multiple parsers. See the
add_subparsers() method for an example of this type.

ArgumentParser.get_default(dest)
Get the default value for a namespace attribute, as set by either add_argument() or by set_defaults():

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', default='badger')

>>> parser.get_default('foo')

'badger'

Printing help

In most typical applications, parse_args() will take care of formatting and printing any usage or error messages.
However, several formatting methods are available:

ArgumentParser.print_usage(file=None)
Print a brief description of how the ArgumentParser should be invoked on the command line. If file is
None, sys.stdout is assumed.

ArgumentParser.print_help(file=None)

Print a help message, including the program usage and information about the arguments registered with the
ArgumentParser. If file is None, sys.stdout is assumed.

There are also variants of these methods that simply return a string instead of printing it:

860 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

ArgumentParser.format_usage()

Return a string containing a brief description of how the ArgumentParser should be invoked on the command
line.

ArgumentParser.format_help()

Return a string containing a help message, including the program usage and information about the arguments
registered with the ArgumentParser.

Partial parsing

ArgumentParser.parse_known_args(args=None, namespace=None)

Sometimes a script may only parse a few of the command-line arguments, passing the remaining arguments
on to another script or program. In these cases, the parse_known_args() method can be useful. It works
much like parse_args() except that it does not produce an error when extra arguments are present. Instead,
it returns a two item tuple containing the populated namespace and the list of remaining argument strings.

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo', action='store_true')

>>> parser.add_argument('bar')

>>> parser.parse_known_args(['--foo', '--badger', 'BAR', 'spam'])

(Namespace(bar='BAR', foo=True), ['--badger', 'spam'])

Warning

Prefix matching rules apply to parse_known_args(). The parser may consume an option even if it’s just a
prefix of one of its known options, instead of leaving it in the remaining arguments list.

Customizing file parsing

ArgumentParser.convert_arg_line_to_args(arg_line)
Arguments that are read from a file (see the fromfile_prefix_chars keyword argument to the ArgumentParser
constructor) are read one argument per line. convert_arg_line_to_args() can be overridden for fancier
reading.

This method takes a single argument arg_line which is a string read from the argument file. It returns a list of
arguments parsed from this string. The method is called once per line read from the argument file, in order.

A useful override of this method is one that treats each space-separated word as an argument. The following
example demonstrates how to do this:

class MyArgumentParser(argparse.ArgumentParser):

def convert_arg_line_to_args(self, arg_line):

return arg_line.split()

Exiting methods

ArgumentParser.exit(status=0, message=None)

This method terminates the program, exiting with the specified status and, if given, it prints a message to
sys.stderr before that. The user can override this method to handle these steps differently:

class ErrorCatchingArgumentParser(argparse.ArgumentParser):

def exit(self, status=0, message=None):

if status:

raise Exception(f'Exiting because of an error: {message}')

exit(status)

17.1. argparse— Parser for command-line options, arguments and subcommands 861

The Python Library Reference, Release 3.13.1

ArgumentParser.error(message)
This method prints a usage message, including the message, to sys.stderr and terminates the program with
a status code of 2.

Intermixed parsing

ArgumentParser.parse_intermixed_args(args=None, namespace=None)

ArgumentParser.parse_known_intermixed_args(args=None, namespace=None)
A number of Unix commands allow the user to intermix optional arguments with positional arguments.
The parse_intermixed_args() and parse_known_intermixed_args() methods support this pars-
ing style.

These parsers do not support all the argparse features, and will raise exceptions if unsupported features are
used. In particular, subparsers, and mutually exclusive groups that include both optionals and positionals are
not supported.

The following example shows the difference between parse_known_args() and
parse_intermixed_args(): the former returns ['2', '3'] as unparsed arguments, while the
latter collects all the positionals into rest.

>>> parser = argparse.ArgumentParser()

>>> parser.add_argument('--foo')

>>> parser.add_argument('cmd')

>>> parser.add_argument('rest', nargs='*', type=int)

>>> parser.parse_known_args('doit 1 --foo bar 2 3'.split())

(Namespace(cmd='doit', foo='bar', rest=[1]), ['2', '3'])

>>> parser.parse_intermixed_args('doit 1 --foo bar 2 3'.split())

Namespace(cmd='doit', foo='bar', rest=[1, 2, 3])

parse_known_intermixed_args() returns a two item tuple containing the populated namespace and the
list of remaining argument strings. parse_intermixed_args() raises an error if there are any remaining
unparsed argument strings.

Added in version 3.7.

Registering custom types or actions

ArgumentParser.register(registry_name, value, object)
Sometimes it’s desirable to use a custom string in error messages to provide more user-friendly output. In these
cases, register() can be used to register custom actions or types with a parser and allow you to reference
the type by their registered name instead of their callable name.

The register()method accepts three arguments - a registry_name, specifying the internal registry where the
object will be stored (e.g., action, type), value, which is the key under which the object will be registered,
and object, the callable to be registered.

The following example shows how to register a custom type with a parser:

>>> import argparse

>>> parser = argparse.ArgumentParser()

>>> parser.register('type', 'hexadecimal integer', lambda s: int(s, 16))

>>> parser.add_argument('--foo', type='hexadecimal integer')

_StoreAction(option_strings=['--foo'], dest='foo', nargs=None, const=None,␣

↪→default=None, type='hexadecimal integer', choices=None, required=False,␣

↪→help=None, metavar=None, deprecated=False)

>>> parser.parse_args(['--foo', '0xFA'])

Namespace(foo=250)

>>> parser.parse_args(['--foo', '1.2'])

usage: PROG [-h] [--foo FOO]

PROG: error: argument --foo: invalid 'hexadecimal integer' value: '1.2'

862 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

17.1.5 Exceptions

exception argparse.ArgumentError

An error from creating or using an argument (optional or positional).

The string value of this exception is the message, augmented with information about the argument that caused
it.

exception argparse.ArgumentTypeError

Raised when something goes wrong converting a command line string to a type.

Guides and Tutorials

Argparse Tutorial

author
Tshepang Mbambo

This tutorial is intended to be a gentle introduction to argparse, the recommended command-line parsing module
in the Python standard library.

Note

The standard library includes two other libraries directly related to command-line parameter processing: the
lower level optparse module (which may require more code to configure for a given application, but also al-
lows an application to request behaviors that argparse doesn’t support), and the very low level getopt (which
specifically serves as an equivalent to the getopt() family of functions available to C programmers). While
neither of those modules is covered directly in this guide, many of the core concepts in argparse first originated
in optparse, so some aspects of this tutorial will also be relevant to optparse users.

Concepts

Let’s show the sort of functionality that we are going to explore in this introductory tutorial by making use of the ls
command:

$ ls

cpython devguide prog.py pypy rm-unused-function.patch

$ ls pypy

ctypes_configure demo dotviewer include lib_pypy lib-python ...

$ ls -l

total 20

drwxr-xr-x 19 wena wena 4096 Feb 18 18:51 cpython

drwxr-xr-x 4 wena wena 4096 Feb 8 12:04 devguide

-rwxr-xr-x 1 wena wena 535 Feb 19 00:05 prog.py

drwxr-xr-x 14 wena wena 4096 Feb 7 00:59 pypy

-rw-r--r-- 1 wena wena 741 Feb 18 01:01 rm-unused-function.patch

$ ls --help

Usage: ls [OPTION]... [FILE]...

List information about the FILEs (the current directory by default).

Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.

...

A few concepts we can learn from the four commands:

• The ls command is useful when run without any options at all. It defaults to displaying the contents of the
current directory.

• If we want beyond what it provides by default, we tell it a bit more. In this case, we want it to display a different
directory, pypy. What we did is specify what is known as a positional argument. It’s named so because the
program should know what to do with the value, solely based on where it appears on the command line. This

17.1. argparse— Parser for command-line options, arguments and subcommands 863

The Python Library Reference, Release 3.13.1

concept is more relevant to a command like cp, whose most basic usage is cp SRC DEST. The first position
is what you want copied, and the second position is where you want it copied to.

• Now, say we want to change behaviour of the program. In our example, we display more info for each file
instead of just showing the file names. The -l in that case is known as an optional argument.

• That’s a snippet of the help text. It’s very useful in that you can come across a program you have never used
before, and can figure out how it works simply by reading its help text.

The basics

Let us start with a very simple example which does (almost) nothing:

import argparse

parser = argparse.ArgumentParser()

parser.parse_args()

Following is a result of running the code:

$ python prog.py

$ python prog.py --help

usage: prog.py [-h]

options:

-h, --help show this help message and exit

$ python prog.py --verbose

usage: prog.py [-h]

prog.py: error: unrecognized arguments: --verbose

$ python prog.py foo

usage: prog.py [-h]

prog.py: error: unrecognized arguments: foo

Here is what is happening:

• Running the script without any options results in nothing displayed to stdout. Not so useful.

• The second one starts to display the usefulness of the argparse module. We have done almost nothing, but
already we get a nice help message.

• The --help option, which can also be shortened to -h, is the only option we get for free (i.e. no need to
specify it). Specifying anything else results in an error. But even then, we do get a useful usage message, also
for free.

Introducing Positional arguments

An example:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("echo")

args = parser.parse_args()

print(args.echo)

And running the code:

$ python prog.py

usage: prog.py [-h] echo

prog.py: error: the following arguments are required: echo

$ python prog.py --help

usage: prog.py [-h] echo

(continues on next page)

864 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

(continued from previous page)

positional arguments:

echo

options:

-h, --help show this help message and exit

$ python prog.py foo

foo

Here is what’s happening:

• We’ve added the add_argument() method, which is what we use to specify which command-line options
the program is willing to accept. In this case, I’ve named it echo so that it’s in line with its function.

• Calling our program now requires us to specify an option.

• The parse_args() method actually returns some data from the options specified, in this case, echo.

• The variable is some form of ‘magic’ that argparse performs for free (i.e. no need to specify which variable
that value is stored in). You will also notice that its name matches the string argument given to the method,
echo.

Note however that, although the help display looks nice and all, it currently is not as helpful as it can be. For example
we see that we got echo as a positional argument, but we don’t know what it does, other than by guessing or by
reading the source code. So, let’s make it a bit more useful:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("echo", help="echo the string you use here")

args = parser.parse_args()

print(args.echo)

And we get:

$ python prog.py -h

usage: prog.py [-h] echo

positional arguments:

echo echo the string you use here

options:

-h, --help show this help message and exit

Now, how about doing something even more useful:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("square", help="display a square of a given number")

args = parser.parse_args()

print(args.square**2)

Following is a result of running the code:

$ python prog.py 4

Traceback (most recent call last):

File "prog.py", line 5, in <module>

print(args.square**2)

TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'

That didn’t go so well. That’s because argparse treats the options we give it as strings, unless we tell it otherwise.
So, let’s tell argparse to treat that input as an integer:

17.1. argparse— Parser for command-line options, arguments and subcommands 865

The Python Library Reference, Release 3.13.1

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("square", help="display a square of a given number",

type=int)

args = parser.parse_args()

print(args.square**2)

Following is a result of running the code:

$ python prog.py 4

16

$ python prog.py four

usage: prog.py [-h] square

prog.py: error: argument square: invalid int value: 'four'

That went well. The program now even helpfully quits on bad illegal input before proceeding.

Introducing Optional arguments

So far we have been playing with positional arguments. Let us have a look on how to add optional ones:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("--verbosity", help="increase output verbosity")

args = parser.parse_args()

if args.verbosity:

print("verbosity turned on")

And the output:

$ python prog.py --verbosity 1

verbosity turned on

$ python prog.py

$ python prog.py --help

usage: prog.py [-h] [--verbosity VERBOSITY]

options:

-h, --help show this help message and exit

--verbosity VERBOSITY

increase output verbosity

$ python prog.py --verbosity

usage: prog.py [-h] [--verbosity VERBOSITY]

prog.py: error: argument --verbosity: expected one argument

Here is what is happening:

• The program is written so as to display something when --verbosity is specified and display nothing when
not.

• To show that the option is actually optional, there is no error when running the program without it. Note that
by default, if an optional argument isn’t used, the relevant variable, in this case args.verbosity, is given
None as a value, which is the reason it fails the truth test of the if statement.

• The help message is a bit different.

• When using the --verbosity option, one must also specify some value, any value.

The above example accepts arbitrary integer values for --verbosity, but for our simple program, only two values
are actually useful, True or False. Let’s modify the code accordingly:

866 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("--verbose", help="increase output verbosity",

action="store_true")

args = parser.parse_args()

if args.verbose:

print("verbosity turned on")

And the output:

$ python prog.py --verbose

verbosity turned on

$ python prog.py --verbose 1

usage: prog.py [-h] [--verbose]

prog.py: error: unrecognized arguments: 1

$ python prog.py --help

usage: prog.py [-h] [--verbose]

options:

-h, --help show this help message and exit

--verbose increase output verbosity

Here is what is happening:

• The option is nowmore of a flag than something that requires a value. We even changed the name of the option
to match that idea. Note that we now specify a new keyword, action, and give it the value "store_true".
This means that, if the option is specified, assign the value True to args.verbose. Not specifying it implies
False.

• It complains when you specify a value, in true spirit of what flags actually are.

• Notice the different help text.

Short options

If you are familiar with command line usage, you will notice that I haven’t yet touched on the topic of short versions
of the options. It’s quite simple:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("-v", "--verbose", help="increase output verbosity",

action="store_true")

args = parser.parse_args()

if args.verbose:

print("verbosity turned on")

And here goes:

$ python prog.py -v

verbosity turned on

$ python prog.py --help

usage: prog.py [-h] [-v]

options:

-h, --help show this help message and exit

-v, --verbose increase output verbosity

Note that the new ability is also reflected in the help text.

17.1. argparse— Parser for command-line options, arguments and subcommands 867

The Python Library Reference, Release 3.13.1

Combining Positional and Optional arguments

Our program keeps growing in complexity:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("square", type=int,

help="display a square of a given number")

parser.add_argument("-v", "--verbose", action="store_true",

help="increase output verbosity")

args = parser.parse_args()

answer = args.square**2

if args.verbose:

print(f"the square of {args.square} equals {answer}")

else:

print(answer)

And now the output:

$ python prog.py

usage: prog.py [-h] [-v] square

prog.py: error: the following arguments are required: square

$ python prog.py 4

16

$ python prog.py 4 --verbose

the square of 4 equals 16

$ python prog.py --verbose 4

the square of 4 equals 16

• We’ve brought back a positional argument, hence the complaint.

• Note that the order does not matter.

How about we give this program of ours back the ability to have multiple verbosity values, and actually get to use
them:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("square", type=int,

help="display a square of a given number")

parser.add_argument("-v", "--verbosity", type=int,

help="increase output verbosity")

args = parser.parse_args()

answer = args.square**2

if args.verbosity == 2:

print(f"the square of {args.square} equals {answer}")

elif args.verbosity == 1:

print(f"{args.square}^2 == {answer}")

else:

print(answer)

And the output:

$ python prog.py 4

16

$ python prog.py 4 -v

usage: prog.py [-h] [-v VERBOSITY] square

prog.py: error: argument -v/--verbosity: expected one argument

$ python prog.py 4 -v 1

(continues on next page)

868 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

(continued from previous page)

4^2 == 16

$ python prog.py 4 -v 2

the square of 4 equals 16

$ python prog.py 4 -v 3

16

These all look good except the last one, which exposes a bug in our program. Let’s fix it by restricting the values the
--verbosity option can accept:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("square", type=int,

help="display a square of a given number")

parser.add_argument("-v", "--verbosity", type=int, choices=[0, 1, 2],

help="increase output verbosity")

args = parser.parse_args()

answer = args.square**2

if args.verbosity == 2:

print(f"the square of {args.square} equals {answer}")

elif args.verbosity == 1:

print(f"{args.square}^2 == {answer}")

else:

print(answer)

And the output:

$ python prog.py 4 -v 3

usage: prog.py [-h] [-v {0,1,2}] square

prog.py: error: argument -v/--verbosity: invalid choice: 3 (choose from 0, 1, 2)

$ python prog.py 4 -h

usage: prog.py [-h] [-v {0,1,2}] square

positional arguments:

square display a square of a given number

options:

-h, --help show this help message and exit

-v, --verbosity {0,1,2}

increase output verbosity

Note that the change also reflects both in the error message as well as the help string.

Now, let’s use a different approach of playing with verbosity, which is pretty common. It also matches the way the
CPython executable handles its own verbosity argument (check the output of python --help):

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("square", type=int,

help="display the square of a given number")

parser.add_argument("-v", "--verbosity", action="count",

help="increase output verbosity")

args = parser.parse_args()

answer = args.square**2

if args.verbosity == 2:

print(f"the square of {args.square} equals {answer}")

elif args.verbosity == 1:

print(f"{args.square}^2 == {answer}")

(continues on next page)

17.1. argparse— Parser for command-line options, arguments and subcommands 869

The Python Library Reference, Release 3.13.1

(continued from previous page)

else:

print(answer)

We have introduced another action, “count”, to count the number of occurrences of specific options.

$ python prog.py 4

16

$ python prog.py 4 -v

4^2 == 16

$ python prog.py 4 -vv

the square of 4 equals 16

$ python prog.py 4 --verbosity --verbosity

the square of 4 equals 16

$ python prog.py 4 -v 1

usage: prog.py [-h] [-v] square

prog.py: error: unrecognized arguments: 1

$ python prog.py 4 -h

usage: prog.py [-h] [-v] square

positional arguments:

square display a square of a given number

options:

-h, --help show this help message and exit

-v, --verbosity increase output verbosity

$ python prog.py 4 -vvv

16

• Yes, it’s now more of a flag (similar to action="store_true") in the previous version of our script. That
should explain the complaint.

• It also behaves similar to “store_true” action.

• Now here’s a demonstration of what the “count” action gives. You’ve probably seen this sort of usage before.

• And if you don’t specify the -v flag, that flag is considered to have None value.

• As should be expected, specifying the long form of the flag, we should get the same output.

• Sadly, our help output isn’t very informative on the new ability our script has acquired, but that can always be
fixed by improving the documentation for our script (e.g. via the help keyword argument).

• That last output exposes a bug in our program.

Let’s fix:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("square", type=int,

help="display a square of a given number")

parser.add_argument("-v", "--verbosity", action="count",

help="increase output verbosity")

args = parser.parse_args()

answer = args.square**2

bugfix: replace == with >=

if args.verbosity >= 2:

print(f"the square of {args.square} equals {answer}")

elif args.verbosity >= 1:

print(f"{args.square}^2 == {answer}")

(continues on next page)

870 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

(continued from previous page)

else:

print(answer)

And this is what it gives:

$ python prog.py 4 -vvv

the square of 4 equals 16

$ python prog.py 4 -vvvv

the square of 4 equals 16

$ python prog.py 4

Traceback (most recent call last):

File "prog.py", line 11, in <module>

if args.verbosity >= 2:

TypeError: '>=' not supported between instances of 'NoneType' and 'int'

• First output went well, and fixes the bug we had before. That is, we want any value >= 2 to be as verbose as
possible.

• Third output not so good.

Let’s fix that bug:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("square", type=int,

help="display a square of a given number")

parser.add_argument("-v", "--verbosity", action="count", default=0,

help="increase output verbosity")

args = parser.parse_args()

answer = args.square**2

if args.verbosity >= 2:

print(f"the square of {args.square} equals {answer}")

elif args.verbosity >= 1:

print(f"{args.square}^2 == {answer}")

else:

print(answer)

We’ve just introduced yet another keyword, default. We’ve set it to 0 in order to make it comparable to the other
int values. Remember that by default, if an optional argument isn’t specified, it gets the None value, and that cannot
be compared to an int value (hence the TypeError exception).

And:

$ python prog.py 4

16

You can go quite far just with what we’ve learned so far, and we have only scratched the surface. The argparse
module is very powerful, and we’ll explore a bit more of it before we end this tutorial.

Getting a little more advanced

What if we wanted to expand our tiny program to perform other powers, not just squares:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("x", type=int, help="the base")

parser.add_argument("y", type=int, help="the exponent")

parser.add_argument("-v", "--verbosity", action="count", default=0)

(continues on next page)

17.1. argparse— Parser for command-line options, arguments and subcommands 871

The Python Library Reference, Release 3.13.1

(continued from previous page)

args = parser.parse_args()

answer = args.x**args.y

if args.verbosity >= 2:

print(f"{args.x} to the power {args.y} equals {answer}")

elif args.verbosity >= 1:

print(f"{args.x}^{args.y} == {answer}")

else:

print(answer)

Output:

$ python prog.py

usage: prog.py [-h] [-v] x y

prog.py: error: the following arguments are required: x, y

$ python prog.py -h

usage: prog.py [-h] [-v] x y

positional arguments:

x the base

y the exponent

options:

-h, --help show this help message and exit

-v, --verbosity

$ python prog.py 4 2 -v

4^2 == 16

Notice that so far we’ve been using verbosity level to change the text that gets displayed. The following example
instead uses verbosity level to display more text instead:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("x", type=int, help="the base")

parser.add_argument("y", type=int, help="the exponent")

parser.add_argument("-v", "--verbosity", action="count", default=0)

args = parser.parse_args()

answer = args.x**args.y

if args.verbosity >= 2:

print(f"Running '{__file__}'")

if args.verbosity >= 1:

print(f"{args.x}^{args.y} == ", end="")

print(answer)

Output:

$ python prog.py 4 2

16

$ python prog.py 4 2 -v

4^2 == 16

$ python prog.py 4 2 -vv

Running 'prog.py'

4^2 == 16

872 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

Specifying ambiguous arguments

When there is ambiguity in deciding whether an argument is positional or for an argument, -- can be used to tell
parse_args() that everything after that is a positional argument:

>>> parser = argparse.ArgumentParser(prog='PROG')

>>> parser.add_argument('-n', nargs='+')

>>> parser.add_argument('args', nargs='*')

>>> # ambiguous, so parse_args assumes it's an option

>>> parser.parse_args(['-f'])

usage: PROG [-h] [-n N [N ...]] [args ...]

PROG: error: unrecognized arguments: -f

>>> parser.parse_args(['--', '-f'])

Namespace(args=['-f'], n=None)

>>> # ambiguous, so the -n option greedily accepts arguments

>>> parser.parse_args(['-n', '1', '2', '3'])

Namespace(args=[], n=['1', '2', '3'])

>>> parser.parse_args(['-n', '1', '--', '2', '3'])

Namespace(args=['2', '3'], n=['1'])

Conflicting options

So far, we have been working with two methods of an argparse.ArgumentParser instance. Let’s introduce a
third one, add_mutually_exclusive_group(). It allows for us to specify options that conflict with each other.
Let’s also change the rest of the program so that the new functionality makes more sense: we’ll introduce the --quiet
option, which will be the opposite of the --verbose one:

import argparse

parser = argparse.ArgumentParser()

group = parser.add_mutually_exclusive_group()

group.add_argument("-v", "--verbose", action="store_true")

group.add_argument("-q", "--quiet", action="store_true")

parser.add_argument("x", type=int, help="the base")

parser.add_argument("y", type=int, help="the exponent")

args = parser.parse_args()

answer = args.x**args.y

if args.quiet:

print(answer)

elif args.verbose:

print(f"{args.x} to the power {args.y} equals {answer}")

else:

print(f"{args.x}^{args.y} == {answer}")

Our program is now simpler, and we’ve lost some functionality for the sake of demonstration. Anyways, here’s the
output:

$ python prog.py 4 2

4^2 == 16

$ python prog.py 4 2 -q

16

$ python prog.py 4 2 -v

4 to the power 2 equals 16
(continues on next page)

17.1. argparse— Parser for command-line options, arguments and subcommands 873

The Python Library Reference, Release 3.13.1

(continued from previous page)

$ python prog.py 4 2 -vq

usage: prog.py [-h] [-v | -q] x y

prog.py: error: argument -q/--quiet: not allowed with argument -v/--verbose

$ python prog.py 4 2 -v --quiet

usage: prog.py [-h] [-v | -q] x y

prog.py: error: argument -q/--quiet: not allowed with argument -v/--verbose

That should be easy to follow. I’ve added that last output so you can see the sort of flexibility you get, i.e. mixing
long form options with short form ones.

Before we conclude, you probably want to tell your users the main purpose of your program, just in case they don’t
know:

import argparse

parser = argparse.ArgumentParser(description="calculate X to the power of Y")

group = parser.add_mutually_exclusive_group()

group.add_argument("-v", "--verbose", action="store_true")

group.add_argument("-q", "--quiet", action="store_true")

parser.add_argument("x", type=int, help="the base")

parser.add_argument("y", type=int, help="the exponent")

args = parser.parse_args()

answer = args.x**args.y

if args.quiet:

print(answer)

elif args.verbose:

print(f"{args.x} to the power {args.y} equals {answer}")

else:

print(f"{args.x}^{args.y} == {answer}")

Note that slight difference in the usage text. Note the [-v | -q], which tells us that we can either use -v or -q,
but not both at the same time:

$ python prog.py --help

usage: prog.py [-h] [-v | -q] x y

calculate X to the power of Y

positional arguments:

x the base

y the exponent

options:

-h, --help show this help message and exit

-v, --verbose

-q, --quiet

How to translate the argparse output

The output of the argparse module such as its help text and error messages are all made translatable using the
gettext module. This allows applications to easily localize messages produced by argparse. See also Interna-
tionalizing your programs and modules.

For instance, in this argparse output:

874 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

$ python prog.py --help

usage: prog.py [-h] [-v | -q] x y

calculate X to the power of Y

positional arguments:

x the base

y the exponent

options:

-h, --help show this help message and exit

-v, --verbose

-q, --quiet

The strings usage:, positional arguments:, options: and show this help message and exit are
all translatable.

In order to translate these strings, they must first be extracted into a .po file. For example, using Babel, run this
command:

$ pybabel extract -o messages.po /usr/lib/python3.12/argparse.py

This command will extract all translatable strings from the argparse module and output them into a file named
messages.po. This command assumes that your Python installation is in /usr/lib.

You can find out the location of the argparse module on your system using this script:

import argparse

print(argparse.__file__)

Once the messages in the .po file are translated and the translations are installed using gettext, argparse will be
able to display the translated messages.

To translate your own strings in the argparse output, use gettext.

Custom type converters

The argparsemodule allows you to specify custom type converters for your command-line arguments. This allows
you to modify user input before it’s stored in the argparse.Namespace. This can be useful when you need to
pre-process the input before it is used in your program.

When using a custom type converter, you can use any callable that takes a single string argument (the argument value)
and returns the converted value. However, if you need to handle more complex scenarios, you can use a custom action
class with the action parameter instead.

For example, let’s say you want to handle arguments with different prefixes and process them accordingly:

import argparse

parser = argparse.ArgumentParser(prefix_chars='-+')

parser.add_argument('-a', metavar='<value>', action='append',

type=lambda x: ('-', x))

parser.add_argument('+a', metavar='<value>', action='append',

type=lambda x: ('+', x))

args = parser.parse_args()

print(args)

Output:

17.1. argparse— Parser for command-line options, arguments and subcommands 875

https://babel.pocoo.org/

The Python Library Reference, Release 3.13.1

$ python prog.py -a value1 +a value2

Namespace(a=[('-', 'value1'), ('+', 'value2')])

In this example, we:

• Created a parser with custom prefix characters using the prefix_chars parameter.

• Defined two arguments, -a and +a, which used the type parameter to create custom type converters to store
the value in a tuple with the prefix.

Without the custom type converters, the arguments would have treated the -a and +a as the same argument, which
would have been undesirable. By using custom type converters, we were able to differentiate between the two argu-
ments.

Conclusion

The argparse module offers a lot more than shown here. Its docs are quite detailed and thorough, and full of
examples. Having gone through this tutorial, you should easily digest them without feeling overwhelmed.

Migrating optparse code to argparse

The argparsemodule offers several higher level features not natively provided by the optparsemodule, including:

• Handling positional arguments.

• Supporting subcommands.

• Allowing alternative option prefixes like + and /.

• Handling zero-or-more and one-or-more style arguments.

• Producing more informative usage messages.

• Providing a much simpler interface for custom type and action.

Originally, the argparse module attempted to maintain compatibility with optparse. However, the fundamental
design differences between supporting declarative command line option processing (while leaving positional argument
processing to application code), and supporting both named options and positional arguments in the declarative
interface mean that the API has diverged from that of optparse over time.

As described in Choosing an argument parsing library, applications that are currently using optparse and are happy
with the way it works can just continue to use optparse.

Application developers that are considering migrating should also review the list of intrinsic behavioural differences
described in that section before deciding whether or not migration is desirable.

For applications that do choose to migrate from optparse to argparse, the following suggestions should be helpful:

• Replace all optparse.OptionParser.add_option() calls with ArgumentParser.add_argument()
calls.

• Replace (options, args) = parser.parse_args() with args = parser.parse_args() and add
additional ArgumentParser.add_argument() calls for the positional arguments. Keep in mind that what
was previously called options, now in the argparse context is called args.

• Replace optparse.OptionParser.disable_interspersed_args() by using
parse_intermixed_args() instead of parse_args().

• Replace callback actions and the callback_* keyword arguments with type or action arguments.

• Replace string names for type keyword arguments with the corresponding type objects (e.g. int, float, complex,
etc).

• Replace optparse.Values with Namespace and optparse.OptionError and optparse.

OptionValueError with ArgumentError.

• Replace strings with implicit arguments such as %default or %prog with the standard Python syntax to use
dictionaries to format strings, that is, %(default)s and %(prog)s.

876 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

• Replace the OptionParser constructor version argument with a call to parser.

add_argument('--version', action='version', version='<the version>').

17.2 optparse— Parser for command line options

Source code: Lib/optparse.py

17.2.1 Choosing an argument parsing library

The standard library includes three argument parsing libraries:

• getopt: a module that closely mirrors the procedural C getopt API. Included in the standard library since
before the initial Python 1.0 release.

• optparse: a declarative replacement for getopt that provides equivalent functionality without requiring
each application to implement its own procedural option parsing logic. Included in the standard library since
the Python 2.3 release.

• argparse: a more opinionated alternative to optparse that provides more functionality by default, at the
expense of reduced application flexibility in controlling exactly how arguments are processed. Included in the
standard library since the Python 2.7 and Python 3.2 releases.

In the absence of more specific argument parsing design constraints, argparse is the recommended choice for im-
plementing command line applications, as it offers the highest level of baseline functionality with the least application
level code.

getopt is retained almost entirely for backwards compatibility reasons. However, it also serves a niche use case as
a tool for prototyping and testing command line argument handling in getopt-based C applications.

optparse should be considered as an alternative to argparse in the following cases:

• an application is already using optparse and doesn’t want to risk the subtle behavioural changes that may
arise when migrating to argparse

• the application requires additional control over the way options and positional parameters are interleaved on
the command line (including the ability to disable the interleaving feature completely)

• the application requires additional control over the incremental parsing of command line elements (while
argparse does support this, the exact way it works in practice is undesirable for some use cases)

• the application requires additional control over the handling of options which accept parameter values that may
start with - (such as delegated options to be passed to invoked subprocesses)

• the application requires some other command line parameter processing behavior which argparse does not
support, but which can be implemented in terms of the lower level interface offered by optparse

These considerations also mean that optparse is likely to provide a better foundation for library authors writing
third party command line argument processing libraries.

As a concrete example, consider the following two command line argument parsing configurations, the first using
optparse, and the second using argparse:

import optparse

if __name__ == '__main__':

parser = optparse.OptionParser()

parser.add_option('-o', '--output')

parser.add_option('-v', dest='verbose', action='store_true')

opts, args = parser.parse_args()

process(args, output=opts.output, verbose=opts.verbose)

17.2. optparse— Parser for command line options 877

https://github.com/python/cpython/tree/3.13/Lib/optparse.py

The Python Library Reference, Release 3.13.1

import argparse

if __name__ == '__main__':

parser = argparse.ArgumentParser()

parser.add_argument('-o', '--output')

parser.add_argument('-v', dest='verbose', action='store_true')

parser.add_argument('rest', nargs='*')

args = parser.parse_args()

process(args.rest, output=args.output, verbose=args.verbose)

The most obvious difference is that in the optparse version, the non-option arguments are processed separately by
the application after the option processing is complete. In the argparse version, positional arguments are declared
and processed in the same way as the named options.

However, the argparse version will also handle some parameter combination differently from the way the
optparse version would handle them. For example (amongst other differences):

• supplying -o -v gives output="-v" and verbose=False when using optparse, but a usage error with
argparse (complaining that no value has been supplied for -o/--output, since -v is interpreted as meaning
the verbosity flag)

• similarly, supplying -o -- gives output="--" and args=() when using optparse, but a usage error with
argparse (also complaining that no value has been supplied for -o/--output, since -- is interpreted as
terminating the option processing and treating all remaining values as positional arguments)

• supplying -o=foo gives output="=foo" when using optparse, but gives output="foo" with argparse
(since = is special cased as an alternative separator for option parameter values)

Whether these differing behaviors in the argparse version are considered desirable or a problem will depend on the
specific command line application use case.

See also

click is a third party argument processing library (originally based on optparse), which allows command line
applications to be developed as a set of decorated command implementation functions.

Other third party libraries, such as typer or msgspec-click, allow command line interfaces to be specified in ways
that more effectively integrate with static checking of Python type annotations.

17.2.2 Introduction

optparse is a more convenient, flexible, and powerful library for parsing command-line options than the minimalist
getopt module. optparse uses a more declarative style of command-line parsing: you create an instance of
OptionParser, populate it with options, and parse the command line. optparse allows users to specify options
in the conventional GNU/POSIX syntax, and additionally generates usage and help messages for you.

Here’s an example of using optparse in a simple script:

from optparse import OptionParser

...

parser = OptionParser()

parser.add_option("-f", "--file", dest="filename",

help="write report to FILE", metavar="FILE")

parser.add_option("-q", "--quiet",

action="store_false", dest="verbose", default=True,

help="don't print status messages to stdout")

(options, args) = parser.parse_args()

With these few lines of code, users of your script can now do the “usual thing” on the command-line, for example:

878 Chapter 17. Command Line Interface Libraries

https://pypi.org/project/click/
https://pypi.org/project/typer/
https://pypi.org/project/msgspec-click/

The Python Library Reference, Release 3.13.1

<yourscript> --file=outfile -q

As it parses the command line, optparse sets attributes of the options object returned by parse_args() based
on user-supplied command-line values. When parse_args() returns from parsing this command line, options.
filename will be "outfile" and options.verbose will be False. optparse supports both long and short
options, allows short options to be merged together, and allows options to be associated with their arguments in a
variety of ways. Thus, the following command lines are all equivalent to the above example:

<yourscript> -f outfile --quiet

<yourscript> --quiet --file outfile

<yourscript> -q -foutfile

<yourscript> -qfoutfile

Additionally, users can run one of the following

<yourscript> -h

<yourscript> --help

and optparse will print out a brief summary of your script’s options:

Usage: <yourscript> [options]

Options:

-h, --help show this help message and exit

-f FILE, --file=FILE write report to FILE

-q, --quiet don't print status messages to stdout

where the value of yourscript is determined at runtime (normally from sys.argv[0]).

17.2.3 Background

optparse was explicitly designed to encourage the creation of programs with straightforward command-line inter-
faces that follow the conventions established by the getopt() family of functions available to C developers. To that
end, it supports only the most common command-line syntax and semantics conventionally used under Unix. If you
are unfamiliar with these conventions, reading this section will allow you to acquaint yourself with them.

Terminology

argument
a string entered on the command-line, and passed by the shell to execl() or execv(). In Python, arguments
are elements of sys.argv[1:] (sys.argv[0] is the name of the program being executed). Unix shells also
use the term “word”.

It is occasionally desirable to substitute an argument list other than sys.argv[1:], so you should read “argu-
ment” as “an element of sys.argv[1:], or of some other list provided as a substitute for sys.argv[1:]”.

option
an argument used to supply extra information to guide or customize the execution of a program. There are
many different syntaxes for options; the traditional Unix syntax is a hyphen (“-”) followed by a single letter,
e.g. -x or -F. Also, traditional Unix syntax allows multiple options to be merged into a single argument, e.g.
-x -F is equivalent to -xF. The GNU project introduced -- followed by a series of hyphen-separated words,
e.g. --file or --dry-run. These are the only two option syntaxes provided by optparse.

Some other option syntaxes that the world has seen include:

• a hyphen followed by a few letters, e.g. -pf (this is not the same as multiple options merged into a single
argument)

• a hyphen followed by a whole word, e.g. -file (this is technically equivalent to the previous syntax, but
they aren’t usually seen in the same program)

17.2. optparse— Parser for command line options 879

The Python Library Reference, Release 3.13.1

• a plus sign followed by a single letter, or a few letters, or a word, e.g. +f, +rgb

• a slash followed by a letter, or a few letters, or a word, e.g. /f, /file

These option syntaxes are not supported by optparse, and they never will be. This is deliberate: the first three
are non-standard on any environment, and the last only makes sense if you’re exclusively targeting Windows
or certain legacy platforms (e.g. VMS, MS-DOS).

option argument
an argument that follows an option, is closely associated with that option, and is consumed from the argument
list when that option is. With optparse, option arguments may either be in a separate argument from their
option:

-f foo

--file foo

or included in the same argument:

-ffoo

--file=foo

Typically, a given option either takes an argument or it doesn’t. Lots of people want an “optional option
arguments” feature, meaning that some options will take an argument if they see it, and won’t if they don’t.
This is somewhat controversial, because it makes parsing ambiguous: if -a takes an optional argument and -b
is another option entirely, how do we interpret -ab? Because of this ambiguity, optparse does not support
this feature.

positional argument
something leftover in the argument list after options have been parsed, i.e. after options and their arguments
have been parsed and removed from the argument list.

required option
an option that must be supplied on the command-line; note that the phrase “required option” is self-
contradictory in English. optparse doesn’t prevent you from implementing required options, but doesn’t
give you much help at it either.

For example, consider this hypothetical command-line:

prog -v --report report.txt foo bar

-v and --report are both options. Assuming that --report takes one argument, report.txt is an option
argument. foo and bar are positional arguments.

What are options for?

Options are used to provide extra information to tune or customize the execution of a program. In case it wasn’t
clear, options are usually optional. A program should be able to run just fine with no options whatsoever. (Pick a
random program from the Unix or GNU toolsets. Can it run without any options at all and still make sense? The
main exceptions are find, tar, and dd—all of which are mutant oddballs that have been rightly criticized for their
non-standard syntax and confusing interfaces.)

Lots of people want their programs to have “required options”. Think about it. If it’s required, then it’s not optional! If
there is a piece of information that your program absolutely requires in order to run successfully, that’s what positional
arguments are for.

As an example of good command-line interface design, consider the humble cp utility, for copying files. It doesn’t
make much sense to try to copy files without supplying a destination and at least one source. Hence, cp fails if you
run it with no arguments. However, it has a flexible, useful syntax that does not require any options at all:

cp SOURCE DEST

cp SOURCE ... DEST-DIR

880 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

You can get pretty far with just that. Most cp implementations provide a bunch of options to tweak exactly how
the files are copied: you can preserve mode and modification time, avoid following symlinks, ask before clobbering
existing files, etc. But none of this distracts from the core mission of cp, which is to copy either one file to another,
or several files to another directory.

What are positional arguments for?

Positional arguments are for those pieces of information that your program absolutely, positively requires to run.

A good user interface should have as few absolute requirements as possible. If your program requires 17 distinct
pieces of information in order to run successfully, it doesn’t much matter how you get that information from the
user—most people will give up and walk away before they successfully run the program. This applies whether the
user interface is a command-line, a configuration file, or a GUI: if you make that many demands on your users, most
of them will simply give up.

In short, try to minimize the amount of information that users are absolutely required to supply—use sensible defaults
whenever possible. Of course, you also want to make your programs reasonably flexible. That’s what options are for.
Again, it doesn’t matter if they are entries in a config file, widgets in the “Preferences” dialog of a GUI, or command-
line options—the more options you implement, the more flexible your program is, and the more complicated its
implementation becomes. Too much flexibility has drawbacks as well, of course; too many options can overwhelm
users and make your code much harder to maintain.

17.2.4 Tutorial

While optparse is quite flexible and powerful, it’s also straightforward to use in most cases. This section covers the
code patterns that are common to any optparse-based program.

First, you need to import the OptionParser class; then, early in the main program, create an OptionParser instance:

from optparse import OptionParser

...

parser = OptionParser()

Then you can start defining options. The basic syntax is:

parser.add_option(opt_str, ...,

attr=value, ...)

Each option has one or more option strings, such as -f or --file, and several option attributes that tell optparse
what to expect and what to do when it encounters that option on the command line.

Typically, each option will have one short option string and one long option string, e.g.:

parser.add_option("-f", "--file", ...)

You’re free to define as many short option strings and as many long option strings as you like (including zero), as long
as there is at least one option string overall.

The option strings passed to OptionParser.add_option() are effectively labels for the option defined by that
call. For brevity, we will frequently refer to encountering an option on the command line; in reality, optparse
encounters option strings and looks up options from them.

Once all of your options are defined, instruct optparse to parse your program’s command line:

(options, args) = parser.parse_args()

(If you like, you can pass a custom argument list to parse_args(), but that’s rarely necessary: by default it uses
sys.argv[1:].)

parse_args() returns two values:

• options, an object containing values for all of your options—e.g. if --file takes a single string argument,
then options.file will be the filename supplied by the user, or None if the user did not supply that option

17.2. optparse— Parser for command line options 881

The Python Library Reference, Release 3.13.1

• args, the list of positional arguments leftover after parsing options

This tutorial section only covers the four most important option attributes: action, type, dest (destination), and
help. Of these, action is the most fundamental.

Understanding option actions

Actions tell optparse what to do when it encounters an option on the command line. There is a fixed set of actions
hard-coded into optparse; adding new actions is an advanced topic covered in section Extending optparse. Most
actions tell optparse to store a value in some variable—for example, take a string from the command line and store
it in an attribute of options.

If you don’t specify an option action, optparse defaults to store.

The store action

The most common option action is store, which tells optparse to take the next argument (or the remainder of the
current argument), ensure that it is of the correct type, and store it to your chosen destination.

For example:

parser.add_option("-f", "--file",

action="store", type="string", dest="filename")

Now let’s make up a fake command line and ask optparse to parse it:

args = ["-f", "foo.txt"]

(options, args) = parser.parse_args(args)

When optparse sees the option string -f, it consumes the next argument, foo.txt, and stores it in options.
filename. So, after this call to parse_args(), options.filename is "foo.txt".

Some other option types supported by optparse are int and float. Here’s an option that expects an integer
argument:

parser.add_option("-n", type="int", dest="num")

Note that this option has no long option string, which is perfectly acceptable. Also, there’s no explicit action, since
the default is store.

Let’s parse another fake command-line. This time, we’ll jam the option argument right up against the option: since
-n42 (one argument) is equivalent to -n 42 (two arguments), the code

(options, args) = parser.parse_args(["-n42"])

print(options.num)

will print 42.

If you don’t specify a type, optparse assumes string. Combined with the fact that the default action is store,
that means our first example can be a lot shorter:

parser.add_option("-f", "--file", dest="filename")

If you don’t supply a destination, optparse figures out a sensible default from the option strings: if the first long
option string is --foo-bar, then the default destination is foo_bar. If there are no long option strings, optparse
looks at the first short option string: the default destination for -f is f.

optparse also includes the built-in complex type. Adding types is covered in section Extending optparse.

882 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

Handling boolean (flag) options

Flag options—set a variable to true or false when a particular option is seen—are quite common. optparse supports
them with two separate actions, store_true and store_false. For example, you might have a verbose flag
that is turned on with -v and off with -q:

parser.add_option("-v", action="store_true", dest="verbose")

parser.add_option("-q", action="store_false", dest="verbose")

Here we have two different options with the same destination, which is perfectly OK. (It just means you have to be a
bit careful when setting default values—see below.)

When optparse encounters -v on the command line, it sets options.verbose to True; when it encounters -q,
options.verbose is set to False.

Other actions

Some other actions supported by optparse are:

"store_const"

store a constant value, pre-set via Option.const

"append"

append this option’s argument to a list

"count"

increment a counter by one

"callback"

call a specified function

These are covered in section Reference Guide, and section Option Callbacks.

Default values

All of the above examples involve setting some variable (the “destination”) when certain command-line options are
seen. What happens if those options are never seen? Since we didn’t supply any defaults, they are all set to None. This
is usually fine, but sometimes you want more control. optparse lets you supply a default value for each destination,
which is assigned before the command line is parsed.

First, consider the verbose/quiet example. If we want optparse to set verbose to True unless -q is seen, then we
can do this:

parser.add_option("-v", action="store_true", dest="verbose", default=True)

parser.add_option("-q", action="store_false", dest="verbose")

Since default values apply to the destination rather than to any particular option, and these two options happen to
have the same destination, this is exactly equivalent:

parser.add_option("-v", action="store_true", dest="verbose")

parser.add_option("-q", action="store_false", dest="verbose", default=True)

Consider this:

parser.add_option("-v", action="store_true", dest="verbose", default=False)

parser.add_option("-q", action="store_false", dest="verbose", default=True)

Again, the default value for verbose will be True: the last default value supplied for any particular destination is
the one that counts.

A clearer way to specify default values is the set_defaults() method of OptionParser, which you can call at any
time before calling parse_args():

17.2. optparse— Parser for command line options 883

The Python Library Reference, Release 3.13.1

parser.set_defaults(verbose=True)

parser.add_option(...)

(options, args) = parser.parse_args()

As before, the last value specified for a given option destination is the one that counts. For clarity, try to use one
method or the other of setting default values, not both.

Generating help

optparse’s ability to generate help and usage text automatically is useful for creating user-friendly command-line
interfaces. All you have to do is supply a help value for each option, and optionally a short usage message for your
whole program. Here’s an OptionParser populated with user-friendly (documented) options:

usage = "usage: %prog [options] arg1 arg2"

parser = OptionParser(usage=usage)

parser.add_option("-v", "--verbose",

action="store_true", dest="verbose", default=True,

help="make lots of noise [default]")

parser.add_option("-q", "--quiet",

action="store_false", dest="verbose",

help="be vewwy quiet (I'm hunting wabbits)")

parser.add_option("-f", "--filename",

metavar="FILE", help="write output to FILE")

parser.add_option("-m", "--mode",

default="intermediate",

help="interaction mode: novice, intermediate, "

"or expert [default: %default]")

If optparse encounters either -h or --help on the command-line, or if you just call parser.print_help(), it
prints the following to standard output:

Usage: <yourscript> [options] arg1 arg2

Options:

-h, --help show this help message and exit

-v, --verbose make lots of noise [default]

-q, --quiet be vewwy quiet (I'm hunting wabbits)

-f FILE, --filename=FILE

write output to FILE

-m MODE, --mode=MODE interaction mode: novice, intermediate, or

expert [default: intermediate]

(If the help output is triggered by a help option, optparse exits after printing the help text.)

There’s a lot going on here to help optparse generate the best possible help message:

• the script defines its own usage message:

usage = "usage: %prog [options] arg1 arg2"

optparse expands %prog in the usage string to the name of the current program, i.e. os.path.

basename(sys.argv[0]). The expanded string is then printed before the detailed option help.

If you don’t supply a usage string, optparse uses a bland but sensible default: "Usage: %prog

[options]", which is fine if your script doesn’t take any positional arguments.

• every option defines a help string, and doesn’t worry about line-wrapping—optparse takes care of wrapping
lines and making the help output look good.

• options that take a value indicate this fact in their automatically generated help message, e.g. for the “mode”
option:

884 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

-m MODE, --mode=MODE

Here, “MODE” is called the meta-variable: it stands for the argument that the user is expected to supply to
-m/--mode. By default, optparse converts the destination variable name to uppercase and uses that for the
meta-variable. Sometimes, that’s not what you want—for example, the --filename option explicitly sets
metavar="FILE", resulting in this automatically generated option description:

-f FILE, --filename=FILE

This is important for more than just saving space, though: the manually written help text uses the meta-variable
FILE to clue the user in that there’s a connection between the semi-formal syntax -f FILE and the informal
semantic description “write output to FILE”. This is a simple but effective way to make your help text a lot
clearer and more useful for end users.

• options that have a default value can include %default in the help string—optparse will replace it with
str() of the option’s default value. If an option has no default value (or the default value is None), %default
expands to none.

Grouping Options

When dealing with many options, it is convenient to group these options for better help output. An OptionParser
can contain several option groups, each of which can contain several options.

An option group is obtained using the class OptionGroup:

class optparse.OptionGroup(parser, title, description=None)
where

• parser is the OptionParser instance the group will be inserted in to

• title is the group title

• description, optional, is a long description of the group

OptionGroup inherits from OptionContainer (like OptionParser) and so the add_option()method can be
used to add an option to the group.

Once all the options are declared, using the OptionParser method add_option_group() the group is added to
the previously defined parser.

Continuing with the parser defined in the previous section, adding an OptionGroup to a parser is easy:

group = OptionGroup(parser, "Dangerous Options",

"Caution: use these options at your own risk. "

"It is believed that some of them bite.")

group.add_option("-g", action="store_true", help="Group option.")

parser.add_option_group(group)

This would result in the following help output:

Usage: <yourscript> [options] arg1 arg2

Options:

-h, --help show this help message and exit

-v, --verbose make lots of noise [default]

-q, --quiet be vewwy quiet (I'm hunting wabbits)

-f FILE, --filename=FILE

write output to FILE

-m MODE, --mode=MODE interaction mode: novice, intermediate, or

expert [default: intermediate]

Dangerous Options:

(continues on next page)

17.2. optparse— Parser for command line options 885

The Python Library Reference, Release 3.13.1

(continued from previous page)

Caution: use these options at your own risk. It is believed that some

of them bite.

-g Group option.

A bit more complete example might involve using more than one group: still extending the previous example:

group = OptionGroup(parser, "Dangerous Options",

"Caution: use these options at your own risk. "

"It is believed that some of them bite.")

group.add_option("-g", action="store_true", help="Group option.")

parser.add_option_group(group)

group = OptionGroup(parser, "Debug Options")

group.add_option("-d", "--debug", action="store_true",

help="Print debug information")

group.add_option("-s", "--sql", action="store_true",

help="Print all SQL statements executed")

group.add_option("-e", action="store_true", help="Print every action done")

parser.add_option_group(group)

that results in the following output:

Usage: <yourscript> [options] arg1 arg2

Options:

-h, --help show this help message and exit

-v, --verbose make lots of noise [default]

-q, --quiet be vewwy quiet (I'm hunting wabbits)

-f FILE, --filename=FILE

write output to FILE

-m MODE, --mode=MODE interaction mode: novice, intermediate, or expert

[default: intermediate]

Dangerous Options:

Caution: use these options at your own risk. It is believed that some

of them bite.

-g Group option.

Debug Options:

-d, --debug Print debug information

-s, --sql Print all SQL statements executed

-e Print every action done

Another interesting method, in particular when working programmatically with option groups is:

OptionParser.get_option_group(opt_str)

Return the OptionGroup to which the short or long option string opt_str (e.g. '-o' or '--option') belongs.
If there’s no such OptionGroup, return None.

Printing a version string

Similar to the brief usage string, optparse can also print a version string for your program. You have to supply the
string as the version argument to OptionParser:

parser = OptionParser(usage="%prog [-f] [-q]", version="%prog 1.0")

886 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

%prog is expanded just like it is in usage. Apart from that, version can contain anything you like. When you
supply it, optparse automatically adds a --version option to your parser. If it encounters this option on the
command line, it expands your version string (by replacing %prog), prints it to stdout, and exits.

For example, if your script is called /usr/bin/foo:

$ /usr/bin/foo --version

foo 1.0

The following two methods can be used to print and get the version string:

OptionParser.print_version(file=None)
Print the version message for the current program (self.version) to file (default stdout). As with
print_usage(), any occurrence of %prog in self.version is replaced with the name of the current
program. Does nothing if self.version is empty or undefined.

OptionParser.get_version()

Same as print_version() but returns the version string instead of printing it.

How optparse handles errors

There are two broad classes of errors that optparse has to worry about: programmer errors and user errors. Pro-
grammer errors are usually erroneous calls to OptionParser.add_option(), e.g. invalid option strings, unknown
option attributes, missing option attributes, etc. These are dealt with in the usual way: raise an exception (either
optparse.OptionError or TypeError) and let the program crash.

Handling user errors is much more important, since they are guaranteed to happen no matter how stable your code
is. optparse can automatically detect some user errors, such as bad option arguments (passing -n 4x where -n
takes an integer argument), missing arguments (-n at the end of the command line, where -n takes an argument of
any type). Also, you can call OptionParser.error() to signal an application-defined error condition:

(options, args) = parser.parse_args()

...

if options.a and options.b:

parser.error("options -a and -b are mutually exclusive")

In either case, optparse handles the error the same way: it prints the program’s usage message and an error message
to standard error and exits with error status 2.

Consider the first example above, where the user passes 4x to an option that takes an integer:

$ /usr/bin/foo -n 4x

Usage: foo [options]

foo: error: option -n: invalid integer value: '4x'

Or, where the user fails to pass a value at all:

$ /usr/bin/foo -n

Usage: foo [options]

foo: error: -n option requires an argument

optparse-generated error messages take care always to mention the option involved in the error; be sure to do the
same when calling OptionParser.error() from your application code.

If optparse’s default error-handling behaviour does not suit your needs, you’ll need to subclass OptionParser and
override its exit() and/or error() methods.

17.2. optparse— Parser for command line options 887

The Python Library Reference, Release 3.13.1

Putting it all together

Here’s what optparse-based scripts usually look like:

from optparse import OptionParser

...

def main():

usage = "usage: %prog [options] arg"

parser = OptionParser(usage)

parser.add_option("-f", "--file", dest="filename",

help="read data from FILENAME")

parser.add_option("-v", "--verbose",

action="store_true", dest="verbose")

parser.add_option("-q", "--quiet",

action="store_false", dest="verbose")

...

(options, args) = parser.parse_args()

if len(args) != 1:

parser.error("incorrect number of arguments")

if options.verbose:

print("reading %s..." % options.filename)

...

if __name__ == "__main__":

main()

17.2.5 Reference Guide

Creating the parser

The first step in using optparse is to create an OptionParser instance.

class optparse.OptionParser(...)
The OptionParser constructor has no required arguments, but a number of optional keyword arguments. You
should always pass them as keyword arguments, i.e. do not rely on the order in which the arguments are
declared.

usage (default: "%prog [options]")
The usage summary to print when your program is run incorrectly or with a help option. When optparse
prints the usage string, it expands %prog to os.path.basename(sys.argv[0]) (or to prog if
you passed that keyword argument). To suppress a usage message, pass the special value optparse.
SUPPRESS_USAGE.

option_list (default: [])
A list of Option objects to populate the parser with. The options in option_list are added after any
options in standard_option_list (a class attribute that may be set by OptionParser subclasses), but
before any version or help options. Deprecated; use add_option() after creating the parser instead.

option_class (default: optparse.Option)
Class to use when adding options to the parser in add_option().

version (default: None)
A version string to print when the user supplies a version option. If you supply a true value for version,
optparse automatically adds a version option with the single option string --version. The substring
%prog is expanded the same as for usage.

conflict_handler (default: "error")
Specifies what to do when options with conflicting option strings are added to the parser; see section
Conflicts between options.

description (default: None)
A paragraph of text giving a brief overview of your program. optparse reformats this paragraph to fit

888 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

the current terminal width and prints it when the user requests help (after usage, but before the list of
options).

formatter (default: a new IndentedHelpFormatter)
An instance of optparse.HelpFormatter that will be used for printing help text. optparse provides two
concrete classes for this purpose: IndentedHelpFormatter and TitledHelpFormatter.

add_help_option (default: True)
If true, optparse will add a help option (with option strings -h and --help) to the parser.

prog

The string to use when expanding %prog in usage and version instead of os.path.basename(sys.
argv[0]).

epilog (default: None)
A paragraph of help text to print after the option help.

Populating the parser

There are several ways to populate the parser with options. The preferred way is by using OptionParser.

add_option(), as shown in section Tutorial. add_option() can be called in one of two ways:

• pass it an Option instance (as returned by make_option())

• pass it any combination of positional and keyword arguments that are acceptable to make_option() (i.e., to
the Option constructor), and it will create the Option instance for you

The other alternative is to pass a list of pre-constructed Option instances to the OptionParser constructor, as in:

option_list = [

make_option("-f", "--filename",

action="store", type="string", dest="filename"),

make_option("-q", "--quiet",

action="store_false", dest="verbose"),

]

parser = OptionParser(option_list=option_list)

(make_option() is a factory function for creatingOption instances; currently it is an alias for theOption constructor.
A future version of optparse may split Option into several classes, and make_option() will pick the right class
to instantiate. Do not instantiate Option directly.)

Defining options

Each Option instance represents a set of synonymous command-line option strings, e.g. -f and --file. You can
specify any number of short or long option strings, but you must specify at least one overall option string.

The canonical way to create an Option instance is with the add_option() method of OptionParser.

OptionParser.add_option(option)
OptionParser.add_option(*opt_str, attr=value, ...)

To define an option with only a short option string:

parser.add_option("-f", attr=value, ...)

And to define an option with only a long option string:

parser.add_option("--foo", attr=value, ...)

The keyword arguments define attributes of the new Option object. The most important option attribute is
action, and it largely determines which other attributes are relevant or required. If you pass irrelevant option
attributes, or fail to pass required ones, optparse raises an OptionError exception explaining your mistake.

An option’s action determines what optparse does when it encounters this option on the command-line. The
standard option actions hard-coded into optparse are:

17.2. optparse— Parser for command line options 889

The Python Library Reference, Release 3.13.1

"store"

store this option’s argument (default)

"store_const"

store a constant value, pre-set via Option.const

"store_true"

store True

"store_false"

store False

"append"

append this option’s argument to a list

"append_const"

append a constant value to a list, pre-set via Option.const

"count"

increment a counter by one

"callback"

call a specified function

"help"

print a usage message including all options and the documentation for them

(If you don’t supply an action, the default is "store". For this action, you may also supply type and dest
option attributes; see Standard option actions.)

As you can see, most actions involve storing or updating a value somewhere. optparse always creates a special
object for this, conventionally called options, which is an instance of optparse.Values.

class optparse.Values

An object holding parsed argument names and values as attributes. Normally created by calling when calling
OptionParser.parse_args(), and can be overridden by a custom subclass passed to the values argument
of OptionParser.parse_args() (as described in Parsing arguments).

Option arguments (and various other values) are stored as attributes of this object, according to the dest (destination)
option attribute.

For example, when you call

parser.parse_args()

one of the first things optparse does is create the options object:

options = Values()

If one of the options in this parser is defined with

parser.add_option("-f", "--file", action="store", type="string", dest="filename")

and the command-line being parsed includes any of the following:

-ffoo

-f foo

--file=foo

--file foo

then optparse, on seeing this option, will do the equivalent of

options.filename = "foo"

The type and dest option attributes are almost as important as action, but action is the only one that makes
sense for all options.

890 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

Option attributes

class optparse.Option

A single command line argument, with various attributes passed by keyword to the constructor. Normally
created with OptionParser.add_option() rather than directly, and can be overridden by a custom class
via the option_class argument to OptionParser.

The following option attributes may be passed as keyword arguments to OptionParser.add_option(). If you
pass an option attribute that is not relevant to a particular option, or fail to pass a required option attribute, optparse
raises OptionError.

Option.action

(default: "store")

Determines optparse’s behaviour when this option is seen on the command line; the available options are
documented here.

Option.type

(default: "string")

The argument type expected by this option (e.g., "string" or "int"); the available option types are docu-
mented here.

Option.dest

(default: derived from option strings)

If the option’s action implies writing or modifying a value somewhere, this tells optparse where to write it:
dest names an attribute of the options object that optparse builds as it parses the command line.

Option.default

The value to use for this option’s destination if the option is not seen on the command line. See also
OptionParser.set_defaults().

Option.nargs

(default: 1)

How many arguments of type type should be consumed when this option is seen. If > 1, optparse will store
a tuple of values to dest.

Option.const

For actions that store a constant value, the constant value to store.

Option.choices

For options of type "choice", the list of strings the user may choose from.

Option.callback

For options with action "callback", the callable to call when this option is seen. See sectionOption Callbacks
for detail on the arguments passed to the callable.

Option.callback_args

Option.callback_kwargs

Additional positional and keyword arguments to pass to callback after the four standard callback arguments.

Option.help

Help text to print for this option when listing all available options after the user supplies a help option (such
as --help). If no help text is supplied, the option will be listed without help text. To hide this option, use the
special value optparse.SUPPRESS_HELP.

Option.metavar

(default: derived from option strings)

Stand-in for the option argument(s) to use when printing help text. See section Tutorial for an example.

17.2. optparse— Parser for command line options 891

The Python Library Reference, Release 3.13.1

Standard option actions

The various option actions all have slightly different requirements and effects. Most actions have several relevant
option attributes which you may specify to guide optparse’s behaviour; a few have required attributes, which you
must specify for any option using that action.

• "store" [relevant: type, dest, nargs, choices]

The option must be followed by an argument, which is converted to a value according to type and stored
in dest. If nargs > 1, multiple arguments will be consumed from the command line; all will be converted
according to type and stored to dest as a tuple. See the Standard option types section.

If choices is supplied (a list or tuple of strings), the type defaults to "choice".

If type is not supplied, it defaults to "string".

If dest is not supplied, optparse derives a destination from the first long option string (e.g., --foo-bar
implies foo_bar). If there are no long option strings, optparse derives a destination from the first short
option string (e.g., -f implies f).

Example:

parser.add_option("-f")

parser.add_option("-p", type="float", nargs=3, dest="point")

As it parses the command line

-f foo.txt -p 1 -3.5 4 -fbar.txt

optparse will set

options.f = "foo.txt"

options.point = (1.0, -3.5, 4.0)

options.f = "bar.txt"

• "store_const" [required: const; relevant: dest]

The value const is stored in dest.

Example:

parser.add_option("-q", "--quiet",

action="store_const", const=0, dest="verbose")

parser.add_option("-v", "--verbose",

action="store_const", const=1, dest="verbose")

parser.add_option("--noisy",

action="store_const", const=2, dest="verbose")

If --noisy is seen, optparse will set

options.verbose = 2

• "store_true" [relevant: dest]

A special case of "store_const" that stores True to dest.

• "store_false" [relevant: dest]

Like "store_true", but stores False.

Example:

parser.add_option("--clobber", action="store_true", dest="clobber")

parser.add_option("--no-clobber", action="store_false", dest="clobber")

892 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

• "append" [relevant: type, dest, nargs, choices]

The option must be followed by an argument, which is appended to the list in dest. If no default value for
dest is supplied, an empty list is automatically created when optparse first encounters this option on the
command-line. If nargs > 1, multiple arguments are consumed, and a tuple of length nargs is appended to
dest.

The defaults for type and dest are the same as for the "store" action.

Example:

parser.add_option("-t", "--tracks", action="append", type="int")

If -t3 is seen on the command-line, optparse does the equivalent of:

options.tracks = []

options.tracks.append(int("3"))

If, a little later on, --tracks=4 is seen, it does:

options.tracks.append(int("4"))

The append action calls the append method on the current value of the option. This means that any default
value specified must have an append method. It also means that if the default value is non-empty, the default
elements will be present in the parsed value for the option, with any values from the command line appended
after those default values:

>>> parser.add_option("--files", action="append", default=['~/.mypkg/defaults

↪→'])

>>> opts, args = parser.parse_args(['--files', 'overrides.mypkg'])

>>> opts.files

['~/.mypkg/defaults', 'overrides.mypkg']

• "append_const" [required: const; relevant: dest]

Like "store_const", but the value const is appended to dest; as with "append", dest defaults to None,
and an empty list is automatically created the first time the option is encountered.

• "count" [relevant: dest]

Increment the integer stored at dest. If no default value is supplied, dest is set to zero before being incre-
mented the first time.

Example:

parser.add_option("-v", action="count", dest="verbosity")

The first time -v is seen on the command line, optparse does the equivalent of:

options.verbosity = 0

options.verbosity += 1

Every subsequent occurrence of -v results in

options.verbosity += 1

• "callback" [required: callback; relevant: type, nargs, callback_args, callback_kwargs]

Call the function specified by callback, which is called as

func(option, opt_str, value, parser, *args, **kwargs)

See section Option Callbacks for more detail.

17.2. optparse— Parser for command line options 893

The Python Library Reference, Release 3.13.1

• "help"

Prints a complete help message for all the options in the current option parser. The help message is constructed
from the usage string passed to OptionParser’s constructor and the help string passed to every option.

If no help string is supplied for an option, it will still be listed in the help message. To omit an option entirely,
use the special value optparse.SUPPRESS_HELP.

optparse automatically adds a help option to all OptionParsers, so you do not normally need to create one.

Example:

from optparse import OptionParser, SUPPRESS_HELP

usually, a help option is added automatically, but that can

be suppressed using the add_help_option argument

parser = OptionParser(add_help_option=False)

parser.add_option("-h", "--help", action="help")

parser.add_option("-v", action="store_true", dest="verbose",

help="Be moderately verbose")

parser.add_option("--file", dest="filename",

help="Input file to read data from")

parser.add_option("--secret", help=SUPPRESS_HELP)

If optparse sees either -h or --help on the command line, it will print something like the following help
message to stdout (assuming sys.argv[0] is "foo.py"):

Usage: foo.py [options]

Options:

-h, --help Show this help message and exit

-v Be moderately verbose

--file=FILENAME Input file to read data from

After printing the help message, optparse terminates your process with sys.exit(0).

• "version"

Prints the version number supplied to the OptionParser to stdout and exits. The version number is actually
formatted and printed by the print_version() method of OptionParser. Generally only relevant if the
version argument is supplied to the OptionParser constructor. As with help options, you will rarely create
version options, since optparse automatically adds them when needed.

Standard option types

optparse has five built-in option types: "string", "int", "choice", "float" and "complex". If you need
to add new option types, see section Extending optparse.

Arguments to string options are not checked or converted in any way: the text on the command line is stored in the
destination (or passed to the callback) as-is.

Integer arguments (type "int") are parsed as follows:

• if the number starts with 0x, it is parsed as a hexadecimal number

• if the number starts with 0, it is parsed as an octal number

• if the number starts with 0b, it is parsed as a binary number

• otherwise, the number is parsed as a decimal number

The conversion is done by calling int() with the appropriate base (2, 8, 10, or 16). If this fails, so will optparse,
although with a more useful error message.

894 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

"float" and "complex" option arguments are converted directly with float() and complex(), with similar
error-handling.

"choice" options are a subtype of "string" options. The choices option attribute (a sequence of strings) de-
fines the set of allowed option arguments. optparse.check_choice() compares user-supplied option arguments
against this master list and raises OptionValueError if an invalid string is given.

Parsing arguments

The whole point of creating and populating an OptionParser is to call its parse_args() method.

OptionParser.parse_args(args=None, values=None)
Parse the command-line options found in args.

The input parameters are

args

the list of arguments to process (default: sys.argv[1:])

values

a Values object to store option arguments in (default: a new instance of Values) – if you give an
existing object, the option defaults will not be initialized on it

and the return value is a pair (options, args) where

options

the same object that was passed in as values, or the optparse.Values instance created by optparse

args

the leftover positional arguments after all options have been processed

The most common usage is to supply neither keyword argument. If you supply values, it will be modified with
repeated setattr() calls (roughly one for every option argument stored to an option destination) and returned by
parse_args().

If parse_args() encounters any errors in the argument list, it calls the OptionParser’s error() method with an
appropriate end-user error message. This ultimately terminates your process with an exit status of 2 (the traditional
Unix exit status for command-line errors).

Querying and manipulating your option parser

The default behavior of the option parser can be customized slightly, and you can also poke around your option parser
and see what’s there. OptionParser provides several methods to help you out:

OptionParser.disable_interspersed_args()

Set parsing to stop on the first non-option. For example, if -a and -b are both simple options that take no
arguments, optparse normally accepts this syntax:

prog -a arg1 -b arg2

and treats it as equivalent to

prog -a -b arg1 arg2

To disable this feature, call disable_interspersed_args(). This restores traditional Unix syntax, where
option parsing stops with the first non-option argument.

Use this if you have a command processor which runs another command which has options of its own and you
want to make sure these options don’t get confused. For example, each command might have a different set of
options.

OptionParser.enable_interspersed_args()

Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments. This
is the default behavior.

17.2. optparse— Parser for command line options 895

The Python Library Reference, Release 3.13.1

OptionParser.get_option(opt_str)
Returns the Option instance with the option string opt_str, or None if no options have that option string.

OptionParser.has_option(opt_str)

Return True if the OptionParser has an option with option string opt_str (e.g., -q or --verbose).

OptionParser.remove_option(opt_str)

If the OptionParser has an option corresponding to opt_str, that option is removed. If that option provided
any other option strings, all of those option strings become invalid. If opt_str does not occur in any option
belonging to this OptionParser, raises ValueError.

Conflicts between options

If you’re not careful, it’s easy to define options with conflicting option strings:

parser.add_option("-n", "--dry-run", ...)

...

parser.add_option("-n", "--noisy", ...)

(This is particularly true if you’ve defined your own OptionParser subclass with some standard options.)

Every time you add an option, optparse checks for conflicts with existing options. If it finds any, it invokes the
current conflict-handling mechanism. You can set the conflict-handling mechanism either in the constructor:

parser = OptionParser(..., conflict_handler=handler)

or with a separate call:

parser.set_conflict_handler(handler)

The available conflict handlers are:

"error" (default)
assume option conflicts are a programming error and raise OptionConflictError

"resolve"

resolve option conflicts intelligently (see below)

As an example, let’s define an OptionParser that resolves conflicts intelligently and add conflicting options to it:

parser = OptionParser(conflict_handler="resolve")

parser.add_option("-n", "--dry-run", ..., help="do no harm")

parser.add_option("-n", "--noisy", ..., help="be noisy")

At this point, optparse detects that a previously added option is already using the -n option string. Since
conflict_handler is "resolve", it resolves the situation by removing -n from the earlier option’s list of option
strings. Now --dry-run is the only way for the user to activate that option. If the user asks for help, the help
message will reflect that:

Options:

--dry-run do no harm

...

-n, --noisy be noisy

It’s possible to whittle away the option strings for a previously added option until there are none left, and the user has
no way of invoking that option from the command-line. In that case, optparse removes that option completely, so
it doesn’t show up in help text or anywhere else. Carrying on with our existing OptionParser:

parser.add_option("--dry-run", ..., help="new dry-run option")

At this point, the original -n/--dry-run option is no longer accessible, so optparse removes it, leaving this help
text:

896 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

Options:

...

-n, --noisy be noisy

--dry-run new dry-run option

Cleanup

OptionParser instances have several cyclic references. This should not be a problem for Python’s garbage collector,
but you may wish to break the cyclic references explicitly by calling destroy() on your OptionParser once you are
done with it. This is particularly useful in long-running applications where large object graphs are reachable from
your OptionParser.

Other methods

OptionParser supports several other public methods:

OptionParser.set_usage(usage)
Set the usage string according to the rules described above for the usage constructor keyword argument.
Passing None sets the default usage string; use optparse.SUPPRESS_USAGE to suppress a usage message.

OptionParser.print_usage(file=None)

Print the usage message for the current program (self.usage) to file (default stdout). Any occurrence of the
string %prog in self.usage is replaced with the name of the current program. Does nothing if self.usage
is empty or not defined.

OptionParser.get_usage()

Same as print_usage() but returns the usage string instead of printing it.

OptionParser.set_defaults(dest=value, ...)
Set default values for several option destinations at once. Using set_defaults() is the preferred way to
set default values for options, since multiple options can share the same destination. For example, if several
“mode” options all set the same destination, any one of them can set the default, and the last one wins:

parser.add_option("--advanced", action="store_const",

dest="mode", const="advanced",

default="novice") # overridden below

parser.add_option("--novice", action="store_const",

dest="mode", const="novice",

default="advanced") # overrides above setting

To avoid this confusion, use set_defaults():

parser.set_defaults(mode="advanced")

parser.add_option("--advanced", action="store_const",

dest="mode", const="advanced")

parser.add_option("--novice", action="store_const",

dest="mode", const="novice")

17.2.6 Option Callbacks

When optparse’s built-in actions and types aren’t quite enough for your needs, you have two choices: extend
optparse or define a callback option. Extending optparse is more general, but overkill for a lot of simple cases.
Quite often a simple callback is all you need.

There are two steps to defining a callback option:

• define the option itself using the "callback" action

• write the callback; this is a function (or method) that takes at least four arguments, as described below

17.2. optparse— Parser for command line options 897

The Python Library Reference, Release 3.13.1

Defining a callback option

As always, the easiest way to define a callback option is by using the OptionParser.add_option() method.
Apart from action, the only option attribute you must specify is callback, the function to call:

parser.add_option("-c", action="callback", callback=my_callback)

callback is a function (or other callable object), so you must have already defined my_callback() when you
create this callback option. In this simple case, optparse doesn’t even know if -c takes any arguments, which
usually means that the option takes no arguments—the mere presence of -c on the command-line is all it needs to
know. In some circumstances, though, you might want your callback to consume an arbitrary number of command-
line arguments. This is where writing callbacks gets tricky; it’s covered later in this section.

optparse always passes four particular arguments to your callback, and it will only pass additional arguments if you
specify them via callback_args and callback_kwargs. Thus, the minimal callback function signature is:

def my_callback(option, opt, value, parser):

The four arguments to a callback are described below.

There are several other option attributes that you can supply when you define a callback option:

type

has its usual meaning: as with the "store" or "append" actions, it instructs optparse to consume one
argument and convert it to type. Rather than storing the converted value(s) anywhere, though, optparse
passes it to your callback function.

nargs

also has its usual meaning: if it is supplied and > 1, optparse will consume nargs arguments, each of which
must be convertible to type. It then passes a tuple of converted values to your callback.

callback_args

a tuple of extra positional arguments to pass to the callback

callback_kwargs

a dictionary of extra keyword arguments to pass to the callback

How callbacks are called

All callbacks are called as follows:

func(option, opt_str, value, parser, *args, **kwargs)

where

option

is the Option instance that’s calling the callback

opt_str

is the option string seen on the command-line that’s triggering the callback. (If an abbreviated long option was
used, opt_str will be the full, canonical option string—e.g. if the user puts --foo on the command-line as
an abbreviation for --foobar, then opt_str will be "--foobar".)

value

is the argument to this option seen on the command-line. optparse will only expect an argument if type
is set; the type of value will be the type implied by the option’s type. If type for this option is None (no
argument expected), then valuewill be None. If nargs > 1, valuewill be a tuple of values of the appropriate
type.

parser

is the OptionParser instance driving the whole thing, mainly useful because you can access some other inter-
esting data through its instance attributes:

parser.largs

the current list of leftover arguments, ie. arguments that have been consumed but are neither options nor

898 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

option arguments. Feel free to modify parser.largs, e.g. by adding more arguments to it. (This list
will become args, the second return value of parse_args().)

parser.rargs

the current list of remaining arguments, ie. with opt_str and value (if applicable) removed, and only
the arguments following them still there. Feel free to modify parser.rargs, e.g. by consuming more
arguments.

parser.values

the object where option values are by default stored (an instance of optparse.OptionValues). This lets
callbacks use the same mechanism as the rest of optparse for storing option values; you don’t need to
mess around with globals or closures. You can also access or modify the value(s) of any options already
encountered on the command-line.

args

is a tuple of arbitrary positional arguments supplied via the callback_args option attribute.

kwargs

is a dictionary of arbitrary keyword arguments supplied via callback_kwargs.

Raising errors in a callback

The callback function should raise OptionValueError if there are any problems with the option or its argument(s).
optparse catches this and terminates the program, printing the error message you supply to stderr. Your message
should be clear, concise, accurate, and mention the option at fault. Otherwise, the user will have a hard time figuring
out what they did wrong.

Callback example 1: trivial callback

Here’s an example of a callback option that takes no arguments, and simply records that the option was seen:

def record_foo_seen(option, opt_str, value, parser):

parser.values.saw_foo = True

parser.add_option("--foo", action="callback", callback=record_foo_seen)

Of course, you could do that with the "store_true" action.

Callback example 2: check option order

Here’s a slightly more interesting example: record the fact that -a is seen, but blow up if it comes after -b in the
command-line.

def check_order(option, opt_str, value, parser):

if parser.values.b:

raise OptionValueError("can't use -a after -b")

parser.values.a = 1

...

parser.add_option("-a", action="callback", callback=check_order)

parser.add_option("-b", action="store_true", dest="b")

Callback example 3: check option order (generalized)

If you want to reuse this callback for several similar options (set a flag, but blow up if -b has already been seen), it
needs a bit of work: the error message and the flag that it sets must be generalized.

def check_order(option, opt_str, value, parser):

if parser.values.b:

raise OptionValueError("can't use %s after -b" % opt_str)

setattr(parser.values, option.dest, 1)

(continues on next page)

17.2. optparse— Parser for command line options 899

The Python Library Reference, Release 3.13.1

(continued from previous page)

...

parser.add_option("-a", action="callback", callback=check_order, dest='a')

parser.add_option("-b", action="store_true", dest="b")

parser.add_option("-c", action="callback", callback=check_order, dest='c')

Callback example 4: check arbitrary condition

Of course, you could put any condition in there—you’re not limited to checking the values of already-defined options.
For example, if you have options that should not be called when the moon is full, all you have to do is this:

def check_moon(option, opt_str, value, parser):

if is_moon_full():

raise OptionValueError("%s option invalid when moon is full"

% opt_str)

setattr(parser.values, option.dest, 1)

...

parser.add_option("--foo",

action="callback", callback=check_moon, dest="foo")

(The definition of is_moon_full() is left as an exercise for the reader.)

Callback example 5: fixed arguments

Things get slightly more interesting when you define callback options that take a fixed number of arguments. Spec-
ifying that a callback option takes arguments is similar to defining a "store" or "append" option: if you define
type, then the option takes one argument that must be convertible to that type; if you further define nargs, then
the option takes nargs arguments.

Here’s an example that just emulates the standard "store" action:

def store_value(option, opt_str, value, parser):

setattr(parser.values, option.dest, value)

...

parser.add_option("--foo",

action="callback", callback=store_value,

type="int", nargs=3, dest="foo")

Note that optparse takes care of consuming 3 arguments and converting them to integers for you; all you have to
do is store them. (Or whatever; obviously you don’t need a callback for this example.)

Callback example 6: variable arguments

Things get hairy when you want an option to take a variable number of arguments. For this case, you must write a
callback, as optparse doesn’t provide any built-in capabilities for it. And you have to deal with certain intricacies
of conventional Unix command-line parsing that optparse normally handles for you. In particular, callbacks should
implement the conventional rules for bare -- and - arguments:

• either -- or - can be option arguments

• bare -- (if not the argument to some option): halt command-line processing and discard the --

• bare - (if not the argument to some option): halt command-line processing but keep the - (append it to
parser.largs)

If you want an option that takes a variable number of arguments, there are several subtle, tricky issues to worry about.
The exact implementation you choose will be based on which trade-offs you’re willing to make for your application
(which is why optparse doesn’t support this sort of thing directly).

Nevertheless, here’s a stab at a callback for an option with variable arguments:

900 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

def vararg_callback(option, opt_str, value, parser):

assert value is None

value = []

def floatable(str):

try:

float(str)

return True

except ValueError:

return False

for arg in parser.rargs:

stop on --foo like options

if arg[:2] == "--" and len(arg) > 2:

break

stop on -a, but not on -3 or -3.0

if arg[:1] == "-" and len(arg) > 1 and not floatable(arg):

break

value.append(arg)

del parser.rargs[:len(value)]

setattr(parser.values, option.dest, value)

...

parser.add_option("-c", "--callback", dest="vararg_attr",

action="callback", callback=vararg_callback)

17.2.7 Extending optparse

Since the two major controlling factors in how optparse interprets command-line options are the action and type
of each option, the most likely direction of extension is to add new actions and new types.

Adding new types

To add new types, you need to define your own subclass of optparse’s Option class. This class has a couple of
attributes that define optparse’s types: TYPES and TYPE_CHECKER.

Option.TYPES

A tuple of type names; in your subclass, simply define a new tuple TYPES that builds on the standard one.

Option.TYPE_CHECKER

A dictionary mapping type names to type-checking functions. A type-checking function has the following
signature:

def check_mytype(option, opt, value)

where option is an Option instance, opt is an option string (e.g., -f), and value is the string from the
command line that must be checked and converted to your desired type. check_mytype() should return an
object of the hypothetical type mytype. The value returned by a type-checking function will wind up in the
OptionValues instance returned by OptionParser.parse_args(), or be passed to a callback as the value
parameter.

Your type-checking function should raise OptionValueError if it encounters any problems.
OptionValueError takes a single string argument, which is passed as-is to OptionParser’s error()
method, which in turn prepends the program name and the string "error:" and prints everything to stderr
before terminating the process.

Here’s a silly example that demonstrates adding a "complex" option type to parse Python-style complex numbers on
the command line. (This is even sillier than it used to be, because optparse 1.3 added built-in support for complex

17.2. optparse— Parser for command line options 901

The Python Library Reference, Release 3.13.1

numbers, but never mind.)

First, the necessary imports:

from copy import copy

from optparse import Option, OptionValueError

You need to define your type-checker first, since it’s referred to later (in the TYPE_CHECKER class attribute of your
Option subclass):

def check_complex(option, opt, value):

try:

return complex(value)

except ValueError:

raise OptionValueError(

"option %s: invalid complex value: %r" % (opt, value))

Finally, the Option subclass:

class MyOption (Option):

TYPES = Option.TYPES + ("complex",)

TYPE_CHECKER = copy(Option.TYPE_CHECKER)

TYPE_CHECKER["complex"] = check_complex

(If we didn’t make a copy() of Option.TYPE_CHECKER, we would end upmodifying the TYPE_CHECKER attribute
of optparse’s Option class. This being Python, nothing stops you from doing that except goodmanners and common
sense.)

That’s it! Now you can write a script that uses the new option type just like any other optparse-based script, except
you have to instruct your OptionParser to use MyOption instead of Option:

parser = OptionParser(option_class=MyOption)

parser.add_option("-c", type="complex")

Alternately, you can build your own option list and pass it to OptionParser; if you don’t use add_option() in the
above way, you don’t need to tell OptionParser which option class to use:

option_list = [MyOption("-c", action="store", type="complex", dest="c")]

parser = OptionParser(option_list=option_list)

Adding new actions

Adding new actions is a bit trickier, because you have to understand that optparse has a couple of classifications
for actions:

“store” actions
actions that result in optparse storing a value to an attribute of the current OptionValues instance; these
options require a dest attribute to be supplied to the Option constructor.

“typed” actions
actions that take a value from the command line and expect it to be of a certain type; or rather, a string that
can be converted to a certain type. These options require a type attribute to the Option constructor.

These are overlapping sets: some default “store” actions are "store", "store_const", "append", and "count",
while the default “typed” actions are "store", "append", and "callback".

When you add an action, you need to categorize it by listing it in at least one of the following class attributes of
Option (all are lists of strings):

Option.ACTIONS

All actions must be listed in ACTIONS.

902 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

Option.STORE_ACTIONS

“store” actions are additionally listed here.

Option.TYPED_ACTIONS

“typed” actions are additionally listed here.

Option.ALWAYS_TYPED_ACTIONS

Actions that always take a type (i.e. whose options always take a value) are additionally listed here. The only
effect of this is that optparse assigns the default type, "string", to options with no explicit type whose
action is listed in ALWAYS_TYPED_ACTIONS.

In order to actually implement your new action, you must override Option’s take_action()method and add a case
that recognizes your action.

For example, let’s add an "extend" action. This is similar to the standard "append" action, but instead of taking
a single value from the command-line and appending it to an existing list, "extend" will take multiple values in a
single comma-delimited string, and extend an existing list with them. That is, if --names is an "extend" option
of type "string", the command line

--names=foo,bar --names blah --names ding,dong

would result in a list

["foo", "bar", "blah", "ding", "dong"]

Again we define a subclass of Option:

class MyOption(Option):

ACTIONS = Option.ACTIONS + ("extend",)

STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)

TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)

ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)

def take_action(self, action, dest, opt, value, values, parser):

if action == "extend":

lvalue = value.split(",")

values.ensure_value(dest, []).extend(lvalue)

else:

Option.take_action(

self, action, dest, opt, value, values, parser)

Features of note:

• "extend" both expects a value on the command-line and stores that value somewhere, so it goes in both
STORE_ACTIONS and TYPED_ACTIONS.

• to ensure that optparse assigns the default type of "string" to "extend" actions, we put the "extend"
action in ALWAYS_TYPED_ACTIONS as well.

• MyOption.take_action() implements just this one new action, and passes control back to Option.

take_action() for the standard optparse actions.

• values is an instance of the optparse_parser.Values class, which provides the very useful ensure_value()
method. ensure_value() is essentially getattr() with a safety valve; it is called as

values.ensure_value(attr, value)

If the attr attribute of values doesn’t exist or is None, then ensure_value() first sets it to value, and then re-
turns value. This is very handy for actions like "extend", "append", and "count", all of which accumulate
data in a variable and expect that variable to be of a certain type (a list for the first two, an integer for the latter).
Using ensure_value()means that scripts using your action don’t have to worry about setting a default value

17.2. optparse— Parser for command line options 903

The Python Library Reference, Release 3.13.1

for the option destinations in question; they can just leave the default as None and ensure_value() will take
care of getting it right when it’s needed.

17.2.8 Exceptions

exception optparse.OptionError

Raised if an Option instance is created with invalid or inconsistent arguments.

exception optparse.OptionConflictError

Raised if conflicting options are added to an OptionParser.

exception optparse.OptionValueError

Raised if an invalid option value is encountered on the command line.

exception optparse.BadOptionError

Raised if an invalid option is passed on the command line.

exception optparse.AmbiguousOptionError

Raised if an ambiguous option is passed on the command line.

17.3 getpass— Portable password input

Source code: Lib/getpass.py

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

The getpass module provides two functions:

getpass.getpass(prompt=’Password: ’, stream=None)
Prompt the user for a password without echoing. The user is prompted using the string prompt, which defaults
to 'Password: '. On Unix, the prompt is written to the file-like object stream using the replace error handler
if needed. stream defaults to the controlling terminal (/dev/tty) or if that is unavailable to sys.stderr
(this argument is ignored on Windows).

If echo free input is unavailable getpass() falls back to printing a warning message to stream and reading from
sys.stdin and issuing a GetPassWarning.

Note

If you call getpass from within IDLE, the input may be done in the terminal you launched IDLE from
rather than the idle window itself.

exception getpass.GetPassWarning

A UserWarning subclass issued when password input may be echoed.

getpass.getuser()

Return the “login name” of the user.

This function checks the environment variables LOGNAME, USER, LNAME and USERNAME, in order, and returns
the value of the first one which is set to a non-empty string. If none are set, the login name from the password
database is returned on systems which support the pwd module, otherwise, an OSError is raised.

In general, this function should be preferred over os.getlogin().

Changed in version 3.13: Previously, various exceptions beyond just OSError were raised.

904 Chapter 17. Command Line Interface Libraries

https://github.com/python/cpython/tree/3.13/Lib/getpass.py

The Python Library Reference, Release 3.13.1

17.4 fileinput— Iterate over lines from multiple input streams

Source code: Lib/fileinput.py

This module implements a helper class and functions to quickly write a loop over standard input or a list of files. If
you just want to read or write one file see open().

The typical use is:

import fileinput

for line in fileinput.input(encoding="utf-8"):

process(line)

This iterates over the lines of all files listed in sys.argv[1:], defaulting to sys.stdin if the list is empty. If a
filename is '-', it is also replaced by sys.stdin and the optional arguments mode and openhook are ignored. To
specify an alternative list of filenames, pass it as the first argument to input(). A single file name is also allowed.

All files are opened in text mode by default, but you can override this by specifying the mode parameter in the call
to input() or FileInput. If an I/O error occurs during opening or reading a file, OSError is raised.

Changed in version 3.3: IOError used to be raised; it is now an alias of OSError.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for interactive
use, or if it has been explicitly reset (e.g. using sys.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable at
all is when the last file opened is empty.

Lines are returned with any newlines intact, which means that the last line in a file may not have one.

You can control how files are opened by providing an opening hook via the openhook parameter to fileinput.
input() or FileInput(). The hook must be a function that takes two arguments, filename and mode, and returns
an accordingly opened file-like object. If encoding and/or errors are specified, they will be passed to the hook as
additional keyword arguments. This module provides a hook_compressed() to support compressed files.

The following function is the primary interface of this module:

fileinput.input(files=None, inplace=False, backup=” , *, mode=’r’, openhook=None, encoding=None,
errors=None)

Create an instance of the FileInput class. The instance will be used as global state for the functions of this
module, and is also returned to use during iteration. The parameters to this function will be passed along to
the constructor of the FileInput class.

The FileInput instance can be used as a context manager in the with statement. In this example, input is
closed after the with statement is exited, even if an exception occurs:

with fileinput.input(files=('spam.txt', 'eggs.txt'), encoding="utf-8") as f:

for line in f:

process(line)

Changed in version 3.2: Can be used as a context manager.

Changed in version 3.8: The keyword parameters mode and openhook are now keyword-only.

Changed in version 3.10: The keyword-only parameter encoding and errors are added.

The following functions use the global state created by fileinput.input(); if there is no active state,
RuntimeError is raised.

fileinput.filename()

Return the name of the file currently being read. Before the first line has been read, returns None.

17.4. fileinput— Iterate over lines from multiple input streams 905

https://github.com/python/cpython/tree/3.13/Lib/fileinput.py

The Python Library Reference, Release 3.13.1

fileinput.fileno()

Return the integer “file descriptor” for the current file. When no file is opened (before the first line and between
files), returns -1.

fileinput.lineno()

Return the cumulative line number of the line that has just been read. Before the first line has been read,
returns 0. After the last line of the last file has been read, returns the line number of that line.

fileinput.filelineno()

Return the line number in the current file. Before the first line has been read, returns 0. After the last line of
the last file has been read, returns the line number of that line within the file.

fileinput.isfirstline()

Return True if the line just read is the first line of its file, otherwise return False.

fileinput.isstdin()

Return True if the last line was read from sys.stdin, otherwise return False.

fileinput.nextfile()

Close the current file so that the next iteration will read the first line from the next file (if any); lines not read
from the file will not count towards the cumulative line count. The filename is not changed until after the first
line of the next file has been read. Before the first line has been read, this function has no effect; it cannot be
used to skip the first file. After the last line of the last file has been read, this function has no effect.

fileinput.close()

Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

class fileinput.FileInput(files=None, inplace=False, backup=” , *, mode=’r’, openhook=None,
encoding=None, errors=None)

Class FileInput is the implementation; its methods filename(), fileno(), lineno(), filelineno(),
isfirstline(), isstdin(), nextfile() and close() correspond to the functions of the same name
in the module. In addition it is iterable and has a readline() method which returns the next input line. The
sequence must be accessed in strictly sequential order; random access and readline() cannot be mixed.

With mode you can specify which file mode will be passed to open(). It must be one of 'r' and 'rb'.

The openhook, when given, must be a function that takes two arguments, filename and mode, and returns an
accordingly opened file-like object. You cannot use inplace and openhook together.

You can specify encoding and errors that is passed to open() or openhook.

A FileInput instance can be used as a context manager in the with statement. In this example, input is
closed after the with statement is exited, even if an exception occurs:

with FileInput(files=('spam.txt', 'eggs.txt')) as input:

process(input)

Changed in version 3.2: Can be used as a context manager.

Changed in version 3.8: The keyword parameter mode and openhook are now keyword-only.

Changed in version 3.10: The keyword-only parameter encoding and errors are added.

Changed in version 3.11: The 'rU' and 'U' modes and the __getitem__() method have been removed.

Optional in-place filtering: if the keyword argument inplace=True is passed to fileinput.input() or to the
FileInput constructor, the file is moved to a backup file and standard output is directed to the input file (if a file of
the same name as the backup file already exists, it will be replaced silently). This makes it possible to write a filter that
rewrites its input file in place. If the backup parameter is given (typically as backup='.<some extension>'), it
specifies the extension for the backup file, and the backup file remains around; by default, the extension is '.bak'
and it is deleted when the output file is closed. In-place filtering is disabled when standard input is read.

The two following opening hooks are provided by this module:

906 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

fileinput.hook_compressed(filename, mode, *, encoding=None, errors=None)
Transparently opens files compressed with gzip and bzip2 (recognized by the extensions '.gz' and '.bz2')
using the gzip and bz2modules. If the filename extension is not '.gz' or '.bz2', the file is opened normally
(ie, using open() without any decompression).

The encoding and errors values are passed to io.TextIOWrapper for compressed files and open for normal
files.

Usage example: fi = fileinput.FileInput(openhook=fileinput.hook_compressed,

encoding="utf-8")

Changed in version 3.10: The keyword-only parameter encoding and errors are added.

fileinput.hook_encoded(encoding, errors=None)
Returns a hook which opens each file with open(), using the given encoding and errors to read the file.

Usage example: fi = fileinput.FileInput(openhook=fileinput.hook_encoded("utf-8",

"surrogateescape"))

Changed in version 3.6: Added the optional errors parameter.

Deprecated since version 3.10: This function is deprecated since fileinput.input() and FileInput now
have encoding and errors parameters.

17.5 curses— Terminal handling for character-cell displays

Source code: Lib/curses

The cursesmodule provides an interface to the curses library, the de-facto standard for portable advanced terminal
handling.

While curses is most widely used in the Unix environment, versions are available for Windows, DOS, and possibly
other systems as well. This extension module is designed to match the API of ncurses, an open-source curses library
hosted on Linux and the BSD variants of Unix.

Availability: not Android, not iOS, not WASI.

This module is not supported on mobile platforms orWebAssembly platforms.

Note

Whenever the documentation mentions a character it can be specified as an integer, a one-character Unicode
string or a one-byte byte string.

Whenever the documentation mentions a character string it can be specified as a Unicode string or a byte string.

See also

Module curses.ascii
Utilities for working with ASCII characters, regardless of your locale settings.

Module curses.panel
A panel stack extension that adds depth to curses windows.

Module curses.textpad
Editable text widget for curses supporting Emacs-like bindings.

curses-howto
Tutorial material on using curses with Python, by Andrew Kuchling and Eric Raymond.

17.5. curses— Terminal handling for character-cell displays 907

https://github.com/python/cpython/tree/3.13/Lib/curses

The Python Library Reference, Release 3.13.1

17.5.1 Functions

The module curses defines the following exception:

exception curses.error

Exception raised when a curses library function returns an error.

Note

Whenever x or y arguments to a function or a method are optional, they default to the current cursor location.
Whenever attr is optional, it defaults to A_NORMAL.

The module curses defines the following functions:

curses.baudrate()

Return the output speed of the terminal in bits per second. On software terminal emulators it will have a fixed
high value. Included for historical reasons; in former times, it was used to write output loops for time delays
and occasionally to change interfaces depending on the line speed.

curses.beep()

Emit a short attention sound.

curses.can_change_color()

Return True or False, depending onwhether the programmer can change the colors displayed by the terminal.

curses.cbreak()

Enter cbreak mode. In cbreak mode (sometimes called “rare” mode) normal tty line buffering is turned off and
characters are available to be read one by one. However, unlike raw mode, special characters (interrupt, quit,
suspend, and flow control) retain their effects on the tty driver and calling program. Calling first raw() then
cbreak() leaves the terminal in cbreak mode.

curses.color_content(color_number)
Return the intensity of the red, green, and blue (RGB) components in the color color_number, which must be
between 0 and COLORS - 1. Return a 3-tuple, containing the R,G,B values for the given color, which will be
between 0 (no component) and 1000 (maximum amount of component).

curses.color_pair(pair_number)
Return the attribute value for displaying text in the specified color pair. Only the first 256 color pairs are
supported. This attribute value can be combined with A_STANDOUT, A_REVERSE, and the other A_* attributes.
pair_number() is the counterpart to this function.

curses.curs_set(visibility)

Set the cursor state. visibility can be set to 0, 1, or 2, for invisible, normal, or very visible. If the terminal
supports the visibility requested, return the previous cursor state; otherwise raise an exception. On many
terminals, the “visible” mode is an underline cursor and the “very visible” mode is a block cursor.

curses.def_prog_mode()

Save the current terminal mode as the “program” mode, the mode when the running program is using
curses. (Its counterpart is the “shell” mode, for when the program is not in curses.) Subsequent calls to
reset_prog_mode() will restore this mode.

curses.def_shell_mode()

Save the current terminal mode as the “shell” mode, the mode when the running program is not using curses.
(Its counterpart is the “program” mode, when the program is using curses capabilities.) Subsequent calls to
reset_shell_mode() will restore this mode.

curses.delay_output(ms)
Insert an ms millisecond pause in output.

908 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

curses.doupdate()

Update the physical screen. The curses library keeps two data structures, one representing the current physical
screen contents and a virtual screen representing the desired next state. The doupdate() ground updates the
physical screen to match the virtual screen.

The virtual screen may be updated by a noutrefresh() call after write operations such as addstr()
have been performed on a window. The normal refresh() call is simply noutrefresh() followed by
doupdate(); if you have to update multiple windows, you can speed performance and perhaps reduce screen
flicker by issuing noutrefresh() calls on all windows, followed by a single doupdate().

curses.echo()

Enter echo mode. In echo mode, each character input is echoed to the screen as it is entered.

curses.endwin()

De-initialize the library, and return terminal to normal status.

curses.erasechar()

Return the user’s current erase character as a one-byte bytes object. Under Unix operating systems this is a
property of the controlling tty of the curses program, and is not set by the curses library itself.

curses.filter()

The filter() routine, if used, must be called before initscr() is called. The effect is that, during those
calls, LINES is set to 1; the capabilities clear, cup, cud, cud1, cuu1, cuu, vpa are disabled; and the home
string is set to the value of cr. The effect is that the cursor is confined to the current line, and so are screen
updates. This may be used for enabling character-at-a-time line editing without touching the rest of the screen.

curses.flash()

Flash the screen. That is, change it to reverse-video and then change it back in a short interval. Some people
prefer such as ‘visible bell’ to the audible attention signal produced by beep().

curses.flushinp()

Flush all input buffers. This throws away any typeahead that has been typed by the user and has not yet been
processed by the program.

curses.getmouse()

After getch() returns KEY_MOUSE to signal a mouse event, this method should be called to retrieve
the queued mouse event, represented as a 5-tuple (id, x, y, z, bstate). id is an ID value used
to distinguish multiple devices, and x, y, z are the event’s coordinates. (z is currently unused.) bstate
is an integer value whose bits will be set to indicate the type of event, and will be the bitwise OR of
one or more of the following constants, where n is the button number from 1 to 5: BUTTONn_PRESSED,
BUTTONn_RELEASED, BUTTONn_CLICKED, BUTTONn_DOUBLE_CLICKED, BUTTONn_TRIPLE_CLICKED,
BUTTON_SHIFT, BUTTON_CTRL, BUTTON_ALT.

Changed in version 3.10: The BUTTON5_* constants are now exposed if they are provided by the underlying
curses library.

curses.getsyx()

Return the current coordinates of the virtual screen cursor as a tuple (y, x). If leaveok is currently True,
then return (-1, -1).

curses.getwin(file)
Read window related data stored in the file by an earlier window.putwin() call. The routine then creates
and initializes a new window using that data, returning the new window object.

curses.has_colors()

Return True if the terminal can display colors; otherwise, return False.

curses.has_extended_color_support()

Return True if the module supports extended colors; otherwise, return False. Extended color support allows
more than 256 color pairs for terminals that support more than 16 colors (e.g. xterm-256color).

Extended color support requires ncurses version 6.1 or later.

17.5. curses— Terminal handling for character-cell displays 909

The Python Library Reference, Release 3.13.1

Added in version 3.10.

curses.has_ic()

Return True if the terminal has insert- and delete-character capabilities. This function is included for historical
reasons only, as all modern software terminal emulators have such capabilities.

curses.has_il()

Return True if the terminal has insert- and delete-line capabilities, or can simulate them using scrolling regions.
This function is included for historical reasons only, as all modern software terminal emulators have such
capabilities.

curses.has_key(ch)
Take a key value ch, and return True if the current terminal type recognizes a key with that value.

curses.halfdelay(tenths)

Used for half-delay mode, which is similar to cbreak mode in that characters typed by the user are immediately
available to the program. However, after blocking for tenths tenths of seconds, raise an exception if nothing has
been typed. The value of tenths must be a number between 1 and 255. Use nocbreak() to leave half-delay
mode.

curses.init_color(color_number, r, g, b)
Change the definition of a color, taking the number of the color to be changed followed by three RGB values
(for the amounts of red, green, and blue components). The value of color_number must be between 0 and
COLORS - 1. Each of r, g, b, must be a value between 0 and 1000. When init_color() is used, all
occurrences of that color on the screen immediately change to the new definition. This function is a no-op on
most terminals; it is active only if can_change_color() returns True.

curses.init_pair(pair_number, fg, bg)
Change the definition of a color-pair. It takes three arguments: the number of the color-pair to be changed,
the foreground color number, and the background color number. The value of pair_number must be between
1 and COLOR_PAIRS - 1 (the 0 color pair is wired to white on black and cannot be changed). The value of
fg and bg arguments must be between 0 and COLORS - 1, or, after calling use_default_colors(), -1.
If the color-pair was previously initialized, the screen is refreshed and all occurrences of that color-pair are
changed to the new definition.

curses.initscr()

Initialize the library. Return a window object which represents the whole screen.

Note

If there is an error opening the terminal, the underlying curses library may cause the interpreter to exit.

curses.is_term_resized(nlines, ncols)
Return True if resize_term() would modify the window structure, False otherwise.

curses.isendwin()

Return True if endwin() has been called (that is, the curses library has been deinitialized).

curses.keyname(k)
Return the name of the key numbered k as a bytes object. The name of a key generating printable ASCII
character is the key’s character. The name of a control-key combination is a two-byte bytes object consisting of
a caret (b'^') followed by the corresponding printable ASCII character. The name of an alt-key combination
(128–255) is a bytes object consisting of the prefix b'M-' followed by the name of the corresponding ASCII
character.

curses.killchar()

Return the user’s current line kill character as a one-byte bytes object. Under Unix operating systems this is a
property of the controlling tty of the curses program, and is not set by the curses library itself.

910 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

curses.longname()

Return a bytes object containing the terminfo long name field describing the current terminal. The maximum
length of a verbose description is 128 characters. It is defined only after the call to initscr().

curses.meta(flag)
If flag is True, allow 8-bit characters to be input. If flag is False, allow only 7-bit chars.

curses.mouseinterval(interval)
Set the maximum time in milliseconds that can elapse between press and release events in order for them to
be recognized as a click, and return the previous interval value. The default value is 200 milliseconds, or one
fifth of a second.

curses.mousemask(mousemask)
Set the mouse events to be reported, and return a tuple (availmask, oldmask). availmask indicates which
of the specified mouse events can be reported; on complete failure it returns 0. oldmask is the previous value
of the given window’s mouse event mask. If this function is never called, no mouse events are ever reported.

curses.napms(ms)
Sleep for ms milliseconds.

curses.newpad(nlines, ncols)
Create and return a pointer to a new pad data structure with the given number of lines and columns. Return a
pad as a window object.

A pad is like a window, except that it is not restricted by the screen size, and is not necessarily associated with
a particular part of the screen. Pads can be used when a large window is needed, and only a part of the window
will be on the screen at one time. Automatic refreshes of pads (such as from scrolling or echoing of input) do
not occur. The refresh() and noutrefresh()methods of a pad require 6 arguments to specify the part of
the pad to be displayed and the location on the screen to be used for the display. The arguments are pminrow,
pmincol, sminrow, smincol, smaxrow, smaxcol; the p arguments refer to the upper left corner of the pad region
to be displayed and the s arguments define a clipping box on the screen within which the pad region is to be
displayed.

curses.newwin(nlines, ncols)
curses.newwin(nlines, ncols, begin_y, begin_x)

Return a new window, whose left-upper corner is at (begin_y, begin_x), and whose height/width is
nlines/ncols.

By default, the window will extend from the specified position to the lower right corner of the screen.

curses.nl()

Enter newline mode. This mode translates the return key into newline on input, and translates newline into
return and line-feed on output. Newline mode is initially on.

curses.nocbreak()

Leave cbreak mode. Return to normal “cooked” mode with line buffering.

curses.noecho()

Leave echo mode. Echoing of input characters is turned off.

curses.nonl()

Leave newline mode. Disable translation of return into newline on input, and disable low-level translation of
newline into newline/return on output (but this does not change the behavior of addch('\n'), which always
does the equivalent of return and line feed on the virtual screen). With translation off, curses can sometimes
speed up vertical motion a little; also, it will be able to detect the return key on input.

curses.noqiflush()

When the noqiflush() routine is used, normal flush of input and output queues associated with the INTR,
QUIT and SUSP characters will not be done. You may want to call noqiflush() in a signal handler if you
want output to continue as though the interrupt had not occurred, after the handler exits.

17.5. curses— Terminal handling for character-cell displays 911

The Python Library Reference, Release 3.13.1

curses.noraw()

Leave raw mode. Return to normal “cooked” mode with line buffering.

curses.pair_content(pair_number)

Return a tuple (fg, bg) containing the colors for the requested color pair. The value of pair_number must
be between 0 and COLOR_PAIRS - 1.

curses.pair_number(attr)
Return the number of the color-pair set by the attribute value attr. color_pair() is the counterpart to this
function.

curses.putp(str)

Equivalent to tputs(str, 1, putchar); emit the value of a specified terminfo capability for the current
terminal. Note that the output of putp() always goes to standard output.

curses.qiflush([flag])
If flag is False, the effect is the same as calling noqiflush(). If flag is True, or no argument is provided,
the queues will be flushed when these control characters are read.

curses.raw()

Enter raw mode. In raw mode, normal line buffering and processing of interrupt, quit, suspend, and flow
control keys are turned off; characters are presented to curses input functions one by one.

curses.reset_prog_mode()

Restore the terminal to “program” mode, as previously saved by def_prog_mode().

curses.reset_shell_mode()

Restore the terminal to “shell” mode, as previously saved by def_shell_mode().

curses.resetty()

Restore the state of the terminal modes to what it was at the last call to savetty().

curses.resize_term(nlines, ncols)
Backend function used by resizeterm(), performing most of the work; when resizing the windows,
resize_term() blank-fills the areas that are extended. The calling application should fill in these areas
with appropriate data. The resize_term() function attempts to resize all windows. However, due to the
calling convention of pads, it is not possible to resize these without additional interaction with the application.

curses.resizeterm(nlines, ncols)
Resize the standard and current windows to the specified dimensions, and adjusts other bookkeeping data used
by the curses library that record the window dimensions (in particular the SIGWINCH handler).

curses.savetty()

Save the current state of the terminal modes in a buffer, usable by resetty().

curses.get_escdelay()

Retrieves the value set by set_escdelay().

Added in version 3.9.

curses.set_escdelay(ms)

Sets the number of milliseconds to wait after reading an escape character, to distinguish between an individual
escape character entered on the keyboard from escape sequences sent by cursor and function keys.

Added in version 3.9.

curses.get_tabsize()

Retrieves the value set by set_tabsize().

Added in version 3.9.

912 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

curses.set_tabsize(size)
Sets the number of columns used by the curses library when converting a tab character to spaces as it adds the
tab to a window.

Added in version 3.9.

curses.setsyx(y, x)
Set the virtual screen cursor to y, x. If y and x are both -1, then leaveok is set True.

curses.setupterm(term=None, fd=-1)
Initialize the terminal. term is a string giving the terminal name, or None; if omitted or None, the value of the
TERM environment variable will be used. fd is the file descriptor to which any initialization sequences will be
sent; if not supplied or -1, the file descriptor for sys.stdout will be used.

curses.start_color()

Must be called if the programmer wants to use colors, and before any other color manipulation routine is called.
It is good practice to call this routine right after initscr().

start_color() initializes eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white), and
two global variables in the cursesmodule, COLORS and COLOR_PAIRS, containing the maximum number of
colors and color-pairs the terminal can support. It also restores the colors on the terminal to the values they
had when the terminal was just turned on.

curses.termattrs()

Return a logical OR of all video attributes supported by the terminal. This information is useful when a curses
program needs complete control over the appearance of the screen.

curses.termname()

Return the value of the environment variable TERM, as a bytes object, truncated to 14 characters.

curses.tigetflag(capname)
Return the value of the Boolean capability corresponding to the terminfo capability name capname as an
integer. Return the value -1 if capname is not a Boolean capability, or 0 if it is canceled or absent from the
terminal description.

curses.tigetnum(capname)
Return the value of the numeric capability corresponding to the terminfo capability name capname as an
integer. Return the value -2 if capname is not a numeric capability, or -1 if it is canceled or absent from the
terminal description.

curses.tigetstr(capname)
Return the value of the string capability corresponding to the terminfo capability name capname as a bytes
object. Return None if capname is not a terminfo “string capability”, or is canceled or absent from the terminal
description.

curses.tparm(str[, ...])
Instantiate the bytes object strwith the supplied parameters, where str should be a parameterized string obtained
from the terminfo database. E.g. tparm(tigetstr("cup"), 5, 3) could result in b'\033[6;4H', the
exact result depending on terminal type.

curses.typeahead(fd)
Specify that the file descriptor fd be used for typeahead checking. If fd is -1, then no typeahead checking is
done.

The curses library does “line-breakout optimization” by looking for typeahead periodically while updating the
screen. If input is found, and it is coming from a tty, the current update is postponed until refresh or doupdate
is called again, allowing faster response to commands typed in advance. This function allows specifying a
different file descriptor for typeahead checking.

curses.unctrl(ch)
Return a bytes object which is a printable representation of the character ch. Control characters are represented
as a caret followed by the character, for example as b'^C'. Printing characters are left as they are.

17.5. curses— Terminal handling for character-cell displays 913

The Python Library Reference, Release 3.13.1

curses.ungetch(ch)
Push ch so the next getch() will return it.

Note

Only one ch can be pushed before getch() is called.

curses.update_lines_cols()

Update the LINES and COLS module variables. Useful for detecting manual screen resize.

Added in version 3.5.

curses.unget_wch(ch)

Push ch so the next get_wch() will return it.

Note

Only one ch can be pushed before get_wch() is called.

Added in version 3.3.

curses.ungetmouse(id, x, y, z, bstate)
Push a KEY_MOUSE event onto the input queue, associating the given state data with it.

curses.use_env(flag)
If used, this function should be called before initscr() or newterm are called. When flag is False, the
values of lines and columns specified in the terminfo database will be used, even if environment variables
LINES and COLUMNS (used by default) are set, or if curses is running in a window (in which case default
behavior would be to use the window size if LINES and COLUMNS are not set).

curses.use_default_colors()

Allow use of default values for colors on terminals supporting this feature. Use this to support transparency
in your application. The default color is assigned to the color number -1. After calling this function,
init_pair(x, curses.COLOR_RED, -1) initializes, for instance, color pair x to a red foreground color
on the default background.

curses.wrapper(func, / , *args, **kwargs)

Initialize curses and call another callable object, func, which should be the rest of your curses-using application.
If the application raises an exception, this function will restore the terminal to a sane state before re-raising
the exception and generating a traceback. The callable object func is then passed the main window ‘stdscr’ as
its first argument, followed by any other arguments passed to wrapper(). Before calling func, wrapper()
turns on cbreak mode, turns off echo, enables the terminal keypad, and initializes colors if the terminal has
color support. On exit (whether normally or by exception) it restores cooked mode, turns on echo, and disables
the terminal keypad.

17.5.2 Window Objects

Window objects, as returned by initscr() and newwin() above, have the following methods and attributes:

window.addch(ch[, attr])
window.addch(y, x, ch[, attr])

Paint character ch at (y, x) with attributes attr, overwriting any character previously painted at that location.
By default, the character position and attributes are the current settings for the window object.

914 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

Note

Writing outside the window, subwindow, or pad raises a curses.error. Attempting to write to the lower
right corner of a window, subwindow, or pad will cause an exception to be raised after the character is
printed.

window.addnstr(str, n[, attr])
window.addnstr(y, x, str, n[, attr])

Paint at most n characters of the character string str at (y, x) with attributes attr, overwriting anything
previously on the display.

window.addstr(str[, attr])
window.addstr(y, x, str[, attr])

Paint the character string str at (y, x) with attributes attr, overwriting anything previously on the display.

Note

• Writing outside the window, subwindow, or pad raises curses.error. Attempting to write to the
lower right corner of a window, subwindow, or pad will cause an exception to be raised after the
string is printed.

• A bug in ncurses, the backend for this Python module, can cause SegFaults when resizing windows.
This is fixed in ncurses-6.1-20190511. If you are stuck with an earlier ncurses, you can avoid trigger-
ing this if you do not call addstr() with a str that has embedded newlines. Instead, call addstr()
separately for each line.

window.attroff(attr)
Remove attribute attr from the “background” set applied to all writes to the current window.

window.attron(attr)
Add attribute attr from the “background” set applied to all writes to the current window.

window.attrset(attr)
Set the “background” set of attributes to attr. This set is initially 0 (no attributes).

window.bkgd(ch[, attr])
Set the background property of the window to the character ch, with attributes attr. The change is then applied
to every character position in that window:

• The attribute of every character in the window is changed to the new background attribute.

• Wherever the former background character appears, it is changed to the new background character.

window.bkgdset(ch[, attr])
Set the window’s background. A window’s background consists of a character and any combination of at-
tributes. The attribute part of the background is combined (OR’ed) with all non-blank characters that are
written into the window. Both the character and attribute parts of the background are combined with the
blank characters. The background becomes a property of the character and moves with the character through
any scrolling and insert/delete line/character operations.

window.border([ls[, rs[, ts[, bs[, tl[, tr[, bl[, br]]]]]]]])
Draw a border around the edges of the window. Each parameter specifies the character to use for a specific
part of the border; see the table below for more details.

17.5. curses— Terminal handling for character-cell displays 915

https://bugs.python.org/issue35924

The Python Library Reference, Release 3.13.1

Note

A 0 value for any parameter will cause the default character to be used for that parameter. Keyword
parameters can not be used. The defaults are listed in this table:

Parameter Description Default value

ls Left side ACS_VLINE

rs Right side ACS_VLINE

ts Top ACS_HLINE

bs Bottom ACS_HLINE

tl Upper-left corner ACS_ULCORNER

tr Upper-right corner ACS_URCORNER

bl Bottom-left corner ACS_LLCORNER

br Bottom-right corner ACS_LRCORNER

window.box([vertch, horch])
Similar to border(), but both ls and rs are vertch and both ts and bs are horch. The default corner characters
are always used by this function.

window.chgat(attr)
window.chgat(num, attr)
window.chgat(y, x, attr)
window.chgat(y, x, num, attr)

Set the attributes of num characters at the current cursor position, or at position (y, x) if supplied. If num
is not given or is -1, the attribute will be set on all the characters to the end of the line. This function moves
cursor to position (y, x) if supplied. The changed line will be touched using the touchline() method so
that the contents will be redisplayed by the next window refresh.

window.clear()

Like erase(), but also cause the whole window to be repainted upon next call to refresh().

window.clearok(flag)
If flag is True, the next call to refresh() will clear the window completely.

window.clrtobot()

Erase from cursor to the end of the window: all lines below the cursor are deleted, and then the equivalent of
clrtoeol() is performed.

window.clrtoeol()

Erase from cursor to the end of the line.

window.cursyncup()

Update the current cursor position of all the ancestors of the window to reflect the current cursor position of
the window.

window.delch([y, x])
Delete any character at (y, x).

window.deleteln()

Delete the line under the cursor. All following lines are moved up by one line.

window.derwin(begin_y, begin_x)
window.derwin(nlines, ncols, begin_y, begin_x)

An abbreviation for “derive window”, derwin() is the same as calling subwin(), except that begin_y and
begin_x are relative to the origin of the window, rather than relative to the entire screen. Return a window
object for the derived window.

916 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

window.echochar(ch[, attr])
Add character ch with attribute attr, and immediately call refresh() on the window.

window.enclose(y, x)
Test whether the given pair of screen-relative character-cell coordinates are enclosed by the given window,
returning True or False. It is useful for determining what subset of the screen windows enclose the location
of a mouse event.

Changed in version 3.10: Previously it returned 1 or 0 instead of True or False.

window.encoding

Encoding used to encode method arguments (Unicode strings and characters). The encoding attribute is inher-
ited from the parent window when a subwindow is created, for example with window.subwin(). By default,
current locale encoding is used (see locale.getencoding()).

Added in version 3.3.

window.erase()

Clear the window.

window.getbegyx()

Return a tuple (y, x) of coordinates of upper-left corner.

window.getbkgd()

Return the given window’s current background character/attribute pair.

window.getch([y, x])
Get a character. Note that the integer returned does not have to be in ASCII range: function keys, keypad
keys and so on are represented by numbers higher than 255. In no-delay mode, return -1 if there is no input,
otherwise wait until a key is pressed.

window.get_wch([y, x])
Get a wide character. Return a character for most keys, or an integer for function keys, keypad keys, and other
special keys. In no-delay mode, raise an exception if there is no input.

Added in version 3.3.

window.getkey([y, x])
Get a character, returning a string instead of an integer, as getch() does. Function keys, keypad keys and
other special keys return a multibyte string containing the key name. In no-delay mode, raise an exception if
there is no input.

window.getmaxyx()

Return a tuple (y, x) of the height and width of the window.

window.getparyx()

Return the beginning coordinates of this window relative to its parent window as a tuple (y, x). Return (-1,
-1) if this window has no parent.

window.getstr()

window.getstr(n)
window.getstr(y, x)
window.getstr(y, x, n)

Read a bytes object from the user, with primitive line editing capacity.

window.getyx()

Return a tuple (y, x) of current cursor position relative to the window’s upper-left corner.

window.hline(ch, n)
window.hline(y, x, ch, n)

Display a horizontal line starting at (y, x) with length n consisting of the character ch.

17.5. curses— Terminal handling for character-cell displays 917

The Python Library Reference, Release 3.13.1

window.idcok(flag)
If flag is False, curses no longer considers using the hardware insert/delete character feature of the terminal; if
flag is True, use of character insertion and deletion is enabled. When curses is first initialized, use of character
insert/delete is enabled by default.

window.idlok(flag)
If flag is True, curses will try and use hardware line editing facilities. Otherwise, line insertion/deletion are
disabled.

window.immedok(flag)
If flag is True, any change in the window image automatically causes the window to be refreshed; you no
longer have to call refresh() yourself. However, it may degrade performance considerably, due to repeated
calls to wrefresh. This option is disabled by default.

window.inch([y, x])
Return the character at the given position in the window. The bottom 8 bits are the character proper, and upper
bits are the attributes.

window.insch(ch[, attr])
window.insch(y, x, ch[, attr])

Paint character ch at (y, x) with attributes attr, moving the line from position x right by one character.

window.insdelln(nlines)
Insert nlines lines into the specified window above the current line. The nlines bottom lines are lost. For
negative nlines, delete nlines lines starting with the one under the cursor, and move the remaining lines up. The
bottom nlines lines are cleared. The current cursor position remains the same.

window.insertln()

Insert a blank line under the cursor. All following lines are moved down by one line.

window.insnstr(str, n[, attr])
window.insnstr(y, x, str, n[, attr])

Insert a character string (as many characters as will fit on the line) before the character under the cursor, up to
n characters. If n is zero or negative, the entire string is inserted. All characters to the right of the cursor are
shifted right, with the rightmost characters on the line being lost. The cursor position does not change (after
moving to y, x, if specified).

window.insstr(str[, attr])
window.insstr(y, x, str[, attr])

Insert a character string (as many characters as will fit on the line) before the character under the cursor. All
characters to the right of the cursor are shifted right, with the rightmost characters on the line being lost. The
cursor position does not change (after moving to y, x, if specified).

window.instr([n])
window.instr(y, x[, n])

Return a bytes object of characters, extracted from the window starting at the current cursor position, or at y,
x if specified. Attributes are stripped from the characters. If n is specified, instr() returns a string at most
n characters long (exclusive of the trailing NUL).

window.is_linetouched(line)
Return True if the specified line was modified since the last call to refresh(); otherwise return False.
Raise a curses.error exception if line is not valid for the given window.

window.is_wintouched()

Return True if the specified window was modified since the last call to refresh(); otherwise return False.

window.keypad(flag)
If flag is True, escape sequences generated by some keys (keypad, function keys) will be interpreted by
curses. If flag is False, escape sequences will be left as is in the input stream.

918 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

window.leaveok(flag)
If flag is True, cursor is left where it is on update, instead of being at “cursor position.” This reduces cursor
movement where possible. If possible the cursor will be made invisible.

If flag is False, cursor will always be at “cursor position” after an update.

window.move(new_y, new_x)
Move cursor to (new_y, new_x).

window.mvderwin(y, x)
Move the window inside its parent window. The screen-relative parameters of the window are not changed.
This routine is used to display different parts of the parent window at the same physical position on the screen.

window.mvwin(new_y, new_x)
Move the window so its upper-left corner is at (new_y, new_x).

window.nodelay(flag)
If flag is True, getch() will be non-blocking.

window.notimeout(flag)
If flag is True, escape sequences will not be timed out.

If flag is False, after a few milliseconds, an escape sequence will not be interpreted, and will be left in the
input stream as is.

window.noutrefresh()

Mark for refresh but wait. This function updates the data structure representing the desired state of the window,
but does not force an update of the physical screen. To accomplish that, call doupdate().

window.overlay(destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol])
Overlay the window on top of destwin. The windows need not be the same size, only the overlapping region is
copied. This copy is non-destructive, which means that the current background character does not overwrite
the old contents of destwin.

To get fine-grained control over the copied region, the second form of overlay() can be used. sminrow and
smincol are the upper-left coordinates of the source window, and the other variables mark a rectangle in the
destination window.

window.overwrite(destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol])
Overwrite the window on top of destwin. The windows need not be the same size, in which case only the
overlapping region is copied. This copy is destructive, which means that the current background character
overwrites the old contents of destwin.

To get fine-grained control over the copied region, the second form of overwrite() can be used. sminrow
and smincol are the upper-left coordinates of the source window, the other variables mark a rectangle in the
destination window.

window.putwin(file)
Write all data associated with the window into the provided file object. This information can be later retrieved
using the getwin() function.

window.redrawln(beg, num)
Indicate that the num screen lines, starting at line beg, are corrupted and should be completely redrawn on the
next refresh() call.

window.redrawwin()

Touch the entire window, causing it to be completely redrawn on the next refresh() call.

window.refresh([pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol])
Update the display immediately (sync actual screen with previous drawing/deleting methods).

The 6 optional arguments can only be specified when the window is a pad created with newpad(). The
additional parameters are needed to indicate what part of the pad and screen are involved. pminrow and
pmincol specify the upper left-hand corner of the rectangle to be displayed in the pad. sminrow, smincol,

17.5. curses— Terminal handling for character-cell displays 919

The Python Library Reference, Release 3.13.1

smaxrow, and smaxcol specify the edges of the rectangle to be displayed on the screen. The lower right-hand
corner of the rectangle to be displayed in the pad is calculated from the screen coordinates, since the rectangles
must be the same size. Both rectangles must be entirely contained within their respective structures. Negative
values of pminrow, pmincol, sminrow, or smincol are treated as if they were zero.

window.resize(nlines, ncols)
Reallocate storage for a curses window to adjust its dimensions to the specified values. If either dimension is
larger than the current values, the window’s data is filled with blanks that have the current background rendition
(as set by bkgdset()) merged into them.

window.scroll([lines=1])
Scroll the screen or scrolling region upward by lines lines.

window.scrollok(flag)
Control what happens when the cursor of a window is moved off the edge of the window or scrolling region,
either as a result of a newline action on the bottom line, or typing the last character of the last line. If flag is
False, the cursor is left on the bottom line. If flag is True, the window is scrolled up one line. Note that in
order to get the physical scrolling effect on the terminal, it is also necessary to call idlok().

window.setscrreg(top, bottom)
Set the scrolling region from line top to line bottom. All scrolling actions will take place in this region.

window.standend()

Turn off the standout attribute. On some terminals this has the side effect of turning off all attributes.

window.standout()

Turn on attribute A_STANDOUT.

window.subpad(begin_y, begin_x)
window.subpad(nlines, ncols, begin_y, begin_x)

Return a sub-window, whose upper-left corner is at (begin_y, begin_x), and whose width/height is
ncols/nlines.

window.subwin(begin_y, begin_x)
window.subwin(nlines, ncols, begin_y, begin_x)

Return a sub-window, whose upper-left corner is at (begin_y, begin_x), and whose width/height is
ncols/nlines.

By default, the sub-window will extend from the specified position to the lower right corner of the window.

window.syncdown()

Touch each location in the window that has been touched in any of its ancestor windows. This routine is called
by refresh(), so it should almost never be necessary to call it manually.

window.syncok(flag)
If flag is True, then syncup() is called automatically whenever there is a change in the window.

window.syncup()

Touch all locations in ancestors of the window that have been changed in the window.

window.timeout(delay)
Set blocking or non-blocking read behavior for the window. If delay is negative, blocking read is used (which
will wait indefinitely for input). If delay is zero, then non-blocking read is used, and getch() will return -1
if no input is waiting. If delay is positive, then getch() will block for delay milliseconds, and return -1 if
there is still no input at the end of that time.

window.touchline(start, count[, changed])
Pretend count lines have been changed, starting with line start. If changed is supplied, it specifies whether the
affected lines are marked as having been changed (changed=True) or unchanged (changed=False).

window.touchwin()

Pretend the whole window has been changed, for purposes of drawing optimizations.

920 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

window.untouchwin()

Mark all lines in the window as unchanged since the last call to refresh().

window.vline(ch, n[, attr])
window.vline(y, x, ch, n[, attr])

Display a vertical line starting at (y, x) with length n consisting of the character ch with attributes attr.

17.5.3 Constants

The curses module defines the following data members:

curses.ERR

Some curses routines that return an integer, such as getch(), return ERR upon failure.

curses.OK

Some curses routines that return an integer, such as napms(), return OK upon success.

curses.version

curses.__version__

A bytes object representing the current version of the module.

curses.ncurses_version

A named tuple containing the three components of the ncurses library version: major, minor, and patch. All
values are integers. The components can also be accessed by name, so curses.ncurses_version[0] is
equivalent to curses.ncurses_version.major and so on.

Availability: if the ncurses library is used.

Added in version 3.8.

curses.COLORS

The maximum number of colors the terminal can support. It is defined only after the call to start_color().

curses.COLOR_PAIRS

The maximum number of color pairs the terminal can support. It is defined only after the call to
start_color().

curses.COLS

The width of the screen, i.e., the number of columns. It is defined only after the call to initscr(). Updated
by update_lines_cols(), resizeterm() and resize_term().

curses.LINES

The height of the screen, i.e., the number of lines. It is defined only after the call to initscr(). Updated by
update_lines_cols(), resizeterm() and resize_term().

Some constants are available to specify character cell attributes. The exact constants available are system dependent.

17.5. curses— Terminal handling for character-cell displays 921

The Python Library Reference, Release 3.13.1

Attribute Meaning

curses.A_ALTCHARSET
Alternate character set mode

curses.A_BLINK
Blink mode

curses.A_BOLD
Bold mode

curses.A_DIM
Dim mode

curses.A_INVIS
Invisible or blank mode

curses.A_ITALIC
Italic mode

curses.A_NORMAL
Normal attribute

curses.A_PROTECT
Protected mode

curses.A_REVERSE
Reverse background and foreground colors

curses.A_STANDOUT
Standout mode

curses.A_UNDERLINE
Underline mode

curses.A_HORIZONTAL
Horizontal highlight

curses.A_LEFT
Left highlight

curses.A_LOW
Low highlight

curses.A_RIGHT
Right highlight

curses.A_TOP
Top highlight

curses.A_VERTICAL
Vertical highlight

Added in version 3.7: A_ITALIC was added.

Several constants are available to extract corresponding attributes returned by some methods.

922 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

Bit-mask Meaning

curses.A_ATTRIBUTES
Bit-mask to extract attributes

curses.A_CHARTEXT
Bit-mask to extract a character

curses.A_COLOR
Bit-mask to extract color-pair field information

Keys are referred to by integer constants with names starting with KEY_. The exact keycaps available are system
dependent.

Key constant Key

curses.KEY_MIN
Minimum key value

curses.KEY_BREAK
Break key (unreliable)

curses.KEY_DOWN
Down-arrow

curses.KEY_UP
Up-arrow

curses.KEY_LEFT
Left-arrow

curses.KEY_RIGHT
Right-arrow

curses.KEY_HOME
Home key (upward+left arrow)

curses.KEY_BACKSPACE
Backspace (unreliable)

curses.KEY_F0
Function keys. Up to 64 function keys are supported.

curses.KEY_Fn
Value of function key n

curses.KEY_DL
Delete line

curses.KEY_IL
Insert line

curses.KEY_DC
Delete character

continues on next page

17.5. curses— Terminal handling for character-cell displays 923

The Python Library Reference, Release 3.13.1

Table 1 – continued from previous page

Key constant Key

curses.KEY_IC
Insert char or enter insert mode

curses.KEY_EIC
Exit insert char mode

curses.KEY_CLEAR
Clear screen

curses.KEY_EOS
Clear to end of screen

curses.KEY_EOL
Clear to end of line

curses.KEY_SF
Scroll 1 line forward

curses.KEY_SR
Scroll 1 line backward (reverse)

curses.KEY_NPAGE
Next page

curses.KEY_PPAGE
Previous page

curses.KEY_STAB
Set tab

curses.KEY_CTAB
Clear tab

curses.KEY_CATAB
Clear all tabs

curses.KEY_ENTER
Enter or send (unreliable)

curses.KEY_SRESET
Soft (partial) reset (unreliable)

curses.KEY_RESET
Reset or hard reset (unreliable)

curses.KEY_PRINT
Print

curses.KEY_LL
Home down or bottom (lower left)

curses.KEY_A1
Upper left of keypad

continues on next page

924 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

Table 1 – continued from previous page

Key constant Key

curses.KEY_A3
Upper right of keypad

curses.KEY_B2
Center of keypad

curses.KEY_C1
Lower left of keypad

curses.KEY_C3
Lower right of keypad

curses.KEY_BTAB
Back tab

curses.KEY_BEG
Beg (beginning)

curses.KEY_CANCEL
Cancel

curses.KEY_CLOSE
Close

curses.KEY_COMMAND
Cmd (command)

curses.KEY_COPY
Copy

curses.KEY_CREATE
Create

curses.KEY_END
End

curses.KEY_EXIT
Exit

curses.KEY_FIND
Find

curses.KEY_HELP
Help

curses.KEY_MARK
Mark

curses.KEY_MESSAGE
Message

curses.KEY_MOVE
Move

continues on next page

17.5. curses— Terminal handling for character-cell displays 925

The Python Library Reference, Release 3.13.1

Table 1 – continued from previous page

Key constant Key

curses.KEY_NEXT
Next

curses.KEY_OPEN
Open

curses.KEY_OPTIONS
Options

curses.KEY_PREVIOUS
Prev (previous)

curses.KEY_REDO
Redo

curses.KEY_REFERENCE
Ref (reference)

curses.KEY_REFRESH
Refresh

curses.KEY_REPLACE
Replace

curses.KEY_RESTART
Restart

curses.KEY_RESUME
Resume

curses.KEY_SAVE
Save

curses.KEY_SBEG
Shifted Beg (beginning)

curses.KEY_SCANCEL
Shifted Cancel

curses.KEY_SCOMMAND
Shifted Command

curses.KEY_SCOPY
Shifted Copy

curses.KEY_SCREATE
Shifted Create

curses.KEY_SDC
Shifted Delete char

curses.KEY_SDL
Shifted Delete line

continues on next page

926 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

Table 1 – continued from previous page

Key constant Key

curses.KEY_SELECT
Select

curses.KEY_SEND
Shifted End

curses.KEY_SEOL
Shifted Clear line

curses.KEY_SEXIT
Shifted Exit

curses.KEY_SFIND
Shifted Find

curses.KEY_SHELP
Shifted Help

curses.KEY_SHOME
Shifted Home

curses.KEY_SIC
Shifted Input

curses.KEY_SLEFT
Shifted Left arrow

curses.KEY_SMESSAGE
Shifted Message

curses.KEY_SMOVE
Shifted Move

curses.KEY_SNEXT
Shifted Next

curses.KEY_SOPTIONS
Shifted Options

curses.KEY_SPREVIOUS
Shifted Prev

curses.KEY_SPRINT
Shifted Print

curses.KEY_SREDO
Shifted Redo

curses.KEY_SREPLACE
Shifted Replace

curses.KEY_SRIGHT
Shifted Right arrow

continues on next page

17.5. curses— Terminal handling for character-cell displays 927

The Python Library Reference, Release 3.13.1

Table 1 – continued from previous page

Key constant Key

curses.KEY_SRSUME
Shifted Resume

curses.KEY_SSAVE
Shifted Save

curses.KEY_SSUSPEND
Shifted Suspend

curses.KEY_SUNDO
Shifted Undo

curses.KEY_SUSPEND
Suspend

curses.KEY_UNDO
Undo

curses.KEY_MOUSE
Mouse event has occurred

curses.KEY_RESIZE
Terminal resize event

curses.KEY_MAX
Maximum key value

On VT100s and their software emulations, such as X terminal emulators, there are normally at least four function keys
(KEY_F1, KEY_F2, KEY_F3, KEY_F4) available, and the arrow keys mapped to KEY_UP, KEY_DOWN, KEY_LEFT and
KEY_RIGHT in the obvious way. If yourmachine has a PC keyboard, it is safe to expect arrow keys and twelve function
keys (older PC keyboards may have only ten function keys); also, the following keypad mappings are standard:

Keycap Constant

Insert KEY_IC
Delete KEY_DC
Home KEY_HOME
End KEY_END
Page Up KEY_PPAGE
Page Down KEY_NPAGE

The following table lists characters from the alternate character set. These are inherited from the VT100 terminal,
and will generally be available on software emulations such as X terminals. When there is no graphic available, curses
falls back on a crude printable ASCII approximation.

Note

These are available only after initscr() has been called.

928 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

ACS code Meaning

curses.ACS_BBSS
alternate name for upper right corner

curses.ACS_BLOCK
solid square block

curses.ACS_BOARD
board of squares

curses.ACS_BSBS
alternate name for horizontal line

curses.ACS_BSSB
alternate name for upper left corner

curses.ACS_BSSS
alternate name for top tee

curses.ACS_BTEE
bottom tee

curses.ACS_BULLET
bullet

curses.ACS_CKBOARD
checker board (stipple)

curses.ACS_DARROW
arrow pointing down

curses.ACS_DEGREE
degree symbol

curses.ACS_DIAMOND
diamond

curses.ACS_GEQUAL
greater-than-or-equal-to

curses.ACS_HLINE
horizontal line

curses.ACS_LANTERN
lantern symbol

curses.ACS_LARROW
left arrow

curses.ACS_LEQUAL
less-than-or-equal-to

curses.ACS_LLCORNER
lower left-hand corner

continues on next page

17.5. curses— Terminal handling for character-cell displays 929

The Python Library Reference, Release 3.13.1

Table 2 – continued from previous page

ACS code Meaning

curses.ACS_LRCORNER
lower right-hand corner

curses.ACS_LTEE
left tee

curses.ACS_NEQUAL
not-equal sign

curses.ACS_PI
letter pi

curses.ACS_PLMINUS
plus-or-minus sign

curses.ACS_PLUS
big plus sign

curses.ACS_RARROW
right arrow

curses.ACS_RTEE
right tee

curses.ACS_S1
scan line 1

curses.ACS_S3
scan line 3

curses.ACS_S7
scan line 7

curses.ACS_S9
scan line 9

curses.ACS_SBBS
alternate name for lower right corner

curses.ACS_SBSB
alternate name for vertical line

curses.ACS_SBSS
alternate name for right tee

curses.ACS_SSBB
alternate name for lower left corner

curses.ACS_SSBS
alternate name for bottom tee

curses.ACS_SSSB
alternate name for left tee

continues on next page

930 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

Table 2 – continued from previous page

ACS code Meaning

curses.ACS_SSSS
alternate name for crossover or big plus

curses.ACS_STERLING
pound sterling

curses.ACS_TTEE
top tee

curses.ACS_UARROW
up arrow

curses.ACS_ULCORNER
upper left corner

curses.ACS_URCORNER
upper right corner

curses.ACS_VLINE
vertical line

The following table lists mouse button constants used by getmouse():

Mouse button constant Meaning

curses.BUTTONn_PRESSED
Mouse button n pressed

curses.BUTTONn_RELEASED
Mouse button n released

curses.BUTTONn_CLICKED
Mouse button n clicked

curses.BUTTONn_DOUBLE_CLICKED
Mouse button n double clicked

curses.BUTTONn_TRIPLE_CLICKED
Mouse button n triple clicked

curses.BUTTON_SHIFT
Shift was down during button state change

curses.BUTTON_CTRL
Control was down during button state change

curses.BUTTON_ALT
Control was down during button state change

Changed in version 3.10: The BUTTON5_* constants are now exposed if they are provided by the underlying curses
library.

The following table lists the predefined colors:

17.5. curses— Terminal handling for character-cell displays 931

The Python Library Reference, Release 3.13.1

Constant Color

curses.COLOR_BLACK
Black

curses.COLOR_BLUE
Blue

curses.COLOR_CYAN
Cyan (light greenish blue)

curses.COLOR_GREEN
Green

curses.COLOR_MAGENTA
Magenta (purplish red)

curses.COLOR_RED
Red

curses.COLOR_WHITE
White

curses.COLOR_YELLOW
Yellow

17.6 curses.textpad— Text input widget for curses programs

The curses.textpad module provides a Textbox class that handles elementary text editing in a curses win-
dow, supporting a set of keybindings resembling those of Emacs (thus, also of Netscape Navigator, BBedit 6.x,
FrameMaker, and many other programs). The module also provides a rectangle-drawing function useful for framing
text boxes or for other purposes.

The module curses.textpad defines the following function:

curses.textpad.rectangle(win, uly, ulx, lry, lrx)
Draw a rectangle. The first argument must be a window object; the remaining arguments are coordinates
relative to that window. The second and third arguments are the y and x coordinates of the upper left hand
corner of the rectangle to be drawn; the fourth and fifth arguments are the y and x coordinates of the lower
right hand corner. The rectangle will be drawn using VT100/IBM PC forms characters on terminals that make
this possible (including xterm and most other software terminal emulators). Otherwise it will be drawn with
ASCII dashes, vertical bars, and plus signs.

17.6.1 Textbox objects

You can instantiate a Textbox object as follows:

class curses.textpad.Textbox(win)

Return a textbox widget object. The win argument should be a curses window object in which the textbox is to
be contained. The edit cursor of the textbox is initially located at the upper left hand corner of the containing
window, with coordinates (0, 0). The instance’s stripspaces flag is initially on.

Textbox objects have the following methods:

edit([validator])
This is the entry point you will normally use. It accepts editing keystrokes until one of the termination
keystrokes is entered. If validator is supplied, it must be a function. It will be called for each keystroke

932 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

entered with the keystroke as a parameter; command dispatch is done on the result. This method re-
turns the window contents as a string; whether blanks in the window are included is affected by the
stripspaces attribute.

do_command(ch)
Process a single command keystroke. Here are the supported special keystrokes:

Keystroke Action

Control-A Go to left edge of window.
Control-B Cursor left, wrapping to previous line if appropriate.
Control-D Delete character under cursor.
Control-E Go to right edge (stripspaces off) or end of line (stripspaces on).
Control-F Cursor right, wrapping to next line when appropriate.
Control-G Terminate, returning the window contents.
Control-H Delete character backward.
Control-J Terminate if the window is 1 line, otherwise insert newline.
Control-K If line is blank, delete it, otherwise clear to end of line.
Control-L Refresh screen.
Control-N Cursor down; move down one line.
Control-O Insert a blank line at cursor location.
Control-P Cursor up; move up one line.

Move operations do nothing if the cursor is at an edge where the movement is not possible. The following
synonyms are supported where possible:

Constant Keystroke

KEY_LEFT Control-B

KEY_RIGHT Control-F

KEY_UP Control-P

KEY_DOWN Control-N

KEY_BACKSPACE Control-h

All other keystrokes are treated as a command to insert the given character and move right (with line
wrapping).

gather()

Return the window contents as a string; whether blanks in the window are included is affected by the
stripspaces member.

stripspaces

This attribute is a flag which controls the interpretation of blanks in the window. When it is on, trailing
blanks on each line are ignored; any cursor motion that would land the cursor on a trailing blank goes to
the end of that line instead, and trailing blanks are stripped when the window contents are gathered.

17.7 curses.ascii— Utilities for ASCII characters

Source code: Lib/curses/ascii.py

The curses.ascii module supplies name constants for ASCII characters and functions to test membership in
various ASCII character classes. The constants supplied are names for control characters as follows:

17.7. curses.ascii— Utilities for ASCII characters 933

https://github.com/python/cpython/tree/3.13/Lib/curses/ascii.py

The Python Library Reference, Release 3.13.1

Name Meaning

curses.ascii.NUL

curses.ascii.SOH
Start of heading, console interrupt

curses.ascii.STX
Start of text

curses.ascii.ETX
End of text

curses.ascii.EOT
End of transmission

curses.ascii.ENQ
Enquiry, goes with ACK flow control

curses.ascii.ACK
Acknowledgement

curses.ascii.BEL
Bell

curses.ascii.BS
Backspace

curses.ascii.TAB
Tab

curses.ascii.HT
Alias for TAB: “Horizontal tab”

curses.ascii.LF
Line feed

curses.ascii.NL
Alias for LF: “New line”

curses.ascii.VT
Vertical tab

curses.ascii.FF
Form feed

curses.ascii.CR
Carriage return

curses.ascii.SO
Shift-out, begin alternate character set

curses.ascii.SI
Shift-in, resume default character set

continues on next page

934 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

Table 3 – continued from previous page

Name Meaning

curses.ascii.DLE
Data-link escape

curses.ascii.DC1
XON, for flow control

curses.ascii.DC2
Device control 2, block-mode flow control

curses.ascii.DC3
XOFF, for flow control

curses.ascii.DC4
Device control 4

curses.ascii.NAK
Negative acknowledgement

curses.ascii.SYN
Synchronous idle

curses.ascii.ETB
End transmission block

curses.ascii.CAN
Cancel

curses.ascii.EM
End of medium

curses.ascii.SUB
Substitute

curses.ascii.ESC
Escape

curses.ascii.FS
File separator

curses.ascii.GS
Group separator

curses.ascii.RS
Record separator, block-mode terminator

curses.ascii.US
Unit separator

curses.ascii.SP
Space

curses.ascii.DEL
Delete

Note that many of these have little practical significance in modern usage. The mnemonics derive from teleprinter

17.7. curses.ascii— Utilities for ASCII characters 935

The Python Library Reference, Release 3.13.1

conventions that predate digital computers.

The module supplies the following functions, patterned on those in the standard C library:

curses.ascii.isalnum(c)
Checks for an ASCII alphanumeric character; it is equivalent to isalpha(c) or isdigit(c).

curses.ascii.isalpha(c)
Checks for an ASCII alphabetic character; it is equivalent to isupper(c) or islower(c).

curses.ascii.isascii(c)
Checks for a character value that fits in the 7-bit ASCII set.

curses.ascii.isblank(c)
Checks for an ASCII whitespace character; space or horizontal tab.

curses.ascii.iscntrl(c)
Checks for an ASCII control character (in the range 0x00 to 0x1f or 0x7f).

curses.ascii.isdigit(c)
Checks for an ASCII decimal digit, '0' through '9'. This is equivalent to c in string.digits.

curses.ascii.isgraph(c)
Checks for ASCII any printable character except space.

curses.ascii.islower(c)
Checks for an ASCII lower-case character.

curses.ascii.isprint(c)
Checks for any ASCII printable character including space.

curses.ascii.ispunct(c)
Checks for any printable ASCII character which is not a space or an alphanumeric character.

curses.ascii.isspace(c)
Checks for ASCII white-space characters; space, line feed, carriage return, form feed, horizontal tab, vertical
tab.

curses.ascii.isupper(c)
Checks for an ASCII uppercase letter.

curses.ascii.isxdigit(c)

Checks for an ASCII hexadecimal digit. This is equivalent to c in string.hexdigits.

curses.ascii.isctrl(c)
Checks for an ASCII control character (ordinal values 0 to 31).

curses.ascii.ismeta(c)
Checks for a non-ASCII character (ordinal values 0x80 and above).

These functions accept either integers or single-character strings; when the argument is a string, it is first converted
using the built-in function ord().

Note that all these functions check ordinal bit values derived from the character of the string you pass in; they do not
actually know anything about the host machine’s character encoding.

The following two functions take either a single-character string or integer byte value; they return a value of the same
type.

curses.ascii.ascii(c)
Return the ASCII value corresponding to the low 7 bits of c.

936 Chapter 17. Command Line Interface Libraries

The Python Library Reference, Release 3.13.1

curses.ascii.ctrl(c)
Return the control character corresponding to the given character (the character bit value is bitwise-anded with
0x1f).

curses.ascii.alt(c)
Return the 8-bit character corresponding to the given ASCII character (the character bit value is bitwise-ored
with 0x80).

The following function takes either a single-character string or integer value; it returns a string.

curses.ascii.unctrl(c)
Return a string representation of the ASCII character c. If c is printable, this string is the character itself. If the
character is a control character (0x00–0x1f) the string consists of a caret ('^') followed by the corresponding
uppercase letter. If the character is an ASCII delete (0x7f) the string is '^?'. If the character has its meta bit
(0x80) set, the meta bit is stripped, the preceding rules applied, and '!' prepended to the result.

curses.ascii.controlnames

A 33-element string array that contains the ASCII mnemonics for the thirty-two ASCII control characters from
0 (NUL) to 0x1f (US), in order, plus the mnemonic SP for the space character.

17.8 curses.panel— A panel stack extension for curses

Panels are windows with the added feature of depth, so they can be stacked on top of each other, and only the visible
portions of each window will be displayed. Panels can be added, moved up or down in the stack, and removed.

17.8.1 Functions

The module curses.panel defines the following functions:

curses.panel.bottom_panel()

Returns the bottom panel in the panel stack.

curses.panel.new_panel(win)
Returns a panel object, associating it with the given window win. Be aware that you need to keep the returned
panel object referenced explicitly. If you don’t, the panel object is garbage collected and removed from the
panel stack.

curses.panel.top_panel()

Returns the top panel in the panel stack.

curses.panel.update_panels()

Updates the virtual screen after changes in the panel stack. This does not call curses.doupdate(), so you’ll
have to do this yourself.

17.8.2 Panel Objects

Panel objects, as returned by new_panel() above, are windows with a stacking order. There’s always a window
associated with a panel which determines the content, while the panel methods are responsible for the window’s
depth in the panel stack.

Panel objects have the following methods:

Panel.above()

Returns the panel above the current panel.

Panel.below()

Returns the panel below the current panel.

17.8. curses.panel— A panel stack extension for curses 937

The Python Library Reference, Release 3.13.1

Panel.bottom()

Push the panel to the bottom of the stack.

Panel.hidden()

Returns True if the panel is hidden (not visible), False otherwise.

Panel.hide()

Hide the panel. This does not delete the object, it just makes the window on screen invisible.

Panel.move(y, x)
Move the panel to the screen coordinates (y, x).

Panel.replace(win)
Change the window associated with the panel to the window win.

Panel.set_userptr(obj)
Set the panel’s user pointer to obj. This is used to associate an arbitrary piece of data with the panel, and can
be any Python object.

Panel.show()

Display the panel (which might have been hidden).

Panel.top()

Push panel to the top of the stack.

Panel.userptr()

Returns the user pointer for the panel. This might be any Python object.

Panel.window()

Returns the window object associated with the panel.

938 Chapter 17. Command Line Interface Libraries

CHAPTER

EIGHTEEN

CONCURRENT EXECUTION

The modules described in this chapter provide support for concurrent execution of code. The appropriate choice of
tool will depend on the task to be executed (CPU bound vs IO bound) and preferred style of development (event
driven cooperative multitasking vs preemptive multitasking). Here’s an overview:

18.1 threading— Thread-based parallelism

Source code: Lib/threading.py

This module constructs higher-level threading interfaces on top of the lower level _thread module.

Changed in version 3.7: This module used to be optional, it is now always available.

See also

concurrent.futures.ThreadPoolExecutor offers a higher level interface to push tasks to a background
thread without blocking execution of the calling thread, while still being able to retrieve their results when needed.

queue provides a thread-safe interface for exchanging data between running threads.

asyncio offers an alternative approach to achieving task level concurrency without requiring the use of multiple
operating system threads.

Note

In the Python 2.x series, this module contained camelCase names for some methods and functions. These are
deprecated as of Python 3.10, but they are still supported for compatibility with Python 2.5 and lower.

CPython implementation detail: In CPython, due to the Global Interpreter Lock, only one thread can execute
Python code at once (even though certain performance-oriented libraries might overcome this limitation). If you
want your application to make better use of the computational resources of multi-core machines, you are advised
to use multiprocessing or concurrent.futures.ProcessPoolExecutor. However, threading is still an
appropriate model if you want to run multiple I/O-bound tasks simultaneously.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

This module defines the following functions:

threading.active_count()

Return the number of Thread objects currently alive. The returned count is equal to the length of the list
returned by enumerate().

The function activeCount is a deprecated alias for this function.

939

https://github.com/python/cpython/tree/3.13/Lib/threading.py

The Python Library Reference, Release 3.13.1

threading.current_thread()

Return the current Thread object, corresponding to the caller’s thread of control. If the caller’s thread of
control was not created through the threading module, a dummy thread object with limited functionality is
returned.

The function currentThread is a deprecated alias for this function.

threading.excepthook(args, /)
Handle uncaught exception raised by Thread.run().

The args argument has the following attributes:

• exc_type: Exception type.

• exc_value: Exception value, can be None.

• exc_traceback: Exception traceback, can be None.

• thread: Thread which raised the exception, can be None.

If exc_type is SystemExit, the exception is silently ignored. Otherwise, the exception is printed out on sys.
stderr.

If this function raises an exception, sys.excepthook() is called to handle it.

threading.excepthook() can be overridden to control how uncaught exceptions raised by Thread.

run() are handled.

Storing exc_value using a custom hook can create a reference cycle. It should be cleared explicitly to break the
reference cycle when the exception is no longer needed.

Storing thread using a custom hook can resurrect it if it is set to an object which is being finalized. Avoid
storing thread after the custom hook completes to avoid resurrecting objects.

See also

sys.excepthook() handles uncaught exceptions.

Added in version 3.8.

threading.__excepthook__

Holds the original value of threading.excepthook(). It is saved so that the original value can be restored
in case they happen to get replaced with broken or alternative objects.

Added in version 3.10.

threading.get_ident()

Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct meaning;
it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data. Thread identifiers
may be recycled when a thread exits and another thread is created.

Added in version 3.3.

threading.get_native_id()

Return the native integral Thread ID of the current thread assigned by the kernel. This is a non-negative integer.
Its value may be used to uniquely identify this particular thread system-wide (until the thread terminates, after
which the value may be recycled by the OS).

Availability: Windows, FreeBSD, Linux, macOS, OpenBSD, NetBSD, AIX, DragonFlyBSD,
GNU/kFreeBSD.

Added in version 3.8.

Changed in version 3.13: Added support for GNU/kFreeBSD.

940 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

threading.enumerate()

Return a list of all Thread objects currently active. The list includes daemonic threads and dummy thread
objects created by current_thread(). It excludes terminated threads and threads that have not yet been
started. However, the main thread is always part of the result, even when terminated.

threading.main_thread()

Return the main Thread object. In normal conditions, the main thread is the thread from which the Python
interpreter was started.

Added in version 3.4.

threading.settrace(func)
Set a trace function for all threads started from the threading module. The func will be passed to sys.
settrace() for each thread, before its run() method is called.

threading.settrace_all_threads(func)
Set a trace function for all threads started from the threadingmodule and all Python threads that are currently
executing.

The func will be passed to sys.settrace() for each thread, before its run() method is called.

Added in version 3.12.

threading.gettrace()

Get the trace function as set by settrace().

Added in version 3.10.

threading.setprofile(func)
Set a profile function for all threads started from the threading module. The func will be passed to sys.
setprofile() for each thread, before its run() method is called.

threading.setprofile_all_threads(func)
Set a profile function for all threads started from the threading module and all Python threads that are
currently executing.

The func will be passed to sys.setprofile() for each thread, before its run() method is called.

Added in version 3.12.

threading.getprofile()

Get the profiler function as set by setprofile().

Added in version 3.10.

threading.stack_size([size])
Return the thread stack size used when creating new threads. The optional size argument specifies the stack size
to be used for subsequently created threads, and must be 0 (use platform or configured default) or a positive
integer value of at least 32,768 (32 KiB). If size is not specified, 0 is used. If changing the thread stack size
is unsupported, a RuntimeError is raised. If the specified stack size is invalid, a ValueError is raised
and the stack size is unmodified. 32 KiB is currently the minimum supported stack size value to guarantee
sufficient stack space for the interpreter itself. Note that some platforms may have particular restrictions on
values for the stack size, such as requiring a minimum stack size > 32 KiB or requiring allocation in multiples
of the system memory page size - platform documentation should be referred to for more information (4 KiB
pages are common; using multiples of 4096 for the stack size is the suggested approach in the absence of more
specific information).

Availability: Windows, pthreads.

Unix platforms with POSIX threads support.

This module also defines the following constant:

18.1. threading— Thread-based parallelism 941

The Python Library Reference, Release 3.13.1

threading.TIMEOUT_MAX

The maximum value allowed for the timeout parameter of blocking functions (Lock.acquire(), RLock.
acquire(), Condition.wait(), etc.). Specifying a timeout greater than this value will raise an
OverflowError.

Added in version 3.2.

This module defines a number of classes, which are detailed in the sections below.

The design of this module is loosely based on Java’s threading model. However, where Java makes locks and condi-
tion variables basic behavior of every object, they are separate objects in Python. Python’s Thread class supports
a subset of the behavior of Java’s Thread class; currently, there are no priorities, no thread groups, and threads can-
not be destroyed, stopped, suspended, resumed, or interrupted. The static methods of Java’s Thread class, when
implemented, are mapped to module-level functions.

All of the methods described below are executed atomically.

18.1.1 Thread-Local Data

Thread-local data is data whose values are thread specific. To manage thread-local data, just create an instance of
local (or a subclass) and store attributes on it:

mydata = threading.local()

mydata.x = 1

The instance’s values will be different for separate threads.

class threading.local

A class that represents thread-local data.

For more details and extensive examples, see the documentation string of the _threading_local module:
Lib/_threading_local.py.

18.1.2 Thread Objects

The Thread class represents an activity that is run in a separate thread of control. There are two ways to specify
the activity: by passing a callable object to the constructor, or by overriding the run() method in a subclass. No
other methods (except for the constructor) should be overridden in a subclass. In other words, only override the
__init__() and run() methods of this class.

Once a thread object is created, its activity must be started by calling the thread’s start() method. This invokes
the run() method in a separate thread of control.

Once the thread’s activity is started, the thread is considered ‘alive’. It stops being alive when its run() method
terminates – either normally, or by raising an unhandled exception. The is_alive() method tests whether the
thread is alive.

Other threads can call a thread’s join() method. This blocks the calling thread until the thread whose join()
method is called is terminated.

A thread has a name. The name can be passed to the constructor, and read or changed through the name attribute.

If the run() method raises an exception, threading.excepthook() is called to handle it. By default,
threading.excepthook() ignores silently SystemExit.

A thread can be flagged as a “daemon thread”. The significance of this flag is that the entire Python program exits
when only daemon threads are left. The initial value is inherited from the creating thread. The flag can be set through
the daemon property or the daemon constructor argument.

Note

942 Chapter 18. Concurrent Execution

https://github.com/python/cpython/tree/3.13/Lib/_threading_local.py

The Python Library Reference, Release 3.13.1

Daemon threads are abruptly stopped at shutdown. Their resources (such as open files, database transactions,
etc.) may not be released properly. If you want your threads to stop gracefully, make them non-daemonic and
use a suitable signalling mechanism such as an Event.

There is a “main thread” object; this corresponds to the initial thread of control in the Python program. It is not a
daemon thread.

There is the possibility that “dummy thread objects” are created. These are thread objects corresponding to “alien
threads”, which are threads of control started outside the threading module, such as directly from C code. Dummy
thread objects have limited functionality; they are always considered alive and daemonic, and cannot be joined. They
are never deleted, since it is impossible to detect the termination of alien threads.

class threading.Thread(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)
This constructor should always be called with keyword arguments. Arguments are:

group should be None; reserved for future extension when a ThreadGroup class is implemented.

target is the callable object to be invoked by the run() method. Defaults to None, meaning nothing is called.

name is the thread name. By default, a unique name is constructed of the form “Thread-N” where N is a
small decimal number, or “Thread-N (target)” where “target” is target.__name__ if the target argument is
specified.

args is a list or tuple of arguments for the target invocation. Defaults to ().

kwargs is a dictionary of keyword arguments for the target invocation. Defaults to {}.

If not None, daemon explicitly sets whether the thread is daemonic. If None (the default), the daemonic
property is inherited from the current thread.

If the subclass overrides the constructor, it must make sure to invoke the base class constructor (Thread.
__init__()) before doing anything else to the thread.

Changed in version 3.3: Added the daemon parameter.

Changed in version 3.10: Use the target name if name argument is omitted.

start()

Start the thread’s activity.

It must be called at most once per thread object. It arranges for the object’s run()method to be invoked
in a separate thread of control.

This method will raise a RuntimeError if called more than once on the same thread object.

run()

Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object
passed to the object’s constructor as the target argument, if any, with positional and keyword arguments
taken from the args and kwargs arguments, respectively.

Using list or tuple as the args argument which passed to the Thread could achieve the same effect.

Example:

>>> from threading import Thread

>>> t = Thread(target=print, args=[1])

>>> t.run()

1

>>> t = Thread(target=print, args=(1,))

>>> t.run()

1

18.1. threading— Thread-based parallelism 943

The Python Library Reference, Release 3.13.1

join(timeout=None)
Wait until the thread terminates. This blocks the calling thread until the thread whose join() method
is called terminates – either normally or through an unhandled exception – or until the optional timeout
occurs.

When the timeout argument is present and not None, it should be a floating-point number specifying a
timeout for the operation in seconds (or fractions thereof). As join() always returns None, you must
call is_alive() after join() to decide whether a timeout happened – if the thread is still alive, the
join() call timed out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be joined many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a
deadlock. It is also an error to join() a thread before it has been started and attempts to do so raise the
same exception.

name

A string used for identification purposes only. It has no semantics. Multiple threads may be given the
same name. The initial name is set by the constructor.

getName()

setName()

Deprecated getter/setter API for name; use it directly as a property instead.

Deprecated since version 3.10.

ident

The ‘thread identifier’ of this thread or None if the thread has not been started. This is a nonzero integer.
See the get_ident() function. Thread identifiers may be recycled when a thread exits and another
thread is created. The identifier is available even after the thread has exited.

native_id

The Thread ID (TID) of this thread, as assigned by the OS (kernel). This is a non-negative integer, or
None if the thread has not been started. See the get_native_id() function. This value may be used
to uniquely identify this particular thread system-wide (until the thread terminates, after which the value
may be recycled by the OS).

Note

Similar to Process IDs, Thread IDs are only valid (guaranteed unique system-wide) from the time
the thread is created until the thread has been terminated.

Availability: Windows, FreeBSD, Linux, macOS, OpenBSD, NetBSD, AIX, DragonFlyBSD.

Added in version 3.8.

is_alive()

Return whether the thread is alive.

This method returns True just before the run()method starts until just after the run()method termi-
nates. The module function enumerate() returns a list of all alive threads.

daemon

A boolean value indicating whether this thread is a daemon thread (True) or not (False). This must
be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from
the creating thread; the main thread is not a daemon thread and therefore all threads created in the main
thread default to daemon = False.

The entire Python program exits when no alive non-daemon threads are left.

isDaemon()

944 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

setDaemon()

Deprecated getter/setter API for daemon; use it directly as a property instead.

Deprecated since version 3.10.

18.1.3 Lock Objects

A primitive lock is a synchronization primitive that is not owned by a particular thread when locked. In Python,
it is currently the lowest level synchronization primitive available, implemented directly by the _thread extension
module.

A primitive lock is in one of two states, “locked” or “unlocked”. It is created in the unlocked state. It has two basic
methods, acquire() and release(). When the state is unlocked, acquire() changes the state to locked and
returns immediately. When the state is locked, acquire() blocks until a call to release() in another thread
changes it to unlocked, then the acquire() call resets it to locked and returns. The release() method should
only be called in the locked state; it changes the state to unlocked and returns immediately. If an attempt is made to
release an unlocked lock, a RuntimeError will be raised.

Locks also support the context management protocol.

When more than one thread is blocked in acquire() waiting for the state to turn to unlocked, only one thread
proceeds when a release() call resets the state to unlocked; which one of the waiting threads proceeds is not
defined, and may vary across implementations.

All methods are executed atomically.

class threading.Lock

The class implementing primitive lock objects. Once a thread has acquired a lock, subsequent attempts to
acquire it block, until it is released; any thread may release it.

Changed in version 3.13: Lock is now a class. In earlier Pythons, Lock was a factory function which returned
an instance of the underlying private lock type.

acquire(blocking=True, timeout=-1)
Acquire a lock, blocking or non-blocking.

When invoked with the blocking argument set to True (the default), block until the lock is unlocked,
then set it to locked and return True.

When invoked with the blocking argument set to False, do not block. If a call with blocking set to True
would block, return False immediately; otherwise, set the lock to locked and return True.

When invoked with the floating-point timeout argument set to a positive value, block for at most the
number of seconds specified by timeout and as long as the lock cannot be acquired. A timeout argument
of -1 specifies an unbounded wait. It is forbidden to specify a timeout when blocking is False.

The return value is True if the lock is acquired successfully, False if not (for example if the timeout
expired).

Changed in version 3.2: The timeout parameter is new.

Changed in version 3.2: Lock acquisition can now be interrupted by signals on POSIX if the underlying
threading implementation supports it.

release()

Release a lock. This can be called from any thread, not only the thread which has acquired the lock.

When the lock is locked, reset it to unlocked, and return. If any other threads are blocked waiting for the
lock to become unlocked, allow exactly one of them to proceed.

When invoked on an unlocked lock, a RuntimeError is raised.

There is no return value.

locked()

Return True if the lock is acquired.

18.1. threading— Thread-based parallelism 945

The Python Library Reference, Release 3.13.1

18.1.4 RLock Objects

A reentrant lock is a synchronization primitive that may be acquired multiple times by the same thread. Internally, it
uses the concepts of “owning thread” and “recursion level” in addition to the locked/unlocked state used by primitive
locks. In the locked state, some thread owns the lock; in the unlocked state, no thread owns it.

Threads call a lock’s acquire() method to lock it, and its release() method to unlock it.

Note

Reentrant locks support the context management protocol, so it is recommended to use with instead of manually
calling acquire() and release() to handle acquiring and releasing the lock for a block of code.

RLock’s acquire()/release() call pairs may be nested, unlike Lock’s acquire()/release(). Only the final
release() (the release() of the outermost pair) resets the lock to an unlocked state and allows another thread
blocked in acquire() to proceed.

acquire()/release() must be used in pairs: each acquire must have a release in the thread that has acquired the
lock. Failing to call release as many times the lock has been acquired can lead to deadlock.

class threading.RLock

This class implements reentrant lock objects. A reentrant lock must be released by the thread that acquired it.
Once a thread has acquired a reentrant lock, the same thread may acquire it again without blocking; the thread
must release it once for each time it has acquired it.

Note that RLock is actually a factory function which returns an instance of the most efficient version of the
concrete RLock class that is supported by the platform.

acquire(blocking=True, timeout=-1)
Acquire a lock, blocking or non-blocking.

See also

Using RLock as a context manager
Recommended over manual acquire() and release() calls whenever practical.

When invoked with the blocking argument set to True (the default):

• If no thread owns the lock, acquire the lock and return immediately.

• If another thread owns the lock, block until we are able to acquire lock, or timeout, if set to a positive
float value.

• If the same thread owns the lock, acquire the lock again, and return immediately. This is the dif-
ference between Lock and RLock; Lock handles this case the same as the previous, blocking until
the lock can be acquired.

When invoked with the blocking argument set to False:

• If no thread owns the lock, acquire the lock and return immediately.

• If another thread owns the lock, return immediately.

• If the same thread owns the lock, acquire the lock again and return immediately.

In all cases, if the thread was able to acquire the lock, return True. If the thread was unable to acquire
the lock (i.e. if not blocking or the timeout was reached) return False.

If called multiple times, failing to call release() as many times may lead to deadlock. Consider using
RLock as a context manager rather than calling acquire/release directly.

Changed in version 3.2: The timeout parameter is new.

946 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

release()

Release a lock, decrementing the recursion level. If after the decrement it is zero, reset the lock to
unlocked (not owned by any thread), and if any other threads are blocked waiting for the lock to become
unlocked, allow exactly one of them to proceed. If after the decrement the recursion level is still nonzero,
the lock remains locked and owned by the calling thread.

Only call this method when the calling thread owns the lock. A RuntimeError is raised if this method
is called when the lock is not acquired.

There is no return value.

18.1.5 Condition Objects

A condition variable is always associated with some kind of lock; this can be passed in or one will be created by
default. Passing one in is useful when several condition variables must share the same lock. The lock is part of the
condition object: you don’t have to track it separately.

A condition variable obeys the context management protocol: using the with statement acquires the associated lock for
the duration of the enclosed block. The acquire() and release() methods also call the corresponding methods
of the associated lock.

Other methods must be called with the associated lock held. The wait() method releases the lock, and then blocks
until another thread awakens it by calling notify() or notify_all(). Once awakened, wait() re-acquires the
lock and returns. It is also possible to specify a timeout.

The notify() method wakes up one of the threads waiting for the condition variable, if any are waiting. The
notify_all() method wakes up all threads waiting for the condition variable.

Note: the notify() and notify_all() methods don’t release the lock; this means that the thread or threads
awakened will not return from their wait() call immediately, but only when the thread that called notify() or
notify_all() finally relinquishes ownership of the lock.

The typical programming style using condition variables uses the lock to synchronize access to some shared state;
threads that are interested in a particular change of state call wait() repeatedly until they see the desired state, while
threads that modify the state call notify() or notify_all()when they change the state in such a way that it could
possibly be a desired state for one of the waiters. For example, the following code is a generic producer-consumer
situation with unlimited buffer capacity:

Consume one item

with cv:

while not an_item_is_available():

cv.wait()

get_an_available_item()

Produce one item

with cv:

make_an_item_available()

cv.notify()

The while loop checking for the application’s condition is necessary because wait() can return after an arbitrary
long time, and the condition which prompted the notify() call may no longer hold true. This is inherent to multi-
threaded programming. The wait_for() method can be used to automate the condition checking, and eases the
computation of timeouts:

Consume an item

with cv:

cv.wait_for(an_item_is_available)

get_an_available_item()

To choose between notify() and notify_all(), consider whether one state change can be interesting for only
one or several waiting threads. E.g. in a typical producer-consumer situation, adding one item to the buffer only
needs to wake up one consumer thread.

18.1. threading— Thread-based parallelism 947

The Python Library Reference, Release 3.13.1

class threading.Condition(lock=None)
This class implements condition variable objects. A condition variable allows one or more threads to wait until
they are notified by another thread.

If the lock argument is given and not None, it must be a Lock or RLock object, and it is used as the underlying
lock. Otherwise, a new RLock object is created and used as the underlying lock.

Changed in version 3.3: changed from a factory function to a class.

acquire(*args)

Acquire the underlying lock. This method calls the corresponding method on the underlying lock; the
return value is whatever that method returns.

release()

Release the underlying lock. This method calls the corresponding method on the underlying lock; there
is no return value.

wait(timeout=None)

Wait until notified or until a timeout occurs. If the calling thread has not acquired the lock when this
method is called, a RuntimeError is raised.

This method releases the underlying lock, and then blocks until it is awakened by a notify() or
notify_all() call for the same condition variable in another thread, or until the optional timeout
occurs. Once awakened or timed out, it re-acquires the lock and returns.

When the timeout argument is present and not None, it should be a floating-point number specifying a
timeout for the operation in seconds (or fractions thereof).

When the underlying lock is an RLock, it is not released using its release()method, since this may not
actually unlock the lock when it was acquired multiple times recursively. Instead, an internal interface of
the RLock class is used, which really unlocks it even when it has been recursively acquired several times.
Another internal interface is then used to restore the recursion level when the lock is reacquired.

The return value is True unless a given timeout expired, in which case it is False.

Changed in version 3.2: Previously, the method always returned None.

wait_for(predicate, timeout=None)
Wait until a condition evaluates to true. predicate should be a callable which result will be interpreted as
a boolean value. A timeout may be provided giving the maximum time to wait.

This utility method may call wait() repeatedly until the predicate is satisfied, or until a timeout occurs.
The return value is the last return value of the predicate and will evaluate to False if the method timed
out.

Ignoring the timeout feature, calling this method is roughly equivalent to writing:

while not predicate():

cv.wait()

Therefore, the same rules apply as with wait(): The lock must be held when called and is re-acquired
on return. The predicate is evaluated with the lock held.

Added in version 3.2.

notify(n=1)
By default, wake up one thread waiting on this condition, if any. If the calling thread has not acquired
the lock when this method is called, a RuntimeError is raised.

This method wakes up at most n of the threads waiting for the condition variable; it is a no-op if no
threads are waiting.

The current implementation wakes up exactly n threads, if at least n threads are waiting. However, it’s
not safe to rely on this behavior. A future, optimized implementation may occasionally wake up more
than n threads.

948 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

Note: an awakened thread does not actually return from its wait() call until it can reacquire the lock.
Since notify() does not release the lock, its caller should.

notify_all()

Wake up all threads waiting on this condition. This method acts like notify(), but wakes up all waiting
threads instead of one. If the calling thread has not acquired the lock when this method is called, a
RuntimeError is raised.

The method notifyAll is a deprecated alias for this method.

18.1.6 Semaphore Objects

This is one of the oldest synchronization primitives in the history of computer science, invented by the early Dutch
computer scientist Edsger W. Dijkstra (he used the names P() and V() instead of acquire() and release()).

A semaphore manages an internal counter which is decremented by each acquire() call and incremented by each
release() call. The counter can never go below zero; when acquire() finds that it is zero, it blocks, waiting until
some other thread calls release().

Semaphores also support the context management protocol.

class threading.Semaphore(value=1)
This class implements semaphore objects. A semaphore manages an atomic counter representing the number
of release() calls minus the number of acquire() calls, plus an initial value. The acquire() method
blocks if necessary until it can return without making the counter negative. If not given, value defaults to 1.

The optional argument gives the initial value for the internal counter; it defaults to 1. If the value given is less
than 0, ValueError is raised.

Changed in version 3.3: changed from a factory function to a class.

acquire(blocking=True, timeout=None)
Acquire a semaphore.

When invoked without arguments:

• If the internal counter is larger than zero on entry, decrement it by one and return True immediately.

• If the internal counter is zero on entry, block until awoken by a call to release(). Once awoken
(and the counter is greater than 0), decrement the counter by 1 and return True. Exactly one thread
will be awoken by each call to release(). The order in which threads are awoken should not be
relied on.

When invoked with blocking set to False, do not block. If a call without an argument would block,
return False immediately; otherwise, do the same thing as when called without arguments, and return
True.

When invoked with a timeout other than None, it will block for at most timeout seconds. If acquire does
not complete successfully in that interval, return False. Return True otherwise.

Changed in version 3.2: The timeout parameter is new.

release(n=1)

Release a semaphore, incrementing the internal counter by n. When it was zero on entry and other threads
are waiting for it to become larger than zero again, wake up n of those threads.

Changed in version 3.9: Added the n parameter to release multiple waiting threads at once.

class threading.BoundedSemaphore(value=1)

Class implementing bounded semaphore objects. A bounded semaphore checks to make sure its current value
doesn’t exceed its initial value. If it does, ValueError is raised. In most situations semaphores are used to
guard resources with limited capacity. If the semaphore is released too many times it’s a sign of a bug. If not
given, value defaults to 1.

Changed in version 3.3: changed from a factory function to a class.

18.1. threading— Thread-based parallelism 949

The Python Library Reference, Release 3.13.1

Semaphore Example

Semaphores are often used to guard resources with limited capacity, for example, a database server. In any situation
where the size of the resource is fixed, you should use a bounded semaphore. Before spawning any worker threads,
your main thread would initialize the semaphore:

maxconnections = 5

...

pool_sema = BoundedSemaphore(value=maxconnections)

Once spawned, worker threads call the semaphore’s acquire and release methods when they need to connect to the
server:

with pool_sema:

conn = connectdb()

try:

... use connection ...

finally:

conn.close()

The use of a bounded semaphore reduces the chance that a programming error which causes the semaphore to be
released more than it’s acquired will go undetected.

18.1.7 Event Objects

This is one of the simplest mechanisms for communication between threads: one thread signals an event and other
threads wait for it.

An event object manages an internal flag that can be set to true with the set() method and reset to false with the
clear() method. The wait() method blocks until the flag is true.

class threading.Event

Class implementing event objects. An event manages a flag that can be set to true with the set()method and
reset to false with the clear() method. The wait() method blocks until the flag is true. The flag is initially
false.

Changed in version 3.3: changed from a factory function to a class.

is_set()

Return True if and only if the internal flag is true.

The method isSet is a deprecated alias for this method.

set()

Set the internal flag to true. All threads waiting for it to become true are awakened. Threads that call
wait() once the flag is true will not block at all.

clear()

Reset the internal flag to false. Subsequently, threads calling wait() will block until set() is called to
set the internal flag to true again.

wait(timeout=None)

Block as long as the internal flag is false and the timeout, if given, has not expired. The return value
represents the reason that this blocking method returned; True if returning because the internal flag is
set to true, or False if a timeout is given and the internal flag did not become true within the given wait
time.

When the timeout argument is present and not None, it should be a floating-point number specifying a
timeout for the operation in seconds, or fractions thereof.

Changed in version 3.1: Previously, the method always returned None.

950 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

18.1.8 Timer Objects

This class represents an action that should be run only after a certain amount of time has passed — a timer. Timer
is a subclass of Thread and as such also functions as an example of creating custom threads.

Timers are started, as with threads, by calling their Timer.start method. The timer can be stopped (before its
action has begun) by calling the cancel() method. The interval the timer will wait before executing its action may
not be exactly the same as the interval specified by the user.

For example:

def hello():

print("hello, world")

t = Timer(30.0, hello)

t.start() # after 30 seconds, "hello, world" will be printed

class threading.Timer(interval, function, args=None, kwargs=None)
Create a timer that will run functionwith arguments args and keyword arguments kwargs, after interval seconds
have passed. If args is None (the default) then an empty list will be used. If kwargs is None (the default) then
an empty dict will be used.

Changed in version 3.3: changed from a factory function to a class.

cancel()

Stop the timer, and cancel the execution of the timer’s action. This will only work if the timer is still in
its waiting stage.

18.1.9 Barrier Objects

Added in version 3.2.

This class provides a simple synchronization primitive for use by a fixed number of threads that need to wait for
each other. Each of the threads tries to pass the barrier by calling the wait() method and will block until all of the
threads have made their wait() calls. At this point, the threads are released simultaneously.

The barrier can be reused any number of times for the same number of threads.

As an example, here is a simple way to synchronize a client and server thread:

b = Barrier(2, timeout=5)

def server():

start_server()

b.wait()

while True:

connection = accept_connection()

process_server_connection(connection)

def client():

b.wait()

while True:

connection = make_connection()

process_client_connection(connection)

class threading.Barrier(parties, action=None, timeout=None)
Create a barrier object for parties number of threads. An action, when provided, is a callable to be called
by one of the threads when they are released. timeout is the default timeout value if none is specified for the
wait() method.

18.1. threading— Thread-based parallelism 951

The Python Library Reference, Release 3.13.1

wait(timeout=None)
Pass the barrier. When all the threads party to the barrier have called this function, they are all released
simultaneously. If a timeout is provided, it is used in preference to any that was supplied to the class
constructor.

The return value is an integer in the range 0 to parties – 1, different for each thread. This can be used to
select a thread to do some special housekeeping, e.g.:

i = barrier.wait()

if i == 0:

Only one thread needs to print this

print("passed the barrier")

If an action was provided to the constructor, one of the threads will have called it prior to being released.
Should this call raise an error, the barrier is put into the broken state.

If the call times out, the barrier is put into the broken state.

This method may raise a BrokenBarrierError exception if the barrier is broken or reset while a
thread is waiting.

reset()

Return the barrier to the default, empty state. Any threads waiting on it will receive the
BrokenBarrierError exception.

Note that using this function may require some external synchronization if there are other threads whose
state is unknown. If a barrier is broken it may be better to just leave it and create a new one.

abort()

Put the barrier into a broken state. This causes any active or future calls to wait() to fail with the
BrokenBarrierError. Use this for example if one of the threads needs to abort, to avoid deadlocking
the application.

It may be preferable to simply create the barrier with a sensible timeout value to automatically guard
against one of the threads going awry.

parties

The number of threads required to pass the barrier.

n_waiting

The number of threads currently waiting in the barrier.

broken

A boolean that is True if the barrier is in the broken state.

exception threading.BrokenBarrierError

This exception, a subclass of RuntimeError, is raised when the Barrier object is reset or broken.

18.1.10 Using locks, conditions, and semaphores in the with statement

All of the objects provided by this module that have acquire and releasemethods can be used as context managers
for a with statement. The acquire method will be called when the block is entered, and release will be called
when the block is exited. Hence, the following snippet:

with some_lock:

do something...

is equivalent to:

some_lock.acquire()

try:

do something...

(continues on next page)

952 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

(continued from previous page)

finally:

some_lock.release()

Currently, Lock, RLock, Condition, Semaphore, and BoundedSemaphore objects may be used as with state-
ment context managers.

18.2 multiprocessing— Process-based parallelism

Source code: Lib/multiprocessing/

Availability: not Android, not iOS, not WASI.

This module is not supported on mobile platforms orWebAssembly platforms.

18.2.1 Introduction

multiprocessing is a package that supports spawning processes using an API similar to the threading module.
The multiprocessing package offers both local and remote concurrency, effectively side-stepping the Global
Interpreter Lock by using subprocesses instead of threads. Due to this, the multiprocessing module allows the
programmer to fully leverage multiple processors on a given machine. It runs on both POSIX and Windows.

The multiprocessing module also introduces APIs which do not have analogs in the threading module. A
prime example of this is the Pool object which offers a convenient means of parallelizing the execution of a function
across multiple input values, distributing the input data across processes (data parallelism). The following example
demonstrates the common practice of defining such functions in a module so that child processes can successfully
import that module. This basic example of data parallelism using Pool,

from multiprocessing import Pool

def f(x):

return x*x

if __name__ == '__main__':

with Pool(5) as p:

print(p.map(f, [1, 2, 3]))

will print to standard output

[1, 4, 9]

See also

concurrent.futures.ProcessPoolExecutor offers a higher level interface to push tasks to a background
process without blocking execution of the calling process. Compared to using the Pool interface directly, the
concurrent.futures API more readily allows the submission of work to the underlying process pool to be
separated from waiting for the results.

The Process class

In multiprocessing, processes are spawned by creating a Process object and then calling its start()method.
Process follows the API of threading.Thread. A trivial example of a multiprocess program is

from multiprocessing import Process

(continues on next page)

18.2. multiprocessing— Process-based parallelism 953

https://github.com/python/cpython/tree/3.13/Lib/multiprocessing/

The Python Library Reference, Release 3.13.1

(continued from previous page)

def f(name):

print('hello', name)

if __name__ == '__main__':

p = Process(target=f, args=('bob',))

p.start()

p.join()

To show the individual process IDs involved, here is an expanded example:

from multiprocessing import Process

import os

def info(title):

print(title)

print('module name:', __name__)

print('parent process:', os.getppid())

print('process id:', os.getpid())

def f(name):

info('function f')

print('hello', name)

if __name__ == '__main__':

info('main line')

p = Process(target=f, args=('bob',))

p.start()

p.join()

For an explanation of why the if __name__ == '__main__' part is necessary, see Programming guidelines.

Contexts and start methods

Depending on the platform, multiprocessing supports three ways to start a process. These start methods are

spawn
The parent process starts a fresh Python interpreter process. The child process will only inherit
those resources necessary to run the process object’s run() method. In particular, unnecessary
file descriptors and handles from the parent process will not be inherited. Starting a process using
this method is rather slow compared to using fork or forkserver.

Available on POSIX and Windows platforms. The default on Windows and macOS.

fork
The parent process uses os.fork() to fork the Python interpreter. The child process, when it
begins, is effectively identical to the parent process. All resources of the parent are inherited by
the child process. Note that safely forking a multithreaded process is problematic.

Available on POSIX systems. Currently the default on POSIX except macOS.

Note

The default start method will change away from fork in Python 3.14. Code that requires fork
should explicitly specify that via get_context() or set_start_method().

Changed in version 3.12: If Python is able to detect that your process has multiple threads, the
os.fork() function that this start method calls internally will raise a DeprecationWarning.
Use a different start method. See the os.fork() documentation for further explanation.

954 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

forkserver
When the program starts and selects the forkserver start method, a server process is spawned. From
then on, whenever a new process is needed, the parent process connects to the server and requests
that it fork a new process. The fork server process is single threaded unless system libraries or
preloaded imports spawn threads as a side-effect so it is generally safe for it to use os.fork().
No unnecessary resources are inherited.

Available on POSIX platforms which support passing file descriptors over Unix pipes such as
Linux.

Changed in version 3.4: spawn added on all POSIX platforms, and forkserver added for some POSIX platforms.
Child processes no longer inherit all of the parents inheritable handles on Windows.

Changed in version 3.8: On macOS, the spawn start method is now the default. The fork start method should be
considered unsafe as it can lead to crashes of the subprocess as macOS system libraries may start threads. See
bpo-33725.

On POSIX using the spawn or forkserver start methods will also start a resource tracker process which tracks the
unlinked named system resources (such as named semaphores or SharedMemory objects) created by processes of
the program. When all processes have exited the resource tracker unlinks any remaining tracked object. Usually
there should be none, but if a process was killed by a signal there may be some “leaked” resources. (Neither leaked
semaphores nor shared memory segments will be automatically unlinked until the next reboot. This is problematic for
both objects because the system allows only a limited number of named semaphores, and shared memory segments
occupy some space in the main memory.)

To select a start method you use the set_start_method() in the if __name__ == '__main__' clause of the
main module. For example:

import multiprocessing as mp

def foo(q):

q.put('hello')

if __name__ == '__main__':

mp.set_start_method('spawn')

q = mp.Queue()

p = mp.Process(target=foo, args=(q,))

p.start()

print(q.get())

p.join()

set_start_method() should not be used more than once in the program.

Alternatively, you can use get_context() to obtain a context object. Context objects have the same API as the
multiprocessing module, and allow one to use multiple start methods in the same program.

import multiprocessing as mp

def foo(q):

q.put('hello')

if __name__ == '__main__':

ctx = mp.get_context('spawn')

q = ctx.Queue()

p = ctx.Process(target=foo, args=(q,))

p.start()

print(q.get())

p.join()

Note that objects related to one context may not be compatible with processes for a different context. In particular,
locks created using the fork context cannot be passed to processes started using the spawn or forkserver start methods.

18.2. multiprocessing— Process-based parallelism 955

https://bugs.python.org/issue?@action=redirect&bpo=33725

The Python Library Reference, Release 3.13.1

A library which wants to use a particular start method should probably use get_context() to avoid interfering
with the choice of the library user.

Warning

The 'spawn' and 'forkserver' start methods generally cannot be used with “frozen” executables (i.e., bina-
ries produced by packages like PyInstaller and cx_Freeze) on POSIX systems. The 'fork' start method may
work if code does not use threads.

Exchanging objects between processes

multiprocessing supports two types of communication channel between processes:

Queues

The Queue class is a near clone of queue.Queue. For example:

from multiprocessing import Process, Queue

def f(q):

q.put([42, None, 'hello'])

if __name__ == '__main__':

q = Queue()

p = Process(target=f, args=(q,))

p.start()

print(q.get()) # prints "[42, None, 'hello']"

p.join()

Queues are thread and process safe. Any object put into a multiprocessing queue will be serialized.

Pipes

The Pipe() function returns a pair of connection objects connected by a pipe which by default is duplex
(two-way). For example:

from multiprocessing import Process, Pipe

def f(conn):

conn.send([42, None, 'hello'])

conn.close()

if __name__ == '__main__':

parent_conn, child_conn = Pipe()

p = Process(target=f, args=(child_conn,))

p.start()

print(parent_conn.recv()) # prints "[42, None, 'hello']"

p.join()

The two connection objects returned by Pipe() represent the two ends of the pipe. Each connection
object has send() and recv()methods (among others). Note that data in a pipemay become corrupted
if two processes (or threads) try to read from or write to the same end of the pipe at the same time. Of
course there is no risk of corruption from processes using different ends of the pipe at the same time.

The send() method serializes the object and recv() re-creates the object.

956 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

Synchronization between processes

multiprocessing contains equivalents of all the synchronization primitives from threading. For instance one
can use a lock to ensure that only one process prints to standard output at a time:

from multiprocessing import Process, Lock

def f(l, i):

l.acquire()

try:

print('hello world', i)

finally:

l.release()

if __name__ == '__main__':

lock = Lock()

for num in range(10):

Process(target=f, args=(lock, num)).start()

Without using the lock output from the different processes is liable to get all mixed up.

Sharing state between processes

As mentioned above, when doing concurrent programming it is usually best to avoid using shared state as far as
possible. This is particularly true when using multiple processes.

However, if you really do need to use some shared data then multiprocessing provides a couple of ways of doing
so.

Shared memory

Data can be stored in a shared memory map using Value or Array. For example, the following code

from multiprocessing import Process, Value, Array

def f(n, a):

n.value = 3.1415927

for i in range(len(a)):

a[i] = -a[i]

if __name__ == '__main__':

num = Value('d', 0.0)

arr = Array('i', range(10))

p = Process(target=f, args=(num, arr))

p.start()

p.join()

print(num.value)

print(arr[:])

will print

3.1415927

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

The 'd' and 'i' arguments used when creating num and arr are typecodes of the kind used by the
array module: 'd' indicates a double precision float and 'i' indicates a signed integer. These shared
objects will be process and thread-safe.

18.2. multiprocessing— Process-based parallelism 957

The Python Library Reference, Release 3.13.1

For more flexibility in using shared memory one can use the multiprocessing.sharedctypes
module which supports the creation of arbitrary ctypes objects allocated from shared memory.

Server process

A manager object returned by Manager() controls a server process which holds Python objects and
allows other processes to manipulate them using proxies.

A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock,
Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array. For
example,

from multiprocessing import Process, Manager

def f(d, l):

d[1] = '1'

d['2'] = 2

d[0.25] = None

l.reverse()

if __name__ == '__main__':

with Manager() as manager:

d = manager.dict()

l = manager.list(range(10))

p = Process(target=f, args=(d, l))

p.start()

p.join()

print(d)

print(l)

will print

{0.25: None, 1: '1', '2': 2}

[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Server process managers are more flexible than using shared memory objects because they can be made
to support arbitrary object types. Also, a single manager can be shared by processes on different com-
puters over a network. They are, however, slower than using shared memory.

Using a pool of workers

The Pool class represents a pool of worker processes. It has methods which allows tasks to be offloaded to the worker
processes in a few different ways.

For example:

from multiprocessing import Pool, TimeoutError

import time

import os

def f(x):

return x*x

if __name__ == '__main__':

start 4 worker processes

with Pool(processes=4) as pool:

print "[0, 1, 4,..., 81]"

(continues on next page)

958 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

(continued from previous page)

print(pool.map(f, range(10)))

print same numbers in arbitrary order

for i in pool.imap_unordered(f, range(10)):

print(i)

evaluate "f(20)" asynchronously

res = pool.apply_async(f, (20,)) # runs in *only* one process

print(res.get(timeout=1)) # prints "400"

evaluate "os.getpid()" asynchronously

res = pool.apply_async(os.getpid, ()) # runs in *only* one process

print(res.get(timeout=1)) # prints the PID of that process

launching multiple evaluations asynchronously *may* use more processes

multiple_results = [pool.apply_async(os.getpid, ()) for i in range(4)]

print([res.get(timeout=1) for res in multiple_results])

make a single worker sleep for 10 seconds

res = pool.apply_async(time.sleep, (10,))

try:

print(res.get(timeout=1))

except TimeoutError:

print("We lacked patience and got a multiprocessing.TimeoutError")

print("For the moment, the pool remains available for more work")

exiting the 'with'-block has stopped the pool

print("Now the pool is closed and no longer available")

Note that the methods of a pool should only ever be used by the process which created it.

Note

Functionality within this package requires that the __main__ module be importable by the children. This is
covered in Programming guidelines however it is worth pointing out here. This means that some examples, such
as the multiprocessing.pool.Pool examples will not work in the interactive interpreter. For example:

>>> from multiprocessing import Pool

>>> p = Pool(5)

>>> def f(x):

... return x*x

...

>>> with p:

... p.map(f, [1,2,3])

Process PoolWorker-1:

Process PoolWorker-2:

Process PoolWorker-3:

Traceback (most recent call last):

Traceback (most recent call last):

Traceback (most recent call last):

AttributeError: Can't get attribute 'f' on <module '__main__' (<class '_frozen_

↪→importlib.BuiltinImporter'>)>

AttributeError: Can't get attribute 'f' on <module '__main__' (<class '_frozen_

↪→importlib.BuiltinImporter'>)>

AttributeError: Can't get attribute 'f' on <module '__main__' (<class '_frozen_

↪→importlib.BuiltinImporter'>)>

18.2. multiprocessing— Process-based parallelism 959

The Python Library Reference, Release 3.13.1

(If you try this it will actually output three full tracebacks interleaved in a semi-random fashion, and then you
may have to stop the parent process somehow.)

18.2.2 Reference

The multiprocessing package mostly replicates the API of the threading module.

Process and exceptions

class multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *,
daemon=None)

Process objects represent activity that is run in a separate process. The Process class has equivalents of all
the methods of threading.Thread.

The constructor should always be called with keyword arguments. group should always be None; it exists solely
for compatibility with threading.Thread. target is the callable object to be invoked by the run()method.
It defaults to None, meaning nothing is called. name is the process name (see name for more details). args
is the argument tuple for the target invocation. kwargs is a dictionary of keyword arguments for the target
invocation. If provided, the keyword-only daemon argument sets the process daemon flag to True or False.
If None (the default), this flag will be inherited from the creating process.

By default, no arguments are passed to target. The args argument, which defaults to (), can be used to specify
a list or tuple of the arguments to pass to target.

If a subclass overrides the constructor, it must make sure it invokes the base class constructor (Process.
__init__()) before doing anything else to the process.

Changed in version 3.3: Added the daemon parameter.

run()

Method representing the process’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object
passed to the object’s constructor as the target argument, if any, with sequential and keyword arguments
taken from the args and kwargs arguments, respectively.

Using a list or tuple as the args argument passed to Process achieves the same effect.

Example:

>>> from multiprocessing import Process

>>> p = Process(target=print, args=[1])

>>> p.run()

1

>>> p = Process(target=print, args=(1,))

>>> p.run()

1

start()

Start the process’s activity.

This must be called at most once per process object. It arranges for the object’s run() method to be
invoked in a separate process.

join([timeout])
If the optional argument timeout is None (the default), the method blocks until the process whose join()
method is called terminates. If timeout is a positive number, it blocks at most timeout seconds. Note
that the method returns None if its process terminates or if the method times out. Check the process’s
exitcode to determine if it terminated.

A process can be joined many times.

960 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

A process cannot join itself because this would cause a deadlock. It is an error to attempt to join a process
before it has been started.

name

The process’s name. The name is a string used for identification purposes only. It has no semantics.
Multiple processes may be given the same name.

The initial name is set by the constructor. If no explicit name is provided to the constructor, a name of
the form ‘Process-N1:N2:…:Nk’ is constructed, where each Nk is the N-th child of its parent.

is_alive()

Return whether the process is alive.

Roughly, a process object is alive from the moment the start() method returns until the child process
terminates.

daemon

The process’s daemon flag, a Boolean value. This must be set before start() is called.

The initial value is inherited from the creating process.

When a process exits, it attempts to terminate all of its daemonic child processes.

Note that a daemonic process is not allowed to create child processes. Otherwise a daemonic process
would leave its children orphaned if it gets terminated when its parent process exits. Additionally, these
are not Unix daemons or services, they are normal processes that will be terminated (and not joined) if
non-daemonic processes have exited.

In addition to the threading.Thread API, Process objects also support the following attributes and meth-
ods:

pid

Return the process ID. Before the process is spawned, this will be None.

exitcode

The child’s exit code. This will be None if the process has not yet terminated.

If the child’s run()method returned normally, the exit code will be 0. If it terminated via sys.exit()
with an integer argument N, the exit code will be N.

If the child terminated due to an exception not caught within run(), the exit code will be 1. If it was
terminated by signal N, the exit code will be the negative value -N.

authkey

The process’s authentication key (a byte string).

When multiprocessing is initialized the main process is assigned a random string using os.

urandom().

When a Process object is created, it will inherit the authentication key of its parent process, although
this may be changed by setting authkey to another byte string.

See Authentication keys.

sentinel

A numeric handle of a system object which will become “ready” when the process ends.

You can use this value if you want to wait on several events at once using multiprocessing.

connection.wait(). Otherwise calling join() is simpler.

On Windows, this is an OS handle usable with the WaitForSingleObject and
WaitForMultipleObjects family of API calls. On POSIX, this is a file descriptor usable
with primitives from the select module.

Added in version 3.3.

18.2. multiprocessing— Process-based parallelism 961

The Python Library Reference, Release 3.13.1

terminate()

Terminate the process. On POSIX this is done using the SIGTERM signal; on Windows
TerminateProcess() is used. Note that exit handlers and finally clauses, etc., will not be executed.

Note that descendant processes of the process will not be terminated – they will simply become orphaned.

Warning

If this method is used when the associated process is using a pipe or queue then the pipe or queue is
liable to become corrupted and may become unusable by other process. Similarly, if the process has
acquired a lock or semaphore etc. then terminating it is liable to cause other processes to deadlock.

kill()

Same as terminate() but using the SIGKILL signal on POSIX.

Added in version 3.7.

close()

Close the Process object, releasing all resources associated with it. ValueError is raised if the un-
derlying process is still running. Once close() returns successfully, most other methods and attributes
of the Process object will raise ValueError.

Added in version 3.7.

Note that the start(), join(), is_alive(), terminate() and exitcodemethods should only be called
by the process that created the process object.

Example usage of some of the methods of Process:

>>> import multiprocessing, time, signal

>>> mp_context = multiprocessing.get_context('spawn')

>>> p = mp_context.Process(target=time.sleep, args=(1000,))

>>> print(p, p.is_alive())

<...Process ... initial> False

>>> p.start()

>>> print(p, p.is_alive())

<...Process ... started> True

>>> p.terminate()

>>> time.sleep(0.1)

>>> print(p, p.is_alive())

<...Process ... stopped exitcode=-SIGTERM> False

>>> p.exitcode == -signal.SIGTERM

True

exception multiprocessing.ProcessError

The base class of all multiprocessing exceptions.

exception multiprocessing.BufferTooShort

Exception raised by Connection.recv_bytes_into() when the supplied buffer object is too small for the
message read.

If e is an instance of BufferTooShort then e.args[0] will give the message as a byte string.

exception multiprocessing.AuthenticationError

Raised when there is an authentication error.

exception multiprocessing.TimeoutError

Raised by methods with a timeout when the timeout expires.

962 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

Pipes and Queues

When using multiple processes, one generally uses message passing for communication between processes and avoids
having to use any synchronization primitives like locks.

For passingmessages one can use Pipe() (for a connection between two processes) or a queue (which allowsmultiple
producers and consumers).

The Queue, SimpleQueue and JoinableQueue types are multi-producer, multi-consumer FIFO queues modelled
on the queue.Queue class in the standard library. They differ in that Queue lacks the task_done() and join()
methods introduced into Python 2.5’s queue.Queue class.

If you use JoinableQueue then you must call JoinableQueue.task_done() for each task removed from the
queue or else the semaphore used to count the number of unfinished tasks may eventually overflow, raising an ex-
ception.

One difference from other Python queue implementations, is that multiprocessing queues serializes all objects
that are put into them using pickle. The object return by the get method is a re-created object that does not share
memory with the original object.

Note that one can also create a shared queue by using a manager object – see Managers.

Note

multiprocessing uses the usual queue.Empty and queue.Full exceptions to signal a timeout. They are
not available in the multiprocessing namespace so you need to import them from queue.

Note

When an object is put on a queue, the object is pickled and a background thread later flushes the pickled data to
an underlying pipe. This has some consequences which are a little surprising, but should not cause any practical
difficulties – if they really bother you then you can instead use a queue created with a manager.

(1) After putting an object on an empty queue there may be an infinitesimal delay before the queue’s empty()
method returns False and get_nowait() can return without raising queue.Empty.

(2) If multiple processes are enqueuing objects, it is possible for the objects to be received at the other end
out-of-order. However, objects enqueued by the same process will always be in the expected order with
respect to each other.

Warning

If a process is killed using Process.terminate() or os.kill() while it is trying to use a Queue, then the
data in the queue is likely to become corrupted. This may cause any other process to get an exception when it
tries to use the queue later on.

Warning

As mentioned above, if a child process has put items on a queue (and it has not used JoinableQueue.

cancel_join_thread), then that process will not terminate until all buffered items have been flushed to the
pipe.

This means that if you try joining that process you may get a deadlock unless you are sure that all items which
have been put on the queue have been consumed. Similarly, if the child process is non-daemonic then the parent
process may hang on exit when it tries to join all its non-daemonic children.

Note that a queue created using a manager does not have this issue. See Programming guidelines.

18.2. multiprocessing— Process-based parallelism 963

The Python Library Reference, Release 3.13.1

For an example of the usage of queues for interprocess communication see Examples.

multiprocessing.Pipe([duplex])
Returns a pair (conn1, conn2) of Connection objects representing the ends of a pipe.

If duplex is True (the default) then the pipe is bidirectional. If duplex is False then the pipe is unidirectional:
conn1 can only be used for receiving messages and conn2 can only be used for sending messages.

The send() method serializes the object using pickle and the recv() re-creates the object.

class multiprocessing.Queue([maxsize])
Returns a process shared queue implemented using a pipe and a few locks/semaphores. When a process first
puts an item on the queue a feeder thread is started which transfers objects from a buffer into the pipe.

The usual queue.Empty and queue.Full exceptions from the standard library’s queue module are raised
to signal timeouts.

Queue implements all the methods of queue.Queue except for task_done() and join().

qsize()

Return the approximate size of the queue. Because of multithreading/multiprocessing semantics, this
number is not reliable.

Note that this may raise NotImplementedError on platforms like macOS where sem_getvalue()
is not implemented.

empty()

Return True if the queue is empty, False otherwise. Because of multithreading/multiprocessing se-
mantics, this is not reliable.

May raise an OSError on closed queues. (not guaranteed)

full()

Return True if the queue is full, False otherwise. Because ofmultithreading/multiprocessing semantics,
this is not reliable.

put(obj[, block[, timeout]])
Put obj into the queue. If the optional argument block is True (the default) and timeout is None (the
default), block if necessary until a free slot is available. If timeout is a positive number, it blocks at most
timeout seconds and raises the queue.Full exception if no free slot was available within that time.
Otherwise (block is False), put an item on the queue if a free slot is immediately available, else raise
the queue.Full exception (timeout is ignored in that case).

Changed in version 3.8: If the queue is closed, ValueError is raised instead of AssertionError.

put_nowait(obj)
Equivalent to put(obj, False).

get([block[, timeout]])
Remove and return an item from the queue. If optional args block is True (the default) and timeout is
None (the default), block if necessary until an item is available. If timeout is a positive number, it blocks
at most timeout seconds and raises the queue.Empty exception if no item was available within that time.
Otherwise (block is False), return an item if one is immediately available, else raise the queue.Empty
exception (timeout is ignored in that case).

Changed in version 3.8: If the queue is closed, ValueError is raised instead of OSError.

get_nowait()

Equivalent to get(False).

multiprocessing.Queue has a few additional methods not found in queue.Queue. These methods are
usually unnecessary for most code:

964 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

close()

Indicate that no more data will be put on this queue by the current process. The background thread
will quit once it has flushed all buffered data to the pipe. This is called automatically when the queue is
garbage collected.

join_thread()

Join the background thread. This can only be used after close() has been called. It blocks until the
background thread exits, ensuring that all data in the buffer has been flushed to the pipe.

By default if a process is not the creator of the queue then on exit it will attempt to join the queue’s back-
ground thread. The process can call cancel_join_thread() to make join_thread() do nothing.

cancel_join_thread()

Prevent join_thread() from blocking. In particular, this prevents the background thread from being
joined automatically when the process exits – see join_thread().

A better name for this method might be allow_exit_without_flush(). It is likely to cause en-
queued data to be lost, and you almost certainly will not need to use it. It is really only there if you need
the current process to exit immediately without waiting to flush enqueued data to the underlying pipe,
and you don’t care about lost data.

Note

This class’s functionality requires a functioning shared semaphore implementation on the host operating
system. Without one, the functionality in this class will be disabled, and attempts to instantiate a Queue
will result in an ImportError. See bpo-3770 for additional information. The same holds true for any of
the specialized queue types listed below.

class multiprocessing.SimpleQueue

It is a simplified Queue type, very close to a locked Pipe.

close()

Close the queue: release internal resources.

A queue must not be used anymore after it is closed. For example, get(), put() and empty()methods
must no longer be called.

Added in version 3.9.

empty()

Return True if the queue is empty, False otherwise.

Always raises an OSError if the SimpleQueue is closed.

get()

Remove and return an item from the queue.

put(item)
Put item into the queue.

class multiprocessing.JoinableQueue([maxsize])
JoinableQueue, a Queue subclass, is a queue which additionally has task_done() and join() methods.

task_done()

Indicate that a formerly enqueued task is complete. Used by queue consumers. For each get() used to
fetch a task, a subsequent call to task_done() tells the queue that the processing on the task is complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that a
task_done() call was received for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items placed in the queue.

18.2. multiprocessing— Process-based parallelism 965

https://bugs.python.org/issue?@action=redirect&bpo=3770

The Python Library Reference, Release 3.13.1

join()

Block until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down
whenever a consumer calls task_done() to indicate that the item was retrieved and all work on it is
complete. When the count of unfinished tasks drops to zero, join() unblocks.

Miscellaneous

multiprocessing.active_children()

Return list of all live children of the current process.

Calling this has the side effect of “joining” any processes which have already finished.

multiprocessing.cpu_count()

Return the number of CPUs in the system.

This number is not equivalent to the number of CPUs the current process can use. The number of usable CPUs
can be obtained with os.process_cpu_count() (or len(os.sched_getaffinity(0))).

When the number of CPUs cannot be determined a NotImplementedError is raised.

See also

os.cpu_count() os.process_cpu_count()

Changed in version 3.13: The return value can also be overridden using the -X cpu_count flag or
PYTHON_CPU_COUNT as this is merely a wrapper around the os cpu count APIs.

multiprocessing.current_process()

Return the Process object corresponding to the current process.

An analogue of threading.current_thread().

multiprocessing.parent_process()

Return the Process object corresponding to the parent process of the current_process(). For the main
process, parent_process will be None.

Added in version 3.8.

multiprocessing.freeze_support()

Add support for when a program which uses multiprocessing has been frozen to produce a Windows
executable. (Has been tested with py2exe, PyInstaller and cx_Freeze.)

One needs to call this function straight after the if __name__ == '__main__' line of the main module.
For example:

from multiprocessing import Process, freeze_support

def f():

print('hello world!')

if __name__ == '__main__':

freeze_support()

Process(target=f).start()

If the freeze_support() line is omitted then trying to run the frozen executable will raise RuntimeError.

Calling freeze_support() has no effect when invoked on any operating system other than Windows. In
addition, if the module is being run normally by the Python interpreter on Windows (the program has not been
frozen), then freeze_support() has no effect.

966 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

multiprocessing.get_all_start_methods()

Returns a list of the supported start methods, the first of which is the default. The possible start methods
are 'fork', 'spawn' and 'forkserver'. Not all platforms support all methods. See Contexts and start
methods.

Added in version 3.4.

multiprocessing.get_context(method=None)
Return a context object which has the same attributes as the multiprocessing module.

If method is None then the default context is returned. Otherwise method should be 'fork', 'spawn',
'forkserver'. ValueError is raised if the specified start method is not available. See Contexts and start
methods.

Added in version 3.4.

multiprocessing.get_start_method(allow_none=False)
Return the name of start method used for starting processes.

If the start method has not been fixed and allow_none is false, then the start method is fixed to the default and
the name is returned. If the start method has not been fixed and allow_none is true then None is returned.

The return value can be 'fork', 'spawn', 'forkserver' or None. See Contexts and start methods.

Added in version 3.4.

Changed in version 3.8: On macOS, the spawn start method is now the default. The fork start method should
be considered unsafe as it can lead to crashes of the subprocess. See bpo-33725.

multiprocessing.set_executable(executable)
Set the path of the Python interpreter to use when starting a child process. (By default sys.executable is
used). Embedders will probably need to do some thing like

set_executable(os.path.join(sys.exec_prefix, 'pythonw.exe'))

before they can create child processes.

Changed in version 3.4: Now supported on POSIX when the 'spawn' start method is used.

Changed in version 3.11: Accepts a path-like object.

multiprocessing.set_forkserver_preload(module_names)
Set a list of module names for the forkserver main process to attempt to import so that their already imported
state is inherited by forked processes. Any ImportError when doing so is silently ignored. This can be used
as a performance enhancement to avoid repeated work in every process.

For this to work, it must be called before the forkserver process has been launched (before creating a Pool or
starting a Process).

Only meaningful when using the 'forkserver' start method. See Contexts and start methods.

Added in version 3.4.

multiprocessing.set_start_method(method, force=False)
Set the method which should be used to start child processes. Themethod argument can be 'fork', 'spawn'
or 'forkserver'. Raises RuntimeError if the start method has already been set and force is not True. If
method is None and force is True then the start method is set to None. If method is None and force is False
then the context is set to the default context.

Note that this should be called at most once, and it should be protected inside the if __name__ ==

'__main__' clause of the main module.

See Contexts and start methods.

Added in version 3.4.

18.2. multiprocessing— Process-based parallelism 967

https://bugs.python.org/issue?@action=redirect&bpo=33725

The Python Library Reference, Release 3.13.1

Note

multiprocessing contains no analogues of threading.active_count(), threading.enumerate(),
threading.settrace(), threading.setprofile(), threading.Timer, or threading.local.

Connection Objects

Connection objects allow the sending and receiving of picklable objects or strings. They can be thought of as message
oriented connected sockets.

Connection objects are usually created using Pipe – see also Listeners and Clients.

class multiprocessing.connection.Connection

send(obj)
Send an object to the other end of the connection which should be read using recv().

The object must be picklable. Very large pickles (approximately 32 MiB+, though it depends on the OS)
may raise a ValueError exception.

recv()

Return an object sent from the other end of the connection using send(). Blocks until there is something
to receive. Raises EOFError if there is nothing left to receive and the other end was closed.

fileno()

Return the file descriptor or handle used by the connection.

close()

Close the connection.

This is called automatically when the connection is garbage collected.

poll([timeout])
Return whether there is any data available to be read.

If timeout is not specified then it will return immediately. If timeout is a number then this specifies the
maximum time in seconds to block. If timeout is None then an infinite timeout is used.

Note that multiple connection objects may be polled at once by using multiprocessing.

connection.wait().

send_bytes(buffer[, offset[, size]])
Send byte data from a bytes-like object as a complete message.

If offset is given then data is read from that position in buffer. If size is given then that many bytes will be
read from buffer. Very large buffers (approximately 32 MiB+, though it depends on the OS) may raise a
ValueError exception

recv_bytes([maxlength])
Return a complete message of byte data sent from the other end of the connection as a string. Blocks
until there is something to receive. Raises EOFError if there is nothing left to receive and the other end
has closed.

If maxlength is specified and the message is longer than maxlength then OSError is raised and the
connection will no longer be readable.

Changed in version 3.3: This function used to raise IOError, which is now an alias of OSError.

recv_bytes_into(buffer[, offset])
Read into buffer a complete message of byte data sent from the other end of the connection and return
the number of bytes in the message. Blocks until there is something to receive. Raises EOFError if
there is nothing left to receive and the other end was closed.

968 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

buffer must be a writable bytes-like object. If offset is given then the message will be written into the
buffer from that position. Offset must be a non-negative integer less than the length of buffer (in bytes).

If the buffer is too short then a BufferTooShort exception is raised and the complete message is
available as e.args[0] where e is the exception instance.

Changed in version 3.3: Connection objects themselves can now be transferred between processes using
Connection.send() and Connection.recv().

Connection objects also now support the context management protocol – see Context Manager Types.
__enter__() returns the connection object, and __exit__() calls close().

For example:

>>> from multiprocessing import Pipe

>>> a, b = Pipe()

>>> a.send([1, 'hello', None])

>>> b.recv()

[1, 'hello', None]

>>> b.send_bytes(b'thank you')

>>> a.recv_bytes()

b'thank you'

>>> import array

>>> arr1 = array.array('i', range(5))

>>> arr2 = array.array('i', [0] * 10)

>>> a.send_bytes(arr1)

>>> count = b.recv_bytes_into(arr2)

>>> assert count == len(arr1) * arr1.itemsize

>>> arr2

array('i', [0, 1, 2, 3, 4, 0, 0, 0, 0, 0])

Warning

The Connection.recv() method automatically unpickles the data it receives, which can be a security risk
unless you can trust the process which sent the message.

Therefore, unless the connection object was produced using Pipe() you should only use the recv() and send()
methods after performing some sort of authentication. See Authentication keys.

Warning

If a process is killed while it is trying to read or write to a pipe then the data in the pipe is likely to become
corrupted, because it may become impossible to be sure where the message boundaries lie.

Synchronization primitives

Generally synchronization primitives are not as necessary in a multiprocess program as they are in a multithreaded
program. See the documentation for threading module.

Note that one can also create synchronization primitives by using a manager object – see Managers.

class multiprocessing.Barrier(parties[, action[, timeout]])
A barrier object: a clone of threading.Barrier.

Added in version 3.3.

class multiprocessing.BoundedSemaphore([value])
A bounded semaphore object: a close analog of threading.BoundedSemaphore.

18.2. multiprocessing— Process-based parallelism 969

The Python Library Reference, Release 3.13.1

A solitary difference from its close analog exists: its acquire method’s first argument is named block, as is
consistent with Lock.acquire().

Note

On macOS, this is indistinguishable from Semaphore because sem_getvalue() is not implemented on
that platform.

class multiprocessing.Condition([lock])
A condition variable: an alias for threading.Condition.

If lock is specified then it should be a Lock or RLock object from multiprocessing.

Changed in version 3.3: The wait_for() method was added.

class multiprocessing.Event

A clone of threading.Event.

class multiprocessing.Lock

A non-recursive lock object: a close analog of threading.Lock. Once a process or thread has acquired a
lock, subsequent attempts to acquire it from any process or thread will block until it is released; any process or
thread may release it. The concepts and behaviors of threading.Lock as it applies to threads are replicated
here in multiprocessing.Lock as it applies to either processes or threads, except as noted.

Note that Lock is actually a factory function which returns an instance of multiprocessing.

synchronize.Lock initialized with a default context.

Lock supports the context manager protocol and thus may be used in with statements.

acquire(block=True, timeout=None)
Acquire a lock, blocking or non-blocking.

With the block argument set to True (the default), the method call will block until the lock is in an
unlocked state, then set it to locked and return True. Note that the name of this first argument differs
from that in threading.Lock.acquire().

With the block argument set to False, the method call does not block. If the lock is currently in a locked
state, return False; otherwise set the lock to a locked state and return True.

When invoked with a positive, floating-point value for timeout, block for at most the number of seconds
specified by timeout as long as the lock can not be acquired. Invocations with a negative value for time-
out are equivalent to a timeout of zero. Invocations with a timeout value of None (the default) set the
timeout period to infinite. Note that the treatment of negative or None values for timeout differs from
the implemented behavior in threading.Lock.acquire(). The timeout argument has no practical
implications if the block argument is set to False and is thus ignored. Returns True if the lock has been
acquired or False if the timeout period has elapsed.

release()

Release a lock. This can be called from any process or thread, not only the process or thread which
originally acquired the lock.

Behavior is the same as in threading.Lock.release() except that when invoked on an unlocked
lock, a ValueError is raised.

class multiprocessing.RLock

A recursive lock object: a close analog of threading.RLock. A recursive lock must be released by the
process or thread that acquired it. Once a process or thread has acquired a recursive lock, the same process or
thread may acquire it again without blocking; that process or thread must release it once for each time it has
been acquired.

Note that RLock is actually a factory function which returns an instance of multiprocessing.

synchronize.RLock initialized with a default context.

970 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

RLock supports the context manager protocol and thus may be used in with statements.

acquire(block=True, timeout=None)
Acquire a lock, blocking or non-blocking.

When invoked with the block argument set to True, block until the lock is in an unlocked state (not
owned by any process or thread) unless the lock is already owned by the current process or thread. The
current process or thread then takes ownership of the lock (if it does not already have ownership) and
the recursion level inside the lock increments by one, resulting in a return value of True. Note that there
are several differences in this first argument’s behavior compared to the implementation of threading.
RLock.acquire(), starting with the name of the argument itself.

When invoked with the block argument set to False, do not block. If the lock has already been acquired
(and thus is owned) by another process or thread, the current process or thread does not take ownership
and the recursion level within the lock is not changed, resulting in a return value of False. If the lock is
in an unlocked state, the current process or thread takes ownership and the recursion level is incremented,
resulting in a return value of True.

Use and behaviors of the timeout argument are the same as in Lock.acquire(). Note that some of
these behaviors of timeout differ from the implemented behaviors in threading.RLock.acquire().

release()

Release a lock, decrementing the recursion level. If after the decrement the recursion level is zero, reset
the lock to unlocked (not owned by any process or thread) and if any other processes or threads are
blocked waiting for the lock to become unlocked, allow exactly one of them to proceed. If after the
decrement the recursion level is still nonzero, the lock remains locked and owned by the calling process
or thread.

Only call this method when the calling process or thread owns the lock. An AssertionError is raised
if this method is called by a process or thread other than the owner or if the lock is in an unlocked
(unowned) state. Note that the type of exception raised in this situation differs from the implemented
behavior in threading.RLock.release().

class multiprocessing.Semaphore([value])
A semaphore object: a close analog of threading.Semaphore.

A solitary difference from its close analog exists: its acquire method’s first argument is named block, as is
consistent with Lock.acquire().

Note

On macOS, sem_timedwait is unsupported, so calling acquire() with a timeout will emulate that function’s
behavior using a sleeping loop.

Note

Some of this package’s functionality requires a functioning shared semaphore implementation on the host oper-
ating system. Without one, the multiprocessing.synchronize module will be disabled, and attempts to
import it will result in an ImportError. See bpo-3770 for additional information.

Shared ctypes Objects

It is possible to create shared objects using shared memory which can be inherited by child processes.

multiprocessing.Value(typecode_or_type, *args, lock=True)
Return a ctypes object allocated from shared memory. By default the return value is actually a synchronized
wrapper for the object. The object itself can be accessed via the value attribute of a Value.

typecode_or_type determines the type of the returned object: it is either a ctypes type or a one character
typecode of the kind used by the array module. *args is passed on to the constructor for the type.

18.2. multiprocessing— Process-based parallelism 971

https://bugs.python.org/issue?@action=redirect&bpo=3770

The Python Library Reference, Release 3.13.1

If lock is True (the default) then a new recursive lock object is created to synchronize access to the value. If
lock is a Lock or RLock object then that will be used to synchronize access to the value. If lock is False
then access to the returned object will not be automatically protected by a lock, so it will not necessarily be
“process-safe”.

Operations like += which involve a read and write are not atomic. So if, for instance, you want to atomically
increment a shared value it is insufficient to just do

counter.value += 1

Assuming the associated lock is recursive (which it is by default) you can instead do

with counter.get_lock():

counter.value += 1

Note that lock is a keyword-only argument.

multiprocessing.Array(typecode_or_type, size_or_initializer, *, lock=True)
Return a ctypes array allocated from shared memory. By default the return value is actually a synchronized
wrapper for the array.

typecode_or_type determines the type of the elements of the returned array: it is either a ctypes type or a one
character typecode of the kind used by the arraymodule. If size_or_initializer is an integer, then it determines
the length of the array, and the array will be initially zeroed. Otherwise, size_or_initializer is a sequence which
is used to initialize the array and whose length determines the length of the array.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock is a
Lock or RLock object then that will be used to synchronize access to the value. If lock is False then access
to the returned object will not be automatically protected by a lock, so it will not necessarily be “process-safe”.

Note that lock is a keyword only argument.

Note that an array of ctypes.c_char has value and raw attributes which allow one to use it to store and
retrieve strings.

The multiprocessing.sharedctypes module

The multiprocessing.sharedctypes module provides functions for allocating ctypes objects from shared
memory which can be inherited by child processes.

Note

Although it is possible to store a pointer in shared memory remember that this will refer to a location in the
address space of a specific process. However, the pointer is quite likely to be invalid in the context of a second
process and trying to dereference the pointer from the second process may cause a crash.

multiprocessing.sharedctypes.RawArray(typecode_or_type, size_or_initializer)
Return a ctypes array allocated from shared memory.

typecode_or_type determines the type of the elements of the returned array: it is either a ctypes type or a one
character typecode of the kind used by the arraymodule. If size_or_initializer is an integer then it determines
the length of the array, and the array will be initially zeroed. Otherwise size_or_initializer is a sequence which
is used to initialize the array and whose length determines the length of the array.

Note that setting and getting an element is potentially non-atomic – use Array() instead to make sure that
access is automatically synchronized using a lock.

multiprocessing.sharedctypes.RawValue(typecode_or_type, *args)
Return a ctypes object allocated from shared memory.

typecode_or_type determines the type of the returned object: it is either a ctypes type or a one character
typecode of the kind used by the array module. *args is passed on to the constructor for the type.

972 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

Note that setting and getting the value is potentially non-atomic – use Value() instead to make sure that
access is automatically synchronized using a lock.

Note that an array of ctypes.c_char has value and raw attributes which allow one to use it to store and
retrieve strings – see documentation for ctypes.

multiprocessing.sharedctypes.Array(typecode_or_type, size_or_initializer, *, lock=True)
The same as RawArray() except that depending on the value of lock a process-safe synchronization wrapper
may be returned instead of a raw ctypes array.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock is a
Lock or RLock object then that will be used to synchronize access to the value. If lock is False then access
to the returned object will not be automatically protected by a lock, so it will not necessarily be “process-safe”.

Note that lock is a keyword-only argument.

multiprocessing.sharedctypes.Value(typecode_or_type, *args, lock=True)
The same as RawValue() except that depending on the value of lock a process-safe synchronization wrapper
may be returned instead of a raw ctypes object.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock is a
Lock or RLock object then that will be used to synchronize access to the value. If lock is False then access
to the returned object will not be automatically protected by a lock, so it will not necessarily be “process-safe”.

Note that lock is a keyword-only argument.

multiprocessing.sharedctypes.copy(obj)
Return a ctypes object allocated from shared memory which is a copy of the ctypes object obj.

multiprocessing.sharedctypes.synchronized(obj[, lock])
Return a process-safe wrapper object for a ctypes object which uses lock to synchronize access. If lock is None
(the default) then a multiprocessing.RLock object is created automatically.

A synchronized wrapper will have two methods in addition to those of the object it wraps: get_obj() returns
the wrapped object and get_lock() returns the lock object used for synchronization.

Note that accessing the ctypes object through the wrapper can be a lot slower than accessing the raw ctypes
object.

Changed in version 3.5: Synchronized objects support the context manager protocol.

The table below compares the syntax for creating shared ctypes objects from shared memory with the normal ctypes
syntax. (In the table MyStruct is some subclass of ctypes.Structure.)

ctypes sharedctypes using type sharedctypes using typecode

c_double(2.4) RawValue(c_double, 2.4) RawValue(‘d’, 2.4)
MyStruct(4, 6) RawValue(MyStruct, 4, 6)
(c_short * 7)() RawArray(c_short, 7) RawArray(‘h’, 7)
(c_int * 3)(9, 2, 8) RawArray(c_int, (9, 2, 8)) RawArray(‘i’, (9, 2, 8))

Below is an example where a number of ctypes objects are modified by a child process:

from multiprocessing import Process, Lock

from multiprocessing.sharedctypes import Value, Array

from ctypes import Structure, c_double

class Point(Structure):

fields = [('x', c_double), ('y', c_double)]

def modify(n, x, s, A):

n.value **= 2

x.value **= 2

(continues on next page)

18.2. multiprocessing— Process-based parallelism 973

The Python Library Reference, Release 3.13.1

(continued from previous page)

s.value = s.value.upper()

for a in A:

a.x **= 2

a.y **= 2

if __name__ == '__main__':

lock = Lock()

n = Value('i', 7)

x = Value(c_double, 1.0/3.0, lock=False)

s = Array('c', b'hello world', lock=lock)

A = Array(Point, [(1.875,-6.25), (-5.75,2.0), (2.375,9.5)], lock=lock)

p = Process(target=modify, args=(n, x, s, A))

p.start()

p.join()

print(n.value)

print(x.value)

print(s.value)

print([(a.x, a.y) for a in A])

The results printed are

49

0.1111111111111111

HELLO WORLD

[(3.515625, 39.0625), (33.0625, 4.0), (5.640625, 90.25)]

Managers

Managers provide a way to create data which can be shared between different processes, including sharing over
a network between processes running on different machines. A manager object controls a server process which
manages shared objects. Other processes can access the shared objects by using proxies.

multiprocessing.Manager()

Returns a started SyncManager object which can be used for sharing objects between processes. The returned
manager object corresponds to a spawned child process and has methods which will create shared objects and
return corresponding proxies.

Manager processes will be shutdown as soon as they are garbage collected or their parent process exits. The manager
classes are defined in the multiprocessing.managers module:

class multiprocessing.managers.BaseManager(address=None, authkey=None, serializer=’pickle’,
ctx=None, *, shutdown_timeout=1.0)

Create a BaseManager object.

Once created one should call start() or get_server().serve_forever() to ensure that the manager
object refers to a started manager process.

address is the address on which the manager process listens for new connections. If address is None then an
arbitrary one is chosen.

authkey is the authentication key which will be used to check the validity of incoming connections to the server
process. If authkey is None then current_process().authkey is used. Otherwise authkey is used and it
must be a byte string.

serializer must be 'pickle' (use pickle serialization) or 'xmlrpclib' (use xmlrpc.client serializa-
tion).

974 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

ctx is a context object, or None (use the current context). See the get_context() function.

shutdown_timeout is a timeout in seconds used to wait until the process used by the manager completes in the
shutdown() method. If the shutdown times out, the process is terminated. If terminating the process also
times out, the process is killed.

Changed in version 3.11: Added the shutdown_timeout parameter.

start([initializer[, initargs]])
Start a subprocess to start the manager. If initializer is not None then the subprocess will call
initializer(*initargs) when it starts.

get_server()

Returns a Server object which represents the actual server under the control of the Manager. The
Server object supports the serve_forever() method:

>>> from multiprocessing.managers import BaseManager

>>> manager = BaseManager(address=('', 50000), authkey=b'abc')

>>> server = manager.get_server()

>>> server.serve_forever()

Server additionally has an address attribute.

connect()

Connect a local manager object to a remote manager process:

>>> from multiprocessing.managers import BaseManager

>>> m = BaseManager(address=('127.0.0.1', 50000), authkey=b'abc')

>>> m.connect()

shutdown()

Stop the process used by the manager. This is only available if start() has been used to start the server
process.

This can be called multiple times.

register(typeid[, callable[, proxytype[, exposed[, method_to_typeid[, create_method]]]]])
A classmethod which can be used for registering a type or callable with the manager class.

typeid is a “type identifier” which is used to identify a particular type of shared object. This must be a
string.

callable is a callable used for creating objects for this type identifier. If a manager instance will be
connected to the server using the connect() method, or if the create_method argument is False then
this can be left as None.

proxytype is a subclass of BaseProxy which is used to create proxies for shared objects with this typeid.
If None then a proxy class is created automatically.

exposed is used to specify a sequence of method names which proxies for this typeid should be allowed
to access using BaseProxy._callmethod(). (If exposed is None then proxytype._exposed_ is
used instead if it exists.) In the case where no exposed list is specified, all “public methods” of the shared
object will be accessible. (Here a “public method” means any attribute which has a __call__()method
and whose name does not begin with '_'.)

method_to_typeid is a mapping used to specify the return type of those exposed methods which should
return a proxy. It maps method names to typeid strings. (Ifmethod_to_typeid is None then proxytype.
_method_to_typeid_ is used instead if it exists.) If a method’s name is not a key of this mapping or
if the mapping is None then the object returned by the method will be copied by value.

create_method determines whether a method should be created with name typeid which can be used to
tell the server process to create a new shared object and return a proxy for it. By default it is True.

BaseManager instances also have one read-only property:

18.2. multiprocessing— Process-based parallelism 975

The Python Library Reference, Release 3.13.1

address

The address used by the manager.

Changed in version 3.3: Manager objects support the context management protocol – see Context Manager
Types. __enter__() starts the server process (if it has not already started) and then returns the manager
object. __exit__() calls shutdown().

In previous versions __enter__() did not start the manager’s server process if it was not already started.

class multiprocessing.managers.SyncManager

A subclass of BaseManager which can be used for the synchronization of processes. Objects of this type are
returned by multiprocessing.Manager().

Its methods create and return Proxy Objects for a number of commonly used data types to be synchronized
across processes. This notably includes shared lists and dictionaries.

Barrier(parties[, action[, timeout]])
Create a shared threading.Barrier object and return a proxy for it.

Added in version 3.3.

BoundedSemaphore([value])
Create a shared threading.BoundedSemaphore object and return a proxy for it.

Condition([lock])
Create a shared threading.Condition object and return a proxy for it.

If lock is supplied then it should be a proxy for a threading.Lock or threading.RLock object.

Changed in version 3.3: The wait_for() method was added.

Event()

Create a shared threading.Event object and return a proxy for it.

Lock()

Create a shared threading.Lock object and return a proxy for it.

Namespace()

Create a shared Namespace object and return a proxy for it.

Queue([maxsize])
Create a shared queue.Queue object and return a proxy for it.

RLock()

Create a shared threading.RLock object and return a proxy for it.

Semaphore([value])
Create a shared threading.Semaphore object and return a proxy for it.

Array(typecode, sequence)
Create an array and return a proxy for it.

Value(typecode, value)
Create an object with a writable value attribute and return a proxy for it.

dict()

dict(mapping)
dict(sequence)

Create a shared dict object and return a proxy for it.

list()

976 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

list(sequence)
Create a shared list object and return a proxy for it.

Changed in version 3.6: Shared objects are capable of being nested. For example, a shared container object
such as a shared list can contain other shared objects which will all be managed and synchronized by the
SyncManager.

class multiprocessing.managers.Namespace

A type that can register with SyncManager.

A namespace object has no public methods, but does have writable attributes. Its representation shows the
values of its attributes.

However, when using a proxy for a namespace object, an attribute beginning with '_' will be an attribute of
the proxy and not an attribute of the referent:

>>> mp_context = multiprocessing.get_context('spawn')

>>> manager = mp_context.Manager()

>>> Global = manager.Namespace()

>>> Global.x = 10

>>> Global.y = 'hello'

>>> Global._z = 12.3 # this is an attribute of the proxy

>>> print(Global)

Namespace(x=10, y='hello')

Customized managers

To create one’s own manager, one creates a subclass of BaseManager and uses the register() classmethod to
register new types or callables with the manager class. For example:

from multiprocessing.managers import BaseManager

class MathsClass:

def add(self, x, y):

return x + y

def mul(self, x, y):

return x * y

class MyManager(BaseManager):

pass

MyManager.register('Maths', MathsClass)

if __name__ == '__main__':

with MyManager() as manager:

maths = manager.Maths()

print(maths.add(4, 3)) # prints 7

print(maths.mul(7, 8)) # prints 56

Using a remote manager

It is possible to run a manager server on one machine and have clients use it from other machines (assuming that the
firewalls involved allow it).

Running the following commands creates a server for a single shared queue which remote clients can access:

>>> from multiprocessing.managers import BaseManager

>>> from queue import Queue

>>> queue = Queue()

(continues on next page)

18.2. multiprocessing— Process-based parallelism 977

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> class QueueManager(BaseManager): pass

>>> QueueManager.register('get_queue', callable=lambda:queue)

>>> m = QueueManager(address=('', 50000), authkey=b'abracadabra')

>>> s = m.get_server()

>>> s.serve_forever()

One client can access the server as follows:

>>> from multiprocessing.managers import BaseManager

>>> class QueueManager(BaseManager): pass

>>> QueueManager.register('get_queue')

>>> m = QueueManager(address=('foo.bar.org', 50000), authkey=b'abracadabra')

>>> m.connect()

>>> queue = m.get_queue()

>>> queue.put('hello')

Another client can also use it:

>>> from multiprocessing.managers import BaseManager

>>> class QueueManager(BaseManager): pass

>>> QueueManager.register('get_queue')

>>> m = QueueManager(address=('foo.bar.org', 50000), authkey=b'abracadabra')

>>> m.connect()

>>> queue = m.get_queue()

>>> queue.get()

'hello'

Local processes can also access that queue, using the code from above on the client to access it remotely:

>>> from multiprocessing import Process, Queue

>>> from multiprocessing.managers import BaseManager

>>> class Worker(Process):

... def __init__(self, q):

... self.q = q

... super().__init__()

... def run(self):

... self.q.put('local hello')

...

>>> queue = Queue()

>>> w = Worker(queue)

>>> w.start()

>>> class QueueManager(BaseManager): pass

...

>>> QueueManager.register('get_queue', callable=lambda: queue)

>>> m = QueueManager(address=('', 50000), authkey=b'abracadabra')

>>> s = m.get_server()

>>> s.serve_forever()

Proxy Objects

A proxy is an object which refers to a shared object which lives (presumably) in a different process. The shared object
is said to be the referent of the proxy. Multiple proxy objects may have the same referent.

A proxy object has methods which invoke corresponding methods of its referent (although not every method of the
referent will necessarily be available through the proxy). In this way, a proxy can be used just like its referent can:

978 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

>>> mp_context = multiprocessing.get_context('spawn')

>>> manager = mp_context.Manager()

>>> l = manager.list([i*i for i in range(10)])

>>> print(l)

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> print(repr(l))

<ListProxy object, typeid 'list' at 0x...>

>>> l[4]

16

>>> l[2:5]

[4, 9, 16]

Notice that applying str() to a proxy will return the representation of the referent, whereas applying repr() will
return the representation of the proxy.

An important feature of proxy objects is that they are picklable so they can be passed between processes. As such, a
referent can contain Proxy Objects. This permits nesting of these managed lists, dicts, and other Proxy Objects:

>>> a = manager.list()

>>> b = manager.list()

>>> a.append(b) # referent of a now contains referent of b

>>> print(a, b)

[<ListProxy object, typeid 'list' at ...>] []

>>> b.append('hello')

>>> print(a[0], b)

['hello'] ['hello']

Similarly, dict and list proxies may be nested inside one another:

>>> l_outer = manager.list([manager.dict() for i in range(2)])

>>> d_first_inner = l_outer[0]

>>> d_first_inner['a'] = 1

>>> d_first_inner['b'] = 2

>>> l_outer[1]['c'] = 3

>>> l_outer[1]['z'] = 26

>>> print(l_outer[0])

{'a': 1, 'b': 2}

>>> print(l_outer[1])

{'c': 3, 'z': 26}

If standard (non-proxy) list or dict objects are contained in a referent, modifications to those mutable values will
not be propagated through the manager because the proxy has no way of knowing when the values contained within
are modified. However, storing a value in a container proxy (which triggers a __setitem__ on the proxy object)
does propagate through the manager and so to effectively modify such an item, one could re-assign the modified value
to the container proxy:

create a list proxy and append a mutable object (a dictionary)

lproxy = manager.list()

lproxy.append({})

now mutate the dictionary

d = lproxy[0]

d['a'] = 1

d['b'] = 2

at this point, the changes to d are not yet synced, but by

updating the dictionary, the proxy is notified of the change

lproxy[0] = d

This approach is perhaps less convenient than employing nested Proxy Objects formost use cases but also demonstrates
a level of control over the synchronization.

18.2. multiprocessing— Process-based parallelism 979

The Python Library Reference, Release 3.13.1

Note

The proxy types in multiprocessing do nothing to support comparisons by value. So, for instance, we have:

>>> manager.list([1,2,3]) == [1,2,3]

False

One should just use a copy of the referent instead when making comparisons.

class multiprocessing.managers.BaseProxy

Proxy objects are instances of subclasses of BaseProxy.

_callmethod(methodname[, args[, kwds]])
Call and return the result of a method of the proxy’s referent.

If proxy is a proxy whose referent is obj then the expression

proxy._callmethod(methodname, args, kwds)

will evaluate the expression

getattr(obj, methodname)(*args, **kwds)

in the manager’s process.

The returned value will be a copy of the result of the call or a proxy to a new shared object – see
documentation for the method_to_typeid argument of BaseManager.register().

If an exception is raised by the call, then is re-raised by _callmethod(). If some other exception is
raised in the manager’s process then this is converted into a RemoteError exception and is raised by
_callmethod().

Note in particular that an exception will be raised if methodname has not been exposed.

An example of the usage of _callmethod():

>>> l = manager.list(range(10))

>>> l._callmethod('__len__')

10

>>> l._callmethod('__getitem__', (slice(2, 7),)) # equivalent to l[2:7]

[2, 3, 4, 5, 6]

>>> l._callmethod('__getitem__', (20,)) # equivalent to l[20]

Traceback (most recent call last):

...

IndexError: list index out of range

_getvalue()

Return a copy of the referent.

If the referent is unpicklable then this will raise an exception.

__repr__()

Return a representation of the proxy object.

__str__()

Return the representation of the referent.

980 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

Cleanup

A proxy object uses a weakref callback so that when it gets garbage collected it deregisters itself from the manager
which owns its referent.

A shared object gets deleted from the manager process when there are no longer any proxies referring to it.

Process Pools

One can create a pool of processes which will carry out tasks submitted to it with the Pool class.

class multiprocessing.pool.Pool([processes[, initializer[, initargs[, maxtasksperchild[, context]]]]])
A process pool object which controls a pool of worker processes to which jobs can be submitted. It supports
asynchronous results with timeouts and callbacks and has a parallel map implementation.

processes is the number of worker processes to use. If processes is None then the number returned by os.
process_cpu_count() is used.

If initializer is not None then each worker process will call initializer(*initargs) when it starts.

maxtasksperchild is the number of tasks a worker process can complete before it will exit and be replaced with
a fresh worker process, to enable unused resources to be freed. The default maxtasksperchild is None, which
means worker processes will live as long as the pool.

context can be used to specify the context used for starting the worker processes. Usually a pool is created
using the function multiprocessing.Pool() or the Pool() method of a context object. In both cases
context is set appropriately.

Note that the methods of the pool object should only be called by the process which created the pool.

Warning

multiprocessing.pool objects have internal resources that need to be properly managed (like any
other resource) by using the pool as a context manager or by calling close() and terminate()manually.
Failure to do this can lead to the process hanging on finalization.

Note that it is not correct to rely on the garbage collector to destroy the pool as CPython does not assure
that the finalizer of the pool will be called (see object.__del__() for more information).

Changed in version 3.2: Added the maxtasksperchild parameter.

Changed in version 3.4: Added the context parameter.

Changed in version 3.13: processes uses os.process_cpu_count() by default, instead of os.

cpu_count().

Note

Worker processes within a Pool typically live for the complete duration of the Pool’s work queue. A
frequent pattern found in other systems (such as Apache, mod_wsgi, etc) to free resources held by workers
is to allow a worker within a pool to complete only a set amount of work before being exiting, being cleaned
up and a new process spawned to replace the old one. Themaxtasksperchild argument to the Pool exposes
this ability to the end user.

apply(func[, args[, kwds]])
Call func with arguments args and keyword arguments kwds. It blocks until the result is ready. Given
this blocks, apply_async() is better suited for performing work in parallel. Additionally, func is only
executed in one of the workers of the pool.

18.2. multiprocessing— Process-based parallelism 981

The Python Library Reference, Release 3.13.1

apply_async(func[, args[, kwds[, callback[, error_callback]]]])
A variant of the apply() method which returns a AsyncResult object.

If callback is specified then it should be a callable which accepts a single argument. When the result
becomes ready callback is applied to it, that is unless the call failed, in which case the error_callback is
applied instead.

If error_callback is specified then it should be a callable which accepts a single argument. If the target
function fails, then the error_callback is called with the exception instance.

Callbacks should complete immediately since otherwise the thread which handles the results will get
blocked.

map(func, iterable[, chunksize])
A parallel equivalent of the map() built-in function (it supports only one iterable argument though, for
multiple iterables see starmap()). It blocks until the result is ready.

This method chops the iterable into a number of chunks which it submits to the process pool as separate
tasks. The (approximate) size of these chunks can be specified by setting chunksize to a positive integer.

Note that it may cause high memory usage for very long iterables. Consider using imap() or
imap_unordered() with explicit chunksize option for better efficiency.

map_async(func, iterable[, chunksize[, callback[, error_callback]]])
A variant of the map() method which returns a AsyncResult object.

If callback is specified then it should be a callable which accepts a single argument. When the result
becomes ready callback is applied to it, that is unless the call failed, in which case the error_callback is
applied instead.

If error_callback is specified then it should be a callable which accepts a single argument. If the target
function fails, then the error_callback is called with the exception instance.

Callbacks should complete immediately since otherwise the thread which handles the results will get
blocked.

imap(func, iterable[, chunksize])
A lazier version of map().

The chunksize argument is the same as the one used by the map() method. For very long iterables using
a large value for chunksize can make the job complete much faster than using the default value of 1.

Also if chunksize is 1 then the next() method of the iterator returned by the imap() method has an
optional timeout parameter: next(timeout) will raise multiprocessing.TimeoutError if the
result cannot be returned within timeout seconds.

imap_unordered(func, iterable[, chunksize])
The same as imap() except that the ordering of the results from the returned iterator should be consid-
ered arbitrary. (Only when there is only one worker process is the order guaranteed to be “correct”.)

starmap(func, iterable[, chunksize])
Like map() except that the elements of the iterable are expected to be iterables that are unpacked as
arguments.

Hence an iterable of [(1,2), (3, 4)] results in [func(1,2), func(3,4)].

Added in version 3.3.

starmap_async(func, iterable[, chunksize[, callback[, error_callback]]])
A combination of starmap() and map_async() that iterates over iterable of iterables and calls func
with the iterables unpacked. Returns a result object.

Added in version 3.3.

982 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

close()

Prevents any more tasks from being submitted to the pool. Once all the tasks have been completed the
worker processes will exit.

terminate()

Stops the worker processes immediately without completing outstanding work. When the pool object is
garbage collected terminate() will be called immediately.

join()

Wait for the worker processes to exit. One must call close() or terminate() before using join().

Changed in version 3.3: Pool objects now support the context management protocol – see Context Manager
Types. __enter__() returns the pool object, and __exit__() calls terminate().

class multiprocessing.pool.AsyncResult

The class of the result returned by Pool.apply_async() and Pool.map_async().

get([timeout])
Return the result when it arrives. If timeout is not None and the result does not arrive within timeout
seconds then multiprocessing.TimeoutError is raised. If the remote call raised an exception then
that exception will be reraised by get().

wait([timeout])
Wait until the result is available or until timeout seconds pass.

ready()

Return whether the call has completed.

successful()

Return whether the call completed without raising an exception. Will raise ValueError if the result is
not ready.

Changed in version 3.7: If the result is not ready, ValueError is raised instead of AssertionError.

The following example demonstrates the use of a pool:

from multiprocessing import Pool

import time

def f(x):

return x*x

if __name__ == '__main__':

with Pool(processes=4) as pool: # start 4 worker processes

result = pool.apply_async(f, (10,)) # evaluate "f(10)" asynchronously in a␣

↪→single process

print(result.get(timeout=1)) # prints "100" unless your computer is␣

↪→*very* slow

print(pool.map(f, range(10))) # prints "[0, 1, 4,..., 81]"

it = pool.imap(f, range(10))

print(next(it)) # prints "0"

print(next(it)) # prints "1"

print(it.next(timeout=1)) # prints "4" unless your computer is␣

↪→*very* slow

result = pool.apply_async(time.sleep, (10,))

print(result.get(timeout=1)) # raises multiprocessing.TimeoutError

18.2. multiprocessing— Process-based parallelism 983

The Python Library Reference, Release 3.13.1

Listeners and Clients

Usually message passing between processes is done using queues or by using Connection objects returned by
Pipe().

However, the multiprocessing.connectionmodule allows some extra flexibility. It basically gives a high level
message oriented API for dealing with sockets or Windows named pipes. It also has support for digest authentication
using the hmac module, and for polling multiple connections at the same time.

multiprocessing.connection.deliver_challenge(connection, authkey)
Send a randomly generated message to the other end of the connection and wait for a reply.

If the reply matches the digest of the message using authkey as the key then a welcome message is sent to the
other end of the connection. Otherwise AuthenticationError is raised.

multiprocessing.connection.answer_challenge(connection, authkey)
Receive a message, calculate the digest of the message using authkey as the key, and then send the digest back.

If a welcome message is not received, then AuthenticationError is raised.

multiprocessing.connection.Client(address[, family[, authkey]])
Attempt to set up a connection to the listener which is using address address, returning a Connection.

The type of the connection is determined by family argument, but this can generally be omitted since it can
usually be inferred from the format of address. (See Address Formats)

If authkey is given and not None, it should be a byte string and will be used as the secret key for an HMAC-
based authentication challenge. No authentication is done if authkey is None. AuthenticationError is
raised if authentication fails. See Authentication keys.

class multiprocessing.connection.Listener([address[, family[, backlog[, authkey]]]])
A wrapper for a bound socket or Windows named pipe which is ‘listening’ for connections.

address is the address to be used by the bound socket or named pipe of the listener object.

Note

If an address of ‘0.0.0.0’ is used, the address will not be a connectable end point on Windows. If you
require a connectable end-point, you should use ‘127.0.0.1’.

family is the type of socket (or named pipe) to use. This can be one of the strings 'AF_INET' (for a TCP
socket), 'AF_UNIX' (for a Unix domain socket) or 'AF_PIPE' (for a Windows named pipe). Of these only
the first is guaranteed to be available. If family is None then the family is inferred from the format of address.
If address is also None then a default is chosen. This default is the family which is assumed to be the fastest
available. See Address Formats. Note that if family is 'AF_UNIX' and address is None then the socket will
be created in a private temporary directory created using tempfile.mkstemp().

If the listener object uses a socket then backlog (1 by default) is passed to the listen()method of the socket
once it has been bound.

If authkey is given and not None, it should be a byte string and will be used as the secret key for an HMAC-
based authentication challenge. No authentication is done if authkey is None. AuthenticationError is
raised if authentication fails. See Authentication keys.

accept()

Accept a connection on the bound socket or named pipe of the listener object and return a Connection
object. If authentication is attempted and fails, then AuthenticationError is raised.

close()

Close the bound socket or named pipe of the listener object. This is called automatically when the listener
is garbage collected. However it is advisable to call it explicitly.

Listener objects have the following read-only properties:

984 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

address

The address which is being used by the Listener object.

last_accepted

The address from which the last accepted connection came. If this is unavailable then it is None.

Changed in version 3.3: Listener objects now support the context management protocol – see Context Manager
Types. __enter__() returns the listener object, and __exit__() calls close().

multiprocessing.connection.wait(object_list, timeout=None)
Wait till an object in object_list is ready. Returns the list of those objects in object_list which are ready. If
timeout is a float then the call blocks for at most that many seconds. If timeout is None then it will block for
an unlimited period. A negative timeout is equivalent to a zero timeout.

For both POSIX and Windows, an object can appear in object_list if it is

• a readable Connection object;

• a connected and readable socket.socket object; or

• the sentinel attribute of a Process object.

A connection or socket object is ready when there is data available to be read from it, or the other end has been
closed.

POSIX: wait(object_list, timeout) almost equivalent select.select(object_list, [],

[], timeout). The difference is that, if select.select() is interrupted by a signal, it can raise OSError
with an error number of EINTR, whereas wait() will not.

Windows: An item in object_list must either be an integer handle which is waitable (according to the definition
used by the documentation of theWin32 function WaitForMultipleObjects()) or it can be an object with
a fileno()method which returns a socket handle or pipe handle. (Note that pipe handles and socket handles
are not waitable handles.)

Added in version 3.3.

Examples

The following server code creates a listener which uses 'secret password' as an authentication key. It then waits
for a connection and sends some data to the client:

from multiprocessing.connection import Listener

from array import array

address = ('localhost', 6000) # family is deduced to be 'AF_INET'

with Listener(address, authkey=b'secret password') as listener:

with listener.accept() as conn:

print('connection accepted from', listener.last_accepted)

conn.send([2.25, None, 'junk', float])

conn.send_bytes(b'hello')

conn.send_bytes(array('i', [42, 1729]))

The following code connects to the server and receives some data from the server:

from multiprocessing.connection import Client

from array import array

address = ('localhost', 6000)

with Client(address, authkey=b'secret password') as conn:
(continues on next page)

18.2. multiprocessing— Process-based parallelism 985

The Python Library Reference, Release 3.13.1

(continued from previous page)

print(conn.recv()) # => [2.25, None, 'junk', float]

print(conn.recv_bytes()) # => 'hello'

arr = array('i', [0, 0, 0, 0, 0])

print(conn.recv_bytes_into(arr)) # => 8

print(arr) # => array('i', [42, 1729, 0, 0, 0])

The following code uses wait() to wait for messages from multiple processes at once:

from multiprocessing import Process, Pipe, current_process

from multiprocessing.connection import wait

def foo(w):

for i in range(10):

w.send((i, current_process().name))

w.close()

if __name__ == '__main__':

readers = []

for i in range(4):

r, w = Pipe(duplex=False)

readers.append(r)

p = Process(target=foo, args=(w,))

p.start()

We close the writable end of the pipe now to be sure that

p is the only process which owns a handle for it. This

ensures that when p closes its handle for the writable end,

wait() will promptly report the readable end as being ready.

w.close()

while readers:

for r in wait(readers):

try:

msg = r.recv()

except EOFError:

readers.remove(r)

else:

print(msg)

Address Formats

• An 'AF_INET' address is a tuple of the form (hostname, port) where hostname is a string and port is an
integer.

• An 'AF_UNIX' address is a string representing a filename on the filesystem.

• An 'AF_PIPE' address is a string of the form r'\\.\pipe\PipeName'. To use Client() to connect
to a named pipe on a remote computer called ServerName one should use an address of the form r'\\

ServerName\pipe\PipeName' instead.

Note that any string beginning with two backslashes is assumed by default to be an 'AF_PIPE' address rather than
an 'AF_UNIX' address.

986 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

Authentication keys

When one uses Connection.recv, the data received is automatically unpickled. Unfortunately unpickling data
from an untrusted source is a security risk. Therefore Listener and Client() use the hmac module to provide
digest authentication.

An authentication key is a byte string which can be thought of as a password: once a connection is established both
ends will demand proof that the other knows the authentication key. (Demonstrating that both ends are using the
same key does not involve sending the key over the connection.)

If authentication is requested but no authentication key is specified then the return value of current_process().
authkey is used (see Process). This value will be automatically inherited by any Process object that the current
process creates. Thismeans that (by default) all processes of amulti-process programwill share a single authentication
key which can be used when setting up connections between themselves.

Suitable authentication keys can also be generated by using os.urandom().

Logging

Some support for logging is available. Note, however, that the logging package does not use process shared locks
so it is possible (depending on the handler type) for messages from different processes to get mixed up.

multiprocessing.get_logger()

Returns the logger used by multiprocessing. If necessary, a new one will be created.

When first created the logger has level logging.NOTSET and no default handler. Messages sent to this logger
will not by default propagate to the root logger.

Note that on Windows child processes will only inherit the level of the parent process’s logger – any other
customization of the logger will not be inherited.

multiprocessing.log_to_stderr(level=None)
This function performs a call to get_logger() but in addition to returning the logger created by get_logger, it
adds a handler which sends output to sys.stderr using format '[%(levelname)s/%(processName)s]
%(message)s'. You can modify levelname of the logger by passing a level argument.

Below is an example session with logging turned on:

>>> import multiprocessing, logging

>>> logger = multiprocessing.log_to_stderr()

>>> logger.setLevel(logging.INFO)

>>> logger.warning('doomed')

[WARNING/MainProcess] doomed

>>> m = multiprocessing.Manager()

[INFO/SyncManager-...] child process calling self.run()

[INFO/SyncManager-...] created temp directory /.../pymp-...

[INFO/SyncManager-...] manager serving at '/.../listener-...'

>>> del m

[INFO/MainProcess] sending shutdown message to manager

[INFO/SyncManager-...] manager exiting with exitcode 0

For a full table of logging levels, see the logging module.

The multiprocessing.dummy module

multiprocessing.dummy replicates the API of multiprocessing but is no more than a wrapper around the
threading module.

In particular, the Pool function provided by multiprocessing.dummy returns an instance of ThreadPool, which
is a subclass of Pool that supports all the same method calls but uses a pool of worker threads rather than worker
processes.

18.2. multiprocessing— Process-based parallelism 987

The Python Library Reference, Release 3.13.1

class multiprocessing.pool.ThreadPool([processes[, initializer[, initargs]]])
A thread pool object which controls a pool of worker threads to which jobs can be submitted. ThreadPool in-
stances are fully interface compatible with Pool instances, and their resources must also be properly managed,
either by using the pool as a context manager or by calling close() and terminate() manually.

processes is the number of worker threads to use. If processes is None then the number returned by os.

process_cpu_count() is used.

If initializer is not None then each worker process will call initializer(*initargs) when it starts.

Unlike Pool, maxtasksperchild and context cannot be provided.

Note

A ThreadPool shares the same interface as Pool, which is designed around a pool of processes and
predates the introduction of the concurrent.futures module. As such, it inherits some operations
that don’t make sense for a pool backed by threads, and it has its own type for representing the status of
asynchronous jobs, AsyncResult, that is not understood by any other libraries.

Users should generally prefer to use concurrent.futures.ThreadPoolExecutor, which has a sim-
pler interface that was designed around threads from the start, and which returns concurrent.futures.
Future instances that are compatible with many other libraries, including asyncio.

18.2.3 Programming guidelines

There are certain guidelines and idioms which should be adhered to when using multiprocessing.

All start methods

The following applies to all start methods.

Avoid shared state

As far as possible one should try to avoid shifting large amounts of data between processes.

It is probably best to stick to using queues or pipes for communication between processes rather than
using the lower level synchronization primitives.

Picklability

Ensure that the arguments to the methods of proxies are picklable.

Thread safety of proxies

Do not use a proxy object from more than one thread unless you protect it with a lock.

(There is never a problem with different processes using the same proxy.)

Joining zombie processes

On POSIX when a process finishes but has not been joined it becomes a zombie. There should never be
very many because each time a new process starts (or active_children() is called) all completed
processes which have not yet been joined will be joined. Also calling a finished process’s Process.
is_alive will join the process. Even so it is probably good practice to explicitly join all the processes
that you start.

Better to inherit than pickle/unpickle

When using the spawn or forkserver start methods many types from multiprocessing need to be
picklable so that child processes can use them. However, one should generally avoid sending shared
objects to other processes using pipes or queues. Instead you should arrange the program so that a process
which needs access to a shared resource created elsewhere can inherit it from an ancestor process.

Avoid terminating processes

988 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

Using the Process.terminatemethod to stop a process is liable to cause any shared resources (such
as locks, semaphores, pipes and queues) currently being used by the process to become broken or un-
available to other processes.

Therefore it is probably best to only consider using Process.terminate on processes which never
use any shared resources.

Joining processes that use queues

Bear in mind that a process that has put items in a queue will wait before terminating until all the
buffered items are fed by the “feeder” thread to the underlying pipe. (The child process can call the
Queue.cancel_join_thread method of the queue to avoid this behaviour.)

This means that whenever you use a queue you need to make sure that all items which have been put
on the queue will eventually be removed before the process is joined. Otherwise you cannot be sure
that processes which have put items on the queue will terminate. Remember also that non-daemonic
processes will be joined automatically.

An example which will deadlock is the following:

from multiprocessing import Process, Queue

def f(q):

q.put('X' * 1000000)

if __name__ == '__main__':

queue = Queue()

p = Process(target=f, args=(queue,))

p.start()

p.join() # this deadlocks

obj = queue.get()

A fix here would be to swap the last two lines (or simply remove the p.join() line).

Explicitly pass resources to child processes

On POSIX using the fork start method, a child process can make use of a shared resource created in
a parent process using a global resource. However, it is better to pass the object as an argument to the
constructor for the child process.

Apart from making the code (potentially) compatible with Windows and the other start methods this
also ensures that as long as the child process is still alive the object will not be garbage collected in the
parent process. This might be important if some resource is freed when the object is garbage collected
in the parent process.

So for instance

from multiprocessing import Process, Lock

def f():

... do something using "lock" ...

if __name__ == '__main__':

lock = Lock()

for i in range(10):

Process(target=f).start()

should be rewritten as

from multiprocessing import Process, Lock

def f(l):

(continues on next page)

18.2. multiprocessing— Process-based parallelism 989

The Python Library Reference, Release 3.13.1

(continued from previous page)

... do something using "l" ...

if __name__ == '__main__':

lock = Lock()

for i in range(10):

Process(target=f, args=(lock,)).start()

Beware of replacing sys.stdin with a “file like object”

multiprocessing originally unconditionally called:

os.close(sys.stdin.fileno())

in the multiprocessing.Process._bootstrap() method — this resulted in issues with
processes-in-processes. This has been changed to:

sys.stdin.close()

sys.stdin = open(os.open(os.devnull, os.O_RDONLY), closefd=False)

Which solves the fundamental issue of processes colliding with each other resulting in a bad file descrip-
tor error, but introduces a potential danger to applications which replace sys.stdin() with a “file-like
object” with output buffering. This danger is that if multiple processes call close() on this file-like
object, it could result in the same data being flushed to the object multiple times, resulting in corruption.

If you write a file-like object and implement your own caching, you can make it fork-safe by storing the
pid whenever you append to the cache, and discarding the cache when the pid changes. For example:

@property

def cache(self):

pid = os.getpid()

if pid != self._pid:

self._pid = pid

self._cache = []

return self._cache

For more information, see bpo-5155, bpo-5313 and bpo-5331

The spawn and forkserver start methods

There are a few extra restrictions which don’t apply to the fork start method.

More picklability

Ensure that all arguments to Process.__init__() are picklable. Also, if you subclass Process then
make sure that instances will be picklable when the Process.start method is called.

Global variables

Bear in mind that if code run in a child process tries to access a global variable, then the value it sees
(if any) may not be the same as the value in the parent process at the time that Process.start was
called.

However, global variables which are just module level constants cause no problems.

Safe importing of main module

Make sure that the main module can be safely imported by a new Python interpreter without causing
unintended side effects (such as starting a new process).

For example, using the spawn or forkserver start method running the following module would fail with
a RuntimeError:

990 Chapter 18. Concurrent Execution

https://bugs.python.org/issue?@action=redirect&bpo=5155
https://bugs.python.org/issue?@action=redirect&bpo=5313
https://bugs.python.org/issue?@action=redirect&bpo=5331

The Python Library Reference, Release 3.13.1

from multiprocessing import Process

def foo():

print('hello')

p = Process(target=foo)

p.start()

Instead one should protect the “entry point” of the program by using if __name__ == '__main__':

as follows:

from multiprocessing import Process, freeze_support, set_start_method

def foo():

print('hello')

if __name__ == '__main__':

freeze_support()

set_start_method('spawn')

p = Process(target=foo)

p.start()

(The freeze_support() line can be omitted if the program will be run normally instead of frozen.)

This allows the newly spawned Python interpreter to safely import the module and then run the module’s
foo() function.

Similar restrictions apply if a pool or manager is created in the main module.

18.2.4 Examples

Demonstration of how to create and use customized managers and proxies:

from multiprocessing import freeze_support

from multiprocessing.managers import BaseManager, BaseProxy

import operator

##

class Foo:

def f(self):

print('you called Foo.f()')

def g(self):

print('you called Foo.g()')

def _h(self):

print('you called Foo._h()')

A simple generator function

def baz():

for i in range(10):

yield i*i

Proxy type for generator objects

class GeneratorProxy(BaseProxy):

exposed = ['__next__']

def __iter__(self):

return self

def __next__(self):

(continues on next page)

18.2. multiprocessing— Process-based parallelism 991

The Python Library Reference, Release 3.13.1

(continued from previous page)

return self._callmethod('__next__')

Function to return the operator module

def get_operator_module():

return operator

##

class MyManager(BaseManager):

pass

register the Foo class; make `f()` and `g()` accessible via proxy

MyManager.register('Foo1', Foo)

register the Foo class; make `g()` and `_h()` accessible via proxy

MyManager.register('Foo2', Foo, exposed=('g', '_h'))

register the generator function baz; use `GeneratorProxy` to make proxies

MyManager.register('baz', baz, proxytype=GeneratorProxy)

register get_operator_module(); make public functions accessible via proxy

MyManager.register('operator', get_operator_module)

##

def test():

manager = MyManager()

manager.start()

print('-' * 20)

f1 = manager.Foo1()

f1.f()

f1.g()

assert not hasattr(f1, '_h')

assert sorted(f1._exposed_) == sorted(['f', 'g'])

print('-' * 20)

f2 = manager.Foo2()

f2.g()

f2._h()

assert not hasattr(f2, 'f')

assert sorted(f2._exposed_) == sorted(['g', '_h'])

print('-' * 20)

it = manager.baz()

for i in it:

print('<%d>' % i, end=' ')

print()

print('-' * 20)

op = manager.operator()

print('op.add(23, 45) =', op.add(23, 45))

(continues on next page)

992 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

(continued from previous page)

print('op.pow(2, 94) =', op.pow(2, 94))

print('op._exposed_ =', op._exposed_)

##

if __name__ == '__main__':

freeze_support()

test()

Using Pool:

import multiprocessing

import time

import random

import sys

#

Functions used by test code

#

def calculate(func, args):

result = func(*args)

return '%s says that %s%s = %s' % (

multiprocessing.current_process().name,

func.__name__, args, result

)

def calculatestar(args):

return calculate(*args)

def mul(a, b):

time.sleep(0.5 * random.random())

return a * b

def plus(a, b):

time.sleep(0.5 * random.random())

return a + b

def f(x):

return 1.0 / (x - 5.0)

def pow3(x):

return x ** 3

def noop(x):

pass

#

Test code

#

def test():

PROCESSES = 4

print('Creating pool with %d processes\n' % PROCESSES)

with multiprocessing.Pool(PROCESSES) as pool:

(continues on next page)

18.2. multiprocessing— Process-based parallelism 993

The Python Library Reference, Release 3.13.1

(continued from previous page)

#

Tests

#

TASKS = [(mul, (i, 7)) for i in range(10)] + \

[(plus, (i, 8)) for i in range(10)]

results = [pool.apply_async(calculate, t) for t in TASKS]

imap_it = pool.imap(calculatestar, TASKS)

imap_unordered_it = pool.imap_unordered(calculatestar, TASKS)

print('Ordered results using pool.apply_async():')

for r in results:

print('\t', r.get())

print()

print('Ordered results using pool.imap():')

for x in imap_it:

print('\t', x)

print()

print('Unordered results using pool.imap_unordered():')

for x in imap_unordered_it:

print('\t', x)

print()

print('Ordered results using pool.map() --- will block till complete:')

for x in pool.map(calculatestar, TASKS):

print('\t', x)

print()

#

Test error handling

#

print('Testing error handling:')

try:

print(pool.apply(f, (5,)))

except ZeroDivisionError:

print('\tGot ZeroDivisionError as expected from pool.apply()')

else:

raise AssertionError('expected ZeroDivisionError')

try:

print(pool.map(f, list(range(10))))

except ZeroDivisionError:

print('\tGot ZeroDivisionError as expected from pool.map()')

else:

raise AssertionError('expected ZeroDivisionError')

try:

print(list(pool.imap(f, list(range(10)))))

except ZeroDivisionError:

print('\tGot ZeroDivisionError as expected from list(pool.imap())')

else:

(continues on next page)

994 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

(continued from previous page)

raise AssertionError('expected ZeroDivisionError')

it = pool.imap(f, list(range(10)))

for i in range(10):

try:

x = next(it)

except ZeroDivisionError:

if i == 5:

pass

except StopIteration:

break

else:

if i == 5:

raise AssertionError('expected ZeroDivisionError')

assert i == 9

print('\tGot ZeroDivisionError as expected from IMapIterator.next()')

print()

#

Testing timeouts

#

print('Testing ApplyResult.get() with timeout:', end=' ')

res = pool.apply_async(calculate, TASKS[0])

while 1:

sys.stdout.flush()

try:

sys.stdout.write('\n\t%s' % res.get(0.02))

break

except multiprocessing.TimeoutError:

sys.stdout.write('.')

print()

print()

print('Testing IMapIterator.next() with timeout:', end=' ')

it = pool.imap(calculatestar, TASKS)

while 1:

sys.stdout.flush()

try:

sys.stdout.write('\n\t%s' % it.next(0.02))

except StopIteration:

break

except multiprocessing.TimeoutError:

sys.stdout.write('.')

print()

print()

if __name__ == '__main__':

multiprocessing.freeze_support()

test()

An example showing how to use queues to feed tasks to a collection of worker processes and collect the results:

import time

(continues on next page)

18.2. multiprocessing— Process-based parallelism 995

The Python Library Reference, Release 3.13.1

(continued from previous page)

import random

from multiprocessing import Process, Queue, current_process, freeze_support

#

Function run by worker processes

#

def worker(input, output):

for func, args in iter(input.get, 'STOP'):

result = calculate(func, args)

output.put(result)

#

Function used to calculate result

#

def calculate(func, args):

result = func(*args)

return '%s says that %s%s = %s' % \

(current_process().name, func.__name__, args, result)

#

Functions referenced by tasks

#

def mul(a, b):

time.sleep(0.5*random.random())

return a * b

def plus(a, b):

time.sleep(0.5*random.random())

return a + b

#

#

#

def test():

NUMBER_OF_PROCESSES = 4

TASKS1 = [(mul, (i, 7)) for i in range(20)]

TASKS2 = [(plus, (i, 8)) for i in range(10)]

Create queues

task_queue = Queue()

done_queue = Queue()

Submit tasks

for task in TASKS1:

task_queue.put(task)

Start worker processes

for i in range(NUMBER_OF_PROCESSES):

Process(target=worker, args=(task_queue, done_queue)).start()

Get and print results

(continues on next page)

996 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

(continued from previous page)

print('Unordered results:')

for i in range(len(TASKS1)):

print('\t', done_queue.get())

Add more tasks using `put()`

for task in TASKS2:

task_queue.put(task)

Get and print some more results

for i in range(len(TASKS2)):

print('\t', done_queue.get())

Tell child processes to stop

for i in range(NUMBER_OF_PROCESSES):

task_queue.put('STOP')

if __name__ == '__main__':

freeze_support()

test()

18.3 multiprocessing.shared_memory—Sharedmemory for direct
access across processes

Source code: Lib/multiprocessing/shared_memory.py

Added in version 3.8.

This module provides a class, SharedMemory, for the allocation and management of shared memory to be ac-
cessed by one or more processes on a multicore or symmetric multiprocessor (SMP) machine. To assist with
the life-cycle management of shared memory especially across distinct processes, a BaseManager subclass,
SharedMemoryManager, is also provided in the multiprocessing.managers module.

In this module, shared memory refers to “POSIX style” shared memory blocks (though is not necessarily imple-
mented explicitly as such) and does not refer to “distributed shared memory”. This style of shared memory permits
distinct processes to potentially read and write to a common (or shared) region of volatile memory. Processes are
conventionally limited to only have access to their own process memory space but shared memory permits the shar-
ing of data between processes, avoiding the need to instead send messages between processes containing that data.
Sharing data directly via memory can provide significant performance benefits compared to sharing data via disk or
socket or other communications requiring the serialization/deserialization and copying of data.

class multiprocessing.shared_memory.SharedMemory(name=None, create=False, size=0, *,
track=True)

Create an instance of the SharedMemory class for either creating a new shared memory block or attaching
to an existing shared memory block. Each shared memory block is assigned a unique name. In this way, one
process can create a shared memory block with a particular name and a different process can attach to that
same shared memory block using that same name.

As a resource for sharing data across processes, shared memory blocks may outlive the original process that
created them. When one process no longer needs access to a shared memory block that might still be needed
by other processes, the close() method should be called. When a shared memory block is no longer needed
by any process, the unlink() method should be called to ensure proper cleanup.

Parameters

18.3. multiprocessing.shared_memory— Shared memory for direct access across processes997

https://github.com/python/cpython/tree/3.13/Lib/multiprocessing/shared_memory.py

The Python Library Reference, Release 3.13.1

• name (str | None) – The unique name for the requested shared memory, specified as
a string. When creating a new shared memory block, if None (the default) is supplied for
the name, a novel name will be generated.

• create (bool) – Control whether a new shared memory block is created (True) or an
existing shared memory block is attached (False).

• size (int) – The requested number of bytes when creating a new shared memory block.
Because some platforms choose to allocate chunks of memory based upon that platform’s
memory page size, the exact size of the shared memory block may be larger or equal to the
size requested. When attaching to an existing shared memory block, the size parameter is
ignored.

• track (bool) – When True, register the shared memory block with a resource tracker
process on platforms where the OS does not do this automatically. The resource tracker
ensures proper cleanup of the shared memory even if all other processes with access to
the memory exit without doing so. Python processes created from a common ancestor
using multiprocessing facilities share a single resource tracker process, and the life-
time of shared memory segments is handled automatically among these processes. Python
processes created in any other way will receive their own resource tracker when access-
ing shared memory with track enabled. This will cause the shared memory to be deleted
by the resource tracker of the first process that terminates. To avoid this issue, users of
subprocess or standalone Python processes should set track to False when there is al-
ready another process in place that does the bookkeeping. track is ignored on Windows,
which has its own tracking and automatically deletes shared memory when all handles to
it have been closed.

Changed in version 3.13: Added the track parameter.

close()

Close the file descriptor/handle to the shared memory from this instance. close() should be called
once access to the shared memory block from this instance is no longer needed. Depending on operating
system, the underlying memory may or may not be freed even if all handles to it have been closed. To
ensure proper cleanup, use the unlink() method.

unlink()

Delete the underlying shared memory block. This should be called only once per shared memory block
regardless of the number of handles to it, even in other processes. unlink() and close() can be
called in any order, but trying to access data inside a shared memory block after unlink() may result
in memory access errors, depending on platform.

This method has no effect on Windows, where the only way to delete a shared memory block is to close
all handles.

buf

A memoryview of contents of the shared memory block.

name

Read-only access to the unique name of the shared memory block.

size

Read-only access to size in bytes of the shared memory block.

The following example demonstrates low-level use of SharedMemory instances:

>>> from multiprocessing import shared_memory

>>> shm_a = shared_memory.SharedMemory(create=True, size=10)

>>> type(shm_a.buf)

<class 'memoryview'>

>>> buffer = shm_a.buf

>>> len(buffer)

10

(continues on next page)

998 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> buffer[:4] = bytearray([22, 33, 44, 55]) # Modify multiple at once

>>> buffer[4] = 100 # Modify single byte at a time

>>> # Attach to an existing shared memory block

>>> shm_b = shared_memory.SharedMemory(shm_a.name)

>>> import array

>>> array.array('b', shm_b.buf[:5]) # Copy the data into a new array.array

array('b', [22, 33, 44, 55, 100])

>>> shm_b.buf[:5] = b'howdy' # Modify via shm_b using bytes

>>> bytes(shm_a.buf[:5]) # Access via shm_a

b'howdy'

>>> shm_b.close() # Close each SharedMemory instance

>>> shm_a.close()

>>> shm_a.unlink() # Call unlink only once to release the shared memory

The following example demonstrates a practical use of the SharedMemory class with NumPy arrays, accessing the
same numpy.ndarray from two distinct Python shells:

>>> # In the first Python interactive shell

>>> import numpy as np

>>> a = np.array([1, 1, 2, 3, 5, 8]) # Start with an existing NumPy array

>>> from multiprocessing import shared_memory

>>> shm = shared_memory.SharedMemory(create=True, size=a.nbytes)

>>> # Now create a NumPy array backed by shared memory

>>> b = np.ndarray(a.shape, dtype=a.dtype, buffer=shm.buf)

>>> b[:] = a[:] # Copy the original data into shared memory

>>> b

array([1, 1, 2, 3, 5, 8])

>>> type(b)

<class 'numpy.ndarray'>

>>> type(a)

<class 'numpy.ndarray'>

>>> shm.name # We did not specify a name so one was chosen for us

'psm_21467_46075'

>>> # In either the same shell or a new Python shell on the same machine

>>> import numpy as np

>>> from multiprocessing import shared_memory

>>> # Attach to the existing shared memory block

>>> existing_shm = shared_memory.SharedMemory(name='psm_21467_46075')

>>> # Note that a.shape is (6,) and a.dtype is np.int64 in this example

>>> c = np.ndarray((6,), dtype=np.int64, buffer=existing_shm.buf)

>>> c

array([1, 1, 2, 3, 5, 8])

>>> c[-1] = 888

>>> c

array([1, 1, 2, 3, 5, 888])

>>> # Back in the first Python interactive shell, b reflects this change

>>> b

array([1, 1, 2, 3, 5, 888])

>>> # Clean up from within the second Python shell

>>> del c # Unnecessary; merely emphasizing the array is no longer used

>>> existing_shm.close()

>>> # Clean up from within the first Python shell

(continues on next page)

18.3. multiprocessing.shared_memory— Shared memory for direct access across processes999

https://numpy.org/

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> del b # Unnecessary; merely emphasizing the array is no longer used

>>> shm.close()

>>> shm.unlink() # Free and release the shared memory block at the very end

class multiprocessing.managers.SharedMemoryManager([address[, authkey]])
A subclass of multiprocessing.managers.BaseManager which can be used for the management of
shared memory blocks across processes.

A call to start() on a SharedMemoryManager instance causes a new process to be started. This new
process’s sole purpose is to manage the life cycle of all shared memory blocks created through it. To trigger
the release of all shared memory blocks managed by that process, call shutdown() on the instance. This
triggers a unlink() call on all of the SharedMemory objects managed by that process and then stops the
process itself. By creating SharedMemory instances through a SharedMemoryManager, we avoid the need
to manually track and trigger the freeing of shared memory resources.

This class provides methods for creating and returning SharedMemory instances and for creating a list-like
object (ShareableList) backed by shared memory.

Refer to BaseManager for a description of the inherited address and authkey optional input arguments and
how they may be used to connect to an existing SharedMemoryManager service from other processes.

SharedMemory(size)
Create and return a new SharedMemory object with the specified size in bytes.

ShareableList(sequence)
Create and return a new ShareableList object, initialized by the values from the input sequence.

The following example demonstrates the basic mechanisms of a SharedMemoryManager:

>>> from multiprocessing.managers import SharedMemoryManager

>>> smm = SharedMemoryManager()

>>> smm.start() # Start the process that manages the shared memory blocks

>>> sl = smm.ShareableList(range(4))

>>> sl

ShareableList([0, 1, 2, 3], name='psm_6572_7512')

>>> raw_shm = smm.SharedMemory(size=128)

>>> another_sl = smm.ShareableList('alpha')

>>> another_sl

ShareableList(['a', 'l', 'p', 'h', 'a'], name='psm_6572_12221')

>>> smm.shutdown() # Calls unlink() on sl, raw_shm, and another_sl

The following example depicts a potentially more convenient pattern for using SharedMemoryManager objects via
the with statement to ensure that all shared memory blocks are released after they are no longer needed:

>>> with SharedMemoryManager() as smm:

... sl = smm.ShareableList(range(2000))

... # Divide the work among two processes, storing partial results in sl

... p1 = Process(target=do_work, args=(sl, 0, 1000))

... p2 = Process(target=do_work, args=(sl, 1000, 2000))

... p1.start()

... p2.start() # A multiprocessing.Pool might be more efficient

... p1.join()

... p2.join() # Wait for all work to complete in both processes

... total_result = sum(sl) # Consolidate the partial results now in sl

When using a SharedMemoryManager in a with statement, the shared memory blocks created using that manager
are all released when the with statement’s code block finishes execution.

class multiprocessing.shared_memory.ShareableList(sequence=None, *, name=None)

1000 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

Provide a mutable list-like object where all values stored within are stored in a shared memory block. This
constrains storable values to the following built-in data types:

• int (signed 64-bit)

• float

• bool

• str (less than 10M bytes each when encoded as UTF-8)

• bytes (less than 10M bytes each)

• None

It also notably differs from the built-in list type in that these lists can not change their overall length (i.e. no
append(), insert(), etc.) and do not support the dynamic creation of new ShareableList instances via
slicing.

sequence is used in populating a new ShareableList full of values. Set to None to instead attach to an
already existing ShareableList by its unique shared memory name.

name is the unique name for the requested shared memory, as described in the definition for SharedMemory.
When attaching to an existing ShareableList, specify its shared memory block’s unique name while leaving
sequence set to None.

Note

A known issue exists for bytes and str values. If they end with \x00 nul bytes or characters, those may
be silently stripped when fetching them by index from the ShareableList. This .rstrip(b'\x00')
behavior is considered a bug and may go away in the future. See gh-106939.

For applications where rstripping of trailing nulls is a problem, work around it by always unconditionally
appending an extra non-0 byte to the end of such values when storing and unconditionally removing it when
fetching:

>>> from multiprocessing import shared_memory

>>> nul_bug_demo = shared_memory.ShareableList(['?\x00', b'\x03\x02\x01\x00\

↪→x00\x00'])

>>> nul_bug_demo[0]

'?'

>>> nul_bug_demo[1]

b'\x03\x02\x01'

>>> nul_bug_demo.shm.unlink()

>>> padded = shared_memory.ShareableList(['?\x00\x07', b'\x03\x02\x01\x00\x00\

↪→x00\x07'])

>>> padded[0][:-1]

'?\x00'

>>> padded[1][:-1]

b'\x03\x02\x01\x00\x00\x00'

>>> padded.shm.unlink()

count(value)
Return the number of occurrences of value.

index(value)

Return first index position of value. Raise ValueError if value is not present.

format

Read-only attribute containing the struct packing format used by all currently stored values.

18.3. multiprocessing.shared_memory— Shared memory for direct access across processes1001

https://github.com/python/cpython/issues/106939

The Python Library Reference, Release 3.13.1

shm

The SharedMemory instance where the values are stored.

The following example demonstrates basic use of a ShareableList instance:

>>> from multiprocessing import shared_memory

>>> a = shared_memory.ShareableList(['howdy', b'HoWdY', -273.154, 100, None, True,␣

↪→42])

>>> [type(entry) for entry in a]

[<class 'str'>, <class 'bytes'>, <class 'float'>, <class 'int'>, <class 'NoneType'>

↪→, <class 'bool'>, <class 'int'>]

>>> a[2]

-273.154

>>> a[2] = -78.5

>>> a[2]

-78.5

>>> a[2] = 'dry ice' # Changing data types is supported as well

>>> a[2]

'dry ice'

>>> a[2] = 'larger than previously allocated storage space'

Traceback (most recent call last):

...

ValueError: exceeds available storage for existing str

>>> a[2]

'dry ice'

>>> len(a)

7

>>> a.index(42)

6

>>> a.count(b'howdy')

0

>>> a.count(b'HoWdY')

1

>>> a.shm.close()

>>> a.shm.unlink()

>>> del a # Use of a ShareableList after call to unlink() is unsupported

The following example depicts how one, two, or many processes may access the same ShareableList by supplying
the name of the shared memory block behind it:

>>> b = shared_memory.ShareableList(range(5)) # In a first process

>>> c = shared_memory.ShareableList(name=b.shm.name) # In a second process

>>> c

ShareableList([0, 1, 2, 3, 4], name='...')

>>> c[-1] = -999

>>> b[-1]

-999

>>> b.shm.close()

>>> c.shm.close()

>>> c.shm.unlink()

The following examples demonstrates that ShareableList (and underlying SharedMemory) objects can be pickled
and unpickled if needed. Note, that it will still be the same shared object. This happens, because the deserialized
object has the same unique name and is just attached to an existing object with the same name (if the object is still
alive):

>>> import pickle

>>> from multiprocessing import shared_memory

(continues on next page)

1002 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> sl = shared_memory.ShareableList(range(10))

>>> list(sl)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> deserialized_sl = pickle.loads(pickle.dumps(sl))

>>> list(deserialized_sl)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> sl[0] = -1

>>> deserialized_sl[1] = -2

>>> list(sl)

[-1, -2, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(deserialized_sl)

[-1, -2, 2, 3, 4, 5, 6, 7, 8, 9]

>>> sl.shm.close()

>>> sl.shm.unlink()

18.4 The concurrent package

Currently, there is only one module in this package:

• concurrent.futures – Launching parallel tasks

18.5 concurrent.futures— Launching parallel tasks

Added in version 3.2.

Source code: Lib/concurrent/futures/thread.py and Lib/concurrent/futures/process.py

The concurrent.futures module provides a high-level interface for asynchronously executing callables.

The asynchronous execution can be performed with threads, using ThreadPoolExecutor, or separate processes,
using ProcessPoolExecutor. Both implement the same interface, which is defined by the abstract Executor
class.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

18.5.1 Executor Objects

class concurrent.futures.Executor

An abstract class that provides methods to execute calls asynchronously. It should not be used directly, but
through its concrete subclasses.

submit(fn, / , *args, **kwargs)

Schedules the callable, fn, to be executed as fn(*args, **kwargs) and returns a Future object
representing the execution of the callable.

with ThreadPoolExecutor(max_workers=1) as executor:

future = executor.submit(pow, 323, 1235)

print(future.result())

18.4. The concurrent package 1003

https://github.com/python/cpython/tree/3.13/Lib/concurrent/futures/thread.py
https://github.com/python/cpython/tree/3.13/Lib/concurrent/futures/process.py

The Python Library Reference, Release 3.13.1

map(fn, *iterables, timeout=None, chunksize=1)
Similar to map(fn, *iterables) except:

• the iterables are collected immediately rather than lazily;

• fn is executed asynchronously and several calls to fn may be made concurrently.

The returned iterator raises a TimeoutError if __next__() is called and the result isn’t available after
timeout seconds from the original call to Executor.map(). timeout can be an int or a float. If timeout
is not specified or None, there is no limit to the wait time.

If a fn call raises an exception, then that exception will be raised when its value is retrieved from the
iterator.

When using ProcessPoolExecutor, this method chops iterables into a number of chunks which it
submits to the pool as separate tasks. The (approximate) size of these chunks can be specified by setting
chunksize to a positive integer. For very long iterables, using a large value for chunksize can significantly
improve performance compared to the default size of 1. With ThreadPoolExecutor, chunksize has
no effect.

Changed in version 3.5: Added the chunksize argument.

shutdown(wait=True, *, cancel_futures=False)
Signal the executor that it should free any resources that it is using when the currently pending futures
are done executing. Calls to Executor.submit() and Executor.map() made after shutdown will
raise RuntimeError.

If wait is True then this method will not return until all the pending futures are done executing and the
resources associated with the executor have been freed. If wait is False then this method will return
immediately and the resources associated with the executor will be freed when all pending futures are
done executing. Regardless of the value of wait, the entire Python program will not exit until all pending
futures are done executing.

If cancel_futures is True, this method will cancel all pending futures that the executor has not started
running. Any futures that are completed or running won’t be cancelled, regardless of the value of can-
cel_futures.

If both cancel_futures and wait are True, all futures that the executor has started running will be com-
pleted prior to this method returning. The remaining futures are cancelled.

You can avoid having to call this method explicitly if you use the with statement, which will shutdown
the Executor (waiting as if Executor.shutdown() were called with wait set to True):

import shutil

with ThreadPoolExecutor(max_workers=4) as e:

e.submit(shutil.copy, 'src1.txt', 'dest1.txt')

e.submit(shutil.copy, 'src2.txt', 'dest2.txt')

e.submit(shutil.copy, 'src3.txt', 'dest3.txt')

e.submit(shutil.copy, 'src4.txt', 'dest4.txt')

Changed in version 3.9: Added cancel_futures.

18.5.2 ThreadPoolExecutor

ThreadPoolExecutor is an Executor subclass that uses a pool of threads to execute calls asynchronously.

Deadlocks can occur when the callable associated with a Future waits on the results of another Future. For
example:

import time

def wait_on_b():

time.sleep(5)

print(b.result()) # b will never complete because it is waiting on a.

(continues on next page)

1004 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

(continued from previous page)

return 5

def wait_on_a():

time.sleep(5)

print(a.result()) # a will never complete because it is waiting on b.

return 6

executor = ThreadPoolExecutor(max_workers=2)

a = executor.submit(wait_on_b)

b = executor.submit(wait_on_a)

And:

def wait_on_future():

f = executor.submit(pow, 5, 2)

This will never complete because there is only one worker thread and

it is executing this function.

print(f.result())

executor = ThreadPoolExecutor(max_workers=1)

executor.submit(wait_on_future)

class concurrent.futures.ThreadPoolExecutor(max_workers=None, thread_name_prefix=” ,
initializer=None, initargs=())

An Executor subclass that uses a pool of at most max_workers threads to execute calls asynchronously.

All threads enqueued to ThreadPoolExecutor will be joined before the interpreter can exit. Note that the
exit handler which does this is executed before any exit handlers added using atexit. This means exceptions
in the main thread must be caught and handled in order to signal threads to exit gracefully. For this reason, it
is recommended that ThreadPoolExecutor not be used for long-running tasks.

initializer is an optional callable that is called at the start of each worker thread; initargs is a tuple of argu-
ments passed to the initializer. Should initializer raise an exception, all currently pending jobs will raise a
BrokenThreadPool, as well as any attempt to submit more jobs to the pool.

Changed in version 3.5: Ifmax_workers is None or not given, it will default to the number of processors on the
machine, multiplied by 5, assuming that ThreadPoolExecutor is often used to overlap I/O instead of CPU
work and the number of workers should be higher than the number of workers for ProcessPoolExecutor.

Changed in version 3.6: Added the thread_name_prefix parameter to allow users to control the threading.
Thread names for worker threads created by the pool for easier debugging.

Changed in version 3.7: Added the initializer and initargs arguments.

Changed in version 3.8: Default value of max_workers is changed to min(32, os.cpu_count() + 4).
This default value preserves at least 5 workers for I/O bound tasks. It utilizes at most 32 CPU cores for CPU
bound tasks which release the GIL. And it avoids using very large resources implicitly on many-core machines.

ThreadPoolExecutor now reuses idle worker threads before starting max_workers worker threads too.

Changed in version 3.13: Default value of max_workers is changed to min(32, (os.

process_cpu_count() or 1) + 4).

ThreadPoolExecutor Example

import concurrent.futures

import urllib.request

URLS = ['http://www.foxnews.com/',

(continues on next page)

18.5. concurrent.futures— Launching parallel tasks 1005

The Python Library Reference, Release 3.13.1

(continued from previous page)

'http://www.cnn.com/',

'http://europe.wsj.com/',

'http://www.bbc.co.uk/',

'http://nonexistent-subdomain.python.org/']

Retrieve a single page and report the URL and contents

def load_url(url, timeout):

with urllib.request.urlopen(url, timeout=timeout) as conn:

return conn.read()

We can use a with statement to ensure threads are cleaned up promptly

with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:

Start the load operations and mark each future with its URL

future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}

for future in concurrent.futures.as_completed(future_to_url):

url = future_to_url[future]

try:

data = future.result()

except Exception as exc:

print('%r generated an exception: %s' % (url, exc))

else:

print('%r page is %d bytes' % (url, len(data)))

18.5.3 ProcessPoolExecutor

The ProcessPoolExecutor class is an Executor subclass that uses a pool of processes to execute calls asyn-
chronously. ProcessPoolExecutor uses the multiprocessing module, which allows it to side-step the Global
Interpreter Lock but also means that only picklable objects can be executed and returned.

The __main__module must be importable by worker subprocesses. This means that ProcessPoolExecutor will
not work in the interactive interpreter.

Calling Executor or Futuremethods from a callable submitted to a ProcessPoolExecutor will result in dead-
lock.

class concurrent.futures.ProcessPoolExecutor(max_workers=None, mp_context=None,
initializer=None, initargs=(),
max_tasks_per_child=None)

An Executor subclass that executes calls asynchronously using a pool of at most max_workers processes. If
max_workers is None or not given, it will default to os.process_cpu_count(). Ifmax_workers is less than
or equal to 0, then a ValueError will be raised. OnWindows, max_workersmust be less than or equal to 61.
If it is not then ValueError will be raised. If max_workers is None, then the default chosen will be at most
61, even if more processors are available. mp_context can be a multiprocessing context or None. It will
be used to launch the workers. If mp_context is None or not given, the default multiprocessing context is
used. See Contexts and start methods.

initializer is an optional callable that is called at the start of each worker process; initargs is a tuple of argu-
ments passed to the initializer. Should initializer raise an exception, all currently pending jobs will raise a
BrokenProcessPool, as well as any attempt to submit more jobs to the pool.

max_tasks_per_child is an optional argument that specifies the maximum number of tasks a single process
can execute before it will exit and be replaced with a fresh worker process. By default max_tasks_per_child
is None which means worker processes will live as long as the pool. When a max is specified, the “spawn”
multiprocessing start method will be used by default in absence of a mp_context parameter. This feature is
incompatible with the “fork” start method.

Changed in version 3.3: When one of the worker processes terminates abruptly, a BrokenProcessPool error
is now raised. Previously, behaviour was undefined but operations on the executor or its futures would often
freeze or deadlock.

1006 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

Changed in version 3.7: The mp_context argument was added to allow users to control the start_method for
worker processes created by the pool.

Added the initializer and initargs arguments.

Note

The default multiprocessing start method (see Contexts and start methods) will change away from
fork in Python 3.14. Code that requires fork be used for their ProcessPoolExecutor should explicitly
specify that by passing a mp_context=multiprocessing.get_context("fork") parameter.

Changed in version 3.11: The max_tasks_per_child argument was added to allow users to control the lifetime
of workers in the pool.

Changed in version 3.12: On POSIX systems, if your application has multiple threads and the
multiprocessing context uses the "fork" start method: The os.fork() function called internally to
spawn workers may raise a DeprecationWarning. Pass a mp_context configured to use a different start
method. See the os.fork() documentation for further explanation.

Changed in version 3.13: max_workers uses os.process_cpu_count() by default, instead of os.

cpu_count().

ProcessPoolExecutor Example

import concurrent.futures

import math

PRIMES = [

112272535095293,

112582705942171,

112272535095293,

115280095190773,

115797848077099,

1099726899285419]

def is_prime(n):

if n < 2:

return False

if n == 2:

return True

if n % 2 == 0:

return False

sqrt_n = int(math.floor(math.sqrt(n)))

for i in range(3, sqrt_n + 1, 2):

if n % i == 0:

return False

return True

def main():

with concurrent.futures.ProcessPoolExecutor() as executor:

for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)):

print('%d is prime: %s' % (number, prime))

if __name__ == '__main__':

main()

18.5. concurrent.futures— Launching parallel tasks 1007

The Python Library Reference, Release 3.13.1

18.5.4 Future Objects

The Future class encapsulates the asynchronous execution of a callable. Future instances are created by
Executor.submit().

class concurrent.futures.Future

Encapsulates the asynchronous execution of a callable. Future instances are created by Executor.

submit() and should not be created directly except for testing.

cancel()

Attempt to cancel the call. If the call is currently being executed or finished running and cannot be
cancelled then the method will return False, otherwise the call will be cancelled and the method will
return True.

cancelled()

Return True if the call was successfully cancelled.

running()

Return True if the call is currently being executed and cannot be cancelled.

done()

Return True if the call was successfully cancelled or finished running.

result(timeout=None)
Return the value returned by the call. If the call hasn’t yet completed then this method will wait up to
timeout seconds. If the call hasn’t completed in timeout seconds, then a TimeoutError will be raised.
timeout can be an int or float. If timeout is not specified or None, there is no limit to the wait time.

If the future is cancelled before completing then CancelledError will be raised.

If the call raised an exception, this method will raise the same exception.

exception(timeout=None)
Return the exception raised by the call. If the call hasn’t yet completed then this method will wait up to
timeout seconds. If the call hasn’t completed in timeout seconds, then a TimeoutError will be raised.
timeout can be an int or float. If timeout is not specified or None, there is no limit to the wait time.

If the future is cancelled before completing then CancelledError will be raised.

If the call completed without raising, None is returned.

add_done_callback(fn)
Attaches the callable fn to the future. fn will be called, with the future as its only argument, when the
future is cancelled or finishes running.

Added callables are called in the order that they were added and are always called in a thread belonging to
the process that added them. If the callable raises an Exception subclass, it will be logged and ignored.
If the callable raises a BaseException subclass, the behavior is undefined.

If the future has already completed or been cancelled, fn will be called immediately.

The following Future methods are meant for use in unit tests and Executor implementations.

set_running_or_notify_cancel()

This method should only be called by Executor implementations before executing the work associated
with the Future and by unit tests.

If the method returns False then the Future was cancelled, i.e. Future.cancel() was called and
returned True. Any threads waiting on the Future completing (i.e. through as_completed() or
wait()) will be woken up.

If the method returns True then the Future was not cancelled and has been put in the running state, i.e.
calls to Future.running() will return True.

This method can only be called once and cannot be called after Future.set_result() or Future.
set_exception() have been called.

1008 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

set_result(result)
Sets the result of the work associated with the Future to result.

This method should only be used by Executor implementations and unit tests.

Changed in version 3.8: This method raises concurrent.futures.InvalidStateError if the
Future is already done.

set_exception(exception)
Sets the result of the work associated with the Future to the Exception exception.

This method should only be used by Executor implementations and unit tests.

Changed in version 3.8: This method raises concurrent.futures.InvalidStateError if the
Future is already done.

18.5.5 Module Functions

concurrent.futures.wait(fs, timeout=None, return_when=ALL_COMPLETED)

Wait for the Future instances (possibly created by different Executor instances) given by fs to complete.
Duplicate futures given to fs are removed and will be returned only once. Returns a named 2-tuple of sets.
The first set, named done, contains the futures that completed (finished or cancelled futures) before the wait
completed. The second set, named not_done, contains the futures that did not complete (pending or running
futures).

timeout can be used to control the maximum number of seconds to wait before returning. timeout can be an
int or float. If timeout is not specified or None, there is no limit to the wait time.

return_when indicates when this function should return. It must be one of the following constants:

Constant Description

concurrent.futures.FIRST_COMPLETED
The function will return when any future finishes or
is cancelled.

concurrent.futures.FIRST_EXCEPTION
The function will return when any future finishes by
raising an exception. If no future raises an exception
then it is equivalent to ALL_COMPLETED.

concurrent.futures.ALL_COMPLETED
The function will return when all futures finish or are
cancelled.

concurrent.futures.as_completed(fs, timeout=None)

Returns an iterator over the Future instances (possibly created by different Executor instances) given by fs
that yields futures as they complete (finished or cancelled futures). Any futures given by fs that are duplicated
will be returned once. Any futures that completed before as_completed() is called will be yielded first. The
returned iterator raises a TimeoutError if __next__() is called and the result isn’t available after timeout
seconds from the original call to as_completed(). timeout can be an int or float. If timeout is not specified
or None, there is no limit to the wait time.

See also

PEP 3148 – futures - execute computations asynchronously
The proposal which described this feature for inclusion in the Python standard library.

18.5. concurrent.futures— Launching parallel tasks 1009

https://peps.python.org/pep-3148/

The Python Library Reference, Release 3.13.1

18.5.6 Exception classes

exception concurrent.futures.CancelledError

Raised when a future is cancelled.

exception concurrent.futures.TimeoutError

A deprecated alias of TimeoutError, raised when a future operation exceeds the given timeout.

Changed in version 3.11: This class was made an alias of TimeoutError.

exception concurrent.futures.BrokenExecutor

Derived from RuntimeError, this exception class is raised when an executor is broken for some reason, and
cannot be used to submit or execute new tasks.

Added in version 3.7.

exception concurrent.futures.InvalidStateError

Raised when an operation is performed on a future that is not allowed in the current state.

Added in version 3.8.

exception concurrent.futures.thread.BrokenThreadPool

Derived from BrokenExecutor, this exception class is raised when one of the workers of a
ThreadPoolExecutor has failed initializing.

Added in version 3.7.

exception concurrent.futures.process.BrokenProcessPool

Derived from BrokenExecutor (formerly RuntimeError), this exception class is raised when one of the
workers of a ProcessPoolExecutor has terminated in a non-clean fashion (for example, if it was killed
from the outside).

Added in version 3.3.

18.6 subprocess— Subprocess management

Source code: Lib/subprocess.py

The subprocess module allows you to spawn new processes, connect to their input/output/error pipes, and obtain
their return codes. This module intends to replace several older modules and functions:

os.system

os.spawn*

Information about how the subprocess module can be used to replace these modules and functions can be found
in the following sections.

See also

PEP 324 – PEP proposing the subprocess module

Availability: not Android, not iOS, not WASI.

This module is not supported on mobile platforms orWebAssembly platforms.

18.6.1 Using the subprocess Module

The recommended approach to invoking subprocesses is to use the run() function for all use cases it can handle.
For more advanced use cases, the underlying Popen interface can be used directly.

1010 Chapter 18. Concurrent Execution

https://github.com/python/cpython/tree/3.13/Lib/subprocess.py
https://peps.python.org/pep-0324/

The Python Library Reference, Release 3.13.1

subprocess.run(args, *, stdin=None, input=None, stdout=None, stderr=None, capture_output=False, shell=False,
cwd=None, timeout=None, check=False, encoding=None, errors=None, text=None, env=None,
universal_newlines=None, **other_popen_kwargs)

Run the command described by args. Wait for command to complete, then return a CompletedProcess
instance.

The arguments shown above are merely the most common ones, described below in Frequently Used Arguments
(hence the use of keyword-only notation in the abbreviated signature). The full function signature is largely
the same as that of the Popen constructor - most of the arguments to this function are passed through to that
interface. (timeout, input, check, and capture_output are not.)

If capture_output is true, stdout and stderr will be captured. When used, the internal Popen object is automat-
ically created with stdout and stderr both set to PIPE. The stdout and stderr arguments may not be supplied at
the same time as capture_output. If you wish to capture and combine both streams into one, set stdout to PIPE
and stderr to STDOUT, instead of using capture_output.

A timeout may be specified in seconds, it is internally passed on to Popen.communicate(). If the timeout
expires, the child process will be killed and waited for. The TimeoutExpired exception will be re-raised after
the child process has terminated. The initial process creation itself cannot be interrupted on many platform
APIs so you are not guaranteed to see a timeout exception until at least after however long process creation
takes.

The input argument is passed to Popen.communicate() and thus to the subprocess’s stdin. If used it must
be a byte sequence, or a string if encoding or errors is specified or text is true. When used, the internal Popen
object is automatically created with stdin set to PIPE, and the stdin argument may not be used as well.

If check is true, and the process exits with a non-zero exit code, a CalledProcessError exception will
be raised. Attributes of that exception hold the arguments, the exit code, and stdout and stderr if they were
captured.

If encoding or errors are specified, or text is true, file objects for stdin, stdout and stderr are opened in text mode
using the specified encoding and errors or the io.TextIOWrapper default. The universal_newlines argument
is equivalent to text and is provided for backwards compatibility. By default, file objects are opened in binary
mode.

If env is not None, it must be a mapping that defines the environment variables for the new process; these
are used instead of the default behavior of inheriting the current process’ environment. It is passed directly
to Popen. This mapping can be str to str on any platform or bytes to bytes on POSIX platforms much like
os.environ or os.environb.

Examples:

>>> subprocess.run(["ls", "-l"]) # doesn't capture output

CompletedProcess(args=['ls', '-l'], returncode=0)

>>> subprocess.run("exit 1", shell=True, check=True)

Traceback (most recent call last):

...

subprocess.CalledProcessError: Command 'exit 1' returned non-zero exit status 1

>>> subprocess.run(["ls", "-l", "/dev/null"], capture_output=True)

CompletedProcess(args=['ls', '-l', '/dev/null'], returncode=0,

stdout=b'crw-rw-rw- 1 root root 1, 3 Jan 23 16:23 /dev/null\n', stderr=b'')

Added in version 3.5.

Changed in version 3.6: Added encoding and errors parameters

Changed in version 3.7: Added the text parameter, as amore understandable alias of universal_newlines. Added
the capture_output parameter.

Changed in version 3.12: Changed Windows shell search order for shell=True. The current directory and
%PATH% are replaced with %COMSPEC% and %SystemRoot%\System32\cmd.exe. As a result, dropping a
malicious program named cmd.exe into a current directory no longer works.

18.6. subprocess— Subprocess management 1011

The Python Library Reference, Release 3.13.1

class subprocess.CompletedProcess

The return value from run(), representing a process that has finished.

args

The arguments used to launch the process. This may be a list or a string.

returncode

Exit status of the child process. Typically, an exit status of 0 indicates that it ran successfully.

A negative value -N indicates that the child was terminated by signal N (POSIX only).

stdout

Captured stdout from the child process. A bytes sequence, or a string if run() was called with an
encoding, errors, or text=True. None if stdout was not captured.

If you ran the process with stderr=subprocess.STDOUT, stdout and stderr will be combined in this
attribute, and stderr will be None.

stderr

Captured stderr from the child process. A bytes sequence, or a string if run() was called with an
encoding, errors, or text=True. None if stderr was not captured.

check_returncode()

If returncode is non-zero, raise a CalledProcessError.

Added in version 3.5.

subprocess.DEVNULL

Special value that can be used as the stdin, stdout or stderr argument to Popen and indicates that the special
file os.devnull will be used.

Added in version 3.3.

subprocess.PIPE

Special value that can be used as the stdin, stdout or stderr argument to Popen and indicates that a pipe to the
standard stream should be opened. Most useful with Popen.communicate().

subprocess.STDOUT

Special value that can be used as the stderr argument to Popen and indicates that standard error should go into
the same handle as standard output.

exception subprocess.SubprocessError

Base class for all other exceptions from this module.

Added in version 3.3.

exception subprocess.TimeoutExpired

Subclass of SubprocessError, raised when a timeout expires while waiting for a child process.

cmd

Command that was used to spawn the child process.

timeout

Timeout in seconds.

output

Output of the child process if it was captured by run() or check_output(). Otherwise, None. This is
always bytes when any output was captured regardless of the text=True setting. It may remain None
instead of b'' when no output was observed.

stdout

Alias for output, for symmetry with stderr.

1012 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

stderr

Stderr output of the child process if it was captured by run(). Otherwise, None. This is always bytes
when stderr output was captured regardless of the text=True setting. It may remain None instead of
b'' when no stderr output was observed.

Added in version 3.3.

Changed in version 3.5: stdout and stderr attributes added

exception subprocess.CalledProcessError

Subclass of SubprocessError, raisedwhen a process run by check_call(), check_output(), or run()
(with check=True) returns a non-zero exit status.

returncode

Exit status of the child process. If the process exited due to a signal, this will be the negative signal
number.

cmd

Command that was used to spawn the child process.

output

Output of the child process if it was captured by run() or check_output(). Otherwise, None.

stdout

Alias for output, for symmetry with stderr.

stderr

Stderr output of the child process if it was captured by run(). Otherwise, None.

Changed in version 3.5: stdout and stderr attributes added

Frequently Used Arguments

To support a wide variety of use cases, the Popen constructor (and the convenience functions) accept a large number
of optional arguments. For most typical use cases, many of these arguments can be safely left at their default values.
The arguments that are most commonly needed are:

args is required for all calls and should be a string, or a sequence of program arguments. Providing
a sequence of arguments is generally preferred, as it allows the module to take care of any required
escaping and quoting of arguments (e.g. to permit spaces in file names). If passing a single string, either
shell must be True (see below) or else the string must simply name the program to be executed without
specifying any arguments.

stdin, stdout and stderr specify the executed program’s standard input, standard output and standard error
file handles, respectively. Valid values are None, PIPE, DEVNULL, an existing file descriptor (a positive
integer), and an existing file object with a valid file descriptor. With the default settings of None, no
redirection will occur. PIPE indicates that a new pipe to the child should be created. DEVNULL indicates
that the special file os.devnull will be used. Additionally, stderr can be STDOUT, which indicates that
the stderr data from the child process should be captured into the same file handle as for stdout.

If encoding or errors are specified, or text (also known as universal_newlines) is true, the file objects
stdin, stdout and stderr will be opened in text mode using the encoding and errors specified in the call or
the defaults for io.TextIOWrapper.

For stdin, line ending characters '\n' in the input will be converted to the default line separator os.
linesep. For stdout and stderr, all line endings in the output will be converted to '\n'. For more
information see the documentation of the io.TextIOWrapper class when the newline argument to its
constructor is None.

If text mode is not used, stdin, stdout and stderr will be opened as binary streams. No encoding or line
ending conversion is performed.

Changed in version 3.6: Added the encoding and errors parameters.

Changed in version 3.7: Added the text parameter as an alias for universal_newlines.

18.6. subprocess— Subprocess management 1013

The Python Library Reference, Release 3.13.1

Note

The newlines attribute of the file objects Popen.stdin, Popen.stdout and Popen.stderr are
not updated by the Popen.communicate() method.

If shell is True, the specified command will be executed through the shell. This can be useful if you
are using Python primarily for the enhanced control flow it offers over most system shells and still want
convenient access to other shell features such as shell pipes, filename wildcards, environment variable
expansion, and expansion of ~ to a user’s home directory. However, note that Python itself offers
implementations of many shell-like features (in particular, glob, fnmatch, os.walk(), os.path.
expandvars(), os.path.expanduser(), and shutil).

Changed in version 3.3: When universal_newlines is True, the class uses the encoding locale.

getpreferredencoding(False) instead of locale.getpreferredencoding(). See the io.
TextIOWrapper class for more information on this change.

Note

Read the Security Considerations section before using shell=True.

These options, along with all of the other options, are described in more detail in the Popen constructor documen-
tation.

Popen Constructor

The underlying process creation and management in this module is handled by the Popen class. It offers a lot of
flexibility so that developers are able to handle the less common cases not covered by the convenience functions.

class subprocess.Popen(args, bufsize=-1, executable=None, stdin=None, stdout=None, stderr=None,
preexec_fn=None, close_fds=True, shell=False, cwd=None, env=None,
universal_newlines=None, startupinfo=None, creationflags=0, restore_signals=True,
start_new_session=False, pass_fds=(), *, group=None, extra_groups=None,
user=None, umask=-1, encoding=None, errors=None, text=None, pipesize=-1,
process_group=None)

Execute a child program in a new process. On POSIX, the class uses os.execvpe()-like behavior to execute
the child program. On Windows, the class uses the Windows CreateProcess() function. The arguments
to Popen are as follows.

args should be a sequence of program arguments or else a single string or path-like object. By default, the
program to execute is the first item in args if args is a sequence. If args is a string, the interpretation is
platform-dependent and described below. See the shell and executable arguments for additional differences
from the default behavior. Unless otherwise stated, it is recommended to pass args as a sequence.

Warning

For maximum reliability, use a fully qualified path for the executable. To search for an unqualified name
on PATH, use shutil.which(). On all platforms, passing sys.executable is the recommended way
to launch the current Python interpreter again, and use the -m command-line format to launch an installed
module.

Resolving the path of executable (or the first item of args) is platform dependent. For POSIX, see os.
execvpe(), and note that when resolving or searching for the executable path, cwd overrides the current
working directory and env can override the PATH environment variable. For Windows, see the documen-
tation of the lpApplicationName and lpCommandLine parameters of WinAPI CreateProcess, and
note that when resolving or searching for the executable path with shell=False, cwd does not override
the current working directory and env cannot override the PATH environment variable. Using a full path
avoids all of these variations.

1014 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

An example of passing some arguments to an external program as a sequence is:

Popen(["/usr/bin/git", "commit", "-m", "Fixes a bug."])

On POSIX, if args is a string, the string is interpreted as the name or path of the program to execute. However,
this can only be done if not passing arguments to the program.

Note

It may not be obvious how to break a shell command into a sequence of arguments, especially in complex
cases. shlex.split() can illustrate how to determine the correct tokenization for args:

>>> import shlex, subprocess

>>> command_line = input()

/bin/vikings -input eggs.txt -output "spam spam.txt" -cmd "echo '$MONEY'"

>>> args = shlex.split(command_line)

>>> print(args)

['/bin/vikings', '-input', 'eggs.txt', '-output', 'spam spam.txt', '-cmd',

↪→"echo '$MONEY'"]

>>> p = subprocess.Popen(args) # Success!

Note in particular that options (such as -input) and arguments (such as eggs.txt) that are separated by
whitespace in the shell go in separate list elements, while arguments that need quoting or backslash escaping
when used in the shell (such as filenames containing spaces or the echo command shown above) are single
list elements.

On Windows, if args is a sequence, it will be converted to a string in a manner described in Converting an
argument sequence to a string on Windows. This is because the underlying CreateProcess() operates on
strings.

Changed in version 3.6: args parameter accepts a path-like object if shell is False and a sequence containing
path-like objects on POSIX.

Changed in version 3.8: args parameter accepts a path-like object if shell is False and a sequence containing
bytes and path-like objects on Windows.

The shell argument (which defaults to False) specifies whether to use the shell as the program to execute. If
shell is True, it is recommended to pass args as a string rather than as a sequence.

On POSIX with shell=True, the shell defaults to /bin/sh. If args is a string, the string specifies the
command to execute through the shell. This means that the string must be formatted exactly as it would be
when typed at the shell prompt. This includes, for example, quoting or backslash escaping filenames with
spaces in them. If args is a sequence, the first item specifies the command string, and any additional items will
be treated as additional arguments to the shell itself. That is to say, Popen does the equivalent of:

Popen(['/bin/sh', '-c', args[0], args[1], ...])

OnWindows with shell=True, the COMSPEC environment variable specifies the default shell. The only time
you need to specify shell=True onWindows is when the command you wish to execute is built into the shell
(e.g. dir or copy). You do not need shell=True to run a batch file or console-based executable.

Note

Read the Security Considerations section before using shell=True.

bufsize will be supplied as the corresponding argument to the open() function when creating the
stdin/stdout/stderr pipe file objects:

• 0 means unbuffered (read and write are one system call and can return short)

18.6. subprocess— Subprocess management 1015

The Python Library Reference, Release 3.13.1

• 1 means line buffered (only usable if text=True or universal_newlines=True)

• any other positive value means use a buffer of approximately that size

• negative bufsize (the default) means the system default of io.DEFAULT_BUFFER_SIZE will be used.

Changed in version 3.3.1: bufsize now defaults to -1 to enable buffering by default to match the behavior
that most code expects. In versions prior to Python 3.2.4 and 3.3.1 it incorrectly defaulted to 0 which was
unbuffered and allowed short reads. This was unintentional and did not match the behavior of Python 2 as
most code expected.

The executable argument specifies a replacement program to execute. It is very seldom needed. When
shell=False, executable replaces the program to execute specified by args. However, the original args is
still passed to the program. Most programs treat the program specified by args as the command name, which
can then be different from the program actually executed. On POSIX, the args name becomes the display
name for the executable in utilities such as ps. If shell=True, on POSIX the executable argument specifies
a replacement shell for the default /bin/sh.

Changed in version 3.6: executable parameter accepts a path-like object on POSIX.

Changed in version 3.8: executable parameter accepts a bytes and path-like object on Windows.

Changed in version 3.12: Changed Windows shell search order for shell=True. The current directory and
%PATH% are replaced with %COMSPEC% and %SystemRoot%\System32\cmd.exe. As a result, dropping a
malicious program named cmd.exe into a current directory no longer works.

stdin, stdout and stderr specify the executed program’s standard input, standard output and standard error file
handles, respectively. Valid values are None, PIPE, DEVNULL, an existing file descriptor (a positive integer),
and an existing file object with a valid file descriptor. With the default settings of None, no redirection will
occur. PIPE indicates that a new pipe to the child should be created. DEVNULL indicates that the special file
os.devnull will be used. Additionally, stderr can be STDOUT, which indicates that the stderr data from the
applications should be captured into the same file handle as for stdout.

If preexec_fn is set to a callable object, this object will be called in the child process just before the child is
executed. (POSIX only)

Warning

The preexec_fn parameter is NOT SAFE to use in the presence of threads in your application. The child
process could deadlock before exec is called.

Note

If you need to modify the environment for the child use the env parameter rather than doing it in a pre-
exec_fn. The start_new_session and process_group parameters should take the place of code using pre-
exec_fn to call os.setsid() or os.setpgid() in the child.

Changed in version 3.8: The preexec_fn parameter is no longer supported in subinterpreters. The use of the
parameter in a subinterpreter raises RuntimeError. The new restriction may affect applications that are
deployed in mod_wsgi, uWSGI, and other embedded environments.

If close_fds is true, all file descriptors except 0, 1 and 2 will be closed before the child process is executed.
Otherwise when close_fds is false, file descriptors obey their inheritable flag as described in Inheritance of File
Descriptors.

On Windows, if close_fds is true then no handles will be inherited by the child process unless explicitly passed
in the handle_list element of STARTUPINFO.lpAttributeList, or by standard handle redirection.

Changed in version 3.2: The default for close_fds was changed from False to what is described above.

Changed in version 3.7: On Windows the default for close_fds was changed from False to True when redi-
recting the standard handles. It’s now possible to set close_fds to True when redirecting the standard handles.

1016 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

pass_fds is an optional sequence of file descriptors to keep open between the parent and child. Providing any
pass_fds forces close_fds to be True. (POSIX only)

Changed in version 3.2: The pass_fds parameter was added.

If cwd is not None, the function changes the working directory to cwd before executing the child. cwd can be
a string, bytes or path-like object. On POSIX, the function looks for executable (or for the first item in args)
relative to cwd if the executable path is a relative path.

Changed in version 3.6: cwd parameter accepts a path-like object on POSIX.

Changed in version 3.7: cwd parameter accepts a path-like object on Windows.

Changed in version 3.8: cwd parameter accepts a bytes object on Windows.

If restore_signals is true (the default) all signals that Python has set to SIG_IGN are restored to SIG_DFL in the
child process before the exec. Currently this includes the SIGPIPE, SIGXFZ and SIGXFSZ signals. (POSIX
only)

Changed in version 3.2: restore_signals was added.

If start_new_session is true the setsid() system call will be made in the child process prior to the execution
of the subprocess.

Availability: POSIX

Changed in version 3.2: start_new_session was added.

If process_group is a non-negative integer, the setpgid(0, value) system call will be made in the child
process prior to the execution of the subprocess.

Availability: POSIX

Changed in version 3.11: process_group was added.

If group is not None, the setregid() system call will be made in the child process prior to the execution of
the subprocess. If the provided value is a string, it will be looked up via grp.getgrnam() and the value in
gr_gid will be used. If the value is an integer, it will be passed verbatim. (POSIX only)

Availability: POSIX

Added in version 3.9.

If extra_groups is not None, the setgroups() system call will be made in the child process prior to the execution
of the subprocess. Strings provided in extra_groups will be looked up via grp.getgrnam() and the values in
gr_gid will be used. Integer values will be passed verbatim. (POSIX only)

Availability: POSIX

Added in version 3.9.

If user is not None, the setreuid() system call will be made in the child process prior to the execution of the
subprocess. If the provided value is a string, it will be looked up via pwd.getpwnam() and the value in
pw_uid will be used. If the value is an integer, it will be passed verbatim. (POSIX only)

Availability: POSIX

Added in version 3.9.

If umask is not negative, the umask() system call will be made in the child process prior to the execution of
the subprocess.

Availability: POSIX

Added in version 3.9.

If env is not None, it must be a mapping that defines the environment variables for the new process; these are
used instead of the default behavior of inheriting the current process’ environment. This mapping can be str
to str on any platform or bytes to bytes on POSIX platforms much like os.environ or os.environb.

18.6. subprocess— Subprocess management 1017

The Python Library Reference, Release 3.13.1

Note

If specified, env must provide any variables required for the program to execute. On Windows, in order to
run a side-by-side assembly the specified envmust include a valid SystemRoot.

If encoding or errors are specified, or text is true, the file objects stdin, stdout and stderr are opened in text
mode with the specified encoding and errors, as described above in Frequently Used Arguments. The univer-
sal_newlines argument is equivalent to text and is provided for backwards compatibility. By default, file objects
are opened in binary mode.

Added in version 3.6: encoding and errors were added.

Added in version 3.7: text was added as a more readable alias for universal_newlines.

If given, startupinfo will be a STARTUPINFO object, which is passed to the underlying CreateProcess func-
tion.

If given, creationflags, can be one or more of the following flags:

• CREATE_NEW_CONSOLE

• CREATE_NEW_PROCESS_GROUP

• ABOVE_NORMAL_PRIORITY_CLASS

• BELOW_NORMAL_PRIORITY_CLASS

• HIGH_PRIORITY_CLASS

• IDLE_PRIORITY_CLASS

• NORMAL_PRIORITY_CLASS

• REALTIME_PRIORITY_CLASS

• CREATE_NO_WINDOW

• DETACHED_PROCESS

• CREATE_DEFAULT_ERROR_MODE

• CREATE_BREAKAWAY_FROM_JOB

pipesize can be used to change the size of the pipe when PIPE is used for stdin, stdout or stderr. The size of
the pipe is only changed on platforms that support this (only Linux at this time of writing). Other platforms
will ignore this parameter.

Changed in version 3.10: Added the pipesize parameter.

Popen objects are supported as context managers via the with statement: on exit, standard file descriptors are
closed, and the process is waited for.

with Popen(["ifconfig"], stdout=PIPE) as proc:

log.write(proc.stdout.read())

Popen and the other functions in this module that use it raise an auditing event subprocess.Popen with
arguments executable, args, cwd, and env. The value for args may be a single string or a list of strings,
depending on platform.

Changed in version 3.2: Added context manager support.

Changed in version 3.6: Popen destructor now emits a ResourceWarning warning if the child process is still
running.

Changed in version 3.8: Popen can use os.posix_spawn() in some cases for better performance. On
Windows Subsystem for Linux and QEMU User Emulation, Popen constructor using os.posix_spawn()

1018 Chapter 18. Concurrent Execution

https://en.wikipedia.org/wiki/Side-by-Side_Assembly

The Python Library Reference, Release 3.13.1

no longer raise an exception on errors like missing program, but the child process fails with a non-zero
returncode.

Exceptions

Exceptions raised in the child process, before the new program has started to execute, will be re-raised in the parent.

The most common exception raised is OSError. This occurs, for example, when trying to execute a non-existent file.
Applications should prepare for OSError exceptions. Note that, when shell=True, OSError will be raised by the
child only if the selected shell itself was not found. To determine if the shell failed to find the requested application,
it is necessary to check the return code or output from the subprocess.

A ValueError will be raised if Popen is called with invalid arguments.

check_call() and check_output() will raise CalledProcessError if the called process returns a non-zero
return code.

All of the functions and methods that accept a timeout parameter, such as run() and Popen.communicate() will
raise TimeoutExpired if the timeout expires before the process exits.

Exceptions defined in this module all inherit from SubprocessError.

Added in version 3.3: The SubprocessError base class was added.

18.6.2 Security Considerations

Unlike some other popen functions, this library will not implicitly choose to call a system shell. This means that all
characters, including shell metacharacters, can safely be passed to child processes. If the shell is invoked explicitly,
via shell=True, it is the application’s responsibility to ensure that all whitespace and metacharacters are quoted
appropriately to avoid shell injection vulnerabilities. On some platforms, it is possible to use shlex.quote() for
this escaping.

On Windows, batch files (*.bat or *.cmd) may be launched by the operating system in a system shell regardless
of the arguments passed to this library. This could result in arguments being parsed according to shell rules, but
without any escaping added by Python. If you are intentionally launching a batch file with arguments from untrusted
sources, consider passing shell=True to allow Python to escape special characters. See gh-114539 for additional
discussion.

18.6.3 Popen Objects

Instances of the Popen class have the following methods:

Popen.poll()

Check if child process has terminated. Set and return returncode attribute. Otherwise, returns None.

Popen.wait(timeout=None)
Wait for child process to terminate. Set and return returncode attribute.

If the process does not terminate after timeout seconds, raise a TimeoutExpired exception. It is safe to catch
this exception and retry the wait.

Note

This will deadlock when using stdout=PIPE or stderr=PIPE and the child process generates enough
output to a pipe such that it blocks waiting for the OS pipe buffer to accept more data. Use Popen.
communicate() when using pipes to avoid that.

Note

18.6. subprocess— Subprocess management 1019

https://en.wikipedia.org/wiki/Shell_injection#Shell_injection
https://github.com/python/cpython/issues/114539

The Python Library Reference, Release 3.13.1

When the timeout parameter is not None, then (on POSIX) the function is implemented using a busy loop
(non-blocking call and short sleeps). Use the asyncio module for an asynchronous wait: see asyncio.
create_subprocess_exec.

Changed in version 3.3: timeout was added.

Popen.communicate(input=None, timeout=None)
Interact with process: Send data to stdin. Read data from stdout and stderr, until end-of-file is reached. Wait
for process to terminate and set the returncode attribute. The optional input argument should be data to be
sent to the child process, or None, if no data should be sent to the child. If streams were opened in text mode,
input must be a string. Otherwise, it must be bytes.

communicate() returns a tuple (stdout_data, stderr_data). The data will be strings if streams were
opened in text mode; otherwise, bytes.

Note that if you want to send data to the process’s stdin, you need to create the Popen object with stdin=PIPE.
Similarly, to get anything other than None in the result tuple, you need to give stdout=PIPE and/or
stderr=PIPE too.

If the process does not terminate after timeout seconds, a TimeoutExpired exception will be raised. Catching
this exception and retrying communication will not lose any output.

The child process is not killed if the timeout expires, so in order to cleanup properly a well-behaved application
should kill the child process and finish communication:

proc = subprocess.Popen(...)

try:

outs, errs = proc.communicate(timeout=15)

except TimeoutExpired:

proc.kill()

outs, errs = proc.communicate()

Note

The data read is buffered in memory, so do not use this method if the data size is large or unlimited.

Changed in version 3.3: timeout was added.

Popen.send_signal(signal)
Sends the signal signal to the child.

Do nothing if the process completed.

Note

On Windows, SIGTERM is an alias for terminate(). CTRL_C_EVENT and
CTRL_BREAK_EVENT can be sent to processes started with a creationflags parameter which
includes CREATE_NEW_PROCESS_GROUP.

Popen.terminate()

Stop the child. On POSIX OSs the method sends SIGTERM to the child. OnWindows theWin32 API function
TerminateProcess() is called to stop the child.

Popen.kill()

Kills the child. On POSIX OSs the function sends SIGKILL to the child. On Windows kill() is an alias for
terminate().

The following attributes are also set by the class for you to access. Reassigning them to new values is unsupported:

1020 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

Popen.args

The args argument as it was passed to Popen – a sequence of program arguments or else a single string.

Added in version 3.3.

Popen.stdin

If the stdin argument was PIPE, this attribute is a writeable stream object as returned by open(). If the
encoding or errors arguments were specified or the text or universal_newlines argument was True, the stream
is a text stream, otherwise it is a byte stream. If the stdin argument was not PIPE, this attribute is None.

Popen.stdout

If the stdout argument was PIPE, this attribute is a readable stream object as returned by open(). Reading
from the stream provides output from the child process. If the encoding or errors arguments were specified or
the text or universal_newlines argument was True, the stream is a text stream, otherwise it is a byte stream. If
the stdout argument was not PIPE, this attribute is None.

Popen.stderr

If the stderr argument was PIPE, this attribute is a readable stream object as returned by open(). Reading
from the stream provides error output from the child process. If the encoding or errors arguments were specified
or the text or universal_newlines argument was True, the stream is a text stream, otherwise it is a byte stream.
If the stderr argument was not PIPE, this attribute is None.

Warning

Use communicate() rather than .stdin.write, .stdout.read or .stderr.read to avoid deadlocks due
to any of the other OS pipe buffers filling up and blocking the child process.

Popen.pid

The process ID of the child process.

Note that if you set the shell argument to True, this is the process ID of the spawned shell.

Popen.returncode

The child return code. Initially None, returncode is set by a call to the poll(), wait(), or
communicate() methods if they detect that the process has terminated.

A None value indicates that the process hadn’t yet terminated at the time of the last method call.

A negative value -N indicates that the child was terminated by signal N (POSIX only).

18.6.4 Windows Popen Helpers

The STARTUPINFO class and following constants are only available on Windows.

class subprocess.STARTUPINFO(*, dwFlags=0, hStdInput=None, hStdOutput=None, hStdError=None,
wShowWindow=0, lpAttributeList=None)

Partial support of theWindows STARTUPINFO structure is used for Popen creation. The following attributes
can be set by passing them as keyword-only arguments.

Changed in version 3.7: Keyword-only argument support was added.

dwFlags

A bit field that determines whether certain STARTUPINFO attributes are used when the process creates a
window.

si = subprocess.STARTUPINFO()

si.dwFlags = subprocess.STARTF_USESTDHANDLES | subprocess.STARTF_

↪→USESHOWWINDOW

18.6. subprocess— Subprocess management 1021

https://msdn.microsoft.com/en-us/library/ms686331(v=vs.85).aspx

The Python Library Reference, Release 3.13.1

hStdInput

If dwFlags specifies STARTF_USESTDHANDLES, this attribute is the standard input handle for the pro-
cess. If STARTF_USESTDHANDLES is not specified, the default for standard input is the keyboard buffer.

hStdOutput

If dwFlags specifies STARTF_USESTDHANDLES, this attribute is the standard output handle for the
process. Otherwise, this attribute is ignored and the default for standard output is the console window’s
buffer.

hStdError

If dwFlags specifies STARTF_USESTDHANDLES, this attribute is the standard error handle for the pro-
cess. Otherwise, this attribute is ignored and the default for standard error is the console window’s buffer.

wShowWindow

If dwFlags specifies STARTF_USESHOWWINDOW , this attribute can be any of the values that can be
specified in the nCmdShow parameter for the ShowWindow function, except for SW_SHOWDEFAULT.
Otherwise, this attribute is ignored.

SW_HIDE is provided for this attribute. It is used when Popen is called with shell=True.

lpAttributeList

A dictionary of additional attributes for process creation as given in STARTUPINFOEX, see UpdateProc-
ThreadAttribute.

Supported attributes:

handle_list
Sequence of handles that will be inherited. close_fds must be true if non-empty.

The handles must be temporarily made inheritable by os.set_handle_inheritable()

when passed to the Popen constructor, else OSError will be raised with Windows error
ERROR_INVALID_PARAMETER (87).

Warning

In a multithreaded process, use caution to avoid leaking handles that are marked inheritable
when combining this feature with concurrent calls to other process creation functions that in-
herit all handles such as os.system(). This also applies to standard handle redirection, which
temporarily creates inheritable handles.

Added in version 3.7.

Windows Constants

The subprocess module exposes the following constants.

subprocess.STD_INPUT_HANDLE

The standard input device. Initially, this is the console input buffer, CONIN$.

subprocess.STD_OUTPUT_HANDLE

The standard output device. Initially, this is the active console screen buffer, CONOUT$.

subprocess.STD_ERROR_HANDLE

The standard error device. Initially, this is the active console screen buffer, CONOUT$.

subprocess.SW_HIDE

Hides the window. Another window will be activated.

subprocess.STARTF_USESTDHANDLES

Specifies that the STARTUPINFO.hStdInput, STARTUPINFO.hStdOutput, and STARTUPINFO.

hStdError attributes contain additional information.

1022 Chapter 18. Concurrent Execution

https://msdn.microsoft.com/en-us/library/ms633548(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686880(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686880(v=vs.85).aspx

The Python Library Reference, Release 3.13.1

subprocess.STARTF_USESHOWWINDOW

Specifies that the STARTUPINFO.wShowWindow attribute contains additional information.

subprocess.STARTF_FORCEONFEEDBACK

A STARTUPINFO.dwFlags parameter to specify that the Working in Background mouse cursor will be dis-
played while a process is launching. This is the default behavior for GUI processes.

Added in version 3.13.

subprocess.STARTF_FORCEOFFFEEDBACK

A STARTUPINFO.dwFlags parameter to specify that the mouse cursor will not be changed when launching
a process.

Added in version 3.13.

subprocess.CREATE_NEW_CONSOLE

The new process has a new console, instead of inheriting its parent’s console (the default).

subprocess.CREATE_NEW_PROCESS_GROUP

A Popen creationflags parameter to specify that a new process groupwill be created. This flag is necessary
for using os.kill() on the subprocess.

This flag is ignored if CREATE_NEW_CONSOLE is specified.

subprocess.ABOVE_NORMAL_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process will have an above average priority.

Added in version 3.7.

subprocess.BELOW_NORMAL_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process will have a below average priority.

Added in version 3.7.

subprocess.HIGH_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process will have a high priority.

Added in version 3.7.

subprocess.IDLE_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process will have an idle (lowest) priority.

Added in version 3.7.

subprocess.NORMAL_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process will have a normal priority. (default)

Added in version 3.7.

subprocess.REALTIME_PRIORITY_CLASS

A Popen creationflags parameter to specify that a new process will have realtime priority. You should
almost never use REALTIME_PRIORITY_CLASS, because this interrupts system threads that managemouse
input, keyboard input, and background disk flushing. This class can be appropriate for applications that “talk”
directly to hardware or that perform brief tasks that should have limited interruptions.

Added in version 3.7.

subprocess.CREATE_NO_WINDOW

A Popen creationflags parameter to specify that a new process will not create a window.

Added in version 3.7.

subprocess.DETACHED_PROCESS

A Popen creationflags parameter to specify that a new process will not inherit its parent’s console. This
value cannot be used with CREATE_NEW_CONSOLE.

Added in version 3.7.

18.6. subprocess— Subprocess management 1023

The Python Library Reference, Release 3.13.1

subprocess.CREATE_DEFAULT_ERROR_MODE

A Popen creationflags parameter to specify that a new process does not inherit the error mode of the
calling process. Instead, the new process gets the default error mode. This feature is particularly useful for
multithreaded shell applications that run with hard errors disabled.

Added in version 3.7.

subprocess.CREATE_BREAKAWAY_FROM_JOB

A Popen creationflags parameter to specify that a new process is not associated with the job.

Added in version 3.7.

18.6.5 Older high-level API

Prior to Python 3.5, these three functions comprised the high level API to subprocess. You can now use run() in
many cases, but lots of existing code calls these functions.

subprocess.call(args, *, stdin=None, stdout=None, stderr=None, shell=False, cwd=None, timeout=None,
**other_popen_kwargs)

Run the command described by args. Wait for command to complete, then return the returncode attribute.

Code needing to capture stdout or stderr should use run() instead:

run(...).returncode

To suppress stdout or stderr, supply a value of DEVNULL.

The arguments shown above are merely some common ones. The full function signature is the same as that of
the Popen constructor - this function passes all supplied arguments other than timeout directly through to that
interface.

Note

Do not use stdout=PIPE or stderr=PIPEwith this function. The child process will block if it generates
enough output to a pipe to fill up the OS pipe buffer as the pipes are not being read from.

Changed in version 3.3: timeout was added.

Changed in version 3.12: Changed Windows shell search order for shell=True. The current directory and
%PATH% are replaced with %COMSPEC% and %SystemRoot%\System32\cmd.exe. As a result, dropping a
malicious program named cmd.exe into a current directory no longer works.

subprocess.check_call(args, *, stdin=None, stdout=None, stderr=None, shell=False, cwd=None,
timeout=None, **other_popen_kwargs)

Run command with arguments. Wait for command to complete. If the return code was zero then return,
otherwise raise CalledProcessError. The CalledProcessError object will have the return code in the
returncode attribute. If check_call() was unable to start the process it will propagate the exception that
was raised.

Code needing to capture stdout or stderr should use run() instead:

run(..., check=True)

To suppress stdout or stderr, supply a value of DEVNULL.

The arguments shown above are merely some common ones. The full function signature is the same as that of
the Popen constructor - this function passes all supplied arguments other than timeout directly through to that
interface.

1024 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

Note

Do not use stdout=PIPE or stderr=PIPEwith this function. The child process will block if it generates
enough output to a pipe to fill up the OS pipe buffer as the pipes are not being read from.

Changed in version 3.3: timeout was added.

Changed in version 3.12: Changed Windows shell search order for shell=True. The current directory and
%PATH% are replaced with %COMSPEC% and %SystemRoot%\System32\cmd.exe. As a result, dropping a
malicious program named cmd.exe into a current directory no longer works.

subprocess.check_output(args, *, stdin=None, stderr=None, shell=False, cwd=None, encoding=None,
errors=None, universal_newlines=None, timeout=None, text=None,
**other_popen_kwargs)

Run command with arguments and return its output.

If the return code was non-zero it raises a CalledProcessError. The CalledProcessError object will
have the return code in the returncode attribute and any output in the output attribute.

This is equivalent to:

run(..., check=True, stdout=PIPE).stdout

The arguments shown above are merely some common ones. The full function signature is largely the same as
that of run() - most arguments are passed directly through to that interface. One API deviation from run()

behavior exists: passing input=Nonewill behave the same as input=b'' (or input='', depending on other
arguments) rather than using the parent’s standard input file handle.

By default, this function will return the data as encoded bytes. The actual encoding of the output data may
depend on the command being invoked, so the decoding to text will often need to be handled at the application
level.

This behaviour may be overridden by setting text, encoding, errors, or universal_newlines to True as described
in Frequently Used Arguments and run().

To also capture standard error in the result, use stderr=subprocess.STDOUT:

>>> subprocess.check_output(

... "ls non_existent_file; exit 0",

... stderr=subprocess.STDOUT,

... shell=True)

'ls: non_existent_file: No such file or directory\n'

Added in version 3.1.

Changed in version 3.3: timeout was added.

Changed in version 3.4: Support for the input keyword argument was added.

Changed in version 3.6: encoding and errors were added. See run() for details.

Added in version 3.7: text was added as a more readable alias for universal_newlines.

Changed in version 3.12: Changed Windows shell search order for shell=True. The current directory and
%PATH% are replaced with %COMSPEC% and %SystemRoot%\System32\cmd.exe. As a result, dropping a
malicious program named cmd.exe into a current directory no longer works.

18.6.6 Replacing Older Functions with the subprocess Module

In this section, “a becomes b” means that b can be used as a replacement for a.

18.6. subprocess— Subprocess management 1025

The Python Library Reference, Release 3.13.1

Note

All “a” functions in this section fail (more or less) silently if the executed program cannot be found; the “b”
replacements raise OSError instead.

In addition, the replacements using check_output() will fail with a CalledProcessError if the requested
operation produces a non-zero return code. The output is still available as the output attribute of the raised
exception.

In the following examples, we assume that the relevant functions have already been imported from the subprocess
module.

Replacing /bin/sh shell command substitution

output=$(mycmd myarg)

becomes:

output = check_output(["mycmd", "myarg"])

Replacing shell pipeline

output=$(dmesg | grep hda)

becomes:

p1 = Popen(["dmesg"], stdout=PIPE)

p2 = Popen(["grep", "hda"], stdin=p1.stdout, stdout=PIPE)

p1.stdout.close() # Allow p1 to receive a SIGPIPE if p2 exits.

output = p2.communicate()[0]

The p1.stdout.close() call after starting the p2 is important in order for p1 to receive a SIGPIPE if p2 exits
before p1.

Alternatively, for trusted input, the shell’s own pipeline support may still be used directly:

output=$(dmesg | grep hda)

becomes:

output = check_output("dmesg | grep hda", shell=True)

Replacing os.system()

sts = os.system("mycmd" + " myarg")

becomes

retcode = call("mycmd" + " myarg", shell=True)

Notes:

• Calling the program through the shell is usually not required.

• The call() return value is encoded differently to that of os.system().

• The os.system() function ignores SIGINT and SIGQUIT signals while the command is running, but the
caller must do this separately when using the subprocess module.

A more realistic example would look like this:

1026 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

try:

retcode = call("mycmd" + " myarg", shell=True)

if retcode < 0:

print("Child was terminated by signal", -retcode, file=sys.stderr)

else:

print("Child returned", retcode, file=sys.stderr)

except OSError as e:

print("Execution failed:", e, file=sys.stderr)

Replacing the os.spawn family

P_NOWAIT example:

pid = os.spawnlp(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg")

==>

pid = Popen(["/bin/mycmd", "myarg"]).pid

P_WAIT example:

retcode = os.spawnlp(os.P_WAIT, "/bin/mycmd", "mycmd", "myarg")

==>

retcode = call(["/bin/mycmd", "myarg"])

Vector example:

os.spawnvp(os.P_NOWAIT, path, args)

==>

Popen([path] + args[1:])

Environment example:

os.spawnlpe(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg", env)

==>

Popen(["/bin/mycmd", "myarg"], env={"PATH": "/usr/bin"})

Replacing os.popen(), os.popen2(), os.popen3()

(child_stdin, child_stdout) = os.popen2(cmd, mode, bufsize)

==>

p = Popen(cmd, shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, close_fds=True)

(child_stdin, child_stdout) = (p.stdin, p.stdout)

(child_stdin,

child_stdout,

child_stderr) = os.popen3(cmd, mode, bufsize)

==>

p = Popen(cmd, shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=True)

(child_stdin,

child_stdout,

child_stderr) = (p.stdin, p.stdout, p.stderr)

(child_stdin, child_stdout_and_stderr) = os.popen4(cmd, mode, bufsize)

==>

p = Popen(cmd, shell=True, bufsize=bufsize,

(continues on next page)

18.6. subprocess— Subprocess management 1027

The Python Library Reference, Release 3.13.1

(continued from previous page)

stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True)

(child_stdin, child_stdout_and_stderr) = (p.stdin, p.stdout)

Return code handling translates as follows:

pipe = os.popen(cmd, 'w')

...

rc = pipe.close()

if rc is not None and rc >> 8:

print("There were some errors")

==>

process = Popen(cmd, stdin=PIPE)

...

process.stdin.close()

if process.wait() != 0:

print("There were some errors")

Replacing functions from the popen2 module

Note

If the cmd argument to popen2 functions is a string, the command is executed through /bin/sh. If it is a list, the
command is directly executed.

(child_stdout, child_stdin) = popen2.popen2("somestring", bufsize, mode)

==>

p = Popen("somestring", shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, close_fds=True)

(child_stdout, child_stdin) = (p.stdout, p.stdin)

(child_stdout, child_stdin) = popen2.popen2(["mycmd", "myarg"], bufsize, mode)

==>

p = Popen(["mycmd", "myarg"], bufsize=bufsize,

stdin=PIPE, stdout=PIPE, close_fds=True)

(child_stdout, child_stdin) = (p.stdout, p.stdin)

popen2.Popen3 and popen2.Popen4 basically work as subprocess.Popen, except that:

• Popen raises an exception if the execution fails.

• The capturestderr argument is replaced with the stderr argument.

• stdin=PIPE and stdout=PIPE must be specified.

• popen2 closes all file descriptors by default, but you have to specify close_fds=True with Popen to guar-
antee this behavior on all platforms or past Python versions.

18.6.7 Legacy Shell Invocation Functions

This module also provides the following legacy functions from the 2.x commands module. These operations implic-
itly invoke the system shell and none of the guarantees described above regarding security and exception handling
consistency are valid for these functions.

subprocess.getstatusoutput(cmd, *, encoding=None, errors=None)
Return (exitcode, output) of executing cmd in a shell.

1028 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

Execute the string cmd in a shell with Popen.check_output() and return a 2-tuple (exitcode,

output). encoding and errors are used to decode output; see the notes on Frequently Used Arguments for
more details.

A trailing newline is stripped from the output. The exit code for the command can be interpreted as the return
code of subprocess. Example:

>>> subprocess.getstatusoutput('ls /bin/ls')

(0, '/bin/ls')

>>> subprocess.getstatusoutput('cat /bin/junk')

(1, 'cat: /bin/junk: No such file or directory')

>>> subprocess.getstatusoutput('/bin/junk')

(127, 'sh: /bin/junk: not found')

>>> subprocess.getstatusoutput('/bin/kill $$')

(-15, '')

Availability: Unix, Windows.

Changed in version 3.3.4: Windows support was added.

The function now returns (exitcode, output) instead of (status, output) as it did in Python 3.3.3 and earlier.
exitcode has the same value as returncode.

Changed in version 3.11: Added the encoding and errors parameters.

subprocess.getoutput(cmd, *, encoding=None, errors=None)
Return output (stdout and stderr) of executing cmd in a shell.

Like getstatusoutput(), except the exit code is ignored and the return value is a string containing the
command’s output. Example:

>>> subprocess.getoutput('ls /bin/ls')

'/bin/ls'

Availability: Unix, Windows.

Changed in version 3.3.4: Windows support added

Changed in version 3.11: Added the encoding and errors parameters.

18.6.8 Notes

Converting an argument sequence to a string on Windows

OnWindows, an args sequence is converted to a string that can be parsed using the following rules (which correspond
to the rules used by the MS C runtime):

1. Arguments are delimited by white space, which is either a space or a tab.

2. A string surrounded by double quotation marks is interpreted as a single argument, regardless of white space
contained within. A quoted string can be embedded in an argument.

3. A double quotation mark preceded by a backslash is interpreted as a literal double quotation mark.

4. Backslashes are interpreted literally, unless they immediately precede a double quotation mark.

5. If backslashes immediately precede a double quotation mark, every pair of backslashes is interpreted as a literal
backslash. If the number of backslashes is odd, the last backslash escapes the next double quotation mark as
described in rule 3.

See also

shlex

Module which provides function to parse and escape command lines.

18.6. subprocess— Subprocess management 1029

The Python Library Reference, Release 3.13.1

Disabling use of vfork() or posix_spawn()

On Linux, subprocess defaults to using the vfork() system call internally when it is safe to do so rather than
fork(). This greatly improves performance.

If you ever encounter a presumed highly unusual situation where you need to prevent vfork() from being used by
Python, you can set the subprocess._USE_VFORK attribute to a false value.

subprocess._USE_VFORK = False # See CPython issue gh-NNNNNN.

Setting this has no impact on use of posix_spawn() which could use vfork() internally within its libc implemen-
tation. There is a similar subprocess._USE_POSIX_SPAWN attribute if you need to prevent use of that.

subprocess._USE_POSIX_SPAWN = False # See CPython issue gh-NNNNNN.

It is safe to set these to false on any Python version. They will have no effect on older versions when unsupported.
Do not assume the attributes are available to read. Despite their names, a true value does not indicate that the
corresponding function will be used, only that it may be.

Please file issues any time you have to use these private knobs with a way to reproduce the issue you were seeing.
Link to that issue from a comment in your code.

Added in version 3.8: _USE_POSIX_SPAWN

Added in version 3.11: _USE_VFORK

18.7 sched— Event scheduler

Source code: Lib/sched.py

The sched module defines a class which implements a general purpose event scheduler:

class sched.scheduler(timefunc=time.monotonic, delayfunc=time.sleep)
The scheduler class defines a generic interface to scheduling events. It needs two functions to actually deal
with the “outside world” — timefunc should be callable without arguments, and return a number (the “time”,
in any units whatsoever). The delayfunc function should be callable with one argument, compatible with the
output of timefunc, and should delay that many time units. delayfunc will also be called with the argument 0
after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Changed in version 3.3: timefunc and delayfunc parameters are optional.

Changed in version 3.3: scheduler class can be safely used in multi-threaded environments.

Example:

>>> import sched, time

>>> s = sched.scheduler(time.time, time.sleep)

>>> def print_time(a='default'):

... print("From print_time", time.time(), a)

...

>>> def print_some_times():

... print(time.time())

... s.enter(10, 1, print_time)

... s.enter(5, 2, print_time, argument=('positional',))

... # despite having higher priority, 'keyword' runs after 'positional' as␣

↪→enter() is relative

... s.enter(5, 1, print_time, kwargs={'a': 'keyword'})

... s.enterabs(1_650_000_000, 10, print_time, argument=("first enterabs",))

... s.enterabs(1_650_000_000, 5, print_time, argument=("second enterabs",))

... s.run()

(continues on next page)

1030 Chapter 18. Concurrent Execution

https://github.com/python/cpython/tree/3.13/Lib/sched.py

The Python Library Reference, Release 3.13.1

(continued from previous page)

... print(time.time())

...

>>> print_some_times()

1652342830.3640375

From print_time 1652342830.3642538 second enterabs

From print_time 1652342830.3643398 first enterabs

From print_time 1652342835.3694863 positional

From print_time 1652342835.3696074 keyword

From print_time 1652342840.369612 default

1652342840.3697174

18.7.1 Scheduler Objects

scheduler instances have the following methods and attributes:

scheduler.enterabs(time, priority, action, argument=(), kwargs={})
Schedule a new event. The time argument should be a numeric type compatible with the return value of the
timefunc function passed to the constructor. Events scheduled for the same time will be executed in the order
of their priority. A lower number represents a higher priority.

Executing the event means executing action(*argument, **kwargs). argument is a sequence holding
the positional arguments for action. kwargs is a dictionary holding the keyword arguments for action.

Return value is an event which may be used for later cancellation of the event (see cancel()).

Changed in version 3.3: argument parameter is optional.

Changed in version 3.3: kwargs parameter was added.

scheduler.enter(delay, priority, action, argument=(), kwargs={})
Schedule an event for delay more time units. Other than the relative time, the other arguments, the effect and
the return value are the same as those for enterabs().

Changed in version 3.3: argument parameter is optional.

Changed in version 3.3: kwargs parameter was added.

scheduler.cancel(event)
Remove the event from the queue. If event is not an event currently in the queue, this method will raise a
ValueError.

scheduler.empty()

Return True if the event queue is empty.

scheduler.run(blocking=True)

Run all scheduled events. This method will wait (using the delayfunc function passed to the constructor) for
the next event, then execute it and so on until there are no more scheduled events.

If blocking is false executes the scheduled events due to expire soonest (if any) and then return the deadline of
the next scheduled call in the scheduler (if any).

Either action or delayfunc can raise an exception. In either case, the scheduler will maintain a consistent state
and propagate the exception. If an exception is raised by action, the event will not be attempted in future calls
to run().

If a sequence of events takes longer to run than the time available before the next event, the scheduler will
simply fall behind. No events will be dropped; the calling code is responsible for canceling events which are
no longer pertinent.

Changed in version 3.3: blocking parameter was added.

18.7. sched— Event scheduler 1031

The Python Library Reference, Release 3.13.1

scheduler.queue

Read-only attribute returning a list of upcoming events in the order they will be run. Each event is shown as a
named tuple with the following fields: time, priority, action, argument, kwargs.

18.8 queue— A synchronized queue class

Source code: Lib/queue.py

The queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded pro-
gramming when information must be exchanged safely between multiple threads. The Queue class in this module
implements all the required locking semantics.

The module implements three types of queue, which differ only in the order in which the entries are retrieved. In a
FIFO queue, the first tasks added are the first retrieved. In a LIFO queue, the most recently added entry is the first
retrieved (operating like a stack). With a priority queue, the entries are kept sorted (using the heapq module) and
the lowest valued entry is retrieved first.

Internally, those three types of queues use locks to temporarily block competing threads; however, they are not
designed to handle reentrancy within a thread.

In addition, the module implements a “simple” FIFO queue type, SimpleQueue, whose specific implementation
provides additional guarantees in exchange for the smaller functionality.

The queue module defines the following classes and exceptions:

class queue.Queue(maxsize=0)
Constructor for a FIFO queue. maxsize is an integer that sets the upperbound limit on the number of items
that can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. If maxsize is less than or equal to zero, the queue size is infinite.

class queue.LifoQueue(maxsize=0)
Constructor for a LIFO queue. maxsize is an integer that sets the upperbound limit on the number of items
that can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. If maxsize is less than or equal to zero, the queue size is infinite.

class queue.PriorityQueue(maxsize=0)
Constructor for a priority queue. maxsize is an integer that sets the upperbound limit on the number of items
that can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. If maxsize is less than or equal to zero, the queue size is infinite.

The lowest valued entries are retrieved first (the lowest valued entry is the one that would be returned by
min(entries)). A typical pattern for entries is a tuple in the form: (priority_number, data).

If the data elements are not comparable, the data can be wrapped in a class that ignores the data item and only
compares the priority number:

from dataclasses import dataclass, field

from typing import Any

@dataclass(order=True)

class PrioritizedItem:

priority: int

item: Any=field(compare=False)

class queue.SimpleQueue

Constructor for an unbounded FIFO queue. Simple queues lack advanced functionality such as task tracking.

Added in version 3.7.

1032 Chapter 18. Concurrent Execution

https://github.com/python/cpython/tree/3.13/Lib/queue.py

The Python Library Reference, Release 3.13.1

exception queue.Empty

Exception raised when non-blocking get() (or get_nowait()) is called on a Queue object which is empty.

exception queue.Full

Exception raised when non-blocking put() (or put_nowait()) is called on a Queue object which is full.

exception queue.ShutDown

Exception raised when put() or get() is called on a Queue object which has been shut down.

Added in version 3.13.

18.8.1 Queue Objects

Queue objects (Queue, LifoQueue, or PriorityQueue) provide the public methods described below.

Queue.qsize()

Return the approximate size of the queue. Note, qsize() > 0 doesn’t guarantee that a subsequent get() will not
block, nor will qsize() < maxsize guarantee that put() will not block.

Queue.empty()

Return True if the queue is empty, False otherwise. If empty() returns True it doesn’t guarantee that a sub-
sequent call to put() will not block. Similarly, if empty() returns False it doesn’t guarantee that a subsequent
call to get() will not block.

Queue.full()

Return True if the queue is full, False otherwise. If full() returns True it doesn’t guarantee that a subsequent
call to get() will not block. Similarly, if full() returns False it doesn’t guarantee that a subsequent call to put()
will not block.

Queue.put(item, block=True, timeout=None)
Put item into the queue. If optional args block is true and timeout is None (the default), block if necessary until
a free slot is available. If timeout is a positive number, it blocks at most timeout seconds and raises the Full
exception if no free slot was available within that time. Otherwise (block is false), put an item on the queue if
a free slot is immediately available, else raise the Full exception (timeout is ignored in that case).

Raises ShutDown if the queue has been shut down.

Queue.put_nowait(item)
Equivalent to put(item, block=False).

Queue.get(block=True, timeout=None)
Remove and return an item from the queue. If optional args block is true and timeout is None (the default),
block if necessary until an item is available. If timeout is a positive number, it blocks at most timeout seconds
and raises the Empty exception if no item was available within that time. Otherwise (block is false), return an
item if one is immediately available, else raise the Empty exception (timeout is ignored in that case).

Prior to 3.0 on POSIX systems, and for all versions on Windows, if block is true and timeout is None, this
operation goes into an uninterruptible wait on an underlying lock. This means that no exceptions can occur,
and in particular a SIGINT will not trigger a KeyboardInterrupt.

Raises ShutDown if the queue has been shut down and is empty, or if the queue has been shut down immedi-
ately.

Queue.get_nowait()

Equivalent to get(False).

Two methods are offered to support tracking whether enqueued tasks have been fully processed by daemon consumer
threads.

Queue.task_done()

Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each get() used
to fetch a task, a subsequent call to task_done() tells the queue that the processing on the task is complete.

18.8. queue— A synchronized queue class 1033

The Python Library Reference, Release 3.13.1

If a join() is currently blocking, it will resume when all items have been processed (meaning that a
task_done() call was received for every item that had been put() into the queue).

shutdown(immediate=True) calls task_done() for each remaining item in the queue.

Raises a ValueError if called more times than there were items placed in the queue.

Queue.join()

Blocks until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down whenever
a consumer thread calls task_done() to indicate that the item was retrieved and all work on it is complete.
When the count of unfinished tasks drops to zero, join() unblocks.

Example of how to wait for enqueued tasks to be completed:

import threading

import queue

q = queue.Queue()

def worker():

while True:

item = q.get()

print(f'Working on {item}')

print(f'Finished {item}')

q.task_done()

Turn-on the worker thread.

threading.Thread(target=worker, daemon=True).start()

Send thirty task requests to the worker.

for item in range(30):

q.put(item)

Block until all tasks are done.

q.join()

print('All work completed')

Terminating queues

Queue objects can be made to prevent further interaction by shutting them down.

Queue.shutdown(immediate=False)

Shut down the queue, making get() and put() raise ShutDown.

By default, get() on a shut down queue will only raise once the queue is empty. Set immediate to true to
make get() raise immediately instead.

All blocked callers of put() and get() will be unblocked. If immediate is true, a task will be marked as done
for each remaining item in the queue, which may unblock callers of join().

Added in version 3.13.

18.8.2 SimpleQueue Objects

SimpleQueue objects provide the public methods described below.

SimpleQueue.qsize()

Return the approximate size of the queue. Note, qsize() > 0 doesn’t guarantee that a subsequent get() will not
block.

1034 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

SimpleQueue.empty()

Return True if the queue is empty, False otherwise. If empty() returns False it doesn’t guarantee that a
subsequent call to get() will not block.

SimpleQueue.put(item, block=True, timeout=None)
Put item into the queue. The method never blocks and always succeeds (except for potential low-level errors
such as failure to allocate memory). The optional args block and timeout are ignored and only provided for
compatibility with Queue.put().

CPython implementation detail: This method has a C implementation which is reentrant. That is, a put()
or get() call can be interrupted by another put() call in the same thread without deadlocking or corrupting
internal state inside the queue. This makes it appropriate for use in destructors such as __del__ methods or
weakref callbacks.

SimpleQueue.put_nowait(item)
Equivalent to put(item, block=False), provided for compatibility with Queue.put_nowait().

SimpleQueue.get(block=True, timeout=None)
Remove and return an item from the queue. If optional args block is true and timeout is None (the default),
block if necessary until an item is available. If timeout is a positive number, it blocks at most timeout seconds
and raises the Empty exception if no item was available within that time. Otherwise (block is false), return an
item if one is immediately available, else raise the Empty exception (timeout is ignored in that case).

SimpleQueue.get_nowait()

Equivalent to get(False).

See also

Class multiprocessing.Queue
A queue class for use in a multi-processing (rather than multi-threading) context.

collections.deque is an alternative implementation of unbounded queues with fast atomic append() and
popleft() operations that do not require locking and also support indexing.

18.9 contextvars— Context Variables

This module provides APIs to manage, store, and access context-local state. The ContextVar class is used to declare
and work with Context Variables. The copy_context() function and the Context class should be used to manage
the current context in asynchronous frameworks.

Context managers that have state should use Context Variables instead of threading.local() to prevent their
state from bleeding to other code unexpectedly, when used in concurrent code.

See also PEP 567 for additional details.

Added in version 3.7.

18.9.1 Context Variables

class contextvars.ContextVar(name[, *, default])
This class is used to declare a new Context Variable, e.g.:

var: ContextVar[int] = ContextVar('var', default=42)

The required name parameter is used for introspection and debug purposes.

The optional keyword-only default parameter is returned by ContextVar.get() when no value for the vari-
able is found in the current context.

18.9. contextvars— Context Variables 1035

https://peps.python.org/pep-0567/

The Python Library Reference, Release 3.13.1

Important: Context Variables should be created at the top module level and never in closures. Context

objects hold strong references to context variables which prevents context variables from being properly garbage
collected.

name

The name of the variable. This is a read-only property.

Added in version 3.7.1.

get([default])
Return a value for the context variable for the current context.

If there is no value for the variable in the current context, the method will:

• return the value of the default argument of the method, if provided; or

• return the default value for the context variable, if it was created with one; or

• raise a LookupError.

set(value)
Call to set a new value for the context variable in the current context.

The required value argument is the new value for the context variable.

Returns a Token object that can be used to restore the variable to its previous value via the ContextVar.
reset() method.

reset(token)
Reset the context variable to the value it had before the ContextVar.set() that created the token was
used.

For example:

var = ContextVar('var')

token = var.set('new value')

code that uses 'var'; var.get() returns 'new value'.

var.reset(token)

After the reset call the var has no value again, so

var.get() would raise a LookupError.

class contextvars.Token

Token objects are returned by the ContextVar.set() method. They can be passed to the ContextVar.
reset() method to revert the value of the variable to what it was before the corresponding set.

var

A read-only property. Points to the ContextVar object that created the token.

old_value

A read-only property. Set to the value the variable had before the ContextVar.set()method call that
created the token. It points to Token.MISSING if the variable was not set before the call.

MISSING

A marker object used by Token.old_value.

18.9.2 Manual Context Management

contextvars.copy_context()

Returns a copy of the current Context object.

The following snippet gets a copy of the current context and prints all variables and their values that are set in
it:

1036 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

ctx: Context = copy_context()

print(list(ctx.items()))

The function has an O(1) complexity, i.e. works equally fast for contexts with a few context variables and for
contexts that have a lot of them.

class contextvars.Context

A mapping of ContextVars to their values.

Context() creates an empty context with no values in it. To get a copy of the current context use the
copy_context() function.

Each thread has its own effective stack of Context objects. The current context is the Context object at the
top of the current thread’s stack. All Context objects in the stacks are considered to be entered.

Entering a context, which can be done by calling its run() method, makes the context the current context by
pushing it onto the top of the current thread’s context stack.

Exiting from the current context, which can be done by returning from the callback passed to the run()
method, restores the current context to what it was before the context was entered by popping the context off
the top of the context stack.

Since each thread has its own context stack, ContextVar objects behave in a similar fashion to threading.
local() when values are assigned in different threads.

Attempting to enter an already entered context, including contexts entered in other threads, raises a
RuntimeError.

After exiting a context, it can later be re-entered (from any thread).

Any changes to ContextVar values via the ContextVar.set()method are recorded in the current context.
The ContextVar.get() method returns the value associated with the current context. Exiting a context
effectively reverts any changes made to context variables while the context was entered (if needed, the values
can be restored by re-entering the context).

Context implements the collections.abc.Mapping interface.

run(callable, *args, **kwargs)
Enters the Context, executes callable(*args, **kwargs), then exits the Context. Returns
callable’s return value, or propagates an exception if one occurred.

Example:

import contextvars

var = contextvars.ContextVar('var')

var.set('spam')

print(var.get()) # 'spam'

ctx = contextvars.copy_context()

def main():

'var' was set to 'spam' before

calling 'copy_context()' and 'ctx.run(main)', so:

print(var.get()) # 'spam'

print(ctx[var]) # 'spam'

var.set('ham')

Now, after setting 'var' to 'ham':

print(var.get()) # 'ham'

print(ctx[var]) # 'ham'

(continues on next page)

18.9. contextvars— Context Variables 1037

The Python Library Reference, Release 3.13.1

(continued from previous page)

Any changes that the 'main' function makes to 'var'

will be contained in 'ctx'.

ctx.run(main)

The 'main()' function was run in the 'ctx' context,

so changes to 'var' are contained in it:

print(ctx[var]) # 'ham'

However, outside of 'ctx', 'var' is still set to 'spam':

print(var.get()) # 'spam'

copy()

Return a shallow copy of the context object.

var in context

Return True if the context has a value for var set; return False otherwise.

context[var]

Return the value of the var ContextVar variable. If the variable is not set in the context object, a
KeyError is raised.

get(var[, default])
Return the value for var if var has the value in the context object. Return default otherwise. If default is
not given, return None.

iter(context)

Return an iterator over the variables stored in the context object.

len(proxy)

Return the number of variables set in the context object.

keys()

Return a list of all variables in the context object.

values()

Return a list of all variables’ values in the context object.

items()

Return a list of 2-tuples containing all variables and their values in the context object.

18.9.3 asyncio support

Context variables are natively supported in asyncio and are ready to be used without any extra configuration. For
example, here is a simple echo server, that uses a context variable to make the address of a remote client available in
the Task that handles that client:

import asyncio

import contextvars

client_addr_var = contextvars.ContextVar('client_addr')

def render_goodbye():

The address of the currently handled client can be accessed

without passing it explicitly to this function.

client_addr = client_addr_var.get()

return f'Good bye, client @ {client_addr}\r\n'.encode()

(continues on next page)

1038 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

(continued from previous page)

async def handle_request(reader, writer):

addr = writer.transport.get_extra_info('socket').getpeername()

client_addr_var.set(addr)

In any code that we call is now possible to get

client's address by calling 'client_addr_var.get()'.

while True:

line = await reader.readline()

print(line)

if not line.strip():

break

writer.write(b'HTTP/1.1 200 OK\r\n') # status line

writer.write(b'\r\n') # headers

writer.write(render_goodbye()) # body

writer.close()

async def main():

srv = await asyncio.start_server(

handle_request, '127.0.0.1', 8081)

async with srv:

await srv.serve_forever()

asyncio.run(main())

To test it you can use telnet or curl:

telnet 127.0.0.1 8081

curl 127.0.0.1:8081

The following are support modules for some of the above services:

18.10 _thread— Low-level threading API

This module provides low-level primitives for working with multiple threads (also called light-weight processes or
tasks) — multiple threads of control sharing their global data space. For synchronization, simple locks (also called
mutexes or binary semaphores) are provided. The threading module provides an easier to use and higher-level
threading API built on top of this module.

Changed in version 3.7: This module used to be optional, it is now always available.

This module defines the following constants and functions:

exception _thread.error

Raised on thread-specific errors.

Changed in version 3.3: This is now a synonym of the built-in RuntimeError.

_thread.LockType

This is the type of lock objects.

_thread.start_new_thread(function, args[, kwargs])
Start a new thread and return its identifier. The thread executes the function function with the argument list
args (which must be a tuple). The optional kwargs argument specifies a dictionary of keyword arguments.

18.10. _thread— Low-level threading API 1039

The Python Library Reference, Release 3.13.1

When the function returns, the thread silently exits.

When the function terminates with an unhandled exception, sys.unraisablehook() is called to handle the
exception. The object attribute of the hook argument is function. By default, a stack trace is printed and then
the thread exits (but other threads continue to run).

When the function raises a SystemExit exception, it is silently ignored.

Raises an auditing event _thread.start_new_thread with arguments function, args, kwargs.

Changed in version 3.8: sys.unraisablehook() is now used to handle unhandled exceptions.

_thread.interrupt_main(signum=signal.SIGINT , /)
Simulate the effect of a signal arriving in the main thread. A thread can use this function to interrupt the main
thread, though there is no guarantee that the interruption will happen immediately.

If given, signum is the number of the signal to simulate. If signum is not given, signal.SIGINT is simulated.

If the given signal isn’t handled by Python (it was set to signal.SIG_DFL or signal.SIG_IGN), this function
does nothing.

Changed in version 3.10: The signum argument is added to customize the signal number.

Note

This does not emit the corresponding signal but schedules a call to the associated handler (if it exists). If
you want to truly emit the signal, use signal.raise_signal().

_thread.exit()

Raise the SystemExit exception. When not caught, this will cause the thread to exit silently.

_thread.allocate_lock()

Return a new lock object. Methods of locks are described below. The lock is initially unlocked.

_thread.get_ident()

Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct meaning;
it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data. Thread identifiers
may be recycled when a thread exits and another thread is created.

_thread.get_native_id()

Return the native integral Thread ID of the current thread assigned by the kernel. This is a non-negative integer.
Its value may be used to uniquely identify this particular thread system-wide (until the thread terminates, after
which the value may be recycled by the OS).

Availability: Windows, FreeBSD, Linux, macOS, OpenBSD, NetBSD, AIX, DragonFlyBSD,
GNU/kFreeBSD.

Added in version 3.8.

Changed in version 3.13: Added support for GNU/kFreeBSD.

_thread.stack_size([size])
Return the thread stack size used when creating new threads. The optional size argument specifies the stack size
to be used for subsequently created threads, and must be 0 (use platform or configured default) or a positive
integer value of at least 32,768 (32 KiB). If size is not specified, 0 is used. If changing the thread stack size
is unsupported, a RuntimeError is raised. If the specified stack size is invalid, a ValueError is raised
and the stack size is unmodified. 32 KiB is currently the minimum supported stack size value to guarantee
sufficient stack space for the interpreter itself. Note that some platforms may have particular restrictions on
values for the stack size, such as requiring a minimum stack size > 32 KiB or requiring allocation in multiples
of the system memory page size - platform documentation should be referred to for more information (4 KiB
pages are common; using multiples of 4096 for the stack size is the suggested approach in the absence of more
specific information).

Availability: Windows, pthreads.

1040 Chapter 18. Concurrent Execution

The Python Library Reference, Release 3.13.1

Unix platforms with POSIX threads support.

_thread.TIMEOUT_MAX

The maximum value allowed for the timeout parameter of Lock.acquire. Specifying a timeout greater than
this value will raise an OverflowError.

Added in version 3.2.

Lock objects have the following methods:

lock.acquire(blocking=True, timeout=-1)
Without any optional argument, this method acquires the lock unconditionally, if necessary waiting until it is
released by another thread (only one thread at a time can acquire a lock — that’s their reason for existence).

If the blocking argument is present, the action depends on its value: if it is false, the lock is only acquired if it
can be acquired immediately without waiting, while if it is true, the lock is acquired unconditionally as above.

If the floating-point timeout argument is present and positive, it specifies the maximum wait time in seconds
before returning. A negative timeout argument specifies an unbounded wait. You cannot specify a timeout if
blocking is false.

The return value is True if the lock is acquired successfully, False if not.

Changed in version 3.2: The timeout parameter is new.

Changed in version 3.2: Lock acquires can now be interrupted by signals on POSIX.

lock.release()

Releases the lock. The lock must have been acquired earlier, but not necessarily by the same thread.

lock.locked()

Return the status of the lock: True if it has been acquired by some thread, False if not.

In addition to these methods, lock objects can also be used via the with statement, e.g.:

import _thread

a_lock = _thread.allocate_lock()

with a_lock:

print("a_lock is locked while this executes")

Caveats:

• Interrupts always go to the main thread (the KeyboardInterrupt exception will be received by that thread.)

• Calling sys.exit() or raising the SystemExit exception is equivalent to calling _thread.exit().

• It is platform-dependent whether the acquire() method on a lock can be interrupted (so that the
KeyboardInterrupt exception will happen immediately, rather than only after the lock has been acquired
or the operation has timed out). It can be interrupted on POSIX, but not on Windows.

• When the main thread exits, it is system defined whether the other threads survive. On most systems, they are
killed without executing try… finally clauses or executing object destructors.

18.10. _thread— Low-level threading API 1041

The Python Library Reference, Release 3.13.1

1042 Chapter 18. Concurrent Execution

CHAPTER

NINETEEN

NETWORKING AND INTERPROCESS COMMUNICATION

The modules described in this chapter provide mechanisms for networking and inter-processes communication.

Some modules only work for two processes that are on the same machine, e.g. signal and mmap. Other modules
support networking protocols that two or more processes can use to communicate across machines.

The list of modules described in this chapter is:

19.1 asyncio— Asynchronous I/O

Hello World!

import asyncio

async def main():

print('Hello ...')

await asyncio.sleep(1)

print('... World!')

asyncio.run(main())

asyncio is a library to write concurrent code using the async/await syntax.

asyncio is used as a foundation for multiple Python asynchronous frameworks that provide high-performance network
and web-servers, database connection libraries, distributed task queues, etc.

asyncio is often a perfect fit for IO-bound and high-level structured network code.

asyncio provides a set of high-level APIs to:

• run Python coroutines concurrently and have full control over their execution;

• perform network IO and IPC;

• control subprocesses;

• distribute tasks via queues;

• synchronize concurrent code;

Additionally, there are low-level APIs for library and framework developers to:

• create and manage event loops, which provide asynchronous APIs for networking, running subprocesses, han-
dling OS signals, etc;

• implement efficient protocols using transports;

• bridge callback-based libraries and code with async/await syntax.

1043

The Python Library Reference, Release 3.13.1

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

asyncio REPL

You can experiment with an asyncio concurrent context in the REPL:

$ python -m asyncio

asyncio REPL ...

Use "await" directly instead of "asyncio.run()".

Type "help", "copyright", "credits" or "license" for more information.

>>> import asyncio

>>> await asyncio.sleep(10, result='hello')

'hello'

Raises an auditing event cpython.run_stdin with no arguments.

Changed in version 3.12.5: (also 3.11.10, 3.10.15, 3.9.20, and 3.8.20) Emits audit events.

Changed in version 3.13: Uses PyREPL if possible, in which case PYTHONSTARTUP is also executed. Emits audit
events.

Reference

19.1.1 Runners

Source code: Lib/asyncio/runners.py

This section outlines high-level asyncio primitives to run asyncio code.

They are built on top of an event loop with the aim to simplify async code usage for common wide-spread scenarios.

• Running an asyncio Program

• Runner context manager

• Handling Keyboard Interruption

Running an asyncio Program

asyncio.run(coro, *, debug=None, loop_factory=None)
Execute the coroutine coro and return the result.

This function runs the passed coroutine, taking care ofmanaging the asyncio event loop, finalizing asynchronous
generators, and closing the executor.

This function cannot be called when another asyncio event loop is running in the same thread.

If debug is True, the event loop will be run in debug mode. False disables debug mode explicitly. None is
used to respect the global Debug Mode settings.

If loop_factory is not None, it is used to create a new event loop; otherwise asyncio.new_event_loop()
is used. The loop is closed at the end. This function should be used as a main entry point for asyncio programs,
and should ideally only be called once. It is recommended to use loop_factory to configure the event loop
instead of policies. Passing asyncio.EventLoop allows running asyncio without the policy system.

The executor is given a timeout duration of 5 minutes to shutdown. If the executor hasn’t finished within that
duration, a warning is emitted and the executor is closed.

Example:

1044 Chapter 19. Networking and Interprocess Communication

https://github.com/python/cpython/tree/3.13/Lib/asyncio/runners.py

The Python Library Reference, Release 3.13.1

async def main():

await asyncio.sleep(1)

print('hello')

asyncio.run(main())

Added in version 3.7.

Changed in version 3.9: Updated to use loop.shutdown_default_executor().

Changed in version 3.10: debug is None by default to respect the global debug mode settings.

Changed in version 3.12: Added loop_factory parameter.

Runner context manager

class asyncio.Runner(*, debug=None, loop_factory=None)
A context manager that simplifies multiple async function calls in the same context.

Sometimes several top-level async functions should be called in the same event loop and contextvars.

Context.

If debug is True, the event loop will be run in debug mode. False disables debug mode explicitly. None is
used to respect the global Debug Mode settings.

loop_factory could be used for overriding the loop creation. It is the responsibility of the loop_factory to set the
created loop as the current one. By default asyncio.new_event_loop() is used and set as current event
loop with asyncio.set_event_loop() if loop_factory is None.

Basically, asyncio.run() example can be rewritten with the runner usage:

async def main():

await asyncio.sleep(1)

print('hello')

with asyncio.Runner() as runner:

runner.run(main())

Added in version 3.11.

run(coro, *, context=None)
Run a coroutine coro in the embedded loop.

Return the coroutine’s result or raise its exception.

An optional keyword-only context argument allows specifying a custom contextvars.Context for
the coro to run in. The runner’s default context is used if None.

This function cannot be called when another asyncio event loop is running in the same thread.

close()

Close the runner.

Finalize asynchronous generators, shutdown default executor, close the event loop and release embedded
contextvars.Context.

get_loop()

Return the event loop associated with the runner instance.

Note

Runner uses the lazy initialization strategy, its constructor doesn’t initialize underlying low-level structures.

19.1. asyncio— Asynchronous I/O 1045

The Python Library Reference, Release 3.13.1

Embedded loop and context are created at the with body entering or the first call of run() or
get_loop().

Handling Keyboard Interruption

Added in version 3.11.

When signal.SIGINT is raised by Ctrl-C, KeyboardInterrupt exception is raised in the main thread by
default. However this doesn’t work with asyncio because it can interrupt asyncio internals and can hang the program
from exiting.

To mitigate this issue, asyncio handles signal.SIGINT as follows:

1. asyncio.Runner.run() installs a custom signal.SIGINT handler before any user code is executed and
removes it when exiting from the function.

2. The Runner creates the main task for the passed coroutine for its execution.

3. When signal.SIGINT is raised by Ctrl-C, the custom signal handler cancels the main task by calling
asyncio.Task.cancel() which raises asyncio.CancelledError inside the main task. This causes the
Python stack to unwind, try/except and try/finally blocks can be used for resource cleanup. After the
main task is cancelled, asyncio.Runner.run() raises KeyboardInterrupt.

4. A user could write a tight loop which cannot be interrupted by asyncio.Task.cancel(), in which case the
second following Ctrl-C immediately raises the KeyboardInterrupt without cancelling the main task.

19.1.2 Coroutines and Tasks

This section outlines high-level asyncio APIs to work with coroutines and Tasks.

• Coroutines

• Awaitables

• Creating Tasks

• Task Cancellation

• Task Groups

• Sleeping

• Running Tasks Concurrently

• Eager Task Factory

• Shielding From Cancellation

• Timeouts

• Waiting Primitives

• Running in Threads

• Scheduling From Other Threads

• Introspection

• Task Object

1046 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Coroutines

Source code: Lib/asyncio/coroutines.py

Coroutines declared with the async/await syntax is the preferred way of writing asyncio applications. For example,
the following snippet of code prints “hello”, waits 1 second, and then prints “world”:

>>> import asyncio

>>> async def main():

... print('hello')

... await asyncio.sleep(1)

... print('world')

>>> asyncio.run(main())

hello

world

Note that simply calling a coroutine will not schedule it to be executed:

>>> main()

<coroutine object main at 0x1053bb7c8>

To actually run a coroutine, asyncio provides the following mechanisms:

• The asyncio.run() function to run the top-level entry point “main()” function (see the above example.)

• Awaiting on a coroutine. The following snippet of code will print “hello” after waiting for 1 second, and then
print “world” after waiting for another 2 seconds:

import asyncio

import time

async def say_after(delay, what):

await asyncio.sleep(delay)

print(what)

async def main():

print(f"started at {time.strftime('%X')}")

await say_after(1, 'hello')

await say_after(2, 'world')

print(f"finished at {time.strftime('%X')}")

asyncio.run(main())

Expected output:

started at 17:13:52

hello

world

finished at 17:13:55

• The asyncio.create_task() function to run coroutines concurrently as asyncio Tasks.

Let’s modify the above example and run two say_after coroutines concurrently:

19.1. asyncio— Asynchronous I/O 1047

https://github.com/python/cpython/tree/3.13/Lib/asyncio/coroutines.py

The Python Library Reference, Release 3.13.1

async def main():

task1 = asyncio.create_task(

say_after(1, 'hello'))

task2 = asyncio.create_task(

say_after(2, 'world'))

print(f"started at {time.strftime('%X')}")

Wait until both tasks are completed (should take

around 2 seconds.)

await task1

await task2

print(f"finished at {time.strftime('%X')}")

Note that expected output now shows that the snippet runs 1 second faster than before:

started at 17:14:32

hello

world

finished at 17:14:34

• The asyncio.TaskGroup class provides a more modern alternative to create_task(). Using this API,
the last example becomes:

async def main():

async with asyncio.TaskGroup() as tg:

task1 = tg.create_task(

say_after(1, 'hello'))

task2 = tg.create_task(

say_after(2, 'world'))

print(f"started at {time.strftime('%X')}")

The await is implicit when the context manager exits.

print(f"finished at {time.strftime('%X')}")

The timing and output should be the same as for the previous version.

Added in version 3.11: asyncio.TaskGroup.

Awaitables

We say that an object is an awaitable object if it can be used in an await expression. Many asyncio APIs are
designed to accept awaitables.

There are three main types of awaitable objects: coroutines, Tasks, and Futures.

Coroutines

Python coroutines are awaitables and therefore can be awaited from other coroutines:

import asyncio

async def nested():

return 42

(continues on next page)

1048 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

(continued from previous page)

async def main():

Nothing happens if we just call "nested()".

A coroutine object is created but not awaited,

so it *won't run at all*.

nested() # will raise a "RuntimeWarning".

Let's do it differently now and await it:

print(await nested()) # will print "42".

asyncio.run(main())

Important

In this documentation the term “coroutine” can be used for two closely related concepts:

• a coroutine function: an async def function;

• a coroutine object: an object returned by calling a coroutine function.

Tasks

Tasks are used to schedule coroutines concurrently.

When a coroutine is wrapped into a Task with functions like asyncio.create_task() the coroutine is automat-
ically scheduled to run soon:

import asyncio

async def nested():

return 42

async def main():

Schedule nested() to run soon concurrently

with "main()".

task = asyncio.create_task(nested())

"task" can now be used to cancel "nested()", or

can simply be awaited to wait until it is complete:

await task

asyncio.run(main())

Futures

A Future is a special low-level awaitable object that represents an eventual result of an asynchronous operation.

When a Future object is awaited it means that the coroutine will wait until the Future is resolved in some other place.

Future objects in asyncio are needed to allow callback-based code to be used with async/await.

Normally there is no need to create Future objects at the application level code.

Future objects, sometimes exposed by libraries and some asyncio APIs, can be awaited:

async def main():

await function_that_returns_a_future_object()

(continues on next page)

19.1. asyncio— Asynchronous I/O 1049

The Python Library Reference, Release 3.13.1

(continued from previous page)

this is also valid:

await asyncio.gather(

function_that_returns_a_future_object(),

some_python_coroutine()

)

A good example of a low-level function that returns a Future object is loop.run_in_executor().

Creating Tasks

Source code: Lib/asyncio/tasks.py

asyncio.create_task(coro, *, name=None, context=None)
Wrap the coro coroutine into a Task and schedule its execution. Return the Task object.

If name is not None, it is set as the name of the task using Task.set_name().

An optional keyword-only context argument allows specifying a custom contextvars.Context for the coro
to run in. The current context copy is created when no context is provided.

The task is executed in the loop returned by get_running_loop(), RuntimeError is raised if there is no
running loop in current thread.

Note

asyncio.TaskGroup.create_task() is a new alternative leveraging structural concurrency; it allows
for waiting for a group of related tasks with strong safety guarantees.

Important

Save a reference to the result of this function, to avoid a task disappearing mid-execution. The event loop
only keeps weak references to tasks. A task that isn’t referenced elsewhere may get garbage collected at any
time, even before it’s done. For reliable “fire-and-forget” background tasks, gather them in a collection:

background_tasks = set()

for i in range(10):

task = asyncio.create_task(some_coro(param=i))

Add task to the set. This creates a strong reference.

background_tasks.add(task)

To prevent keeping references to finished tasks forever,

make each task remove its own reference from the set after

completion:

task.add_done_callback(background_tasks.discard)

Added in version 3.7.

Changed in version 3.8: Added the name parameter.

Changed in version 3.11: Added the context parameter.

1050 Chapter 19. Networking and Interprocess Communication

https://github.com/python/cpython/tree/3.13/Lib/asyncio/tasks.py

The Python Library Reference, Release 3.13.1

Task Cancellation

Tasks can easily and safely be cancelled. When a task is cancelled, asyncio.CancelledError will be raised in
the task at the next opportunity.

It is recommended that coroutines use try/finally blocks to robustly perform clean-up logic. In case asyncio.
CancelledError is explicitly caught, it should generally be propagated when clean-up is complete. asyncio.
CancelledError directly subclasses BaseException so most code will not need to be aware of it.

The asyncio components that enable structured concurrency, like asyncio.TaskGroup and asyncio.

timeout(), are implemented using cancellation internally and might misbehave if a coroutine swallows asyncio.
CancelledError. Similarly, user code should not generally call uncancel. However, in cases when suppressing
asyncio.CancelledError is truly desired, it is necessary to also call uncancel() to completely remove the
cancellation state.

Task Groups

Task groups combine a task creation API with a convenient and reliable way to wait for all tasks in the group to finish.

class asyncio.TaskGroup

An asynchronous context manager holding a group of tasks. Tasks can be added to the group using
create_task(). All tasks are awaited when the context manager exits.

Added in version 3.11.

create_task(coro, *, name=None, context=None)
Create a task in this task group. The signature matches that of asyncio.create_task(). If the task
group is inactive (e.g. not yet entered, already finished, or in the process of shutting down), we will close
the given coro.

Changed in version 3.13: Close the given coroutine if the task group is not active.

Example:

async def main():

async with asyncio.TaskGroup() as tg:

task1 = tg.create_task(some_coro(...))

task2 = tg.create_task(another_coro(...))

print(f"Both tasks have completed now: {task1.result()}, {task2.result()}")

The async with statement will wait for all tasks in the group to finish. While waiting, new tasks may still be
added to the group (for example, by passing tg into one of the coroutines and calling tg.create_task() in that
coroutine). Once the last task has finished and the async with block is exited, no new tasks may be added to the
group.

The first time any of the tasks belonging to the group fails with an exception other than asyncio.CancelledError,
the remaining tasks in the group are cancelled. No further tasks can then be added to the group. At this point, if
the body of the async with statement is still active (i.e., __aexit__() hasn’t been called yet), the task directly
containing the async with statement is also cancelled. The resulting asyncio.CancelledError will interrupt
an await, but it will not bubble out of the containing async with statement.

Once all tasks have finished, if any tasks have failed with an exception other than asyncio.CancelledError,
those exceptions are combined in an ExceptionGroup or BaseExceptionGroup (as appropriate; see their doc-
umentation) which is then raised.

Two base exceptions are treated specially: If any task fails with KeyboardInterrupt or SystemExit, the task
group still cancels the remaining tasks and waits for them, but then the initial KeyboardInterrupt or SystemExit
is re-raised instead of ExceptionGroup or BaseExceptionGroup.

If the body of the async with statement exits with an exception (so __aexit__() is called with an exception set),
this is treated the same as if one of the tasks failed: the remaining tasks are cancelled and then waited for, and non-
cancellation exceptions are grouped into an exception group and raised. The exception passed into __aexit__(),

19.1. asyncio— Asynchronous I/O 1051

The Python Library Reference, Release 3.13.1

unless it is asyncio.CancelledError, is also included in the exception group. The same special case is made for
KeyboardInterrupt and SystemExit as in the previous paragraph.

Task groups are careful not to mix up the internal cancellation used to “wake up” their __aexit__() with cancel-
lation requests for the task in which they are running made by other parties. In particular, when one task group is
syntactically nested in another, and both experience an exception in one of their child tasks simultaneously, the inner
task group will process its exceptions, and then the outer task group will receive another cancellation and process its
own exceptions.

In the case where a task group is cancelled externally and also must raise an ExceptionGroup, it will call the parent
task’s cancel()method. This ensures that a asyncio.CancelledError will be raised at the next await, so the
cancellation is not lost.

Task groups preserve the cancellation count reported by asyncio.Task.cancelling().

Changed in version 3.13: Improved handling of simultaneous internal and external cancellations and correct preser-
vation of cancellation counts.

Terminating a Task Group

While terminating a task group is not natively supported by the standard library, termination can be achieved by
adding an exception-raising task to the task group and ignoring the raised exception:

import asyncio

from asyncio import TaskGroup

class TerminateTaskGroup(Exception):

"""Exception raised to terminate a task group."""

async def force_terminate_task_group():

"""Used to force termination of a task group."""

raise TerminateTaskGroup()

async def job(task_id, sleep_time):

print(f'Task {task_id}: start')

await asyncio.sleep(sleep_time)

print(f'Task {task_id}: done')

async def main():

try:

async with TaskGroup() as group:

spawn some tasks

group.create_task(job(1, 0.5))

group.create_task(job(2, 1.5))

sleep for 1 second

await asyncio.sleep(1)

add an exception-raising task to force the group to terminate

group.create_task(force_terminate_task_group())

except* TerminateTaskGroup:

pass

asyncio.run(main())

Expected output:

Task 1: start

Task 2: start

Task 1: done

1052 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Sleeping

coroutine asyncio.sleep(delay, result=None)
Block for delay seconds.

If result is provided, it is returned to the caller when the coroutine completes.

sleep() always suspends the current task, allowing other tasks to run.

Setting the delay to 0 provides an optimized path to allow other tasks to run. This can be used by long-running
functions to avoid blocking the event loop for the full duration of the function call.

Example of coroutine displaying the current date every second for 5 seconds:

import asyncio

import datetime

async def display_date():

loop = asyncio.get_running_loop()

end_time = loop.time() + 5.0

while True:

print(datetime.datetime.now())

if (loop.time() + 1.0) >= end_time:

break

await asyncio.sleep(1)

asyncio.run(display_date())

Changed in version 3.10: Removed the loop parameter.

Changed in version 3.13: Raises ValueError if delay is nan.

Running Tasks Concurrently

awaitable asyncio.gather(*aws, return_exceptions=False)
Run awaitable objects in the aws sequence concurrently.

If any awaitable in aws is a coroutine, it is automatically scheduled as a Task.

If all awaitables are completed successfully, the result is an aggregate list of returned values. The order of
result values corresponds to the order of awaitables in aws.

If return_exceptions is False (default), the first raised exception is immediately propagated to the task that
awaits on gather(). Other awaitables in the aws sequence won’t be cancelled and will continue to run.

If return_exceptions is True, exceptions are treated the same as successful results, and aggregated in the result
list.

If gather() is cancelled, all submitted awaitables (that have not completed yet) are also cancelled.

If any Task or Future from the aws sequence is cancelled, it is treated as if it raised CancelledError – the
gather() call is not cancelled in this case. This is to prevent the cancellation of one submitted Task/Future
to cause other Tasks/Futures to be cancelled.

Note

A new alternative to create and run tasks concurrently and wait for their completion is asyncio.

TaskGroup. TaskGroup provides stronger safety guarantees than gather for scheduling a nesting of sub-
tasks: if a task (or a subtask, a task scheduled by a task) raises an exception, TaskGroup will, while gather
will not, cancel the remaining scheduled tasks).

Example:

19.1. asyncio— Asynchronous I/O 1053

The Python Library Reference, Release 3.13.1

import asyncio

async def factorial(name, number):

f = 1

for i in range(2, number + 1):

print(f"Task {name}: Compute factorial({number}), currently i={i}...")

await asyncio.sleep(1)

f *= i

print(f"Task {name}: factorial({number}) = {f}")

return f

async def main():

Schedule three calls *concurrently*:

L = await asyncio.gather(

factorial("A", 2),

factorial("B", 3),

factorial("C", 4),

)

print(L)

asyncio.run(main())

Expected output:

#

Task A: Compute factorial(2), currently i=2...

Task B: Compute factorial(3), currently i=2...

Task C: Compute factorial(4), currently i=2...

Task A: factorial(2) = 2

Task B: Compute factorial(3), currently i=3...

Task C: Compute factorial(4), currently i=3...

Task B: factorial(3) = 6

Task C: Compute factorial(4), currently i=4...

Task C: factorial(4) = 24

[2, 6, 24]

Note

If return_exceptions is false, cancelling gather() after it has been marked done won’t cancel any submitted
awaitables. For instance, gather can be marked done after propagating an exception to the caller, therefore,
calling gather.cancel() after catching an exception (raised by one of the awaitables) from gather won’t
cancel any other awaitables.

Changed in version 3.7: If the gather itself is cancelled, the cancellation is propagated regardless of re-
turn_exceptions.

Changed in version 3.10: Removed the loop parameter.

Deprecated since version 3.10: Deprecation warning is emitted if no positional arguments are provided or not
all positional arguments are Future-like objects and there is no running event loop.

Eager Task Factory

asyncio.eager_task_factory(loop, coro, *, name=None, context=None)
A task factory for eager task execution.

When using this factory (via loop.set_task_factory(asyncio.eager_task_factory)), coroutines
begin execution synchronously during Task construction. Tasks are only scheduled on the event loop if they

1054 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

block. This can be a performance improvement as the overhead of loop scheduling is avoided for coroutines
that complete synchronously.

A common example where this is beneficial is coroutines which employ caching or memoization to avoid actual
I/O when possible.

Note

Immediate execution of the coroutine is a semantic change. If the coroutine returns or raises, the task is
never scheduled to the event loop. If the coroutine execution blocks, the task is scheduled to the event
loop. This change may introduce behavior changes to existing applications. For example, the application’s
task execution order is likely to change.

Added in version 3.12.

asyncio.create_eager_task_factory(custom_task_constructor)

Create an eager task factory, similar to eager_task_factory(), using the provided cus-
tom_task_constructor when creating a new task instead of the default Task.

custom_task_constructor must be a callable with the signature matching the signature of Task.__init__.
The callable must return a asyncio.Task-compatible object.

This function returns a callable intended to be used as a task factory of an event loop via loop.

set_task_factory(factory)).

Added in version 3.12.

Shielding From Cancellation

awaitable asyncio.shield(aw)
Protect an awaitable object from being cancelled.

If aw is a coroutine it is automatically scheduled as a Task.

The statement:

task = asyncio.create_task(something())

res = await shield(task)

is equivalent to:

res = await something()

except that if the coroutine containing it is cancelled, the Task running in something() is not cancelled. From
the point of view of something(), the cancellation did not happen. Although its caller is still cancelled, so
the “await” expression still raises a CancelledError.

If something() is cancelled by other means (i.e. from within itself) that would also cancel shield().

If it is desired to completely ignore cancellation (not recommended) the shield() function should be com-
bined with a try/except clause, as follows:

task = asyncio.create_task(something())

try:

res = await shield(task)

except CancelledError:

res = None

19.1. asyncio— Asynchronous I/O 1055

The Python Library Reference, Release 3.13.1

Important

Save a reference to tasks passed to this function, to avoid a task disappearing mid-execution. The event
loop only keeps weak references to tasks. A task that isn’t referenced elsewhere may get garbage collected
at any time, even before it’s done.

Changed in version 3.10: Removed the loop parameter.

Deprecated since version 3.10: Deprecation warning is emitted if aw is not Future-like object and there is no
running event loop.

Timeouts

asyncio.timeout(delay)
Return an asynchronous context manager that can be used to limit the amount of time spent waiting on some-
thing.

delay can either be None, or a float/int number of seconds to wait. If delay is None, no time limit will be
applied; this can be useful if the delay is unknown when the context manager is created.

In either case, the context manager can be rescheduled after creation using Timeout.reschedule().

Example:

async def main():

async with asyncio.timeout(10):

await long_running_task()

If long_running_task takes more than 10 seconds to complete, the context manager will cancel the current
task and handle the resulting asyncio.CancelledError internally, transforming it into a TimeoutError
which can be caught and handled.

Note

The asyncio.timeout() context manager is what transforms the asyncio.CancelledError into a
TimeoutError, which means the TimeoutError can only be caught outside of the context manager.

Example of catching TimeoutError:

async def main():

try:

async with asyncio.timeout(10):

await long_running_task()

except TimeoutError:

print("The long operation timed out, but we've handled it.")

print("This statement will run regardless.")

The context manager produced by asyncio.timeout() can be rescheduled to a different deadline and in-
spected.

class asyncio.Timeout(when)
An asynchronous context manager for cancelling overdue coroutines.

when should be an absolute time at which the context should time out, as measured by the event loop’s
clock:

• If when is None, the timeout will never trigger.

• If when < loop.time(), the timeout will trigger on the next iteration of the event loop.

1056 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

when()→ float | None
Return the current deadline, or None if the current deadline is not set.

reschedule(when: float | None)
Reschedule the timeout.

expired()→ bool

Return whether the context manager has exceeded its deadline (expired).

Example:

async def main():

try:

We do not know the timeout when starting, so we pass ``None``.

async with asyncio.timeout(None) as cm:

We know the timeout now, so we reschedule it.

new_deadline = get_running_loop().time() + 10

cm.reschedule(new_deadline)

await long_running_task()

except TimeoutError:

pass

if cm.expired():

print("Looks like we haven't finished on time.")

Timeout context managers can be safely nested.

Added in version 3.11.

asyncio.timeout_at(when)
Similar to asyncio.timeout(), except when is the absolute time to stop waiting, or None.

Example:

async def main():

loop = get_running_loop()

deadline = loop.time() + 20

try:

async with asyncio.timeout_at(deadline):

await long_running_task()

except TimeoutError:

print("The long operation timed out, but we've handled it.")

print("This statement will run regardless.")

Added in version 3.11.

coroutine asyncio.wait_for(aw, timeout)
Wait for the aw awaitable to complete with a timeout.

If aw is a coroutine it is automatically scheduled as a Task.

timeout can either be None or a float or int number of seconds to wait for. If timeout is None, block until the
future completes.

If a timeout occurs, it cancels the task and raises TimeoutError.

To avoid the task cancellation, wrap it in shield().

The function will wait until the future is actually cancelled, so the total wait time may exceed the timeout. If
an exception happens during cancellation, it is propagated.

19.1. asyncio— Asynchronous I/O 1057

The Python Library Reference, Release 3.13.1

If the wait is cancelled, the future aw is also cancelled.

Example:

async def eternity():

Sleep for one hour

await asyncio.sleep(3600)

print('yay!')

async def main():

Wait for at most 1 second

try:

await asyncio.wait_for(eternity(), timeout=1.0)

except TimeoutError:

print('timeout!')

asyncio.run(main())

Expected output:

#

timeout!

Changed in version 3.7: When aw is cancelled due to a timeout, wait_for waits for aw to be cancelled.
Previously, it raised TimeoutError immediately.

Changed in version 3.10: Removed the loop parameter.

Changed in version 3.11: Raises TimeoutError instead of asyncio.TimeoutError.

Waiting Primitives

coroutine asyncio.wait(aws, *, timeout=None, return_when=ALL_COMPLETED)
Run Future and Task instances in the aws iterable concurrently and block until the condition specified by
return_when.

The aws iterable must not be empty.

Returns two sets of Tasks/Futures: (done, pending).

Usage:

done, pending = await asyncio.wait(aws)

timeout (a float or int), if specified, can be used to control the maximum number of seconds to wait before
returning.

Note that this function does not raise TimeoutError. Futures or Tasks that aren’t done when the timeout
occurs are simply returned in the second set.

return_when indicates when this function should return. It must be one of the following constants:

Constant Description

asyncio.FIRST_COMPLETED
The function will return when any future finishes or
is cancelled.

asyncio.FIRST_EXCEPTION
The function will return when any future finishes by
raising an exception. If no future raises an exception
then it is equivalent to ALL_COMPLETED.

asyncio.ALL_COMPLETED
The function will return when all futures finish or are
cancelled.

1058 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Unlike wait_for(), wait() does not cancel the futures when a timeout occurs.

Changed in version 3.10: Removed the loop parameter.

Changed in version 3.11: Passing coroutine objects to wait() directly is forbidden.

Changed in version 3.12: Added support for generators yielding tasks.

asyncio.as_completed(aws, *, timeout=None)

Run awaitable objects in the aws iterable concurrently. The returned object can be iterated to obtain the results
of the awaitables as they finish.

The object returned by as_completed() can be iterated as an asynchronous iterator or a plain iterator. When
asynchronous iteration is used, the originally-supplied awaitables are yielded if they are tasks or futures. This
makes it easy to correlate previously-scheduled tasks with their results. Example:

ipv4_connect = create_task(open_connection("127.0.0.1", 80))

ipv6_connect = create_task(open_connection("::1", 80))

tasks = [ipv4_connect, ipv6_connect]

async for earliest_connect in as_completed(tasks):

earliest_connect is done. The result can be obtained by

awaiting it or calling earliest_connect.result()

reader, writer = await earliest_connect

if earliest_connect is ipv6_connect:

print("IPv6 connection established.")

else:

print("IPv4 connection established.")

During asynchronous iteration, implicitly-created tasks will be yielded for supplied awaitables that aren’t tasks
or futures.

When used as a plain iterator, each iteration yields a new coroutine that returns the result or raises the exception
of the next completed awaitable. This pattern is compatible with Python versions older than 3.13:

ipv4_connect = create_task(open_connection("127.0.0.1", 80))

ipv6_connect = create_task(open_connection("::1", 80))

tasks = [ipv4_connect, ipv6_connect]

for next_connect in as_completed(tasks):

next_connect is not one of the original task objects. It must be

awaited to obtain the result value or raise the exception of the

awaitable that finishes next.

reader, writer = await next_connect

A TimeoutError is raised if the timeout occurs before all awaitables are done. This is raised by the async
for loop during asynchronous iteration or by the coroutines yielded during plain iteration.

Changed in version 3.10: Removed the loop parameter.

Deprecated since version 3.10: Deprecation warning is emitted if not all awaitable objects in the aws iterable
are Future-like objects and there is no running event loop.

Changed in version 3.12: Added support for generators yielding tasks.

Changed in version 3.13: The result can now be used as either an asynchronous iterator or as a plain iterator
(previously it was only a plain iterator).

19.1. asyncio— Asynchronous I/O 1059

The Python Library Reference, Release 3.13.1

Running in Threads

coroutine asyncio.to_thread(func, / , *args, **kwargs)
Asynchronously run function func in a separate thread.

Any *args and **kwargs supplied for this function are directly passed to func. Also, the current
contextvars.Context is propagated, allowing context variables from the event loop thread to be accessed
in the separate thread.

Return a coroutine that can be awaited to get the eventual result of func.

This coroutine function is primarily intended to be used for executing IO-bound functions/methods that would
otherwise block the event loop if they were run in the main thread. For example:

def blocking_io():

print(f"start blocking_io at {time.strftime('%X')}")

Note that time.sleep() can be replaced with any blocking

IO-bound operation, such as file operations.

time.sleep(1)

print(f"blocking_io complete at {time.strftime('%X')}")

async def main():

print(f"started main at {time.strftime('%X')}")

await asyncio.gather(

asyncio.to_thread(blocking_io),

asyncio.sleep(1))

print(f"finished main at {time.strftime('%X')}")

asyncio.run(main())

Expected output:

#

started main at 19:50:53

start blocking_io at 19:50:53

blocking_io complete at 19:50:54

finished main at 19:50:54

Directly calling blocking_io() in any coroutine would block the event loop for its duration, resulting in an
additional 1 second of run time. Instead, by using asyncio.to_thread(), we can run it in a separate thread
without blocking the event loop.

Note

Due to the GIL, asyncio.to_thread() can typically only be used to make IO-bound functions non-
blocking. However, for extension modules that release the GIL or alternative Python implementations that
don’t have one, asyncio.to_thread() can also be used for CPU-bound functions.

Added in version 3.9.

Scheduling From Other Threads

asyncio.run_coroutine_threadsafe(coro, loop)
Submit a coroutine to the given event loop. Thread-safe.

Return a concurrent.futures.Future to wait for the result from another OS thread.

1060 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

This function is meant to be called from a different OS thread than the one where the event loop is running.
Example:

Create a coroutine

coro = asyncio.sleep(1, result=3)

Submit the coroutine to a given loop

future = asyncio.run_coroutine_threadsafe(coro, loop)

Wait for the result with an optional timeout argument

assert future.result(timeout) == 3

If an exception is raised in the coroutine, the returned Future will be notified. It can also be used to cancel the
task in the event loop:

try:

result = future.result(timeout)

except TimeoutError:

print('The coroutine took too long, cancelling the task...')

future.cancel()

except Exception as exc:

print(f'The coroutine raised an exception: {exc!r}')

else:

print(f'The coroutine returned: {result!r}')

See the concurrency and multithreading section of the documentation.

Unlike other asyncio functions this function requires the loop argument to be passed explicitly.

Added in version 3.5.1.

Introspection

asyncio.current_task(loop=None)
Return the currently running Task instance, or None if no task is running.

If loop is None get_running_loop() is used to get the current loop.

Added in version 3.7.

asyncio.all_tasks(loop=None)
Return a set of not yet finished Task objects run by the loop.

If loop is None, get_running_loop() is used for getting current loop.

Added in version 3.7.

asyncio.iscoroutine(obj)

Return True if obj is a coroutine object.

Added in version 3.4.

Task Object

class asyncio.Task(coro, *, loop=None, name=None, context=None, eager_start=False)
A Future-like object that runs a Python coroutine. Not thread-safe.

Tasks are used to run coroutines in event loops. If a coroutine awaits on a Future, the Task suspends the
execution of the coroutine and waits for the completion of the Future. When the Future is done, the execution
of the wrapped coroutine resumes.

Event loops use cooperative scheduling: an event loop runs one Task at a time. While a Task awaits for the
completion of a Future, the event loop runs other Tasks, callbacks, or performs IO operations.

19.1. asyncio— Asynchronous I/O 1061

The Python Library Reference, Release 3.13.1

Use the high-level asyncio.create_task() function to create Tasks, or the low-level loop.

create_task() or ensure_future() functions. Manual instantiation of Tasks is discouraged.

To cancel a running Task use the cancel() method. Calling it will cause the Task to throw a
CancelledError exception into the wrapped coroutine. If a coroutine is awaiting on a Future object during
cancellation, the Future object will be cancelled.

cancelled() can be used to check if the Task was cancelled. The method returns True if the wrapped
coroutine did not suppress the CancelledError exception and was actually cancelled.

asyncio.Task inherits from Future all of its APIs except Future.set_result() and Future.

set_exception().

An optional keyword-only context argument allows specifying a custom contextvars.Context for the coro
to run in. If no context is provided, the Task copies the current context and later runs its coroutine in the copied
context.

An optional keyword-only eager_start argument allows eagerly starting the execution of the asyncio.Task
at task creation time. If set to True and the event loop is running, the task will start executing the coroutine
immediately, until the first time the coroutine blocks. If the coroutine returns or raises without blocking, the
task will be finished eagerly and will skip scheduling to the event loop.

Changed in version 3.7: Added support for the contextvars module.

Changed in version 3.8: Added the name parameter.

Deprecated since version 3.10: Deprecation warning is emitted if loop is not specified and there is no running
event loop.

Changed in version 3.11: Added the context parameter.

Changed in version 3.12: Added the eager_start parameter.

done()

Return True if the Task is done.

A Task is done when the wrapped coroutine either returned a value, raised an exception, or the Task was
cancelled.

result()

Return the result of the Task.

If the Task is done, the result of the wrapped coroutine is returned (or if the coroutine raised an exception,
that exception is re-raised.)

If the Task has been cancelled, this method raises a CancelledError exception.

If the Task’s result isn’t yet available, this method raises an InvalidStateError exception.

exception()

Return the exception of the Task.

If the wrapped coroutine raised an exception that exception is returned. If the wrapped coroutine returned
normally this method returns None.

If the Task has been cancelled, this method raises a CancelledError exception.

If the Task isn’t done yet, this method raises an InvalidStateError exception.

add_done_callback(callback, *, context=None)
Add a callback to be run when the Task is done.

This method should only be used in low-level callback-based code.

See the documentation of Future.add_done_callback() for more details.

1062 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

remove_done_callback(callback)
Remove callback from the callbacks list.

This method should only be used in low-level callback-based code.

See the documentation of Future.remove_done_callback() for more details.

get_stack(*, limit=None)
Return the list of stack frames for this Task.

If the wrapped coroutine is not done, this returns the stack where it is suspended. If the coroutine has
completed successfully or was cancelled, this returns an empty list. If the coroutine was terminated by
an exception, this returns the list of traceback frames.

The frames are always ordered from oldest to newest.

Only one stack frame is returned for a suspended coroutine.

The optional limit argument sets the maximum number of frames to return; by default all available frames
are returned. The ordering of the returned list differs depending on whether a stack or a traceback is
returned: the newest frames of a stack are returned, but the oldest frames of a traceback are returned.
(This matches the behavior of the traceback module.)

print_stack(*, limit=None, file=None)
Print the stack or traceback for this Task.

This produces output similar to that of the traceback module for the frames retrieved by get_stack().

The limit argument is passed to get_stack() directly.

The file argument is an I/O stream to which the output is written; by default output is written to sys.
stdout.

get_coro()

Return the coroutine object wrapped by the Task.

Note

This will return None for Tasks which have already completed eagerly. See the Eager Task Factory.

Added in version 3.8.

Changed in version 3.12: Newly added eager task execution means result may be None.

get_context()

Return the contextvars.Context object associated with the task.

Added in version 3.12.

get_name()

Return the name of the Task.

If no name has been explicitly assigned to the Task, the default asyncio Task implementation generates
a default name during instantiation.

Added in version 3.8.

set_name(value)
Set the name of the Task.

The value argument can be any object, which is then converted to a string.

In the default Task implementation, the name will be visible in the repr() output of a task object.

Added in version 3.8.

19.1. asyncio— Asynchronous I/O 1063

The Python Library Reference, Release 3.13.1

cancel(msg=None)
Request the Task to be cancelled.

This arranges for a CancelledError exception to be thrown into the wrapped coroutine on the next
cycle of the event loop.

The coroutine then has a chance to clean up or even deny the request by suppressing the exception with
a try … … except CancelledError … finally block. Therefore, unlike Future.cancel(),
Task.cancel() does not guarantee that the Task will be cancelled, although suppressing cancellation
completely is not common and is actively discouraged. Should the coroutine nevertheless decide to sup-
press the cancellation, it needs to call Task.uncancel() in addition to catching the exception.

Changed in version 3.9: Added the msg parameter.

Changed in version 3.11: The msg parameter is propagated from cancelled task to its awaiter. The
following example illustrates how coroutines can intercept the cancellation request:

async def cancel_me():

print('cancel_me(): before sleep')

try:

Wait for 1 hour

await asyncio.sleep(3600)

except asyncio.CancelledError:

print('cancel_me(): cancel sleep')

raise

finally:

print('cancel_me(): after sleep')

async def main():

Create a "cancel_me" Task

task = asyncio.create_task(cancel_me())

Wait for 1 second

await asyncio.sleep(1)

task.cancel()

try:

await task

except asyncio.CancelledError:

print("main(): cancel_me is cancelled now")

asyncio.run(main())

Expected output:

#

cancel_me(): before sleep

cancel_me(): cancel sleep

cancel_me(): after sleep

main(): cancel_me is cancelled now

cancelled()

Return True if the Task is cancelled.

The Task is cancelled when the cancellation was requested with cancel() and the wrapped coroutine
propagated the CancelledError exception thrown into it.

uncancel()

Decrement the count of cancellation requests to this Task.

Returns the remaining number of cancellation requests.

1064 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Note that once execution of a cancelled task completed, further calls to uncancel() are ineffective.

Added in version 3.11.

This method is used by asyncio’s internals and isn’t expected to be used by end-user code. In particular, if
a Task gets successfully uncancelled, this allows for elements of structured concurrency like Task Groups
and asyncio.timeout() to continue running, isolating cancellation to the respective structured block.
For example:

async def make_request_with_timeout():

try:

async with asyncio.timeout(1):

Structured block affected by the timeout:

await make_request()

await make_another_request()

except TimeoutError:

log("There was a timeout")

Outer code not affected by the timeout:

await unrelated_code()

While the block with make_request() and make_another_request() might get cancelled due to
the timeout, unrelated_code() should continue running even in case of the timeout. This is imple-
mented with uncancel(). TaskGroup context managers use uncancel() in a similar fashion.

If end-user code is, for some reason, suppressing cancellation by catching CancelledError, it needs
to call this method to remove the cancellation state.

When this method decrements the cancellation count to zero, the method checks if a previous cancel()
call had arranged for CancelledError to be thrown into the task. If it hasn’t been thrown yet, that
arrangement will be rescinded (by resetting the internal _must_cancel flag).

Changed in version 3.13: Changed to rescind pending cancellation requests upon reaching zero.

cancelling()

Return the number of pending cancellation requests to this Task, i.e., the number of calls to cancel()
less the number of uncancel() calls.

Note that if this number is greater than zero but the Task is still executing, cancelled()will still return
False. This is because this number can be lowered by calling uncancel(), which can lead to the task
not being cancelled after all if the cancellation requests go down to zero.

This method is used by asyncio’s internals and isn’t expected to be used by end-user code. See
uncancel() for more details.

Added in version 3.11.

19.1.3 Streams

Source code: Lib/asyncio/streams.py

Streams are high-level async/await-ready primitives to work with network connections. Streams allow sending and
receiving data without using callbacks or low-level protocols and transports.

Here is an example of a TCP echo client written using asyncio streams:

import asyncio

async def tcp_echo_client(message):

reader, writer = await asyncio.open_connection(

'127.0.0.1', 8888)

(continues on next page)

19.1. asyncio— Asynchronous I/O 1065

https://github.com/python/cpython/tree/3.13/Lib/asyncio/streams.py

The Python Library Reference, Release 3.13.1

(continued from previous page)

print(f'Send: {message!r}')

writer.write(message.encode())

await writer.drain()

data = await reader.read(100)

print(f'Received: {data.decode()!r}')

print('Close the connection')

writer.close()

await writer.wait_closed()

asyncio.run(tcp_echo_client('Hello World!'))

See also the Examples section below.

Stream Functions

The following top-level asyncio functions can be used to create and work with streams:

coroutine asyncio.open_connection(host=None, port=None, *, limit=None, ssl=None, family=0, proto=0,
flags=0, sock=None, local_addr=None, server_hostname=None,
ssl_handshake_timeout=None, ssl_shutdown_timeout=None,
happy_eyeballs_delay=None, interleave=None)

Establish a network connection and return a pair of (reader, writer) objects.

The returned reader and writer objects are instances of StreamReader and StreamWriter classes.

limit determines the buffer size limit used by the returned StreamReader instance. By default the limit is set
to 64 KiB.

The rest of the arguments are passed directly to loop.create_connection().

Note

The sock argument transfers ownership of the socket to the StreamWriter created. To close the socket,
call its close() method.

Changed in version 3.7: Added the ssl_handshake_timeout parameter.

Changed in version 3.8: Added the happy_eyeballs_delay and interleave parameters.

Changed in version 3.10: Removed the loop parameter.

Changed in version 3.11: Added the ssl_shutdown_timeout parameter.

coroutine asyncio.start_server(client_connected_cb, host=None, port=None, *, limit=None,
family=socket.AF_UNSPEC, flags=socket.AI_PASSIVE, sock=None,
backlog=100, ssl=None, reuse_address=None, reuse_port=None,
keep_alive=None, ssl_handshake_timeout=None,
ssl_shutdown_timeout=None, start_serving=True)

Start a socket server.

The client_connected_cb callback is called whenever a new client connection is established. It receives a
(reader, writer) pair as two arguments, instances of the StreamReader and StreamWriter classes.

client_connected_cb can be a plain callable or a coroutine function; if it is a coroutine function, it will be
automatically scheduled as a Task.

limit determines the buffer size limit used by the returned StreamReader instance. By default the limit is set
to 64 KiB.

The rest of the arguments are passed directly to loop.create_server().

1066 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Note

The sock argument transfers ownership of the socket to the server created. To close the socket, call the
server’s close() method.

Changed in version 3.7: Added the ssl_handshake_timeout and start_serving parameters.

Changed in version 3.10: Removed the loop parameter.

Changed in version 3.11: Added the ssl_shutdown_timeout parameter.

Changed in version 3.13: Added the keep_alive parameter.

Unix Sockets

coroutine asyncio.open_unix_connection(path=None, *, limit=None, ssl=None, sock=None,
server_hostname=None, ssl_handshake_timeout=None,
ssl_shutdown_timeout=None)

Establish a Unix socket connection and return a pair of (reader, writer).

Similar to open_connection() but operates on Unix sockets.

See also the documentation of loop.create_unix_connection().

Note

The sock argument transfers ownership of the socket to the StreamWriter created. To close the socket,
call its close() method.

Availability: Unix.

Changed in version 3.7: Added the ssl_handshake_timeout parameter. The path parameter can now be a
path-like object

Changed in version 3.10: Removed the loop parameter.

Changed in version 3.11: Added the ssl_shutdown_timeout parameter.

coroutine asyncio.start_unix_server(client_connected_cb, path=None, *, limit=None, sock=None,
backlog=100, ssl=None, ssl_handshake_timeout=None,
ssl_shutdown_timeout=None, start_serving=True)

Start a Unix socket server.

Similar to start_server() but works with Unix sockets.

See also the documentation of loop.create_unix_server().

Note

The sock argument transfers ownership of the socket to the server created. To close the socket, call the
server’s close() method.

Availability: Unix.

Changed in version 3.7: Added the ssl_handshake_timeout and start_serving parameters. The path parameter
can now be a path-like object.

Changed in version 3.10: Removed the loop parameter.

Changed in version 3.11: Added the ssl_shutdown_timeout parameter.

19.1. asyncio— Asynchronous I/O 1067

The Python Library Reference, Release 3.13.1

StreamReader

class asyncio.StreamReader

Represents a reader object that provides APIs to read data from the IO stream. As an asynchronous iterable,
the object supports the async for statement.

It is not recommended to instantiate StreamReader objects directly; use open_connection() and
start_server() instead.

feed_eof()

Acknowledge the EOF.

coroutine read(n=-1)
Read up to n bytes from the stream.

If n is not provided or set to -1, read until EOF, then return all read bytes. If EOF was received and
the internal buffer is empty, return an empty bytes object.

If n is 0, return an empty bytes object immediately.

If n is positive, return at most n available bytes as soon as at least 1 byte is available in the internal
buffer. If EOF is received before any byte is read, return an empty bytes object.

coroutine readline()

Read one line, where “line” is a sequence of bytes ending with \n.

If EOF is received and \n was not found, the method returns partially read data.

If EOF is received and the internal buffer is empty, return an empty bytes object.

coroutine readexactly(n)
Read exactly n bytes.

Raise an IncompleteReadError if EOF is reached before n can be read. Use the
IncompleteReadError.partial attribute to get the partially read data.

coroutine readuntil(separator=b’\n’)
Read data from the stream until separator is found.

On success, the data and separator will be removed from the internal buffer (consumed). Returned data
will include the separator at the end.

If the amount of data read exceeds the configured stream limit, a LimitOverrunError exception is
raised, and the data is left in the internal buffer and can be read again.

If EOF is reached before the complete separator is found, an IncompleteReadError exception is
raised, and the internal buffer is reset. The IncompleteReadError.partial attribute may contain a
portion of the separator.

The separator may also be a tuple of separators. In this case the return value will be the shortest possible
that has any separator as the suffix. For the purposes of LimitOverrunError, the shortest possible
separator is considered to be the one that matched.

Added in version 3.5.2.

Changed in version 3.13: The separator parameter may now be a tuple of separators.

at_eof()

Return True if the buffer is empty and feed_eof() was called.

StreamWriter

class asyncio.StreamWriter

Represents a writer object that provides APIs to write data to the IO stream.

It is not recommended to instantiate StreamWriter objects directly; use open_connection() and
start_server() instead.

1068 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

write(data)
The method attempts to write the data to the underlying socket immediately. If that fails, the data is
queued in an internal write buffer until it can be sent.

The method should be used along with the drain() method:

stream.write(data)

await stream.drain()

writelines(data)
The method writes a list (or any iterable) of bytes to the underlying socket immediately. If that fails, the
data is queued in an internal write buffer until it can be sent.

The method should be used along with the drain() method:

stream.writelines(lines)

await stream.drain()

close()

The method closes the stream and the underlying socket.

The method should be used, though not mandatory, along with the wait_closed() method:

stream.close()

await stream.wait_closed()

can_write_eof()

Return True if the underlying transport supports the write_eof() method, False otherwise.

write_eof()

Close the write end of the stream after the buffered write data is flushed.

transport

Return the underlying asyncio transport.

get_extra_info(name, default=None)
Access optional transport information; see BaseTransport.get_extra_info() for details.

coroutine drain()

Wait until it is appropriate to resume writing to the stream. Example:

writer.write(data)

await writer.drain()

This is a flow control method that interacts with the underlying IO write buffer. When the size of the
buffer reaches the high watermark, drain() blocks until the size of the buffer is drained down to the
low watermark and writing can be resumed. When there is nothing to wait for, the drain() returns
immediately.

coroutine start_tls(sslcontext, *, server_hostname=None, ssl_handshake_timeout=None,
ssl_shutdown_timeout=None)

Upgrade an existing stream-based connection to TLS.

Parameters:

• sslcontext: a configured instance of SSLContext.

• server_hostname: sets or overrides the host name that the target server’s certificate will be matched
against.

• ssl_handshake_timeout is the time in seconds to wait for the TLS handshake to complete before
aborting the connection. 60.0 seconds if None (default).

19.1. asyncio— Asynchronous I/O 1069

The Python Library Reference, Release 3.13.1

• ssl_shutdown_timeout is the time in seconds to wait for the SSL shutdown to complete before abort-
ing the connection. 30.0 seconds if None (default).

Added in version 3.11.

Changed in version 3.12: Added the ssl_shutdown_timeout parameter.

is_closing()

Return True if the stream is closed or in the process of being closed.

Added in version 3.7.

coroutine wait_closed()

Wait until the stream is closed.

Should be called after close() to wait until the underlying connection is closed, ensuring that all data
has been flushed before e.g. exiting the program.

Added in version 3.7.

Examples

TCP echo client using streams

TCP echo client using the asyncio.open_connection() function:

import asyncio

async def tcp_echo_client(message):

reader, writer = await asyncio.open_connection(

'127.0.0.1', 8888)

print(f'Send: {message!r}')

writer.write(message.encode())

await writer.drain()

data = await reader.read(100)

print(f'Received: {data.decode()!r}')

print('Close the connection')

writer.close()

await writer.wait_closed()

asyncio.run(tcp_echo_client('Hello World!'))

See also

The TCP echo client protocol example uses the low-level loop.create_connection() method.

TCP echo server using streams

TCP echo server using the asyncio.start_server() function:

import asyncio

async def handle_echo(reader, writer):

data = await reader.read(100)

message = data.decode()

addr = writer.get_extra_info('peername')

(continues on next page)

1070 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

(continued from previous page)

print(f"Received {message!r} from {addr!r}")

print(f"Send: {message!r}")

writer.write(data)

await writer.drain()

print("Close the connection")

writer.close()

await writer.wait_closed()

async def main():

server = await asyncio.start_server(

handle_echo, '127.0.0.1', 8888)

addrs = ', '.join(str(sock.getsockname()) for sock in server.sockets)

print(f'Serving on {addrs}')

async with server:

await server.serve_forever()

asyncio.run(main())

See also

The TCP echo server protocol example uses the loop.create_server() method.

Get HTTP headers

Simple example querying HTTP headers of the URL passed on the command line:

import asyncio

import urllib.parse

import sys

async def print_http_headers(url):

url = urllib.parse.urlsplit(url)

if url.scheme == 'https':

reader, writer = await asyncio.open_connection(

url.hostname, 443, ssl=True)

else:

reader, writer = await asyncio.open_connection(

url.hostname, 80)

query = (

f"HEAD {url.path or '/'} HTTP/1.0\r\n"

f"Host: {url.hostname}\r\n"

f"\r\n"

)

writer.write(query.encode('latin-1'))

while True:

line = await reader.readline()

if not line:

break

(continues on next page)

19.1. asyncio— Asynchronous I/O 1071

The Python Library Reference, Release 3.13.1

(continued from previous page)

line = line.decode('latin1').rstrip()

if line:

print(f'HTTP header> {line}')

Ignore the body, close the socket

writer.close()

await writer.wait_closed()

url = sys.argv[1]

asyncio.run(print_http_headers(url))

Usage:

python example.py http://example.com/path/page.html

or with HTTPS:

python example.py https://example.com/path/page.html

Register an open socket to wait for data using streams

Coroutine waiting until a socket receives data using the open_connection() function:

import asyncio

import socket

async def wait_for_data():

Get a reference to the current event loop because

we want to access low-level APIs.

loop = asyncio.get_running_loop()

Create a pair of connected sockets.

rsock, wsock = socket.socketpair()

Register the open socket to wait for data.

reader, writer = await asyncio.open_connection(sock=rsock)

Simulate the reception of data from the network

loop.call_soon(wsock.send, 'abc'.encode())

Wait for data

data = await reader.read(100)

Got data, we are done: close the socket

print("Received:", data.decode())

writer.close()

await writer.wait_closed()

Close the second socket

wsock.close()

asyncio.run(wait_for_data())

See also

1072 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

The register an open socket to wait for data using a protocol example uses a low-level protocol and the loop.
create_connection() method.

The watch a file descriptor for read events example uses the low-level loop.add_reader() method to watch a
file descriptor.

19.1.4 Synchronization Primitives

Source code: Lib/asyncio/locks.py

asyncio synchronization primitives are designed to be similar to those of the threading module with two important
caveats:

• asyncio primitives are not thread-safe, therefore they should not be used for OS thread synchronization (use
threading for that);

• methods of these synchronization primitives do not accept the timeout argument; use the asyncio.

wait_for() function to perform operations with timeouts.

asyncio has the following basic synchronization primitives:

• Lock

• Event

• Condition

• Semaphore

• BoundedSemaphore

• Barrier

Lock

class asyncio.Lock

Implements a mutex lock for asyncio tasks. Not thread-safe.

An asyncio lock can be used to guarantee exclusive access to a shared resource.

The preferred way to use a Lock is an async with statement:

lock = asyncio.Lock()

... later

async with lock:

access shared state

which is equivalent to:

lock = asyncio.Lock()

... later

await lock.acquire()

try:

access shared state

finally:

lock.release()

Changed in version 3.10: Removed the loop parameter.

19.1. asyncio— Asynchronous I/O 1073

https://github.com/python/cpython/tree/3.13/Lib/asyncio/locks.py

The Python Library Reference, Release 3.13.1

coroutine acquire()

Acquire the lock.

This method waits until the lock is unlocked, sets it to locked and returns True.

When more than one coroutine is blocked in acquire() waiting for the lock to be unlocked, only one
coroutine eventually proceeds.

Acquiring a lock is fair: the coroutine that proceeds will be the first coroutine that started waiting on the
lock.

release()

Release the lock.

When the lock is locked, reset it to unlocked and return.

If the lock is unlocked, a RuntimeError is raised.

locked()

Return True if the lock is locked.

Event

class asyncio.Event

An event object. Not thread-safe.

An asyncio event can be used to notify multiple asyncio tasks that some event has happened.

An Event object manages an internal flag that can be set to true with the set()method and reset to false with
the clear() method. The wait() method blocks until the flag is set to true. The flag is set to false initially.

Changed in version 3.10: Removed the loop parameter. Example:

async def waiter(event):

print('waiting for it ...')

await event.wait()

print('... got it!')

async def main():

Create an Event object.

event = asyncio.Event()

Spawn a Task to wait until 'event' is set.

waiter_task = asyncio.create_task(waiter(event))

Sleep for 1 second and set the event.

await asyncio.sleep(1)

event.set()

Wait until the waiter task is finished.

await waiter_task

asyncio.run(main())

coroutine wait()

Wait until the event is set.

If the event is set, return True immediately. Otherwise block until another task calls set().

set()

Set the event.

All tasks waiting for event to be set will be immediately awakened.

1074 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

clear()

Clear (unset) the event.

Tasks awaiting on wait() will now block until the set() method is called again.

is_set()

Return True if the event is set.

Condition

class asyncio.Condition(lock=None)
A Condition object. Not thread-safe.

An asyncio condition primitive can be used by a task to wait for some event to happen and then get exclusive
access to a shared resource.

In essence, a Condition object combines the functionality of an Event and a Lock. It is possible to have
multiple Condition objects share one Lock, which allows coordinating exclusive access to a shared resource
between different tasks interested in particular states of that shared resource.

The optional lock argument must be a Lock object or None. In the latter case a new Lock object is created
automatically.

Changed in version 3.10: Removed the loop parameter.

The preferred way to use a Condition is an async with statement:

cond = asyncio.Condition()

... later

async with cond:

await cond.wait()

which is equivalent to:

cond = asyncio.Condition()

... later

await cond.acquire()

try:

await cond.wait()

finally:

cond.release()

coroutine acquire()

Acquire the underlying lock.

This method waits until the underlying lock is unlocked, sets it to locked and returns True.

notify(n=1)
Wake up n tasks (1 by default) waiting on this condition. If fewer than n tasks are waiting they are all
awakened.

The lock must be acquired before this method is called and released shortly after. If called with an
unlocked lock a RuntimeError error is raised.

locked()

Return True if the underlying lock is acquired.

notify_all()

Wake up all tasks waiting on this condition.

This method acts like notify(), but wakes up all waiting tasks.

19.1. asyncio— Asynchronous I/O 1075

The Python Library Reference, Release 3.13.1

The lock must be acquired before this method is called and released shortly after. If called with an
unlocked lock a RuntimeError error is raised.

release()

Release the underlying lock.

When invoked on an unlocked lock, a RuntimeError is raised.

coroutine wait()

Wait until notified.

If the calling task has not acquired the lock when this method is called, a RuntimeError is raised.

This method releases the underlying lock, and then blocks until it is awakened by a notify() or
notify_all() call. Once awakened, the Condition re-acquires its lock and this method returns True.

Note that a task may return from this call spuriously, which is why the caller should always re-check the
state and be prepared to wait() again. For this reason, you may prefer to use wait_for() instead.

coroutine wait_for(predicate)
Wait until a predicate becomes true.

The predicate must be a callable which result will be interpreted as a boolean value. The method will
repeatedly wait() until the predicate evaluates to true. The final value is the return value.

Semaphore

class asyncio.Semaphore(value=1)
A Semaphore object. Not thread-safe.

A semaphore manages an internal counter which is decremented by each acquire() call and incremented by
each release() call. The counter can never go below zero; when acquire() finds that it is zero, it blocks,
waiting until some task calls release().

The optional value argument gives the initial value for the internal counter (1 by default). If the given value is
less than 0 a ValueError is raised.

Changed in version 3.10: Removed the loop parameter.

The preferred way to use a Semaphore is an async with statement:

sem = asyncio.Semaphore(10)

... later

async with sem:

work with shared resource

which is equivalent to:

sem = asyncio.Semaphore(10)

... later

await sem.acquire()

try:

work with shared resource

finally:

sem.release()

coroutine acquire()

Acquire a semaphore.

If the internal counter is greater than zero, decrement it by one and return True immediately. If it is
zero, wait until a release() is called and return True.

1076 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

locked()

Returns True if semaphore can not be acquired immediately.

release()

Release a semaphore, incrementing the internal counter by one. Can wake up a task waiting to acquire
the semaphore.

Unlike BoundedSemaphore, Semaphore allows making more release() calls than acquire()

calls.

BoundedSemaphore

class asyncio.BoundedSemaphore(value=1)
A bounded semaphore object. Not thread-safe.

Bounded Semaphore is a version of Semaphore that raises a ValueError in release() if it increases the
internal counter above the initial value.

Changed in version 3.10: Removed the loop parameter.

Barrier

class asyncio.Barrier(parties)
A barrier object. Not thread-safe.

A barrier is a simple synchronization primitive that allows to block until parties number of tasks are waiting
on it. Tasks can wait on the wait() method and would be blocked until the specified number of tasks end up
waiting on wait(). At that point all of the waiting tasks would unblock simultaneously.

async with can be used as an alternative to awaiting on wait().

The barrier can be reused any number of times.

Example:

async def example_barrier():

barrier with 3 parties

b = asyncio.Barrier(3)

create 2 new waiting tasks

asyncio.create_task(b.wait())

asyncio.create_task(b.wait())

await asyncio.sleep(0)

print(b)

The third .wait() call passes the barrier

await b.wait()

print(b)

print("barrier passed")

await asyncio.sleep(0)

print(b)

asyncio.run(example_barrier())

Result of this example is:

<asyncio.locks.Barrier object at 0x... [filling, waiters:2/3]>

<asyncio.locks.Barrier object at 0x... [draining, waiters:0/3]>

barrier passed

<asyncio.locks.Barrier object at 0x... [filling, waiters:0/3]>

19.1. asyncio— Asynchronous I/O 1077

The Python Library Reference, Release 3.13.1

Added in version 3.11.

coroutine wait()

Pass the barrier. When all the tasks party to the barrier have called this function, they are all unblocked
simultaneously.

When a waiting or blocked task in the barrier is cancelled, this task exits the barrier which stays in the
same state. If the state of the barrier is “filling”, the number of waiting task decreases by 1.

The return value is an integer in the range of 0 to parties-1, different for each task. This can be used
to select a task to do some special housekeeping, e.g.:

...

async with barrier as position:

if position == 0:

Only one task prints this

print('End of *draining phase*')

This method may raise a BrokenBarrierError exception if the barrier is broken or reset while a task
is waiting. It could raise a CancelledError if a task is cancelled.

coroutine reset()

Return the barrier to the default, empty state. Any tasks waiting on it will receive the
BrokenBarrierError exception.

If a barrier is broken it may be better to just leave it and create a new one.

coroutine abort()

Put the barrier into a broken state. This causes any active or future calls to wait() to fail with the
BrokenBarrierError. Use this for example if one of the tasks needs to abort, to avoid infinite waiting
tasks.

parties

The number of tasks required to pass the barrier.

n_waiting

The number of tasks currently waiting in the barrier while filling.

broken

A boolean that is True if the barrier is in the broken state.

exception asyncio.BrokenBarrierError

This exception, a subclass of RuntimeError, is raised when the Barrier object is reset or broken.

Changed in version 3.9: Acquiring a lock using await lock or yield from lock and/or with statement (with
await lock, with (yield from lock)) was removed. Use async with lock instead.

19.1.5 Subprocesses

Source code: Lib/asyncio/subprocess.py, Lib/asyncio/base_subprocess.py

This section describes high-level async/await asyncio APIs to create and manage subprocesses.

Here’s an example of how asyncio can run a shell command and obtain its result:

import asyncio

async def run(cmd):

proc = await asyncio.create_subprocess_shell(

(continues on next page)

1078 Chapter 19. Networking and Interprocess Communication

https://github.com/python/cpython/tree/3.13/Lib/asyncio/subprocess.py
https://github.com/python/cpython/tree/3.13/Lib/asyncio/base_subprocess.py

The Python Library Reference, Release 3.13.1

(continued from previous page)

cmd,

stdout=asyncio.subprocess.PIPE,

stderr=asyncio.subprocess.PIPE)

stdout, stderr = await proc.communicate()

print(f'[{cmd!r} exited with {proc.returncode}]')

if stdout:

print(f'[stdout]\n{stdout.decode()}')

if stderr:

print(f'[stderr]\n{stderr.decode()}')

asyncio.run(run('ls /zzz'))

will print:

['ls /zzz' exited with 1]

[stderr]

ls: /zzz: No such file or directory

Because all asyncio subprocess functions are asynchronous and asyncio provides many tools to work with such func-
tions, it is easy to execute and monitor multiple subprocesses in parallel. It is indeed trivial to modify the above
example to run several commands simultaneously:

async def main():

await asyncio.gather(

run('ls /zzz'),

run('sleep 1; echo "hello"'))

asyncio.run(main())

See also the Examples subsection.

Creating Subprocesses

coroutine asyncio.create_subprocess_exec(program, *args, stdin=None, stdout=None, stderr=None,
limit=None, **kwds)

Create a subprocess.

The limit argument sets the buffer limit for StreamReader wrappers for Process.stdout and Process.
stderr (if subprocess.PIPE is passed to stdout and stderr arguments).

Return a Process instance.

See the documentation of loop.subprocess_exec() for other parameters.

Changed in version 3.10: Removed the loop parameter.

coroutine asyncio.create_subprocess_shell(cmd, stdin=None, stdout=None, stderr=None, limit=None,
**kwds)

Run the cmd shell command.

The limit argument sets the buffer limit for StreamReader wrappers for Process.stdout and Process.
stderr (if subprocess.PIPE is passed to stdout and stderr arguments).

Return a Process instance.

See the documentation of loop.subprocess_shell() for other parameters.

19.1. asyncio— Asynchronous I/O 1079

The Python Library Reference, Release 3.13.1

Important

It is the application’s responsibility to ensure that all whitespace and special characters are quoted appropri-
ately to avoid shell injection vulnerabilities. The shlex.quote() function can be used to properly escape
whitespace and special shell characters in strings that are going to be used to construct shell commands.

Changed in version 3.10: Removed the loop parameter.

Note

Subprocesses are available for Windows if a ProactorEventLoop is used. See Subprocess Support on Windows
for details.

See also

asyncio also has the following low-level APIs to work with subprocesses: loop.subprocess_exec(), loop.
subprocess_shell(), loop.connect_read_pipe(), loop.connect_write_pipe(), as well as the
Subprocess Transports and Subprocess Protocols.

Constants

asyncio.subprocess.PIPE

Can be passed to the stdin, stdout or stderr parameters.

If PIPE is passed to stdin argument, the Process.stdin attribute will point to a StreamWriter instance.

If PIPE is passed to stdout or stderr arguments, the Process.stdout and Process.stderr attributes will
point to StreamReader instances.

asyncio.subprocess.STDOUT

Special value that can be used as the stderr argument and indicates that standard error should be redirected
into standard output.

asyncio.subprocess.DEVNULL

Special value that can be used as the stdin, stdout or stderr argument to process creation functions. It indicates
that the special file os.devnull will be used for the corresponding subprocess stream.

Interacting with Subprocesses

Both create_subprocess_exec() and create_subprocess_shell() functions return instances of the Pro-
cess class. Process is a high-level wrapper that allows communicating with subprocesses and watching for their
completion.

class asyncio.subprocess.Process

An object that wraps OS processes created by the create_subprocess_exec() and
create_subprocess_shell() functions.

This class is designed to have a similar API to the subprocess.Popen class, but there are some notable
differences:

• unlike Popen, Process instances do not have an equivalent to the poll() method;

• the communicate() and wait() methods don’t have a timeout parameter: use the wait_for() func-
tion;

• the Process.wait()method is asynchronous, whereas subprocess.Popen.wait()method is im-
plemented as a blocking busy loop;

• the universal_newlines parameter is not supported.

1080 Chapter 19. Networking and Interprocess Communication

https://en.wikipedia.org/wiki/Shell_injection#Shell_injection

The Python Library Reference, Release 3.13.1

This class is not thread safe.

See also the Subprocess and Threads section.

coroutine wait()

Wait for the child process to terminate.

Set and return the returncode attribute.

Note

This method can deadlock when using stdout=PIPE or stderr=PIPE and the child process gen-
erates so much output that it blocks waiting for the OS pipe buffer to accept more data. Use the
communicate() method when using pipes to avoid this condition.

coroutine communicate(input=None)
Interact with process:

1. send data to stdin (if input is not None);

2. closes stdin;

3. read data from stdout and stderr, until EOF is reached;

4. wait for process to terminate.

The optional input argument is the data (bytes object) that will be sent to the child process.

Return a tuple (stdout_data, stderr_data).

If either BrokenPipeError or ConnectionResetError exception is raised when writing input into
stdin, the exception is ignored. This condition occurs when the process exits before all data are written
into stdin.

If it is desired to send data to the process’ stdin, the process needs to be created with stdin=PIPE. Simi-
larly, to get anything other than None in the result tuple, the process has to be created with stdout=PIPE
and/or stderr=PIPE arguments.

Note, that the data read is buffered in memory, so do not use this method if the data size is large or
unlimited.

Changed in version 3.12: stdin gets closed when input=None too.

send_signal(signal)
Sends the signal signal to the child process.

Note

On Windows, SIGTERM is an alias for terminate(). CTRL_C_EVENT and CTRL_BREAK_EVENT
can be sent to processes started with a creationflags parameter which includes
CREATE_NEW_PROCESS_GROUP.

terminate()

Stop the child process.

On POSIX systems this method sends SIGTERM to the child process.

On Windows the Win32 API function TerminateProcess() is called to stop the child process.

kill()

Kill the child process.

On POSIX systems this method sends SIGKILL to the child process.

On Windows this method is an alias for terminate().

19.1. asyncio— Asynchronous I/O 1081

The Python Library Reference, Release 3.13.1

stdin

Standard input stream (StreamWriter) or None if the process was created with stdin=None.

stdout

Standard output stream (StreamReader) or None if the process was created with stdout=None.

stderr

Standard error stream (StreamReader) or None if the process was created with stderr=None.

Warning

Use the communicate()method rather than process.stdin.write(), await process.stdout.

read() or await process.stderr.read(). This avoids deadlocks due to streams pausing reading
or writing and blocking the child process.

pid

Process identification number (PID).

Note that for processes created by the create_subprocess_shell() function, this attribute is the
PID of the spawned shell.

returncode

Return code of the process when it exits.

A None value indicates that the process has not terminated yet.

A negative value -N indicates that the child was terminated by signal N (POSIX only).

Subprocess and Threads

Standard asyncio event loop supports running subprocesses from different threads by default.

On Windows subprocesses are provided by ProactorEventLoop only (default), SelectorEventLoop has no
subprocess support.

On UNIX child watchers are used for subprocess finish waiting, see Process Watchers for more info.

Changed in version 3.8: UNIX switched to use ThreadedChildWatcher for spawning subprocesses from different
threads without any limitation.

Spawning a subprocess with inactive current child watcher raises RuntimeError.

Note that alternative event loop implementations might have own limitations; please refer to their documentation.

See also

The Concurrency and multithreading in asyncio section.

Examples

An example using the Process class to control a subprocess and the StreamReader class to read from its standard
output.

The subprocess is created by the create_subprocess_exec() function:

import asyncio

import sys

async def get_date():

code = 'import datetime; print(datetime.datetime.now())'

(continues on next page)

1082 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

(continued from previous page)

Create the subprocess; redirect the standard output

into a pipe.

proc = await asyncio.create_subprocess_exec(

sys.executable, '-c', code,

stdout=asyncio.subprocess.PIPE)

Read one line of output.

data = await proc.stdout.readline()

line = data.decode('ascii').rstrip()

Wait for the subprocess exit.

await proc.wait()

return line

date = asyncio.run(get_date())

print(f"Current date: {date}")

See also the same example written using low-level APIs.

19.1.6 Queues

Source code: Lib/asyncio/queues.py

asyncio queues are designed to be similar to classes of the queue module. Although asyncio queues are not thread-
safe, they are designed to be used specifically in async/await code.

Note that methods of asyncio queues don’t have a timeout parameter; use asyncio.wait_for() function to do
queue operations with a timeout.

See also the Examples section below.

Queue

class asyncio.Queue(maxsize=0)
A first in, first out (FIFO) queue.

If maxsize is less than or equal to zero, the queue size is infinite. If it is an integer greater than 0, then await
put() blocks when the queue reaches maxsize until an item is removed by get().

Unlike the standard library threading queue, the size of the queue is always known and can be returned by
calling the qsize() method.

Changed in version 3.10: Removed the loop parameter.

This class is not thread safe.

maxsize

Number of items allowed in the queue.

empty()

Return True if the queue is empty, False otherwise.

full()

Return True if there are maxsize items in the queue.

If the queue was initialized with maxsize=0 (the default), then full() never returns True.

19.1. asyncio— Asynchronous I/O 1083

https://github.com/python/cpython/tree/3.13/Lib/asyncio/queues.py

The Python Library Reference, Release 3.13.1

coroutine get()

Remove and return an item from the queue. If queue is empty, wait until an item is available.

Raises QueueShutDown if the queue has been shut down and is empty, or if the queue has been shut
down immediately.

get_nowait()

Return an item if one is immediately available, else raise QueueEmpty.

coroutine join()

Block until all items in the queue have been received and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down
whenever a consumer coroutine calls task_done() to indicate that the item was retrieved and all work
on it is complete. When the count of unfinished tasks drops to zero, join() unblocks.

coroutine put(item)

Put an item into the queue. If the queue is full, wait until a free slot is available before adding the item.

Raises QueueShutDown if the queue has been shut down.

put_nowait(item)

Put an item into the queue without blocking.

If no free slot is immediately available, raise QueueFull.

qsize()

Return the number of items in the queue.

shutdown(immediate=False)
Shut down the queue, making get() and put() raise QueueShutDown.

By default, get() on a shut down queue will only raise once the queue is empty. Set immediate to true
to make get() raise immediately instead.

All blocked callers of put() and get() will be unblocked. If immediate is true, a task will be marked
as done for each remaining item in the queue, which may unblock callers of join().

Added in version 3.13.

task_done()

Indicate that a formerly enqueued task is complete.

Used by queue consumers. For each get() used to fetch a task, a subsequent call to task_done() tells
the queue that the processing on the task is complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that a
task_done() call was received for every item that had been put() into the queue).

shutdown(immediate=True) calls task_done() for each remaining item in the queue.

Raises ValueError if called more times than there were items placed in the queue.

Priority Queue

class asyncio.PriorityQueue

A variant of Queue; retrieves entries in priority order (lowest first).

Entries are typically tuples of the form (priority_number, data).

LIFO Queue

class asyncio.LifoQueue

A variant of Queue that retrieves most recently added entries first (last in, first out).

1084 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Exceptions

exception asyncio.QueueEmpty

This exception is raised when the get_nowait() method is called on an empty queue.

exception asyncio.QueueFull

Exception raised when the put_nowait() method is called on a queue that has reached its maxsize.

exception asyncio.QueueShutDown

Exception raised when put() or get() is called on a queue which has been shut down.

Added in version 3.13.

Examples

Queues can be used to distribute workload between several concurrent tasks:

import asyncio

import random

import time

async def worker(name, queue):

while True:

Get a "work item" out of the queue.

sleep_for = await queue.get()

Sleep for the "sleep_for" seconds.

await asyncio.sleep(sleep_for)

Notify the queue that the "work item" has been processed.

queue.task_done()

print(f'{name} has slept for {sleep_for:.2f} seconds')

async def main():

Create a queue that we will use to store our "workload".

queue = asyncio.Queue()

Generate random timings and put them into the queue.

total_sleep_time = 0

for _ in range(20):

sleep_for = random.uniform(0.05, 1.0)

total_sleep_time += sleep_for

queue.put_nowait(sleep_for)

Create three worker tasks to process the queue concurrently.

tasks = []

for i in range(3):

task = asyncio.create_task(worker(f'worker-{i}', queue))

tasks.append(task)

Wait until the queue is fully processed.

started_at = time.monotonic()

await queue.join()

total_slept_for = time.monotonic() - started_at

Cancel our worker tasks.

(continues on next page)

19.1. asyncio— Asynchronous I/O 1085

The Python Library Reference, Release 3.13.1

(continued from previous page)

for task in tasks:

task.cancel()

Wait until all worker tasks are cancelled.

await asyncio.gather(*tasks, return_exceptions=True)

print('====')

print(f'3 workers slept in parallel for {total_slept_for:.2f} seconds')

print(f'total expected sleep time: {total_sleep_time:.2f} seconds')

asyncio.run(main())

19.1.7 Exceptions

Source code: Lib/asyncio/exceptions.py

exception asyncio.TimeoutError

A deprecated alias of TimeoutError, raised when the operation has exceeded the given deadline.

Changed in version 3.11: This class was made an alias of TimeoutError.

exception asyncio.CancelledError

The operation has been cancelled.

This exception can be caught to perform custom operations when asyncio Tasks are cancelled. In almost all
situations the exception must be re-raised.

Changed in version 3.8: CancelledError is now a subclass of BaseException rather than Exception.

exception asyncio.InvalidStateError

Invalid internal state of Task or Future.

Can be raised in situations like setting a result value for a Future object that already has a result value set.

exception asyncio.SendfileNotAvailableError

The “sendfile” syscall is not available for the given socket or file type.

A subclass of RuntimeError.

exception asyncio.IncompleteReadError

The requested read operation did not complete fully.

Raised by the asyncio stream APIs.

This exception is a subclass of EOFError.

expected

The total number (int) of expected bytes.

partial

A string of bytes read before the end of stream was reached.

exception asyncio.LimitOverrunError

Reached the buffer size limit while looking for a separator.

Raised by the asyncio stream APIs.

consumed

The total number of to be consumed bytes.

1086 Chapter 19. Networking and Interprocess Communication

https://github.com/python/cpython/tree/3.13/Lib/asyncio/exceptions.py

The Python Library Reference, Release 3.13.1

19.1.8 Event Loop

Source code: Lib/asyncio/events.py, Lib/asyncio/base_events.py

Preface

The event loop is the core of every asyncio application. Event loops run asynchronous tasks and callbacks, perform
network IO operations, and run subprocesses.

Application developers should typically use the high-level asyncio functions, such as asyncio.run(), and should
rarely need to reference the loop object or call its methods. This section is intended mostly for authors of lower-level
code, libraries, and frameworks, who need finer control over the event loop behavior.

Obtaining the Event Loop

The following low-level functions can be used to get, set, or create an event loop:

asyncio.get_running_loop()

Return the running event loop in the current OS thread.

Raise a RuntimeError if there is no running event loop.

This function can only be called from a coroutine or a callback.

Added in version 3.7.

asyncio.get_event_loop()

Get the current event loop.

When called from a coroutine or a callback (e.g. scheduled with call_soon or similar API), this function will
always return the running event loop.

If there is no running event loop set, the function will return the result of the get_event_loop_policy().
get_event_loop() call.

Because this function has rather complex behavior (especially when custom event loop policies are in use),
using the get_running_loop() function is preferred to get_event_loop() in coroutines and callbacks.

As noted above, consider using the higher-level asyncio.run() function, instead of using these lower level
functions to manually create and close an event loop.

Deprecated since version 3.12: Deprecation warning is emitted if there is no current event loop. In some future
Python release this will become an error.

asyncio.set_event_loop(loop)
Set loop as the current event loop for the current OS thread.

asyncio.new_event_loop()

Create and return a new event loop object.

Note that the behaviour of get_event_loop(), set_event_loop(), and new_event_loop() functions can
be altered by setting a custom event loop policy.

Contents

This documentation page contains the following sections:

• The Event Loop Methods section is the reference documentation of the event loop APIs;

• The Callback Handles section documents the Handle and TimerHandle instances which are returned from
scheduling methods such as loop.call_soon() and loop.call_later();

• The Server Objects section documents types returned from event loopmethods like loop.create_server();

• The Event Loop Implementations section documents the SelectorEventLoop and ProactorEventLoop
classes;

19.1. asyncio— Asynchronous I/O 1087

https://github.com/python/cpython/tree/3.13/Lib/asyncio/events.py
https://github.com/python/cpython/tree/3.13/Lib/asyncio/base_events.py

The Python Library Reference, Release 3.13.1

• The Examples section showcases how to work with some event loop APIs.

Event Loop Methods

Event loops have low-level APIs for the following:

• Running and stopping the loop

• Scheduling callbacks

• Scheduling delayed callbacks

• Creating Futures and Tasks

• Opening network connections

• Creating network servers

• Transferring files

• TLS Upgrade

• Watching file descriptors

• Working with socket objects directly

• DNS

• Working with pipes

• Unix signals

• Executing code in thread or process pools

• Error Handling API

• Enabling debug mode

• Running Subprocesses

Running and stopping the loop

loop.run_until_complete(future)
Run until the future (an instance of Future) has completed.

If the argument is a coroutine object it is implicitly scheduled to run as a asyncio.Task.

Return the Future’s result or raise its exception.

loop.run_forever()

Run the event loop until stop() is called.

If stop() is called before run_forever() is called, the loop will poll the I/O selector once with a timeout
of zero, run all callbacks scheduled in response to I/O events (and those that were already scheduled), and then
exit.

If stop() is called while run_forever() is running, the loop will run the current batch of callbacks and
then exit. Note that new callbacks scheduled by callbacks will not run in this case; instead, they will run the
next time run_forever() or run_until_complete() is called.

loop.stop()

Stop the event loop.

loop.is_running()

Return True if the event loop is currently running.

1088 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

loop.is_closed()

Return True if the event loop was closed.

loop.close()

Close the event loop.

The loop must not be running when this function is called. Any pending callbacks will be discarded.

This method clears all queues and shuts down the executor, but does not wait for the executor to finish.

This method is idempotent and irreversible. No other methods should be called after the event loop is closed.

coroutine loop.shutdown_asyncgens()

Schedule all currently open asynchronous generator objects to close with an aclose() call. After calling this
method, the event loop will issue a warning if a new asynchronous generator is iterated. This should be used
to reliably finalize all scheduled asynchronous generators.

Note that there is no need to call this function when asyncio.run() is used.

Example:

try:

loop.run_forever()

finally:

loop.run_until_complete(loop.shutdown_asyncgens())

loop.close()

Added in version 3.6.

coroutine loop.shutdown_default_executor(timeout=None)
Schedule the closure of the default executor and wait for it to join all of the threads in the
ThreadPoolExecutor. Once this method has been called, using the default executor with loop.

run_in_executor() will raise a RuntimeError.

The timeout parameter specifies the amount of time (in float seconds) the executor will be given to finish
joining. With the default, None, the executor is allowed an unlimited amount of time.

If the timeout is reached, a RuntimeWarning is emitted and the default executor is terminated without waiting
for its threads to finish joining.

Note

Do not call this method when using asyncio.run(), as the latter handles default executor shutdown
automatically.

Added in version 3.9.

Changed in version 3.12: Added the timeout parameter.

Scheduling callbacks

loop.call_soon(callback, *args, context=None)
Schedule the callback callback to be called with args arguments at the next iteration of the event loop.

Return an instance of asyncio.Handle, which can be used later to cancel the callback.

Callbacks are called in the order in which they are registered. Each callback will be called exactly once.

The optional keyword-only context argument specifies a custom contextvars.Context for the callback to
run in. Callbacks use the current context when no context is provided.

Unlike call_soon_threadsafe(), this method is not thread-safe.

19.1. asyncio— Asynchronous I/O 1089

The Python Library Reference, Release 3.13.1

loop.call_soon_threadsafe(callback, *args, context=None)
A thread-safe variant of call_soon(). When scheduling callbacks from another thread, this function must
be used, since call_soon() is not thread-safe.

Raises RuntimeError if called on a loop that’s been closed. This can happen on a secondary thread when
the main application is shutting down.

See the concurrency and multithreading section of the documentation.

Changed in version 3.7: The context keyword-only parameter was added. See PEP 567 for more details.

Note

Most asyncio scheduling functions don’t allow passing keyword arguments. To do that, use functools.

partial():

will schedule "print("Hello", flush=True)"

loop.call_soon(

functools.partial(print, "Hello", flush=True))

Using partial objects is usually more convenient than using lambdas, as asyncio can render partial objects better
in debug and error messages.

Scheduling delayed callbacks

Event loop provides mechanisms to schedule callback functions to be called at some point in the future. Event loop
uses monotonic clocks to track time.

loop.call_later(delay, callback, *args, context=None)
Schedule callback to be called after the given delay number of seconds (can be either an int or a float).

An instance of asyncio.TimerHandle is returned which can be used to cancel the callback.

callback will be called exactly once. If two callbacks are scheduled for exactly the same time, the order in
which they are called is undefined.

The optional positional args will be passed to the callback when it is called. If you want the callback to be
called with keyword arguments use functools.partial().

An optional keyword-only context argument allows specifying a custom contextvars.Context for the call-
back to run in. The current context is used when no context is provided.

Changed in version 3.7: The context keyword-only parameter was added. See PEP 567 for more details.

Changed in version 3.8: In Python 3.7 and earlier with the default event loop implementation, the delay could
not exceed one day. This has been fixed in Python 3.8.

loop.call_at(when, callback, *args, context=None)
Schedule callback to be called at the given absolute timestamp when (an int or a float), using the same time
reference as loop.time().

This method’s behavior is the same as call_later().

An instance of asyncio.TimerHandle is returned which can be used to cancel the callback.

Changed in version 3.7: The context keyword-only parameter was added. See PEP 567 for more details.

Changed in version 3.8: In Python 3.7 and earlier with the default event loop implementation, the difference
between when and the current time could not exceed one day. This has been fixed in Python 3.8.

loop.time()

Return the current time, as a float value, according to the event loop’s internal monotonic clock.

1090 Chapter 19. Networking and Interprocess Communication

https://peps.python.org/pep-0567/
https://peps.python.org/pep-0567/
https://peps.python.org/pep-0567/

The Python Library Reference, Release 3.13.1

Note

Changed in version 3.8: In Python 3.7 and earlier timeouts (relative delay or absolute when) should not exceed
one day. This has been fixed in Python 3.8.

See also

The asyncio.sleep() function.

Creating Futures and Tasks

loop.create_future()

Create an asyncio.Future object attached to the event loop.

This is the preferred way to create Futures in asyncio. This lets third-party event loops provide alternative
implementations of the Future object (with better performance or instrumentation).

Added in version 3.5.2.

loop.create_task(coro, *, name=None, context=None)
Schedule the execution of coroutine coro. Return a Task object.

Third-party event loops can use their own subclass of Task for interoperability. In this case, the result type is
a subclass of Task.

If the name argument is provided and not None, it is set as the name of the task using Task.set_name().

An optional keyword-only context argument allows specifying a custom contextvars.Context for the coro
to run in. The current context copy is created when no context is provided.

Changed in version 3.8: Added the name parameter.

Changed in version 3.11: Added the context parameter.

loop.set_task_factory(factory)
Set a task factory that will be used by loop.create_task().

If factory is None the default task factory will be set. Otherwise, factory must be a callable with the signature
matching (loop, coro, context=None), where loop is a reference to the active event loop, and coro is a
coroutine object. The callable must return a asyncio.Future-compatible object.

loop.get_task_factory()

Return a task factory or None if the default one is in use.

Opening network connections

coroutine loop.create_connection(protocol_factory, host=None, port=None, *, ssl=None, family=0,
proto=0, flags=0, sock=None, local_addr=None,
server_hostname=None, ssl_handshake_timeout=None,
ssl_shutdown_timeout=None, happy_eyeballs_delay=None,
interleave=None, all_errors=False)

Open a streaming transport connection to a given address specified by host and port.

The socket family can be either AF_INET or AF_INET6 depending on host (or the family argument, if pro-
vided).

The socket type will be SOCK_STREAM .

protocol_factory must be a callable returning an asyncio protocol implementation.

This method will try to establish the connection in the background. When successful, it returns a
(transport, protocol) pair.

19.1. asyncio— Asynchronous I/O 1091

The Python Library Reference, Release 3.13.1

The chronological synopsis of the underlying operation is as follows:

1. The connection is established and a transport is created for it.

2. protocol_factory is called without arguments and is expected to return a protocol instance.

3. The protocol instance is coupled with the transport by calling its connection_made() method.

4. A (transport, protocol) tuple is returned on success.

The created transport is an implementation-dependent bidirectional stream.

Other arguments:

• ssl: if given and not false, a SSL/TLS transport is created (by default a plain TCP transport is created).
If ssl is a ssl.SSLContext object, this context is used to create the transport; if ssl is True, a default
context returned from ssl.create_default_context() is used.

See also

SSL/TLS security considerations

• server_hostname sets or overrides the hostname that the target server’s certificate will be matched against.
Should only be passed if ssl is not None. By default the value of the host argument is used. If host is
empty, there is no default and you must pass a value for server_hostname. If server_hostname is an empty
string, hostname matching is disabled (which is a serious security risk, allowing for potential man-in-the-
middle attacks).

• family, proto, flags are the optional address family, protocol and flags to be passed through to getad-
drinfo() for host resolution. If given, these should all be integers from the corresponding socketmodule
constants.

• happy_eyeballs_delay, if given, enables Happy Eyeballs for this connection. It should be a floating-point
number representing the amount of time in seconds to wait for a connection attempt to complete, before
starting the next attempt in parallel. This is the “Connection Attempt Delay” as defined in RFC 8305.
A sensible default value recommended by the RFC is 0.25 (250 milliseconds).

• interleave controls address reordering when a host name resolves to multiple IP addresses. If 0 or un-
specified, no reordering is done, and addresses are tried in the order returned by getaddrinfo(). If a
positive integer is specified, the addresses are interleaved by address family, and the given integer is inter-
preted as “First Address Family Count” as defined inRFC 8305. The default is 0 if happy_eyeballs_delay
is not specified, and 1 if it is.

• sock, if given, should be an existing, already connected socket.socket object to be used by the trans-
port. If sock is given, none of host, port, family, proto, flags, happy_eyeballs_delay, interleave and lo-
cal_addr should be specified.

Note

The sock argument transfers ownership of the socket to the transport created. To close the socket,
call the transport’s close() method.

• local_addr, if given, is a (local_host, local_port) tuple used to bind the socket locally. The
local_host and local_port are looked up using getaddrinfo(), similarly to host and port.

• ssl_handshake_timeout is (for a TLS connection) the time in seconds to wait for the TLS handshake to
complete before aborting the connection. 60.0 seconds if None (default).

• ssl_shutdown_timeout is the time in seconds to wait for the SSL shutdown to complete before aborting
the connection. 30.0 seconds if None (default).

• all_errors determines what exceptions are raised when a connection cannot be created. By default, only a
single Exception is raised: the first exception if there is only one or all errors have same message, or a

1092 Chapter 19. Networking and Interprocess Communication

https://datatracker.ietf.org/doc/html/rfc8305.html
https://datatracker.ietf.org/doc/html/rfc8305.html

The Python Library Reference, Release 3.13.1

single OSError with the error messages combined. When all_errors is True, an ExceptionGroup
will be raised containing all exceptions (even if there is only one).

Changed in version 3.5: Added support for SSL/TLS in ProactorEventLoop.

Changed in version 3.6: The socket option socket.TCP_NODELAY is set by default for all TCP connections.

Changed in version 3.7: Added the ssl_handshake_timeout parameter.

Changed in version 3.8: Added the happy_eyeballs_delay and interleave parameters.

Happy Eyeballs Algorithm: Success with Dual-Stack Hosts. When a server’s IPv4 path and protocol are
working, but the server’s IPv6 path and protocol are not working, a dual-stack client application experiences
significant connection delay compared to an IPv4-only client. This is undesirable because it causes the dual-
stack client to have a worse user experience. This document specifies requirements for algorithms that reduce
this user-visible delay and provides an algorithm.

For more information: https://datatracker.ietf.org/doc/html/rfc6555

Changed in version 3.11: Added the ssl_shutdown_timeout parameter.

Changed in version 3.12: all_errors was added.

See also

The open_connection() function is a high-level alternative API. It returns a pair of (StreamReader,
StreamWriter) that can be used directly in async/await code.

coroutine loop.create_datagram_endpoint(protocol_factory, local_addr=None, remote_addr=None, *,
family=0, proto=0, flags=0, reuse_port=None,
allow_broadcast=None, sock=None)

Create a datagram connection.

The socket family can be either AF_INET, AF_INET6, or AF_UNIX, depending on host (or the family argu-
ment, if provided).

The socket type will be SOCK_DGRAM .

protocol_factory must be a callable returning a protocol implementation.

A tuple of (transport, protocol) is returned on success.

Other arguments:

• local_addr, if given, is a (local_host, local_port) tuple used to bind the socket locally. The
local_host and local_port are looked up using getaddrinfo().

• remote_addr, if given, is a (remote_host, remote_port) tuple used to connect the socket to a
remote address. The remote_host and remote_port are looked up using getaddrinfo().

• family, proto, flags are the optional address family, protocol and flags to be passed through to
getaddrinfo() for host resolution. If given, these should all be integers from the corresponding
socket module constants.

• reuse_port tells the kernel to allow this endpoint to be bound to the same port as other existing end-
points are bound to, so long as they all set this flag when being created. This option is not supported on
Windows and some Unixes. If the socket.SO_REUSEPORT constant is not defined then this capability is
unsupported.

• allow_broadcast tells the kernel to allow this endpoint to send messages to the broadcast address.

• sock can optionally be specified in order to use a preexisting, already connected, socket.socket object
to be used by the transport. If specified, local_addr and remote_addr should be omitted (must be None).

19.1. asyncio— Asynchronous I/O 1093

https://datatracker.ietf.org/doc/html/rfc6555

The Python Library Reference, Release 3.13.1

Note

The sock argument transfers ownership of the socket to the transport created. To close the socket,
call the transport’s close() method.

See UDP echo client protocol and UDP echo server protocol examples.

Changed in version 3.4.4: The family, proto, flags, reuse_address, reuse_port, allow_broadcast, and sock pa-
rameters were added.

Changed in version 3.8: Added support for Windows.

Changed in version 3.8.1: The reuse_address parameter is no longer supported, as us-
ing socket.SO_REUSEADDR poses a significant security concern for UDP. Explicitly passing
reuse_address=True will raise an exception.

When multiple processes with differing UIDs assign sockets to an identical UDP socket address with
SO_REUSEADDR, incoming packets can become randomly distributed among the sockets.

For supported platforms, reuse_port can be used as a replacement for similar functionality. With reuse_port,
socket.SO_REUSEPORT is used instead, which specifically prevents processes with differing UIDs from as-
signing sockets to the same socket address.

Changed in version 3.11: The reuse_address parameter, disabled since Python 3.8.1, 3.7.6 and 3.6.10, has
been entirely removed.

coroutine loop.create_unix_connection(protocol_factory, path=None, *, ssl=None, sock=None,
server_hostname=None, ssl_handshake_timeout=None,
ssl_shutdown_timeout=None)

Create a Unix connection.

The socket family will be AF_UNIX; socket type will be SOCK_STREAM .

A tuple of (transport, protocol) is returned on success.

path is the name of a Unix domain socket and is required, unless a sock parameter is specified. Abstract Unix
sockets, str, bytes, and Path paths are supported.

See the documentation of the loop.create_connection() method for information about arguments to
this method.

Availability: Unix.

Changed in version 3.7: Added the ssl_handshake_timeout parameter. The path parameter can now be a
path-like object.

Changed in version 3.11: Added the ssl_shutdown_timeout parameter.

Creating network servers

coroutine loop.create_server(protocol_factory, host=None, port=None, *, family=socket.AF_UNSPEC,
flags=socket.AI_PASSIVE, sock=None, backlog=100, ssl=None,
reuse_address=None, reuse_port=None, keep_alive=None,
ssl_handshake_timeout=None, ssl_shutdown_timeout=None,
start_serving=True)

Create a TCP server (socket type SOCK_STREAM) listening on port of the host address.

Returns a Server object.

Arguments:

• protocol_factory must be a callable returning a protocol implementation.

• The host parameter can be set to several types which determine where the server would be listening:

– If host is a string, the TCP server is bound to a single network interface specified by host.

1094 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

– If host is a sequence of strings, the TCP server is bound to all network interfaces specified by the
sequence.

– If host is an empty string or None, all interfaces are assumed and a list of multiple sockets will be
returned (most likely one for IPv4 and another one for IPv6).

• The port parameter can be set to specify which port the server should listen on. If 0 or None (the default),
a random unused port will be selected (note that if host resolves to multiple network interfaces, a different
random port will be selected for each interface).

• family can be set to either socket.AF_INET or AF_INET6 to force the socket to use IPv4 or IPv6. If
not set, the family will be determined from host name (defaults to AF_UNSPEC).

• flags is a bitmask for getaddrinfo().

• sock can optionally be specified in order to use a preexisting socket object. If specified, host and port
must not be specified.

Note

The sock argument transfers ownership of the socket to the server created. To close the socket, call
the server’s close() method.

• backlog is the maximum number of queued connections passed to listen() (defaults to 100).

• ssl can be set to an SSLContext instance to enable TLS over the accepted connections.

• reuse_address tells the kernel to reuse a local socket in TIME_WAIT state, without waiting for its natural
timeout to expire. If not specified will automatically be set to True on Unix.

• reuse_port tells the kernel to allow this endpoint to be bound to the same port as other existing endpoints
are bound to, so long as they all set this flag when being created. This option is not supported onWindows.

• keep_alive set to True keeps connections active by enabling the periodic transmission of messages.

Changed in version 3.13: Added the keep_alive parameter.

• ssl_handshake_timeout is (for a TLS server) the time in seconds to wait for the TLS handshake to com-
plete before aborting the connection. 60.0 seconds if None (default).

• ssl_shutdown_timeout is the time in seconds to wait for the SSL shutdown to complete before aborting
the connection. 30.0 seconds if None (default).

• start_serving set to True (the default) causes the created server to start accepting connections im-
mediately. When set to False, the user should await on Server.start_serving() or Server.
serve_forever() to make the server to start accepting connections.

Changed in version 3.5: Added support for SSL/TLS in ProactorEventLoop.

Changed in version 3.5.1: The host parameter can be a sequence of strings.

Changed in version 3.6: Added ssl_handshake_timeout and start_serving parameters. The socket option
socket.TCP_NODELAY is set by default for all TCP connections.

Changed in version 3.11: Added the ssl_shutdown_timeout parameter.

See also

The start_server() function is a higher-level alternative API that returns a pair of StreamReader
and StreamWriter that can be used in an async/await code.

coroutine loop.create_unix_server(protocol_factory, path=None, *, sock=None, backlog=100, ssl=None,
ssl_handshake_timeout=None, ssl_shutdown_timeout=None,
start_serving=True, cleanup_socket=True)

19.1. asyncio— Asynchronous I/O 1095

The Python Library Reference, Release 3.13.1

Similar to loop.create_server() but works with the AF_UNIX socket family.

path is the name of a Unix domain socket, and is required, unless a sock argument is provided. Abstract Unix
sockets, str, bytes, and Path paths are supported.

If cleanup_socket is true then the Unix socket will automatically be removed from the filesystem when the
server is closed, unless the socket has been replaced after the server has been created.

See the documentation of the loop.create_server() method for information about arguments to this
method.

Availability: Unix.

Changed in version 3.7: Added the ssl_handshake_timeout and start_serving parameters. The path parameter
can now be a Path object.

Changed in version 3.11: Added the ssl_shutdown_timeout parameter.

Changed in version 3.13: Added the cleanup_socket parameter.

coroutine loop.connect_accepted_socket(protocol_factory, sock, *, ssl=None,
ssl_handshake_timeout=None, ssl_shutdown_timeout=None)

Wrap an already accepted connection into a transport/protocol pair.

This method can be used by servers that accept connections outside of asyncio but that use asyncio to handle
them.

Parameters:

• protocol_factory must be a callable returning a protocol implementation.

• sock is a preexisting socket object returned from socket.accept.

Note

The sock argument transfers ownership of the socket to the transport created. To close the socket,
call the transport’s close() method.

• ssl can be set to an SSLContext to enable SSL over the accepted connections.

• ssl_handshake_timeout is (for an SSL connection) the time in seconds to wait for the SSL handshake to
complete before aborting the connection. 60.0 seconds if None (default).

• ssl_shutdown_timeout is the time in seconds to wait for the SSL shutdown to complete before aborting
the connection. 30.0 seconds if None (default).

Returns a (transport, protocol) pair.

Added in version 3.5.3.

Changed in version 3.7: Added the ssl_handshake_timeout parameter.

Changed in version 3.11: Added the ssl_shutdown_timeout parameter.

Transferring files

coroutine loop.sendfile(transport, file, offset=0, count=None, *, fallback=True)
Send a file over a transport. Return the total number of bytes sent.

The method uses high-performance os.sendfile() if available.

file must be a regular file object opened in binary mode.

offset tells from where to start reading the file. If specified, count is the total number of bytes to transmit as
opposed to sending the file until EOF is reached. File position is always updated, even when this method raises
an error, and file.tell() can be used to obtain the actual number of bytes sent.

1096 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

fallback set to True makes asyncio to manually read and send the file when the platform does not support the
sendfile system call (e.g. Windows or SSL socket on Unix).

Raise SendfileNotAvailableError if the system does not support the sendfile syscall and fallback is
False.

Added in version 3.7.

TLS Upgrade

coroutine loop.start_tls(transport, protocol, sslcontext, *, server_side=False, server_hostname=None,
ssl_handshake_timeout=None, ssl_shutdown_timeout=None)

Upgrade an existing transport-based connection to TLS.

Create a TLS coder/decoder instance and insert it between the transport and the protocol. The coder/decoder
implements both transport-facing protocol and protocol-facing transport.

Return the created two-interface instance. After await, the protocol must stop using the original transport
and communicate with the returned object only because the coder caches protocol-side data and sporadically
exchanges extra TLS session packets with transport.

In some situations (e.g. when the passed transport is already closing) this may return None.

Parameters:

• transport and protocol instances that methods like create_server() and create_connection()

return.

• sslcontext: a configured instance of SSLContext.

• server_side pass True when a server-side connection is being upgraded (like the one created by
create_server()).

• server_hostname: sets or overrides the host name that the target server’s certificate will be matched
against.

• ssl_handshake_timeout is (for a TLS connection) the time in seconds to wait for the TLS handshake to
complete before aborting the connection. 60.0 seconds if None (default).

• ssl_shutdown_timeout is the time in seconds to wait for the SSL shutdown to complete before aborting
the connection. 30.0 seconds if None (default).

Added in version 3.7.

Changed in version 3.11: Added the ssl_shutdown_timeout parameter.

Watching file descriptors

loop.add_reader(fd, callback, *args)
Start monitoring the fd file descriptor for read availability and invoke callback with the specified arguments
once fd is available for reading.

loop.remove_reader(fd)
Stop monitoring the fd file descriptor for read availability. Returns True if fd was previously being monitored
for reads.

loop.add_writer(fd, callback, *args)
Start monitoring the fd file descriptor for write availability and invoke callback with the specified arguments
once fd is available for writing.

Use functools.partial() to pass keyword arguments to callback.

loop.remove_writer(fd)
Stop monitoring the fd file descriptor for write availability. Returns True if fd was previously being monitored
for writes.

See also Platform Support section for some limitations of these methods.

19.1. asyncio— Asynchronous I/O 1097

The Python Library Reference, Release 3.13.1

Working with socket objects directly

In general, protocol implementations that use transport-based APIs such as loop.create_connection() and
loop.create_server() are faster than implementations that work with sockets directly. However, there are
some use cases when performance is not critical, and working with socket objects directly is more convenient.

coroutine loop.sock_recv(sock, nbytes)
Receive up to nbytes from sock. Asynchronous version of socket.recv().

Return the received data as a bytes object.

sock must be a non-blocking socket.

Changed in version 3.7: Even though this method was always documented as a coroutine method, releases
before Python 3.7 returned a Future. Since Python 3.7 this is an async def method.

coroutine loop.sock_recv_into(sock, buf)
Receive data from sock into the buf buffer. Modeled after the blocking socket.recv_into() method.

Return the number of bytes written to the buffer.

sock must be a non-blocking socket.

Added in version 3.7.

coroutine loop.sock_recvfrom(sock, bufsize)
Receive a datagram of up to bufsize from sock. Asynchronous version of socket.recvfrom().

Return a tuple of (received data, remote address).

sock must be a non-blocking socket.

Added in version 3.11.

coroutine loop.sock_recvfrom_into(sock, buf, nbytes=0)
Receive a datagram of up to nbytes from sock into buf. Asynchronous version of socket.recvfrom_into().

Return a tuple of (number of bytes received, remote address).

sock must be a non-blocking socket.

Added in version 3.11.

coroutine loop.sock_sendall(sock, data)
Send data to the sock socket. Asynchronous version of socket.sendall().

This method continues to send to the socket until either all data in data has been sent or an error occurs. None
is returned on success. On error, an exception is raised. Additionally, there is no way to determine how much
data, if any, was successfully processed by the receiving end of the connection.

sock must be a non-blocking socket.

Changed in version 3.7: Even though themethod was always documented as a coroutine method, before Python
3.7 it returned a Future. Since Python 3.7, this is an async def method.

coroutine loop.sock_sendto(sock, data, address)
Send a datagram from sock to address. Asynchronous version of socket.sendto().

Return the number of bytes sent.

sock must be a non-blocking socket.

Added in version 3.11.

coroutine loop.sock_connect(sock, address)
Connect sock to a remote socket at address.

Asynchronous version of socket.connect().

sock must be a non-blocking socket.

1098 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Changed in version 3.5.2: address no longer needs to be resolved. sock_connect will try to check if the
address is already resolved by calling socket.inet_pton(). If not, loop.getaddrinfo() will be used
to resolve the address.

See also

loop.create_connection() and asyncio.open_connection().

coroutine loop.sock_accept(sock)

Accept a connection. Modeled after the blocking socket.accept() method.

The socket must be bound to an address and listening for connections. The return value is a pair (conn,
address) where conn is a new socket object usable to send and receive data on the connection, and address
is the address bound to the socket on the other end of the connection.

sock must be a non-blocking socket.

Changed in version 3.7: Even though themethod was always documented as a coroutine method, before Python
3.7 it returned a Future. Since Python 3.7, this is an async def method.

See also

loop.create_server() and start_server().

coroutine loop.sock_sendfile(sock, file, offset=0, count=None, *, fallback=True)
Send a file using high-performance os.sendfile if possible. Return the total number of bytes sent.

Asynchronous version of socket.sendfile().

sock must be a non-blocking socket.SOCK_STREAM socket.

file must be a regular file object open in binary mode.

offset tells from where to start reading the file. If specified, count is the total number of bytes to transmit as
opposed to sending the file until EOF is reached. File position is always updated, even when this method raises
an error, and file.tell() can be used to obtain the actual number of bytes sent.

fallback, when set to True, makes asyncio manually read and send the file when the platform does not support
the sendfile syscall (e.g. Windows or SSL socket on Unix).

Raise SendfileNotAvailableError if the system does not support sendfile syscall and fallback is False.

sock must be a non-blocking socket.

Added in version 3.7.

DNS

coroutine loop.getaddrinfo(host, port, *, family=0, type=0, proto=0, flags=0)
Asynchronous version of socket.getaddrinfo().

coroutine loop.getnameinfo(sockaddr, flags=0)
Asynchronous version of socket.getnameinfo().

Note

Both getaddrinfo and getnameinfo internally utilize their synchronous versions through the loop’s default thread
pool executor. When this executor is saturated, these methods may experience delays, which higher-level net-
working libraries may report as increased timeouts. To mitigate this, consider using a custom executor for other
user tasks, or setting a default executor with a larger number of workers.

19.1. asyncio— Asynchronous I/O 1099

The Python Library Reference, Release 3.13.1

Changed in version 3.7: Both getaddrinfo and getnameinfomethods were always documented to return a coroutine, but
prior to Python 3.7 they were, in fact, returning asyncio.Future objects. Starting with Python 3.7 both methods
are coroutines.

Working with pipes

coroutine loop.connect_read_pipe(protocol_factory, pipe)
Register the read end of pipe in the event loop.

protocol_factory must be a callable returning an asyncio protocol implementation.

pipe is a file-like object.

Return pair (transport, protocol), where transport supports the ReadTransport interface and proto-
col is an object instantiated by the protocol_factory.

With SelectorEventLoop event loop, the pipe is set to non-blocking mode.

coroutine loop.connect_write_pipe(protocol_factory, pipe)
Register the write end of pipe in the event loop.

protocol_factory must be a callable returning an asyncio protocol implementation.

pipe is file-like object.

Return pair (transport, protocol), where transport supports WriteTransport interface and protocol
is an object instantiated by the protocol_factory.

With SelectorEventLoop event loop, the pipe is set to non-blocking mode.

Note

SelectorEventLoop does not support the above methods on Windows. Use ProactorEventLoop instead
for Windows.

See also

The loop.subprocess_exec() and loop.subprocess_shell() methods.

Unix signals

loop.add_signal_handler(signum, callback, *args)
Set callback as the handler for the signum signal.

The callback will be invoked by loop, along with other queued callbacks and runnable coroutines of that event
loop. Unlike signal handlers registered using signal.signal(), a callback registered with this function is
allowed to interact with the event loop.

Raise ValueError if the signal number is invalid or uncatchable. Raise RuntimeError if there is a problem
setting up the handler.

Use functools.partial() to pass keyword arguments to callback.

Like signal.signal(), this function must be invoked in the main thread.

loop.remove_signal_handler(sig)
Remove the handler for the sig signal.

Return True if the signal handler was removed, or False if no handler was set for the given signal.

Availability: Unix.

1100 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

See also

The signal module.

Executing code in thread or process pools

awaitable loop.run_in_executor(executor, func, *args)
Arrange for func to be called in the specified executor.

The executor argument should be an concurrent.futures.Executor instance. The default executor is
used if executor is None. The default executor can be set by loop.set_default_executor(), otherwise, a
concurrent.futures.ThreadPoolExecutorwill be lazy-initialized and used by run_in_executor()
if needed.

Example:

import asyncio

import concurrent.futures

def blocking_io():

File operations (such as logging) can block the

event loop: run them in a thread pool.

with open('/dev/urandom', 'rb') as f:

return f.read(100)

def cpu_bound():

CPU-bound operations will block the event loop:

in general it is preferable to run them in a

process pool.

return sum(i * i for i in range(10 ** 7))

async def main():

loop = asyncio.get_running_loop()

Options:

1. Run in the default loop's executor:

result = await loop.run_in_executor(

None, blocking_io)

print('default thread pool', result)

2. Run in a custom thread pool:

with concurrent.futures.ThreadPoolExecutor() as pool:

result = await loop.run_in_executor(

pool, blocking_io)

print('custom thread pool', result)

3. Run in a custom process pool:

with concurrent.futures.ProcessPoolExecutor() as pool:

result = await loop.run_in_executor(

pool, cpu_bound)

print('custom process pool', result)

if __name__ == '__main__':

asyncio.run(main())

Note that the entry point guard (if __name__ == '__main__') is required for option 3 due to the pe-
culiarities of multiprocessing, which is used by ProcessPoolExecutor. See Safe importing of main

19.1. asyncio— Asynchronous I/O 1101

The Python Library Reference, Release 3.13.1

module.

This method returns a asyncio.Future object.

Use functools.partial() to pass keyword arguments to func.

Changed in version 3.5.3: loop.run_in_executor() no longer configures the max_workers of the thread
pool executor it creates, instead leaving it up to the thread pool executor (ThreadPoolExecutor) to set the
default.

loop.set_default_executor(executor)
Set executor as the default executor used by run_in_executor(). executor must be an instance of
ThreadPoolExecutor.

Changed in version 3.11: executor must be an instance of ThreadPoolExecutor.

Error Handling API

Allows customizing how exceptions are handled in the event loop.

loop.set_exception_handler(handler)
Set handler as the new event loop exception handler.

If handler is None, the default exception handler will be set. Otherwise, handler must be a callable with the
signature matching (loop, context), where loop is a reference to the active event loop, and context is
a dict object containing the details of the exception (see call_exception_handler() documentation for
details about context).

If the handler is called on behalf of a Task or Handle, it is run in the contextvars.Context of that task
or callback handle.

Changed in version 3.12: The handler may be called in the Context of the task or handle where the exception
originated.

loop.get_exception_handler()

Return the current exception handler, or None if no custom exception handler was set.

Added in version 3.5.2.

loop.default_exception_handler(context)
Default exception handler.

This is called when an exception occurs and no exception handler is set. This can be called by a custom
exception handler that wants to defer to the default handler behavior.

context parameter has the same meaning as in call_exception_handler().

loop.call_exception_handler(context)
Call the current event loop exception handler.

context is a dict object containing the following keys (new keys may be introduced in future Python versions):

• ‘message’: Error message;

• ‘exception’ (optional): Exception object;

• ‘future’ (optional): asyncio.Future instance;

• ‘task’ (optional): asyncio.Task instance;

• ‘handle’ (optional): asyncio.Handle instance;

• ‘protocol’ (optional): Protocol instance;

• ‘transport’ (optional): Transport instance;

• ‘socket’ (optional): socket.socket instance;

1102 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

• ‘asyncgen’ (optional): Asynchronous generator that caused
the exception.

Note

This method should not be overloaded in subclassed event loops. For custom exception handling, use the
set_exception_handler() method.

Enabling debug mode

loop.get_debug()

Get the debug mode (bool) of the event loop.

The default value is True if the environment variable PYTHONASYNCIODEBUG is set to a non-empty string,
False otherwise.

loop.set_debug(enabled: bool)
Set the debug mode of the event loop.

Changed in version 3.7: The new Python Development Mode can now also be used to enable the debug mode.

loop.slow_callback_duration

This attribute can be used to set the minimum execution duration in seconds that is considered “slow”. When
debug mode is enabled, “slow” callbacks are logged.

Default value is 100 milliseconds.

See also

The debug mode of asyncio.

Running Subprocesses

Methods described in this subsections are low-level. In regular async/await code consider using the high-level
asyncio.create_subprocess_shell() and asyncio.create_subprocess_exec() convenience func-
tions instead.

Note

On Windows, the default event loop ProactorEventLoop supports subprocesses, whereas
SelectorEventLoop does not. See Subprocess Support on Windows for details.

coroutine loop.subprocess_exec(protocol_factory, *args, stdin=subprocess.PIPE, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, **kwargs)

Create a subprocess from one or more string arguments specified by args.

args must be a list of strings represented by:

• str;

• or bytes, encoded to the filesystem encoding.

The first string specifies the program executable, and the remaining strings specify the arguments. Together,
string arguments form the argv of the program.

This is similar to the standard library subprocess.Popen class called with shell=False and the list of
strings passed as the first argument; however, where Popen takes a single argument which is list of strings,
subprocess_exec takes multiple string arguments.

19.1. asyncio— Asynchronous I/O 1103

The Python Library Reference, Release 3.13.1

The protocol_factory must be a callable returning a subclass of the asyncio.SubprocessProtocol class.

Other parameters:

• stdin can be any of these:

– a file-like object

– an existing file descriptor (a positive integer), for example those created with os.pipe()

– the subprocess.PIPE constant (default) which will create a new pipe and connect it,

– the value None which will make the subprocess inherit the file descriptor from this process

– the subprocess.DEVNULL constant which indicates that the special os.devnull file will be used

• stdout can be any of these:

– a file-like object

– the subprocess.PIPE constant (default) which will create a new pipe and connect it,

– the value None which will make the subprocess inherit the file descriptor from this process

– the subprocess.DEVNULL constant which indicates that the special os.devnull file will be used

• stderr can be any of these:

– a file-like object

– the subprocess.PIPE constant (default) which will create a new pipe and connect it,

– the value None which will make the subprocess inherit the file descriptor from this process

– the subprocess.DEVNULL constant which indicates that the special os.devnull file will be used

– the subprocess.STDOUT constant which will connect the standard error stream to the process’
standard output stream

• All other keyword arguments are passed to subprocess.Popen without interpretation, except for buf-
size, universal_newlines, shell, text, encoding and errors, which should not be specified at all.

The asyncio subprocess API does not support decoding the streams as text. bytes.decode() can be
used to convert the bytes returned from the stream to text.

If a file-like object passed as stdin, stdout or stderr represents a pipe, then the other side of this pipe should be
registered with connect_write_pipe() or connect_read_pipe() for use with the event loop.

See the constructor of the subprocess.Popen class for documentation on other arguments.

Returns a pair of (transport, protocol), where transport conforms to the asyncio.

SubprocessTransport base class and protocol is an object instantiated by the protocol_factory.

coroutine loop.subprocess_shell(protocol_factory, cmd, *, stdin=subprocess.PIPE,
stdout=subprocess.PIPE, stderr=subprocess.PIPE, **kwargs)

Create a subprocess from cmd, which can be a str or a bytes string encoded to the filesystem encoding, using
the platform’s “shell” syntax.

This is similar to the standard library subprocess.Popen class called with shell=True.

The protocol_factory must be a callable returning a subclass of the SubprocessProtocol class.

See subprocess_exec() for more details about the remaining arguments.

Returns a pair of (transport, protocol), where transport conforms to the SubprocessTransport
base class and protocol is an object instantiated by the protocol_factory.

1104 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Note

It is the application’s responsibility to ensure that all whitespace and special characters are quoted appropriately
to avoid shell injection vulnerabilities. The shlex.quote() function can be used to properly escape whitespace
and special characters in strings that are going to be used to construct shell commands.

Callback Handles

class asyncio.Handle

A callback wrapper object returned by loop.call_soon(), loop.call_soon_threadsafe().

get_context()

Return the contextvars.Context object associated with the handle.

Added in version 3.12.

cancel()

Cancel the callback. If the callback has already been canceled or executed, this method has no effect.

cancelled()

Return True if the callback was cancelled.

Added in version 3.7.

class asyncio.TimerHandle

A callback wrapper object returned by loop.call_later(), and loop.call_at().

This class is a subclass of Handle.

when()

Return a scheduled callback time as float seconds.

The time is an absolute timestamp, using the same time reference as loop.time().

Added in version 3.7.

Server Objects

Server objects are created by loop.create_server(), loop.create_unix_server(), start_server(),
and start_unix_server() functions.

Do not instantiate the Server class directly.

class asyncio.Server

Server objects are asynchronous context managers. When used in an async with statement, it’s guaran-
teed that the Server object is closed and not accepting new connections when the async with statement is
completed:

srv = await loop.create_server(...)

async with srv:

some code

At this point, srv is closed and no longer accepts new connections.

Changed in version 3.7: Server object is an asynchronous context manager since Python 3.7.

Changed in version 3.11: This class was exposed publicly as asyncio.Server in Python 3.9.11, 3.10.3 and
3.11.

19.1. asyncio— Asynchronous I/O 1105

https://en.wikipedia.org/wiki/Shell_injection#Shell_injection

The Python Library Reference, Release 3.13.1

close()

Stop serving: close listening sockets and set the sockets attribute to None.

The sockets that represent existing incoming client connections are left open.

The server is closed asynchronously; use the wait_closed() coroutine to wait until the server is closed
(and no more connections are active).

close_clients()

Close all existing incoming client connections.

Calls close() on all associated transports.

close() should be called before close_clients() when closing the server to avoid races with new
clients connecting.

Added in version 3.13.

abort_clients()

Close all existing incoming client connections immediately, without waiting for pending operations to
complete.

Calls abort() on all associated transports.

close() should be called before abort_clients() when closing the server to avoid races with new
clients connecting.

Added in version 3.13.

get_loop()

Return the event loop associated with the server object.

Added in version 3.7.

coroutine start_serving()

Start accepting connections.

This method is idempotent, so it can be called when the server is already serving.

The start_serving keyword-only parameter to loop.create_server() and asyncio.

start_server() allows creating a Server object that is not accepting connections initially. In
this case Server.start_serving(), or Server.serve_forever() can be used to make the
Server start accepting connections.

Added in version 3.7.

coroutine serve_forever()

Start accepting connections until the coroutine is cancelled. Cancellation of serve_forever task causes
the server to be closed.

This method can be called if the server is already accepting connections. Only one serve_forever
task can exist per one Server object.

Example:

async def client_connected(reader, writer):

Communicate with the client with

reader/writer streams. For example:

await reader.readline()

async def main(host, port):

srv = await asyncio.start_server(

client_connected, host, port)

await srv.serve_forever()

asyncio.run(main('127.0.0.1', 0))

1106 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Added in version 3.7.

is_serving()

Return True if the server is accepting new connections.

Added in version 3.7.

coroutine wait_closed()

Wait until the close() method completes and all active connections have finished.

sockets

List of socket-like objects, asyncio.trsock.TransportSocket, which the server is listening on.

Changed in version 3.7: Prior to Python 3.7 Server.sockets used to return an internal list of server
sockets directly. In 3.7 a copy of that list is returned.

Event Loop Implementations

asyncio ships with two different event loop implementations: SelectorEventLoop and ProactorEventLoop.

By default asyncio is configured to use EventLoop.

class asyncio.SelectorEventLoop

A subclass of AbstractEventLoop based on the selectors module.

Uses the most efficient selector available for the given platform. It is also possible to manually configure the
exact selector implementation to be used:

import asyncio

import selectors

class MyPolicy(asyncio.DefaultEventLoopPolicy):

def new_event_loop(self):

selector = selectors.SelectSelector()

return asyncio.SelectorEventLoop(selector)

asyncio.set_event_loop_policy(MyPolicy())

Availability: Unix, Windows.

class asyncio.ProactorEventLoop

A subclass of AbstractEventLoop for Windows that uses “I/O Completion Ports” (IOCP).

Availability: Windows.

See also

MSDN documentation on I/O Completion Ports.

class asyncio.EventLoop

An alias to the most efficient available subclass of AbstractEventLoop for the given platform.

It is an alias to SelectorEventLoop on Unix and ProactorEventLoop on Windows.

Added in version 3.13.

class asyncio.AbstractEventLoop

Abstract base class for asyncio-compliant event loops.

The Event Loop Methods section lists all methods that an alternative implementation of AbstractEventLoop
should have defined.

19.1. asyncio— Asynchronous I/O 1107

https://learn.microsoft.com/windows/win32/fileio/i-o-completion-ports

The Python Library Reference, Release 3.13.1

Examples

Note that all examples in this section purposefully show how to use the low-level event loop APIs, such as loop.
run_forever() and loop.call_soon(). Modern asyncio applications rarely need to be written this way; con-
sider using the high-level functions like asyncio.run().

Hello World with call_soon()

An example using the loop.call_soon()method to schedule a callback. The callback displays "Hello World"

and then stops the event loop:

import asyncio

def hello_world(loop):

"""A callback to print 'Hello World' and stop the event loop"""

print('Hello World')

loop.stop()

loop = asyncio.new_event_loop()

Schedule a call to hello_world()

loop.call_soon(hello_world, loop)

Blocking call interrupted by loop.stop()

try:

loop.run_forever()

finally:

loop.close()

See also

A similar Hello World example created with a coroutine and the run() function.

Display the current date with call_later()

An example of a callback displaying the current date every second. The callback uses the loop.call_later()
method to reschedule itself after 5 seconds, and then stops the event loop:

import asyncio

import datetime

def display_date(end_time, loop):

print(datetime.datetime.now())

if (loop.time() + 1.0) < end_time:

loop.call_later(1, display_date, end_time, loop)

else:

loop.stop()

loop = asyncio.new_event_loop()

Schedule the first call to display_date()

end_time = loop.time() + 5.0

loop.call_soon(display_date, end_time, loop)

Blocking call interrupted by loop.stop()

try:

loop.run_forever()
(continues on next page)

1108 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

(continued from previous page)

finally:

loop.close()

See also

A similar current date example created with a coroutine and the run() function.

Watch a file descriptor for read events

Wait until a file descriptor received some data using the loop.add_reader() method and then close the event
loop:

import asyncio

from socket import socketpair

Create a pair of connected file descriptors

rsock, wsock = socketpair()

loop = asyncio.new_event_loop()

def reader():

data = rsock.recv(100)

print("Received:", data.decode())

We are done: unregister the file descriptor

loop.remove_reader(rsock)

Stop the event loop

loop.stop()

Register the file descriptor for read event

loop.add_reader(rsock, reader)

Simulate the reception of data from the network

loop.call_soon(wsock.send, 'abc'.encode())

try:

Run the event loop

loop.run_forever()

finally:

We are done. Close sockets and the event loop.

rsock.close()

wsock.close()

loop.close()

See also

• A similar example using transports, protocols, and the loop.create_connection() method.

• Another similar example using the high-level asyncio.open_connection() function and streams.

19.1. asyncio— Asynchronous I/O 1109

The Python Library Reference, Release 3.13.1

Set signal handlers for SIGINT and SIGTERM

(This signals example only works on Unix.)

Register handlers for signals SIGINT and SIGTERM using the loop.add_signal_handler() method:

import asyncio

import functools

import os

import signal

def ask_exit(signame, loop):

print("got signal %s: exit" % signame)

loop.stop()

async def main():

loop = asyncio.get_running_loop()

for signame in {'SIGINT', 'SIGTERM'}:

loop.add_signal_handler(

getattr(signal, signame),

functools.partial(ask_exit, signame, loop))

await asyncio.sleep(3600)

print("Event loop running for 1 hour, press Ctrl+C to interrupt.")

print(f"pid {os.getpid()}: send SIGINT or SIGTERM to exit.")

asyncio.run(main())

19.1.9 Futures

Source code: Lib/asyncio/futures.py, Lib/asyncio/base_futures.py

Future objects are used to bridge low-level callback-based code with high-level async/await code.

Future Functions

asyncio.isfuture(obj)
Return True if obj is either of:

• an instance of asyncio.Future,

• an instance of asyncio.Task,

• a Future-like object with a _asyncio_future_blocking attribute.

Added in version 3.5.

asyncio.ensure_future(obj, *, loop=None)
Return:

• obj argument as is, if obj is a Future, a Task, or a Future-like object (isfuture() is used for the test.)

• a Task object wrapping obj, if obj is a coroutine (iscoroutine() is used for the test); in this case the
coroutine will be scheduled by ensure_future().

• a Task object that would await on obj, if obj is an awaitable (inspect.isawaitable() is used for the
test.)

If obj is neither of the above a TypeError is raised.

1110 Chapter 19. Networking and Interprocess Communication

https://github.com/python/cpython/tree/3.13/Lib/asyncio/futures.py
https://github.com/python/cpython/tree/3.13/Lib/asyncio/base_futures.py

The Python Library Reference, Release 3.13.1

Important

See also the create_task() function which is the preferred way for creating new Tasks.

Save a reference to the result of this function, to avoid a task disappearing mid-execution.

Changed in version 3.5.1: The function accepts any awaitable object.

Deprecated since version 3.10: Deprecation warning is emitted if obj is not a Future-like object and loop is
not specified and there is no running event loop.

asyncio.wrap_future(future, *, loop=None)
Wrap a concurrent.futures.Future object in a asyncio.Future object.

Deprecated since version 3.10: Deprecation warning is emitted if future is not a Future-like object and loop is
not specified and there is no running event loop.

Future Object

class asyncio.Future(*, loop=None)
A Future represents an eventual result of an asynchronous operation. Not thread-safe.

Future is an awaitable object. Coroutines can await on Future objects until they either have a result or an
exception set, or until they are cancelled. A Future can be awaited multiple times and the result is same.

Typically Futures are used to enable low-level callback-based code (e.g. in protocols implemented using asyn-
cio transports) to interoperate with high-level async/await code.

The rule of thumb is to never expose Future objects in user-facing APIs, and the recommended way to create
a Future object is to call loop.create_future(). This way alternative event loop implementations can
inject their own optimized implementations of a Future object.

Changed in version 3.7: Added support for the contextvars module.

Deprecated since version 3.10: Deprecation warning is emitted if loop is not specified and there is no running
event loop.

result()

Return the result of the Future.

If the Future is done and has a result set by the set_result() method, the result value is returned.

If the Future is done and has an exception set by the set_exception()method, this method raises the
exception.

If the Future has been cancelled, this method raises a CancelledError exception.

If the Future’s result isn’t yet available, this method raises an InvalidStateError exception.

set_result(result)
Mark the Future as done and set its result.

Raises an InvalidStateError error if the Future is already done.

set_exception(exception)
Mark the Future as done and set an exception.

Raises an InvalidStateError error if the Future is already done.

done()

Return True if the Future is done.

A Future is done if it was cancelled or if it has a result or an exception set with set_result() or
set_exception() calls.

19.1. asyncio— Asynchronous I/O 1111

The Python Library Reference, Release 3.13.1

cancelled()

Return True if the Future was cancelled.

The method is usually used to check if a Future is not cancelled before setting a result or an exception
for it:

if not fut.cancelled():

fut.set_result(42)

add_done_callback(callback, *, context=None)
Add a callback to be run when the Future is done.

The callback is called with the Future object as its only argument.

If the Future is already done when this method is called, the callback is scheduled with loop.

call_soon().

An optional keyword-only context argument allows specifying a custom contextvars.Context for
the callback to run in. The current context is used when no context is provided.

functools.partial() can be used to pass parameters to the callback, e.g.:

Call 'print("Future:", fut)' when "fut" is done.

fut.add_done_callback(

functools.partial(print, "Future:"))

Changed in version 3.7: The context keyword-only parameter was added. See PEP 567 for more details.

remove_done_callback(callback)
Remove callback from the callbacks list.

Returns the number of callbacks removed, which is typically 1, unless a callback was added more than
once.

cancel(msg=None)
Cancel the Future and schedule callbacks.

If the Future is already done or cancelled, return False. Otherwise, change the Future’s state to cancelled,
schedule the callbacks, and return True.

Changed in version 3.9: Added the msg parameter.

exception()

Return the exception that was set on this Future.

The exception (or None if no exception was set) is returned only if the Future is done.

If the Future has been cancelled, this method raises a CancelledError exception.

If the Future isn’t done yet, this method raises an InvalidStateError exception.

get_loop()

Return the event loop the Future object is bound to.

Added in version 3.7.

This example creates a Future object, creates and schedules an asynchronous Task to set result for the Future, and
waits until the Future has a result:

async def set_after(fut, delay, value):

Sleep for *delay* seconds.

await asyncio.sleep(delay)

Set *value* as a result of *fut* Future.

fut.set_result(value)

(continues on next page)

1112 Chapter 19. Networking and Interprocess Communication

https://peps.python.org/pep-0567/

The Python Library Reference, Release 3.13.1

(continued from previous page)

async def main():

Get the current event loop.

loop = asyncio.get_running_loop()

Create a new Future object.

fut = loop.create_future()

Run "set_after()" coroutine in a parallel Task.

We are using the low-level "loop.create_task()" API here because

we already have a reference to the event loop at hand.

Otherwise we could have just used "asyncio.create_task()".

loop.create_task(

set_after(fut, 1, '... world'))

print('hello ...')

Wait until *fut* has a result (1 second) and print it.

print(await fut)

asyncio.run(main())

Important

The Future object was designed to mimic concurrent.futures.Future. Key differences include:

• unlike asyncio Futures, concurrent.futures.Future instances cannot be awaited.

• asyncio.Future.result() and asyncio.Future.exception() do not accept the timeout argu-
ment.

• asyncio.Future.result() and asyncio.Future.exception() raise an InvalidStateError
exception when the Future is not done.

• Callbacks registered with asyncio.Future.add_done_callback() are not called immediately. They
are scheduled with loop.call_soon() instead.

• asyncio Future is not compatible with the concurrent.futures.wait() and concurrent.

futures.as_completed() functions.

• asyncio.Future.cancel() accepts an optional msg argument, but concurrent.futures.

Future.cancel() does not.

19.1.10 Transports and Protocols

Preface

Transports and Protocols are used by the low-level event loop APIs such as loop.create_connection(). They
use callback-based programming style and enable high-performance implementations of network or IPC protocols
(e.g. HTTP).

Essentially, transports and protocols should only be used in libraries and frameworks and never in high-level asyncio
applications.

This documentation page covers both Transports and Protocols.

19.1. asyncio— Asynchronous I/O 1113

The Python Library Reference, Release 3.13.1

Introduction

At the highest level, the transport is concerned with how bytes are transmitted, while the protocol determines which
bytes to transmit (and to some extent when).

A different way of saying the same thing: a transport is an abstraction for a socket (or similar I/O endpoint) while a
protocol is an abstraction for an application, from the transport’s point of view.

Yet another view is the transport and protocol interfaces together define an abstract interface for using network I/O
and interprocess I/O.

There is always a 1:1 relationship between transport and protocol objects: the protocol calls transport methods to
send data, while the transport calls protocol methods to pass it data that has been received.

Most of connection oriented event loop methods (such as loop.create_connection()) usually accept a proto-
col_factory argument used to create a Protocol object for an accepted connection, represented by a Transport object.
Such methods usually return a tuple of (transport, protocol).

Contents

This documentation page contains the following sections:

• The Transports section documents asyncio BaseTransport, ReadTransport, WriteTransport,
Transport, DatagramTransport, and SubprocessTransport classes.

• The Protocols section documents asyncio BaseProtocol, Protocol, BufferedProtocol,
DatagramProtocol, and SubprocessProtocol classes.

• The Examples section showcases how to work with transports, protocols, and low-level event loop APIs.

Transports

Source code: Lib/asyncio/transports.py

Transports are classes provided by asyncio in order to abstract various kinds of communication channels.

Transport objects are always instantiated by an asyncio event loop.

asyncio implements transports for TCP, UDP, SSL, and subprocess pipes. The methods available on a transport
depend on the transport’s kind.

The transport classes are not thread safe.

Transports Hierarchy

class asyncio.BaseTransport

Base class for all transports. Contains methods that all asyncio transports share.

class asyncio.WriteTransport(BaseTransport)

A base transport for write-only connections.

Instances of the WriteTransport class are returned from the loop.connect_write_pipe() event loop
method and are also used by subprocess-related methods like loop.subprocess_exec().

class asyncio.ReadTransport(BaseTransport)
A base transport for read-only connections.

Instances of theReadTransport class are returned from the loop.connect_read_pipe() event loopmethod
and are also used by subprocess-related methods like loop.subprocess_exec().

1114 Chapter 19. Networking and Interprocess Communication

https://github.com/python/cpython/tree/3.13/Lib/asyncio/transports.py

The Python Library Reference, Release 3.13.1

class asyncio.Transport(WriteTransport, ReadTransport)
Interface representing a bidirectional transport, such as a TCP connection.

The user does not instantiate a transport directly; they call a utility function, passing it a protocol factory and
other information necessary to create the transport and protocol.

Instances of the Transport class are returned from or used by event loop methods like loop.

create_connection(), loop.create_unix_connection(), loop.create_server(), loop.

sendfile(), etc.

class asyncio.DatagramTransport(BaseTransport)
A transport for datagram (UDP) connections.

Instances of the DatagramTransport class are returned from the loop.create_datagram_endpoint()
event loop method.

class asyncio.SubprocessTransport(BaseTransport)
An abstraction to represent a connection between a parent and its child OS process.

Instances of the SubprocessTransport class are returned from event loop methods loop.

subprocess_shell() and loop.subprocess_exec().

Base Transport

BaseTransport.close()

Close the transport.

If the transport has a buffer for outgoing data, buffered data will be flushed asynchronously. No more data will
be received. After all buffered data is flushed, the protocol’s protocol.connection_lost() method will
be called with None as its argument. The transport should not be used once it is closed.

BaseTransport.is_closing()

Return True if the transport is closing or is closed.

BaseTransport.get_extra_info(name, default=None)
Return information about the transport or underlying resources it uses.

name is a string representing the piece of transport-specific information to get.

default is the value to return if the information is not available, or if the transport does not support querying it
with the given third-party event loop implementation or on the current platform.

For example, the following code attempts to get the underlying socket object of the transport:

sock = transport.get_extra_info('socket')

if sock is not None:

print(sock.getsockopt(...))

Categories of information that can be queried on some transports:

• socket:

– 'peername': the remote address to which the socket is connected, result of socket.socket.
getpeername() (None on error)

– 'socket': socket.socket instance

– 'sockname': the socket’s own address, result of socket.socket.getsockname()

• SSL socket:

– 'compression': the compression algorithm being used as a string, or None if the connection isn’t
compressed; result of ssl.SSLSocket.compression()

– 'cipher': a three-value tuple containing the name of the cipher being used, the version of the SSL
protocol that defines its use, and the number of secret bits being used; result of ssl.SSLSocket.
cipher()

19.1. asyncio— Asynchronous I/O 1115

The Python Library Reference, Release 3.13.1

– 'peercert': peer certificate; result of ssl.SSLSocket.getpeercert()

– 'sslcontext': ssl.SSLContext instance

– 'ssl_object': ssl.SSLObject or ssl.SSLSocket instance

• pipe:

– 'pipe': pipe object

• subprocess:

– 'subprocess': subprocess.Popen instance

BaseTransport.set_protocol(protocol)

Set a new protocol.

Switching protocol should only be done when both protocols are documented to support the switch.

BaseTransport.get_protocol()

Return the current protocol.

Read-only Transports

ReadTransport.is_reading()

Return True if the transport is receiving new data.

Added in version 3.7.

ReadTransport.pause_reading()

Pause the receiving end of the transport. No data will be passed to the protocol’s protocol.

data_received() method until resume_reading() is called.

Changed in version 3.7: The method is idempotent, i.e. it can be called when the transport is already paused
or closed.

ReadTransport.resume_reading()

Resume the receiving end. The protocol’s protocol.data_received() method will be called once again
if some data is available for reading.

Changed in version 3.7: The method is idempotent, i.e. it can be called when the transport is already reading.

Write-only Transports

WriteTransport.abort()

Close the transport immediately, without waiting for pending operations to complete. Buffered data will be
lost. Nomore data will be received. The protocol’s protocol.connection_lost()method will eventually
be called with None as its argument.

WriteTransport.can_write_eof()

Return True if the transport supports write_eof(), False if not.

WriteTransport.get_write_buffer_size()

Return the current size of the output buffer used by the transport.

WriteTransport.get_write_buffer_limits()

Get the high and low watermarks for write flow control. Return a tuple (low, high) where low and high are
positive number of bytes.

Use set_write_buffer_limits() to set the limits.

Added in version 3.4.2.

1116 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

WriteTransport.set_write_buffer_limits(high=None, low=None)
Set the high and low watermarks for write flow control.

These two values (measured in number of bytes) control when the protocol’s protocol.pause_writing()
and protocol.resume_writing() methods are called. If specified, the low watermark must be less than
or equal to the high watermark. Neither high nor low can be negative.

pause_writing() is called when the buffer size becomes greater than or equal to the high value. If writing
has been paused, resume_writing() is called when the buffer size becomes less than or equal to the low
value.

The defaults are implementation-specific. If only the high watermark is given, the low watermark defaults to
an implementation-specific value less than or equal to the high watermark. Setting high to zero forces low to
zero as well, and causes pause_writing() to be called whenever the buffer becomes non-empty. Setting
low to zero causes resume_writing() to be called only once the buffer is empty. Use of zero for either limit
is generally sub-optimal as it reduces opportunities for doing I/O and computation concurrently.

Use get_write_buffer_limits() to get the limits.

WriteTransport.write(data)
Write some data bytes to the transport.

This method does not block; it buffers the data and arranges for it to be sent out asynchronously.

WriteTransport.writelines(list_of_data)
Write a list (or any iterable) of data bytes to the transport. This is functionally equivalent to calling write()
on each element yielded by the iterable, but may be implemented more efficiently.

WriteTransport.write_eof()

Close the write end of the transport after flushing all buffered data. Data may still be received.

This method can raise NotImplementedError if the transport (e.g. SSL) doesn’t support half-closed con-
nections.

Datagram Transports

DatagramTransport.sendto(data, addr=None)
Send the data bytes to the remote peer given by addr (a transport-dependent target address). If addr is None,
the data is sent to the target address given on transport creation.

This method does not block; it buffers the data and arranges for it to be sent out asynchronously.

Changed in version 3.13: This method can be called with an empty bytes object to send a zero-length datagram.
The buffer size calculation used for flow control is also updated to account for the datagram header.

DatagramTransport.abort()

Close the transport immediately, without waiting for pending operations to complete. Buffered data will be
lost. Nomore data will be received. The protocol’s protocol.connection_lost()method will eventually
be called with None as its argument.

Subprocess Transports

SubprocessTransport.get_pid()

Return the subprocess process id as an integer.

SubprocessTransport.get_pipe_transport(fd)
Return the transport for the communication pipe corresponding to the integer file descriptor fd:

• 0: readable streaming transport of the standard input (stdin), or None if the subprocess was not created
with stdin=PIPE

• 1: writable streaming transport of the standard output (stdout), or None if the subprocess was not created
with stdout=PIPE

19.1. asyncio— Asynchronous I/O 1117

The Python Library Reference, Release 3.13.1

• 2: writable streaming transport of the standard error (stderr), or None if the subprocess was not created
with stderr=PIPE

• other fd: None

SubprocessTransport.get_returncode()

Return the subprocess return code as an integer or None if it hasn’t returned, which is similar to the
subprocess.Popen.returncode attribute.

SubprocessTransport.kill()

Kill the subprocess.

On POSIX systems, the function sends SIGKILL to the subprocess. On Windows, this method is an alias for
terminate().

See also subprocess.Popen.kill().

SubprocessTransport.send_signal(signal)

Send the signal number to the subprocess, as in subprocess.Popen.send_signal().

SubprocessTransport.terminate()

Stop the subprocess.

On POSIX systems, this method sends SIGTERM to the subprocess. On Windows, the Windows API function
TerminateProcess() is called to stop the subprocess.

See also subprocess.Popen.terminate().

SubprocessTransport.close()

Kill the subprocess by calling the kill() method.

If the subprocess hasn’t returned yet, and close transports of stdin, stdout, and stderr pipes.

Protocols

Source code: Lib/asyncio/protocols.py

asyncio provides a set of abstract base classes that should be used to implement network protocols. Those classes are
meant to be used together with transports.

Subclasses of abstract base protocol classes may implement some or all methods. All these methods are callbacks:
they are called by transports on certain events, for example when some data is received. A base protocol method
should be called by the corresponding transport.

Base Protocols

class asyncio.BaseProtocol

Base protocol with methods that all protocols share.

class asyncio.Protocol(BaseProtocol)

The base class for implementing streaming protocols (TCP, Unix sockets, etc).

class asyncio.BufferedProtocol(BaseProtocol)

A base class for implementing streaming protocols with manual control of the receive buffer.

class asyncio.DatagramProtocol(BaseProtocol)
The base class for implementing datagram (UDP) protocols.

class asyncio.SubprocessProtocol(BaseProtocol)

The base class for implementing protocols communicating with child processes (unidirectional pipes).

1118 Chapter 19. Networking and Interprocess Communication

https://github.com/python/cpython/tree/3.13/Lib/asyncio/protocols.py

The Python Library Reference, Release 3.13.1

Base Protocol

All asyncio protocols can implement Base Protocol callbacks.

Connection Callbacks

Connection callbacks are called on all protocols, exactly once per a successful connection. All other protocol callbacks
can only be called between those two methods.

BaseProtocol.connection_made(transport)
Called when a connection is made.

The transport argument is the transport representing the connection. The protocol is responsible for storing
the reference to its transport.

BaseProtocol.connection_lost(exc)
Called when the connection is lost or closed.

The argument is either an exception object or None. The latter means a regular EOF is received, or the
connection was aborted or closed by this side of the connection.

Flow Control Callbacks

Flow control callbacks can be called by transports to pause or resume writing performed by the protocol.

See the documentation of the set_write_buffer_limits() method for more details.

BaseProtocol.pause_writing()

Called when the transport’s buffer goes over the high watermark.

BaseProtocol.resume_writing()

Called when the transport’s buffer drains below the low watermark.

If the buffer size equals the high watermark, pause_writing() is not called: the buffer size must go strictly over.

Conversely, resume_writing() is called when the buffer size is equal or lower than the low watermark. These end
conditions are important to ensure that things go as expected when either mark is zero.

Streaming Protocols

Event methods, such as loop.create_server(), loop.create_unix_server(), loop.

create_connection(), loop.create_unix_connection(), loop.connect_accepted_socket(),
loop.connect_read_pipe(), and loop.connect_write_pipe() accept factories that return streaming
protocols.

Protocol.data_received(data)

Called when some data is received. data is a non-empty bytes object containing the incoming data.

Whether the data is buffered, chunked or reassembled depends on the transport. In general, you shouldn’t rely
on specific semantics and instead make your parsing generic and flexible. However, data is always received in
the correct order.

The method can be called an arbitrary number of times while a connection is open.

However, protocol.eof_received() is called at most once. Once eof_received() is called,
data_received() is not called anymore.

Protocol.eof_received()

Called when the other end signals it won’t send any more data (for example by calling transport.

write_eof(), if the other end also uses asyncio).

This methodmay return a false value (including None), in which case the transport will close itself. Conversely,
if thismethod returns a true value, the protocol used determines whether to close the transport. Since the default
implementation returns None, it implicitly closes the connection.

19.1. asyncio— Asynchronous I/O 1119

The Python Library Reference, Release 3.13.1

Some transports, including SSL, don’t support half-closed connections, in which case returning true from this
method will result in the connection being closed.

State machine:

start -> connection_made

[-> data_received]*

[-> eof_received]?

-> connection_lost -> end

Buffered Streaming Protocols

Added in version 3.7.

Buffered Protocols can be used with any event loop method that supports Streaming Protocols.

BufferedProtocol implementations allow explicit manual allocation and control of the receive buffer. Event
loops can then use the buffer provided by the protocol to avoid unnecessary data copies. This can result in noticeable
performance improvement for protocols that receive big amounts of data. Sophisticated protocol implementations
can significantly reduce the number of buffer allocations.

The following callbacks are called on BufferedProtocol instances:

BufferedProtocol.get_buffer(sizehint)
Called to allocate a new receive buffer.

sizehint is the recommended minimum size for the returned buffer. It is acceptable to return smaller or larger
buffers than what sizehint suggests. When set to -1, the buffer size can be arbitrary. It is an error to return a
buffer with a zero size.

get_buffer() must return an object implementing the buffer protocol.

BufferedProtocol.buffer_updated(nbytes)
Called when the buffer was updated with the received data.

nbytes is the total number of bytes that were written to the buffer.

BufferedProtocol.eof_received()

See the documentation of the protocol.eof_received() method.

get_buffer() can be called an arbitrary number of times during a connection. However, protocol.

eof_received() is called at most once and, if called, get_buffer() and buffer_updated() won’t be called
after it.

State machine:

start -> connection_made

[-> get_buffer

[-> buffer_updated]?

]*

[-> eof_received]?

-> connection_lost -> end

Datagram Protocols

Datagram Protocol instances should be constructed by protocol factories passed to the loop.

create_datagram_endpoint() method.

DatagramProtocol.datagram_received(data, addr)
Called when a datagram is received. data is a bytes object containing the incoming data. addr is the address
of the peer sending the data; the exact format depends on the transport.

1120 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

DatagramProtocol.error_received(exc)
Called when a previous send or receive operation raises an OSError. exc is the OSError instance.

This method is called in rare conditions, when the transport (e.g. UDP) detects that a datagram could not be
delivered to its recipient. In many conditions though, undeliverable datagrams will be silently dropped.

Note

On BSD systems (macOS, FreeBSD, etc.) flow control is not supported for datagram protocols, because there is
no reliable way to detect send failures caused by writing too many packets.

The socket always appears ‘ready’ and excess packets are dropped. An OSError with errno set to
errno.ENOBUFS may or may not be raised; if it is raised, it will be reported to DatagramProtocol.

error_received() but otherwise ignored.

Subprocess Protocols

Subprocess Protocol instances should be constructed by protocol factories passed to the loop.

subprocess_exec() and loop.subprocess_shell() methods.

SubprocessProtocol.pipe_data_received(fd, data)
Called when the child process writes data into its stdout or stderr pipe.

fd is the integer file descriptor of the pipe.

data is a non-empty bytes object containing the received data.

SubprocessProtocol.pipe_connection_lost(fd, exc)
Called when one of the pipes communicating with the child process is closed.

fd is the integer file descriptor that was closed.

SubprocessProtocol.process_exited()

Called when the child process has exited.

It can be called before pipe_data_received() and pipe_connection_lost() methods.

Examples

TCP Echo Server

Create a TCP echo server using the loop.create_server() method, send back received data, and close the
connection:

import asyncio

class EchoServerProtocol(asyncio.Protocol):

def connection_made(self, transport):

peername = transport.get_extra_info('peername')

print('Connection from {}'.format(peername))

self.transport = transport

def data_received(self, data):

message = data.decode()

print('Data received: {!r}'.format(message))

print('Send: {!r}'.format(message))

self.transport.write(data)

(continues on next page)

19.1. asyncio— Asynchronous I/O 1121

The Python Library Reference, Release 3.13.1

(continued from previous page)

print('Close the client socket')

self.transport.close()

async def main():

Get a reference to the event loop as we plan to use

low-level APIs.

loop = asyncio.get_running_loop()

server = await loop.create_server(

EchoServerProtocol,

'127.0.0.1', 8888)

async with server:

await server.serve_forever()

asyncio.run(main())

See also

The TCP echo server using streams example uses the high-level asyncio.start_server() function.

TCP Echo Client

A TCP echo client using the loop.create_connection() method, sends data, and waits until the connection is
closed:

import asyncio

class EchoClientProtocol(asyncio.Protocol):

def __init__(self, message, on_con_lost):

self.message = message

self.on_con_lost = on_con_lost

def connection_made(self, transport):

transport.write(self.message.encode())

print('Data sent: {!r}'.format(self.message))

def data_received(self, data):

print('Data received: {!r}'.format(data.decode()))

def connection_lost(self, exc):

print('The server closed the connection')

self.on_con_lost.set_result(True)

async def main():

Get a reference to the event loop as we plan to use

low-level APIs.

loop = asyncio.get_running_loop()

on_con_lost = loop.create_future()

message = 'Hello World!'
(continues on next page)

1122 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

(continued from previous page)

transport, protocol = await loop.create_connection(

lambda: EchoClientProtocol(message, on_con_lost),

'127.0.0.1', 8888)

Wait until the protocol signals that the connection

is lost and close the transport.

try:

await on_con_lost

finally:

transport.close()

asyncio.run(main())

See also

The TCP echo client using streams example uses the high-level asyncio.open_connection() function.

UDP Echo Server

A UDP echo server, using the loop.create_datagram_endpoint() method, sends back received data:

import asyncio

class EchoServerProtocol:

def connection_made(self, transport):

self.transport = transport

def datagram_received(self, data, addr):

message = data.decode()

print('Received %r from %s' % (message, addr))

print('Send %r to %s' % (message, addr))

self.transport.sendto(data, addr)

async def main():

print("Starting UDP server")

Get a reference to the event loop as we plan to use

low-level APIs.

loop = asyncio.get_running_loop()

One protocol instance will be created to serve all

client requests.

transport, protocol = await loop.create_datagram_endpoint(

EchoServerProtocol,

local_addr=('127.0.0.1', 9999))

try:

await asyncio.sleep(3600) # Serve for 1 hour.

finally:

transport.close()

(continues on next page)

19.1. asyncio— Asynchronous I/O 1123

The Python Library Reference, Release 3.13.1

(continued from previous page)

asyncio.run(main())

UDP Echo Client

AUDP echo client, using the loop.create_datagram_endpoint()method, sends data and closes the transport
when it receives the answer:

import asyncio

class EchoClientProtocol:

def __init__(self, message, on_con_lost):

self.message = message

self.on_con_lost = on_con_lost

self.transport = None

def connection_made(self, transport):

self.transport = transport

print('Send:', self.message)

self.transport.sendto(self.message.encode())

def datagram_received(self, data, addr):

print("Received:", data.decode())

print("Close the socket")

self.transport.close()

def error_received(self, exc):

print('Error received:', exc)

def connection_lost(self, exc):

print("Connection closed")

self.on_con_lost.set_result(True)

async def main():

Get a reference to the event loop as we plan to use

low-level APIs.

loop = asyncio.get_running_loop()

on_con_lost = loop.create_future()

message = "Hello World!"

transport, protocol = await loop.create_datagram_endpoint(

lambda: EchoClientProtocol(message, on_con_lost),

remote_addr=('127.0.0.1', 9999))

try:

await on_con_lost

finally:

transport.close()

asyncio.run(main())

1124 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Connecting Existing Sockets

Wait until a socket receives data using the loop.create_connection() method with a protocol:

import asyncio

import socket

class MyProtocol(asyncio.Protocol):

def __init__(self, on_con_lost):

self.transport = None

self.on_con_lost = on_con_lost

def connection_made(self, transport):

self.transport = transport

def data_received(self, data):

print("Received:", data.decode())

We are done: close the transport;

connection_lost() will be called automatically.

self.transport.close()

def connection_lost(self, exc):

The socket has been closed

self.on_con_lost.set_result(True)

async def main():

Get a reference to the event loop as we plan to use

low-level APIs.

loop = asyncio.get_running_loop()

on_con_lost = loop.create_future()

Create a pair of connected sockets

rsock, wsock = socket.socketpair()

Register the socket to wait for data.

transport, protocol = await loop.create_connection(

lambda: MyProtocol(on_con_lost), sock=rsock)

Simulate the reception of data from the network.

loop.call_soon(wsock.send, 'abc'.encode())

try:

await protocol.on_con_lost

finally:

transport.close()

wsock.close()

asyncio.run(main())

See also

The watch a file descriptor for read events example uses the low-level loop.add_reader() method to register
an FD.

19.1. asyncio— Asynchronous I/O 1125

The Python Library Reference, Release 3.13.1

The register an open socket to wait for data using streams example uses high-level streams created by the
open_connection() function in a coroutine.

loop.subprocess_exec() and SubprocessProtocol

An example of a subprocess protocol used to get the output of a subprocess and to wait for the subprocess exit.

The subprocess is created by the loop.subprocess_exec() method:

import asyncio

import sys

class DateProtocol(asyncio.SubprocessProtocol):

def __init__(self, exit_future):

self.exit_future = exit_future

self.output = bytearray()

self.pipe_closed = False

self.exited = False

def pipe_connection_lost(self, fd, exc):

self.pipe_closed = True

self.check_for_exit()

def pipe_data_received(self, fd, data):

self.output.extend(data)

def process_exited(self):

self.exited = True

process_exited() method can be called before

pipe_connection_lost() method: wait until both methods are

called.

self.check_for_exit()

def check_for_exit(self):

if self.pipe_closed and self.exited:

self.exit_future.set_result(True)

async def get_date():

Get a reference to the event loop as we plan to use

low-level APIs.

loop = asyncio.get_running_loop()

code = 'import datetime; print(datetime.datetime.now())'

exit_future = asyncio.Future(loop=loop)

Create the subprocess controlled by DateProtocol;

redirect the standard output into a pipe.

transport, protocol = await loop.subprocess_exec(

lambda: DateProtocol(exit_future),

sys.executable, '-c', code,

stdin=None, stderr=None)

Wait for the subprocess exit using the process_exited()

method of the protocol.

await exit_future

Close the stdout pipe.

(continues on next page)

1126 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

(continued from previous page)

transport.close()

Read the output which was collected by the

pipe_data_received() method of the protocol.

data = bytes(protocol.output)

return data.decode('ascii').rstrip()

date = asyncio.run(get_date())

print(f"Current date: {date}")

See also the same example written using high-level APIs.

19.1.11 Policies

An event loop policy is a global object used to get and set the current event loop, as well as create new event loops.
The default policy can be replaced with built-in alternatives to use different event loop implementations, or substituted
by a custom policy that can override these behaviors.

The policy object gets and sets a separate event loop per context. This is per-thread by default, though custom policies
could define context differently.

Custom event loop policies can control the behavior of get_event_loop(), set_event_loop(), and
new_event_loop().

Policy objects should implement the APIs defined in the AbstractEventLoopPolicy abstract base class.

Getting and Setting the Policy

The following functions can be used to get and set the policy for the current process:

asyncio.get_event_loop_policy()

Return the current process-wide policy.

asyncio.set_event_loop_policy(policy)
Set the current process-wide policy to policy.

If policy is set to None, the default policy is restored.

Policy Objects

The abstract event loop policy base class is defined as follows:

class asyncio.AbstractEventLoopPolicy

An abstract base class for asyncio policies.

get_event_loop()

Get the event loop for the current context.

Return an event loop object implementing the AbstractEventLoop interface.

This method should never return None.

Changed in version 3.6.

set_event_loop(loop)
Set the event loop for the current context to loop.

new_event_loop()

Create and return a new event loop object.

This method should never return None.

19.1. asyncio— Asynchronous I/O 1127

The Python Library Reference, Release 3.13.1

get_child_watcher()

Get a child process watcher object.

Return a watcher object implementing the AbstractChildWatcher interface.

This function is Unix specific.

Deprecated since version 3.12.

set_child_watcher(watcher)

Set the current child process watcher to watcher.

This function is Unix specific.

Deprecated since version 3.12.

asyncio ships with the following built-in policies:

class asyncio.DefaultEventLoopPolicy

The default asyncio policy. Uses SelectorEventLoop on Unix and ProactorEventLoop on Windows.

There is no need to install the default policy manually. asyncio is configured to use the default policy automat-
ically.

Changed in version 3.8: On Windows, ProactorEventLoop is now used by default.

Deprecated since version 3.12: The get_event_loop() method of the default asyncio policy now emits
a DeprecationWarning if there is no current event loop set and it decides to create one. In some future
Python release this will become an error.

class asyncio.WindowsSelectorEventLoopPolicy

An alternative event loop policy that uses the SelectorEventLoop event loop implementation.

Availability: Windows.

class asyncio.WindowsProactorEventLoopPolicy

An alternative event loop policy that uses the ProactorEventLoop event loop implementation.

Availability: Windows.

Process Watchers

A process watcher allows customization of how an event loop monitors child processes on Unix. Specifically, the
event loop needs to know when a child process has exited.

In asyncio, child processes are created with create_subprocess_exec() and loop.subprocess_exec()

functions.

asyncio defines the AbstractChildWatcher abstract base class, which child watchers should implement,
and has four different implementations: ThreadedChildWatcher (configured to be used by default),
MultiLoopChildWatcher, SafeChildWatcher, and FastChildWatcher.

See also the Subprocess and Threads section.

The following two functions can be used to customize the child process watcher implementation used by the asyncio
event loop:

asyncio.get_child_watcher()

Return the current child watcher for the current policy.

Deprecated since version 3.12.

asyncio.set_child_watcher(watcher)
Set the current child watcher to watcher for the current policy. watcher must implement methods defined in
the AbstractChildWatcher base class.

Deprecated since version 3.12.

1128 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Note

Third-party event loops implementations might not support custom child watchers. For such event loops, using
set_child_watcher() might be prohibited or have no effect.

class asyncio.AbstractChildWatcher

add_child_handler(pid, callback, *args)
Register a new child handler.

Arrange for callback(pid, returncode, *args) to be called when a process with PID equal to
pid terminates. Specifying another callback for the same process replaces the previous handler.

The callback callable must be thread-safe.

remove_child_handler(pid)
Removes the handler for process with PID equal to pid.

The function returns True if the handler was successfully removed, False if there was nothing to re-
move.

attach_loop(loop)
Attach the watcher to an event loop.

If the watcher was previously attached to an event loop, then it is first detached before attaching to the
new loop.

Note: loop may be None.

is_active()

Return True if the watcher is ready to use.

Spawning a subprocess with inactive current child watcher raises RuntimeError.

Added in version 3.8.

close()

Close the watcher.

This method has to be called to ensure that underlying resources are cleaned-up.

Deprecated since version 3.12.

class asyncio.ThreadedChildWatcher

This implementation starts a new waiting thread for every subprocess spawn.

It works reliably even when the asyncio event loop is run in a non-main OS thread.

There is no noticeable overhead when handling a big number of children (O(1) each time a child terminates),
but starting a thread per process requires extra memory.

This watcher is used by default.

Added in version 3.8.

class asyncio.MultiLoopChildWatcher

This implementation registers a SIGCHLD signal handler on instantiation. That can break third-party code that
installs a custom handler for SIGCHLD signal.

The watcher avoids disrupting other code spawning processes by polling every process explicitly on a SIGCHLD
signal.

There is no limitation for running subprocesses from different threads once the watcher is installed.

The solution is safe but it has a significant overhead when handling a big number of processes (O(n) each time
a SIGCHLD is received).

19.1. asyncio— Asynchronous I/O 1129

The Python Library Reference, Release 3.13.1

Added in version 3.8.

Deprecated since version 3.12.

class asyncio.SafeChildWatcher

This implementation uses active event loop from the main thread to handle SIGCHLD signal. If the main thread
has no running event loop another thread cannot spawn a subprocess (RuntimeError is raised).

The watcher avoids disrupting other code spawning processes by polling every process explicitly on a SIGCHLD
signal.

This solution is as safe as MultiLoopChildWatcher and has the sameO(n) complexity but requires a running
event loop in the main thread to work.

Deprecated since version 3.12.

class asyncio.FastChildWatcher

This implementation reaps every terminated processes by calling os.waitpid(-1) directly, possibly break-
ing other code spawning processes and waiting for their termination.

There is no noticeable overhead when handling a big number of children (O(1) each time a child terminates).

This solution requires a running event loop in the main thread to work, as SafeChildWatcher.

Deprecated since version 3.12.

class asyncio.PidfdChildWatcher

This implementation polls process file descriptors (pidfds) to await child process termination. In some respects,
PidfdChildWatcher is a “Goldilocks” child watcher implementation. It doesn’t require signals or threads,
doesn’t interfere with any processes launched outside the event loop, and scales linearly with the number of
subprocesses launched by the event loop. The main disadvantage is that pidfds are specific to Linux, and only
work on recent (5.3+) kernels.

Added in version 3.9.

Custom Policies

To implement a new event loop policy, it is recommended to subclass DefaultEventLoopPolicy and override
the methods for which custom behavior is wanted, e.g.:

class MyEventLoopPolicy(asyncio.DefaultEventLoopPolicy):

def get_event_loop(self):

"""Get the event loop.

This may be None or an instance of EventLoop.

"""

loop = super().get_event_loop()

Do something with loop ...

return loop

asyncio.set_event_loop_policy(MyEventLoopPolicy())

19.1.12 Platform Support

The asyncio module is designed to be portable, but some platforms have subtle differences and limitations due to
the platforms’ underlying architecture and capabilities.

1130 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

All Platforms

• loop.add_reader() and loop.add_writer() cannot be used to monitor file I/O.

Windows

Source code: Lib/asyncio/proactor_events.py, Lib/asyncio/windows_events.py, Lib/asyncio/windows_utils.py

Changed in version 3.8: On Windows, ProactorEventLoop is now the default event loop.

All event loops on Windows do not support the following methods:

• loop.create_unix_connection() and loop.create_unix_server() are not supported. The
socket.AF_UNIX socket family is specific to Unix.

• loop.add_signal_handler() and loop.remove_signal_handler() are not supported.

SelectorEventLoop has the following limitations:

• SelectSelector is used to wait on socket events: it supports sockets and is limited to 512 sockets.

• loop.add_reader() and loop.add_writer() only accept socket handles (e.g. pipe file descriptors are
not supported).

• Pipes are not supported, so the loop.connect_read_pipe() and loop.connect_write_pipe()meth-
ods are not implemented.

• Subprocesses are not supported, i.e. loop.subprocess_exec() and loop.subprocess_shell() meth-
ods are not implemented.

ProactorEventLoop has the following limitations:

• The loop.add_reader() and loop.add_writer() methods are not supported.

The resolution of the monotonic clock on Windows is usually around 15.6 milliseconds. The best resolution is 0.5
milliseconds. The resolution depends on the hardware (availability of HPET) and on the Windows configuration.

Subprocess Support on Windows

On Windows, the default event loop ProactorEventLoop supports subprocesses, whereas SelectorEventLoop
does not.

The policy.set_child_watcher() function is also not supported, as ProactorEventLoop has a different
mechanism to watch child processes.

macOS

Modern macOS versions are fully supported.

macOS <= 10.8

On macOS 10.6, 10.7 and 10.8, the default event loop uses selectors.KqueueSelector, which does not
support character devices on these versions. The SelectorEventLoop can be manually configured to use
SelectSelector or PollSelector to support character devices on these older versions of macOS. Example:

import asyncio

import selectors

selector = selectors.SelectSelector()

loop = asyncio.SelectorEventLoop(selector)

asyncio.set_event_loop(loop)

19.1. asyncio— Asynchronous I/O 1131

https://github.com/python/cpython/tree/3.13/Lib/asyncio/proactor_events.py
https://github.com/python/cpython/tree/3.13/Lib/asyncio/windows_events.py
https://github.com/python/cpython/tree/3.13/Lib/asyncio/windows_utils.py
https://en.wikipedia.org/wiki/High_Precision_Event_Timer

The Python Library Reference, Release 3.13.1

19.1.13 Extending

The main direction for asyncio extending is writing custom event loop classes. Asyncio has helpers that could be
used to simplify this task.

Note

Third-parties should reuse existing asyncio code with caution, a new Python version is free to break backward
compatibility in internal part of API.

Writing a Custom Event Loop

asyncio.AbstractEventLoop declares very many methods. Implementing all them from scratch is a tedious
job.

A loop can get many common methods implementation for free by inheriting from asyncio.BaseEventLoop.

In turn, the successor should implement a bunch of private methods declared but not implemented in asyncio.
BaseEventLoop.

For example, loop.create_connection() checks arguments, resolves DNS addresses, and
calls loop._make_socket_transport() that should be implemented by inherited class. The
_make_socket_transport() method is not documented and is considered as an internal API.

Future and Task private constructors

asyncio.Future and asyncio.Task should be never created directly, please use corresponding loop.

create_future() and loop.create_task(), or asyncio.create_task() factories instead.

However, third-party event loopsmay reuse built-in future and task implementations for the sake of getting a complex
and highly optimized code for free.

For this purpose the following, private constructors are listed:

Future.__init__(*, loop=None)
Create a built-in future instance.

loop is an optional event loop instance.

Task.__init__(coro, *, loop=None, name=None, context=None)
Create a built-in task instance.

loop is an optional event loop instance. The rest of arguments are described in loop.create_task() de-
scription.

Changed in version 3.11: context argument is added.

Task lifetime support

A third party task implementation should call the following functions to keep a task visible by asyncio.

all_tasks() and asyncio.current_task():

asyncio._register_task(task)

Register a new task as managed by asyncio.

Call the function from a task constructor.

asyncio._unregister_task(task)

Unregister a task from asyncio internal structures.

The function should be called when a task is about to finish.

1132 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

asyncio._enter_task(loop, task)
Switch the current task to the task argument.

Call the function just before executing a portion of embedded coroutine (coroutine.send() or
coroutine.throw()).

asyncio._leave_task(loop, task)
Switch the current task back from task to None.

Call the function just after coroutine.send() or coroutine.throw() execution.

19.1.14 High-level API Index

This page lists all high-level async/await enabled asyncio APIs.

Tasks

Utilities to run asyncio programs, create Tasks, and await on multiple things with timeouts.

run() Create event loop, run a coroutine, close the loop.
Runner A context manager that simplifies multiple async func-

tion calls.
Task Task object.
TaskGroup A context manager that holds a group of tasks. Provides

a convenient and reliable way to wait for all tasks in the
group to finish.

create_task() Start an asyncio Task, then returns it.
current_task() Return the current Task.
all_tasks() Return all tasks that are not yet finished for an event

loop.
await sleep() Sleep for a number of seconds.
await gather() Schedule and wait for things concurrently.
await wait_for() Run with a timeout.
await shield() Shield from cancellation.
await wait() Monitor for completion.
timeout() Run with a timeout. Useful in cases when wait_for

is not suitable.
to_thread() Asynchronously run a function in a separate OS thread.
run_coroutine_threadsafe() Schedule a coroutine from another OS thread.
for in as_completed() Monitor for completion with a for loop.

Examples

• Using asyncio.gather() to run things in parallel.

• Using asyncio.wait_for() to enforce a timeout.

• Cancellation.

• Using asyncio.sleep().

• See also the main Tasks documentation page.

Queues

Queues should be used to distribute work amongst multiple asyncio Tasks, implement connection pools, and pub/sub
patterns.

Queue A FIFO queue.
PriorityQueue A priority queue.
LifoQueue A LIFO queue.

19.1. asyncio— Asynchronous I/O 1133

The Python Library Reference, Release 3.13.1

Examples

• Using asyncio.Queue to distribute workload between several Tasks.

• See also the Queues documentation page.

Subprocesses

Utilities to spawn subprocesses and run shell commands.

await create_subprocess_exec() Create a subprocess.
await create_subprocess_shell() Run a shell command.

Examples

• Executing a shell command.

• See also the subprocess APIs documentation.

Streams

High-level APIs to work with network IO.

await open_connection() Establish a TCP connection.
await open_unix_connection() Establish a Unix socket connection.
await start_server() Start a TCP server.
await start_unix_server() Start a Unix socket server.
StreamReader High-level async/await object to receive network data.
StreamWriter High-level async/await object to send network data.

Examples

• Example TCP client.

• See also the streams APIs documentation.

Synchronization

Threading-like synchronization primitives that can be used in Tasks.

Lock A mutex lock.
Event An event object.
Condition A condition object.
Semaphore A semaphore.
BoundedSemaphore A bounded semaphore.
Barrier A barrier object.

Examples

• Using asyncio.Event.

• Using asyncio.Barrier.

• See also the documentation of asyncio synchronization primitives.

1134 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Exceptions

asyncio.CancelledError Raised when a Task is cancelled. See also Task.

cancel().
asyncio.BrokenBarrierError Raised when a Barrier is broken. See also Barrier.

wait().

Examples

• Handling CancelledError to run code on cancellation request.

• See also the full list of asyncio-specific exceptions.

19.1.15 Low-level API Index

This page lists all low-level asyncio APIs.

Obtaining the Event Loop

asyncio.get_running_loop() The preferred function to get the running event loop.
asyncio.get_event_loop() Get an event loop instance (running or current via the

current policy).
asyncio.set_event_loop() Set the event loop as current via the current policy.
asyncio.new_event_loop() Create a new event loop.

Examples

• Using asyncio.get_running_loop().

Event Loop Methods

See also the main documentation section about the Event Loop Methods.

Lifecycle

loop.run_until_complete() Run a Future/Task/awaitable until complete.
loop.run_forever() Run the event loop forever.
loop.stop() Stop the event loop.
loop.close() Close the event loop.
loop.is_running() Return True if the event loop is running.
loop.is_closed() Return True if the event loop is closed.
await loop.shutdown_asyncgens() Close asynchronous generators.

Debugging

loop.set_debug() Enable or disable the debug mode.
loop.get_debug() Get the current debug mode.

Scheduling Callbacks

loop.call_soon() Invoke a callback soon.
loop.call_soon_threadsafe() A thread-safe variant of loop.call_soon().
loop.call_later() Invoke a callback after the given time.
loop.call_at() Invoke a callback at the given time.

19.1. asyncio— Asynchronous I/O 1135

The Python Library Reference, Release 3.13.1

Thread/Process Pool

await loop.run_in_executor() Run a CPU-bound or other blocking function in a
concurrent.futures executor.

loop.set_default_executor() Set the default executor for loop.

run_in_executor().

Tasks and Futures

loop.create_future() Create a Future object.
loop.create_task() Schedule coroutine as a Task.
loop.set_task_factory() Set a factory used by loop.create_task() to create

Tasks.
loop.get_task_factory() Get the factory loop.create_task() uses to create

Tasks.

DNS

await loop.getaddrinfo() Asynchronous version of socket.getaddrinfo().
await loop.getnameinfo() Asynchronous version of socket.getnameinfo().

Networking and IPC

await loop.create_connection() Open a TCP connection.
await loop.create_server() Create a TCP server.
await loop.create_unix_connection() Open a Unix socket connection.
await loop.create_unix_server() Create a Unix socket server.
await loop.connect_accepted_socket() Wrap a socket into a (transport, protocol)

pair.
await loop.create_datagram_endpoint() Open a datagram (UDP) connection.
await loop.sendfile() Send a file over a transport.
await loop.start_tls() Upgrade an existing connection to TLS.
await loop.connect_read_pipe() Wrap a read end of a pipe into a (transport,

protocol) pair.
await loop.connect_write_pipe() Wrap a write end of a pipe into a (transport,

protocol) pair.

Sockets

await loop.sock_recv() Receive data from the socket.
await loop.sock_recv_into() Receive data from the socket into a buffer.
await loop.sock_recvfrom() Receive a datagram from the socket.
await loop.sock_recvfrom_into() Receive a datagram from the socket into a buffer.
await loop.sock_sendall() Send data to the socket.
await loop.sock_sendto() Send a datagram via the socket to the given address.
await loop.sock_connect() Connect the socket.
await loop.sock_accept() Accept a socket connection.
await loop.sock_sendfile() Send a file over the socket.
loop.add_reader() Start watching a file descriptor for read availability.
loop.remove_reader() Stop watching a file descriptor for read availability.
loop.add_writer() Start watching a file descriptor for write availability.
loop.remove_writer() Stop watching a file descriptor for write availability.

1136 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Unix Signals

loop.add_signal_handler() Add a handler for a signal.
loop.remove_signal_handler() Remove a handler for a signal.

Subprocesses

loop.subprocess_exec() Spawn a subprocess.
loop.subprocess_shell() Spawn a subprocess from a shell command.

Error Handling

loop.call_exception_handler() Call the exception handler.
loop.set_exception_handler() Set a new exception handler.
loop.get_exception_handler() Get the current exception handler.
loop.default_exception_handler() The default exception handler implementation.

Examples

• Using asyncio.new_event_loop() and loop.run_forever().

• Using loop.call_later().

• Using loop.create_connection() to implement an echo-client.

• Using loop.create_connection() to connect a socket.

• Using add_reader() to watch an FD for read events.

• Using loop.add_signal_handler().

• Using loop.subprocess_exec().

Transports

All transports implement the following methods:

transport.close() Close the transport.
transport.is_closing() Return True if the transport is closing or is closed.
transport.get_extra_info() Request for information about the transport.
transport.set_protocol() Set a new protocol.
transport.get_protocol() Return the current protocol.

Transports that can receive data (TCP and Unix connections, pipes, etc). Returned from methods like loop.

create_connection(), loop.create_unix_connection(), loop.connect_read_pipe(), etc:

Read Transports

transport.is_reading() Return True if the transport is receiving.
transport.pause_reading() Pause receiving.
transport.resume_reading() Resume receiving.

Transports that can Send data (TCP and Unix connections, pipes, etc). Returned from methods like loop.

create_connection(), loop.create_unix_connection(), loop.connect_write_pipe(), etc:

19.1. asyncio— Asynchronous I/O 1137

The Python Library Reference, Release 3.13.1

Write Transports

transport.write() Write data to the transport.
transport.writelines() Write buffers to the transport.
transport.can_write_eof() Return True if the transport supports sending EOF.
transport.write_eof() Close and send EOF after flushing buffered data.
transport.abort() Close the transport immediately.
transport.get_write_buffer_size() Return the current size of the output buffer.
transport.get_write_buffer_limits() Return high and low water marks for write flow control.
transport.set_write_buffer_limits() Set new high and lowwatermarks for write flow control.

Transports returned by loop.create_datagram_endpoint():

Datagram Transports

transport.sendto() Send data to the remote peer.
transport.abort() Close the transport immediately.

Low-level transport abstraction over subprocesses. Returned by loop.subprocess_exec() and loop.

subprocess_shell():

Subprocess Transports

transport.get_pid() Return the subprocess process id.
transport.get_pipe_transport() Return the transport for the requested communication

pipe (stdin, stdout, or stderr).
transport.get_returncode() Return the subprocess return code.
transport.kill() Kill the subprocess.
transport.send_signal() Send a signal to the subprocess.
transport.terminate() Stop the subprocess.
transport.close() Kill the subprocess and close all pipes.

Protocols

Protocol classes can implement the following callback methods:

callback connection_made() Called when a connection is made.
callback connection_lost() Called when the connection is lost or closed.
callback pause_writing() Called when the transport’s buffer goes over the high

water mark.
callback resume_writing() Called when the transport’s buffer drains below the low

water mark.

Streaming Protocols (TCP, Unix Sockets, Pipes)

callback data_received() Called when some data is received.
callback eof_received() Called when an EOF is received.

1138 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Buffered Streaming Protocols

callback get_buffer() Called to allocate a new receive buffer.
callback buffer_updated() Called when the buffer was updated with the received

data.
callback eof_received() Called when an EOF is received.

Datagram Protocols

callback datagram_received() Called when a datagram is received.
callback error_received() Called when a previous send or receive operation raises

an OSError.

Subprocess Protocols

callback pipe_data_received() Called when the child process writes data into its stdout
or stderr pipe.

callback pipe_connection_lost() Called when one of the pipes communicating with the
child process is closed.

callback process_exited() Called when the child process has exited. It
can be called before pipe_data_received() and
pipe_connection_lost() methods.

Event Loop Policies

Policies is a low-level mechanism to alter the behavior of functions like asyncio.get_event_loop(). See also
the main policies section for more details.

Accessing Policies

asyncio.get_event_loop_policy() Return the current process-wide policy.
asyncio.set_event_loop_policy() Set a new process-wide policy.
AbstractEventLoopPolicy Base class for policy objects.

19.1.16 Developing with asyncio

Asynchronous programming is different from classic “sequential” programming.

This page lists common mistakes and traps and explains how to avoid them.

Debug Mode

By default asyncio runs in production mode. In order to ease the development asyncio has a debug mode.

There are several ways to enable asyncio debug mode:

• Setting the PYTHONASYNCIODEBUG environment variable to 1.

• Using the Python Development Mode.

• Passing debug=True to asyncio.run().

• Calling loop.set_debug().

In addition to enabling the debug mode, consider also:

• setting the log level of the asyncio logger to logging.DEBUG, for example the following snippet of code can
be run at startup of the application:

19.1. asyncio— Asynchronous I/O 1139

The Python Library Reference, Release 3.13.1

logging.basicConfig(level=logging.DEBUG)

• configuring the warningsmodule to display ResourceWarning warnings. One way of doing that is by using
the -W default command line option.

When the debug mode is enabled:

• asyncio checks for coroutines that were not awaited and logs them; this mitigates the “forgotten await” pitfall.

• Many non-threadsafe asyncio APIs (such as loop.call_soon() and loop.call_at() methods) raise an
exception if they are called from a wrong thread.

• The execution time of the I/O selector is logged if it takes too long to perform an I/O operation.

• Callbacks taking longer than 100 milliseconds are logged. The loop.slow_callback_duration attribute
can be used to set the minimum execution duration in seconds that is considered “slow”.

Concurrency and Multithreading

An event loop runs in a thread (typically the main thread) and executes all callbacks and Tasks in its thread. While
a Task is running in the event loop, no other Tasks can run in the same thread. When a Task executes an await
expression, the running Task gets suspended, and the event loop executes the next Task.

To schedule a callback from another OS thread, the loop.call_soon_threadsafe() method should be used.
Example:

loop.call_soon_threadsafe(callback, *args)

Almost all asyncio objects are not thread safe, which is typically not a problem unless there is code that works with
them from outside of a Task or a callback. If there’s a need for such code to call a low-level asyncio API, the
loop.call_soon_threadsafe() method should be used, e.g.:

loop.call_soon_threadsafe(fut.cancel)

To schedule a coroutine object from a different OS thread, the run_coroutine_threadsafe() function should
be used. It returns a concurrent.futures.Future to access the result:

async def coro_func():

return await asyncio.sleep(1, 42)

Later in another OS thread:

future = asyncio.run_coroutine_threadsafe(coro_func(), loop)

Wait for the result:

result = future.result()

To handle signals the event loop must be run in the main thread.

The loop.run_in_executor()method can be used with a concurrent.futures.ThreadPoolExecutor to
execute blocking code in a different OS thread without blocking the OS thread that the event loop runs in.

There is currently no way to schedule coroutines or callbacks directly from a different process (such as one started
with multiprocessing). The Event Loop Methods section lists APIs that can read from pipes and watch file
descriptors without blocking the event loop. In addition, asyncio’s Subprocess APIs provide a way to start a process
and communicate with it from the event loop. Lastly, the aforementioned loop.run_in_executor()method can
also be used with a concurrent.futures.ProcessPoolExecutor to execute code in a different process.

Running Blocking Code

Blocking (CPU-bound) code should not be called directly. For example, if a function performs a CPU-intensive
calculation for 1 second, all concurrent asyncio Tasks and IO operations would be delayed by 1 second.

1140 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

An executor can be used to run a task in a different thread or even in a different process to avoid blocking the OS
thread with the event loop. See the loop.run_in_executor() method for more details.

Logging

asyncio uses the logging module and all logging is performed via the "asyncio" logger.

The default log level is logging.INFO, which can be easily adjusted:

logging.getLogger("asyncio").setLevel(logging.WARNING)

Network logging can block the event loop. It is recommended to use a separate thread for handling logs or use
non-blocking IO. For example, see blocking-handlers.

Detect never-awaited coroutines

When a coroutine function is called, but not awaited (e.g. coro() instead of await coro()) or the coroutine is
not scheduled with asyncio.create_task(), asyncio will emit a RuntimeWarning:

import asyncio

async def test():

print("never scheduled")

async def main():

test()

asyncio.run(main())

Output:

test.py:7: RuntimeWarning: coroutine 'test' was never awaited

test()

Output in debug mode:

test.py:7: RuntimeWarning: coroutine 'test' was never awaited

Coroutine created at (most recent call last)

File "../t.py", line 9, in <module>

asyncio.run(main(), debug=True)

< .. >

File "../t.py", line 7, in main

test()

test()

The usual fix is to either await the coroutine or call the asyncio.create_task() function:

async def main():

await test()

Detect never-retrieved exceptions

If a Future.set_exception() is called but the Future object is never awaited on, the exception would never
be propagated to the user code. In this case, asyncio would emit a log message when the Future object is garbage
collected.

Example of an unhandled exception:

19.1. asyncio— Asynchronous I/O 1141

The Python Library Reference, Release 3.13.1

import asyncio

async def bug():

raise Exception("not consumed")

async def main():

asyncio.create_task(bug())

asyncio.run(main())

Output:

Task exception was never retrieved

future: <Task finished coro=<bug() done, defined at test.py:3>

exception=Exception('not consumed')>

Traceback (most recent call last):

File "test.py", line 4, in bug

raise Exception("not consumed")

Exception: not consumed

Enable the debug mode to get the traceback where the task was created:

asyncio.run(main(), debug=True)

Output in debug mode:

Task exception was never retrieved

future: <Task finished coro=<bug() done, defined at test.py:3>

exception=Exception('not consumed') created at asyncio/tasks.py:321>

source_traceback: Object created at (most recent call last):

File "../t.py", line 9, in <module>

asyncio.run(main(), debug=True)

< .. >

Traceback (most recent call last):

File "../t.py", line 4, in bug

raise Exception("not consumed")

Exception: not consumed

Note

The source code for asyncio can be found in Lib/asyncio/.

19.2 socket— Low-level networking interface

Source code: Lib/socket.py

This module provides access to the BSD socket interface. It is available on all modern Unix systems, Windows,
MacOS, and probably additional platforms.

1142 Chapter 19. Networking and Interprocess Communication

https://github.com/python/cpython/tree/3.13/Lib/asyncio/
https://github.com/python/cpython/tree/3.13/Lib/socket.py

The Python Library Reference, Release 3.13.1

Note

Some behavior may be platform dependent, since calls are made to the operating system socket APIs.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

The Python interface is a straightforward transliteration of the Unix system call and library interface for sockets to
Python’s object-oriented style: the socket() function returns a socket object whose methods implement the various
socket system calls. Parameter types are somewhat higher-level than in the C interface: as with read() and write()
operations on Python files, buffer allocation on receive operations is automatic, and buffer length is implicit on send
operations.

See also

Module socketserver
Classes that simplify writing network servers.

Module ssl
A TLS/SSL wrapper for socket objects.

19.2.1 Socket families

Depending on the system and the build options, various socket families are supported by this module.

The address format required by a particular socket object is automatically selected based on the address family
specified when the socket object was created. Socket addresses are represented as follows:

• The address of an AF_UNIX socket bound to a file system node is represented as a string, using the file sys-
tem encoding and the 'surrogateescape' error handler (see PEP 383). An address in Linux’s abstract
namespace is returned as a bytes-like object with an initial null byte; note that sockets in this namespace can
communicate with normal file system sockets, so programs intended to run on Linux may need to deal with
both types of address. A string or bytes-like object can be used for either type of address when passing it as
an argument.

Changed in version 3.3: Previously, AF_UNIX socket paths were assumed to use UTF-8 encoding.

Changed in version 3.5: Writable bytes-like object is now accepted.

• A pair (host, port) is used for the AF_INET address family, where host is a string representing either a
hostname in internet domain notation like 'daring.cwi.nl' or an IPv4 address like '100.50.200.5',
and port is an integer.

– For IPv4 addresses, two special forms are accepted instead of a host address: '' represents INADDR_ANY,
which is used to bind to all interfaces, and the string '<broadcast>' represents INADDR_BROADCAST.
This behavior is not compatible with IPv6, therefore, you may want to avoid these if you intend to support
IPv6 with your Python programs.

• For AF_INET6 address family, a four-tuple (host, port, flowinfo, scope_id) is used, where
flowinfo and scope_id represent the sin6_flowinfo and sin6_scope_id members in struct

sockaddr_in6 in C. For socket module methods, flowinfo and scope_id can be omitted just for back-
ward compatibility. Note, however, omission of scope_id can cause problems in manipulating scoped IPv6
addresses.

Changed in version 3.7: For multicast addresses (with scope_id meaningful) address may not contain
%scope_id (or zone id) part. This information is superfluous and may be safely omitted (recommended).

• AF_NETLINK sockets are represented as pairs (pid, groups).

• Linux-only support for TIPC is available using the AF_TIPC address family. TIPC is an open, non-IP based
networked protocol designed for use in clustered computer environments. Addresses are represented by a

19.2. socket— Low-level networking interface 1143

https://peps.python.org/pep-0383/

The Python Library Reference, Release 3.13.1

tuple, and the fields depend on the address type. The general tuple form is (addr_type, v1, v2, v3 [,

scope]), where:

– addr_type is one of TIPC_ADDR_NAMESEQ, TIPC_ADDR_NAME, or TIPC_ADDR_ID.

– scope is one of TIPC_ZONE_SCOPE, TIPC_CLUSTER_SCOPE, and TIPC_NODE_SCOPE.

– If addr_type is TIPC_ADDR_NAME, then v1 is the server type, v2 is the port identifier, and v3 should be
0.

If addr_type is TIPC_ADDR_NAMESEQ, then v1 is the server type, v2 is the lower port number, and v3 is
the upper port number.

If addr_type is TIPC_ADDR_ID, then v1 is the node, v2 is the reference, and v3 should be set to 0.

• A tuple (interface,) is used for the AF_CAN address family, where interface is a string representing a
network interface name like 'can0'. The network interface name '' can be used to receive packets from all
network interfaces of this family.

– CAN_ISOTP protocol require a tuple (interface, rx_addr, tx_addr) where both additional pa-
rameters are unsigned long integer that represent a CAN identifier (standard or extended).

– CAN_J1939 protocol require a tuple (interface, name, pgn, addr) where additional parame-
ters are 64-bit unsigned integer representing the ECU name, a 32-bit unsigned integer representing the
Parameter Group Number (PGN), and an 8-bit integer representing the address.

• A string or a tuple (id, unit) is used for the SYSPROTO_CONTROL protocol of the PF_SYSTEM family. The
string is the name of a kernel control using a dynamically assigned ID. The tuple can be used if ID and unit
number of the kernel control are known or if a registered ID is used.

Added in version 3.3.

• AF_BLUETOOTH supports the following protocols and address formats:

– BTPROTO_L2CAP accepts (bdaddr, psm) where bdaddr is the Bluetooth address as a string and psm
is an integer.

– BTPROTO_RFCOMM accepts (bdaddr, channel) where bdaddr is the Bluetooth address as a string
and channel is an integer.

– BTPROTO_HCI accepts (device_id,) where device_id is either an integer or a string with the Blue-
tooth address of the interface. (This depends on your OS; NetBSD and DragonFlyBSD expect a Blue-
tooth address while everything else expects an integer.)

Changed in version 3.2: NetBSD and DragonFlyBSD support added.

– BTPROTO_SCO accepts bdaddr where bdaddr is a bytes object containing the Bluetooth address in a
string format. (ex. b'12:23:34:45:56:67') This protocol is not supported under FreeBSD.

• AF_ALG is a Linux-only socket based interface to Kernel cryptography. An algorithm socket is configured
with a tuple of two to four elements (type, name [, feat [, mask]]), where:

– type is the algorithm type as string, e.g. aead, hash, skcipher or rng.

– name is the algorithm name and operation mode as string, e.g. sha256, hmac(sha256), cbc(aes) or
drbg_nopr_ctr_aes256.

– feat and mask are unsigned 32bit integers.

Availability: Linux >= 2.6.38.

Some algorithm types require more recent Kernels.

Added in version 3.6.

• AF_VSOCK allows communication between virtual machines and their hosts. The sockets are represented as a
(CID, port) tuple where the context ID or CID and port are integers.

Availability: Linux >= 3.9

See vsock(7)

1144 Chapter 19. Networking and Interprocess Communication

https://manpages.debian.org/vsock(7)

The Python Library Reference, Release 3.13.1

Added in version 3.7.

• AF_PACKET is a low-level interface directly to network devices. The addresses are represented by the tuple
(ifname, proto[, pkttype[, hatype[, addr]]]) where:

– ifname - String specifying the device name.

– proto - The Ethernet protocol number. May be ETH_P_ALL to capture all protocols, one of the ETHER-
TYPE_* constants or any other Ethernet protocol number.

– pkttype - Optional integer specifying the packet type:

∗ PACKET_HOST (the default) - Packet addressed to the local host.

∗ PACKET_BROADCAST - Physical-layer broadcast packet.

∗ PACKET_MULTICAST - Packet sent to a physical-layer multicast address.

∗ PACKET_OTHERHOST - Packet to some other host that has been caught by a device driver in promis-
cuous mode.

∗ PACKET_OUTGOING - Packet originating from the local host that is looped back to a packet socket.

– hatype - Optional integer specifying the ARP hardware address type.

– addr - Optional bytes-like object specifying the hardware physical address, whose interpretation depends
on the device.

Availability: Linux >= 2.2.

• AF_QIPCRTR is a Linux-only socket based interface for communicating with services running on co-processors
in Qualcomm platforms. The address family is represented as a (node, port) tuple where the node and port
are non-negative integers.

Availability: Linux >= 4.7.

Added in version 3.8.

• IPPROTO_UDPLITE is a variant of UDP which allows you to specify what portion of a packet is covered with
the checksum. It adds two socket options that you can change. self.setsockopt(IPPROTO_UDPLITE,
UDPLITE_SEND_CSCOV, length) will change what portion of outgoing packets are covered by the
checksum and self.setsockopt(IPPROTO_UDPLITE, UDPLITE_RECV_CSCOV, length) will filter
out packets which cover too little of their data. In both cases length should be in range(8, 2**16,

8).

Such a socket should be constructed with socket(AF_INET, SOCK_DGRAM, IPPROTO_UDPLITE) for
IPv4 or socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDPLITE) for IPv6.

Availability: Linux >= 2.6.20, FreeBSD >= 10.1

Added in version 3.9.

• AF_HYPERV is a Windows-only socket based interface for communicating with Hyper-V hosts and guests.
The address family is represented as a (vm_id, service_id) tuple where the vm_id and service_id
are UUID strings.

The vm_id is the virtual machine identifier or a set of known VMID values if the target is not a specific virtual
machine. Known VMID constants defined on socket are:

– HV_GUID_ZERO

– HV_GUID_BROADCAST

– HV_GUID_WILDCARD - Used to bind on itself and accept connections from all partitions.

– HV_GUID_CHILDREN - Used to bind on itself and accept connection from child partitions.

– HV_GUID_LOOPBACK - Used as a target to itself.

– HV_GUID_PARENT - When used as a bind accepts connection from the parent partition. When used as
an address target it will connect to the parent partition.

19.2. socket— Low-level networking interface 1145

The Python Library Reference, Release 3.13.1

The service_id is the service identifier of the registered service.

Added in version 3.12.

If you use a hostname in the host portion of IPv4/v6 socket address, the program may show a nondeterministic
behavior, as Python uses the first address returned from the DNS resolution. The socket address will be resolved
differently into an actual IPv4/v6 address, depending on the results fromDNS resolution and/or the host configuration.
For deterministic behavior use a numeric address in host portion.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory conditions can be
raised. Errors related to socket or address semantics raise OSError or one of its subclasses.

Non-blocking mode is supported through setblocking(). A generalization of this based on timeouts is supported
through settimeout().

19.2.2 Module contents

The module socket exports the following elements.

Exceptions

exception socket.error

A deprecated alias of OSError.

Changed in version 3.3: Following PEP 3151, this class was made an alias of OSError.

exception socket.herror

A subclass of OSError, this exception is raised for address-related errors, i.e. for functions that use h_errno
in the POSIX C API, including gethostbyname_ex() and gethostbyaddr(). The accompanying value
is a pair (h_errno, string) representing an error returned by a library call. h_errno is a numeric value,
while string represents the description of h_errno, as returned by the hstrerror() C function.

Changed in version 3.3: This class was made a subclass of OSError.

exception socket.gaierror

A subclass of OSError, this exception is raised for address-related errors by getaddrinfo() and
getnameinfo(). The accompanying value is a pair (error, string) representing an error returned by a
library call. string represents the description of error, as returned by the gai_strerror() C function. The
numeric error value will match one of the EAI_* constants defined in this module.

Changed in version 3.3: This class was made a subclass of OSError.

exception socket.timeout

A deprecated alias of TimeoutError.

A subclass of OSError, this exception is raised when a timeout occurs on a socket which has had timeouts en-
abled via a prior call to settimeout() (or implicitly through setdefaulttimeout()). The accompanying
value is a string whose value is currently always “timed out”.

Changed in version 3.3: This class was made a subclass of OSError.

Changed in version 3.10: This class was made an alias of TimeoutError.

Constants

The AF_* and SOCK_* constants are now AddressFamily and SocketKind IntEnum collections.

Added in version 3.4.

socket.AF_UNIX

socket.AF_INET

socket.AF_INET6

These constants represent the address (and protocol) families, used for the first argument to socket(). If the
AF_UNIX constant is not defined then this protocol is unsupported. More constants may be available depending
on the system.

1146 Chapter 19. Networking and Interprocess Communication

https://peps.python.org/pep-3151/

The Python Library Reference, Release 3.13.1

socket.AF_UNSPEC

AF_UNSPEC means that getaddrinfo() should return socket addresses for any address family (either IPv4,
IPv6, or any other) that can be used.

socket.SOCK_STREAM

socket.SOCK_DGRAM

socket.SOCK_RAW

socket.SOCK_RDM

socket.SOCK_SEQPACKET

These constants represent the socket types, used for the second argument to socket(). More constants may
be available depending on the system. (Only SOCK_STREAM and SOCK_DGRAM appear to be generally useful.)

socket.SOCK_CLOEXEC

socket.SOCK_NONBLOCK

These two constants, if defined, can be combined with the socket types and allow you to set some flags atomi-
cally (thus avoiding possible race conditions and the need for separate calls).

See also

Secure File Descriptor Handling for a more thorough explanation.

Availability: Linux >= 2.6.27.

Added in version 3.2.

SO_*

socket.SOMAXCONN

MSG_*

SOL_*

SCM_*

IPPROTO_*

IPPORT_*

INADDR_*

IP_*

IPV6_*

EAI_*

AI_*

NI_*

TCP_*

Many constants of these forms, documented in the Unix documentation on sockets and/or the IP protocol,
are also defined in the socket module. They are generally used in arguments to the setsockopt() and
getsockopt() methods of socket objects. In most cases, only those symbols that are defined in the Unix
header files are defined; for a few symbols, default values are provided.

Changed in version 3.6: SO_DOMAIN, SO_PROTOCOL, SO_PEERSEC, SO_PASSSEC, TCP_USER_TIMEOUT,
TCP_CONGESTION were added.

Changed in version 3.6.5: On Windows, TCP_FASTOPEN, TCP_KEEPCNT appear if run-time Windows sup-
ports.

Changed in version 3.7: TCP_NOTSENT_LOWAT was added.

On Windows, TCP_KEEPIDLE, TCP_KEEPINTVL appear if run-time Windows supports.

Changed in version 3.10: IP_RECVTOS was added. Added TCP_KEEPALIVE. On MacOS this constant can
be used in the same way that TCP_KEEPIDLE is used on Linux.

19.2. socket— Low-level networking interface 1147

https://udrepper.livejournal.com/20407.html

The Python Library Reference, Release 3.13.1

Changed in version 3.11: Added TCP_CONNECTION_INFO. On MacOS this constant can be used in the same
way that TCP_INFO is used on Linux and BSD.

Changed in version 3.12: Added SO_RTABLE and SO_USER_COOKIE. On OpenBSD and FreeBSD respec-
tively those constants can be used in the same way that SO_MARK is used on Linux. Also added missing
TCP socket options from Linux: TCP_MD5SIG, TCP_THIN_LINEAR_TIMEOUTS, TCP_THIN_DUPACK,
TCP_REPAIR, TCP_REPAIR_QUEUE, TCP_QUEUE_SEQ, TCP_REPAIR_OPTIONS, TCP_TIMESTAMP,
TCP_CC_INFO, TCP_SAVE_SYN, TCP_SAVED_SYN, TCP_REPAIR_WINDOW, TCP_FASTOPEN_CONNECT,
TCP_ULP, TCP_MD5SIG_EXT, TCP_FASTOPEN_KEY, TCP_FASTOPEN_NO_COOKIE,
TCP_ZEROCOPY_RECEIVE, TCP_INQ, TCP_TX_DELAY. Added IP_PKTINFO, IP_UNBLOCK_SOURCE,
IP_BLOCK_SOURCE, IP_ADD_SOURCE_MEMBERSHIP, IP_DROP_SOURCE_MEMBERSHIP.

Changed in version 3.13: Added SO_BINDTOIFINDEX. On Linux this constant can be used in the same way
that SO_BINDTODEVICE is used, but with the index of a network interface instead of its name.

socket.AF_CAN

socket.PF_CAN

SOL_CAN_*

CAN_*

Many constants of these forms, documented in the Linux documentation, are also defined in the socket module.

Availability: Linux >= 2.6.25, NetBSD >= 8.

Added in version 3.3.

Changed in version 3.11: NetBSD support was added.

socket.CAN_BCM

CAN_BCM_*

CAN_BCM, in the CAN protocol family, is the broadcast manager (BCM) protocol. Broadcast manager
constants, documented in the Linux documentation, are also defined in the socket module.

Availability: Linux >= 2.6.25.

Note

The CAN_BCM_CAN_FD_FRAME flag is only available on Linux >= 4.8.

Added in version 3.4.

socket.CAN_RAW_FD_FRAMES

Enables CAN FD support in a CAN_RAW socket. This is disabled by default. This allows your application to
send both CAN and CAN FD frames; however, you must accept both CAN and CAN FD frames when reading
from the socket.

This constant is documented in the Linux documentation.

Availability: Linux >= 3.6.

Added in version 3.5.

socket.CAN_RAW_JOIN_FILTERS

Joins the applied CAN filters such that only CAN frames that match all given CAN filters are passed to user
space.

This constant is documented in the Linux documentation.

Availability: Linux >= 4.1.

Added in version 3.9.

1148 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

socket.CAN_ISOTP

CAN_ISOTP, in the CAN protocol family, is the ISO-TP (ISO 15765-2) protocol. ISO-TP constants, docu-
mented in the Linux documentation.

Availability: Linux >= 2.6.25.

Added in version 3.7.

socket.CAN_J1939

CAN_J1939, in the CAN protocol family, is the SAE J1939 protocol. J1939 constants, documented in the
Linux documentation.

Availability: Linux >= 5.4.

Added in version 3.9.

socket.AF_DIVERT

socket.PF_DIVERT

These two constants, documented in the FreeBSD divert(4) manual page, are also defined in the socket module.

Availability: FreeBSD >= 14.0.

Added in version 3.12.

socket.AF_PACKET

socket.PF_PACKET

PACKET_*

Many constants of these forms, documented in the Linux documentation, are also defined in the socket module.

Availability: Linux >= 2.2.

socket.ETH_P_ALL

ETH_P_ALL can be used in the socket constructor as proto for the AF_PACKET family in order to capture
every packet, regardless of protocol.

For more information, see the packet(7) manpage.

Availability: Linux.

Added in version 3.12.

socket.AF_RDS

socket.PF_RDS

socket.SOL_RDS

RDS_*

Many constants of these forms, documented in the Linux documentation, are also defined in the socket module.

Availability: Linux >= 2.6.30.

Added in version 3.3.

socket.SIO_RCVALL

socket.SIO_KEEPALIVE_VALS

socket.SIO_LOOPBACK_FAST_PATH

RCVALL_*

Constants for Windows’ WSAIoctl(). The constants are used as arguments to the ioctl() method of socket
objects.

Changed in version 3.6: SIO_LOOPBACK_FAST_PATH was added.

TIPC_*

TIPC related constants, matching the ones exported by the C socket API. See the TIPC documentation for
more information.

socket.AF_ALG

19.2. socket— Low-level networking interface 1149

https://manpages.debian.org/packet(7)

The Python Library Reference, Release 3.13.1

socket.SOL_ALG

ALG_*

Constants for Linux Kernel cryptography.

Availability: Linux >= 2.6.38.

Added in version 3.6.

socket.AF_VSOCK

socket.IOCTL_VM_SOCKETS_GET_LOCAL_CID

VMADDR*

SO_VM*

Constants for Linux host/guest communication.

Availability: Linux >= 4.8.

Added in version 3.7.

socket.AF_LINK

Availability: BSD, macOS.

Added in version 3.4.

socket.has_ipv6

This constant contains a boolean value which indicates if IPv6 is supported on this platform.

socket.BDADDR_ANY

socket.BDADDR_LOCAL

These are string constants containing Bluetooth addresses with special meanings. For example, BDADDR_ANY
can be used to indicate any address when specifying the binding socket with BTPROTO_RFCOMM.

socket.HCI_FILTER

socket.HCI_TIME_STAMP

socket.HCI_DATA_DIR

For use with BTPROTO_HCI. HCI_FILTER is not available for NetBSD or DragonFlyBSD. HCI_TIME_STAMP
and HCI_DATA_DIR are not available for FreeBSD, NetBSD, or DragonFlyBSD.

socket.AF_QIPCRTR

Constant for Qualcomm’s IPC router protocol, used to communicate with service providing remote processors.

Availability: Linux >= 4.7.

socket.SCM_CREDS2

socket.LOCAL_CREDS

socket.LOCAL_CREDS_PERSISTENT

LOCAL_CREDS and LOCAL_CREDS_PERSISTENT can be used with SOCK_DGRAM,
SOCK_STREAM sockets, equivalent to Linux/DragonFlyBSD SO_PASSCRED, while LOCAL_CREDS
sends the credentials at first read, LOCAL_CREDS_PERSISTENT sends for each read, SCM_CREDS2
must be then used for the latter for the message type.

Added in version 3.11.

Availability: FreeBSD.

socket.SO_INCOMING_CPU

Constant to optimize CPU locality, to be used in conjunction with SO_REUSEPORT.

Added in version 3.11.

Availability: Linux >= 3.9

socket.AF_HYPERV

socket.HV_PROTOCOL_RAW

1150 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

socket.HVSOCKET_CONNECT_TIMEOUT

socket.HVSOCKET_CONNECT_TIMEOUT_MAX

socket.HVSOCKET_CONNECTED_SUSPEND

socket.HVSOCKET_ADDRESS_FLAG_PASSTHRU

socket.HV_GUID_ZERO

socket.HV_GUID_WILDCARD

socket.HV_GUID_BROADCAST

socket.HV_GUID_CHILDREN

socket.HV_GUID_LOOPBACK

socket.HV_GUID_PARENT

Constants for Windows Hyper-V sockets for host/guest communications.

Availability: Windows.

Added in version 3.12.

socket.ETHERTYPE_ARP

socket.ETHERTYPE_IP

socket.ETHERTYPE_IPV6

socket.ETHERTYPE_VLAN

IEEE 802.3 protocol number. constants.

Availability: Linux, FreeBSD, macOS.

Added in version 3.12.

socket.SHUT_RD

socket.SHUT_WR

socket.SHUT_RDWR

These constants are used by the shutdown() method of socket objects.

Availability: not WASI.

Functions

Creating sockets

The following functions all create socket objects.

class socket.socket(family=AF_INET , type=SOCK_STREAM, proto=0, fileno=None)
Create a new socket using the given address family, socket type and protocol number. The address family should
be AF_INET (the default), AF_INET6, AF_UNIX, AF_CAN, AF_PACKET, or AF_RDS. The socket type should
be SOCK_STREAM (the default), SOCK_DGRAM , SOCK_RAW or perhaps one of the other SOCK_ constants. The
protocol number is usually zero and may be omitted or in the case where the address family is AF_CAN the
protocol should be one of CAN_RAW, CAN_BCM , CAN_ISOTP or CAN_J1939.

If fileno is specified, the values for family, type, and proto are auto-detected from the specified file descriptor.
Auto-detection can be overruled by calling the function with explicit family, type, or proto arguments. This
only affects how Python represents e.g. the return value of socket.getpeername() but not the actual OS
resource. Unlike socket.fromfd(), fileno will return the same socket and not a duplicate. This may help
close a detached socket using socket.close().

The newly created socket is non-inheritable.

Raises an auditing event socket.__new__ with arguments self, family, type, protocol.

Changed in version 3.3: The AF_CAN family was added. The AF_RDS family was added.

Changed in version 3.4: The CAN_BCM protocol was added.

Changed in version 3.4: The returned socket is now non-inheritable.

19.2. socket— Low-level networking interface 1151

https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.txt

The Python Library Reference, Release 3.13.1

Changed in version 3.7: The CAN_ISOTP protocol was added.

Changed in version 3.7: When SOCK_NONBLOCK or SOCK_CLOEXEC bit flags are applied to type they are
cleared, and socket.type will not reflect them. They are still passed to the underlying system socket()

call. Therefore,

sock = socket.socket(

socket.AF_INET,

socket.SOCK_STREAM | socket.SOCK_NONBLOCK)

will still create a non-blocking socket on OSes that support SOCK_NONBLOCK, but sock.type will be set to
socket.SOCK_STREAM.

Changed in version 3.9: The CAN_J1939 protocol was added.

Changed in version 3.10: The IPPROTO_MPTCP protocol was added.

socket.socketpair([family[, type[, proto]]])
Build a pair of connected socket objects using the given address family, socket type, and protocol number.
Address family, socket type, and protocol number are as for the socket() function above. The default family
is AF_UNIX if defined on the platform; otherwise, the default is AF_INET.

The newly created sockets are non-inheritable.

Changed in version 3.2: The returned socket objects now support the whole socket API, rather than a subset.

Changed in version 3.4: The returned sockets are now non-inheritable.

Changed in version 3.5: Windows support added.

socket.create_connection(address, timeout=GLOBAL_DEFAULT , source_address=None, *,
all_errors=False)

Connect to a TCP service listening on the internet address (a 2-tuple (host, port)), and return the socket
object. This is a higher-level function than socket.connect(): if host is a non-numeric hostname, it will
try to resolve it for both AF_INET and AF_INET6, and then try to connect to all possible addresses in turn
until a connection succeeds. This makes it easy to write clients that are compatible to both IPv4 and IPv6.

Passing the optional timeout parameter will set the timeout on the socket instance before attempting to connect.
If no timeout is supplied, the global default timeout setting returned by getdefaulttimeout() is used.

If supplied, source_address must be a 2-tuple (host, port) for the socket to bind to as its source address
before connecting. If host or port are ‘’ or 0 respectively the OS default behavior will be used.

When a connection cannot be created, an exception is raised. By default, it is the exception from the last
address in the list. If all_errors is True, it is an ExceptionGroup containing the errors of all attempts.

Changed in version 3.2: source_address was added.

Changed in version 3.11: all_errors was added.

socket.create_server(address, *, family=AF_INET , backlog=None, reuse_port=False, dualstack_ipv6=False)
Convenience function which creates a TCP socket bound to address (a 2-tuple (host, port)) and returns
the socket object.

family should be either AF_INET or AF_INET6. backlog is the queue size passed to socket.listen(); if
not specified , a default reasonable value is chosen. reuse_port dictates whether to set the SO_REUSEPORT
socket option.

If dualstack_ipv6 is true and the platform supports it the socket will be able to accept both IPv4 and IPv6
connections, else it will raise ValueError. Most POSIX platforms andWindows are supposed to support this
functionality. When this functionality is enabled the address returned by socket.getpeername() when an
IPv4 connection occurs will be an IPv6 address represented as an IPv4-mapped IPv6 address. If dualstack_ipv6
is false it will explicitly disable this functionality on platforms that enable it by default (e.g. Linux). This
parameter can be used in conjunction with has_dualstack_ipv6():

1152 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

import socket

addr = ("", 8080) # all interfaces, port 8080

if socket.has_dualstack_ipv6():

s = socket.create_server(addr, family=socket.AF_INET6, dualstack_ipv6=True)

else:

s = socket.create_server(addr)

Note

On POSIX platforms the SO_REUSEADDR socket option is set in order to immediately reuse previous
sockets which were bound on the same address and remained in TIME_WAIT state.

Added in version 3.8.

socket.has_dualstack_ipv6()

Return True if the platform supports creating a TCP socket which can handle both IPv4 and IPv6 connections.

Added in version 3.8.

socket.fromfd(fd, family, type, proto=0)
Duplicate the file descriptor fd (an integer as returned by a file object’s fileno()method) and build a socket
object from the result. Address family, socket type and protocol number are as for the socket() function
above. The file descriptor should refer to a socket, but this is not checked — subsequent operations on the
object may fail if the file descriptor is invalid. This function is rarely needed, but can be used to get or set
socket options on a socket passed to a program as standard input or output (such as a server started by the Unix
inet daemon). The socket is assumed to be in blocking mode.

The newly created socket is non-inheritable.

Changed in version 3.4: The returned socket is now non-inheritable.

socket.fromshare(data)
Instantiate a socket from data obtained from the socket.share() method. The socket is assumed to be in
blocking mode.

Availability: Windows.

Added in version 3.3.

socket.SocketType

This is a Python type object that represents the socket object type. It is the same as type(socket(...)).

Other functions

The socket module also offers various network-related services:

socket.close(fd)
Close a socket file descriptor. This is like os.close(), but for sockets. On some platforms (most noticeable
Windows) os.close() does not work for socket file descriptors.

Added in version 3.7.

socket.getaddrinfo(host, port, family=AF_UNSPEC, type=0, proto=0, flags=0)
This function wraps the C function getaddrinfo of the underlying system.

Translate the host/port argument into a sequence of 5-tuples that contain all the necessary arguments for cre-
ating a socket connected to that service. host is a domain name, a string representation of an IPv4/v6 address
or None. port is a string service name such as 'http', a numeric port number or None. By passing None as
the value of host and port, you can pass NULL to the underlying C API.

19.2. socket— Low-level networking interface 1153

The Python Library Reference, Release 3.13.1

The family, type and proto arguments can be optionally specified in order to provide options and limit the list
of addresses returned. Pass their default values (AF_UNSPEC, 0, and 0, respectively) to not limit the results.
See the note below for details.

The flags argument can be one or several of the AI_* constants, and will influence how results are computed
and returned. For example, AI_NUMERICHOST will disable domain name resolution and will raise an error if
host is a domain name.

The function returns a list of 5-tuples with the following structure:

(family, type, proto, canonname, sockaddr)

In these tuples, family, type, proto are all integers and are meant to be passed to the socket() function.
canonname will be a string representing the canonical name of the host if AI_CANONNAME is part of the
flags argument; else canonname will be empty. sockaddr is a tuple describing a socket address, whose for-
mat depends on the returned family (a (address, port) 2-tuple for AF_INET, a (address, port,

flowinfo, scope_id) 4-tuple for AF_INET6), and is meant to be passed to the socket.connect()
method.

Note

If you intend to use results from getaddrinfo() to create a socket (rather than, for example, retrieve
canonname), consider limiting the results by type (e.g. SOCK_STREAM or SOCK_DGRAM) and/or proto (e.g.
IPPROTO_TCP or IPPROTO_UDP) that your application can handle.

The behavior with default values of family, type, proto and flags is system-specific.

Many systems (for example, most Linux configurations) will return a sorted list of all matching addresses.
These addresses should generally be tried in order until a connection succeeds (possibly tried in parallel,
for example, using a Happy Eyeballs algorithm). In these cases, limiting the type and/or proto can help
eliminate unsuccessful or unusable connection attempts.

Some systems will, however, only return a single address. (For example, this was reported on Solaris and
AIX configurations.) On these systems, limiting the type and/or proto helps ensure that this address is
usable.

Raises an auditing event socket.getaddrinfo with arguments host, port, family, type, protocol.

The following example fetches address information for a hypothetical TCP connection to example.org on
port 80 (results may differ on your system if IPv6 isn’t enabled):

>>> socket.getaddrinfo("example.org", 80, proto=socket.IPPROTO_TCP)

[(socket.AF_INET6, socket.SOCK_STREAM,

6, '', ('2606:2800:220:1:248:1893:25c8:1946', 80, 0, 0)),

(socket.AF_INET, socket.SOCK_STREAM,

6, '', ('93.184.216.34', 80))]

Changed in version 3.2: parameters can now be passed using keyword arguments.

Changed in version 3.7: for IPv6 multicast addresses, string representing an address will not contain
%scope_id part.

socket.getfqdn([name])
Return a fully qualified domain name for name. If name is omitted or empty, it is interpreted as the local
host. To find the fully qualified name, the hostname returned by gethostbyaddr() is checked, followed by
aliases for the host, if available. The first name which includes a period is selected. In case no fully qualified
domain name is available and name was provided, it is returned unchanged. If name was empty or equal to
'0.0.0.0', the hostname from gethostname() is returned.

socket.gethostbyname(hostname)
Translate a host name to IPv4 address format. The IPv4 address is returned as a string, such as '100.50.
200.5'. If the host name is an IPv4 address itself it is returned unchanged. See gethostbyname_ex() for a

1154 Chapter 19. Networking and Interprocess Communication

https://en.wikipedia.org/wiki/Happy_Eyeballs

The Python Library Reference, Release 3.13.1

more complete interface. gethostbyname() does not support IPv6 name resolution, and getaddrinfo()
should be used instead for IPv4/v6 dual stack support.

Raises an auditing event socket.gethostbyname with argument hostname.

Availability: not WASI.

socket.gethostbyname_ex(hostname)

Translate a host name to IPv4 address format, extended interface. Return a 3-tuple (hostname,

aliaslist, ipaddrlist) where hostname is the host’s primary host name, aliaslist is a (possibly empty)
list of alternative host names for the same address, and ipaddrlist is a list of IPv4 addresses for the same inter-
face on the same host (often but not always a single address). gethostbyname_ex() does not support IPv6
name resolution, and getaddrinfo() should be used instead for IPv4/v6 dual stack support.

Raises an auditing event socket.gethostbyname with argument hostname.

Availability: not WASI.

socket.gethostname()

Return a string containing the hostname of the machine where the Python interpreter is currently executing.

Raises an auditing event socket.gethostname with no arguments.

Note: gethostname() doesn’t always return the fully qualified domain name; use getfqdn() for that.

Availability: not WASI.

socket.gethostbyaddr(ip_address)
Return a 3-tuple (hostname, aliaslist, ipaddrlist) where hostname is the primary host name re-
sponding to the given ip_address, aliaslist is a (possibly empty) list of alternative host names for the same
address, and ipaddrlist is a list of IPv4/v6 addresses for the same interface on the same host (most likely
containing only a single address). To find the fully qualified domain name, use the function getfqdn().
gethostbyaddr() supports both IPv4 and IPv6.

Raises an auditing event socket.gethostbyaddr with argument ip_address.

Availability: not WASI.

socket.getnameinfo(sockaddr, flags)
Translate a socket address sockaddr into a 2-tuple (host, port). Depending on the settings of flags, the
result can contain a fully qualified domain name or numeric address representation in host. Similarly, port can
contain a string port name or a numeric port number.

For IPv6 addresses, %scope_id is appended to the host part if sockaddr containsmeaningful scope_id. Usually
this happens for multicast addresses.

For more information about flags you can consult getnameinfo(3).

Raises an auditing event socket.getnameinfo with argument sockaddr.

Availability: not WASI.

socket.getprotobyname(protocolname)

Translate an internet protocol name (for example, 'icmp') to a constant suitable for passing as the (optional)
third argument to the socket() function. This is usually only needed for sockets opened in “raw” mode
(SOCK_RAW); for the normal socket modes, the correct protocol is chosen automatically if the protocol is
omitted or zero.

Availability: not WASI.

socket.getservbyname(servicename[, protocolname])
Translate an internet service name and protocol name to a port number for that service. The optional protocol
name, if given, should be 'tcp' or 'udp', otherwise any protocol will match.

Raises an auditing event socket.getservbyname with arguments servicename, protocolname.

Availability: not WASI.

19.2. socket— Low-level networking interface 1155

https://manpages.debian.org/getnameinfo(3)

The Python Library Reference, Release 3.13.1

socket.getservbyport(port[, protocolname])
Translate an internet port number and protocol name to a service name for that service. The optional protocol
name, if given, should be 'tcp' or 'udp', otherwise any protocol will match.

Raises an auditing event socket.getservbyport with arguments port, protocolname.

Availability: not WASI.

socket.ntohl(x)
Convert 32-bit positive integers from network to host byte order. On machines where the host byte order is
the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

socket.ntohs(x)

Convert 16-bit positive integers from network to host byte order. On machines where the host byte order is
the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

Changed in version 3.10: Raises OverflowError if x does not fit in a 16-bit unsigned integer.

socket.htonl(x)
Convert 32-bit positive integers from host to network byte order. On machines where the host byte order is
the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

socket.htons(x)
Convert 16-bit positive integers from host to network byte order. On machines where the host byte order is
the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

Changed in version 3.10: Raises OverflowError if x does not fit in a 16-bit unsigned integer.

socket.inet_aton(ip_string)
Convert an IPv4 address from dotted-quad string format (for example, ‘123.45.67.89’) to 32-bit packed binary
format, as a bytes object four characters in length. This is useful when conversing with a program that uses the
standard C library and needs objects of type in_addr, which is the C type for the 32-bit packed binary this
function returns.

inet_aton() also accepts strings with less than three dots; see the Unix manual page inet(3) for details.

If the IPv4 address string passed to this function is invalid, OSError will be raised. Note that exactly what is
valid depends on the underlying C implementation of inet_aton().

inet_aton() does not support IPv6, and inet_pton() should be used instead for IPv4/v6 dual stack sup-
port.

socket.inet_ntoa(packed_ip)

Convert a 32-bit packed IPv4 address (a bytes-like object four bytes in length) to its standard dotted-quad
string representation (for example, ‘123.45.67.89’). This is useful when conversing with a program that uses
the standard C library and needs objects of type in_addr, which is the C type for the 32-bit packed binary
data this function takes as an argument.

If the byte sequence passed to this function is not exactly 4 bytes in length, OSError will be raised.
inet_ntoa() does not support IPv6, and inet_ntop() should be used instead for IPv4/v6 dual stack sup-
port.

Changed in version 3.5: Writable bytes-like object is now accepted.

socket.inet_pton(address_family, ip_string)
Convert an IP address from its family-specific string format to a packed, binary format. inet_pton() is
useful when a library or network protocol calls for an object of type in_addr (similar to inet_aton()) or
in6_addr.

Supported values for address_family are currently AF_INET and AF_INET6. If the IP address string ip_string
is invalid, OSError will be raised. Note that exactly what is valid depends on both the value of address_family
and the underlying implementation of inet_pton().

Availability: Unix, Windows.

Changed in version 3.4: Windows support added

1156 Chapter 19. Networking and Interprocess Communication

https://manpages.debian.org/inet(3)

The Python Library Reference, Release 3.13.1

socket.inet_ntop(address_family, packed_ip)
Convert a packed IP address (a bytes-like object of some number of bytes) to its standard, family-specific
string representation (for example, '7.10.0.5' or '5aef:2b::8'). inet_ntop() is useful when a library
or network protocol returns an object of type in_addr (similar to inet_ntoa()) or in6_addr.

Supported values for address_family are currently AF_INET and AF_INET6. If the bytes object packed_ip is
not the correct length for the specified address family, ValueError will be raised. OSError is raised for
errors from the call to inet_ntop().

Availability: Unix, Windows.

Changed in version 3.4: Windows support added

Changed in version 3.5: Writable bytes-like object is now accepted.

socket.CMSG_LEN(length)

Return the total length, without trailing padding, of an ancillary data item with associated data of the given
length. This value can often be used as the buffer size for recvmsg() to receive a single item of ancillary data,
but RFC 3542 requires portable applications to use CMSG_SPACE() and thus include space for padding, even
when the item will be the last in the buffer. Raises OverflowError if length is outside the permissible range
of values.

Availability: Unix, not WASI.

Most Unix platforms.

Added in version 3.3.

socket.CMSG_SPACE(length)
Return the buffer size needed for recvmsg() to receive an ancillary data item with associated data of the
given length, along with any trailing padding. The buffer space needed to receive multiple items is the sum of
the CMSG_SPACE() values for their associated data lengths. Raises OverflowError if length is outside the
permissible range of values.

Note that some systems might support ancillary data without providing this function. Also note that setting the
buffer size using the results of this function may not precisely limit the amount of ancillary data that can be
received, since additional data may be able to fit into the padding area.

Availability: Unix, not WASI.

most Unix platforms.

Added in version 3.3.

socket.getdefaulttimeout()

Return the default timeout in seconds (float) for new socket objects. A value of None indicates that new socket
objects have no timeout. When the socket module is first imported, the default is None.

socket.setdefaulttimeout(timeout)

Set the default timeout in seconds (float) for new socket objects. When the socket module is first imported, the
default is None. See settimeout() for possible values and their respective meanings.

socket.sethostname(name)
Set the machine’s hostname to name. This will raise an OSError if you don’t have enough rights.

Raises an auditing event socket.sethostname with argument name.

Availability: Unix, not Android.

Added in version 3.3.

socket.if_nameindex()

Return a list of network interface information (index int, name string) tuples. OSError if the system call fails.

Availability: Unix, Windows, not WASI.

Added in version 3.3.

19.2. socket— Low-level networking interface 1157

https://datatracker.ietf.org/doc/html/rfc3542.html

The Python Library Reference, Release 3.13.1

Changed in version 3.8: Windows support was added.

Note

On Windows network interfaces have different names in different contexts (all names are examples):

• UUID: {FB605B73-AAC2-49A6-9A2F-25416AEA0573}

• name: ethernet_32770

• friendly name: vEthernet (nat)

• description: Hyper-V Virtual Ethernet Adapter

This function returns names of the second form from the list, ethernet_32770 in this example case.

socket.if_nametoindex(if_name)

Return a network interface index number corresponding to an interface name. OSError if no interface with
the given name exists.

Availability: Unix, Windows, not WASI.

Added in version 3.3.

Changed in version 3.8: Windows support was added.

See also

“Interface name” is a name as documented in if_nameindex().

socket.if_indextoname(if_index)
Return a network interface name corresponding to an interface index number. OSError if no interface with
the given index exists.

Availability: Unix, Windows, not WASI.

Added in version 3.3.

Changed in version 3.8: Windows support was added.

See also

“Interface name” is a name as documented in if_nameindex().

socket.send_fds(sock, buffers, fds[, flags[, address]])
Send the list of file descriptors fds over an AF_UNIX socket sock. The fds parameter is a sequence of file
descriptors. Consult sendmsg() for the documentation of these parameters.

Availability: Unix, Windows, not WASI.

Unix platforms supporting sendmsg() and SCM_RIGHTS mechanism.

Added in version 3.9.

socket.recv_fds(sock, bufsize, maxfds[, flags])
Receive up to maxfds file descriptors from an AF_UNIX socket sock. Return (msg, list(fds), flags,

addr). Consult recvmsg() for the documentation of these parameters.

Availability: Unix, Windows, not WASI.

Unix platforms supporting sendmsg() and SCM_RIGHTS mechanism.

Added in version 3.9.

1158 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Note

Any truncated integers at the end of the list of file descriptors.

19.2.3 Socket Objects

Socket objects have the followingmethods. Except for makefile(), these correspond toUnix system calls applicable
to sockets.

Changed in version 3.2: Support for the context manager protocol was added. Exiting the context manager is equiv-
alent to calling close().

socket.accept()

Accept a connection. The socket must be bound to an address and listening for connections. The return value is
a pair (conn, address)where conn is a new socket object usable to send and receive data on the connection,
and address is the address bound to the socket on the other end of the connection.

The newly created socket is non-inheritable.

Changed in version 3.4: The socket is now non-inheritable.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the
method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the
rationale).

socket.bind(address)
Bind the socket to address. The socket must not already be bound. (The format of address depends on the
address family — see above.)

Raises an auditing event socket.bind with arguments self, address.

Availability: not WASI.

socket.close()

Mark the socket closed. The underlying system resource (e.g. a file descriptor) is also closed when all file
objects from makefile() are closed. Once that happens, all future operations on the socket object will fail.
The remote end will receive no more data (after queued data is flushed).

Sockets are automatically closed when they are garbage-collected, but it is recommended to close() them
explicitly, or to use a with statement around them.

Changed in version 3.6: OSError is now raised if an error occurs when the underlying close() call is made.

Note

close() releases the resource associated with a connection but does not necessarily close the connection
immediately. If you want to close the connection in a timely fashion, call shutdown() before close().

socket.connect(address)
Connect to a remote socket at address. (The format of address depends on the address family — see above.)

If the connection is interrupted by a signal, the method waits until the connection completes, or raise a
TimeoutError on timeout, if the signal handler doesn’t raise an exception and the socket is blocking or has
a timeout. For non-blocking sockets, the method raises an InterruptedError exception if the connection
is interrupted by a signal (or the exception raised by the signal handler).

Raises an auditing event socket.connect with arguments self, address.

Changed in version 3.5: The method now waits until the connection completes instead of raising an
InterruptedError exception if the connection is interrupted by a signal, the signal handler doesn’t raise an
exception and the socket is blocking or has a timeout (see the PEP 475 for the rationale).

Availability: not WASI.

19.2. socket— Low-level networking interface 1159

https://peps.python.org/pep-0475/
https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.13.1

socket.connect_ex(address)
Like connect(address), but return an error indicator instead of raising an exception for errors returned by
the C-level connect() call (other problems, such as “host not found,” can still raise exceptions). The error
indicator is 0 if the operation succeeded, otherwise the value of the errno variable. This is useful to support,
for example, asynchronous connects.

Raises an auditing event socket.connect with arguments self, address.

Availability: not WASI.

socket.detach()

Put the socket object into closed state without actually closing the underlying file descriptor. The file descriptor
is returned, and can be reused for other purposes.

Added in version 3.2.

socket.dup()

Duplicate the socket.

The newly created socket is non-inheritable.

Changed in version 3.4: The socket is now non-inheritable.

Availability: not WASI.

socket.fileno()

Return the socket’s file descriptor (a small integer), or -1 on failure. This is useful with select.select().

Under Windows the small integer returned by this method cannot be used where a file descriptor can be used
(such as os.fdopen()). Unix does not have this limitation.

socket.get_inheritable()

Get the inheritable flag of the socket’s file descriptor or socket’s handle: True if the socket can be inherited in
child processes, False if it cannot.

Added in version 3.4.

socket.getpeername()

Return the remote address to which the socket is connected. This is useful to find out the port number of a
remote IPv4/v6 socket, for instance. (The format of the address returned depends on the address family —
see above.) On some systems this function is not supported.

socket.getsockname()

Return the socket’s own address. This is useful to find out the port number of an IPv4/v6 socket, for instance.
(The format of the address returned depends on the address family — see above.)

socket.getsockopt(level, optname[, buflen])
Return the value of the given socket option (see the Unix man page getsockopt(2)). The needed symbolic
constants (SO_* etc.) are defined in this module. If buflen is absent, an integer option is assumed and its integer
value is returned by the function. If buflen is present, it specifies the maximum length of the buffer used to
receive the option in, and this buffer is returned as a bytes object. It is up to the caller to decode the contents of
the buffer (see the optional built-in module struct for a way to decode C structures encoded as byte strings).

Availability: not WASI.

socket.getblocking()

Return True if socket is in blocking mode, False if in non-blocking.

This is equivalent to checking socket.gettimeout() != 0.

Added in version 3.7.

socket.gettimeout()

Return the timeout in seconds (float) associated with socket operations, or None if no timeout is set. This
reflects the last call to setblocking() or settimeout().

1160 Chapter 19. Networking and Interprocess Communication

https://manpages.debian.org/getsockopt(2)

The Python Library Reference, Release 3.13.1

socket.ioctl(control, option)

Platform
Windows

The ioctl() method is a limited interface to the WSAIoctl system interface. Please refer to the Win32
documentation for more information.

On other platforms, the generic fcntl.fcntl() and fcntl.ioctl() functions may be used; they accept
a socket object as their first argument.

Currently only the following control codes are supported: SIO_RCVALL, SIO_KEEPALIVE_VALS, and
SIO_LOOPBACK_FAST_PATH.

Changed in version 3.6: SIO_LOOPBACK_FAST_PATH was added.

socket.listen([backlog])
Enable a server to accept connections. If backlog is specified, it must be at least 0 (if it is lower, it is set to 0);
it specifies the number of unaccepted connections that the system will allow before refusing new connections.
If not specified, a default reasonable value is chosen.

Availability: not WASI.

Changed in version 3.5: The backlog parameter is now optional.

socket.makefile(mode=’r’, buffering=None, *, encoding=None, errors=None, newline=None)
Return a file object associated with the socket. The exact returned type depends on the arguments given to
makefile(). These arguments are interpreted the same way as by the built-in open() function, except the
only supported mode values are 'r' (default), 'w', 'b', or a combination of those.

The socket must be in blocking mode; it can have a timeout, but the file object’s internal buffer may end up in
an inconsistent state if a timeout occurs.

Closing the file object returned by makefile() won’t close the original socket unless all other file objects
have been closed and socket.close() has been called on the socket object.

Note

On Windows, the file-like object created by makefile() cannot be used where a file object with a file
descriptor is expected, such as the stream arguments of subprocess.Popen().

socket.recv(bufsize[, flags])
Receive data from the socket. The return value is a bytes object representing the data received. The maximum
amount of data to be received at once is specified by bufsize. A returned empty bytes object indicates that the
client has disconnected. See the Unix manual page recv(2) for the meaning of the optional argument flags;
it defaults to zero.

Note

For best match with hardware and network realities, the value of bufsize should be a relatively small power
of 2, for example, 4096.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the
method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the
rationale).

socket.recvfrom(bufsize[, flags])
Receive data from the socket. The return value is a pair (bytes, address) where bytes is a bytes object
representing the data received and address is the address of the socket sending the data. See the Unix manual
page recv(2) for the meaning of the optional argument flags; it defaults to zero. (The format of address
depends on the address family — see above.)

19.2. socket— Low-level networking interface 1161

https://msdn.microsoft.com/en-us/library/ms741621%28VS.85%29.aspx
https://msdn.microsoft.com/en-us/library/ms741621%28VS.85%29.aspx
https://manpages.debian.org/recv(2)
https://peps.python.org/pep-0475/
https://manpages.debian.org/recv(2)

The Python Library Reference, Release 3.13.1

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the
method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the
rationale).

Changed in version 3.7: For multicast IPv6 address, first item of address does not contain %scope_id part
anymore. In order to get full IPv6 address use getnameinfo().

socket.recvmsg(bufsize[, ancbufsize[, flags]])
Receive normal data (up to bufsize bytes) and ancillary data from the socket. The ancbufsize argument sets the
size in bytes of the internal buffer used to receive the ancillary data; it defaults to 0, meaning that no ancillary
data will be received. Appropriate buffer sizes for ancillary data can be calculated using CMSG_SPACE() or
CMSG_LEN(), and items which do not fit into the buffer might be truncated or discarded. The flags argument
defaults to 0 and has the same meaning as for recv().

The return value is a 4-tuple: (data, ancdata, msg_flags, address). The data item is a bytes ob-
ject holding the non-ancillary data received. The ancdata item is a list of zero or more tuples (cmsg_level,
cmsg_type, cmsg_data) representing the ancillary data (control messages) received: cmsg_level and
cmsg_type are integers specifying the protocol level and protocol-specific type respectively, and cmsg_data
is a bytes object holding the associated data. The msg_flags item is the bitwise OR of various flags indicat-
ing conditions on the received message; see your system documentation for details. If the receiving socket is
unconnected, address is the address of the sending socket, if available; otherwise, its value is unspecified.

On some systems, sendmsg() and recvmsg() can be used to pass file descriptors between processes over
an AF_UNIX socket. When this facility is used (it is often restricted to SOCK_STREAM sockets), recvmsg()
will return, in its ancillary data, items of the form (socket.SOL_SOCKET, socket.SCM_RIGHTS, fds),
where fds is a bytes object representing the new file descriptors as a binary array of the native C int type. If
recvmsg() raises an exception after the system call returns, it will first attempt to close any file descriptors
received via this mechanism.

Some systems do not indicate the truncated length of ancillary data items which have been only partially re-
ceived. If an item appears to extend beyond the end of the buffer, recvmsg() will issue a RuntimeWarning,
and will return the part of it which is inside the buffer provided it has not been truncated before the start of its
associated data.

On systems which support the SCM_RIGHTS mechanism, the following function will receive up to maxfds
file descriptors, returning the message data and a list containing the descriptors (while ignoring unexpected
conditions such as unrelated control messages being received). See also sendmsg().

import socket, array

def recv_fds(sock, msglen, maxfds):

fds = array.array("i") # Array of ints

msg, ancdata, flags, addr = sock.recvmsg(msglen, socket.CMSG_LEN(maxfds *␣

↪→fds.itemsize))

for cmsg_level, cmsg_type, cmsg_data in ancdata:

if cmsg_level == socket.SOL_SOCKET and cmsg_type == socket.SCM_RIGHTS:

Append data, ignoring any truncated integers at the end.

fds.frombytes(cmsg_data[:len(cmsg_data) - (len(cmsg_data) % fds.

↪→itemsize)])

return msg, list(fds)

Availability: Unix.

Most Unix platforms.

Added in version 3.3.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the
method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the
rationale).

1162 Chapter 19. Networking and Interprocess Communication

https://peps.python.org/pep-0475/
https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.13.1

socket.recvmsg_into(buffers[, ancbufsize[, flags]])
Receive normal data and ancillary data from the socket, behaving as recvmsg() would, but scatter the non-
ancillary data into a series of buffers instead of returning a new bytes object. The buffers argument must be an
iterable of objects that export writable buffers (e.g. bytearray objects); these will be filled with successive
chunks of the non-ancillary data until it has all been written or there are no more buffers. The operating system
may set a limit (sysconf() value SC_IOV_MAX) on the number of buffers that can be used. The ancbufsize
and flags arguments have the same meaning as for recvmsg().

The return value is a 4-tuple: (nbytes, ancdata, msg_flags, address), where nbytes is the total
number of bytes of non-ancillary data written into the buffers, and ancdata, msg_flags and address are the
same as for recvmsg().

Example:

>>> import socket

>>> s1, s2 = socket.socketpair()

>>> b1 = bytearray(b'----')

>>> b2 = bytearray(b'0123456789')

>>> b3 = bytearray(b'--------------')

>>> s1.send(b'Mary had a little lamb')

22

>>> s2.recvmsg_into([b1, memoryview(b2)[2:9], b3])

(22, [], 0, None)

>>> [b1, b2, b3]

[bytearray(b'Mary'), bytearray(b'01 had a 9'), bytearray(b'little lamb---')]

Availability: Unix.

Most Unix platforms.

Added in version 3.3.

socket.recvfrom_into(buffer[, nbytes[, flags]])
Receive data from the socket, writing it into buffer instead of creating a new bytestring. The return value is
a pair (nbytes, address) where nbytes is the number of bytes received and address is the address of the
socket sending the data. See the Unix manual page recv(2) for the meaning of the optional argument flags;
it defaults to zero. (The format of address depends on the address family — see above.)

socket.recv_into(buffer[, nbytes[, flags]])
Receive up to nbytes bytes from the socket, storing the data into a buffer rather than creating a new bytestring.
If nbytes is not specified (or 0), receive up to the size available in the given buffer. Returns the number of bytes
received. See the Unix manual page recv(2) for the meaning of the optional argument flags; it defaults to
zero.

socket.send(bytes[, flags])
Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has
the same meaning as for recv() above. Returns the number of bytes sent. Applications are responsible for
checking that all data has been sent; if only some of the data was transmitted, the application needs to attempt
delivery of the remaining data. For further information on this topic, consult the socket-howto.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the
method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the
rationale).

socket.sendall(bytes[, flags])
Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has
the same meaning as for recv() above. Unlike send(), this method continues to send data from bytes until
either all data has been sent or an error occurs. None is returned on success. On error, an exception is raised,
and there is no way to determine how much data, if any, was successfully sent.

Changed in version 3.5: The socket timeout is no longer reset each time data is sent successfully. The socket
timeout is now the maximum total duration to send all data.

19.2. socket— Low-level networking interface 1163

https://manpages.debian.org/recv(2)
https://manpages.debian.org/recv(2)
https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.13.1

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the
method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the
rationale).

socket.sendto(bytes, address)
socket.sendto(bytes, flags, address)

Send data to the socket. The socket should not be connected to a remote socket, since the destination socket
is specified by address. The optional flags argument has the same meaning as for recv() above. Return the
number of bytes sent. (The format of address depends on the address family — see above.)

Raises an auditing event socket.sendto with arguments self, address.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the
method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the
rationale).

socket.sendmsg(buffers[, ancdata[, flags[, address]]])
Send normal and ancillary data to the socket, gathering the non-ancillary data from a series of buffers and
concatenating it into a single message. The buffers argument specifies the non-ancillary data as an iterable of
bytes-like objects (e.g. bytes objects); the operating system may set a limit (sysconf() value SC_IOV_MAX)
on the number of buffers that can be used. The ancdata argument specifies the ancillary data (control messages)
as an iterable of zero or more tuples (cmsg_level, cmsg_type, cmsg_data), where cmsg_level and
cmsg_type are integers specifying the protocol level and protocol-specific type respectively, and cmsg_data
is a bytes-like object holding the associated data. Note that some systems (in particular, systems without
CMSG_SPACE()) might support sending only one control message per call. The flags argument defaults to 0
and has the same meaning as for send(). If address is supplied and not None, it sets a destination address for
the message. The return value is the number of bytes of non-ancillary data sent.

The following function sends the list of file descriptors fds over an AF_UNIX socket, on systems which support
the SCM_RIGHTS mechanism. See also recvmsg().

import socket, array

def send_fds(sock, msg, fds):

return sock.sendmsg([msg], [(socket.SOL_SOCKET, socket.SCM_RIGHTS, array.

↪→array("i", fds))])

Availability: Unix, not WASI.

Most Unix platforms.

Raises an auditing event socket.sendmsg with arguments self, address.

Added in version 3.3.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the
method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the
rationale).

socket.sendmsg_afalg([msg,]*, op[, iv[, assoclen[, flags]]])
Specialized version of sendmsg() for AF_ALG socket. Set mode, IV, AEAD associated data length and flags
for AF_ALG socket.

Availability: Linux >= 2.6.38.

Added in version 3.6.

socket.sendfile(file, offset=0, count=None)
Send a file until EOF is reached by using high-performance os.sendfile and return the total number of bytes
which were sent. file must be a regular file object opened in binary mode. If os.sendfile is not available
(e.g. Windows) or file is not a regular file send() will be used instead. offset tells from where to start reading
the file. If specified, count is the total number of bytes to transmit as opposed to sending the file until EOF is
reached. File position is updated on return or also in case of error in which case file.tell() can be used

1164 Chapter 19. Networking and Interprocess Communication

https://peps.python.org/pep-0475/
https://peps.python.org/pep-0475/
https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.13.1

to figure out the number of bytes which were sent. The socket must be of SOCK_STREAM type. Non-blocking
sockets are not supported.

Added in version 3.5.

socket.set_inheritable(inheritable)
Set the inheritable flag of the socket’s file descriptor or socket’s handle.

Added in version 3.4.

socket.setblocking(flag)
Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking, else to
blocking mode.

This method is a shorthand for certain settimeout() calls:

• sock.setblocking(True) is equivalent to sock.settimeout(None)

• sock.setblocking(False) is equivalent to sock.settimeout(0.0)

Changed in version 3.7: The method no longer applies SOCK_NONBLOCK flag on socket.type.

socket.settimeout(value)
Set a timeout on blocking socket operations. The value argument can be a nonnegative floating-point number
expressing seconds, or None. If a non-zero value is given, subsequent socket operations will raise a timeout
exception if the timeout period value has elapsed before the operation has completed. If zero is given, the
socket is put in non-blocking mode. If None is given, the socket is put in blocking mode.

For further information, please consult the notes on socket timeouts.

Changed in version 3.7: The method no longer toggles SOCK_NONBLOCK flag on socket.type.

socket.setsockopt(level, optname, value: int)

socket.setsockopt(level, optname, value: buffer)

socket.setsockopt(level, optname, None, optlen: int)
Set the value of the given socket option (see the Unix manual page setsockopt(2)). The needed symbolic
constants are defined in this module (SO_* etc. <socket-unix-constants>). The value can be an integer, None or
a bytes-like object representing a buffer. In the later case it is up to the caller to ensure that the bytestring contains
the proper bits (see the optional built-in module struct for a way to encode C structures as bytestrings).
When value is set to None, optlen argument is required. It’s equivalent to call setsockopt() C function with
optval=NULL and optlen=optlen.

Changed in version 3.5: Writable bytes-like object is now accepted.

Changed in version 3.6: setsockopt(level, optname, None, optlen: int) form added.

Availability: not WASI.

socket.shutdown(how)
Shut down one or both halves of the connection. If how is SHUT_RD, further receives are disallowed. If how
is SHUT_WR, further sends are disallowed. If how is SHUT_RDWR, further sends and receives are disallowed.

Availability: not WASI.

socket.share(process_id)
Duplicate a socket and prepare it for sharing with a target process. The target process must be provided with
process_id. The resulting bytes object can then be passed to the target process using some form of interprocess
communication and the socket can be recreated there using fromshare(). Once this method has been called,
it is safe to close the socket since the operating system has already duplicated it for the target process.

Availability: Windows.

Added in version 3.3.

19.2. socket— Low-level networking interface 1165

https://manpages.debian.org/setsockopt(2)

The Python Library Reference, Release 3.13.1

Note that there are no methods read() or write(); use recv() and send() without flags argument instead.

Socket objects also have these (read-only) attributes that correspond to the values given to the socket constructor.

socket.family

The socket family.

socket.type

The socket type.

socket.proto

The socket protocol.

19.2.4 Notes on socket timeouts

A socket object can be in one of three modes: blocking, non-blocking, or timeout. Sockets are by default always
created in blocking mode, but this can be changed by calling setdefaulttimeout().

• In blocking mode, operations block until complete or the system returns an error (such as connection timed
out).

• In non-blocking mode, operations fail (with an error that is unfortunately system-dependent) if they cannot be
completed immediately: functions from the select module can be used to know when and whether a socket
is available for reading or writing.

• In timeout mode, operations fail if they cannot be completed within the timeout specified for the socket (they
raise a timeout exception) or if the system returns an error.

Note

At the operating system level, sockets in timeout mode are internally set in non-blocking mode. Also, the blocking
and timeout modes are shared between file descriptors and socket objects that refer to the same network endpoint.
This implementation detail can have visible consequences if e.g. you decide to use the fileno() of a socket.

Timeouts and the connect method

The connect() operation is also subject to the timeout setting, and in general it is recommended to call
settimeout() before calling connect() or pass a timeout parameter to create_connection(). However,
the system network stack may also return a connection timeout error of its own regardless of any Python socket
timeout setting.

Timeouts and the accept method

If getdefaulttimeout() is not None, sockets returned by the accept()method inherit that timeout. Otherwise,
the behaviour depends on settings of the listening socket:

• if the listening socket is in blocking mode or in timeout mode, the socket returned by accept() is in blocking
mode;

• if the listening socket is in non-blocking mode, whether the socket returned by accept() is in blocking or
non-blocking mode is operating system-dependent. If you want to ensure cross-platform behaviour, it is rec-
ommended you manually override this setting.

19.2.5 Example

Here are four minimal example programs using the TCP/IP protocol: a server that echoes all data that it receives
back (servicing only one client), and a client using it. Note that a server must perform the sequence socket(),
bind(), listen(), accept() (possibly repeating the accept() to service more than one client), while a client
only needs the sequence socket(), connect(). Also note that the server does not sendall()/recv() on the
socket it is listening on but on the new socket returned by accept().

The first two examples support IPv4 only.

1166 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Echo server program

import socket

HOST = '' # Symbolic name meaning all available interfaces

PORT = 50007 # Arbitrary non-privileged port

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

s.bind((HOST, PORT))

s.listen(1)

conn, addr = s.accept()

with conn:

print('Connected by', addr)

while True:

data = conn.recv(1024)

if not data: break

conn.sendall(data)

Echo client program

import socket

HOST = 'daring.cwi.nl' # The remote host

PORT = 50007 # The same port as used by the server

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

s.connect((HOST, PORT))

s.sendall(b'Hello, world')

data = s.recv(1024)

print('Received', repr(data))

The next two examples are identical to the above two, but support both IPv4 and IPv6. The server side will listen
to the first address family available (it should listen to both instead). On most of IPv6-ready systems, IPv6 will take
precedence and the server may not accept IPv4 traffic. The client side will try to connect to all the addresses returned
as a result of the name resolution, and sends traffic to the first one connected successfully.

Echo server program

import socket

import sys

HOST = None # Symbolic name meaning all available interfaces

PORT = 50007 # Arbitrary non-privileged port

s = None

for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC,

socket.SOCK_STREAM, 0, socket.AI_PASSIVE):

af, socktype, proto, canonname, sa = res

try:

s = socket.socket(af, socktype, proto)

except OSError as msg:

s = None

continue

try:

s.bind(sa)

s.listen(1)

except OSError as msg:

s.close()

s = None

continue

break

if s is None:

print('could not open socket')
(continues on next page)

19.2. socket— Low-level networking interface 1167

The Python Library Reference, Release 3.13.1

(continued from previous page)

sys.exit(1)

conn, addr = s.accept()

with conn:

print('Connected by', addr)

while True:

data = conn.recv(1024)

if not data: break

conn.send(data)

Echo client program

import socket

import sys

HOST = 'daring.cwi.nl' # The remote host

PORT = 50007 # The same port as used by the server

s = None

for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC, socket.SOCK_STREAM):

af, socktype, proto, canonname, sa = res

try:

s = socket.socket(af, socktype, proto)

except OSError as msg:

s = None

continue

try:

s.connect(sa)

except OSError as msg:

s.close()

s = None

continue

break

if s is None:

print('could not open socket')

sys.exit(1)

with s:

s.sendall(b'Hello, world')

data = s.recv(1024)

print('Received', repr(data))

The next example shows how to write a very simple network sniffer with raw sockets on Windows. The example
requires administrator privileges to modify the interface:

import socket

the public network interface

HOST = socket.gethostbyname(socket.gethostname())

create a raw socket and bind it to the public interface

s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_IP)

s.bind((HOST, 0))

Include IP headers

s.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

receive all packets

s.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)

(continues on next page)

1168 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

(continued from previous page)

receive a packet

print(s.recvfrom(65565))

disabled promiscuous mode

s.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)

The next example shows how to use the socket interface to communicate to a CAN network using the raw socket
protocol. To use CAN with the broadcast manager protocol instead, open a socket with:

socket.socket(socket.AF_CAN, socket.SOCK_DGRAM, socket.CAN_BCM)

After binding (CAN_RAW) or connecting (CAN_BCM) the socket, you can use the socket.send() and socket.

recv() operations (and their counterparts) on the socket object as usual.

This last example might require special privileges:

import socket

import struct

CAN frame packing/unpacking (see 'struct can_frame' in <linux/can.h>)

can_frame_fmt = "=IB3x8s"

can_frame_size = struct.calcsize(can_frame_fmt)

def build_can_frame(can_id, data):

can_dlc = len(data)

data = data.ljust(8, b'\x00')

return struct.pack(can_frame_fmt, can_id, can_dlc, data)

def dissect_can_frame(frame):

can_id, can_dlc, data = struct.unpack(can_frame_fmt, frame)

return (can_id, can_dlc, data[:can_dlc])

create a raw socket and bind it to the 'vcan0' interface

s = socket.socket(socket.AF_CAN, socket.SOCK_RAW, socket.CAN_RAW)

s.bind(('vcan0',))

while True:

cf, addr = s.recvfrom(can_frame_size)

print('Received: can_id=%x, can_dlc=%x, data=%s' % dissect_can_frame(cf))

try:

s.send(cf)

except OSError:

print('Error sending CAN frame')

try:

s.send(build_can_frame(0x01, b'\x01\x02\x03'))

except OSError:

print('Error sending CAN frame')

Running an example several times with too small delay between executions, could lead to this error:

OSError: [Errno 98] Address already in use

19.2. socket— Low-level networking interface 1169

The Python Library Reference, Release 3.13.1

This is because the previous execution has left the socket in a TIME_WAIT state, and can’t be immediately reused.

There is a socket flag to set, in order to prevent this, socket.SO_REUSEADDR:

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

s.bind((HOST, PORT))

the SO_REUSEADDR flag tells the kernel to reuse a local socket in TIME_WAIT state, without waiting for its natural
timeout to expire.

See also

For an introduction to socket programming (in C), see the following papers:

• An Introductory 4.3BSD Interprocess Communication Tutorial, by Stuart Sechrest

• An Advanced 4.3BSD Interprocess Communication Tutorial, by Samuel J. Leffler et al,

both in the UNIXProgrammer’sManual, Supplementary Documents 1 (sections PS1:7 and PS1:8). The platform-
specific reference material for the various socket-related system calls are also a valuable source of information on
the details of socket semantics. For Unix, refer to the manual pages; for Windows, see the WinSock (or Winsock
2) specification. For IPv6-ready APIs, readers may want to refer to RFC 3493 titled Basic Socket Interface
Extensions for IPv6.

19.3 ssl— TLS/SSL wrapper for socket objects

Source code: Lib/ssl.py

This module provides access to Transport Layer Security (often known as “Secure Sockets Layer”) encryption and
peer authentication facilities for network sockets, both client-side and server-side. This module uses the OpenSSL
library. It is available on all modern Unix systems, Windows, macOS, and probably additional platforms, as long as
OpenSSL is installed on that platform.

Note

Some behavior may be platform dependent, since calls are made to the operating system socket APIs. The
installed version of OpenSSLmay also cause variations in behavior. For example, TLSv1.3 comes with OpenSSL
version 1.1.1.

Warning

Don’t use this module without reading the Security considerations. Doing so may lead to a false sense of security,
as the default settings of the ssl module are not necessarily appropriate for your application.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

This section documents the objects and functions in the ssl module; for more general information about TLS, SSL,
and certificates, the reader is referred to the documents in the “See Also” section at the bottom.

This module provides a class, ssl.SSLSocket, which is derived from the socket.socket type, and pro-
vides a socket-like wrapper that also encrypts and decrypts the data going over the socket with SSL. It supports
additional methods such as getpeercert(), which retrieves the certificate of the other side of the connec-
tion, cipher(), which retrieves the cipher being used for the secure connection or get_verified_chain(),
get_unverified_chain() which retrieves certificate chain.

1170 Chapter 19. Networking and Interprocess Communication

https://datatracker.ietf.org/doc/html/rfc3493.html
https://github.com/python/cpython/tree/3.13/Lib/ssl.py

The Python Library Reference, Release 3.13.1

For more sophisticated applications, the ssl.SSLContext class helps manage settings and certificates, which can
then be inherited by SSL sockets created through the SSLContext.wrap_socket() method.

Changed in version 3.5.3: Updated to support linking with OpenSSL 1.1.0

Changed in version 3.6: OpenSSL 0.9.8, 1.0.0 and 1.0.1 are deprecated and no longer supported. In the future the
ssl module will require at least OpenSSL 1.0.2 or 1.1.0.

Changed in version 3.10: PEP 644 has been implemented. The ssl module requires OpenSSL 1.1.1 or newer.

Use of deprecated constants and functions result in deprecation warnings.

19.3.1 Functions, Constants, and Exceptions

Socket creation

Instances of SSLSocket must be created using the SSLContext.wrap_socket() method. The helper function
create_default_context() returns a new context with secure default settings.

Client socket example with default context and IPv4/IPv6 dual stack:

import socket

import ssl

hostname = 'www.python.org'

context = ssl.create_default_context()

with socket.create_connection((hostname, 443)) as sock:

with context.wrap_socket(sock, server_hostname=hostname) as ssock:

print(ssock.version())

Client socket example with custom context and IPv4:

hostname = 'www.python.org'

PROTOCOL_TLS_CLIENT requires valid cert chain and hostname

context = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT)

context.load_verify_locations('path/to/cabundle.pem')

with socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) as sock:

with context.wrap_socket(sock, server_hostname=hostname) as ssock:

print(ssock.version())

Server socket example listening on localhost IPv4:

context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)

context.load_cert_chain('/path/to/certchain.pem', '/path/to/private.key')

with socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) as sock:

sock.bind(('127.0.0.1', 8443))

sock.listen(5)

with context.wrap_socket(sock, server_side=True) as ssock:

conn, addr = ssock.accept()

...

Context creation

A convenience function helps create SSLContext objects for common purposes.

ssl.create_default_context(purpose=Purpose.SERVER_AUTH, cafile=None, capath=None, cadata=None)
Return a new SSLContext object with default settings for the given purpose. The settings are chosen by
the ssl module, and usually represent a higher security level than when calling the SSLContext constructor
directly.

19.3. ssl— TLS/SSL wrapper for socket objects 1171

https://peps.python.org/pep-0644/

The Python Library Reference, Release 3.13.1

cafile, capath, cadata represent optional CA certificates to trust for certificate verification, as in SSLContext.
load_verify_locations(). If all three are None, this function can choose to trust the system’s default
CA certificates instead.

The settings are: PROTOCOL_TLS_CLIENT or PROTOCOL_TLS_SERVER, OP_NO_SSLv2, and OP_NO_SSLv3
with high encryption cipher suites without RC4 and without unauthenticated cipher suites. Passing
SERVER_AUTH as purpose sets verify_mode to CERT_REQUIRED and either loads CA certificates (when
at least one of cafile, capath or cadata is given) or uses SSLContext.load_default_certs() to load
default CA certificates.

When keylog_filename is supported and the environment variable SSLKEYLOGFILE is set,
create_default_context() enables key logging.

The default settings for this context include VERIFY_X509_PARTIAL_CHAIN and VERIFY_X509_STRICT.
These make the underlying OpenSSL implementation behave more like a conforming implementation ofRFC
5280, in exchange for a small amount of incompatibility with older X.509 certificates.

Note

The protocol, options, cipher and other settings may change to more restrictive values anytime without
prior deprecation. The values represent a fair balance between compatibility and security.

If your application needs specific settings, you should create a SSLContext and apply the settings yourself.

Note

If you find that when certain older clients or servers attempt to connect with a SSLContext created by
this function that they get an error stating “Protocol or cipher suite mismatch”, it may be that they only
support SSL3.0 which this function excludes using the OP_NO_SSLv3. SSL3.0 is widely considered to be
completely broken. If you still wish to continue to use this function but still allow SSL 3.0 connections you
can re-enable them using:

ctx = ssl.create_default_context(Purpose.CLIENT_AUTH)

ctx.options &= ~ssl.OP_NO_SSLv3

Note

This context enables VERIFY_X509_STRICT by default, which may reject pre-RFC 5280 or malformed
certificates that the underlying OpenSSL implementation otherwise would accept. While disabling this is
not recommended, you can do so using:

ctx = ssl.create_default_context()

ctx.verify_flags &= ~ssl.VERIFY_X509_STRICT

Added in version 3.4.

Changed in version 3.4.4: RC4 was dropped from the default cipher string.

Changed in version 3.6: ChaCha20/Poly1305 was added to the default cipher string.

3DES was dropped from the default cipher string.

Changed in version 3.8: Support for key logging to SSLKEYLOGFILE was added.

Changed in version 3.10: The context now uses PROTOCOL_TLS_CLIENT or PROTOCOL_TLS_SERVER pro-
tocol instead of generic PROTOCOL_TLS.

Changed in version 3.13: The context now uses VERIFY_X509_PARTIAL_CHAIN and
VERIFY_X509_STRICT in its default verify flags.

1172 Chapter 19. Networking and Interprocess Communication

https://datatracker.ietf.org/doc/html/rfc5280.html
https://datatracker.ietf.org/doc/html/rfc5280.html
https://en.wikipedia.org/wiki/POODLE
https://datatracker.ietf.org/doc/html/rfc5280.html

The Python Library Reference, Release 3.13.1

Exceptions

exception ssl.SSLError

Raised to signal an error from the underlying SSL implementation (currently provided by theOpenSSL library).
This signifies some problem in the higher-level encryption and authentication layer that’s superimposed on the
underlying network connection. This error is a subtype of OSError. The error code andmessage of SSLError
instances are provided by the OpenSSL library.

Changed in version 3.3: SSLError used to be a subtype of socket.error.

library

A string mnemonic designating the OpenSSL submodule in which the error occurred, such as SSL, PEM
or X509. The range of possible values depends on the OpenSSL version.

Added in version 3.3.

reason

A string mnemonic designating the reason this error occurred, for example
CERTIFICATE_VERIFY_FAILED. The range of possible values depends on the OpenSSL version.

Added in version 3.3.

exception ssl.SSLZeroReturnError

A subclass of SSLError raised when trying to read or write and the SSL connection has been closed cleanly.
Note that this doesn’t mean that the underlying transport (read TCP) has been closed.

Added in version 3.3.

exception ssl.SSLWantReadError

A subclass of SSLError raised by a non-blocking SSL socket when trying to read or write data, but more data
needs to be received on the underlying TCP transport before the request can be fulfilled.

Added in version 3.3.

exception ssl.SSLWantWriteError

A subclass of SSLError raised by a non-blocking SSL socket when trying to read or write data, but more data
needs to be sent on the underlying TCP transport before the request can be fulfilled.

Added in version 3.3.

exception ssl.SSLSyscallError

A subclass of SSLError raised when a system error was encountered while trying to fulfill an operation on a
SSL socket. Unfortunately, there is no easy way to inspect the original errno number.

Added in version 3.3.

exception ssl.SSLEOFError

A subclass of SSLError raised when the SSL connection has been terminated abruptly. Generally, you
shouldn’t try to reuse the underlying transport when this error is encountered.

Added in version 3.3.

exception ssl.SSLCertVerificationError

A subclass of SSLError raised when certificate validation has failed.

Added in version 3.7.

verify_code

A numeric error number that denotes the verification error.

verify_message

A human readable string of the verification error.

exception ssl.CertificateError

An alias for SSLCertVerificationError.

Changed in version 3.7: The exception is now an alias for SSLCertVerificationError.

19.3. ssl— TLS/SSL wrapper for socket objects 1173

The Python Library Reference, Release 3.13.1

Random generation

ssl.RAND_bytes(num)
Return num cryptographically strong pseudo-random bytes. Raises an SSLError if the PRNG has not been
seeded with enough data or if the operation is not supported by the current RAND method. RAND_status()
can be used to check the status of the PRNG and RAND_add() can be used to seed the PRNG.

For almost all applications os.urandom() is preferable.

Read the Wikipedia article, Cryptographically secure pseudorandom number generator (CSPRNG), to get the
requirements of a cryptographically strong generator.

Added in version 3.3.

ssl.RAND_status()

Return True if the SSL pseudo-random number generator has been seeded with ‘enough’ randomness, and
False otherwise. You can use ssl.RAND_egd() and ssl.RAND_add() to increase the randomness of the
pseudo-random number generator.

ssl.RAND_add(bytes, entropy)
Mix the given bytes into the SSL pseudo-random number generator. The parameter entropy (a float) is a lower
bound on the entropy contained in string (so you can always use 0.0). See RFC 1750 for more information
on sources of entropy.

Changed in version 3.5: Writable bytes-like object is now accepted.

Certificate handling

ssl.cert_time_to_seconds(cert_time)
Return the time in seconds since the Epoch, given the cert_time string representing the “notBefore” or
“notAfter” date from a certificate in "%b %d %H:%M:%S %Y %Z" strptime format (C locale).

Here’s an example:

>>> import ssl

>>> timestamp = ssl.cert_time_to_seconds("Jan 5 09:34:43 2018 GMT")

>>> timestamp

1515144883

>>> from datetime import datetime

>>> print(datetime.utcfromtimestamp(timestamp))

2018-01-05 09:34:43

“notBefore” or “notAfter” dates must use GMT (RFC 5280).

Changed in version 3.5: Interpret the input time as a time in UTC as specified by ‘GMT’ timezone in the input
string. Local timezone was used previously. Return an integer (no fractions of a second in the input format)

ssl.get_server_certificate(addr, ssl_version=PROTOCOL_TLS_CLIENT , ca_certs=None[, timeout])
Given the address addr of an SSL-protected server, as a (hostname, port-number) pair, fetches the server’s
certificate, and returns it as a PEM-encoded string. If ssl_version is specified, uses that version of the SSL
protocol to attempt to connect to the server. If ca_certs is specified, it should be a file containing a list of root
certificates, the same format as used for the cafile parameter in SSLContext.load_verify_locations().
The call will attempt to validate the server certificate against that set of root certificates, and will fail if the
validation attempt fails. A timeout can be specified with the timeout parameter.

Changed in version 3.3: This function is now IPv6-compatible.

Changed in version 3.5: The default ssl_version is changed from PROTOCOL_SSLv3 to PROTOCOL_TLS for
maximum compatibility with modern servers.

Changed in version 3.10: The timeout parameter was added.

1174 Chapter 19. Networking and Interprocess Communication

https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://datatracker.ietf.org/doc/html/rfc1750.html
https://datatracker.ietf.org/doc/html/rfc5280.html

The Python Library Reference, Release 3.13.1

ssl.DER_cert_to_PEM_cert(DER_cert_bytes)
Given a certificate as a DER-encoded blob of bytes, returns a PEM-encoded string version of the same certifi-
cate.

ssl.PEM_cert_to_DER_cert(PEM_cert_string)
Given a certificate as an ASCII PEM string, returns a DER-encoded sequence of bytes for that same certificate.

ssl.get_default_verify_paths()

Returns a named tuple with paths to OpenSSL’s default cafile and capath. The paths are the
same as used by SSLContext.set_default_verify_paths(). The return value is a named tuple
DefaultVerifyPaths:

• cafile - resolved path to cafile or None if the file doesn’t exist,

• capath - resolved path to capath or None if the directory doesn’t exist,

• openssl_cafile_env - OpenSSL’s environment key that points to a cafile,

• openssl_cafile - hard coded path to a cafile,

• openssl_capath_env - OpenSSL’s environment key that points to a capath,

• openssl_capath - hard coded path to a capath directory

Added in version 3.4.

ssl.enum_certificates(store_name)
Retrieve certificates from Windows’ system cert store. store_name may be one of CA, ROOT or MY. Windows
may provide additional cert stores, too.

The function returns a list of (cert_bytes, encoding_type, trust) tuples. The encoding_type specifies the en-
coding of cert_bytes. It is either x509_asn for X.509 ASN.1 data or pkcs_7_asn for PKCS#7 ASN.1 data.
Trust specifies the purpose of the certificate as a set of OIDS or exactly True if the certificate is trustworthy
for all purposes.

Example:

>>> ssl.enum_certificates("CA")

[(b'data...', 'x509_asn', {'1.3.6.1.5.5.7.3.1', '1.3.6.1.5.5.7.3.2'}),

(b'data...', 'x509_asn', True)]

Availability: Windows.

Added in version 3.4.

ssl.enum_crls(store_name)

Retrieve CRLs from Windows’ system cert store. store_name may be one of CA, ROOT or MY. Windows may
provide additional cert stores, too.

The function returns a list of (cert_bytes, encoding_type, trust) tuples. The encoding_type specifies the en-
coding of cert_bytes. It is either x509_asn for X.509 ASN.1 data or pkcs_7_asn for PKCS#7 ASN.1 data.

Availability: Windows.

Added in version 3.4.

Constants

All constants are now enum.IntEnum or enum.IntFlag collections.

Added in version 3.6.

ssl.CERT_NONE

Possible value for SSLContext.verify_mode. Except for PROTOCOL_TLS_CLIENT, it is the default mode.
With client-side sockets, just about any cert is accepted. Validation errors, such as untrusted or expired cert,
are ignored and do not abort the TLS/SSL handshake.

19.3. ssl— TLS/SSL wrapper for socket objects 1175

The Python Library Reference, Release 3.13.1

In server mode, no certificate is requested from the client, so the client does not send any for client cert
authentication.

See the discussion of Security considerations below.

ssl.CERT_OPTIONAL

Possible value for SSLContext.verify_mode. In client mode, CERT_OPTIONAL has the same meaning as
CERT_REQUIRED. It is recommended to use CERT_REQUIRED for client-side sockets instead.

In server mode, a client certificate request is sent to the client. The client may either ignore the request or send
a certificate in order perform TLS client cert authentication. If the client chooses to send a certificate, it is
verified. Any verification error immediately aborts the TLS handshake.

Use of this setting requires a valid set of CA certificates to be passed to SSLContext.

load_verify_locations().

ssl.CERT_REQUIRED

Possible value for SSLContext.verify_mode. In this mode, certificates are required from the other side of
the socket connection; an SSLError will be raised if no certificate is provided, or if its validation fails. This
mode is not sufficient to verify a certificate in client mode as it does not match hostnames. check_hostname
must be enabled as well to verify the authenticity of a cert. PROTOCOL_TLS_CLIENT uses CERT_REQUIRED
and enables check_hostname by default.

With server socket, this mode provides mandatory TLS client cert authentication. A client certificate request
is sent to the client and the client must provide a valid and trusted certificate.

Use of this setting requires a valid set of CA certificates to be passed to SSLContext.

load_verify_locations().

class ssl.VerifyMode

enum.IntEnum collection of CERT_* constants.

Added in version 3.6.

ssl.VERIFY_DEFAULT

Possible value for SSLContext.verify_flags. In this mode, certificate revocation lists (CRLs) are not
checked. By default OpenSSL does neither require nor verify CRLs.

Added in version 3.4.

ssl.VERIFY_CRL_CHECK_LEAF

Possible value for SSLContext.verify_flags. In this mode, only the peer cert is checked but none of the
intermediate CA certificates. The mode requires a valid CRL that is signed by the peer cert’s issuer (its direct
ancestor CA). If no proper CRL has been loaded with SSLContext.load_verify_locations, validation
will fail.

Added in version 3.4.

ssl.VERIFY_CRL_CHECK_CHAIN

Possible value for SSLContext.verify_flags. In this mode, CRLs of all certificates in the peer cert chain
are checked.

Added in version 3.4.

ssl.VERIFY_X509_STRICT

Possible value for SSLContext.verify_flags to disable workarounds for broken X.509 certificates.

Added in version 3.4.

ssl.VERIFY_ALLOW_PROXY_CERTS

Possible value for SSLContext.verify_flags to enables proxy certificate verification.

Added in version 3.10.

1176 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

ssl.VERIFY_X509_TRUSTED_FIRST

Possible value for SSLContext.verify_flags. It instructs OpenSSL to prefer trusted certificates when
building the trust chain to validate a certificate. This flag is enabled by default.

Added in version 3.4.4.

ssl.VERIFY_X509_PARTIAL_CHAIN

Possible value for SSLContext.verify_flags. It instructs OpenSSL to accept intermediate CAs in the
trust store to be treated as trust-anchors, in the same way as the self-signed root CA certificates. This makes it
possible to trust certificates issued by an intermediate CA without having to trust its ancestor root CA.

Added in version 3.10.

class ssl.VerifyFlags

enum.IntFlag collection of VERIFY_* constants.

Added in version 3.6.

ssl.PROTOCOL_TLS

Selects the highest protocol version that both the client and server support. Despite the name, this option can
select both “SSL” and “TLS” protocols.

Added in version 3.6.

Deprecated since version 3.10: TLS clients and servers require different default settings for secure com-
munication. The generic TLS protocol constant is deprecated in favor of PROTOCOL_TLS_CLIENT and
PROTOCOL_TLS_SERVER.

ssl.PROTOCOL_TLS_CLIENT

Auto-negotiate the highest protocol version that both the client and server support, and configure the context
client-side connections. The protocol enables CERT_REQUIRED and check_hostname by default.

Added in version 3.6.

ssl.PROTOCOL_TLS_SERVER

Auto-negotiate the highest protocol version that both the client and server support, and configure the context
server-side connections.

Added in version 3.6.

ssl.PROTOCOL_SSLv23

Alias for PROTOCOL_TLS.

Deprecated since version 3.6: Use PROTOCOL_TLS instead.

ssl.PROTOCOL_SSLv3

Selects SSL version 3 as the channel encryption protocol.

This protocol is not available if OpenSSL is compiled with the no-ssl3 option.

Warning

SSL version 3 is insecure. Its use is highly discouraged.

Deprecated since version 3.6: OpenSSL has deprecated all version specific protocols. Use the default pro-
tocol PROTOCOL_TLS_SERVER or PROTOCOL_TLS_CLIENT with SSLContext.minimum_version and
SSLContext.maximum_version instead.

ssl.PROTOCOL_TLSv1

Selects TLS version 1.0 as the channel encryption protocol.

Deprecated since version 3.6: OpenSSL has deprecated all version specific protocols.

19.3. ssl— TLS/SSL wrapper for socket objects 1177

The Python Library Reference, Release 3.13.1

ssl.PROTOCOL_TLSv1_1

Selects TLS version 1.1 as the channel encryption protocol. Available only with openssl version 1.0.1+.

Added in version 3.4.

Deprecated since version 3.6: OpenSSL has deprecated all version specific protocols.

ssl.PROTOCOL_TLSv1_2

Selects TLS version 1.2 as the channel encryption protocol. Available only with openssl version 1.0.1+.

Added in version 3.4.

Deprecated since version 3.6: OpenSSL has deprecated all version specific protocols.

ssl.OP_ALL

Enables workarounds for various bugs present in other SSL implementations. This option is set by default. It
does not necessarily set the same flags as OpenSSL’s SSL_OP_ALL constant.

Added in version 3.2.

ssl.OP_NO_SSLv2

Prevents an SSLv2 connection. This option is only applicable in conjunction with PROTOCOL_TLS. It prevents
the peers from choosing SSLv2 as the protocol version.

Added in version 3.2.

Deprecated since version 3.6: SSLv2 is deprecated

ssl.OP_NO_SSLv3

Prevents an SSLv3 connection. This option is only applicable in conjunction with PROTOCOL_TLS. It prevents
the peers from choosing SSLv3 as the protocol version.

Added in version 3.2.

Deprecated since version 3.6: SSLv3 is deprecated

ssl.OP_NO_TLSv1

Prevents a TLSv1 connection. This option is only applicable in conjunction with PROTOCOL_TLS. It prevents
the peers from choosing TLSv1 as the protocol version.

Added in version 3.2.

Deprecated since version 3.7: The option is deprecated since OpenSSL 1.1.0, use the new SSLContext.

minimum_version and SSLContext.maximum_version instead.

ssl.OP_NO_TLSv1_1

Prevents a TLSv1.1 connection. This option is only applicable in conjunction with PROTOCOL_TLS. It prevents
the peers from choosing TLSv1.1 as the protocol version. Available only with openssl version 1.0.1+.

Added in version 3.4.

Deprecated since version 3.7: The option is deprecated since OpenSSL 1.1.0.

ssl.OP_NO_TLSv1_2

Prevents a TLSv1.2 connection. This option is only applicable in conjunction with PROTOCOL_TLS. It prevents
the peers from choosing TLSv1.2 as the protocol version. Available only with openssl version 1.0.1+.

Added in version 3.4.

Deprecated since version 3.7: The option is deprecated since OpenSSL 1.1.0.

ssl.OP_NO_TLSv1_3

Prevents a TLSv1.3 connection. This option is only applicable in conjunction with PROTOCOL_TLS. It prevents
the peers from choosing TLSv1.3 as the protocol version. TLS 1.3 is available with OpenSSL 1.1.1 or later.
When Python has been compiled against an older version of OpenSSL, the flag defaults to 0.

Added in version 3.6.3.

1178 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Deprecated since version 3.7: The option is deprecated since OpenSSL 1.1.0. It was added to 2.7.15 and 3.6.3
for backwards compatibility with OpenSSL 1.0.2.

ssl.OP_NO_RENEGOTIATION

Disable all renegotiation in TLSv1.2 and earlier. Do not send HelloRequest messages, and ignore renegotiation
requests via ClientHello.

This option is only available with OpenSSL 1.1.0h and later.

Added in version 3.7.

ssl.OP_CIPHER_SERVER_PREFERENCE

Use the server’s cipher ordering preference, rather than the client’s. This option has no effect on client sockets
and SSLv2 server sockets.

Added in version 3.3.

ssl.OP_SINGLE_DH_USE

Prevents reuse of the same DH key for distinct SSL sessions. This improves forward secrecy but requires more
computational resources. This option only applies to server sockets.

Added in version 3.3.

ssl.OP_SINGLE_ECDH_USE

Prevents reuse of the same ECDH key for distinct SSL sessions. This improves forward secrecy but requires
more computational resources. This option only applies to server sockets.

Added in version 3.3.

ssl.OP_ENABLE_MIDDLEBOX_COMPAT

Send dummy Change Cipher Spec (CCS) messages in TLS 1.3 handshake to make a TLS 1.3 connection look
more like a TLS 1.2 connection.

This option is only available with OpenSSL 1.1.1 and later.

Added in version 3.8.

ssl.OP_NO_COMPRESSION

Disable compression on the SSL channel. This is useful if the application protocol supports its own compression
scheme.

Added in version 3.3.

class ssl.Options

enum.IntFlag collection of OP_* constants.

ssl.OP_NO_TICKET

Prevent client side from requesting a session ticket.

Added in version 3.6.

ssl.OP_IGNORE_UNEXPECTED_EOF

Ignore unexpected shutdown of TLS connections.

This option is only available with OpenSSL 3.0.0 and later.

Added in version 3.10.

ssl.OP_ENABLE_KTLS

Enable the use of the kernel TLS. To benefit from the feature, OpenSSLmust have been compiled with support
for it, and the negotiated cipher suites and extensions must be supported by it (a list of supported ones may
vary by platform and kernel version).

Note that with enabled kernel TLS some cryptographic operations are performed by the kernel directly and
not via any available OpenSSL Providers. This might be undesirable if, for example, the application requires
all cryptographic operations to be performed by the FIPS provider.

19.3. ssl— TLS/SSL wrapper for socket objects 1179

The Python Library Reference, Release 3.13.1

This option is only available with OpenSSL 3.0.0 and later.

Added in version 3.12.

ssl.OP_LEGACY_SERVER_CONNECT

Allow legacy insecure renegotiation between OpenSSL and unpatched servers only.

Added in version 3.12.

ssl.HAS_ALPN

Whether theOpenSSL library has built-in support for theApplication-Layer Protocol NegotiationTLS extension
as described in RFC 7301.

Added in version 3.5.

ssl.HAS_NEVER_CHECK_COMMON_NAME

Whether the OpenSSL library has built-in support not checking subject common name and SSLContext.

hostname_checks_common_name is writeable.

Added in version 3.7.

ssl.HAS_ECDH

Whether the OpenSSL library has built-in support for the Elliptic Curve-based Diffie-Hellman key exchange.
This should be true unless the feature was explicitly disabled by the distributor.

Added in version 3.3.

ssl.HAS_SNI

Whether the OpenSSL library has built-in support for the Server Name Indication extension (as defined inRFC
6066).

Added in version 3.2.

ssl.HAS_NPN

Whether the OpenSSL library has built-in support for the Next Protocol Negotiation as described in the Ap-
plication Layer Protocol Negotiation. When true, you can use the SSLContext.set_npn_protocols()
method to advertise which protocols you want to support.

Added in version 3.3.

ssl.HAS_SSLv2

Whether the OpenSSL library has built-in support for the SSL 2.0 protocol.

Added in version 3.7.

ssl.HAS_SSLv3

Whether the OpenSSL library has built-in support for the SSL 3.0 protocol.

Added in version 3.7.

ssl.HAS_TLSv1

Whether the OpenSSL library has built-in support for the TLS 1.0 protocol.

Added in version 3.7.

ssl.HAS_TLSv1_1

Whether the OpenSSL library has built-in support for the TLS 1.1 protocol.

Added in version 3.7.

ssl.HAS_TLSv1_2

Whether the OpenSSL library has built-in support for the TLS 1.2 protocol.

Added in version 3.7.

1180 Chapter 19. Networking and Interprocess Communication

https://datatracker.ietf.org/doc/html/rfc7301.html
https://datatracker.ietf.org/doc/html/rfc6066.html
https://datatracker.ietf.org/doc/html/rfc6066.html
https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation
https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation

The Python Library Reference, Release 3.13.1

ssl.HAS_TLSv1_3

Whether the OpenSSL library has built-in support for the TLS 1.3 protocol.

Added in version 3.7.

ssl.HAS_PSK

Whether the OpenSSL library has built-in support for TLS-PSK.

Added in version 3.13.

ssl.CHANNEL_BINDING_TYPES

List of supported TLS channel binding types. Strings in this list can be used as arguments to SSLSocket.
get_channel_binding().

Added in version 3.3.

ssl.OPENSSL_VERSION

The version string of the OpenSSL library loaded by the interpreter:

>>> ssl.OPENSSL_VERSION

'OpenSSL 1.0.2k 26 Jan 2017'

Added in version 3.2.

ssl.OPENSSL_VERSION_INFO

A tuple of five integers representing version information about the OpenSSL library:

>>> ssl.OPENSSL_VERSION_INFO

(1, 0, 2, 11, 15)

Added in version 3.2.

ssl.OPENSSL_VERSION_NUMBER

The raw version number of the OpenSSL library, as a single integer:

>>> ssl.OPENSSL_VERSION_NUMBER

268443839

>>> hex(ssl.OPENSSL_VERSION_NUMBER)

'0x100020bf'

Added in version 3.2.

ssl.ALERT_DESCRIPTION_HANDSHAKE_FAILURE

ssl.ALERT_DESCRIPTION_INTERNAL_ERROR

ALERT_DESCRIPTION_*

Alert Descriptions fromRFC 5246 and others. The IANA TLS Alert Registry contains this list and references
to the RFCs where their meaning is defined.

Used as the return value of the callback function in SSLContext.set_servername_callback().

Added in version 3.4.

class ssl.AlertDescription

enum.IntEnum collection of ALERT_DESCRIPTION_* constants.

Added in version 3.6.

Purpose.SERVER_AUTH

Option for create_default_context() and SSLContext.load_default_certs(). This value indi-
cates that the context may be used to authenticate web servers (therefore, it will be used to create client-side
sockets).

Added in version 3.4.

19.3. ssl— TLS/SSL wrapper for socket objects 1181

https://datatracker.ietf.org/doc/html/rfc5246.html
https://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-6

The Python Library Reference, Release 3.13.1

Purpose.CLIENT_AUTH

Option for create_default_context() and SSLContext.load_default_certs(). This value indi-
cates that the context may be used to authenticate web clients (therefore, it will be used to create server-side
sockets).

Added in version 3.4.

class ssl.SSLErrorNumber

enum.IntEnum collection of SSL_ERROR_* constants.

Added in version 3.6.

class ssl.TLSVersion

enum.IntEnum collection of SSL and TLS versions for SSLContext.maximum_version and
SSLContext.minimum_version.

Added in version 3.7.

TLSVersion.MINIMUM_SUPPORTED

TLSVersion.MAXIMUM_SUPPORTED

The minimum or maximum supported SSL or TLS version. These are magic constants. Their values don’t
reflect the lowest and highest available TLS/SSL versions.

TLSVersion.SSLv3

TLSVersion.TLSv1

TLSVersion.TLSv1_1

TLSVersion.TLSv1_2

TLSVersion.TLSv1_3

SSL 3.0 to TLS 1.3.

Deprecated since version 3.10: All TLSVersion members except TLSVersion.TLSv1_2 and
TLSVersion.TLSv1_3 are deprecated.

19.3.2 SSL Sockets

class ssl.SSLSocket(socket.socket)

SSL sockets provide the following methods of Socket Objects:

• accept()

• bind()

• close()

• connect()

• detach()

• fileno()

• getpeername(), getsockname()

• getsockopt(), setsockopt()

• gettimeout(), settimeout(), setblocking()

• listen()

• makefile()

• recv(), recv_into() (but passing a non-zero flags argument is not allowed)

• send(), sendall() (with the same limitation)

1182 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

• sendfile() (but os.sendfile will be used for plain-text sockets only, else send() will be used)

• shutdown()

However, since the SSL (and TLS) protocol has its own framing atop of TCP, the SSL sockets abstraction
can, in certain respects, diverge from the specification of normal, OS-level sockets. See especially the notes on
non-blocking sockets.

Instances of SSLSocket must be created using the SSLContext.wrap_socket() method.

Changed in version 3.5: The sendfile() method was added.

Changed in version 3.5: The shutdown() does not reset the socket timeout each time bytes are received or
sent. The socket timeout is now the maximum total duration of the shutdown.

Deprecated since version 3.6: It is deprecated to create a SSLSocket instance directly, use SSLContext.
wrap_socket() to wrap a socket.

Changed in version 3.7: SSLSocket instances must to created with wrap_socket(). In earlier versions, it
was possible to create instances directly. This was never documented or officially supported.

Changed in version 3.10: Python now uses SSL_read_ex and SSL_write_ex internally. The functions
support reading and writing of data larger than 2 GB. Writing zero-length data no longer fails with a protocol
violation error.

SSL sockets also have the following additional methods and attributes:

SSLSocket.read(len=1024, buffer=None)
Read up to len bytes of data from the SSL socket and return the result as a bytes instance. If buffer is specified,
then read into the buffer instead, and return the number of bytes read.

Raise SSLWantReadError or SSLWantWriteError if the socket is non-blocking and the read would block.

As at any time a re-negotiation is possible, a call to read() can also cause write operations.

Changed in version 3.5: The socket timeout is no longer reset each time bytes are received or sent. The socket
timeout is now the maximum total duration to read up to len bytes.

Deprecated since version 3.6: Use recv() instead of read().

SSLSocket.write(buf)
Write buf to the SSL socket and return the number of bytes written. The buf argument must be an object
supporting the buffer interface.

Raise SSLWantReadError or SSLWantWriteError if the socket is non-blocking and the write would block.

As at any time a re-negotiation is possible, a call to write() can also cause read operations.

Changed in version 3.5: The socket timeout is no longer reset each time bytes are received or sent. The socket
timeout is now the maximum total duration to write buf.

Deprecated since version 3.6: Use send() instead of write().

Note

The read() and write()methods are the low-level methods that read and write unencrypted, application-level
data and decrypt/encrypt it to encrypted, wire-level data. These methods require an active SSL connection, i.e.
the handshake was completed and SSLSocket.unwrap() was not called.

Normally you should use the socket API methods like recv() and send() instead of these methods.

SSLSocket.do_handshake()

Perform the SSL setup handshake.

Changed in version 3.4: The handshake method also performs match_hostname() when the
check_hostname attribute of the socket’s context is true.

19.3. ssl— TLS/SSL wrapper for socket objects 1183

The Python Library Reference, Release 3.13.1

Changed in version 3.5: The socket timeout is no longer reset each time bytes are received or sent. The socket
timeout is now the maximum total duration of the handshake.

Changed in version 3.7: Hostname or IP address is matched by OpenSSL during handshake. The function
match_hostname() is no longer used. In case OpenSSL refuses a hostname or IP address, the handshake is
aborted early and a TLS alert message is sent to the peer.

SSLSocket.getpeercert(binary_form=False)

If there is no certificate for the peer on the other end of the connection, return None. If the SSL handshake
hasn’t been done yet, raise ValueError.

If the binary_form parameter is False, and a certificate was received from the peer, this method returns
a dict instance. If the certificate was not validated, the dict is empty. If the certificate was validated, it
returns a dict with several keys, amongst them subject (the principal for which the certificate was issued)
and issuer (the principal issuing the certificate). If a certificate contains an instance of the Subject Alternative
Name extension (see RFC 3280), there will also be a subjectAltName key in the dictionary.

The subject and issuer fields are tuples containing the sequence of relative distinguished names (RDNs)
given in the certificate’s data structure for the respective fields, and each RDN is a sequence of name-value
pairs. Here is a real-world example:

{'issuer': ((('countryName', 'IL'),),

(('organizationName', 'StartCom Ltd.'),),

(('organizationalUnitName',

'Secure Digital Certificate Signing'),),

(('commonName',

'StartCom Class 2 Primary Intermediate Server CA'),)),

'notAfter': 'Nov 22 08:15:19 2013 GMT',

'notBefore': 'Nov 21 03:09:52 2011 GMT',

'serialNumber': '95F0',

'subject': ((('description', '571208-SLe257oHY9fVQ07Z'),),

(('countryName', 'US'),),

(('stateOrProvinceName', 'California'),),

(('localityName', 'San Francisco'),),

(('organizationName', 'Electronic Frontier Foundation, Inc.'),),

(('commonName', '*.eff.org'),),

(('emailAddress', 'hostmaster@eff.org'),)),

'subjectAltName': (('DNS', '*.eff.org'), ('DNS', 'eff.org')),

'version': 3}

If the binary_form parameter is True, and a certificate was provided, this method returns the DER-encoded
form of the entire certificate as a sequence of bytes, or None if the peer did not provide a certificate. Whether
the peer provides a certificate depends on the SSL socket’s role:

• for a client SSL socket, the server will always provide a certificate, regardless of whether validation was
required;

• for a server SSL socket, the client will only provide a certificate when requested by the server; there-
fore getpeercert() will return None if you used CERT_NONE (rather than CERT_OPTIONAL or
CERT_REQUIRED).

See also SSLContext.check_hostname.

Changed in version 3.2: The returned dictionary includes additional items such as issuer and notBefore.

Changed in version 3.4: ValueError is raised when the handshake isn’t done. The returned dictionary in-
cludes additional X509v3 extension items such as crlDistributionPoints, caIssuers and OCSP URIs.

Changed in version 3.9: IPv6 address strings no longer have a trailing new line.

SSLSocket.get_verified_chain()

Returns verified certificate chain provided by the other end of the SSL channel as a list of DER-encoded bytes.
If certificate verification was disabled method acts the same as get_unverified_chain().

1184 Chapter 19. Networking and Interprocess Communication

https://datatracker.ietf.org/doc/html/rfc3280.html

The Python Library Reference, Release 3.13.1

Added in version 3.13.

SSLSocket.get_unverified_chain()

Returns raw certificate chain provided by the other end of the SSL channel as a list of DER-encoded bytes.

Added in version 3.13.

SSLSocket.cipher()

Returns a three-value tuple containing the name of the cipher being used, the version of the SSL protocol that
defines its use, and the number of secret bits being used. If no connection has been established, returns None.

SSLSocket.shared_ciphers()

Return the list of ciphers available in both the client and server. Each entry of the returned list is a three-value
tuple containing the name of the cipher, the version of the SSL protocol that defines its use, and the number
of secret bits the cipher uses. shared_ciphers() returns None if no connection has been established or the
socket is a client socket.

Added in version 3.5.

SSLSocket.compression()

Return the compression algorithm being used as a string, or None if the connection isn’t compressed.

If the higher-level protocol supports its own compression mechanism, you can use OP_NO_COMPRESSION to
disable SSL-level compression.

Added in version 3.3.

SSLSocket.get_channel_binding(cb_type=’tls-unique’)
Get channel binding data for current connection, as a bytes object. Returns None if not connected or the
handshake has not been completed.

The cb_type parameter allow selection of the desired channel binding type. Valid channel binding types are
listed in the CHANNEL_BINDING_TYPES list. Currently only the ‘tls-unique’ channel binding, defined by RFC
5929, is supported. ValueError will be raised if an unsupported channel binding type is requested.

Added in version 3.3.

SSLSocket.selected_alpn_protocol()

Return the protocol that was selected during the TLS handshake. If SSLContext.set_alpn_protocols()
was not called, if the other party does not support ALPN, if this socket does not support any of the client’s
proposed protocols, or if the handshake has not happened yet, None is returned.

Added in version 3.5.

SSLSocket.selected_npn_protocol()

Return the higher-level protocol that was selected during the TLS/SSL handshake. If SSLContext.

set_npn_protocols() was not called, or if the other party does not support NPN, or if the handshake
has not yet happened, this will return None.

Added in version 3.3.

Deprecated since version 3.10: NPN has been superseded by ALPN

SSLSocket.unwrap()

Performs the SSL shutdown handshake, which removes the TLS layer from the underlying socket, and returns
the underlying socket object. This can be used to go from encrypted operation over a connection to unen-
crypted. The returned socket should always be used for further communication with the other side of the
connection, rather than the original socket.

SSLSocket.verify_client_post_handshake()

Requests post-handshake authentication (PHA) from a TLS 1.3 client. PHA can only be initiated for a TLS
1.3 connection from a server-side socket, after the initial TLS handshake and with PHA enabled on both sides,
see SSLContext.post_handshake_auth.

The method does not perform a cert exchange immediately. The server-side sends a CertificateRequest during
the next write event and expects the client to respond with a certificate on the next read event.

19.3. ssl— TLS/SSL wrapper for socket objects 1185

https://datatracker.ietf.org/doc/html/rfc5929.html
https://datatracker.ietf.org/doc/html/rfc5929.html

The Python Library Reference, Release 3.13.1

If any precondition isn’t met (e.g. not TLS 1.3, PHA not enabled), an SSLError is raised.

Note

Only available with OpenSSL 1.1.1 and TLS 1.3 enabled. Without TLS 1.3 support, the method raises
NotImplementedError.

Added in version 3.8.

SSLSocket.version()

Return the actual SSL protocol version negotiated by the connection as a string, or None if no secure connection
is established. As of this writing, possible return values include "SSLv2", "SSLv3", "TLSv1", "TLSv1.1"
and "TLSv1.2". Recent OpenSSL versions may define more return values.

Added in version 3.5.

SSLSocket.pending()

Returns the number of already decrypted bytes available for read, pending on the connection.

SSLSocket.context

The SSLContext object this SSL socket is tied to.

Added in version 3.2.

SSLSocket.server_side

A boolean which is True for server-side sockets and False for client-side sockets.

Added in version 3.2.

SSLSocket.server_hostname

Hostname of the server: str type, or None for server-side socket or if the hostname was not specified in the
constructor.

Added in version 3.2.

Changed in version 3.7: The attribute is now always ASCII text. When server_hostname is an internation-
alized domain name (IDN), this attribute now stores the A-label form ("xn--pythn-mua.org"), rather than
the U-label form ("pythön.org").

SSLSocket.session

The SSLSession for this SSL connection. The session is available for client and server side sockets after the
TLS handshake has been performed. For client sockets the session can be set before do_handshake() has
been called to reuse a session.

Added in version 3.6.

SSLSocket.session_reused

Added in version 3.6.

19.3.3 SSL Contexts

Added in version 3.2.

An SSL context holds various data longer-lived than single SSL connections, such as SSL configuration options,
certificate(s) and private key(s). It also manages a cache of SSL sessions for server-side sockets, in order to speed up
repeated connections from the same clients.

class ssl.SSLContext(protocol=None)

Create a new SSL context. You may pass protocol which must be one of the PROTOCOL_* constants defined in
this module. The parameter specifies which version of the SSL protocol to use. Typically, the server chooses
a particular protocol version, and the client must adapt to the server’s choice. Most of the versions are not
interoperable with the other versions. If not specified, the default is PROTOCOL_TLS; it provides the most
compatibility with other versions.

1186 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Here’s a table showing which versions in a client (down the side) can connect to which versions in a server
(along the top):

client / server SSLv2 SSLv3 TLS3 TLSv1 TLSv1.1 TLSv1.2
SSLv2 yes no no1 no no no
SSLv3 no yes no2 no no no
TLS (SSLv23)3 no1 no2 yes yes yes yes
TLSv1 no no yes yes no no
TLSv1.1 no no yes no yes no
TLSv1.2 no no yes no no yes

See also

create_default_context() lets the ssl module choose security settings for a given purpose.

Changed in version 3.6: The context is created with secure default values. The options OP_NO_COMPRESSION,
OP_CIPHER_SERVER_PREFERENCE, OP_SINGLE_DH_USE, OP_SINGLE_ECDH_USE, OP_NO_SSLv2, and
OP_NO_SSLv3 (except for PROTOCOL_SSLv3) are set by default. The initial cipher suite list contains only
HIGH ciphers, no NULL ciphers and no MD5 ciphers.

Deprecated since version 3.10: SSLContext without protocol argument is deprecated. The context class will
either require PROTOCOL_TLS_CLIENT or PROTOCOL_TLS_SERVER protocol in the future.

Changed in version 3.10: The default cipher suites now include only secure AES and ChaCha20 ciphers with
forward secrecy and security level 2. RSA and DH keys with less than 2048 bits and ECC keys with less than
224 bits are prohibited. PROTOCOL_TLS, PROTOCOL_TLS_CLIENT, and PROTOCOL_TLS_SERVER use TLS
1.2 as minimum TLS version.

Note

SSLContext only supports limited mutation once it has been used by a connection. Adding new certifi-
cates to the internal trust store is allowed, but changing ciphers, verification settings, or mTLS certificates
may result in surprising behavior.

Note

SSLContext is designed to be shared and used by multiple connections. Thus, it is thread-safe as long as
it is not reconfigured after being used by a connection.

SSLContext objects have the following methods and attributes:

SSLContext.cert_store_stats()

Get statistics about quantities of loaded X.509 certificates, count of X.509 certificates flagged as CA certificates
and certificate revocation lists as dictionary.

Example for a context with one CA cert and one other cert:

>>> context.cert_store_stats()

{'crl': 0, 'x509_ca': 1, 'x509': 2}

Added in version 3.4.

3 TLS 1.3 protocol will be available with PROTOCOL_TLS in OpenSSL >= 1.1.1. There is no dedicated PROTOCOL constant for just TLS
1.3.

1 SSLContext disables SSLv2 with OP_NO_SSLv2 by default.
2 SSLContext disables SSLv3 with OP_NO_SSLv3 by default.

19.3. ssl— TLS/SSL wrapper for socket objects 1187

The Python Library Reference, Release 3.13.1

SSLContext.load_cert_chain(certfile, keyfile=None, password=None)
Load a private key and the corresponding certificate. The certfile string must be the path to a single file in PEM
format containing the certificate as well as any number of CA certificates needed to establish the certificate’s
authenticity. The keyfile string, if present, must point to a file containing the private key. Otherwise the private
key will be taken from certfile as well. See the discussion of Certificates for more information on how the
certificate is stored in the certfile.

The password argument may be a function to call to get the password for decrypting the private key. It will
only be called if the private key is encrypted and a password is necessary. It will be called with no arguments,
and it should return a string, bytes, or bytearray. If the return value is a string it will be encoded as UTF-8
before using it to decrypt the key. Alternatively a string, bytes, or bytearray value may be supplied directly as
the password argument. It will be ignored if the private key is not encrypted and no password is needed.

If the password argument is not specified and a password is required, OpenSSL’s built-in password prompting
mechanism will be used to interactively prompt the user for a password.

An SSLError is raised if the private key doesn’t match with the certificate.

Changed in version 3.3: New optional argument password.

SSLContext.load_default_certs(purpose=Purpose.SERVER_AUTH)
Load a set of default “certification authority” (CA) certificates from default locations. On Windows
it loads CA certs from the CA and ROOT system stores. On all systems it calls SSLContext.

set_default_verify_paths(). In the future the method may load CA certificates from other locations,
too.

The purpose flag specifies what kind of CA certificates are loaded. The default settings Purpose.

SERVER_AUTH loads certificates, that are flagged and trusted for TLS web server authentication (client side
sockets). Purpose.CLIENT_AUTH loads CA certificates for client certificate verification on the server side.

Added in version 3.4.

SSLContext.load_verify_locations(cafile=None, capath=None, cadata=None)
Load a set of “certification authority” (CA) certificates used to validate other peers’ certificates when
verify_mode is other than CERT_NONE. At least one of cafile or capath must be specified.

This method can also load certification revocation lists (CRLs) in PEM or DER format. In order to make use
of CRLs, SSLContext.verify_flags must be configured properly.

The cafile string, if present, is the path to a file of concatenated CA certificates in PEM format. See the
discussion of Certificates for more information about how to arrange the certificates in this file.

The capath string, if present, is the path to a directory containing several CA certificates in PEM format,
following an OpenSSL specific layout.

The cadata object, if present, is either an ASCII string of one or more PEM-encoded certificates or a bytes-like
object of DER-encoded certificates. Like with capath extra lines around PEM-encoded certificates are ignored
but at least one certificate must be present.

Changed in version 3.4: New optional argument cadata

SSLContext.get_ca_certs(binary_form=False)

Get a list of loaded “certification authority” (CA) certificates. If the binary_form parameter is False each
list entry is a dict like the output of SSLSocket.getpeercert(). Otherwise the method returns a list of
DER-encoded certificates. The returned list does not contain certificates from capath unless a certificate was
requested and loaded by a SSL connection.

Note

Certificates in a capath directory aren’t loaded unless they have been used at least once.

Added in version 3.4.

1188 Chapter 19. Networking and Interprocess Communication

https://docs.openssl.org/master/man3/SSL_CTX_load_verify_locations/

The Python Library Reference, Release 3.13.1

SSLContext.get_ciphers()

Get a list of enabled ciphers. The list is in order of cipher priority. See SSLContext.set_ciphers().

Example:

>>> ctx = ssl.SSLContext(ssl.PROTOCOL_SSLv23)

>>> ctx.set_ciphers('ECDHE+AESGCM:!ECDSA')

>>> ctx.get_ciphers()

[{'aead': True,

'alg_bits': 256,

'auth': 'auth-rsa',

'description': 'ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA '

'Enc=AESGCM(256) Mac=AEAD',

'digest': None,

'id': 50380848,

'kea': 'kx-ecdhe',

'name': 'ECDHE-RSA-AES256-GCM-SHA384',

'protocol': 'TLSv1.2',

'strength_bits': 256,

'symmetric': 'aes-256-gcm'},

{'aead': True,

'alg_bits': 128,

'auth': 'auth-rsa',

'description': 'ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=RSA '

'Enc=AESGCM(128) Mac=AEAD',

'digest': None,

'id': 50380847,

'kea': 'kx-ecdhe',

'name': 'ECDHE-RSA-AES128-GCM-SHA256',

'protocol': 'TLSv1.2',

'strength_bits': 128,

'symmetric': 'aes-128-gcm'}]

Added in version 3.6.

SSLContext.set_default_verify_paths()

Load a set of default “certification authority” (CA) certificates from a filesystem path defined when building
the OpenSSL library. Unfortunately, there’s no easy way to know whether this method succeeds: no error is
returned if no certificates are to be found. When the OpenSSL library is provided as part of the operating
system, though, it is likely to be configured properly.

SSLContext.set_ciphers(ciphers)
Set the available ciphers for sockets created with this context. It should be a string in the OpenSSL cipher list
format. If no cipher can be selected (because compile-time options or other configuration forbids use of all
the specified ciphers), an SSLError will be raised.

Note

when connected, the SSLSocket.cipher() method of SSL sockets will give the currently selected ci-
pher.

TLS 1.3 cipher suites cannot be disabled with set_ciphers().

SSLContext.set_alpn_protocols(protocols)

Specify which protocols the socket should advertise during the SSL/TLS handshake. It should be a list of
ASCII strings, like ['http/1.1', 'spdy/2'], ordered by preference. The selection of a protocol will
happen during the handshake, and will play out according to RFC 7301. After a successful handshake, the
SSLSocket.selected_alpn_protocol() method will return the agreed-upon protocol.

19.3. ssl— TLS/SSL wrapper for socket objects 1189

https://docs.openssl.org/master/man1/ciphers/
https://docs.openssl.org/master/man1/ciphers/
https://datatracker.ietf.org/doc/html/rfc7301.html

The Python Library Reference, Release 3.13.1

This method will raise NotImplementedError if HAS_ALPN is False.

Added in version 3.5.

SSLContext.set_npn_protocols(protocols)
Specify which protocols the socket should advertise during the SSL/TLS handshake. It should be a list of
strings, like ['http/1.1', 'spdy/2'], ordered by preference. The selection of a protocol will happen
during the handshake, and will play out according to the Application Layer Protocol Negotiation. After a
successful handshake, the SSLSocket.selected_npn_protocol() method will return the agreed-upon
protocol.

This method will raise NotImplementedError if HAS_NPN is False.

Added in version 3.3.

Deprecated since version 3.10: NPN has been superseded by ALPN

SSLContext.sni_callback

Register a callback function that will be called after the TLS Client Hello handshake message has been received
by the SSL/TLS server when the TLS client specifies a server name indication. The server name indication
mechanism is specified in RFC 6066 section 3 - Server Name Indication.

Only one callback can be set per SSLContext. If sni_callback is set to None then the callback is disabled.
Calling this function a subsequent time will disable the previously registered callback.

The callback function will be called with three arguments; the first being the ssl.SSLSocket, the second is
a string that represents the server name that the client is intending to communicate (or None if the TLS Client
Hello does not contain a server name) and the third argument is the original SSLContext. The server name
argument is text. For internationalized domain name, the server name is an IDN A-label ("xn--pythn-mua.
org").

A typical use of this callback is to change the ssl.SSLSocket’s SSLSocket.context attribute to a new
object of type SSLContext representing a certificate chain that matches the server name.

Due to the early negotiation phase of the TLS connection, only limited methods and attributes are us-
able like SSLSocket.selected_alpn_protocol() and SSLSocket.context. The SSLSocket.

getpeercert(), SSLSocket.get_verified_chain(), SSLSocket.get_unverified_chain()

SSLSocket.cipher() and SSLSocket.compression() methods require that the TLS connection has
progressed beyond the TLS Client Hello and therefore will not return meaningful values nor can they be called
safely.

The sni_callback function must return None to allow the TLS negotiation to continue. If a TLS failure is
required, a constant ALERT_DESCRIPTION_* can be returned. Other return values will result in a TLS fatal
error with ALERT_DESCRIPTION_INTERNAL_ERROR.

If an exception is raised from the sni_callback function the TLS connection will terminate with a fatal TLS
alert message ALERT_DESCRIPTION_HANDSHAKE_FAILURE.

This method will raise NotImplementedError if the OpenSSL library had OPENSSL_NO_TLSEXT de-
fined when it was built.

Added in version 3.7.

SSLContext.set_servername_callback(server_name_callback)
This is a legacy API retained for backwards compatibility. When possible, you should use sni_callback
instead. The given server_name_callback is similar to sni_callback, except that when the server hostname
is an IDN-encoded internationalized domain name, the server_name_callback receives a decoded U-label
("pythön.org").

If there is a decoding error on the server name, the TLS connection will terminate with an
ALERT_DESCRIPTION_INTERNAL_ERROR fatal TLS alert message to the client.

Added in version 3.4.

1190 Chapter 19. Networking and Interprocess Communication

https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation
https://datatracker.ietf.org/doc/html/rfc6066.html

The Python Library Reference, Release 3.13.1

SSLContext.load_dh_params(dhfile)
Load the key generation parameters for Diffie-Hellman (DH) key exchange. Using DH key exchange improves
forward secrecy at the expense of computational resources (both on the server and on the client). The dhfile
parameter should be the path to a file containing DH parameters in PEM format.

This setting doesn’t apply to client sockets. You can also use the OP_SINGLE_DH_USE option to further
improve security.

Added in version 3.3.

SSLContext.set_ecdh_curve(curve_name)

Set the curve name for Elliptic Curve-based Diffie-Hellman (ECDH) key exchange. ECDH is significantly
faster than regular DH while arguably as secure. The curve_name parameter should be a string describing a
well-known elliptic curve, for example prime256v1 for a widely supported curve.

This setting doesn’t apply to client sockets. You can also use the OP_SINGLE_ECDH_USE option to further
improve security.

This method is not available if HAS_ECDH is False.

Added in version 3.3.

See also

SSL/TLS & Perfect Forward Secrecy
Vincent Bernat.

SSLContext.wrap_socket(sock, server_side=False, do_handshake_on_connect=True,
suppress_ragged_eofs=True, server_hostname=None, session=None)

Wrap an existing Python socket sock and return an instance of SSLContext.sslsocket_class (default
SSLSocket). The returned SSL socket is tied to the context, its settings and certificates. sock must be a
SOCK_STREAM socket; other socket types are unsupported.

The parameter server_side is a boolean which identifies whether server-side or client-side behavior is de-
sired from this socket.

For client-side sockets, the context construction is lazy; if the underlying socket isn’t connected yet, the context
construction will be performed after connect() is called on the socket. For server-side sockets, if the socket
has no remote peer, it is assumed to be a listening socket, and the server-side SSL wrapping is automatically
performed on client connections accepted via the accept() method. The method may raise SSLError.

On client connections, the optional parameter server_hostname specifies the hostname of the service which
we are connecting to. This allows a single server to host multiple SSL-based services with distinct certificates,
quite similarly to HTTP virtual hosts. Specifying server_hostname will raise a ValueError if server_side is
true.

The parameter do_handshake_on_connect specifies whether to do the SSL handshake automatically af-
ter doing a socket.connect(), or whether the application program will call it explicitly, by invoking the
SSLSocket.do_handshake() method. Calling SSLSocket.do_handshake() explicitly gives the pro-
gram control over the blocking behavior of the socket I/O involved in the handshake.

The parameter suppress_ragged_eofs specifies how the SSLSocket.recv() method should signal un-
expected EOF from the other end of the connection. If specified as True (the default), it returns a normal EOF
(an empty bytes object) in response to unexpected EOF errors raised from the underlying socket; if False, it
will raise the exceptions back to the caller.

session, see session.

To wrap an SSLSocket in another SSLSocket, use SSLContext.wrap_bio().

Changed in version 3.5: Always allow a server_hostname to be passed, even if OpenSSL does not have SNI.

Changed in version 3.6: session argument was added.

19.3. ssl— TLS/SSL wrapper for socket objects 1191

https://vincent.bernat.ch/en/blog/2011-ssl-perfect-forward-secrecy

The Python Library Reference, Release 3.13.1

Changed in version 3.7: The method returns an instance of SSLContext.sslsocket_class instead of
hard-coded SSLSocket.

SSLContext.sslsocket_class

The return type of SSLContext.wrap_socket(), defaults to SSLSocket. The attribute can be overridden
on instance of class in order to return a custom subclass of SSLSocket.

Added in version 3.7.

SSLContext.wrap_bio(incoming, outgoing, server_side=False, server_hostname=None, session=None)
Wrap the BIO objects incoming and outgoing and return an instance of SSLContext.sslobject_class
(default SSLObject). The SSL routines will read input data from the incoming BIO and write data to the
outgoing BIO.

The server_side, server_hostname and session parameters have the same meaning as in SSLContext.

wrap_socket().

Changed in version 3.6: session argument was added.

Changed in version 3.7: The method returns an instance of SSLContext.sslobject_class instead of
hard-coded SSLObject.

SSLContext.sslobject_class

The return type of SSLContext.wrap_bio(), defaults to SSLObject. The attribute can be overridden on
instance of class in order to return a custom subclass of SSLObject.

Added in version 3.7.

SSLContext.session_stats()

Get statistics about the SSL sessions created or managed by this context. A dictionary is returned which maps
the names of each piece of information to their numeric values. For example, here is the total number of hits
and misses in the session cache since the context was created:

>>> stats = context.session_stats()

>>> stats['hits'], stats['misses']

(0, 0)

SSLContext.check_hostname

Whether to match the peer cert’s hostname in SSLSocket.do_handshake(). The context’s verify_mode
must be set to CERT_OPTIONAL or CERT_REQUIRED, and youmust pass server_hostname to wrap_socket()
in order to match the hostname. Enabling hostname checking automatically sets verify_mode from
CERT_NONE to CERT_REQUIRED. It cannot be set back to CERT_NONE as long as hostname checking is en-
abled. The PROTOCOL_TLS_CLIENT protocol enables hostname checking by default. With other protocols,
hostname checking must be enabled explicitly.

Example:

import socket, ssl

context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)

context.verify_mode = ssl.CERT_REQUIRED

context.check_hostname = True

context.load_default_certs()

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

ssl_sock = context.wrap_socket(s, server_hostname='www.verisign.com')

ssl_sock.connect(('www.verisign.com', 443))

Added in version 3.4.

Changed in version 3.7: verify_mode is now automatically changed to CERT_REQUIRED when hostname
checking is enabled and verify_mode is CERT_NONE. Previously the same operation would have failed with
a ValueError.

1192 Chapter 19. Networking and Interprocess Communication

https://docs.openssl.org/1.1.1/man3/SSL_CTX_sess_number/

The Python Library Reference, Release 3.13.1

SSLContext.keylog_filename

Write TLS keys to a keylog file, whenever key material is generated or received. The keylog file is designed
for debugging purposes only. The file format is specified by NSS and used by many traffic analyzers such as
Wireshark. The log file is opened in append-only mode. Writes are synchronized between threads, but not
between processes.

Added in version 3.8.

SSLContext.maximum_version

A TLSVersion enum member representing the highest supported TLS version. The value defaults to
TLSVersion.MAXIMUM_SUPPORTED. The attribute is read-only for protocols other than PROTOCOL_TLS,
PROTOCOL_TLS_CLIENT, and PROTOCOL_TLS_SERVER.

The attributes maximum_version, minimum_version and SSLContext.options all affect the supported
SSL and TLS versions of the context. The implementation does not prevent invalid combination. For example
a context with OP_NO_TLSv1_2 in options and maximum_version set to TLSVersion.TLSv1_2will not
be able to establish a TLS 1.2 connection.

Added in version 3.7.

SSLContext.minimum_version

Like SSLContext.maximum_version except it is the lowest supported version or TLSVersion.

MINIMUM_SUPPORTED.

Added in version 3.7.

SSLContext.num_tickets

Control the number of TLS 1.3 session tickets of a PROTOCOL_TLS_SERVER context. The setting has no
impact on TLS 1.0 to 1.2 connections.

Added in version 3.8.

SSLContext.options

An integer representing the set of SSL options enabled on this context. The default value is OP_ALL, but you
can specify other options such as OP_NO_SSLv2 by ORing them together.

Changed in version 3.6: SSLContext.options returns Options flags:

>>> ssl.create_default_context().options

<Options.OP_ALL|OP_NO_SSLv3|OP_NO_SSLv2|OP_NO_COMPRESSION: 2197947391>

Deprecated since version 3.7: All OP_NO_SSL* and OP_NO_TLS* options have been deprecated since Python
3.7. Use SSLContext.minimum_version and SSLContext.maximum_version instead.

SSLContext.post_handshake_auth

Enable TLS 1.3 post-handshake client authentication. Post-handshake auth is disabled by default and a server
can only request a TLS client certificate during the initial handshake. When enabled, a server may request a
TLS client certificate at any time after the handshake.

When enabled on client-side sockets, the client signals the server that it supports post-handshake authentication.

When enabled on server-side sockets, SSLContext.verify_mode must be set to CERT_OPTIONAL

or CERT_REQUIRED, too. The actual client cert exchange is delayed until SSLSocket.

verify_client_post_handshake() is called and some I/O is performed.

Added in version 3.8.

SSLContext.protocol

The protocol version chosen when constructing the context. This attribute is read-only.

SSLContext.hostname_checks_common_name

Whether check_hostname falls back to verify the cert’s subject common name in the absence of a subject
alternative name extension (default: true).

Added in version 3.7.

19.3. ssl— TLS/SSL wrapper for socket objects 1193

The Python Library Reference, Release 3.13.1

Changed in version 3.10: The flag had no effect with OpenSSL before version 1.1.1l. Python 3.8.9, 3.9.3, and
3.10 include workarounds for previous versions.

SSLContext.security_level

An integer representing the security level for the context. This attribute is read-only.

Added in version 3.10.

SSLContext.verify_flags

The flags for certificate verification operations. You can set flags like VERIFY_CRL_CHECK_LEAF by ORing
them together. By default OpenSSL does neither require nor verify certificate revocation lists (CRLs).

Added in version 3.4.

Changed in version 3.6: SSLContext.verify_flags returns VerifyFlags flags:

>>> ssl.create_default_context().verify_flags

<VerifyFlags.VERIFY_X509_TRUSTED_FIRST: 32768>

SSLContext.verify_mode

Whether to try to verify other peers’ certificates and how to behave if verification fails. This attribute must be
one of CERT_NONE, CERT_OPTIONAL or CERT_REQUIRED.

Changed in version 3.6: SSLContext.verify_mode returns VerifyMode enum:

>>> ssl.create_default_context().verify_mode

<VerifyMode.CERT_REQUIRED: 2>

SSLContext.set_psk_client_callback(callback)
Enables TLS-PSK (pre-shared key) authentication on a client-side connection.

In general, certificate based authentication should be preferred over this method.

The parameter callback is a callable object with the signature: def callback(hint: str | None)

-> tuple[str | None, bytes]. The hint parameter is an optional identity hint sent by the server. The
return value is a tuple in the form (client-identity, psk). Client-identity is an optional string which may be used
by the server to select a corresponding PSK for the client. The string must be less than or equal to 256 octets
when UTF-8 encoded. PSK is a bytes-like object representing the pre-shared key. Return a zero length PSK to
reject the connection.

Setting callback to None removes any existing callback.

Note

When using TLS 1.3:

• the hint parameter is always None.

• client-identity must be a non-empty string.

Example usage:

context = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT)

context.check_hostname = False

context.verify_mode = ssl.CERT_NONE

context.maximum_version = ssl.TLSVersion.TLSv1_2

context.set_ciphers('PSK')

A simple lambda:

psk = bytes.fromhex('c0ffee')

context.set_psk_client_callback(lambda hint: (None, psk))

(continues on next page)

1194 Chapter 19. Networking and Interprocess Communication

https://docs.openssl.org/master/man3/SSL_CTX_get_security_level/

The Python Library Reference, Release 3.13.1

(continued from previous page)

A table using the hint from the server:

psk_table = { 'ServerId_1': bytes.fromhex('c0ffee'),

'ServerId_2': bytes.fromhex('facade')

}

def callback(hint):

return 'ClientId_1', psk_table.get(hint, b'')

context.set_psk_client_callback(callback)

This method will raise NotImplementedError if HAS_PSK is False.

Added in version 3.13.

SSLContext.set_psk_server_callback(callback, identity_hint=None)
Enables TLS-PSK (pre-shared key) authentication on a server-side connection.

In general, certificate based authentication should be preferred over this method.

The parameter callback is a callable object with the signature: def callback(identity: str |

None) -> bytes. The identity parameter is an optional identity sent by the client which can be used
to select a corresponding PSK. The return value is a bytes-like object representing the pre-shared key. Return
a zero length PSK to reject the connection.

Setting callback to None removes any existing callback.

The parameter identity_hint is an optional identity hint string sent to the client. The string must be less
than or equal to 256 octets when UTF-8 encoded.

Note

When using TLS 1.3 the identity_hint parameter is not sent to the client.

Example usage:

context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)

context.maximum_version = ssl.TLSVersion.TLSv1_2

context.set_ciphers('PSK')

A simple lambda:

psk = bytes.fromhex('c0ffee')

context.set_psk_server_callback(lambda identity: psk)

A table using the identity of the client:

psk_table = { 'ClientId_1': bytes.fromhex('c0ffee'),

'ClientId_2': bytes.fromhex('facade')

}

def callback(identity):

return psk_table.get(identity, b'')

context.set_psk_server_callback(callback, 'ServerId_1')

This method will raise NotImplementedError if HAS_PSK is False.

Added in version 3.13.

19.3.4 Certificates

Certificates in general are part of a public-key / private-key system. In this system, each principal, (which may be a
machine, or a person, or an organization) is assigned a unique two-part encryption key. One part of the key is public,
and is called the public key; the other part is kept secret, and is called the private key. The two parts are related, in

19.3. ssl— TLS/SSL wrapper for socket objects 1195

The Python Library Reference, Release 3.13.1

that if you encrypt a message with one of the parts, you can decrypt it with the other part, and only with the other
part.

A certificate contains information about two principals. It contains the name of a subject, and the subject’s public key.
It also contains a statement by a second principal, the issuer, that the subject is who they claim to be, and that this is
indeed the subject’s public key. The issuer’s statement is signed with the issuer’s private key, which only the issuer
knows. However, anyone can verify the issuer’s statement by finding the issuer’s public key, decrypting the statement
with it, and comparing it to the other information in the certificate. The certificate also contains information about
the time period over which it is valid. This is expressed as two fields, called “notBefore” and “notAfter”.

In the Python use of certificates, a client or server can use a certificate to prove who they are. The other side of a
network connection can also be required to produce a certificate, and that certificate can be validated to the satisfaction
of the client or server that requires such validation. The connection attempt can be set to raise an exception if the
validation fails. Validation is done automatically, by the underlying OpenSSL framework; the application need not
concern itself with its mechanics. But the application does usually need to provide sets of certificates to allow this
process to take place.

Python uses files to contain certificates. They should be formatted as “PEM” (see RFC 1422), which is a base-64
encoded form wrapped with a header line and a footer line:

-----BEGIN CERTIFICATE-----

... (certificate in base64 PEM encoding) ...

-----END CERTIFICATE-----

Certificate chains

The Python files which contain certificates can contain a sequence of certificates, sometimes called a certificate chain.
This chain should start with the specific certificate for the principal who “is” the client or server, and then the certificate
for the issuer of that certificate, and then the certificate for the issuer of that certificate, and so on up the chain till you
get to a certificate which is self-signed, that is, a certificate which has the same subject and issuer, sometimes called a
root certificate. The certificates should just be concatenated together in the certificate file. For example, suppose we
had a three certificate chain, from our server certificate to the certificate of the certification authority that signed our
server certificate, to the root certificate of the agency which issued the certification authority’s certificate:

-----BEGIN CERTIFICATE-----

... (certificate for your server)...

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

... (the certificate for the CA)...

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

... (the root certificate for the CA's issuer)...

-----END CERTIFICATE-----

CA certificates

If you are going to require validation of the other side of the connection’s certificate, you need to provide a “CA certs”
file, filled with the certificate chains for each issuer you are willing to trust. Again, this file just contains these chains
concatenated together. For validation, Python will use the first chain it finds in the file which matches. The platform’s
certificates file can be used by calling SSLContext.load_default_certs(), this is done automatically with
create_default_context().

Combined key and certificate

Often the private key is stored in the same file as the certificate; in this case, only the certfile parameter to
SSLContext.load_cert_chain() needs to be passed. If the private key is stored with the certificate, it should
come before the first certificate in the certificate chain:

1196 Chapter 19. Networking and Interprocess Communication

https://datatracker.ietf.org/doc/html/rfc1422.html

The Python Library Reference, Release 3.13.1

-----BEGIN RSA PRIVATE KEY-----

... (private key in base64 encoding) ...

-----END RSA PRIVATE KEY-----

-----BEGIN CERTIFICATE-----

... (certificate in base64 PEM encoding) ...

-----END CERTIFICATE-----

Self-signed certificates

If you are going to create a server that provides SSL-encrypted connection services, you will need to acquire a
certificate for that service. There are many ways of acquiring appropriate certificates, such as buying one from a
certification authority. Another common practice is to generate a self-signed certificate. The simplest way to do this
is with the OpenSSL package, using something like the following:

% openssl req -new -x509 -days 365 -nodes -out cert.pem -keyout cert.pem

Generating a 1024 bit RSA private key

.......++++++

.............................++++++

writing new private key to 'cert.pem'

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:MyState

Locality Name (eg, city) []:Some City

Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Organization, Inc.

Organizational Unit Name (eg, section) []:My Group

Common Name (eg, YOUR name) []:myserver.mygroup.myorganization.com

Email Address []:ops@myserver.mygroup.myorganization.com

%

The disadvantage of a self-signed certificate is that it is its own root certificate, and no one else will have it in their
cache of known (and trusted) root certificates.

19.3.5 Examples

Testing for SSL support

To test for the presence of SSL support in a Python installation, user code should use the following idiom:

try:

import ssl

except ImportError:

pass

else:

... # do something that requires SSL support

Client-side operation

This example creates a SSL context with the recommended security settings for client sockets, including automatic
certificate verification:

19.3. ssl— TLS/SSL wrapper for socket objects 1197

The Python Library Reference, Release 3.13.1

>>> context = ssl.create_default_context()

If you prefer to tune security settings yourself, you might create a context from scratch (but beware that you might
not get the settings right):

>>> context = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT)

>>> context.load_verify_locations("/etc/ssl/certs/ca-bundle.crt")

(this snippet assumes your operating system places a bundle of all CA certificates in /etc/ssl/certs/

ca-bundle.crt; if not, you’ll get an error and have to adjust the location)

The PROTOCOL_TLS_CLIENT protocol configures the context for cert validation and hostname verification.
verify_mode is set to CERT_REQUIRED and check_hostname is set to True. All other protocols create SSL
contexts with insecure defaults.

When you use the context to connect to a server, CERT_REQUIRED and check_hostname validate the server cer-
tificate: it ensures that the server certificate was signed with one of the CA certificates, checks the signature for
correctness, and verifies other properties like validity and identity of the hostname:

>>> conn = context.wrap_socket(socket.socket(socket.AF_INET),

... server_hostname="www.python.org")

>>> conn.connect(("www.python.org", 443))

You may then fetch the certificate:

>>> cert = conn.getpeercert()

Visual inspection shows that the certificate does identify the desired service (that is, the HTTPS host www.python.
org):

>>> pprint.pprint(cert)

{'OCSP': ('http://ocsp.digicert.com',),

'caIssuers': ('http://cacerts.digicert.com/DigiCertSHA2ExtendedValidationServerCA.

↪→crt',),

'crlDistributionPoints': ('http://crl3.digicert.com/sha2-ev-server-g1.crl',

'http://crl4.digicert.com/sha2-ev-server-g1.crl'),

'issuer': ((('countryName', 'US'),),

(('organizationName', 'DigiCert Inc'),),

(('organizationalUnitName', 'www.digicert.com'),),

(('commonName', 'DigiCert SHA2 Extended Validation Server CA'),)),

'notAfter': 'Sep 9 12:00:00 2016 GMT',

'notBefore': 'Sep 5 00:00:00 2014 GMT',

'serialNumber': '01BB6F00122B177F36CAB49CEA8B6B26',

'subject': ((('businessCategory', 'Private Organization'),),

(('1.3.6.1.4.1.311.60.2.1.3', 'US'),),

(('1.3.6.1.4.1.311.60.2.1.2', 'Delaware'),),

(('serialNumber', '3359300'),),

(('streetAddress', '16 Allen Rd'),),

(('postalCode', '03894-4801'),),

(('countryName', 'US'),),

(('stateOrProvinceName', 'NH'),),

(('localityName', 'Wolfeboro'),),

(('organizationName', 'Python Software Foundation'),),

(('commonName', 'www.python.org'),)),

'subjectAltName': (('DNS', 'www.python.org'),

('DNS', 'python.org'),

('DNS', 'pypi.org'),

('DNS', 'docs.python.org'),

('DNS', 'testpypi.org'),
(continues on next page)

1198 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

(continued from previous page)

('DNS', 'bugs.python.org'),

('DNS', 'wiki.python.org'),

('DNS', 'hg.python.org'),

('DNS', 'mail.python.org'),

('DNS', 'packaging.python.org'),

('DNS', 'pythonhosted.org'),

('DNS', 'www.pythonhosted.org'),

('DNS', 'test.pythonhosted.org'),

('DNS', 'us.pycon.org'),

('DNS', 'id.python.org')),

'version': 3}

Now the SSL channel is established and the certificate verified, you can proceed to talk with the server:

>>> conn.sendall(b"HEAD / HTTP/1.0\r\nHost: linuxfr.org\r\n\r\n")

>>> pprint.pprint(conn.recv(1024).split(b"\r\n"))

[b'HTTP/1.1 200 OK',

b'Date: Sat, 18 Oct 2014 18:27:20 GMT',

b'Server: nginx',

b'Content-Type: text/html; charset=utf-8',

b'X-Frame-Options: SAMEORIGIN',

b'Content-Length: 45679',

b'Accept-Ranges: bytes',

b'Via: 1.1 varnish',

b'Age: 2188',

b'X-Served-By: cache-lcy1134-LCY',

b'X-Cache: HIT',

b'X-Cache-Hits: 11',

b'Vary: Cookie',

b'Strict-Transport-Security: max-age=63072000; includeSubDomains',

b'Connection: close',

b'',

b'']

See the discussion of Security considerations below.

Server-side operation

For server operation, typically you’ll need to have a server certificate, and private key, each in a file. You’ll first create
a context holding the key and the certificate, so that clients can check your authenticity. Then you’ll open a socket,
bind it to a port, call listen() on it, and start waiting for clients to connect:

import socket, ssl

context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)

context.load_cert_chain(certfile="mycertfile", keyfile="mykeyfile")

bindsocket = socket.socket()

bindsocket.bind(('myaddr.example.com', 10023))

bindsocket.listen(5)

When a client connects, you’ll call accept() on the socket to get the new socket from the other end, and use the
context’s SSLContext.wrap_socket() method to create a server-side SSL socket for the connection:

while True:

newsocket, fromaddr = bindsocket.accept()

connstream = context.wrap_socket(newsocket, server_side=True)

(continues on next page)

19.3. ssl— TLS/SSL wrapper for socket objects 1199

The Python Library Reference, Release 3.13.1

(continued from previous page)

try:

deal_with_client(connstream)

finally:

connstream.shutdown(socket.SHUT_RDWR)

connstream.close()

Then you’ll read data from the connstream and do something with it till you are finished with the client (or the
client is finished with you):

def deal_with_client(connstream):

data = connstream.recv(1024)

empty data means the client is finished with us

while data:

if not do_something(connstream, data):

we'll assume do_something returns False

when we're finished with client

break

data = connstream.recv(1024)

finished with client

And go back to listening for new client connections (of course, a real server would probably handle each client
connection in a separate thread, or put the sockets in non-blocking mode and use an event loop).

19.3.6 Notes on non-blocking sockets

SSL sockets behave slightly different than regular sockets in non-blocking mode. When working with non-blocking
sockets, there are thus several things you need to be aware of:

• Most SSLSocket methods will raise either SSLWantWriteError or SSLWantReadError instead of
BlockingIOError if an I/O operation would block. SSLWantReadError will be raised if a read opera-
tion on the underlying socket is necessary, and SSLWantWriteError for a write operation on the underlying
socket. Note that attempts to write to an SSL socket may require reading from the underlying socket first, and
attempts to read from the SSL socket may require a prior write to the underlying socket.

Changed in version 3.5: In earlier Python versions, the SSLSocket.send()method returned zero instead of
raising SSLWantWriteError or SSLWantReadError.

• Calling select() tells you that the OS-level socket can be read from (or written to), but it does not imply
that there is sufficient data at the upper SSL layer. For example, only part of an SSL frame might have arrived.
Therefore, you must be ready to handle SSLSocket.recv() and SSLSocket.send() failures, and retry
after another call to select().

• Conversely, since the SSL layer has its own framing, a SSL socket may still have data available for reading
without select() being aware of it. Therefore, you should first call SSLSocket.recv() to drain any
potentially available data, and then only block on a select() call if still necessary.

(of course, similar provisions apply when using other primitives such as poll(), or those in the selectors
module)

• The SSL handshake itself will be non-blocking: the SSLSocket.do_handshake()method has to be retried
until it returns successfully. Here is a synopsis using select() to wait for the socket’s readiness:

while True:

try:

sock.do_handshake()

break

except ssl.SSLWantReadError:

select.select([sock], [], [])

except ssl.SSLWantWriteError:

select.select([], [sock], [])

1200 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

See also

The asyncio module supports non-blocking SSL sockets and provides a higher level Streams API. It polls
for events using the selectors module and handles SSLWantWriteError, SSLWantReadError and
BlockingIOError exceptions. It runs the SSL handshake asynchronously as well.

19.3.7 Memory BIO Support

Added in version 3.5.

Ever since the SSL module was introduced in Python 2.6, the SSLSocket class has provided two related but distinct
areas of functionality:

• SSL protocol handling

• Network IO

The network IO API is identical to that provided by socket.socket, from which SSLSocket also inherits. This
allows an SSL socket to be used as a drop-in replacement for a regular socket, making it very easy to add SSL support
to an existing application.

Combining SSL protocol handling and network IO usually works well, but there are some cases where it doesn’t. An
example is async IO frameworks that want to use a different IO multiplexing model than the “select/poll on a file
descriptor” (readiness based) model that is assumed by socket.socket and by the internal OpenSSL socket IO
routines. This is mostly relevant for platforms like Windows where this model is not efficient. For this purpose, a
reduced scope variant of SSLSocket called SSLObject is provided.

class ssl.SSLObject

A reduced-scope variant of SSLSocket representing an SSL protocol instance that does not contain any net-
work IO methods. This class is typically used by framework authors that want to implement asynchronous IO
for SSL through memory buffers.

This class implements an interface on top of a low-level SSL object as implemented by OpenSSL. This object
captures the state of an SSL connection but does not provide any network IO itself. IO needs to be performed
through separate “BIO” objects which are OpenSSL’s IO abstraction layer.

This class has no public constructor. An SSLObject instance must be created using the wrap_bio()method.
This method will create the SSLObject instance and bind it to a pair of BIOs. The incoming BIO is used to
pass data from Python to the SSL protocol instance, while the outgoing BIO is used to pass data the other way
around.

The following methods are available:

• context

• server_side

• server_hostname

• session

• session_reused

• read()

• write()

• getpeercert()

• get_verified_chain()

• get_unverified_chain()

• selected_alpn_protocol()

• selected_npn_protocol()

• cipher()

19.3. ssl— TLS/SSL wrapper for socket objects 1201

The Python Library Reference, Release 3.13.1

• shared_ciphers()

• compression()

• pending()

• do_handshake()

• verify_client_post_handshake()

• unwrap()

• get_channel_binding()

• version()

When compared to SSLSocket, this object lacks the following features:

• Any form of network IO; recv() and send() read and write only to the underlying MemoryBIO buffers.

• There is no do_handshake_on_connect machinery. You must always manually call do_handshake()
to start the handshake.

• There is no handling of suppress_ragged_eofs. All end-of-file conditions that are in violation of the
protocol are reported via the SSLEOFError exception.

• The method unwrap() call does not return anything, unlike for an SSL socket where it returns the
underlying socket.

• The server_name_callback callback passed to SSLContext.set_servername_callback() will get
an SSLObject instance instead of a SSLSocket instance as its first parameter.

Some notes related to the use of SSLObject:

• All IO on an SSLObject is non-blocking. This means that for example read() will raise an
SSLWantReadError if it needs more data than the incoming BIO has available.

Changed in version 3.7: SSLObject instances must be created with wrap_bio(). In earlier versions, it was
possible to create instances directly. This was never documented or officially supported.

An SSLObject communicates with the outside world using memory buffers. The class MemoryBIO provides a mem-
ory buffer that can be used for this purpose. It wraps an OpenSSL memory BIO (Basic IO) object:

class ssl.MemoryBIO

A memory buffer that can be used to pass data between Python and an SSL protocol instance.

pending

Return the number of bytes currently in the memory buffer.

eof

A boolean indicating whether the memory BIO is current at the end-of-file position.

read(n=-1)

Read up to n bytes from the memory buffer. If n is not specified or negative, all bytes are returned.

write(buf)
Write the bytes from buf to the memory BIO. The buf argument must be an object supporting the buffer
protocol.

The return value is the number of bytes written, which is always equal to the length of buf.

write_eof()

Write an EOFmarker to the memory BIO. After this method has been called, it is illegal to call write().
The attribute eof will become true after all data currently in the buffer has been read.

1202 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

19.3.8 SSL session

Added in version 3.6.

class ssl.SSLSession

Session object used by session.

id

time

timeout

ticket_lifetime_hint

has_ticket

19.3.9 Security considerations

Best defaults

For client use, if you don’t have any special requirements for your security policy, it is highly recommended that you
use the create_default_context() function to create your SSL context. It will load the system’s trusted CA
certificates, enable certificate validation and hostname checking, and try to choose reasonably secure protocol and
cipher settings.

For example, here is how you would use the smtplib.SMTP class to create a trusted, secure connection to a SMTP
server:

>>> import ssl, smtplib

>>> smtp = smtplib.SMTP("mail.python.org", port=587)

>>> context = ssl.create_default_context()

>>> smtp.starttls(context=context)

(220, b'2.0.0 Ready to start TLS')

If a client certificate is needed for the connection, it can be added with SSLContext.load_cert_chain().

By contrast, if you create the SSL context by calling the SSLContext constructor yourself, it will not have certificate
validation nor hostname checking enabled by default. If you do so, please read the paragraphs below to achieve a
good security level.

Manual settings

Verifying certificates

When calling the SSLContext constructor directly, CERT_NONE is the default. Since it does not authenticate the
other peer, it can be insecure, especially in client mode where most of the time you would like to ensure the authentic-
ity of the server you’re talking to. Therefore, when in client mode, it is highly recommended to use CERT_REQUIRED.
However, it is in itself not sufficient; you also have to check that the server certificate, which can be obtained by calling
SSLSocket.getpeercert(), matches the desired service. For many protocols and applications, the service can be
identified by the hostname. This common check is automatically performed when SSLContext.check_hostname
is enabled.

Changed in version 3.7: Hostname matchings is now performed by OpenSSL. Python no longer uses
match_hostname().

In server mode, if you want to authenticate your clients using the SSL layer (rather than using a higher-level authen-
tication mechanism), you’ll also have to specify CERT_REQUIRED and similarly check the client certificate.

19.3. ssl— TLS/SSL wrapper for socket objects 1203

The Python Library Reference, Release 3.13.1

Protocol versions

SSL versions 2 and 3 are considered insecure and are therefore dangerous to use. If you want maximum compatibility
between clients and servers, it is recommended to use PROTOCOL_TLS_CLIENT or PROTOCOL_TLS_SERVER as the
protocol version. SSLv2 and SSLv3 are disabled by default.

>>> client_context = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT)

>>> client_context.minimum_version = ssl.TLSVersion.TLSv1_3

>>> client_context.maximum_version = ssl.TLSVersion.TLSv1_3

The SSL context created above will only allow TLSv1.3 and later (if supported by your system) connections to a
server. PROTOCOL_TLS_CLIENT implies certificate validation and hostname checks by default. You have to load
certificates into the context.

Cipher selection

If you have advanced security requirements, fine-tuning of the ciphers enabled when negotiating a SSL session is
possible through the SSLContext.set_ciphers() method. Starting from Python 3.2.3, the ssl module disables
certain weak ciphers by default, but you may want to further restrict the cipher choice. Be sure to read OpenSSL’s
documentation about the cipher list format. If you want to check which ciphers are enabled by a given cipher list,
use SSLContext.get_ciphers() or the openssl ciphers command on your system.

Multi-processing

If using this module as part of a multi-processed application (using, for example the multiprocessing or
concurrent.futures modules), be aware that OpenSSL’s internal random number generator does not properly
handle forked processes. Applications must change the PRNG state of the parent process if they use any SSL feature
with os.fork(). Any successful call of RAND_add() or RAND_bytes() is sufficient.

19.3.10 TLS 1.3

Added in version 3.7.

The TLS 1.3 protocol behaves slightly differently than previous version of TLS/SSL. Some new TLS 1.3 features are
not yet available.

• TLS 1.3 uses a disjunct set of cipher suites. All AES-GCM and ChaCha20 cipher suites are enabled by
default. The method SSLContext.set_ciphers() cannot enable or disable any TLS 1.3 ciphers yet, but
SSLContext.get_ciphers() returns them.

• Session tickets are no longer sent as part of the initial handshake and are handled differently. SSLSocket.
session and SSLSession are not compatible with TLS 1.3.

• Client-side certificates are also no longer verified during the initial handshake. A server can request a certificate
at any time. Clients process certificate requests while they send or receive application data from the server.

• TLS 1.3 features like early data, deferred TLS client cert request, signature algorithm configuration, and rekey-
ing are not supported yet.

See also

Class socket.socket
Documentation of underlying socket class

SSL/TLS Strong Encryption: An Introduction
Intro from the Apache HTTP Server documentation

RFC 1422: Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key
Management

Steve Kent

1204 Chapter 19. Networking and Interprocess Communication

https://docs.openssl.org/1.1.1/man1/ciphers/#cipher-list-format
https://httpd.apache.org/docs/trunk/en/ssl/ssl_intro.html
https://datatracker.ietf.org/doc/html/rfc1422.html
https://datatracker.ietf.org/doc/html/rfc1422.html

The Python Library Reference, Release 3.13.1

RFC 4086: Randomness Requirements for Security
Donald E., Jeffrey I. Schiller

RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile

D. Cooper

RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2
T. Dierks et. al.

RFC 6066: Transport Layer Security (TLS) Extensions
D. Eastlake

IANA TLS: Transport Layer Security (TLS) Parameters
IANA

RFC 7525: Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS)

IETF

Mozilla’s Server Side TLS recommendations
Mozilla

19.4 select—Waiting for I/O completion

This module provides access to the select() and poll() functions available in most operating systems,
devpoll() available on Solaris and derivatives, epoll() available on Linux 2.5+ and kqueue() available on
most BSD. Note that on Windows, it only works for sockets; on other operating systems, it also works for other file
types (in particular, on Unix, it works on pipes). It cannot be used on regular files to determine whether a file has
grown since it was last read.

Note

The selectors module allows high-level and efficient I/O multiplexing, built upon the select module prim-
itives. Users are encouraged to use the selectors module instead, unless they want precise control over the
OS-level primitives used.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

The module defines the following:

exception select.error

A deprecated alias of OSError.

Changed in version 3.3: Following PEP 3151, this class was made an alias of OSError.

select.devpoll()

(Only supported on Solaris and derivatives.) Returns a /dev/poll polling object; see section /dev/poll Polling
Objects below for the methods supported by devpoll objects.

devpoll() objects are linked to the number of file descriptors allowed at the time of instantiation. If your
program reduces this value, devpoll()will fail. If your program increases this value, devpoll()may return
an incomplete list of active file descriptors.

The new file descriptor is non-inheritable.

Added in version 3.3.

Changed in version 3.4: The new file descriptor is now non-inheritable.

19.4. select—Waiting for I/O completion 1205

https://datatracker.ietf.org/doc/html/rfc4086.html
https://datatracker.ietf.org/doc/html/rfc5280.html
https://datatracker.ietf.org/doc/html/rfc5280.html
https://datatracker.ietf.org/doc/html/rfc5246.html
https://datatracker.ietf.org/doc/html/rfc6066.html
https://www.iana.org/assignments/tls-parameters/tls-parameters.xml
https://datatracker.ietf.org/doc/html/rfc7525.html
https://datatracker.ietf.org/doc/html/rfc7525.html
https://wiki.mozilla.org/Security/Server_Side_TLS
https://peps.python.org/pep-3151/

The Python Library Reference, Release 3.13.1

select.epoll(sizehint=-1, flags=0)
(Only supported on Linux 2.5.44 and newer.) Return an edge polling object, which can be used as Edge or
Level Triggered interface for I/O events.

sizehint informs epoll about the expected number of events to be registered. It must be positive, or -1 to use
the default. It is only used on older systems where epoll_create1() is not available; otherwise it has no
effect (though its value is still checked).

flags is deprecated and completely ignored. However, when supplied, its value must be 0 or select.
EPOLL_CLOEXEC, otherwise OSError is raised.

See the Edge and Level Trigger Polling (epoll) Objects section below for the methods supported by epolling
objects.

epoll objects support the context management protocol: when used in a with statement, the new file de-
scriptor is automatically closed at the end of the block.

The new file descriptor is non-inheritable.

Changed in version 3.3: Added the flags parameter.

Changed in version 3.4: Support for the with statement was added. The new file descriptor is now non-
inheritable.

Deprecated since version 3.4: The flags parameter. select.EPOLL_CLOEXEC is used by default now. Use
os.set_inheritable() to make the file descriptor inheritable.

select.poll()

(Not supported by all operating systems.) Returns a polling object, which supports registering and unregister-
ing file descriptors, and then polling them for I/O events; see section Polling Objects below for the methods
supported by polling objects.

select.kqueue()

(Only supported on BSD.) Returns a kernel queue object; see section Kqueue Objects below for the methods
supported by kqueue objects.

The new file descriptor is non-inheritable.

Changed in version 3.4: The new file descriptor is now non-inheritable.

select.kevent(ident, filter=KQ_FILTER_READ, flags=KQ_EV_ADD, fflags=0, data=0, udata=0)
(Only supported on BSD.) Returns a kernel event object; see section Kevent Objects below for the methods
supported by kevent objects.

select.select(rlist, wlist, xlist[, timeout])
This is a straightforward interface to the Unix select() system call. The first three arguments are iterables of
‘waitable objects’: either integers representing file descriptors or objects with a parameterless method named
fileno() returning such an integer:

• rlist: wait until ready for reading

• wlist: wait until ready for writing

• xlist: wait for an “exceptional condition” (see the manual page for what your system considers such a
condition)

Empty iterables are allowed, but acceptance of three empty iterables is platform-dependent. (It is known to
work on Unix but not on Windows.) The optional timeout argument specifies a time-out as a floating-point
number in seconds. When the timeout argument is omitted the function blocks until at least one file descriptor
is ready. A time-out value of zero specifies a poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the first three arguments. When the
time-out is reached without a file descriptor becoming ready, three empty lists are returned.

Among the acceptable object types in the iterables are Python file objects (e.g. sys.stdin, or objects returned
by open() or os.popen()), socket objects returned by socket.socket(). You may also define a wrapper

1206 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

class yourself, as long as it has an appropriate fileno() method (that really returns a file descriptor, not just
a random integer).

Note

File objects on Windows are not acceptable, but sockets are. On Windows, the underlying select()
function is provided by the WinSock library, and does not handle file descriptors that don’t originate from
WinSock.

Changed in version 3.5: The function is now retried with a recomputed timeout when interrupted by a
signal, except if the signal handler raises an exception (see PEP 475 for the rationale), instead of raising
InterruptedError.

select.PIPE_BUF

The minimum number of bytes which can be written without blocking to a pipe when the pipe has been
reported as ready for writing by select(), poll() or another interface in this module. This doesn’t apply
to other kind of file-like objects such as sockets.

This value is guaranteed by POSIX to be at least 512.

Availability: Unix

Added in version 3.2.

19.4.1 /dev/poll Polling Objects

Solaris and derivatives have /dev/poll. While select() is O(highest file descriptor) and poll() is O(number of
file descriptors), /dev/poll is O(active file descriptors).

/dev/poll behaviour is very close to the standard poll() object.

devpoll.close()

Close the file descriptor of the polling object.

Added in version 3.4.

devpoll.closed

True if the polling object is closed.

Added in version 3.4.

devpoll.fileno()

Return the file descriptor number of the polling object.

Added in version 3.4.

devpoll.register(fd[, eventmask])
Register a file descriptor with the polling object. Future calls to the poll() method will then check whether
the file descriptor has any pending I/O events. fd can be either an integer, or an object with a fileno()
method that returns an integer. File objects implement fileno(), so they can also be used as the argument.

eventmask is an optional bitmask describing the type of events you want to check for. The constants are the
same that with poll() object. The default value is a combination of the constants POLLIN, POLLPRI, and
POLLOUT.

Warning

Registering a file descriptor that’s already registered is not an error, but the result is undefined. The appro-
priate action is to unregister or modify it first. This is an important difference compared with poll().

19.4. select—Waiting for I/O completion 1207

https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.13.1

devpoll.modify(fd[, eventmask])
This method does an unregister() followed by a register(). It is (a bit) more efficient that doing the
same explicitly.

devpoll.unregister(fd)
Remove a file descriptor being tracked by a polling object. Just like the register() method, fd can be an
integer or an object with a fileno() method that returns an integer.

Attempting to remove a file descriptor that was never registered is safely ignored.

devpoll.poll([timeout])
Polls the set of registered file descriptors, and returns a possibly empty list containing (fd, event) 2-tuples
for the descriptors that have events or errors to report. fd is the file descriptor, and event is a bitmask with
bits set for the reported events for that descriptor — POLLIN for waiting input, POLLOUT to indicate that the
descriptor can be written to, and so forth. An empty list indicates that the call timed out and no file descriptors
had any events to report. If timeout is given, it specifies the length of time in milliseconds which the system
will wait for events before returning. If timeout is omitted, -1, or None, the call will block until there is an
event for this poll object.

Changed in version 3.5: The function is now retried with a recomputed timeout when interrupted by a
signal, except if the signal handler raises an exception (see PEP 475 for the rationale), instead of raising
InterruptedError.

19.4.2 Edge and Level Trigger Polling (epoll) Objects

https://linux.die.net/man/4/epoll

eventmask

Constant Meaning

EPOLLIN Available for read
EPOLLOUT Available for write
EPOLLPRI Urgent data for read
EPOLLERR Error condition happened on the assoc. fd
EPOLLHUP Hang up happened on the assoc. fd
EPOLLET Set Edge Trigger behavior, the default is Level Trigger behavior
EPOLLONESHOTSet one-shot behavior. After one event is pulled out, the fd is internally disabled
EPOLLEXCLUSIVEWake only one epoll object when the associated fd has an event. The default (if this

flag is not set) is to wake all epoll objects polling on a fd.
EPOLLRDHUP Stream socket peer closed connection or shut down writing half of connection.
EPOLLRDNORMEquivalent to EPOLLIN
EPOLLRDBANDPriority data band can be read.
EPOLLWRNORMEquivalent to EPOLLOUT
EPOLLWRBANDPriority data may be written.
EPOLLMSG Ignored.

Added in version 3.6: EPOLLEXCLUSIVE was added. It’s only supported by Linux Kernel 4.5 or later.

epoll.close()

Close the control file descriptor of the epoll object.

epoll.closed

True if the epoll object is closed.

epoll.fileno()

Return the file descriptor number of the control fd.

epoll.fromfd(fd)
Create an epoll object from a given file descriptor.

1208 Chapter 19. Networking and Interprocess Communication

https://peps.python.org/pep-0475/
https://linux.die.net/man/4/epoll

The Python Library Reference, Release 3.13.1

epoll.register(fd[, eventmask])
Register a fd descriptor with the epoll object.

epoll.modify(fd, eventmask)

Modify a registered file descriptor.

epoll.unregister(fd)

Remove a registered file descriptor from the epoll object.

Changed in version 3.9: The method no longer ignores the EBADF error.

epoll.poll(timeout=None, maxevents=-1)
Wait for events. timeout in seconds (float)

Changed in version 3.5: The function is now retried with a recomputed timeout when interrupted by a
signal, except if the signal handler raises an exception (see PEP 475 for the rationale), instead of raising
InterruptedError.

19.4.3 Polling Objects

The poll() system call, supported on most Unix systems, provides better scalability for network servers that service
many, many clients at the same time. poll() scales better because the system call only requires listing the file
descriptors of interest, while select() builds a bitmap, turns on bits for the fds of interest, and then afterward the
whole bitmap has to be linearly scanned again. select() is O(highest file descriptor), while poll() is O(number
of file descriptors).

poll.register(fd[, eventmask])
Register a file descriptor with the polling object. Future calls to the poll() method will then check whether
the file descriptor has any pending I/O events. fd can be either an integer, or an object with a fileno()
method that returns an integer. File objects implement fileno(), so they can also be used as the argument.

eventmask is an optional bitmask describing the type of events you want to check for, and can be a combination
of the constants POLLIN, POLLPRI, and POLLOUT, described in the table below. If not specified, the default
value used will check for all 3 types of events.

Constant Meaning

POLLIN There is data to read
POLLPRI There is urgent data to read
POLLOUT Ready for output: writing will not block
POLLERR Error condition of some sort
POLLHUP Hung up
POLLRDHUP Stream socket peer closed connection, or shut down writing half of connection
POLLNVAL Invalid request: descriptor not open

Registering a file descriptor that’s already registered is not an error, and has the same effect as registering the
descriptor exactly once.

poll.modify(fd, eventmask)
Modifies an already registered fd. This has the same effect as register(fd, eventmask). Attempting
to modify a file descriptor that was never registered causes an OSError exception with errno ENOENT to be
raised.

poll.unregister(fd)

Remove a file descriptor being tracked by a polling object. Just like the register() method, fd can be an
integer or an object with a fileno() method that returns an integer.

Attempting to remove a file descriptor that was never registered causes a KeyError exception to be raised.

19.4. select—Waiting for I/O completion 1209

https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.13.1

poll.poll([timeout])
Polls the set of registered file descriptors, and returns a possibly empty list containing (fd, event) 2-tuples
for the descriptors that have events or errors to report. fd is the file descriptor, and event is a bitmask with
bits set for the reported events for that descriptor — POLLIN for waiting input, POLLOUT to indicate that the
descriptor can be written to, and so forth. An empty list indicates that the call timed out and no file descriptors
had any events to report. If timeout is given, it specifies the length of time in milliseconds which the system
will wait for events before returning. If timeout is omitted, negative, or None, the call will block until there is
an event for this poll object.

Changed in version 3.5: The function is now retried with a recomputed timeout when interrupted by a
signal, except if the signal handler raises an exception (see PEP 475 for the rationale), instead of raising
InterruptedError.

19.4.4 Kqueue Objects

kqueue.close()

Close the control file descriptor of the kqueue object.

kqueue.closed

True if the kqueue object is closed.

kqueue.fileno()

Return the file descriptor number of the control fd.

kqueue.fromfd(fd)
Create a kqueue object from a given file descriptor.

kqueue.control(changelist, max_events[, timeout])→ eventlist
Low level interface to kevent

• changelist must be an iterable of kevent objects or None

• max_events must be 0 or a positive integer

• timeout in seconds (floats possible); the default is None, to wait forever

Changed in version 3.5: The function is now retried with a recomputed timeout when interrupted by a
signal, except if the signal handler raises an exception (see PEP 475 for the rationale), instead of raising
InterruptedError.

19.4.5 Kevent Objects

https://man.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2

kevent.ident

Value used to identify the event. The interpretation depends on the filter but it’s usually the file descriptor.
In the constructor ident can either be an int or an object with a fileno() method. kevent stores the integer
internally.

kevent.filter

Name of the kernel filter.

Constant Meaning

KQ_FILTER_READ Takes a descriptor and returns whenever there is data available to read
KQ_FILTER_WRITE Takes a descriptor and returns whenever there is data available to write
KQ_FILTER_AIO AIO requests
KQ_FILTER_VNODE Returns when one or more of the requested events watched in fflag occurs
KQ_FILTER_PROC Watch for events on a process id
KQ_FILTER_NETDEV Watch for events on a network device [not available on macOS]
KQ_FILTER_SIGNAL Returns whenever the watched signal is delivered to the process
KQ_FILTER_TIMER Establishes an arbitrary timer

1210 Chapter 19. Networking and Interprocess Communication

https://peps.python.org/pep-0475/
https://peps.python.org/pep-0475/
https://man.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2

The Python Library Reference, Release 3.13.1

kevent.flags

Filter action.

Constant Meaning

KQ_EV_ADD Adds or modifies an event
KQ_EV_DELETE Removes an event from the queue
KQ_EV_ENABLE Permitscontrol() to returns the event
KQ_EV_DISABLE Disablesevent
KQ_EV_ONESHOT Removes event after first occurrence
KQ_EV_CLEAR Reset the state after an event is retrieved
KQ_EV_SYSFLAGS internal event
KQ_EV_FLAG1 internal event
KQ_EV_EOF Filter specific EOF condition
KQ_EV_ERROR See return values

kevent.fflags

Filter specific flags.

KQ_FILTER_READ and KQ_FILTER_WRITE filter flags:

Constant Meaning

KQ_NOTE_LOWAT low water mark of a socket buffer

KQ_FILTER_VNODE filter flags:

Constant Meaning

KQ_NOTE_DELETE unlink() was called
KQ_NOTE_WRITE a write occurred
KQ_NOTE_EXTEND the file was extended
KQ_NOTE_ATTRIB an attribute was changed
KQ_NOTE_LINK the link count has changed
KQ_NOTE_RENAME the file was renamed
KQ_NOTE_REVOKE access to the file was revoked

KQ_FILTER_PROC filter flags:

Constant Meaning

KQ_NOTE_EXIT the process has exited
KQ_NOTE_FORK the process has called fork()
KQ_NOTE_EXEC the process has executed a new process
KQ_NOTE_PCTRLMASK internal filter flag
KQ_NOTE_PDATAMASK internal filter flag
KQ_NOTE_TRACK follow a process across fork()
KQ_NOTE_CHILD returned on the child process for NOTE_TRACK
KQ_NOTE_TRACKERR unable to attach to a child

KQ_FILTER_NETDEV filter flags (not available on macOS):

Constant Meaning

KQ_NOTE_LINKUP link is up
KQ_NOTE_LINKDOWN link is down
KQ_NOTE_LINKINV link state is invalid

19.4. select—Waiting for I/O completion 1211

The Python Library Reference, Release 3.13.1

kevent.data

Filter specific data.

kevent.udata

User defined value.

19.5 selectors— High-level I/O multiplexing

Added in version 3.4.

Source code: Lib/selectors.py

19.5.1 Introduction

This module allows high-level and efficient I/O multiplexing, built upon the select module primitives. Users are
encouraged to use this module instead, unless they want precise control over the OS-level primitives used.

It defines a BaseSelector abstract base class, along with several concrete implementations (KqueueSelector,
EpollSelector…), that can be used to wait for I/O readiness notification on multiple file objects. In the following,
“file object” refers to any object with a fileno() method, or a raw file descriptor. See file object.

DefaultSelector is an alias to the most efficient implementation available on the current platform: this should be
the default choice for most users.

Note

The type of file objects supported depends on the platform: on Windows, sockets are supported, but not pipes,
whereas on Unix, both are supported (some other types may be supported as well, such as fifos or special file
devices).

See also

select

Low-level I/O multiplexing module.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

19.5.2 Classes

Classes hierarchy:

BaseSelector

+-- SelectSelector

+-- PollSelector

+-- EpollSelector

+-- DevpollSelector

+-- KqueueSelector

In the following, events is a bitwise mask indicating which I/O events should be waited for on a given file object. It
can be a combination of the modules constants below:

1212 Chapter 19. Networking and Interprocess Communication

https://github.com/python/cpython/tree/3.13/Lib/selectors.py

The Python Library Reference, Release 3.13.1

Constant Meaning

selectors.EVENT_READ
Available for read

selectors.EVENT_WRITE
Available for write

class selectors.SelectorKey

A SelectorKey is a namedtuple used to associate a file object to its underlying file descriptor, selected
event mask and attached data. It is returned by several BaseSelector methods.

fileobj

File object registered.

fd

Underlying file descriptor.

events

Events that must be waited for on this file object.

data

Optional opaque data associated to this file object: for example, this could be used to store a per-client
session ID.

class selectors.BaseSelector

A BaseSelector is used to wait for I/O event readiness on multiple file objects. It supports file stream regis-
tration, unregistration, and a method to wait for I/O events on those streams, with an optional timeout. It’s an
abstract base class, so cannot be instantiated. Use DefaultSelector instead, or one of SelectSelector,
KqueueSelector etc. if you want to specifically use an implementation, and your platform supports it.
BaseSelector and its concrete implementations support the context manager protocol.

abstractmethod register(fileobj, events, data=None)
Register a file object for selection, monitoring it for I/O events.

fileobj is the file object tomonitor. It may either be an integer file descriptor or an object with a fileno()
method. events is a bitwise mask of events to monitor. data is an opaque object.

This returns a new SelectorKey instance, or raises a ValueError in case of invalid event mask or file
descriptor, or KeyError if the file object is already registered.

abstractmethod unregister(fileobj)
Unregister a file object from selection, removing it from monitoring. A file object shall be unregistered
prior to being closed.

fileobj must be a file object previously registered.

This returns the associated SelectorKey instance, or raises a KeyError if fileobj is not registered. It
will raise ValueError if fileobj is invalid (e.g. it has no fileno() method or its fileno() method
has an invalid return value).

modify(fileobj, events, data=None)
Change a registered file object’s monitored events or attached data.

This is equivalent to BaseSelector.unregister(fileobj) followed by BaseSelector.

register(fileobj, events, data), except that it can be implemented more efficiently.

This returns a new SelectorKey instance, or raises a ValueError in case of invalid event mask or file
descriptor, or KeyError if the file object is not registered.

19.5. selectors— High-level I/O multiplexing 1213

The Python Library Reference, Release 3.13.1

abstractmethod select(timeout=None)
Wait until some registered file objects become ready, or the timeout expires.

If timeout > 0, this specifies the maximum wait time, in seconds. If timeout <= 0, the call won’t
block, and will report the currently ready file objects. If timeout is None, the call will block until a
monitored file object becomes ready.

This returns a list of (key, events) tuples, one for each ready file object.

key is the SelectorKey instance corresponding to a ready file object. events is a bitmask of events ready
on this file object.

Note

This method can return before any file object becomes ready or the timeout has elapsed if the current
process receives a signal: in this case, an empty list will be returned.

Changed in version 3.5: The selector is now retried with a recomputed timeout when interrupted by a
signal if the signal handler did not raise an exception (see PEP 475 for the rationale), instead of returning
an empty list of events before the timeout.

close()

Close the selector.

This must be called to make sure that any underlying resource is freed. The selector shall not be used
once it has been closed.

get_key(fileobj)
Return the key associated with a registered file object.

This returns the SelectorKey instance associated to this file object, or raises KeyError if the file
object is not registered.

abstractmethod get_map()

Return a mapping of file objects to selector keys.

This returns a Mapping instance mapping registered file objects to their associated SelectorKey in-
stance.

class selectors.DefaultSelector

The default selector class, using the most efficient implementation available on the current platform. This
should be the default choice for most users.

class selectors.SelectSelector

select.select()-based selector.

class selectors.PollSelector

select.poll()-based selector.

class selectors.EpollSelector

select.epoll()-based selector.

fileno()

This returns the file descriptor used by the underlying select.epoll() object.

class selectors.DevpollSelector

select.devpoll()-based selector.

fileno()

This returns the file descriptor used by the underlying select.devpoll() object.

Added in version 3.5.

1214 Chapter 19. Networking and Interprocess Communication

https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.13.1

class selectors.KqueueSelector

select.kqueue()-based selector.

fileno()

This returns the file descriptor used by the underlying select.kqueue() object.

19.5.3 Examples

Here is a simple echo server implementation:

import selectors

import socket

sel = selectors.DefaultSelector()

def accept(sock, mask):

conn, addr = sock.accept() # Should be ready

print('accepted', conn, 'from', addr)

conn.setblocking(False)

sel.register(conn, selectors.EVENT_READ, read)

def read(conn, mask):

data = conn.recv(1000) # Should be ready

if data:

print('echoing', repr(data), 'to', conn)

conn.send(data) # Hope it won't block

else:

print('closing', conn)

sel.unregister(conn)

conn.close()

sock = socket.socket()

sock.bind(('localhost', 1234))

sock.listen(100)

sock.setblocking(False)

sel.register(sock, selectors.EVENT_READ, accept)

while True:

events = sel.select()

for key, mask in events:

callback = key.data

callback(key.fileobj, mask)

19.6 signal— Set handlers for asynchronous events

Source code: Lib/signal.py

This module provides mechanisms to use signal handlers in Python.

19.6.1 General rules

The signal.signal() function allows defining custom handlers to be executed when a signal is received. A small
number of default handlers are installed: SIGPIPE is ignored (so write errors on pipes and sockets can be reported as
ordinary Python exceptions) and SIGINT is translated into a KeyboardInterrupt exception if the parent process
has not changed it.

19.6. signal— Set handlers for asynchronous events 1215

https://github.com/python/cpython/tree/3.13/Lib/signal.py

The Python Library Reference, Release 3.13.1

A handler for a particular signal, once set, remains installed until it is explicitly reset (Python emulates the BSD style
interface regardless of the underlying implementation), with the exception of the handler for SIGCHLD, which follows
the underlying implementation.

On WebAssembly platforms, signals are emulated and therefore behave differently. Several functions and signals are
not available on these platforms.

Execution of Python signal handlers

A Python signal handler does not get executed inside the low-level (C) signal handler. Instead, the low-level signal
handler sets a flag which tells the virtual machine to execute the corresponding Python signal handler at a later
point(for example at the next bytecode instruction). This has consequences:

• It makes little sense to catch synchronous errors like SIGFPE or SIGSEGV that are caused by an invalid op-
eration in C code. Python will return from the signal handler to the C code, which is likely to raise the same
signal again, causing Python to apparently hang. From Python 3.3 onwards, you can use the faulthandler
module to report on synchronous errors.

• A long-running calculation implemented purely in C (such as regular expression matching on a large body of
text) may run uninterrupted for an arbitrary amount of time, regardless of any signals received. The Python
signal handlers will be called when the calculation finishes.

• If the handler raises an exception, it will be raised “out of thin air” in the main thread. See the note below for
a discussion.

Signals and threads

Python signal handlers are always executed in the main Python thread of the main interpreter, even if the signal was
received in another thread. This means that signals can’t be used as a means of inter-thread communication. You can
use the synchronization primitives from the threading module instead.

Besides, only the main thread of the main interpreter is allowed to set a new signal handler.

19.6.2 Module contents

Changed in version 3.5: signal (SIG*), handler (SIG_DFL, SIG_IGN) and sigmask (SIG_BLOCK, SIG_UNBLOCK,
SIG_SETMASK) related constants listed belowwere turned into enums (Signals, Handlers and Sigmasks respec-
tively). getsignal(), pthread_sigmask(), sigpending() and sigwait() functions return human-readable
enums as Signals objects.

The signal module defines three enums:

class signal.Signals

enum.IntEnum collection of SIG* constants and the CTRL_* constants.

Added in version 3.5.

class signal.Handlers

enum.IntEnum collection the constants SIG_DFL and SIG_IGN.

Added in version 3.5.

class signal.Sigmasks

enum.IntEnum collection the constants SIG_BLOCK, SIG_UNBLOCK and SIG_SETMASK.

Availability: Unix.

See the man page sigprocmask(2) and pthread_sigmask(3) for further information.

Added in version 3.5.

The variables defined in the signal module are:

1216 Chapter 19. Networking and Interprocess Communication

https://manpages.debian.org/sigprocmask(2)
https://manpages.debian.org/pthread_sigmask(3)

The Python Library Reference, Release 3.13.1

signal.SIG_DFL

This is one of two standard signal handling options; it will simply perform the default function for the signal.
For example, on most systems the default action for SIGQUIT is to dump core and exit, while the default action
for SIGCHLD is to simply ignore it.

signal.SIG_IGN

This is another standard signal handler, which will simply ignore the given signal.

signal.SIGABRT

Abort signal from abort(3).

signal.SIGALRM

Timer signal from alarm(2).

Availability: Unix.

signal.SIGBREAK

Interrupt from keyboard (CTRL + BREAK).

Availability: Windows.

signal.SIGBUS

Bus error (bad memory access).

Availability: Unix.

signal.SIGCHLD

Child process stopped or terminated.

Availability: Unix.

signal.SIGCLD

Alias to SIGCHLD.

Availability: not macOS.

signal.SIGCONT

Continue the process if it is currently stopped

Availability: Unix.

signal.SIGFPE

Floating-point exception. For example, division by zero.

See also

ZeroDivisionError is raised when the second argument of a division or modulo operation is zero.

signal.SIGHUP

Hangup detected on controlling terminal or death of controlling process.

Availability: Unix.

signal.SIGILL

Illegal instruction.

signal.SIGINT

Interrupt from keyboard (CTRL + C).

Default action is to raise KeyboardInterrupt.

19.6. signal— Set handlers for asynchronous events 1217

https://manpages.debian.org/abort(3)
https://manpages.debian.org/alarm(2)

The Python Library Reference, Release 3.13.1

signal.SIGKILL

Kill signal.

It cannot be caught, blocked, or ignored.

Availability: Unix.

signal.SIGPIPE

Broken pipe: write to pipe with no readers.

Default action is to ignore the signal.

Availability: Unix.

signal.SIGSEGV

Segmentation fault: invalid memory reference.

signal.SIGSTKFLT

Stack fault on coprocessor. The Linux kernel does not raise this signal: it can only be raised in user
space.

Availability: Linux.

On architectures where the signal is available. See the man page signal(7) for further information.

Added in version 3.11.

signal.SIGTERM

Termination signal.

signal.SIGUSR1

User-defined signal 1.

Availability: Unix.

signal.SIGUSR2

User-defined signal 2.

Availability: Unix.

signal.SIGWINCH

Window resize signal.

Availability: Unix.

SIG*

All the signal numbers are defined symbolically. For example, the hangup signal is defined as signal.SIGHUP;
the variable names are identical to the names used in C programs, as found in <signal.h>. The Unix man
page for ‘signal()’ lists the existing signals (on some systems this is signal(2), on others the list is in
signal(7)). Note that not all systems define the same set of signal names; only those names defined by the
system are defined by this module.

signal.CTRL_C_EVENT

The signal corresponding to the Ctrl+C keystroke event. This signal can only be used with os.kill().

Availability: Windows.

Added in version 3.2.

signal.CTRL_BREAK_EVENT

The signal corresponding to the Ctrl+Break keystroke event. This signal can only be used with os.kill().

Availability: Windows.

Added in version 3.2.

1218 Chapter 19. Networking and Interprocess Communication

https://manpages.debian.org/signal(7)
https://manpages.debian.org/signal(2)
https://manpages.debian.org/signal(7)

The Python Library Reference, Release 3.13.1

signal.NSIG

One more than the number of the highest signal number. Use valid_signals() to get valid signal numbers.

signal.ITIMER_REAL

Decrements interval timer in real time, and delivers SIGALRM upon expiration.

signal.ITIMER_VIRTUAL

Decrements interval timer only when the process is executing, and delivers SIGVTALRM upon expiration.

signal.ITIMER_PROF

Decrements interval timer both when the process executes and when the system is executing on behalf of
the process. Coupled with ITIMER_VIRTUAL, this timer is usually used to profile the time spent by the
application in user and kernel space. SIGPROF is delivered upon expiration.

signal.SIG_BLOCK

A possible value for the how parameter to pthread_sigmask() indicating that signals are to be blocked.

Added in version 3.3.

signal.SIG_UNBLOCK

A possible value for the how parameter to pthread_sigmask() indicating that signals are to be unblocked.

Added in version 3.3.

signal.SIG_SETMASK

A possible value for the how parameter to pthread_sigmask() indicating that the signal mask is to be
replaced.

Added in version 3.3.

The signal module defines one exception:

exception signal.ItimerError

Raised to signal an error from the underlying setitimer() or getitimer() implementation. Expect this
error if an invalid interval timer or a negative time is passed to setitimer(). This error is a subtype of
OSError.

Added in version 3.3: This error used to be a subtype of IOError, which is now an alias of OSError.

The signal module defines the following functions:

signal.alarm(time)
If time is non-zero, this function requests that a SIGALRM signal be sent to the process in time seconds. Any
previously scheduled alarm is canceled (only one alarm can be scheduled at any time). The returned value is
then the number of seconds before any previously set alarm was to have been delivered. If time is zero, no
alarm is scheduled, and any scheduled alarm is canceled. If the return value is zero, no alarm is currently
scheduled.

Availability: Unix.

See the man page alarm(2) for further information.

signal.getsignal(signalnum)

Return the current signal handler for the signal signalnum. The returned value may be a callable Python object,
or one of the special values signal.SIG_IGN, signal.SIG_DFL or None. Here, signal.SIG_IGN means
that the signal was previously ignored, signal.SIG_DFL means that the default way of handling the signal
was previously in use, and None means that the previous signal handler was not installed from Python.

signal.strsignal(signalnum)

Returns the description of signal signalnum, such as “Interrupt” for SIGINT. Returns None if signalnum has
no description. Raises ValueError if signalnum is invalid.

Added in version 3.8.

19.6. signal— Set handlers for asynchronous events 1219

https://manpages.debian.org/alarm(2)

The Python Library Reference, Release 3.13.1

signal.valid_signals()

Return the set of valid signal numbers on this platform. This can be less than range(1, NSIG) if some
signals are reserved by the system for internal use.

Added in version 3.8.

signal.pause()

Cause the process to sleep until a signal is received; the appropriate handler will then be called. Returns
nothing.

Availability: Unix.

See the man page signal(2) for further information.

See also sigwait(), sigwaitinfo(), sigtimedwait() and sigpending().

signal.raise_signal(signum)

Sends a signal to the calling process. Returns nothing.

Added in version 3.8.

signal.pidfd_send_signal(pidfd, sig, siginfo=None, flags=0)
Send signal sig to the process referred to by file descriptor pidfd. Python does not currently support the siginfo
parameter; it must be None. The flags argument is provided for future extensions; no flag values are currently
defined.

See the pidfd_send_signal(2) man page for more information.

Availability: Linux >= 5.1, Android >= build-time API level 31

Added in version 3.9.

signal.pthread_kill(thread_id, signalnum)
Send the signal signalnum to the thread thread_id, another thread in the same process as the caller. The target
thread can be executing any code (Python or not). However, if the target thread is executing the Python
interpreter, the Python signal handlers will be executed by the main thread of the main interpreter. Therefore,
the only point of sending a signal to a particular Python thread would be to force a running system call to fail
with InterruptedError.

Use threading.get_ident() or the ident attribute of threading.Thread objects to get a suitable
value for thread_id.

If signalnum is 0, then no signal is sent, but error checking is still performed; this can be used to check if the
target thread is still running.

Raises an auditing event signal.pthread_kill with arguments thread_id, signalnum.

Availability: Unix.

See the man page pthread_kill(3) for further information.

See also os.kill().

Added in version 3.3.

signal.pthread_sigmask(how, mask)

Fetch and/or change the signal mask of the calling thread. The signal mask is the set of signals whose delivery
is currently blocked for the caller. Return the old signal mask as a set of signals.

The behavior of the call is dependent on the value of how, as follows.

• SIG_BLOCK: The set of blocked signals is the union of the current set and the mask argument.

• SIG_UNBLOCK: The signals inmask are removed from the current set of blocked signals. It is permissible
to attempt to unblock a signal which is not blocked.

• SIG_SETMASK: The set of blocked signals is set to the mask argument.

1220 Chapter 19. Networking and Interprocess Communication

https://manpages.debian.org/signal(2)
https://manpages.debian.org/pidfd_send_signal(2)
https://manpages.debian.org/pthread_kill(3)

The Python Library Reference, Release 3.13.1

mask is a set of signal numbers (e.g. {signal.SIGINT, signal.SIGTERM}). Use valid_signals() for
a full mask including all signals.

For example, signal.pthread_sigmask(signal.SIG_BLOCK, []) reads the signal mask of the calling
thread.

SIGKILL and SIGSTOP cannot be blocked.

Availability: Unix.

See the man page sigprocmask(2) and pthread_sigmask(3) for further information.

See also pause(), sigpending() and sigwait().

Added in version 3.3.

signal.setitimer(which, seconds, interval=0.0)
Sets given interval timer (one of signal.ITIMER_REAL, signal.ITIMER_VIRTUAL or signal.

ITIMER_PROF) specified by which to fire after seconds (float is accepted, different from alarm()) and after
that every interval seconds (if interval is non-zero). The interval timer specified by which can be cleared by
setting seconds to zero.

When an interval timer fires, a signal is sent to the process. The signal sent is dependent on the timer being
used; signal.ITIMER_REAL will deliver SIGALRM , signal.ITIMER_VIRTUAL sends SIGVTALRM, and
signal.ITIMER_PROF will deliver SIGPROF.

The old values are returned as a tuple: (delay, interval).

Attempting to pass an invalid interval timer will cause an ItimerError.

Availability: Unix.

signal.getitimer(which)
Returns current value of a given interval timer specified by which.

Availability: Unix.

signal.set_wakeup_fd(fd, *, warn_on_full_buffer=True)
Set the wakeup file descriptor to fd. When a signal is received, the signal number is written as a single byte into
the fd. This can be used by a library to wakeup a poll or select call, allowing the signal to be fully processed.

The old wakeup fd is returned (or -1 if file descriptor wakeup was not enabled). If fd is -1, file descriptor
wakeup is disabled. If not -1, fd must be non-blocking. It is up to the library to remove any bytes from fd
before calling poll or select again.

When threads are enabled, this function can only be called from the main thread of the main interpreter;
attempting to call it from other threads will cause a ValueError exception to be raised.

There are two common ways to use this function. In both approaches, you use the fd to wake up when a signal
arrives, but then they differ in how they determine which signal or signals have arrived.

In the first approach, we read the data out of the fd’s buffer, and the byte values give you the signal numbers.
This is simple, but in rare cases it can run into a problem: generally the fd will have a limited amount of buffer
space, and if too many signals arrive too quickly, then the buffer may become full, and some signals may be
lost. If you use this approach, then you should set warn_on_full_buffer=True, which will at least cause
a warning to be printed to stderr when signals are lost.

In the second approach, we use the wakeup fd only for wakeups, and ignore the actual byte values. In this case,
all we care about is whether the fd’s buffer is empty or non-empty; a full buffer doesn’t indicate a problem at
all. If you use this approach, then you should set warn_on_full_buffer=False, so that your users are not
confused by spurious warning messages.

Changed in version 3.5: On Windows, the function now also supports socket handles.

Changed in version 3.7: Added warn_on_full_buffer parameter.

19.6. signal— Set handlers for asynchronous events 1221

https://manpages.debian.org/sigprocmask(2)
https://manpages.debian.org/pthread_sigmask(3)

The Python Library Reference, Release 3.13.1

signal.siginterrupt(signalnum, flag)
Change system call restart behaviour: if flag is False, system calls will be restarted when interrupted by signal
signalnum, otherwise system calls will be interrupted. Returns nothing.

Availability: Unix.

See the man page siginterrupt(3) for further information.

Note that installing a signal handler with signal()will reset the restart behaviour to interruptible by implicitly
calling siginterrupt() with a true flag value for the given signal.

signal.signal(signalnum, handler)
Set the handler for signal signalnum to the function handler. handler can be a callable Python object taking
two arguments (see below), or one of the special values signal.SIG_IGN or signal.SIG_DFL. The pre-
vious signal handler will be returned (see the description of getsignal() above). (See the Unix man page
signal(2) for further information.)

When threads are enabled, this function can only be called from the main thread of the main interpreter;
attempting to call it from other threads will cause a ValueError exception to be raised.

The handler is called with two arguments: the signal number and the current stack frame (None or a frame ob-
ject; for a description of frame objects, see the description in the type hierarchy or see the attribute descriptions
in the inspect module).

OnWindows, signal() can only be called with SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV , SIGTERM ,
or SIGBREAK. A ValueError will be raised in any other case. Note that not all systems define the same set
of signal names; an AttributeError will be raised if a signal name is not defined as SIG* module level
constant.

signal.sigpending()

Examine the set of signals that are pending for delivery to the calling thread (i.e., the signals which have been
raised while blocked). Return the set of the pending signals.

Availability: Unix.

See the man page sigpending(2) for further information.

See also pause(), pthread_sigmask() and sigwait().

Added in version 3.3.

signal.sigwait(sigset)
Suspend execution of the calling thread until the delivery of one of the signals specified in the signal set sigset.
The function accepts the signal (removes it from the pending list of signals), and returns the signal number.

Availability: Unix.

See the man page sigwait(3) for further information.

See also pause(), pthread_sigmask(), sigpending(), sigwaitinfo() and sigtimedwait().

Added in version 3.3.

signal.sigwaitinfo(sigset)
Suspend execution of the calling thread until the delivery of one of the signals specified in the signal set sigset.
The function accepts the signal and removes it from the pending list of signals. If one of the signals in sigset is
already pending for the calling thread, the function will return immediately with information about that signal.
The signal handler is not called for the delivered signal. The function raises an InterruptedError if it is
interrupted by a signal that is not in sigset.

The return value is an object representing the data contained in the siginfo_t structure, namely: si_signo,
si_code, si_errno, si_pid, si_uid, si_status, si_band.

Availability: Unix.

See the man page sigwaitinfo(2) for further information.

See also pause(), sigwait() and sigtimedwait().

1222 Chapter 19. Networking and Interprocess Communication

https://manpages.debian.org/siginterrupt(3)
https://manpages.debian.org/signal(2)
https://manpages.debian.org/sigpending(2)
https://manpages.debian.org/sigwait(3)
https://manpages.debian.org/sigwaitinfo(2)

The Python Library Reference, Release 3.13.1

Added in version 3.3.

Changed in version 3.5: The function is now retried if interrupted by a signal not in sigset and the signal handler
does not raise an exception (see PEP 475 for the rationale).

signal.sigtimedwait(sigset, timeout)
Like sigwaitinfo(), but takes an additional timeout argument specifying a timeout. If timeout is specified
as 0, a poll is performed. Returns None if a timeout occurs.

Availability: Unix.

See the man page sigtimedwait(2) for further information.

See also pause(), sigwait() and sigwaitinfo().

Added in version 3.3.

Changed in version 3.5: The function is now retried with the recomputed timeout if interrupted by a signal not
in sigset and the signal handler does not raise an exception (see PEP 475 for the rationale).

19.6.3 Examples

Here is a minimal example program. It uses the alarm() function to limit the time spent waiting to open a file; this
is useful if the file is for a serial device that may not be turned on, which would normally cause the os.open() to
hang indefinitely. The solution is to set a 5-second alarm before opening the file; if the operation takes too long, the
alarm signal will be sent, and the handler raises an exception.

import signal, os

def handler(signum, frame):

signame = signal.Signals(signum).name

print(f'Signal handler called with signal {signame} ({signum})')

raise OSError("Couldn't open device!")

Set the signal handler and a 5-second alarm

signal.signal(signal.SIGALRM, handler)

signal.alarm(5)

This open() may hang indefinitely

fd = os.open('/dev/ttyS0', os.O_RDWR)

signal.alarm(0) # Disable the alarm

19.6.4 Note on SIGPIPE

Piping output of your program to tools like head(1) will cause a SIGPIPE signal to be sent to your process when
the receiver of its standard output closes early. This results in an exception like BrokenPipeError: [Errno 32]

Broken pipe. To handle this case, wrap your entry point to catch this exception as follows:

import os

import sys

def main():

try:

simulate large output (your code replaces this loop)

for x in range(10000):

print("y")

flush output here to force SIGPIPE to be triggered

while inside this try block.

sys.stdout.flush()

except BrokenPipeError:

(continues on next page)

19.6. signal— Set handlers for asynchronous events 1223

https://peps.python.org/pep-0475/
https://manpages.debian.org/sigtimedwait(2)
https://peps.python.org/pep-0475/
https://manpages.debian.org/head(1)

The Python Library Reference, Release 3.13.1

(continued from previous page)

Python flushes standard streams on exit; redirect remaining output

to devnull to avoid another BrokenPipeError at shutdown

devnull = os.open(os.devnull, os.O_WRONLY)

os.dup2(devnull, sys.stdout.fileno())

sys.exit(1) # Python exits with error code 1 on EPIPE

if __name__ == '__main__':

main()

Do not set SIGPIPE’s disposition to SIG_DFL in order to avoid BrokenPipeError. Doing that would cause your
program to exit unexpectedly whenever any socket connection is interrupted while your program is still writing to it.

19.6.5 Note on Signal Handlers and Exceptions

If a signal handler raises an exception, the exception will be propagated to the main thread and may be raised after
any bytecode instruction. Most notably, a KeyboardInterrupt may appear at any point during execution. Most
Python code, including the standard library, cannot be made robust against this, and so a KeyboardInterrupt (or
any other exception resulting from a signal handler) may on rare occasions put the program in an unexpected state.

To illustrate this issue, consider the following code:

class SpamContext:

def __init__(self):

self.lock = threading.Lock()

def __enter__(self):

If KeyboardInterrupt occurs here, everything is fine

self.lock.acquire()

If KeyboardInterrupt occurs here, __exit__ will not be called

...

KeyboardInterrupt could occur just before the function returns

def __exit__(self, exc_type, exc_val, exc_tb):

...

self.lock.release()

For many programs, especially those that merely want to exit on KeyboardInterrupt, this is not a problem, but
applications that are complex or require high reliability should avoid raising exceptions from signal handlers. They
should also avoid catching KeyboardInterrupt as a means of gracefully shutting down. Instead, they should install
their own SIGINT handler. Below is an example of an HTTP server that avoids KeyboardInterrupt:

import signal

import socket

from selectors import DefaultSelector, EVENT_READ

from http.server import HTTPServer, SimpleHTTPRequestHandler

interrupt_read, interrupt_write = socket.socketpair()

def handler(signum, frame):

print('Signal handler called with signal', signum)

interrupt_write.send(b'\0')

signal.signal(signal.SIGINT, handler)

def serve_forever(httpd):

sel = DefaultSelector()

sel.register(interrupt_read, EVENT_READ)

sel.register(httpd, EVENT_READ)

(continues on next page)

1224 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

(continued from previous page)

while True:

for key, _ in sel.select():

if key.fileobj == interrupt_read:

interrupt_read.recv(1)

return

if key.fileobj == httpd:

httpd.handle_request()

print("Serving on port 8000")

httpd = HTTPServer(('', 8000), SimpleHTTPRequestHandler)

serve_forever(httpd)

print("Shutdown...")

19.7 mmap—Memory-mapped file support

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

Memory-mapped file objects behave like both bytearray and like file objects. You can use mmap objects in most
places where bytearray are expected; for example, you can use the remodule to search through a memory-mapped
file. You can also change a single byte by doing obj[index] = 97, or change a subsequence by assigning to a slice:
obj[i1:i2] = b'...'. You can also read and write data starting at the current file position, and seek() through
the file to different positions.

A memory-mapped file is created by the mmap constructor, which is different on Unix and on Windows. In either
case you must provide a file descriptor for a file opened for update. If you wish to map an existing Python file object,
use its fileno()method to obtain the correct value for the fileno parameter. Otherwise, you can open the file using
the os.open() function, which returns a file descriptor directly (the file still needs to be closed when done).

Note

If you want to create a memory-mapping for a writable, buffered file, you should flush() the file first. This is
necessary to ensure that local modifications to the buffers are actually available to the mapping.

For both theUnix andWindows versions of the constructor, accessmay be specified as an optional keyword parameter.
access accepts one of four values: ACCESS_READ, ACCESS_WRITE, or ACCESS_COPY to specify read-only, write-
through or copy-on-write memory respectively, or ACCESS_DEFAULT to defer to prot. access can be used on both
Unix and Windows. If access is not specified, Windows mmap returns a write-through mapping. The initial memory
values for all three access types are taken from the specified file. Assignment to an ACCESS_READmemorymap raises
a TypeError exception. Assignment to an ACCESS_WRITE memory map affects both memory and the underlying
file. Assignment to an ACCESS_COPY memory map affects memory but does not update the underlying file.

Changed in version 3.7: Added ACCESS_DEFAULT constant.

To map anonymous memory, -1 should be passed as the fileno along with the length.

class mmap.mmap(fileno, length, tagname=None, access=ACCESS_DEFAULT , offset=0)
(Windows version) Maps length bytes from the file specified by the file handle fileno, and creates a mmap
object. If length is larger than the current size of the file, the file is extended to contain length bytes. If length
is 0, the maximum length of the map is the current size of the file, except that if the file is empty Windows
raises an exception (you cannot create an empty mapping on Windows).

tagname, if specified and not None, is a string giving a tag name for the mapping. Windows allows you to have
many different mappings against the same file. If you specify the name of an existing tag, that tag is opened,

19.7. mmap—Memory-mapped file support 1225

The Python Library Reference, Release 3.13.1

otherwise a new tag of this name is created. If this parameter is omitted or None, the mapping is created
without a name. Avoiding the use of the tagname parameter will assist in keeping your code portable between
Unix and Windows.

offset may be specified as a non-negative integer offset. mmap references will be relative to the offset from the
beginning of the file. offset defaults to 0. offset must be a multiple of the ALLOCATIONGRANULARITY.

Raises an auditing event mmap.__new__ with arguments fileno, length, access, offset.

class mmap.mmap(fileno, length, flags=MAP_SHARED, prot=PROT_WRITE | PROT_READ,
access=ACCESS_DEFAULT , offset=0, *, trackfd=True)

(Unix version) Maps length bytes from the file specified by the file descriptor fileno, and returns a mmap
object. If length is 0, the maximum length of the map will be the current size of the file when mmap is called.

flags specifies the nature of the mapping. MAP_PRIVATE creates a private copy-on-write mapping, so changes
to the contents of the mmap object will be private to this process, and MAP_SHARED creates a mapping that’s
shared with all other processes mapping the same areas of the file. The default value is MAP_SHARED. Some
systems have additional possible flags with the full list specified in MAP_* constants.

prot, if specified, gives the desired memory protection; the two most useful values are PROT_READ and
PROT_WRITE, to specify that the pages may be read or written. prot defaults to PROT_READ | PROT_WRITE.

access may be specified in lieu of flags and prot as an optional keyword parameter. It is an error to specify
both flags, prot and access. See the description of access above for information on how to use this parameter.

offset may be specified as a non-negative integer offset. mmap references will be relative to the offset from the
beginning of the file. offset defaults to 0. offset must be a multiple of ALLOCATIONGRANULARITY which is
equal to PAGESIZE on Unix systems.

If trackfd is False, the file descriptor specified by fileno will not be duplicated, and the resulting mmap object
will not be associated with the map’s underlying file. This means that the size() and resize() methods
will fail. This mode is useful to limit the number of open file descriptors.

To ensure validity of the created memory mapping the file specified by the descriptor fileno is internally auto-
matically synchronized with the physical backing store on macOS.

Changed in version 3.13: The trackfd parameter was added.

This example shows a simple way of using mmap:

import mmap

write a simple example file

with open("hello.txt", "wb") as f:

f.write(b"Hello Python!\n")

with open("hello.txt", "r+b") as f:

memory-map the file, size 0 means whole file

mm = mmap.mmap(f.fileno(), 0)

read content via standard file methods

print(mm.readline()) # prints b"Hello Python!\n"

read content via slice notation

print(mm[:5]) # prints b"Hello"

update content using slice notation;

note that new content must have same size

mm[6:] = b" world!\n"

... and read again using standard file methods

mm.seek(0)

print(mm.readline()) # prints b"Hello world!\n"

close the map

mm.close()

mmap can also be used as a context manager in a with statement:

1226 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

import mmap

with mmap.mmap(-1, 13) as mm:

mm.write(b"Hello world!")

Added in version 3.2: Context manager support.

The next example demonstrates how to create an anonymous map and exchange data between the parent and
child processes:

import mmap

import os

mm = mmap.mmap(-1, 13)

mm.write(b"Hello world!")

pid = os.fork()

if pid == 0: # In a child process

mm.seek(0)

print(mm.readline())

mm.close()

Raises an auditing event mmap.__new__ with arguments fileno, length, access, offset.

Memory-mapped file objects support the following methods:

close()

Closes the mmap. Subsequent calls to other methods of the object will result in a ValueError exception
being raised. This will not close the open file.

closed

True if the file is closed.

Added in version 3.2.

find(sub[, start[, end]])
Returns the lowest index in the object where the subsequence sub is found, such that sub is contained in
the range [start, end]. Optional arguments start and end are interpreted as in slice notation. Returns -1
on failure.

Changed in version 3.5: Writable bytes-like object is now accepted.

flush([offset[, size]])
Flushes changes made to the in-memory copy of a file back to disk. Without use of this call there is no
guarantee that changes are written back before the object is destroyed. If offset and size are specified, only
changes to the given range of bytes will be flushed to disk; otherwise, the whole extent of the mapping is
flushed. offset must be a multiple of the PAGESIZE or ALLOCATIONGRANULARITY.

None is returned to indicate success. An exception is raised when the call failed.

Changed in version 3.8: Previously, a nonzero value was returned on success; zero was returned on error
under Windows. A zero value was returned on success; an exception was raised on error under Unix.

madvise(option[, start[, length]])
Send advice option to the kernel about the memory region beginning at start and extending length bytes.
option must be one of the MADV_* constants available on the system. If start and length are omitted,
the entire mapping is spanned. On some systems (including Linux), start must be a multiple of the
PAGESIZE.

Availability: Systems with the madvise() system call.

19.7. mmap—Memory-mapped file support 1227

The Python Library Reference, Release 3.13.1

Added in version 3.8.

move(dest, src, count)
Copy the count bytes starting at offset src to the destination index dest. If the mmap was created with
ACCESS_READ, then calls to move will raise a TypeError exception.

read([n])
Return a bytes containing up to n bytes starting from the current file position. If the argument is
omitted, None or negative, return all bytes from the current file position to the end of the mapping. The
file position is updated to point after the bytes that were returned.

Changed in version 3.3: Argument can be omitted or None.

read_byte()

Returns a byte at the current file position as an integer, and advances the file position by 1.

readline()

Returns a single line, starting at the current file position and up to the next newline. The file position is
updated to point after the bytes that were returned.

resize(newsize)
Resizes the map and the underlying file, if any.

Resizing a map created with access of ACCESS_READ or ACCESS_COPY, will raise a TypeError excep-
tion. Resizing a map created with with trackfd set to False, will raise a ValueError exception.

OnWindows: Resizing the map will raise an OSError if there are other maps against the same named
file. Resizing an anonymous map (ie against the pagefile) will silently create a new map with the original
data copied over up to the length of the new size.

Changed in version 3.11: Correctly fails if attempting to resize when another map is held Allows resize
against an anonymous map on Windows

rfind(sub[, start[, end]])
Returns the highest index in the object where the subsequence sub is found, such that sub is contained in
the range [start, end]. Optional arguments start and end are interpreted as in slice notation. Returns -1
on failure.

Changed in version 3.5: Writable bytes-like object is now accepted.

seek(pos[, whence])
Set the file’s current position. whence argument is optional and defaults to os.SEEK_SET or 0 (absolute
file positioning); other values are os.SEEK_CUR or 1 (seek relative to the current position) and os.

SEEK_END or 2 (seek relative to the file’s end).

Changed in version 3.13: Return the new absolute position instead of None.

seekable()

Return whether the file supports seeking, and the return value is always True.

Added in version 3.13.

size()

Return the length of the file, which can be larger than the size of the memory-mapped area.

tell()

Returns the current position of the file pointer.

write(bytes)

Write the bytes in bytes into memory at the current position of the file pointer and return the number
of bytes written (never less than len(bytes), since if the write fails, a ValueError will be raised).
The file position is updated to point after the bytes that were written. If the mmap was created with
ACCESS_READ, then writing to it will raise a TypeError exception.

Changed in version 3.5: Writable bytes-like object is now accepted.

1228 Chapter 19. Networking and Interprocess Communication

The Python Library Reference, Release 3.13.1

Changed in version 3.6: The number of bytes written is now returned.

write_byte(byte)
Write the integer byte into memory at the current position of the file pointer; the file position is advanced
by 1. If the mmap was created with ACCESS_READ, then writing to it will raise a TypeError exception.

19.7.1 MADV_* Constants

mmap.MADV_NORMAL

mmap.MADV_RANDOM

mmap.MADV_SEQUENTIAL

mmap.MADV_WILLNEED

mmap.MADV_DONTNEED

mmap.MADV_REMOVE

mmap.MADV_DONTFORK

mmap.MADV_DOFORK

mmap.MADV_HWPOISON

mmap.MADV_MERGEABLE

mmap.MADV_UNMERGEABLE

mmap.MADV_SOFT_OFFLINE

mmap.MADV_HUGEPAGE

mmap.MADV_NOHUGEPAGE

mmap.MADV_DONTDUMP

mmap.MADV_DODUMP

mmap.MADV_FREE

mmap.MADV_NOSYNC

mmap.MADV_AUTOSYNC

mmap.MADV_NOCORE

mmap.MADV_CORE

mmap.MADV_PROTECT

mmap.MADV_FREE_REUSABLE

mmap.MADV_FREE_REUSE

These options can be passed to mmap.madvise(). Not every option will be present on every system.

Availability: Systems with the madvise() system call.

Added in version 3.8.

19.7.2 MAP_* Constants

mmap.MAP_SHARED

mmap.MAP_PRIVATE

mmap.MAP_32BIT

mmap.MAP_ALIGNED_SUPER

mmap.MAP_ANON

mmap.MAP_ANONYMOUS

mmap.MAP_CONCEAL

mmap.MAP_DENYWRITE

mmap.MAP_EXECUTABLE

mmap.MAP_HASSEMAPHORE

mmap.MAP_JIT

19.7. mmap—Memory-mapped file support 1229

The Python Library Reference, Release 3.13.1

mmap.MAP_NOCACHE

mmap.MAP_NOEXTEND

mmap.MAP_NORESERVE

mmap.MAP_POPULATE

mmap.MAP_RESILIENT_CODESIGN

mmap.MAP_RESILIENT_MEDIA

mmap.MAP_STACK

mmap.MAP_TPRO

mmap.MAP_TRANSLATED_ALLOW_EXECUTE

mmap.MAP_UNIX03

These are the various flags that can be passed to mmap.mmap(). MAP_ALIGNED_SUPER is only available at
FreeBSD and MAP_CONCEAL is only available at OpenBSD. Note that some options might not be present on
some systems.

Changed in version 3.10: Added MAP_POPULATE constant.

Added in version 3.11: Added MAP_STACK constant.

Added in version 3.12: Added MAP_ALIGNED_SUPER and MAP_CONCEAL constants.

Added in version 3.13: Added MAP_32BIT, MAP_HASSEMAPHORE, MAP_JIT, MAP_NOCACHE,
MAP_NOEXTEND, MAP_NORESERVE, MAP_RESILIENT_CODESIGN, MAP_RESILIENT_MEDIA, MAP_TPRO,
MAP_TRANSLATED_ALLOW_EXECUTE, and MAP_UNIX03 constants.

1230 Chapter 19. Networking and Interprocess Communication

CHAPTER

TWENTY

INTERNET DATA HANDLING

This chapter describes modules which support handling data formats commonly used on the internet.

20.1 email— An email and MIME handling package

Source code: Lib/email/__init__.py

The email package is a library for managing email messages. It is specifically not designed to do any sending of
email messages to SMTP (RFC 2821), NNTP, or other servers; those are functions of modules such as smtplib.
The email package attempts to be as RFC-compliant as possible, supporting RFC 5322 and RFC 6532, as well as
such MIME-related RFCs as RFC 2045, RFC 2046, RFC 2047, RFC 2183, and RFC 2231.

The overall structure of the email package can be divided into three major components, plus a fourth component that
controls the behavior of the other components.

The central component of the package is an “object model” that represents email messages. An application interacts
with the package primarily through the object model interface defined in the message sub-module. The application
can use this API to ask questions about an existing email, to construct a new email, or to add or remove email sub-
components that themselves use the same object model interface. That is, following the nature of email messages and
their MIME subcomponents, the email object model is a tree structure of objects that all provide the EmailMessage
API.

The other two major components of the package are the parser and the generator. The parser takes the serialized
version of an email message (a stream of bytes) and converts it into a tree of EmailMessage objects. The generator
takes an EmailMessage and turns it back into a serialized byte stream. (The parser and generator also handle
streams of text characters, but this usage is discouraged as it is too easy to end up with messages that are not valid in
one way or another.)

The control component is the policy module. Every EmailMessage, every generator, and every parser has
an associated policy object that controls its behavior. Usually an application only needs to specify the policy when
an EmailMessage is created, either by directly instantiating an EmailMessage to create a new email, or by parsing
an input stream using a parser. But the policy can be changed when the message is serialized using a generator.
This allows, for example, a generic email message to be parsed from disk, but to serialize it using standard SMTP
settings when sending it to an email server.

The email package does its best to hide the details of the various governing RFCs from the application. Conceptually
the application should be able to treat the email message as a structured tree of unicode text and binary attachments,
without having to worry about how these are represented when serialized. In practice, however, it is often necessary
to be aware of at least some of the rules governing MIME messages and their structure, specifically the names and
nature of the MIME “content types” and how they identify multipart documents. For the most part this knowledge
should only be required for more complex applications, and even then it should only be the high level structure in
question, and not the details of how those structures are represented. Since MIME content types are used widely in
modern internet software (not just email), this will be a familiar concept to many programmers.

The following sections describe the functionality of the email package. We start with the message object model,
which is the primary interface an application will use, and follow that with the parser and generator components.
Then we cover the policy controls, which completes the treatment of the main components of the library.

1231

https://github.com/python/cpython/tree/3.13/Lib/email/__init__.py
https://datatracker.ietf.org/doc/html/rfc2821.html
https://datatracker.ietf.org/doc/html/rfc5322.html
https://datatracker.ietf.org/doc/html/rfc6532.html
https://datatracker.ietf.org/doc/html/rfc2045.html
https://datatracker.ietf.org/doc/html/rfc2046.html
https://datatracker.ietf.org/doc/html/rfc2047.html
https://datatracker.ietf.org/doc/html/rfc2183.html
https://datatracker.ietf.org/doc/html/rfc2231.html

The Python Library Reference, Release 3.13.1

The next three sections cover the exceptions the package may raise and the defects (non-compliance with the RFCs)
that the parser may detect. Then we cover the headerregistry and the contentmanager sub-components,
which provide tools for doing more detailed manipulation of headers and payloads, respectively. Both of these
components contain features relevant to consuming and producing non-trivial messages, but also document their
extensibility APIs, which will be of interest to advanced applications.

Following those is a set of examples of using the fundamental parts of the APIs covered in the preceding sections.

The foregoing represent the modern (unicode friendly) API of the email package. The remaining sections, starting
with the Message class, cover the legacy compat32 API that deals much more directly with the details of how
email messages are represented. The compat32 API does not hide the details of the RFCs from the application, but
for applications that need to operate at that level, they can be useful tools. This documentation is also relevant for
applications that are still using the compat32 API for backward compatibility reasons.

Changed in version 3.6: Docs reorganized and rewritten to promote the new EmailMessage/EmailPolicy API.

Contents of the email package documentation:

20.1.1 email.message: Representing an email message

Source code: Lib/email/message.py

Added in version 3.6:1

The central class in the email package is the EmailMessage class, imported from the email.messagemodule. It
is the base class for the email object model. EmailMessage provides the core functionality for setting and querying
header fields, for accessing message bodies, and for creating or modifying structured messages.

An email message consists of headers and a payload (which is also referred to as the content). Headers are RFC
5322 or RFC 6532 style field names and values, where the field name and value are separated by a colon. The colon
is not part of either the field name or the field value. The payload may be a simple text message, or a binary object,
or a structured sequence of sub-messages each with their own set of headers and their own payload. The latter type
of payload is indicated by the message having a MIME type such as multipart/* or message/rfc822.

The conceptual model provided by an EmailMessage object is that of an ordered dictionary of headers coupled
with a payload that represents the RFC 5322 body of the message, which might be a list of sub-EmailMessage
objects. In addition to the normal dictionary methods for accessing the header names and values, there are methods
for accessing specialized information from the headers (for example the MIME content type), for operating on the
payload, for generating a serialized version of the message, and for recursively walking over the object tree.

The EmailMessage dictionary-like interface is indexed by the header names, which must be ASCII values. The
values of the dictionary are strings with some extra methods. Headers are stored and returned in case-preserving
form, but field names are matched case-insensitively. The keys are ordered, but unlike a real dict, there can be
duplicates. Additional methods are provided for working with headers that have duplicate keys.

The payload is either a string or bytes object, in the case of simple message objects, or a list of EmailMessage
objects, for MIME container documents such as multipart/* and message/rfc822 message objects.

class email.message.EmailMessage(policy=default)

If policy is specified use the rules it specifies to update and serialize the representation of the message. If
policy is not set, use the default policy, which follows the rules of the email RFCs except for line endings
(instead of the RFC mandated \r\n, it uses the Python standard \n line endings). For more information see
the policy documentation.

as_string(unixfrom=False, maxheaderlen=None, policy=None)
Return the entire message flattened as a string. When optional unixfrom is true, the envelope header
is included in the returned string. unixfrom defaults to False. For backward compatibility with the
base Message class maxheaderlen is accepted, but defaults to None, which means that by default the
line length is controlled by the max_line_length of the policy. The policy argument may be used to

1 Originally added in 3.4 as a provisional module. Docs for legacy message class moved to email.message.Message: Representing an email
message using the compat32 API.

1232 Chapter 20. Internet Data Handling

https://github.com/python/cpython/tree/3.13/Lib/email/message.py
https://datatracker.ietf.org/doc/html/rfc5322.html
https://datatracker.ietf.org/doc/html/rfc5322.html
https://datatracker.ietf.org/doc/html/rfc6532.html
https://datatracker.ietf.org/doc/html/rfc5322.html

The Python Library Reference, Release 3.13.1

override the default policy obtained from the message instance. This can be used to control some of the
formatting produced by the method, since the specified policy will be passed to the Generator.

Flattening the message may trigger changes to the EmailMessage if defaults need to be filled in to
complete the transformation to a string (for example, MIME boundaries may be generated or modified).

Note that this method is provided as a convenience and may not be the most useful way to serialize mes-
sages in your application, especially if you are dealing with multiple messages. See email.generator.
Generator for a more flexible API for serializing messages. Note also that this method is restricted to
producing messages serialized as “7 bit clean” when utf8 is False, which is the default.

Changed in version 3.6: the default behavior when maxheaderlen is not specified was changed from
defaulting to 0 to defaulting to the value of max_line_length from the policy.

__str__()

Equivalent to as_string(policy=self.policy.clone(utf8=True)). Allows str(msg) to
produce a string containing the serialized message in a readable format.

Changed in version 3.4: the method was changed to use utf8=True, thus producing an RFC 6531-like
message representation, instead of being a direct alias for as_string().

as_bytes(unixfrom=False, policy=None)
Return the entire message flattened as a bytes object. When optional unixfrom is true, the envelope
header is included in the returned string. unixfrom defaults to False. The policy argument may be used
to override the default policy obtained from the message instance. This can be used to control some of the
formatting produced by the method, since the specified policy will be passed to the BytesGenerator.

Flattening the message may trigger changes to the EmailMessage if defaults need to be filled in to
complete the transformation to a string (for example, MIME boundaries may be generated or modified).

Note that this method is provided as a convenience and may not be the most useful way to serialize mes-
sages in your application, especially if you are dealing with multiple messages. See email.generator.
BytesGenerator for a more flexible API for serializing messages.

__bytes__()

Equivalent to as_bytes(). Allows bytes(msg) to produce a bytes object containing the serialized
message.

is_multipart()

Return True if the message’s payload is a list of sub-EmailMessage objects, otherwise return False.
When is_multipart() returns False, the payload should be a string object (which might be a CTE
encoded binary payload). Note that is_multipart() returning True does not necessarily mean that
“msg.get_content_maintype() == ‘multipart’” will return the True. For example, is_multipart will
return True when the EmailMessage is of type message/rfc822.

set_unixfrom(unixfrom)

Set the message’s envelope header to unixfrom, which should be a string. (See mboxMessage for a brief
description of this header.)

get_unixfrom()

Return the message’s envelope header. Defaults to None if the envelope header was never set.

The following methods implement the mapping-like interface for accessing the message’s headers. Note that
there are some semantic differences between these methods and a normal mapping (i.e. dictionary) interface.
For example, in a dictionary there are no duplicate keys, but here there may be duplicate message headers.
Also, in dictionaries there is no guaranteed order to the keys returned by keys(), but in an EmailMessage
object, headers are always returned in the order they appeared in the original message, or in which they were
added to the message later. Any header deleted and then re-added is always appended to the end of the header
list.

These semantic differences are intentional and are biased toward convenience in the most common use cases.

Note that in all cases, any envelope header present in the message is not included in the mapping interface.

20.1. email— An email and MIME handling package 1233

https://datatracker.ietf.org/doc/html/rfc6531.html

The Python Library Reference, Release 3.13.1

__len__()

Return the total number of headers, including duplicates.

__contains__(name)

Return True if the message object has a field named name. Matching is done without regard to case and
name does not include the trailing colon. Used for the in operator. For example:

if 'message-id' in myMessage:

print('Message-ID:', myMessage['message-id'])

__getitem__(name)
Return the value of the named header field. name does not include the colon field separator. If the header
is missing, None is returned; a KeyError is never raised.

Note that if the named field appears more than once in the message’s headers, exactly which of those
field values will be returned is undefined. Use the get_all() method to get the values of all the extant
headers named name.

Using the standard (non-compat32) policies, the returned value is an instance of a subclass of email.
headerregistry.BaseHeader.

__setitem__(name, val)
Add a header to the message with field name name and value val. The field is appended to the end of the
message’s existing headers.

Note that this does not overwrite or delete any existing header with the same name. If you want to ensure
that the new header is the only one present in the message with field name name, delete the field first,
e.g.:

del msg['subject']

msg['subject'] = 'Python roolz!'

If the policy defines certain headers to be unique (as the standard policies do), this method may raise a
ValueError when an attempt is made to assign a value to such a header when one already exists. This
behavior is intentional for consistency’s sake, but do not depend on it as we may choose to make such
assignments do an automatic deletion of the existing header in the future.

__delitem__(name)
Delete all occurrences of the field with name name from the message’s headers. No exception is raised
if the named field isn’t present in the headers.

keys()

Return a list of all the message’s header field names.

values()

Return a list of all the message’s field values.

items()

Return a list of 2-tuples containing all the message’s field headers and values.

get(name, failobj=None)
Return the value of the named header field. This is identical to __getitem__() except that optional
failobj is returned if the named header is missing (failobj defaults to None).

Here are some additional useful header related methods:

get_all(name, failobj=None)
Return a list of all the values for the field named name. If there are no such named headers in the message,
failobj is returned (defaults to None).

1234 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

add_header(_name, _value, **_params)
Extended header setting. This method is similar to __setitem__() except that additional header pa-
rameters can be provided as keyword arguments. _name is the header field to add and _value is the
primary value for the header.

For each item in the keyword argument dictionary _params, the key is taken as the parameter name, with
underscores converted to dashes (since dashes are illegal in Python identifiers). Normally, the parameter
will be added as key="value" unless the value is None, in which case only the key will be added.

If the value contains non-ASCII characters, the charset and language may be explicitly controlled by
specifying the value as a three tuple in the format (CHARSET, LANGUAGE, VALUE), where CHARSET
is a string naming the charset to be used to encode the value, LANGUAGE can usually be set to None or the
empty string (seeRFC 2231 for other possibilities), and VALUE is the string value containing non-ASCII
code points. If a three tuple is not passed and the value contains non-ASCII characters, it is automatically
encoded in RFC 2231 format using a CHARSET of utf-8 and a LANGUAGE of None.

Here is an example:

msg.add_header('Content-Disposition', 'attachment', filename='bud.gif')

This will add a header that looks like

Content-Disposition: attachment; filename="bud.gif"

An example of the extended interface with non-ASCII characters:

msg.add_header('Content-Disposition', 'attachment',

filename=('iso-8859-1', '', 'Fußballer.ppt'))

replace_header(_name, _value)
Replace a header. Replace the first header found in the message that matches _name, retaining header
order and field name case of the original header. If no matching header is found, raise a KeyError.

get_content_type()

Return the message’s content type, coerced to lower case of the form maintype/subtype. If there is
no Content-Type header in the message return the value returned by get_default_type(). If the
Content-Type header is invalid, return text/plain.

(According to RFC 2045, messages always have a default type, get_content_type() will always
return a value. RFC 2045 defines a message’s default type to be text/plain unless it appears inside a
multipart/digest container, in which case it would be message/rfc822. If the Content-Type
header has an invalid type specification, RFC 2045 mandates that the default type be text/plain.)

get_content_maintype()

Return the message’s main content type. This is the maintype part of the string returned by
get_content_type().

get_content_subtype()

Return the message’s sub-content type. This is the subtype part of the string returned by
get_content_type().

get_default_type()

Return the default content type. Most messages have a default content type of text/plain, except for
messages that are subparts of multipart/digest containers. Such subparts have a default content
type of message/rfc822.

set_default_type(ctype)

Set the default content type. ctype should either be text/plain or message/rfc822, although this
is not enforced. The default content type is not stored in the Content-Type header, so it only affects
the return value of the get_content_type methods when no Content-Type header is present in the
message.

20.1. email— An email and MIME handling package 1235

https://datatracker.ietf.org/doc/html/rfc2231.html
https://datatracker.ietf.org/doc/html/rfc2231.html
https://datatracker.ietf.org/doc/html/rfc2045.html
https://datatracker.ietf.org/doc/html/rfc2045.html
https://datatracker.ietf.org/doc/html/rfc2045.html

The Python Library Reference, Release 3.13.1

set_param(param, value, header=’Content-Type’, requote=True, charset=None, language=” , replace=False)
Set a parameter in the Content-Type header. If the parameter already exists in the header, replace its
value with value. When header is Content-Type (the default) and the header does not yet exist in the
message, add it, set its value to text/plain, and append the new parameter value. Optional header
specifies an alternative header to Content-Type.

If the value contains non-ASCII characters, the charset and language may be explicitly specified using
the optional charset and language parameters. Optional language specifies the RFC 2231 language,
defaulting to the empty string. Both charset and language should be strings. The default is to use the
utf8 charset and None for the language.

If replace is False (the default) the header is moved to the end of the list of headers. If replace is True,
the header will be updated in place.

Use of the requote parameter with EmailMessage objects is deprecated.

Note that existing parameter values of headers may be accessed through the params attribute of the
header value (for example, msg['Content-Type'].params['charset']).

Changed in version 3.4: replace keyword was added.

del_param(param, header=’content-type’, requote=True)
Remove the given parameter completely from the Content-Type header. The header will be re-written
in place without the parameter or its value. Optional header specifies an alternative to Content-Type.

Use of the requote parameter with EmailMessage objects is deprecated.

get_filename(failobj=None)
Return the value of the filename parameter of the Content-Disposition header of the message.
If the header does not have a filename parameter, this method falls back to looking for the name
parameter on the Content-Type header. If neither is found, or the header is missing, then failobj is
returned. The returned string will always be unquoted as per email.utils.unquote().

get_boundary(failobj=None)
Return the value of the boundary parameter of the Content-Type header of the message, or failobj if
either the header is missing, or has no boundary parameter. The returned string will always be unquoted
as per email.utils.unquote().

set_boundary(boundary)
Set the boundary parameter of the Content-Type header to boundary. set_boundary() will al-
ways quote boundary if necessary. A HeaderParseError is raised if the message object has no
Content-Type header.

Note that using this method is subtly different from deleting the old Content-Type header and adding
a new one with the new boundary via add_header(), because set_boundary() preserves the order
of the Content-Type header in the list of headers.

get_content_charset(failobj=None)
Return the charset parameter of the Content-Type header, coerced to lower case. If there is no
Content-Type header, or if that header has no charset parameter, failobj is returned.

get_charsets(failobj=None)
Return a list containing the character set names in the message. If the message is a multipart, then
the list will contain one element for each subpart in the payload, otherwise, it will be a list of length 1.

Each item in the list will be a string which is the value of the charset parameter in the Content-Type
header for the represented subpart. If the subpart has no Content-Type header, no charset parameter,
or is not of the text main MIME type, then that item in the returned list will be failobj.

is_attachment()

Return True if there is a Content-Disposition header and its (case insensitive) value is
attachment, False otherwise.

Changed in version 3.4.2: is_attachment is now a method instead of a property, for consistency with
is_multipart().

1236 Chapter 20. Internet Data Handling

https://datatracker.ietf.org/doc/html/rfc2231.html

The Python Library Reference, Release 3.13.1

get_content_disposition()

Return the lowercased value (without parameters) of the message’s Content-Disposition header if
it has one, or None. The possible values for this method are inline, attachment or None if the message
follows RFC 2183.

Added in version 3.5.

The following methods relate to interrogating and manipulating the content (payload) of the message.

walk()

The walk() method is an all-purpose generator which can be used to iterate over all the parts and
subparts of a message object tree, in depth-first traversal order. You will typically use walk() as the
iterator in a for loop; each iteration returns the next subpart.

Here’s an example that prints the MIME type of every part of a multipart message structure:

>>> for part in msg.walk():

... print(part.get_content_type())

multipart/report

text/plain

message/delivery-status

text/plain

text/plain

message/rfc822

text/plain

walk iterates over the subparts of any part where is_multipart() returns True, even though msg.
get_content_maintype() == 'multipart' may return False. We can see this in our example
by making use of the _structure debug helper function:

>>> from email.iterators import _structure

>>> for part in msg.walk():

... print(part.get_content_maintype() == 'multipart',

... part.is_multipart())

True True

False False

False True

False False

False False

False True

False False

>>> _structure(msg)

multipart/report

text/plain

message/delivery-status

text/plain

text/plain

message/rfc822

text/plain

Here the message parts are not multiparts, but they do contain subparts. is_multipart() returns
True and walk descends into the subparts.

get_body(preferencelist=(’related’, ’html’, ’plain’))
Return the MIME part that is the best candidate to be the “body” of the message.

preferencelist must be a sequence of strings from the set related, html, and plain, and indicates the
order of preference for the content type of the part returned.

Start looking for candidate matches with the object on which the get_body method is called.

20.1. email— An email and MIME handling package 1237

https://datatracker.ietf.org/doc/html/rfc2183.html

The Python Library Reference, Release 3.13.1

If related is not included in preferencelist, consider the root part (or subpart of the root part) of any
related encountered as a candidate if the (sub-)part matches a preference.

When encountering a multipart/related, check the start parameter and if a part with a matching
Content-ID is found, consider only it when looking for candidate matches. Otherwise consider only
the first (default root) part of the multipart/related.

If a part has a Content-Disposition header, only consider the part a candidate match if the value of
the header is inline.

If none of the candidates matches any of the preferences in preferencelist, return None.

Notes: (1) For most applications the only preferencelist combinations that really make sense are
('plain',), ('html', 'plain'), and the default ('related', 'html', 'plain'). (2) Be-
cause matching starts with the object on which get_body is called, calling get_body on a multipart/
related will return the object itself unless preferencelist has a non-default value. (3) Messages (or
message parts) that do not specify a Content-Type or whose Content-Type header is invalid will be
treated as if they are of type text/plain, which may occasionally cause get_body to return unex-
pected results.

iter_attachments()

Return an iterator over all of the immediate sub-parts of the message that are not candidate “body”
parts. That is, skip the first occurrence of each of text/plain, text/html, multipart/

related, or multipart/alternative (unless they are explicitly marked as attachments via
Content-Disposition: attachment), and return all remaining parts. When applied directly to
a multipart/related, return an iterator over the all the related parts except the root part (ie: the
part pointed to by the start parameter, or the first part if there is no start parameter or the start
parameter doesn’t match the Content-ID of any of the parts). When applied directly to a multipart/
alternative or a non-multipart, return an empty iterator.

iter_parts()

Return an iterator over all of the immediate sub-parts of the message, which will be empty for a non-
multipart. (See also walk().)

get_content(*args, content_manager=None, **kw)
Call the get_content()method of the content_manager, passing self as the message object, and pass-
ing along any other arguments or keywords as additional arguments. If content_manager is not specified,
use the content_manager specified by the current policy.

set_content(*args, content_manager=None, **kw)
Call the set_content()method of the content_manager, passing self as the message object, and pass-
ing along any other arguments or keywords as additional arguments. If content_manager is not specified,
use the content_manager specified by the current policy.

make_related(boundary=None)

Convert a non-multipart message into a multipart/related message, moving any existing
Content- headers and payload into a (new) first part of the multipart. If boundary is specified,
use it as the boundary string in the multipart, otherwise leave the boundary to be automatically created
when it is needed (for example, when the message is serialized).

make_alternative(boundary=None)

Convert a non-multipart or a multipart/related into a multipart/alternative, moving any
existing Content- headers and payload into a (new) first part of the multipart. If boundary is spec-
ified, use it as the boundary string in the multipart, otherwise leave the boundary to be automatically
created when it is needed (for example, when the message is serialized).

make_mixed(boundary=None)

Convert a non-multipart, a multipart/related, or a multipart-alternative into a
multipart/mixed, moving any existing Content- headers and payload into a (new) first part of the
multipart. If boundary is specified, use it as the boundary string in the multipart, otherwise leave the
boundary to be automatically created when it is needed (for example, when the message is serialized).

1238 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

add_related(*args, content_manager=None, **kw)
If the message is a multipart/related, create a new message object, pass all of the arguments to its
set_content() method, and attach() it to the multipart. If the message is a non-multipart,
call make_related() and then proceed as above. If the message is any other type of multipart, raise
a TypeError. If content_manager is not specified, use the content_manager specified by the current
policy. If the added part has no Content-Disposition header, add one with the value inline.

add_alternative(*args, content_manager=None, **kw)
If themessage is a multipart/alternative, create a newmessage object, pass all of the arguments to
its set_content()method, and attach() it to the multipart. If the message is a non-multipart
or multipart/related, call make_alternative() and then proceed as above. If the message
is any other type of multipart, raise a TypeError. If content_manager is not specified, use the
content_manager specified by the current policy.

add_attachment(*args, content_manager=None, **kw)
If the message is a multipart/mixed, create a new message object, pass all of the arguments
to its set_content() method, and attach() it to the multipart. If the message is a non-
multipart, multipart/related, or multipart/alternative, call make_mixed() and then
proceed as above. If content_manager is not specified, use the content_manager specified by the
current policy. If the added part has no Content-Disposition header, add one with the value
attachment. This method can be used both for explicit attachments (Content-Disposition:
attachment) and inline attachments (Content-Disposition: inline), by passing appropriate
options to the content_manager.

clear()

Remove the payload and all of the headers.

clear_content()

Remove the payload and all of the !Content- headers, leaving all other headers intact and in their
original order.

EmailMessage objects have the following instance attributes:

preamble

The format of a MIME document allows for some text between the blank line following the headers,
and the first multipart boundary string. Normally, this text is never visible in a MIME-aware mail reader
because it falls outside the standard MIME armor. However, when viewing the raw text of the message,
or when viewing the message in a non-MIME aware reader, this text can become visible.

The preamble attribute contains this leading extra-armor text for MIME documents. When the Parser
discovers some text after the headers but before the first boundary string, it assigns this text to the mes-
sage’s preamble attribute. When the Generator is writing out the plain text representation of a MIME
message, and it finds the message has a preamble attribute, it will write this text in the area between the
headers and the first boundary. See email.parser and email.generator for details.

Note that if the message object has no preamble, the preamble attribute will be None.

epilogue

The epilogue attribute acts the same way as the preamble attribute, except that it contains text that appears
between the last boundary and the end of the message. As with the preamble, if there is no epilog text
this attribute will be None.

defects

The defects attribute contains a list of all the problems found when parsing this message. See email.
errors for a detailed description of the possible parsing defects.

class email.message.MIMEPart(policy=default)
This class represents a subpart of a MIME message. It is identical to EmailMessage, except that no
MIME-Version headers are added when set_content() is called, since sub-parts do not need their own
MIME-Version headers.

20.1. email— An email and MIME handling package 1239

The Python Library Reference, Release 3.13.1

20.1.2 email.parser: Parsing email messages

Source code: Lib/email/parser.py

Message object structures can be created in one of two ways: they can be created from whole cloth by creating an
EmailMessage object, adding headers using the dictionary interface, and adding payload(s) using set_content()
and related methods, or they can be created by parsing a serialized representation of the email message.

The email package provides a standard parser that understands most email document structures, including MIME
documents. You can pass the parser a bytes, string or file object, and the parser will return to you the root
EmailMessage instance of the object structure. For simple, non-MIME messages the payload of this root ob-
ject will likely be a string containing the text of the message. For MIME messages, the root object will return True
from its is_multipart() method, and the subparts can be accessed via the payload manipulation methods, such
as get_body(), iter_parts(), and walk().

There are actually two parser interfaces available for use, the Parser API and the incremental FeedParser API.
The Parser API is most useful if you have the entire text of the message in memory, or if the entire message lives
in a file on the file system. FeedParser is more appropriate when you are reading the message from a stream
which might block waiting for more input (such as reading an email message from a socket). The FeedParser can
consume and parse the message incrementally, and only returns the root object when you close the parser.

Note that the parser can be extended in limited ways, and of course you can implement your own parser completely
from scratch. All of the logic that connects the email package’s bundled parser and the EmailMessage class is
embodied in the Policy class, so a custom parser can create message object trees any way it finds necessary by
implementing custom versions of the appropriate Policy methods.

FeedParser API

The BytesFeedParser, imported from the email.feedparser module, provides an API that is conducive to
incremental parsing of email messages, such as would be necessary when reading the text of an email message from
a source that can block (such as a socket). The BytesFeedParser can of course be used to parse an email message
fully contained in a bytes-like object, string, or file, but the BytesParser API may be more convenient for such use
cases. The semantics and results of the two parser APIs are identical.

The BytesFeedParser’s API is simple; you create an instance, feed it a bunch of bytes until there’s no more to feed
it, then close the parser to retrieve the root message object. The BytesFeedParser is extremely accurate when
parsing standards-compliant messages, and it does a very good job of parsing non-compliant messages, providing
information about how a message was deemed broken. It will populate a message object’s defects attribute with a
list of any problems it found in a message. See the email.errors module for the list of defects that it can find.

Here is the API for the BytesFeedParser:

class email.parser.BytesFeedParser(_factory=None, *, policy=policy.compat32)

Create a BytesFeedParser instance. Optional _factory is a no-argument callable; if not specified use the
message_factory from the policy. Call _factory whenever a new message object is needed.

If policy is specified use the rules it specifies to update the representation of the message. If policy is not set,
use the compat32 policy, which maintains backward compatibility with the Python 3.2 version of the email
package and provides Message as the default factory. All other policies provide EmailMessage as the default
_factory. For more information on what else policy controls, see the policy documentation.

Note: The policy keyword should always be specified; The default will change to email.policy.default
in a future version of Python.

Added in version 3.2.

Changed in version 3.3: Added the policy keyword.

Changed in version 3.6: _factory defaults to the policy message_factory.

feed(data)

Feed the parser some more data. data should be a bytes-like object containing one or more lines. The
lines can be partial and the parser will stitch such partial lines together properly. The lines can have any

1240 Chapter 20. Internet Data Handling

https://github.com/python/cpython/tree/3.13/Lib/email/parser.py

The Python Library Reference, Release 3.13.1

of the three common line endings: carriage return, newline, or carriage return and newline (they can even
be mixed).

close()

Complete the parsing of all previously fed data and return the root message object. It is undefined what
happens if feed() is called after this method has been called.

class email.parser.FeedParser(_factory=None, *, policy=policy.compat32)
Works like BytesFeedParser except that the input to the feed() method must be a string. This is of
limited utility, since the only way for such a message to be valid is for it to contain only ASCII text or, if utf8
is True, no binary attachments.

Changed in version 3.3: Added the policy keyword.

Parser API

The BytesParser class, imported from the email.parser module, provides an API that can be used to parse
a message when the complete contents of the message are available in a bytes-like object or file. The email.

parser module also provides Parser for parsing strings, and header-only parsers, BytesHeaderParser and
HeaderParser, which can be used if you’re only interested in the headers of the message. BytesHeaderParser
and HeaderParser can be much faster in these situations, since they do not attempt to parse the message body,
instead setting the payload to the raw body.

class email.parser.BytesParser(_class=None, *, policy=policy.compat32)
Create a BytesParser instance. The _class and policy arguments have the same meaning and semantics as
the _factory and policy arguments of BytesFeedParser.

Note: The policy keyword should always be specified; The default will change to email.policy.default
in a future version of Python.

Changed in version 3.3: Removed the strict argument that was deprecated in 2.4. Added the policy keyword.

Changed in version 3.6: _class defaults to the policy message_factory.

parse(fp, headersonly=False)
Read all the data from the binary file-like object fp, parse the resulting bytes, and return the message
object. fp must support both the readline() and the read() methods.

The bytes contained in fp must be formatted as a block of RFC 5322 (or, if utf8 is True, RFC
6532) style headers and header continuation lines, optionally preceded by an envelope header. The
header block is terminated either by the end of the data or by a blank line. Following the header block
is the body of the message (which may contain MIME-encoded subparts, including subparts with a
Content-Transfer-Encoding of 8bit).

Optional headersonly is a flag specifying whether to stop parsing after reading the headers or not. The
default is False, meaning it parses the entire contents of the file.

parsebytes(bytes, headersonly=False)
Similar to the parse() method, except it takes a bytes-like object instead of a file-like object. Calling
this method on a bytes-like object is equivalent to wrapping bytes in a BytesIO instance first and calling
parse().

Optional headersonly is as with the parse() method.

Added in version 3.2.

class email.parser.BytesHeaderParser(_class=None, *, policy=policy.compat32)

Exactly like BytesParser, except that headersonly defaults to True.

Added in version 3.3.

class email.parser.Parser(_class=None, *, policy=policy.compat32)

This class is parallel to BytesParser, but handles string input.

Changed in version 3.3: Removed the strict argument. Added the policy keyword.

20.1. email— An email and MIME handling package 1241

https://datatracker.ietf.org/doc/html/rfc5322.html
https://datatracker.ietf.org/doc/html/rfc6532.html
https://datatracker.ietf.org/doc/html/rfc6532.html

The Python Library Reference, Release 3.13.1

Changed in version 3.6: _class defaults to the policy message_factory.

parse(fp, headersonly=False)
Read all the data from the text-mode file-like object fp, parse the resulting text, and return the root
message object. fp must support both the readline() and the read() methods on file-like objects.

Other than the text mode requirement, this method operates like BytesParser.parse().

parsestr(text, headersonly=False)
Similar to the parse() method, except it takes a string object instead of a file-like object. Calling this
method on a string is equivalent to wrapping text in a StringIO instance first and calling parse().

Optional headersonly is as with the parse() method.

class email.parser.HeaderParser(_class=None, *, policy=policy.compat32)

Exactly like Parser, except that headersonly defaults to True.

Since creating a message object structure from a string or a file object is such a common task, four functions are
provided as a convenience. They are available in the top-level email package namespace.

email.message_from_bytes(s, _class=None, *, policy=policy.compat32)

Return a message object structure from a bytes-like object. This is equivalent to BytesParser().

parsebytes(s). Optional _class and policy are interpreted as with the BytesParser class constructor.

Added in version 3.2.

Changed in version 3.3: Removed the strict argument. Added the policy keyword.

email.message_from_binary_file(fp, _class=None, *, policy=policy.compat32)
Return a message object structure tree from an open binary file object. This is equivalent to BytesParser().
parse(fp). _class and policy are interpreted as with the BytesParser class constructor.

Added in version 3.2.

Changed in version 3.3: Removed the strict argument. Added the policy keyword.

email.message_from_string(s, _class=None, *, policy=policy.compat32)
Return a message object structure from a string. This is equivalent to Parser().parsestr(s). _class and
policy are interpreted as with the Parser class constructor.

Changed in version 3.3: Removed the strict argument. Added the policy keyword.

email.message_from_file(fp, _class=None, *, policy=policy.compat32)
Return a message object structure tree from an open file object. This is equivalent to Parser().parse(fp).
_class and policy are interpreted as with the Parser class constructor.

Changed in version 3.3: Removed the strict argument. Added the policy keyword.

Changed in version 3.6: _class defaults to the policy message_factory.

Here’s an example of how you might use message_from_bytes() at an interactive Python prompt:

>>> import email

>>> msg = email.message_from_bytes(myBytes)

Additional notes

Here are some notes on the parsing semantics:

• Most non-multipart typemessages are parsed as a single message object with a string payload. These objects
will return False for is_multipart(), and iter_parts() will yield an empty list.

• All multipart type messages will be parsed as a container message object with a list of sub-message objects
for their payload. The outer container message will return True for is_multipart(), and iter_parts()
will yield a list of subparts.

1242 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

• Most messages with a content type of message/* (such as message/delivery-status and message/
rfc822) will also be parsed as container object containing a list payload of length 1. Their is_multipart()
method will return True. The single element yielded by iter_parts() will be a sub-message object.

• Some non-standards-compliant messages may not be internally consistent about their multipart-edness.
Such messages may have a Content-Type header of type multipart, but their is_multipart()method
may return False. If such messages were parsed with the FeedParser, they will have an instance of the
MultipartInvariantViolationDefect class in their defects attribute list. See email.errors for de-
tails.

20.1.3 email.generator: Generating MIME documents

Source code: Lib/email/generator.py

One of the most common tasks is to generate the flat (serialized) version of the email message represented by a mes-
sage object structure. You will need to do this if you want to send your message via smtplib.SMTP.sendmail(),
or print the message on the console. Taking a message object structure and producing a serialized representation is
the job of the generator classes.

As with the email.parser module, you aren’t limited to the functionality of the bundled generator; you could
write one from scratch yourself. However the bundled generator knows how to generate most email in a standards-
compliant way, should handle MIME and non-MIME email messages just fine, and is designed so that the bytes-
oriented parsing and generation operations are inverses, assuming the same non-transforming policy is used for
both. That is, parsing the serialized byte stream via the BytesParser class and then regenerating the serialized
byte stream using BytesGenerator should produce output identical to the input1. (On the other hand, using the
generator on an EmailMessage constructed by program may result in changes to the EmailMessage object as
defaults are filled in.)

The Generator class can be used to flatten a message into a text (as opposed to binary) serialized representation,
but since Unicode cannot represent binary data directly, the message is of necessity transformed into something that
contains only ASCII characters, using the standard email RFC Content Transfer Encoding techniques for encoding
email messages for transport over channels that are not “8 bit clean”.

To accommodate reproducible processing of SMIME-signed messages Generator disables header folding for mes-
sage parts of type multipart/signed and all subparts.

class email.generator.BytesGenerator(outfp, mangle_from_=None, maxheaderlen=None, *,
policy=None)

Return a BytesGenerator object that will write any message provided to the flatten() method, or any
surrogateescape encoded text provided to the write()method, to the file-like object outfp. outfpmust support
a write method that accepts binary data.

If optional mangle_from_ is True, put a > character in front of any line in the body that starts with the exact
string "From ", that is From followed by a space at the beginning of a line. mangle_from_ defaults to the
value of the mangle_from_ setting of the policy (which is True for the compat32 policy and False for all
others). mangle_from_ is intended for use when messages are stored in Unix mbox format (see mailbox and
WHY THE CONTENT-LENGTH FORMAT IS BAD).

If maxheaderlen is not None, refold any header lines that are longer than maxheaderlen, or if 0, do not rewrap
any headers. If manheaderlen is None (the default), wrap headers and other message lines according to the
policy settings.

If policy is specified, use that policy to control message generation. If policy is None (the default), use the
policy associated with the Message or EmailMessage object passed to flatten to control the message
generation. See email.policy for details on what policy controls.

Added in version 3.2.
1 This statement assumes that you use the appropriate setting for unixfrom, and that there are no email.policy settings calling for automatic

adjustments (for example, refold_sourcemust be none, which is not the default). It is also not 100% true, since if themessage does not conform
to the RFC standards occasionally information about the exact original text is lost during parsing error recovery. It is a goal to fix these latter edge
cases when possible.

20.1. email— An email and MIME handling package 1243

https://github.com/python/cpython/tree/3.13/Lib/email/generator.py
https://www.jwz.org/doc/content-length.html

The Python Library Reference, Release 3.13.1

Changed in version 3.3: Added the policy keyword.

Changed in version 3.6: The default behavior of the mangle_from_ and maxheaderlen parameters is to follow
the policy.

flatten(msg, unixfrom=False, linesep=None)
Print the textual representation of the message object structure rooted at msg to the output file specified
when the BytesGenerator instance was created.

If the policy option cte_type is 8bit (the default), copy any headers in the original parsed mes-
sage that have not been modified to the output with any bytes with the high bit set reproduced
as in the original, and preserve the non-ASCII Content-Transfer-Encoding of any body parts
that have them. If cte_type is 7bit, convert the bytes with the high bit set as needed using
an ASCII-compatible Content-Transfer-Encoding. That is, transform parts with non-ASCII
Content-Transfer-Encoding (Content-Transfer-Encoding: 8bit) to an ASCII compati-
ble Content-Transfer-Encoding, and encode RFC-invalid non-ASCII bytes in headers using the
MIME unknown-8bit character set, thus rendering them RFC-compliant.

If unixfrom is True, print the envelope header delimiter used by the Unix mailbox format (see mailbox)
before the first of the RFC 5322 headers of the root message object. If the root object has no envelope
header, craft a standard one. The default is False. Note that for subparts, no envelope header is ever
printed.

If linesep is not None, use it as the separator character between all the lines of the flattened message. If
linesep is None (the default), use the value specified in the policy.

clone(fp)
Return an independent clone of this BytesGenerator instance with the exact same option settings, and
fp as the new outfp.

write(s)
Encode s using the ASCII codec and the surrogateescape error handler, and pass it to the write
method of the outfp passed to the BytesGenerator’s constructor.

As a convenience, EmailMessage provides the methods as_bytes() and bytes(aMessage) (a.k.a.
__bytes__()), which simplify the generation of a serialized binary representation of a message object. For more
detail, see email.message.

Because strings cannot represent binary data, the Generator classmust convert any binary data in anymessage it flat-
tens to an ASCII compatible format, by converting them to an ASCII compatible Content-Transfer_Encoding.
Using the terminology of the email RFCs, you can think of this as Generator serializing to an I/O stream that is
not “8 bit clean”. In other words, most applications will want to be using BytesGenerator, and not Generator.

class email.generator.Generator(outfp, mangle_from_=None, maxheaderlen=None, *, policy=None)
Return a Generator object that will write any message provided to the flatten() method, or any text
provided to the write()method, to the file-like object outfp. outfpmust support a writemethod that accepts
string data.

If optional mangle_from_ is True, put a > character in front of any line in the body that starts with the exact
string "From ", that is From followed by a space at the beginning of a line. mangle_from_ defaults to the
value of the mangle_from_ setting of the policy (which is True for the compat32 policy and False for all
others). mangle_from_ is intended for use when messages are stored in Unix mbox format (see mailbox and
WHY THE CONTENT-LENGTH FORMAT IS BAD).

If maxheaderlen is not None, refold any header lines that are longer than maxheaderlen, or if 0, do not rewrap
any headers. If manheaderlen is None (the default), wrap headers and other message lines according to the
policy settings.

If policy is specified, use that policy to control message generation. If policy is None (the default), use the
policy associated with the Message or EmailMessage object passed to flatten to control the message
generation. See email.policy for details on what policy controls.

Changed in version 3.3: Added the policy keyword.

1244 Chapter 20. Internet Data Handling

https://datatracker.ietf.org/doc/html/rfc5322.html
https://www.jwz.org/doc/content-length.html

The Python Library Reference, Release 3.13.1

Changed in version 3.6: The default behavior of the mangle_from_ and maxheaderlen parameters is to follow
the policy.

flatten(msg, unixfrom=False, linesep=None)
Print the textual representation of the message object structure rooted at msg to the output file specified
when the Generator instance was created.

If the policy option cte_type is 8bit, generate the message as if the option were set to 7bit. (This
is required because strings cannot represent non-ASCII bytes.) Convert any bytes with the high bit set
as needed using an ASCII-compatible Content-Transfer-Encoding. That is, transform parts with
non-ASCII Content-Transfer-Encoding (Content-Transfer-Encoding: 8bit) to an ASCII
compatible Content-Transfer-Encoding, and encode RFC-invalid non-ASCII bytes in headers us-
ing the MIME unknown-8bit character set, thus rendering them RFC-compliant.

If unixfrom is True, print the envelope header delimiter used by the Unix mailbox format (see mailbox)
before the first of the RFC 5322 headers of the root message object. If the root object has no envelope
header, craft a standard one. The default is False. Note that for subparts, no envelope header is ever
printed.

If linesep is not None, use it as the separator character between all the lines of the flattened message. If
linesep is None (the default), use the value specified in the policy.

Changed in version 3.2: Added support for re-encoding 8bitmessage bodies, and the linesep argument.

clone(fp)
Return an independent clone of this Generator instance with the exact same options, and fp as the new
outfp.

write(s)
Write s to the write method of the outfp passed to the Generator’s constructor. This provides just
enough file-like API for Generator instances to be used in the print() function.

As a convenience, EmailMessage provides themethods as_string() and str(aMessage) (a.k.a. __str__()),
which simplify the generation of a formatted string representation of a message object. For more detail, see email.
message.

The email.generator module also provides a derived class, DecodedGenerator, which is like the Generator
base class, except that non-text parts are not serialized, but are instead represented in the output stream by a string
derived from a template filled in with information about the part.

class email.generator.DecodedGenerator(outfp, mangle_from_=None, maxheaderlen=None, fmt=None,
*, policy=None)

Act like Generator, except that for any subpart of the message passed to Generator.flatten(), if the
subpart is of main type text, print the decoded payload of the subpart, and if the main type is not text,
instead of printing it fill in the string fmt using information from the part and print the resulting filled-in string.

To fill in fmt, execute fmt % part_info, where part_info is a dictionary composed of the following keys
and values:

• type – Full MIME type of the non-text part

• maintype – Main MIME type of the non-text part

• subtype – Sub-MIME type of the non-text part

• filename – Filename of the non-text part

• description – Description associated with the non-text part

• encoding – Content transfer encoding of the non-text part

If fmt is None, use the following default fmt:

“[Non-text (%(type)s) part of message omitted, filename %(filename)s]”

Optional _mangle_from_ and maxheaderlen are as with the Generator base class.

20.1. email— An email and MIME handling package 1245

https://datatracker.ietf.org/doc/html/rfc5322.html

The Python Library Reference, Release 3.13.1

20.1.4 email.policy: Policy Objects

Added in version 3.3.

Source code: Lib/email/policy.py

The email package’s prime focus is the handling of email messages as described by the various email and MIME
RFCs. However, the general format of email messages (a block of header fields each consisting of a name followed
by a colon followed by a value, the whole block followed by a blank line and an arbitrary ‘body’), is a format that
has found utility outside of the realm of email. Some of these uses conform fairly closely to the main email RFCs,
some do not. Even when working with email, there are times when it is desirable to break strict compliance with the
RFCs, such as generating emails that interoperate with email servers that do not themselves follow the standards, or
that implement extensions you want to use in ways that violate the standards.

Policy objects give the email package the flexibility to handle all these disparate use cases.

A Policy object encapsulates a set of attributes and methods that control the behavior of various components of
the email package during use. Policy instances can be passed to various classes and methods in the email package
to alter the default behavior. The settable values and their defaults are described below.

There is a default policy used by all classes in the email package. For all of the parser classes and the related conve-
nience functions, and for the Message class, this is the Compat32 policy, via its corresponding pre-defined instance
compat32. This policy provides for complete backward compatibility (in some cases, including bug compatibility)
with the pre-Python3.3 version of the email package.

This default value for the policy keyword to EmailMessage is the EmailPolicy policy, via its pre-defined instance
default.

When a Message or EmailMessage object is created, it acquires a policy. If the message is created by a parser, a
policy passed to the parser will be the policy used by the message it creates. If the message is created by the program,
then the policy can be specified when it is created. When a message is passed to a generator, the generator uses
the policy from the message by default, but you can also pass a specific policy to the generator that will override the
one stored on the message object.

The default value for the policy keyword for the email.parser classes and the parser convenience functions will
be changing in a future version of Python. Therefore you should always specify explicitly which policy you want
to use when calling any of the classes and functions described in the parser module.

The first part of this documentation covers the features of Policy, an abstract base class that defines the features that
are common to all policy objects, including compat32. This includes certain hook methods that are called internally
by the email package, which a custom policy could override to obtain different behavior. The second part describes
the concrete classes EmailPolicy and Compat32, which implement the hooks that provide the standard behavior
and the backward compatible behavior and features, respectively.

Policy instances are immutable, but they can be cloned, accepting the same keyword arguments as the class con-
structor and returning a new Policy instance that is a copy of the original but with the specified attributes values
changed.

As an example, the following code could be used to read an email message from a file on disk and pass it to the
system sendmail program on a Unix system:

>>> from email import message_from_binary_file

>>> from email.generator import BytesGenerator

>>> from email import policy

>>> from subprocess import Popen, PIPE

>>> with open('mymsg.txt', 'rb') as f:

... msg = message_from_binary_file(f, policy=policy.default)

...

>>> p = Popen(['sendmail', msg['To'].addresses[0]], stdin=PIPE)

>>> g = BytesGenerator(p.stdin, policy=msg.policy.clone(linesep='\r\n'))

>>> g.flatten(msg)

(continues on next page)

1246 Chapter 20. Internet Data Handling

https://github.com/python/cpython/tree/3.13/Lib/email/policy.py

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> p.stdin.close()

>>> rc = p.wait()

Here we are telling BytesGenerator to use the RFC correct line separator characters when creating the binary
string to feed into sendmail's stdin, where the default policy would use \n line separators.

Some email packagemethods accept a policy keyword argument, allowing the policy to be overridden for that method.
For example, the following code uses the as_bytes() method of the msg object from the previous example and
writes the message to a file using the native line separators for the platform on which it is running:

>>> import os

>>> with open('converted.txt', 'wb') as f:

... f.write(msg.as_bytes(policy=msg.policy.clone(linesep=os.linesep)))

17

Policy objects can also be combined using the addition operator, producing a policy object whose settings are a
combination of the non-default values of the summed objects:

>>> compat_SMTP = policy.compat32.clone(linesep='\r\n')

>>> compat_strict = policy.compat32.clone(raise_on_defect=True)

>>> compat_strict_SMTP = compat_SMTP + compat_strict

This operation is not commutative; that is, the order in which the objects are added matters. To illustrate:

>>> policy100 = policy.compat32.clone(max_line_length=100)

>>> policy80 = policy.compat32.clone(max_line_length=80)

>>> apolicy = policy100 + policy80

>>> apolicy.max_line_length

80

>>> apolicy = policy80 + policy100

>>> apolicy.max_line_length

100

class email.policy.Policy(**kw)
This is the abstract base class for all policy classes. It provides default implementations for a couple of trivial
methods, as well as the implementation of the immutability property, the clone()method, and the constructor
semantics.

The constructor of a policy class can be passed various keyword arguments. The arguments that may be spec-
ified are any non-method properties on this class, plus any additional non-method properties on the concrete
class. A value specified in the constructor will override the default value for the corresponding attribute.

This class defines the following properties, and thus values for the following may be passed in the constructor
of any policy class:

max_line_length

Themaximum length of any line in the serialized output, not counting the end of line character(s). Default
is 78, per RFC 5322. A value of 0 or None indicates that no line wrapping should be done at all.

linesep

The string to be used to terminate lines in serialized output. The default is \n because that’s the internal
end-of-line discipline used by Python, though \r\n is required by the RFCs.

cte_type

Controls the type of Content Transfer Encodings that may be or are required to be used. The possible
values are:

20.1. email— An email and MIME handling package 1247

https://datatracker.ietf.org/doc/html/rfc5322.html

The Python Library Reference, Release 3.13.1

7bit all data must be “7 bit clean” (ASCII-only). This means that where necessary data will be
encoded using either quoted-printable or base64 encoding.

8bit data is not constrained to be 7 bit clean. Data in headers is still required to be ASCII-only
and so will be encoded (see fold_binary() and utf8 below for exceptions), but body
parts may use the 8bit CTE.

A cte_type value of 8bit only works with BytesGenerator, not Generator, because strings cannot
contain binary data. If a Generator is operating under a policy that specifies cte_type=8bit, it will
act as if cte_type is 7bit.

raise_on_defect

If True, any defects encountered will be raised as errors. If False (the default), defects will be passed
to the register_defect() method.

mangle_from_

If True, lines starting with “From “ in the body are escaped by putting a > in front of them. This parameter
is used when the message is being serialized by a generator. Default: False.

Added in version 3.5.

message_factory

A factory function for constructing a new empty message object. Used by the parser when building
messages. Defaults to None, in which case Message is used.

Added in version 3.6.

verify_generated_headers

If True (the default), the generator will raise HeaderWriteError instead of writing a header that is
improperly folded or delimited, such that it would be parsed as multiple headers or joined with adjacent
data. Such headers can be generated by custom header classes or bugs in the email module.

As it’s a security feature, this defaults to True even in the Compat32 policy. For backwards compatible,
but unsafe, behavior, it must be set to False explicitly.

Added in version 3.13.

The following Policymethod is intended to be called by code using the email library to create policy instances
with custom settings:

clone(**kw)
Return a new Policy instance whose attributes have the same values as the current instance, except
where those attributes are given new values by the keyword arguments.

The remaining Policy methods are called by the email package code, and are not intended to be called by an
application using the email package. A custom policy must implement all of these methods.

handle_defect(obj, defect)
Handle a defect found on obj. When the email package calls this method, defect will always be a subclass
of Defect.

The default implementation checks the raise_on_defect flag. If it is True, defect is raised as an
exception. If it is False (the default), obj and defect are passed to register_defect().

register_defect(obj, defect)
Register a defect on obj. In the email package, defect will always be a subclass of Defect.

The default implementation calls the append method of the defects attribute of obj. When the email
package calls handle_defect, obj will normally have a defects attribute that has an appendmethod.
Custom object types used with the email package (for example, custom Message objects) should also
provide such an attribute, otherwise defects in parsed messages will raise unexpected errors.

1248 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

header_max_count(name)
Return the maximum allowed number of headers named name.

Called when a header is added to an EmailMessage or Message object. If the returned value is not
0 or None, and there are already a number of headers with the name name greater than or equal to the
value returned, a ValueError is raised.

Because the default behavior of Message.__setitem__ is to append the value to the list of headers, it
is easy to create duplicate headers without realizing it. This method allows certain headers to be limited
in the number of instances of that header that may be added to a Message programmatically. (The limit
is not observed by the parser, which will faithfully produce as many headers as exist in the message being
parsed.)

The default implementation returns None for all header names.

header_source_parse(sourcelines)
The email package calls this method with a list of strings, each string ending with the line separation
characters found in the source being parsed. The first line includes the field header name and separator.
All whitespace in the source is preserved. The method should return the (name, value) tuple that is
to be stored in the Message to represent the parsed header.

If an implementation wishes to retain compatibility with the existing email package policies, name should
be the case preserved name (all characters up to the ‘:’ separator), while value should be the unfolded
value (all line separator characters removed, but whitespace kept intact), stripped of leading whitespace.

sourcelines may contain surrogateescaped binary data.

There is no default implementation

header_store_parse(name, value)
The email package calls this method with the name and value provided by the application program when
the application program is modifying a Message programmatically (as opposed to a Message created
by a parser). The method should return the (name, value) tuple that is to be stored in the Message
to represent the header.

If an implementation wishes to retain compatibility with the existing email package policies, the name
and value should be strings or string subclasses that do not change the content of the passed in arguments.

There is no default implementation

header_fetch_parse(name, value)
The email package calls this method with the name and value currently stored in the Message when
that header is requested by the application program, and whatever the method returns is what is passed
back to the application as the value of the header being retrieved. Note that there may be more than one
header with the same name stored in the Message; the method is passed the specific name and value of
the header destined to be returned to the application.

valuemay contain surrogateescaped binary data. There should be no surrogateescaped binary data in the
value returned by the method.

There is no default implementation

fold(name, value)
The email package calls this method with the name and value currently stored in the Message for a
given header. The method should return a string that represents that header “folded” correctly (according
to the policy settings) by composing the name with the value and inserting linesep characters at the
appropriate places. See RFC 5322 for a discussion of the rules for folding email headers.

valuemay contain surrogateescaped binary data. There should be no surrogateescaped binary data in the
string returned by the method.

fold_binary(name, value)
The same as fold(), except that the returned value should be a bytes object rather than a string.

value may contain surrogateescaped binary data. These could be converted back into binary data in the
returned bytes object.

20.1. email— An email and MIME handling package 1249

https://datatracker.ietf.org/doc/html/rfc5322.html

The Python Library Reference, Release 3.13.1

class email.policy.EmailPolicy(**kw)
This concrete Policy provides behavior that is intended to be fully compliant with the current email RFCs.
These include (but are not limited to) RFC 5322, RFC 2047, and the current MIME RFCs.

This policy adds new header parsing and folding algorithms. Instead of simple strings, headers are str sub-
classes with attributes that depend on the type of the field. The parsing and folding algorithm fully implement
RFC 2047 and RFC 5322.

The default value for the message_factory attribute is EmailMessage.

In addition to the settable attributes listed above that apply to all policies, this policy adds the following addi-
tional attributes:

Added in version 3.6:1

utf8

If False, followRFC 5322, supporting non-ASCII characters in headers by encoding them as “encoded
words”. If True, follow RFC 6532 and use utf-8 encoding for headers. Messages formatted in this
way may be passed to SMTP servers that support the SMTPUTF8 extension (RFC 6531).

refold_source

If the value for a header in the Message object originated from a parser (as opposed to being set by a
program), this attribute indicates whether or not a generator should refold that value when transforming
the message back into serialized form. The possible values are:

none all source values use original folding
long source values that have any line that is longer than max_line_length will be refolded
all all values are refolded.

The default is long.

header_factory

A callable that takes two arguments, name and value, where name is a header field name and value
is an unfolded header field value, and returns a string subclass that represents that header. A default
header_factory (see headerregistry) is provided that supports custom parsing for the various
address and date RFC 5322 header field types, and the major MIME header field stypes. Support for
additional custom parsing will be added in the future.

content_manager

An object with at least two methods: get_content and set_content. When the get_content() or
set_content() method of an EmailMessage object is called, it calls the corresponding method of
this object, passing it the message object as its first argument, and any arguments or keywords that were
passed to it as additional arguments. By default content_manager is set to raw_data_manager.

Added in version 3.4.

The class provides the following concrete implementations of the abstract methods of Policy:

header_max_count(name)
Returns the value of the max_count attribute of the specialized class used to represent the header with
the given name.

header_source_parse(sourcelines)

The name is parsed as everything up to the ‘:’ and returned unmodified. The value is determined by
stripping leading whitespace off the remainder of the first line, joining all subsequent lines together, and
stripping any trailing carriage return or linefeed characters.

1 Originally added in 3.3 as a provisional feature.

1250 Chapter 20. Internet Data Handling

https://datatracker.ietf.org/doc/html/rfc5322.html
https://datatracker.ietf.org/doc/html/rfc2047.html
https://datatracker.ietf.org/doc/html/rfc2047.html
https://datatracker.ietf.org/doc/html/rfc5322.html
https://datatracker.ietf.org/doc/html/rfc5322.html
https://datatracker.ietf.org/doc/html/rfc6532.html
https://datatracker.ietf.org/doc/html/rfc6531.html
https://datatracker.ietf.org/doc/html/rfc5322.html

The Python Library Reference, Release 3.13.1

header_store_parse(name, value)
The name is returned unchanged. If the input value has a name attribute and it matches name ignoring
case, the value is returned unchanged. Otherwise the name and value are passed to header_factory,
and the resulting header object is returned as the value. In this case a ValueError is raised if the input
value contains CR or LF characters.

header_fetch_parse(name, value)
If the value has a name attribute, it is returned to unmodified. Otherwise the name, and the value with
any CR or LF characters removed, are passed to the header_factory, and the resulting header object
is returned. Any surrogateescaped bytes get turned into the unicode unknown-character glyph.

fold(name, value)
Header folding is controlled by the refold_source policy setting. A value is considered to be a ‘source
value’ if and only if it does not have a name attribute (having a name attribute means it is a header
object of some sort). If a source value needs to be refolded according to the policy, it is converted
into a header object by passing the name and the value with any CR and LF characters removed to the
header_factory. Folding of a header object is done by calling its fold method with the current
policy.

Source values are split into lines using splitlines(). If the value is not to be refolded, the lines are
rejoined using the linesep from the policy and returned. The exception is lines containing non-ascii
binary data. In that case the value is refolded regardless of the refold_source setting, which causes
the binary data to be CTE encoded using the unknown-8bit charset.

fold_binary(name, value)
The same as fold() if cte_type is 7bit, except that the returned value is bytes.

If cte_type is 8bit, non-ASCII binary data is converted back into bytes. Headers with binary data
are not refolded, regardless of the refold_header setting, since there is no way to know whether the
binary data consists of single byte characters or multibyte characters.

The following instances of EmailPolicy provide defaults suitable for specific application domains. Note that in
the future the behavior of these instances (in particular the HTTP instance) may be adjusted to conform even more
closely to the RFCs relevant to their domains.

email.policy.default

An instance of EmailPolicy with all defaults unchanged. This policy uses the standard Python \n line
endings rather than the RFC-correct \r\n.

email.policy.SMTP

Suitable for serializing messages in conformance with the email RFCs. Like default, but with linesep set
to \r\n, which is RFC compliant.

email.policy.SMTPUTF8

The same as SMTP except that utf8 is True. Useful for serializing messages to a message store without using
encoded words in the headers. Should only be used for SMTP transmission if the sender or recipient addresses
have non-ASCII characters (the smtplib.SMTP.send_message() method handles this automatically).

email.policy.HTTP

Suitable for serializing headers with for use in HTTP traffic. Like SMTP except that max_line_length is set
to None (unlimited).

email.policy.strict

Convenience instance. The same as default except that raise_on_defect is set to True. This allows any
policy to be made strict by writing:

somepolicy + policy.strict

With all of these EmailPolicies, the effective API of the email package is changed from the Python 3.2 API in
the following ways:

• Setting a header on a Message results in that header being parsed and a header object created.

20.1. email— An email and MIME handling package 1251

The Python Library Reference, Release 3.13.1

• Fetching a header value from a Message results in that header being parsed and a header object created and
returned.

• Any header object, or any header that is refolded due to the policy settings, is folded using an algorithm that fully
implements the RFC folding algorithms, including knowing where encoded words are required and allowed.

From the application view, this means that any header obtained through the EmailMessage is a header object with
extra attributes, whose string value is the fully decoded unicode value of the header. Likewise, a header may be
assigned a new value, or a new header created, using a unicode string, and the policy will take care of converting the
unicode string into the correct RFC encoded form.

The header objects and their attributes are described in headerregistry.

class email.policy.Compat32(**kw)
This concrete Policy is the backward compatibility policy. It replicates the behavior of the email package in
Python 3.2. The policy module also defines an instance of this class, compat32, that is used as the default
policy. Thus the default behavior of the email package is to maintain compatibility with Python 3.2.

The following attributes have values that are different from the Policy default:

mangle_from_

The default is True.

The class provides the following concrete implementations of the abstract methods of Policy:

header_source_parse(sourcelines)
The name is parsed as everything up to the ‘:’ and returned unmodified. The value is determined by
stripping leading whitespace off the remainder of the first line, joining all subsequent lines together, and
stripping any trailing carriage return or linefeed characters.

header_store_parse(name, value)
The name and value are returned unmodified.

header_fetch_parse(name, value)
If the value contains binary data, it is converted into a Header object using the unknown-8bit charset.
Otherwise it is returned unmodified.

fold(name, value)
Headers are folded using the Header folding algorithm, which preserves existing line breaks in the value,
and wraps each resulting line to the max_line_length. Non-ASCII binary data are CTE encoded using
the unknown-8bit charset.

fold_binary(name, value)
Headers are folded using the Header folding algorithm, which preserves existing line breaks in the value,
and wraps each resulting line to the max_line_length. If cte_type is 7bit, non-ascii binary data is
CTE encoded using the unknown-8bit charset. Otherwise the original source header is used, with its
existing line breaks and any (RFC invalid) binary data it may contain.

email.policy.compat32

An instance of Compat32, providing backward compatibility with the behavior of the email package in Python
3.2.

20.1.5 email.errors: Exception and Defect classes

Source code: Lib/email/errors.py

The following exception classes are defined in the email.errors module:

exception email.errors.MessageError

This is the base class for all exceptions that the email package can raise. It is derived from the standard
Exception class and defines no additional methods.

1252 Chapter 20. Internet Data Handling

https://github.com/python/cpython/tree/3.13/Lib/email/errors.py

The Python Library Reference, Release 3.13.1

exception email.errors.MessageParseError

This is the base class for exceptions raised by the Parser class. It is derived from MessageError. This class
is also used internally by the parser used by headerregistry.

exception email.errors.HeaderParseError

Raised under some error conditions when parsing theRFC5322 headers of amessage, this class is derived from
MessageParseError. The set_boundary() method will raise this error if the content type is unknown
when the method is called. Header may raise this error for certain base64 decoding errors, and when an
attempt is made to create a header that appears to contain an embedded header (that is, there is what is supposed
to be a continuation line that has no leading whitespace and looks like a header).

exception email.errors.BoundaryError

Deprecated and no longer used.

exception email.errors.MultipartConversionError

Raised when a payload is added to a Message object using add_payload(), but the payload is
already a scalar and the message’s Content-Type main type is not either multipart or missing.
MultipartConversionError multiply inherits from MessageError and the built-in TypeError.

Since Message.add_payload() is deprecated, this exception is rarely raised in practice. However the
exception may also be raised if the attach() method is called on an instance of a class derived from
MIMENonMultipart (e.g. MIMEImage).

exception email.errors.HeaderWriteError

Raised when an error occurs when the generator outputs headers.

exception email.errors.MessageDefect

This is the base class for all defects found when parsing email messages. It is derived from ValueError.

exception email.errors.HeaderDefect

This is the base class for all defects found when parsing email headers. It is derived from MessageDefect.

Here is the list of the defects that the FeedParser can find while parsingmessages. Note that the defects are added to
the message where the problem was found, so for example, if a message nested inside a multipart/alternative
had a malformed header, that nested message object would have a defect, but the containing messages would not.

All defect classes are subclassed from email.errors.MessageDefect.

• NoBoundaryInMultipartDefect –Amessage claimed to be amultipart, but had no boundary parameter.

• StartBoundaryNotFoundDefect – The start boundary claimed in the Content-Type header was never
found.

• CloseBoundaryNotFoundDefect – A start boundary was found, but no corresponding close boundary was
ever found.

Added in version 3.3.

• FirstHeaderLineIsContinuationDefect – The message had a continuation line as its first header line.

• MisplacedEnvelopeHeaderDefect - A “Unix From” header was found in the middle of a header block.

• MissingHeaderBodySeparatorDefect - A line was found while parsing headers that had no leading white
space but contained no ‘:’. Parsing continues assuming that the line represents the first line of the body.

Added in version 3.3.

• MalformedHeaderDefect – A header was found that was missing a colon, or was otherwise malformed.

Deprecated since version 3.3: This defect has not been used for several Python versions.

• MultipartInvariantViolationDefect – A message claimed to be a multipart, but no subparts were
found. Note that when amessage has this defect, its is_multipart()methodmay return False even though
its content type claims to be multipart.

• InvalidBase64PaddingDefect – When decoding a block of base64 encoded bytes, the padding was not
correct. Enough padding is added to perform the decode, but the resulting decoded bytes may be invalid.

20.1. email— An email and MIME handling package 1253

https://datatracker.ietf.org/doc/html/rfc5322.html

The Python Library Reference, Release 3.13.1

• InvalidBase64CharactersDefect –When decoding a block of base64 encoded bytes, characters outside
the base64 alphabet were encountered. The characters are ignored, but the resulting decoded bytes may be
invalid.

• InvalidBase64LengthDefect – When decoding a block of base64 encoded bytes, the number of non-
padding base64 characters was invalid (1 more than a multiple of 4). The encoded block was kept as-is.

• InvalidDateDefect – When decoding an invalid or unparsable date field. The original value is kept as-is.

20.1.6 email.headerregistry: Custom Header Objects

Source code: Lib/email/headerregistry.py

Added in version 3.6:1

Headers are represented by customized subclasses of str. The particular class used to represent a given header is
determined by the header_factory of the policy in effect when the headers are created. This section documents
the particular header_factory implemented by the email package for handling RFC 5322 compliant email mes-
sages, which not only provides customized header objects for various header types, but also provides an extension
mechanism for applications to add their own custom header types.

When using any of the policy objects derived from EmailPolicy, all headers are produced by HeaderRegistry
and have BaseHeader as their last base class. Each header class has an additional base class that is determined by
the type of the header. For example, many headers have the class UnstructuredHeader as their other base class.
The specialized second class for a header is determined by the name of the header, using a lookup table stored in
the HeaderRegistry. All of this is managed transparently for the typical application program, but interfaces are
provided for modifying the default behavior for use by more complex applications.

The sections below first document the header base classes and their attributes, followed by the API for modifying
the behavior of HeaderRegistry, and finally the support classes used to represent the data parsed from structured
headers.

class email.headerregistry.BaseHeader(name, value)
name and value are passed to BaseHeader from the header_factory call. The string value of any header
object is the value fully decoded to unicode.

This base class defines the following read-only properties:

name

The name of the header (the portion of the field before the ‘:’). This is exactly the value passed in the
header_factory call for name; that is, case is preserved.

defects

A tuple of HeaderDefect instances reporting any RFC compliance problems found during parsing.
The email package tries to be complete about detecting compliance issues. See the errors module for
a discussion of the types of defects that may be reported.

max_count

The maximum number of headers of this type that can have the same name. A value of None means
unlimited. The BaseHeader value for this attribute is None; it is expected that specialized header classes
will override this value as needed.

BaseHeader also provides the following method, which is called by the email library code and should not in
general be called by application programs:

fold(*, policy)
Return a string containing linesep characters as required to correctly fold the header according to
policy. A cte_type of 8bit will be treated as if it were 7bit, since headers may not contain arbitrary
binary data. If utf8 is False, non-ASCII data will be RFC 2047 encoded.

1 Originally added in 3.3 as a provisional module

1254 Chapter 20. Internet Data Handling

https://github.com/python/cpython/tree/3.13/Lib/email/headerregistry.py
https://datatracker.ietf.org/doc/html/rfc5322.html
https://datatracker.ietf.org/doc/html/rfc2047.html

The Python Library Reference, Release 3.13.1

BaseHeader by itself cannot be used to create a header object. It defines a protocol that each specialized
header cooperates with in order to produce the header object. Specifically, BaseHeader requires that the
specialized class provide a classmethod() named parse. This method is called as follows:

parse(string, kwds)

kwds is a dictionary containing one pre-initialized key, defects. defects is an empty list. The parse method
should append any detected defects to this list. On return, the kwds dictionary must contain values for at least
the keys decoded and defects. decoded should be the string value for the header (that is, the header value
fully decoded to unicode). The parse method should assume that string may contain content-transfer-encoded
parts, but should correctly handle all valid unicode characters as well so that it can parse un-encoded header
values.

BaseHeader’s __new__ then creates the header instance, and calls its init method. The specialized class
only needs to provide an init method if it wishes to set additional attributes beyond those provided by
BaseHeader itself. Such an init method should look like this:

def init(self, /, *args, **kw):

self._myattr = kw.pop('myattr')

super().init(*args, **kw)

That is, anything extra that the specialized class puts in to the kwds dictionary should be removed and handled,
and the remaining contents of kw (and args) passed to the BaseHeader init method.

class email.headerregistry.UnstructuredHeader

An “unstructured” header is the default type of header inRFC 5322. Any header that does not have a specified
syntax is treated as unstructured. The classic example of an unstructured header is the Subject header.

InRFC 5322, an unstructured header is a run of arbitrary text in the ASCII character set. RFC 2047, however,
has an RFC 5322 compatible mechanism for encoding non-ASCII text as ASCII characters within a header
value. When a value containing encoded words is passed to the constructor, the UnstructuredHeader parser
converts such encoded words into unicode, following the RFC 2047 rules for unstructured text. The parser
uses heuristics to attempt to decode certain non-compliant encoded words. Defects are registered in such cases,
as well as defects for issues such as invalid characters within the encoded words or the non-encoded text.

This header type provides no additional attributes.

class email.headerregistry.DateHeader

RFC 5322 specifies a very specific format for dates within email headers. The DateHeader parser recognizes
that date format, as well as recognizing a number of variant forms that are sometimes found “in the wild”.

This header type provides the following additional attributes:

datetime

If the header value can be recognized as a valid date of one form or another, this attribute will contain
a datetime instance representing that date. If the timezone of the input date is specified as -0000
(indicating it is in UTC but contains no information about the source timezone), then datetime will be
a naive datetime. If a specific timezone offset is found (including +0000), then datetimewill contain
an aware datetime that uses datetime.timezone to record the timezone offset.

The decoded value of the header is determined by formatting the datetime according to the RFC 5322
rules; that is, it is set to:

email.utils.format_datetime(self.datetime)

When creating a DateHeader, valuemay be datetime instance. This means, for example, that the following
code is valid and does what one would expect:

msg['Date'] = datetime(2011, 7, 15, 21)

Because this is a naive datetime it will be interpreted as a UTC timestamp, and the resulting value will have
a timezone of -0000. Much more useful is to use the localtime() function from the utils module:

20.1. email— An email and MIME handling package 1255

https://datatracker.ietf.org/doc/html/rfc5322.html
https://datatracker.ietf.org/doc/html/rfc5322.html
https://datatracker.ietf.org/doc/html/rfc2047.html
https://datatracker.ietf.org/doc/html/rfc5322.html
https://datatracker.ietf.org/doc/html/rfc2047.html
https://datatracker.ietf.org/doc/html/rfc5322.html
https://datatracker.ietf.org/doc/html/rfc5322.html

The Python Library Reference, Release 3.13.1

msg['Date'] = utils.localtime()

This example sets the date header to the current time and date using the current timezone offset.

class email.headerregistry.AddressHeader

Address headers are one of the most complex structured header types. The AddressHeader class provides a
generic interface to any address header.

This header type provides the following additional attributes:

groups

A tuple of Group objects encoding the addresses and groups found in the header value. Addresses that
are not part of a group are represented in this list as single-address Groups whose display_name is
None.

addresses

A tuple of Address objects encoding all of the individual addresses from the header value. If the header
value contains any groups, the individual addresses from the group are included in the list at the point
where the group occurs in the value (that is, the list of addresses is “flattened” into a one dimensional
list).

The decoded value of the header will have all encoded words decoded to unicode. idna encoded domain
names are also decoded to unicode. The decoded value is set by joining the str value of the elements of the
groups attribute with ', '.

A list of Address and Group objects in any combination may be used to set the value of an address header.
Group objects whose display_name is None will be interpreted as single addresses, which allows an address
list to be copied with groups intact by using the list obtained from the groups attribute of the source header.

class email.headerregistry.SingleAddressHeader

A subclass of AddressHeader that adds one additional attribute:

address

The single address encoded by the header value. If the header value actually contains more than one
address (which would be a violation of the RFC under the default policy), accessing this attribute will
result in a ValueError.

Many of the above classes also have a Unique variant (for example, UniqueUnstructuredHeader). The only
difference is that in the Unique variant, max_count is set to 1.

class email.headerregistry.MIMEVersionHeader

There is really only one valid value for the MIME-Version header, and that is 1.0. For future proofing, this
header class supports other valid version numbers. If a version number has a valid value per RFC 2045, then
the header object will have non-None values for the following attributes:

version

The version number as a string, with any whitespace and/or comments removed.

major

The major version number as an integer

minor

The minor version number as an integer

class email.headerregistry.ParameterizedMIMEHeader

MIME headers all start with the prefix ‘Content-’. Each specific header has a certain value, described under
the class for that header. Some can also take a list of supplemental parameters, which have a common format.
This class serves as a base for all the MIME headers that take parameters.

params

A dictionary mapping parameter names to parameter values.

1256 Chapter 20. Internet Data Handling

https://datatracker.ietf.org/doc/html/rfc2045.html

The Python Library Reference, Release 3.13.1

class email.headerregistry.ContentTypeHeader

A ParameterizedMIMEHeader class that handles the Content-Type header.

content_type

The content type string, in the form maintype/subtype.

maintype

subtype

class email.headerregistry.ContentDispositionHeader

A ParameterizedMIMEHeader class that handles the Content-Disposition header.

content_disposition

inline and attachment are the only valid values in common use.

class email.headerregistry.ContentTransferEncoding

Handles the Content-Transfer-Encoding header.

cte

Valid values are 7bit, 8bit, base64, and quoted-printable. SeeRFC 2045 for more information.

class email.headerregistry.HeaderRegistry(base_class=BaseHeader,
default_class=UnstructuredHeader,
use_default_map=True)

This is the factory used by EmailPolicy by default. HeaderRegistry builds the class used to create a
header instance dynamically, using base_class and a specialized class retrieved from a registry that it holds.
When a given header name does not appear in the registry, the class specified by default_class is used as the
specialized class. When use_default_map is True (the default), the standard mapping of header names to
classes is copied in to the registry during initialization. base_class is always the last class in the generated
class’s __bases__ list.

The default mappings are:

subject
UniqueUnstructuredHeader

date
UniqueDateHeader

resent-date
DateHeader

orig-date
UniqueDateHeader

sender
UniqueSingleAddressHeader

resent-sender
SingleAddressHeader

to
UniqueAddressHeader

resent-to
AddressHeader

cc
UniqueAddressHeader

resent-cc
AddressHeader

bcc
UniqueAddressHeader

20.1. email— An email and MIME handling package 1257

https://datatracker.ietf.org/doc/html/rfc2045.html

The Python Library Reference, Release 3.13.1

resent-bcc
AddressHeader

from
UniqueAddressHeader

resent-from
AddressHeader

reply-to
UniqueAddressHeader

mime-version
MIMEVersionHeader

content-type
ContentTypeHeader

content-disposition
ContentDispositionHeader

content-transfer-encoding
ContentTransferEncodingHeader

message-id
MessageIDHeader

HeaderRegistry has the following methods:

map_to_type(self, name, cls)
name is the name of the header to be mapped. It will be converted to lower case in the registry. cls is
the specialized class to be used, along with base_class, to create the class used to instantiate headers that
match name.

__getitem__(name)
Construct and return a class to handle creating a name header.

__call__(name, value)
Retrieves the specialized header associated with name from the registry (using default_class if name does
not appear in the registry) and composes it with base_class to produce a class, calls the constructed class’s
constructor, passing it the same argument list, and finally returns the class instance created thereby.

The following classes are the classes used to represent data parsed from structured headers and can, in general, be
used by an application program to construct structured values to assign to specific headers.

class email.headerregistry.Address(display_name=” , username=” , domain=” , addr_spec=None)
The class used to represent an email address. The general form of an address is:

[display_name] <username@domain>

or:

username@domain

where each part must conform to specific syntax rules spelled out in RFC 5322.

As a convenience addr_spec can be specified instead of username and domain, in which case username and
domain will be parsed from the addr_spec. An addr_spec must be a properly RFC quoted string; if it is not
Address will raise an error. Unicode characters are allowed and will be property encoded when serialized.
However, per the RFCs, unicode is not allowed in the username portion of the address.

display_name

The display name portion of the address, if any, with all quoting removed. If the address does not have
a display name, this attribute will be an empty string.

1258 Chapter 20. Internet Data Handling

https://datatracker.ietf.org/doc/html/rfc5322.html

The Python Library Reference, Release 3.13.1

username

The username portion of the address, with all quoting removed.

domain

The domain portion of the address.

addr_spec

The username@domain portion of the address, correctly quoted for use as a bare address (the second
form shown above). This attribute is not mutable.

__str__()

The str value of the object is the address quoted according to RFC 5322 rules, but with no Content
Transfer Encoding of any non-ASCII characters.

To support SMTP (RFC 5321), Address handles one special case: if username and domain are both the
empty string (or None), then the string value of the Address is <>.

class email.headerregistry.Group(display_name=None, addresses=None)
The class used to represent an address group. The general form of an address group is:

display_name: [address-list];

As a convenience for processing lists of addresses that consist of a mixture of groups and single addresses, a
Group may also be used to represent single addresses that are not part of a group by setting display_name to
None and providing a list of the single address as addresses.

display_name

The display_name of the group. If it is None and there is exactly one Address in addresses, then
the Group represents a single address that is not in a group.

addresses

A possibly empty tuple of Address objects representing the addresses in the group.

__str__()

The str value of a Group is formatted according to RFC 5322, but with no Content Transfer En-
coding of any non-ASCII characters. If display_name is none and there is a single Address in the
addresses list, the str value will be the same as the str of that single Address.

20.1.7 email.contentmanager: Managing MIME Content

Source code: Lib/email/contentmanager.py

Added in version 3.6:1

class email.contentmanager.ContentManager

Base class for content managers. Provides the standard registry mechanisms to register converters between
MIME content and other representations, as well as the get_content and set_content dispatch methods.

get_content(msg, *args, **kw)
Look up a handler function based on the mimetype of msg (see next paragraph), call it, passing through
all arguments, and return the result of the call. The expectation is that the handler will extract the payload
from msg and return an object that encodes information about the extracted data.

To find the handler, look for the following keys in the registry, stopping with the first one found:

• the string representing the full MIME type (maintype/subtype)

• the string representing the maintype

1 Originally added in 3.4 as a provisional module

20.1. email— An email and MIME handling package 1259

https://datatracker.ietf.org/doc/html/rfc5322.html
https://datatracker.ietf.org/doc/html/rfc5321.html
https://datatracker.ietf.org/doc/html/rfc5322.html
https://github.com/python/cpython/tree/3.13/Lib/email/contentmanager.py

The Python Library Reference, Release 3.13.1

• the empty string

If none of these keys produce a handler, raise a KeyError for the full MIME type.

set_content(msg, obj, *args, **kw)
If the maintype is multipart, raise a TypeError; otherwise look up a handler function based on
the type of obj (see next paragraph), call clear_content() on the msg, and call the handler function,
passing through all arguments. The expectation is that the handler will transform and store obj into
msg, possibly making other changes to msg as well, such as adding various MIME headers to encode
information needed to interpret the stored data.

To find the handler, obtain the type of obj (typ = type(obj)), and look for the following keys in the
registry, stopping with the first one found:

• the type itself (typ)

• the type’s fully qualified name (typ.__module__ + '.' + typ.__qualname__).

• the type’s qualname (typ.__qualname__)

• the type’s name (typ.__name__).

If none of the above match, repeat all of the checks above for each of the types in the MRO (typ.
__mro__). Finally, if no other key yields a handler, check for a handler for the key None. If there is no
handler for None, raise a KeyError for the fully qualified name of the type.

Also add a MIME-Version header if one is not present (see also MIMEPart).

add_get_handler(key, handler)
Record the function handler as the handler for key. For the possible values of key, see get_content().

add_set_handler(typekey, handler)
Record handler as the function to call when an object of a type matching typekey is passed to
set_content(). For the possible values of typekey, see set_content().

Content Manager Instances

Currently the email package provides only one concrete content manager, raw_data_manager, although more
may be added in the future. raw_data_manager is the content_manager provided by EmailPolicy and its
derivatives.

email.contentmanager.raw_data_manager

This content manager provides only a minimum interface beyond that provided by Message itself: it deals only
with text, raw byte strings, and Message objects. Nevertheless, it provides significant advantages compared
to the base API: get_content on a text part will return a unicode string without the application needing to
manually decode it, set_content provides a rich set of options for controlling the headers added to a part
and controlling the content transfer encoding, and it enables the use of the various add_ methods, thereby
simplifying the creation of multipart messages.

email.contentmanager.get_content(msg, errors=’replace’)
Return the payload of the part as either a string (for text parts), an EmailMessage object (for
message/rfc822 parts), or a bytes object (for all other non-multipart types). Raise a KeyError
if called on a multipart. If the part is a text part and errors is specified, use it as the error handler
when decoding the payload to unicode. The default error handler is replace.

email.contentmanager.set_content(msg, <’str’>, subtype=”plain” , charset=’utf-8’, cte=None,
disposition=None, filename=None, cid=None, params=None,
headers=None)

email.contentmanager.set_content(msg, <’bytes’>, maintype, subtype, cte=”base64” ,
disposition=None, filename=None, cid=None, params=None,
headers=None)

1260 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

email.contentmanager.set_content(msg, <’EmailMessage’>, cte=None, disposition=None,
filename=None, cid=None, params=None, headers=None)

Add headers and payload to msg:

Add a Content-Type header with a maintype/subtype value.

• For str, set the MIME maintype to text, and set the subtype to subtype if it is specified, or
plain if it is not.

• For bytes, use the specified maintype and subtype, or raise a TypeError if they are not specified.

• For EmailMessage objects, set the maintype to message, and set the subtype to subtype if it is
specified or rfc822 if it is not. If subtype is partial, raise an error (bytes objects must be used
to construct message/partial parts).

If charset is provided (which is valid only for str), encode the string to bytes using the specified character
set. The default is utf-8. If the specified charset is a known alias for a standard MIME charset name,
use the standard charset instead.

If cte is set, encode the payload using the specified content transfer encoding, and set the
Content-Transfer-Encoding header to that value. Possible values for cte are quoted-printable,
base64, 7bit, 8bit, and binary. If the input cannot be encoded in the specified encoding (for exam-
ple, specifying a cte of 7bit for an input that contains non-ASCII values), raise a ValueError.

• For str objects, if cte is not set use heuristics to determine the most compact encoding.

• For EmailMessage, per RFC 2046, raise an error if a cte of quoted-printable or base64 is
requested for subtype rfc822, and for any cte other than 7bit for subtype external-body. For
message/rfc822, use 8bit if cte is not specified. For all other values of subtype, use 7bit.

Note

A cte of binary does not actually work correctly yet. The EmailMessage object as modified by
set_content is correct, but BytesGenerator does not serialize it correctly.

If disposition is set, use it as the value of the Content-Disposition header. If not specified, and
filename is specified, add the header with the value attachment. If disposition is not specified and
filename is also not specified, do not add the header. The only valid values for disposition are attachment
and inline.

If filename is specified, use it as the value of the filename parameter of the Content-Disposition
header.

If cid is specified, add a Content-ID header with cid as its value.

If params is specified, iterate its items method and use the resulting (key, value) pairs to set addi-
tional parameters on the Content-Type header.

If headers is specified and is a list of strings of the form headername: headervalue or a list of
header objects (distinguished from strings by having a name attribute), add the headers to msg.

20.1.8 email: Examples

Here are a few examples of how to use the email package to read, write, and send simple email messages, as well
as more complex MIME messages.

First, let’s see how to create and send a simple text message (both the text content and the addresses may contain
unicode characters):

Import smtplib for the actual sending function

import smtplib

Import the email modules we'll need

(continues on next page)

20.1. email— An email and MIME handling package 1261

https://datatracker.ietf.org/doc/html/rfc2046.html

The Python Library Reference, Release 3.13.1

(continued from previous page)

from email.message import EmailMessage

Open the plain text file whose name is in textfile for reading.

with open(textfile) as fp:

Create a text/plain message

msg = EmailMessage()

msg.set_content(fp.read())

me == the sender's email address

you == the recipient's email address

msg['Subject'] = f'The contents of {textfile}'

msg['From'] = me

msg['To'] = you

Send the message via our own SMTP server.

s = smtplib.SMTP('localhost')

s.send_message(msg)

s.quit()

Parsing RFC 822 headers can easily be done by the using the classes from the parser module:

Import the email modules we'll need

#from email.parser import BytesParser

from email.parser import Parser

from email.policy import default

If the e-mail headers are in a file, uncomment these two lines:

with open(messagefile, 'rb') as fp:

headers = BytesParser(policy=default).parse(fp)

Or for parsing headers in a string (this is an uncommon operation), use:

headers = Parser(policy=default).parsestr(

'From: Foo Bar <user@example.com>\n'

'To: <someone_else@example.com>\n'

'Subject: Test message\n'

'\n'

'Body would go here\n')

Now the header items can be accessed as a dictionary:

print('To: {}'.format(headers['to']))

print('From: {}'.format(headers['from']))

print('Subject: {}'.format(headers['subject']))

You can also access the parts of the addresses:

print('Recipient username: {}'.format(headers['to'].addresses[0].username))

print('Sender name: {}'.format(headers['from'].addresses[0].display_name))

Here’s an example of how to send a MIME message containing a bunch of family pictures that may be residing in a
directory:

Import smtplib for the actual sending function.

import smtplib

Here are the email package modules we'll need.

from email.message import EmailMessage

Create the container email message.
(continues on next page)

1262 Chapter 20. Internet Data Handling

https://datatracker.ietf.org/doc/html/rfc822.html

The Python Library Reference, Release 3.13.1

(continued from previous page)

msg = EmailMessage()

msg['Subject'] = 'Our family reunion'

me == the sender's email address

family = the list of all recipients' email addresses

msg['From'] = me

msg['To'] = ', '.join(family)

msg.preamble = 'You will not see this in a MIME-aware mail reader.\n'

Open the files in binary mode. You can also omit the subtype

if you want MIMEImage to guess it.

for file in pngfiles:

with open(file, 'rb') as fp:

img_data = fp.read()

msg.add_attachment(img_data, maintype='image',

subtype='png')

Send the email via our own SMTP server.

with smtplib.SMTP('localhost') as s:

s.send_message(msg)

Here’s an example of how to send the entire contents of a directory as an email message:1

#!/usr/bin/env python3

"""Send the contents of a directory as a MIME message."""

import os

import smtplib

For guessing MIME type based on file name extension

import mimetypes

from argparse import ArgumentParser

from email.message import EmailMessage

from email.policy import SMTP

def main():

parser = ArgumentParser(description="""\

Send the contents of a directory as a MIME message.

Unless the -o option is given, the email is sent by forwarding to your local

SMTP server, which then does the normal delivery process. Your local machine

must be running an SMTP server.

""")

parser.add_argument('-d', '--directory',

help="""Mail the contents of the specified directory,

otherwise use the current directory. Only the regular

files in the directory are sent, and we don't recurse to

subdirectories.""")

parser.add_argument('-o', '--output',

metavar='FILE',

help="""Print the composed message to FILE instead of

sending the message to the SMTP server.""")

parser.add_argument('-s', '--sender', required=True,

help='The value of the From: header (required)')

(continues on next page)

1 Thanks to Matthew Dixon Cowles for the original inspiration and examples.

20.1. email— An email and MIME handling package 1263

The Python Library Reference, Release 3.13.1

(continued from previous page)

parser.add_argument('-r', '--recipient', required=True,

action='append', metavar='RECIPIENT',

default=[], dest='recipients',

help='A To: header value (at least one required)')

args = parser.parse_args()

directory = args.directory

if not directory:

directory = '.'

Create the message

msg = EmailMessage()

msg['Subject'] = f'Contents of directory {os.path.abspath(directory)}'

msg['To'] = ', '.join(args.recipients)

msg['From'] = args.sender

msg.preamble = 'You will not see this in a MIME-aware mail reader.\n'

for filename in os.listdir(directory):

path = os.path.join(directory, filename)

if not os.path.isfile(path):

continue

Guess the content type based on the file's extension. Encoding

will be ignored, although we should check for simple things like

gzip'd or compressed files.

ctype, encoding = mimetypes.guess_file_type(path)

if ctype is None or encoding is not None:

No guess could be made, or the file is encoded (compressed), so

use a generic bag-of-bits type.

ctype = 'application/octet-stream'

maintype, subtype = ctype.split('/', 1)

with open(path, 'rb') as fp:

msg.add_attachment(fp.read(),

maintype=maintype,

subtype=subtype,

filename=filename)

Now send or store the message

if args.output:

with open(args.output, 'wb') as fp:

fp.write(msg.as_bytes(policy=SMTP))

else:

with smtplib.SMTP('localhost') as s:

s.send_message(msg)

if __name__ == '__main__':

main()

Here’s an example of how to unpack a MIME message like the one above, into a directory of files:

#!/usr/bin/env python3

"""Unpack a MIME message into a directory of files."""

import os

import email

import mimetypes

from email.policy import default

(continues on next page)

1264 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

(continued from previous page)

from argparse import ArgumentParser

def main():

parser = ArgumentParser(description="""\

Unpack a MIME message into a directory of files.

""")

parser.add_argument('-d', '--directory', required=True,

help="""Unpack the MIME message into the named

directory, which will be created if it doesn't already

exist.""")

parser.add_argument('msgfile')

args = parser.parse_args()

with open(args.msgfile, 'rb') as fp:

msg = email.message_from_binary_file(fp, policy=default)

try:

os.mkdir(args.directory)

except FileExistsError:

pass

counter = 1

for part in msg.walk():

multipart/* are just containers

if part.get_content_maintype() == 'multipart':

continue

Applications should really sanitize the given filename so that an

email message can't be used to overwrite important files

filename = part.get_filename()

if not filename:

ext = mimetypes.guess_extension(part.get_content_type())

if not ext:

Use a generic bag-of-bits extension

ext = '.bin'

filename = f'part-{counter:03d}{ext}'

counter += 1

with open(os.path.join(args.directory, filename), 'wb') as fp:

fp.write(part.get_payload(decode=True))

if __name__ == '__main__':

main()

Here’s an example of how to create an HTML message with an alternative plain text version. To make things a bit
more interesting, we include a related image in the html part, and we save a copy of what we are going to send to
disk, as well as sending it.

#!/usr/bin/env python3

import smtplib

from email.message import EmailMessage

from email.headerregistry import Address

from email.utils import make_msgid

(continues on next page)

20.1. email— An email and MIME handling package 1265

The Python Library Reference, Release 3.13.1

(continued from previous page)

Create the base text message.

msg = EmailMessage()

msg['Subject'] = "Pourquoi pas des asperges pour ce midi ?"

msg['From'] = Address("Pepé Le Pew", "pepe", "example.com")

msg['To'] = (Address("Penelope Pussycat", "penelope", "example.com"),

Address("Fabrette Pussycat", "fabrette", "example.com"))

msg.set_content("""\

Salut!

Cette recette [1] sera sûrement un très bon repas.

[1] http://www.yummly.com/recipe/Roasted-Asparagus-Epicurious-203718

--Pepé

""")

Add the html version. This converts the message into a multipart/alternative

container, with the original text message as the first part and the new html

message as the second part.

asparagus_cid = make_msgid()

msg.add_alternative("""\

<html>

<head></head>

<body>

<p>Salut!</p>

<p>Cette

recette

 sera sûrement un très bon repas.

</p>

</body>

</html>

""".format(asparagus_cid=asparagus_cid[1:-1]), subtype='html')

note that we needed to peel the <> off the msgid for use in the html.

Now add the related image to the html part.

with open("roasted-asparagus.jpg", 'rb') as img:

msg.get_payload()[1].add_related(img.read(), 'image', 'jpeg',

cid=asparagus_cid)

Make a local copy of what we are going to send.

with open('outgoing.msg', 'wb') as f:

f.write(bytes(msg))

Send the message via local SMTP server.

with smtplib.SMTP('localhost') as s:

s.send_message(msg)

If we were sent the message from the last example, here is one way we could process it:

import os

import sys

import tempfile

import mimetypes

(continues on next page)

1266 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

(continued from previous page)

import webbrowser

Import the email modules we'll need

from email import policy

from email.parser import BytesParser

def magic_html_parser(html_text, partfiles):

"""Return safety-sanitized html linked to partfiles.

Rewrite the href="cid:...." attributes to point to the filenames in partfiles.

Though not trivial, this should be possible using html.parser.

"""

raise NotImplementedError("Add the magic needed")

In a real program you'd get the filename from the arguments.

with open('outgoing.msg', 'rb') as fp:

msg = BytesParser(policy=policy.default).parse(fp)

Now the header items can be accessed as a dictionary, and any non-ASCII will

be converted to unicode:

print('To:', msg['to'])

print('From:', msg['from'])

print('Subject:', msg['subject'])

If we want to print a preview of the message content, we can extract whatever

the least formatted payload is and print the first three lines. Of course,

if the message has no plain text part printing the first three lines of html

is probably useless, but this is just a conceptual example.

simplest = msg.get_body(preferencelist=('plain', 'html'))

print()

print(''.join(simplest.get_content().splitlines(keepends=True)[:3]))

ans = input("View full message?")

if ans.lower()[0] == 'n':

sys.exit()

We can extract the richest alternative in order to display it:

richest = msg.get_body()

partfiles = {}

if richest['content-type'].maintype == 'text':

if richest['content-type'].subtype == 'plain':

for line in richest.get_content().splitlines():

print(line)

sys.exit()

elif richest['content-type'].subtype == 'html':

body = richest

else:

print("Don't know how to display {}".format(richest.get_content_type()))

sys.exit()

elif richest['content-type'].content_type == 'multipart/related':

body = richest.get_body(preferencelist=('html'))

for part in richest.iter_attachments():

fn = part.get_filename()

if fn:

(continues on next page)

20.1. email— An email and MIME handling package 1267

The Python Library Reference, Release 3.13.1

(continued from previous page)

extension = os.path.splitext(part.get_filename())[1]

else:

extension = mimetypes.guess_extension(part.get_content_type())

with tempfile.NamedTemporaryFile(suffix=extension, delete=False) as f:

f.write(part.get_content())

again strip the <> to go from email form of cid to html form.

partfiles[part['content-id'][1:-1]] = f.name

else:

print("Don't know how to display {}".format(richest.get_content_type()))

sys.exit()

with tempfile.NamedTemporaryFile(mode='w', delete=False) as f:

f.write(magic_html_parser(body.get_content(), partfiles))

webbrowser.open(f.name)

os.remove(f.name)

for fn in partfiles.values():

os.remove(fn)

Of course, there are lots of email messages that could break this simple

minded program, but it will handle the most common ones.

Up to the prompt, the output from the above is:

To: Penelope Pussycat <penelope@example.com>, Fabrette Pussycat <fabrette@example.

↪→com>

From: Pepé Le Pew <pepe@example.com>

Subject: Pourquoi pas des asperges pour ce midi ?

Salut!

Cette recette [1] sera sûrement un très bon repas.

Legacy API:

20.1.9 email.message.Message: Representing an email message using the
compat32 API

The Message class is very similar to the EmailMessage class, without the methods added by that class, and with
the default behavior of certain other methods being slightly different. We also document here some methods that,
while supported by the EmailMessage class, are not recommended unless you are dealing with legacy code.

The philosophy and structure of the two classes is otherwise the same.

This document describes the behavior under the default (for Message) policy Compat32. If you are going to use
another policy, you should be using the EmailMessage class instead.

An email message consists of headers and a payload. Headers must be RFC 5322 style names and values, where the
field name and value are separated by a colon. The colon is not part of either the field name or the field value. The
payload may be a simple text message, or a binary object, or a structured sequence of sub-messages each with their
own set of headers and their own payload. The latter type of payload is indicated by the message having a MIME
type such as multipart/* or message/rfc822.

The conceptual model provided by a Message object is that of an ordered dictionary of headers with additional
methods for accessing both specialized information from the headers, for accessing the payload, for generating a
serialized version of the message, and for recursively walking over the object tree. Note that duplicate headers are
supported but special methods must be used to access them.

The Message pseudo-dictionary is indexed by the header names, which must be ASCII values. The values of the
dictionary are strings that are supposed to contain only ASCII characters; there is some special handling for non-
ASCII input, but it doesn’t always produce the correct results. Headers are stored and returned in case-preserving

1268 Chapter 20. Internet Data Handling

https://datatracker.ietf.org/doc/html/rfc5322.html

The Python Library Reference, Release 3.13.1

form, but field names are matched case-insensitively. There may also be a single envelope header, also known as
the Unix-From header or the From_ header. The payload is either a string or bytes, in the case of simple message
objects, or a list of Message objects, for MIME container documents (e.g. multipart/* and message/rfc822).

Here are the methods of the Message class:

class email.message.Message(policy=compat32)

If policy is specified (it must be an instance of a policy class) use the rules it specifies to update and serialize
the representation of the message. If policy is not set, use the compat32 policy, which maintains backward
compatibility with the Python 3.2 version of the email package. For more information see the policy docu-
mentation.

Changed in version 3.3: The policy keyword argument was added.

as_string(unixfrom=False, maxheaderlen=0, policy=None)
Return the entire message flattened as a string. When optional unixfrom is true, the envelope header
is included in the returned string. unixfrom defaults to False. For backward compatibility reasons,
maxheaderlen defaults to 0, so if you want a different value you must override it explicitly (the value
specified for max_line_length in the policy will be ignored by this method). The policy argument may be
used to override the default policy obtained from the message instance. This can be used to control some
of the formatting produced by the method, since the specified policy will be passed to the Generator.

Flattening the message may trigger changes to the Message if defaults need to be filled in to complete
the transformation to a string (for example, MIME boundaries may be generated or modified).

Note that this method is provided as a convenience and may not always format the message the way you
want. For example, by default it does not do the mangling of lines that begin with From that is required
by the Unix mbox format. For more flexibility, instantiate a Generator instance and use its flatten()
method directly. For example:

from io import StringIO

from email.generator import Generator

fp = StringIO()

g = Generator(fp, mangle_from_=True, maxheaderlen=60)

g.flatten(msg)

text = fp.getvalue()

If the message object contains binary data that is not encoded according to RFC standards, the non-
compliant data will be replaced by unicode “unknown character” code points. (See also as_bytes()
and BytesGenerator.)

Changed in version 3.4: the policy keyword argument was added.

__str__()

Equivalent to as_string(). Allows str(msg) to produce a string containing the formatted message.

as_bytes(unixfrom=False, policy=None)
Return the entire message flattened as a bytes object. When optional unixfrom is true, the envelope
header is included in the returned string. unixfrom defaults to False. The policy argument may be used
to override the default policy obtained from the message instance. This can be used to control some of the
formatting produced by the method, since the specified policy will be passed to the BytesGenerator.

Flattening the message may trigger changes to the Message if defaults need to be filled in to complete
the transformation to a string (for example, MIME boundaries may be generated or modified).

Note that this method is provided as a convenience and may not always format the message the way you
want. For example, by default it does not do the mangling of lines that begin with From that is required
by the Unix mbox format. For more flexibility, instantiate a BytesGenerator instance and use its
flatten() method directly. For example:

from io import BytesIO

from email.generator import BytesGenerator

(continues on next page)

20.1. email— An email and MIME handling package 1269

The Python Library Reference, Release 3.13.1

(continued from previous page)

fp = BytesIO()

g = BytesGenerator(fp, mangle_from_=True, maxheaderlen=60)

g.flatten(msg)

text = fp.getvalue()

Added in version 3.4.

__bytes__()

Equivalent to as_bytes(). Allows bytes(msg) to produce a bytes object containing the formatted
message.

Added in version 3.4.

is_multipart()

Return True if the message’s payload is a list of sub-Message objects, otherwise return False. When
is_multipart() returns False, the payload should be a string object (which might be a CTE en-
coded binary payload). (Note that is_multipart() returning True does not necessarily mean that
“msg.get_content_maintype() == ‘multipart’” will return the True. For example, is_multipart will
return True when the Message is of type message/rfc822.)

set_unixfrom(unixfrom)
Set the message’s envelope header to unixfrom, which should be a string.

get_unixfrom()

Return the message’s envelope header. Defaults to None if the envelope header was never set.

attach(payload)
Add the given payload to the current payload, which must be None or a list of Message objects before
the call. After the call, the payload will always be a list of Message objects. If you want to set the
payload to a scalar object (e.g. a string), use set_payload() instead.

This is a legacy method. On the EmailMessage class its functionality is replaced by set_content()
and the related make and add methods.

get_payload(i=None, decode=False)
Return the current payload, which will be a list of Message objects when is_multipart() is True,
or a string when is_multipart() is False. If the payload is a list and you mutate the list object, you
modify the message’s payload in place.

With optional argument i, get_payload() will return the i-th element of the payload, counting from
zero, if is_multipart() is True. An IndexError will be raised if i is less than 0 or greater than or
equal to the number of items in the payload. If the payload is a string (i.e. is_multipart() is False)
and i is given, a TypeError is raised.

Optional decode is a flag indicating whether the payload should be decoded or not, according to the
Content-Transfer-Encoding header. When True and the message is not a multipart, the payload
will be decoded if this header’s value is quoted-printable or base64. If some other encoding is used,
or Content-Transfer-Encoding header is missing, the payload is returned as-is (undecoded). In all
cases the returned value is binary data. If the message is a multipart and the decode flag is True, then
None is returned. If the payload is base64 and it was not perfectly formed (missing padding, characters
outside the base64 alphabet), then an appropriate defect will be added to the message’s defect property
(InvalidBase64PaddingDefect or InvalidBase64CharactersDefect, respectively).

When decode is False (the default) the body is returned as a string without decoding the
Content-Transfer-Encoding. However, for a Content-Transfer-Encoding of 8bit, an at-
tempt is made to decode the original bytes using the charset specified by the Content-Type header,
using the replace error handler. If no charset is specified, or if the charset given is not recognized
by the email package, the body is decoded using the default ASCII charset.

This is a legacy method. On the EmailMessage class its functionality is replaced by get_content()
and iter_parts().

1270 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

set_payload(payload, charset=None)
Set the entire message object’s payload to payload. It is the client’s responsibility to ensure the payload
invariants. Optional charset sets the message’s default character set; see set_charset() for details.

This is a legacy method. On the EmailMessage class its functionality is replaced by set_content().

set_charset(charset)

Set the character set of the payload to charset, which can either be a Charset instance (see email.
charset), a string naming a character set, or None. If it is a string, it will be converted to a Charset
instance. If charset is None, the charset parameter will be removed from the Content-Type header
(the message will not be otherwise modified). Anything else will generate a TypeError.

If there is no existing MIME-Version header one will be added. If there is no existing Content-Type
header, one will be added with a value of text/plain. Whether the Content-Type header already
exists or not, its charset parameter will be set to charset.output_charset. If charset.input_charset
and charset.output_charset differ, the payload will be re-encoded to the output_charset. If there is
no existing Content-Transfer-Encoding header, then the payload will be transfer-encoded, if
needed, using the specified Charset, and a header with the appropriate value will be added. If a
Content-Transfer-Encoding header already exists, the payload is assumed to already be correctly
encoded using that Content-Transfer-Encoding and is not modified.

This is a legacy method. On the EmailMessage class its functionality is replaced by the charset param-
eter of the email.emailmessage.EmailMessage.set_content() method.

get_charset()

Return the Charset instance associated with the message’s payload.

This is a legacy method. On the EmailMessage class it always returns None.

The following methods implement a mapping-like interface for accessing the message’s RFC 2822 headers.
Note that there are some semantic differences between these methods and a normal mapping (i.e. dictionary)
interface. For example, in a dictionary there are no duplicate keys, but here there may be duplicate message
headers. Also, in dictionaries there is no guaranteed order to the keys returned by keys(), but in a Message
object, headers are always returned in the order they appeared in the original message, or were added to the
message later. Any header deleted and then re-added are always appended to the end of the header list.

These semantic differences are intentional and are biased toward maximal convenience.

Note that in all cases, any envelope header present in the message is not included in the mapping interface.

In a model generated from bytes, any header values that (in contravention of the RFCs) contain non-
ASCII bytes will, when retrieved through this interface, be represented as Header objects with a charset
of unknown-8bit.

__len__()

Return the total number of headers, including duplicates.

__contains__(name)
Return True if the message object has a field named name. Matching is done case-insensitively and
name should not include the trailing colon. Used for the in operator, e.g.:

if 'message-id' in myMessage:

print('Message-ID:', myMessage['message-id'])

__getitem__(name)

Return the value of the named header field. name should not include the colon field separator. If the
header is missing, None is returned; a KeyError is never raised.

Note that if the named field appears more than once in the message’s headers, exactly which of those
field values will be returned is undefined. Use the get_all() method to get the values of all the extant
named headers.

20.1. email— An email and MIME handling package 1271

https://datatracker.ietf.org/doc/html/rfc2822.html

The Python Library Reference, Release 3.13.1

__setitem__(name, val)
Add a header to the message with field name name and value val. The field is appended to the end of the
message’s existing fields.

Note that this does not overwrite or delete any existing header with the same name. If you want to ensure
that the new header is the only one present in the message with field name name, delete the field first,
e.g.:

del msg['subject']

msg['subject'] = 'Python roolz!'

__delitem__(name)

Delete all occurrences of the field with name name from the message’s headers. No exception is raised
if the named field isn’t present in the headers.

keys()

Return a list of all the message’s header field names.

values()

Return a list of all the message’s field values.

items()

Return a list of 2-tuples containing all the message’s field headers and values.

get(name, failobj=None)
Return the value of the named header field. This is identical to __getitem__() except that optional
failobj is returned if the named header is missing (defaults to None).

Here are some additional useful methods:

get_all(name, failobj=None)
Return a list of all the values for the field named name. If there are no such named headers in the message,
failobj is returned (defaults to None).

add_header(_name, _value, **_params)
Extended header setting. This method is similar to __setitem__() except that additional header pa-
rameters can be provided as keyword arguments. _name is the header field to add and _value is the
primary value for the header.

For each item in the keyword argument dictionary _params, the key is taken as the parameter name, with
underscores converted to dashes (since dashes are illegal in Python identifiers). Normally, the parameter
will be added as key="value" unless the value is None, in which case only the key will be added. If
the value contains non-ASCII characters, it can be specified as a three tuple in the format (CHARSET,
LANGUAGE, VALUE), where CHARSET is a string naming the charset to be used to encode the value,
LANGUAGE can usually be set to None or the empty string (see RFC 2231 for other possibilities), and
VALUE is the string value containing non-ASCII code points. If a three tuple is not passed and the value
contains non-ASCII characters, it is automatically encoded in RFC 2231 format using a CHARSET of
utf-8 and a LANGUAGE of None.

Here’s an example:

msg.add_header('Content-Disposition', 'attachment', filename='bud.gif')

This will add a header that looks like

Content-Disposition: attachment; filename="bud.gif"

An example with non-ASCII characters:

msg.add_header('Content-Disposition', 'attachment',

filename=('iso-8859-1', '', 'Fußballer.ppt'))

1272 Chapter 20. Internet Data Handling

https://datatracker.ietf.org/doc/html/rfc2231.html
https://datatracker.ietf.org/doc/html/rfc2231.html

The Python Library Reference, Release 3.13.1

Which produces

Content-Disposition: attachment; filename*="iso-8859-1''Fu%DFballer.ppt"

replace_header(_name, _value)
Replace a header. Replace the first header found in the message that matches _name, retaining header
order and field name case. If no matching header was found, a KeyError is raised.

get_content_type()

Return the message’s content type. The returned string is coerced to lower case of the form maintype/

subtype. If there was no Content-Type header in the message the default type as given by
get_default_type()will be returned. Since according toRFC 2045, messages always have a default
type, get_content_type() will always return a value.

RFC 2045 defines a message’s default type to be text/plain unless it appears inside a multipart/
digest container, in which case it would be message/rfc822. If the Content-Type header has an
invalid type specification, RFC 2045 mandates that the default type be text/plain.

get_content_maintype()

Return the message’s main content type. This is the maintype part of the string returned by
get_content_type().

get_content_subtype()

Return the message’s sub-content type. This is the subtype part of the string returned by
get_content_type().

get_default_type()

Return the default content type. Most messages have a default content type of text/plain, except for
messages that are subparts of multipart/digest containers. Such subparts have a default content
type of message/rfc822.

set_default_type(ctype)
Set the default content type. ctype should either be text/plain or message/rfc822, although this is
not enforced. The default content type is not stored in the Content-Type header.

get_params(failobj=None, header=’content-type’, unquote=True)
Return the message’s Content-Type parameters, as a list. The elements of the returned list are 2-tuples
of key/value pairs, as split on the '=' sign. The left hand side of the '=' is the key, while the right hand
side is the value. If there is no '=' sign in the parameter the value is the empty string, otherwise the
value is as described in get_param() and is unquoted if optional unquote is True (the default).

Optional failobj is the object to return if there is no Content-Type header. Optional header is the
header to search instead of Content-Type.

This is a legacy method. On the EmailMessage class its functionality is replaced by the params property
of the individual header objects returned by the header access methods.

get_param(param, failobj=None, header=’content-type’, unquote=True)
Return the value of the Content-Type header’s parameter param as a string. If the message has no
Content-Type header or if there is no such parameter, then failobj is returned (defaults to None).

Optional header if given, specifies the message header to use instead of Content-Type.

Parameter keys are always compared case insensitively. The return value can either be a string, or a
3-tuple if the parameter was RFC 2231 encoded. When it’s a 3-tuple, the elements of the value are of
the form (CHARSET, LANGUAGE, VALUE). Note that both CHARSET and LANGUAGE can be None, in
which case you should consider VALUE to be encoded in the us-ascii charset. You can usually ignore
LANGUAGE.

If your application doesn’t care whether the parameter was encoded as in RFC 2231, you can collapse
the parameter value by calling email.utils.collapse_rfc2231_value(), passing in the return
value from get_param(). This will return a suitably decoded Unicode string when the value is a tuple,
or the original string unquoted if it isn’t. For example:

20.1. email— An email and MIME handling package 1273

https://datatracker.ietf.org/doc/html/rfc2045.html
https://datatracker.ietf.org/doc/html/rfc2045.html
https://datatracker.ietf.org/doc/html/rfc2045.html
https://datatracker.ietf.org/doc/html/rfc2231.html
https://datatracker.ietf.org/doc/html/rfc2231.html

The Python Library Reference, Release 3.13.1

rawparam = msg.get_param('foo')

param = email.utils.collapse_rfc2231_value(rawparam)

In any case, the parameter value (either the returned string, or the VALUE item in the 3-tuple) is always
unquoted, unless unquote is set to False.

This is a legacy method. On the EmailMessage class its functionality is replaced by the params property
of the individual header objects returned by the header access methods.

set_param(param, value, header=’Content-Type’, requote=True, charset=None, language=” , replace=False)
Set a parameter in the Content-Type header. If the parameter already exists in the header, its value
will be replaced with value. If the Content-Type header as not yet been defined for this message, it
will be set to text/plain and the new parameter value will be appended as per RFC 2045.

Optional header specifies an alternative header to Content-Type, and all parameters will be quoted as
necessary unless optional requote is False (the default is True).

If optional charset is specified, the parameter will be encoded according toRFC 2231. Optional language
specifies the RFC 2231 language, defaulting to the empty string. Both charset and language should be
strings.

If replace is False (the default) the header is moved to the end of the list of headers. If replace is True,
the header will be updated in place.

Changed in version 3.4: replace keyword was added.

del_param(param, header=’content-type’, requote=True)
Remove the given parameter completely from the Content-Type header. The header will be re-written
in place without the parameter or its value. All values will be quoted as necessary unless requote is False
(the default is True). Optional header specifies an alternative to Content-Type.

set_type(type, header=’Content-Type’, requote=True)
Set the main type and subtype for the Content-Type header. type must be a string in the form
maintype/subtype, otherwise a ValueError is raised.

This method replaces the Content-Type header, keeping all the parameters in place. If requote is
False, this leaves the existing header’s quoting as is, otherwise the parameters will be quoted (the de-
fault).

An alternative header can be specified in the header argument. When the Content-Type header is set
a MIME-Version header is also added.

This is a legacy method. On the EmailMessage class its functionality is replaced by the make_ and
add_ methods.

get_filename(failobj=None)

Return the value of the filename parameter of the Content-Disposition header of the message.
If the header does not have a filename parameter, this method falls back to looking for the name
parameter on the Content-Type header. If neither is found, or the header is missing, then failobj is
returned. The returned string will always be unquoted as per email.utils.unquote().

get_boundary(failobj=None)
Return the value of the boundary parameter of the Content-Type header of the message, or failobj if
either the header is missing, or has no boundary parameter. The returned string will always be unquoted
as per email.utils.unquote().

set_boundary(boundary)
Set the boundary parameter of the Content-Type header to boundary. set_boundary() will al-
ways quote boundary if necessary. A HeaderParseError is raised if the message object has no
Content-Type header.

Note that using this method is subtly different than deleting the old Content-Type header and adding a
new one with the new boundary via add_header(), because set_boundary() preserves the order of

1274 Chapter 20. Internet Data Handling

https://datatracker.ietf.org/doc/html/rfc2045.html
https://datatracker.ietf.org/doc/html/rfc2231.html

The Python Library Reference, Release 3.13.1

the Content-Type header in the list of headers. However, it does not preserve any continuation lines
which may have been present in the original Content-Type header.

get_content_charset(failobj=None)
Return the charset parameter of the Content-Type header, coerced to lower case. If there is no
Content-Type header, or if that header has no charset parameter, failobj is returned.

Note that this method differs from get_charset() which returns the Charset instance for the default
encoding of the message body.

get_charsets(failobj=None)
Return a list containing the character set names in the message. If the message is a multipart, then
the list will contain one element for each subpart in the payload, otherwise, it will be a list of length 1.

Each item in the list will be a string which is the value of the charset parameter in the Content-Type
header for the represented subpart. However, if the subpart has no Content-Type header, no charset
parameter, or is not of the text main MIME type, then that item in the returned list will be failobj.

get_content_disposition()

Return the lowercased value (without parameters) of the message’s Content-Disposition header if
it has one, or None. The possible values for this method are inline, attachment or None if the message
follows RFC 2183.

Added in version 3.5.

walk()

The walk() method is an all-purpose generator which can be used to iterate over all the parts and
subparts of a message object tree, in depth-first traversal order. You will typically use walk() as the
iterator in a for loop; each iteration returns the next subpart.

Here’s an example that prints the MIME type of every part of a multipart message structure:

>>> for part in msg.walk():

... print(part.get_content_type())

multipart/report

text/plain

message/delivery-status

text/plain

text/plain

message/rfc822

text/plain

walk iterates over the subparts of any part where is_multipart() returns True, even though msg.
get_content_maintype() == 'multipart' may return False. We can see this in our example
by making use of the _structure debug helper function:

>>> for part in msg.walk():

... print(part.get_content_maintype() == 'multipart',

... part.is_multipart())

True True

False False

False True

False False

False False

False True

False False

>>> _structure(msg)

multipart/report

text/plain

message/delivery-status

text/plain

(continues on next page)

20.1. email— An email and MIME handling package 1275

https://datatracker.ietf.org/doc/html/rfc2183.html

The Python Library Reference, Release 3.13.1

(continued from previous page)

text/plain

message/rfc822

text/plain

Here the message parts are not multiparts, but they do contain subparts. is_multipart() returns
True and walk descends into the subparts.

Message objects can also optionally contain two instance attributes, which can be used when generating the
plain text of a MIME message.

preamble

The format of a MIME document allows for some text between the blank line following the headers,
and the first multipart boundary string. Normally, this text is never visible in a MIME-aware mail reader
because it falls outside the standard MIME armor. However, when viewing the raw text of the message,
or when viewing the message in a non-MIME aware reader, this text can become visible.

The preamble attribute contains this leading extra-armor text for MIME documents. When the Parser
discovers some text after the headers but before the first boundary string, it assigns this text to the mes-
sage’s preamble attribute. When the Generator is writing out the plain text representation of a MIME
message, and it finds the message has a preamble attribute, it will write this text in the area between the
headers and the first boundary. See email.parser and email.generator for details.

Note that if the message object has no preamble, the preamble attribute will be None.

epilogue

The epilogue attribute acts the same way as the preamble attribute, except that it contains text that appears
between the last boundary and the end of the message.

You do not need to set the epilogue to the empty string in order for the Generator to print a newline at
the end of the file.

defects

The defects attribute contains a list of all the problems found when parsing this message. See email.
errors for a detailed description of the possible parsing defects.

20.1.10 email.mime: Creating email and MIME objects from scratch

Source code: Lib/email/mime/

This module is part of the legacy (Compat32) email API. Its functionality is partially replaced by the
contentmanager in the new API, but in certain applications these classes may still be useful, even in non-legacy
code.

Ordinarily, you get a message object structure by passing a file or some text to a parser, which parses the text and
returns the root message object. However you can also build a complete message structure from scratch, or even
individual Message objects by hand. In fact, you can also take an existing structure and add new Message objects,
move them around, etc. This makes a very convenient interface for slicing-and-dicing MIME messages.

You can create a new object structure by creating Message instances, adding attachments and all the appropriate
headers manually. For MIME messages though, the email package provides some convenient subclasses to make
things easier.

Here are the classes:

class email.mime.base.MIMEBase(_maintype, _subtype, *, policy=compat32, **_params)

Module: email.mime.base

This is the base class for all the MIME-specific subclasses of Message. Ordinarily you won’t create instances
specifically of MIMEBase, although you could. MIMEBase is provided primarily as a convenient base class for
more specific MIME-aware subclasses.

1276 Chapter 20. Internet Data Handling

https://github.com/python/cpython/tree/3.13/Lib/email/mime/

The Python Library Reference, Release 3.13.1

_maintype is the Content-Typemajor type (e.g. text or image), and _subtype is the Content-Typeminor
type (e.g. plain or gif). _params is a parameter key/value dictionary and is passed directly to Message.
add_header.

If policy is specified, (defaults to the compat32 policy) it will be passed to Message.

The MIMEBase class always adds a Content-Type header (based on _maintype, _subtype, and _params), and
a MIME-Version header (always set to 1.0).

Changed in version 3.6: Added policy keyword-only parameter.

class email.mime.nonmultipart.MIMENonMultipart

Module: email.mime.nonmultipart

A subclass of MIMEBase, this is an intermediate base class for MIME messages that are not multipart.
The primary purpose of this class is to prevent the use of the attach() method, which only makes sense for
multipart messages. If attach() is called, a MultipartConversionError exception is raised.

class email.mime.multipart.MIMEMultipart(_subtype=’mixed’, boundary=None, _subparts=None, *,
policy=compat32, **_params)

Module: email.mime.multipart

A subclass of MIMEBase, this is an intermediate base class for MIMEmessages that are multipart. Optional
_subtype defaults to mixed, but can be used to specify the subtype of the message. A Content-Type header
of multipart/_subtypewill be added to the message object. A MIME-Version header will also be added.

Optional boundary is the multipart boundary string. When None (the default), the boundary is calculated when
needed (for example, when the message is serialized).

_subparts is a sequence of initial subparts for the payload. It must be possible to convert this sequence to a list.
You can always attach new subparts to the message by using the Message.attach method.

Optional policy argument defaults to compat32.

Additional parameters for the Content-Type header are taken from the keyword arguments, or passed into
the _params argument, which is a keyword dictionary.

Changed in version 3.6: Added policy keyword-only parameter.

class email.mime.application.MIMEApplication(_data, _subtype=’octet-stream’,
_encoder=email.encoders.encode_base64, *,
policy=compat32, **_params)

Module: email.mime.application

A subclass of MIMENonMultipart, the MIMEApplication class is used to representMIMEmessage objects
ofmajor type application. _data contains the bytes for the raw application data. Optional _subtype specifies
the MIME subtype and defaults to octet-stream.

Optional _encoder is a callable (i.e. function) which will perform the actual encoding of the data for
transport. This callable takes one argument, which is the MIMEApplication instance. It should use
get_payload() and set_payload() to change the payload to encoded form. It should also add any
Content-Transfer-Encoding or other headers to the message object as necessary. The default encoding
is base64. See the email.encoders module for a list of the built-in encoders.

Optional policy argument defaults to compat32.

_params are passed straight through to the base class constructor.

Changed in version 3.6: Added policy keyword-only parameter.

class email.mime.audio.MIMEAudio(_audiodata, _subtype=None,
_encoder=email.encoders.encode_base64, *, policy=compat32,
**_params)

Module: email.mime.audio

A subclass of MIMENonMultipart, the MIMEAudio class is used to create MIME message objects of major
type audio. _audiodata contains the bytes for the raw audio data. If this data can be decoded as au, wav,

20.1. email— An email and MIME handling package 1277

The Python Library Reference, Release 3.13.1

aiff, or aifc, then the subtype will be automatically included in the Content-Type header. Otherwise you can
explicitly specify the audio subtype via the _subtype argument. If the minor type could not be guessed and
_subtype was not given, then TypeError is raised.

Optional _encoder is a callable (i.e. function) which will perform the actual encoding of the audio
data for transport. This callable takes one argument, which is the MIMEAudio instance. It should use
get_payload() and set_payload() to change the payload to encoded form. It should also add any
Content-Transfer-Encoding or other headers to the message object as necessary. The default encoding
is base64. See the email.encoders module for a list of the built-in encoders.

Optional policy argument defaults to compat32.

_params are passed straight through to the base class constructor.

Changed in version 3.6: Added policy keyword-only parameter.

class email.mime.image.MIMEImage(_imagedata, _subtype=None,
_encoder=email.encoders.encode_base64, *, policy=compat32,
**_params)

Module: email.mime.image

A subclass of MIMENonMultipart, the MIMEImage class is used to create MIME message objects of major
type image. _imagedata contains the bytes for the raw image data. If this data type can be detected (jpeg,
png, gif, tiff, rgb, pbm, pgm, ppm, rast, xbm, bmp, webp, and exr attempted), then the subtype will be auto-
matically included in the Content-Type header. Otherwise you can explicitly specify the image subtype via
the _subtype argument. If the minor type could not be guessed and _subtype was not given, then TypeError
is raised.

Optional _encoder is a callable (i.e. function) which will perform the actual encoding of the image
data for transport. This callable takes one argument, which is the MIMEImage instance. It should use
get_payload() and set_payload() to change the payload to encoded form. It should also add any
Content-Transfer-Encoding or other headers to the message object as necessary. The default encoding
is base64. See the email.encoders module for a list of the built-in encoders.

Optional policy argument defaults to compat32.

_params are passed straight through to the MIMEBase constructor.

Changed in version 3.6: Added policy keyword-only parameter.

class email.mime.message.MIMEMessage(_msg, _subtype=’rfc822’, *, policy=compat32)
Module: email.mime.message

A subclass of MIMENonMultipart, the MIMEMessage class is used to create MIME objects of main type
message. _msg is used as the payload, and must be an instance of class Message (or a subclass thereof),
otherwise a TypeError is raised.

Optional _subtype sets the subtype of the message; it defaults to rfc822.

Optional policy argument defaults to compat32.

Changed in version 3.6: Added policy keyword-only parameter.

class email.mime.text.MIMEText(_text, _subtype=’plain’, _charset=None, *, policy=compat32)
Module: email.mime.text

A subclass of MIMENonMultipart, the MIMEText class is used to create MIME objects of major type text.
_text is the string for the payload. _subtype is the minor type and defaults to plain. _charset is the character
set of the text and is passed as an argument to the MIMENonMultipart constructor; it defaults to us-ascii
if the string contains only ascii code points, and utf-8 otherwise. The _charset parameter accepts either a
string or a Charset instance.

Unless the _charset argument is explicitly set to None, the MIMEText object created will have both a
Content-Type header with a charset parameter, and a Content-Transfer-Encoding header. This
means that a subsequent set_payload call will not result in an encoded payload, even if a charset is passed in
the set_payload command. You can “reset” this behavior by deleting the Content-Transfer-Encoding

1278 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

header, after which a set_payload call will automatically encode the new payload (and add a new
Content-Transfer-Encoding header).

Optional policy argument defaults to compat32.

Changed in version 3.5: _charset also accepts Charset instances.

Changed in version 3.6: Added policy keyword-only parameter.

20.1.11 email.header: Internationalized headers

Source code: Lib/email/header.py

This module is part of the legacy (Compat32) email API. In the current API encoding and decoding of headers is
handled transparently by the dictionary-like API of the EmailMessage class. In addition to uses in legacy code, this
module can be useful in applications that need to completely control the character sets used when encoding headers.

The remaining text in this section is the original documentation of the module.

RFC 2822 is the base standard that describes the format of email messages. It derives from the older RFC 822
standard which came into widespread use at a time when most email was composed of ASCII characters only. RFC
2822 is a specification written assuming email contains only 7-bit ASCII characters.

Of course, as email has been deployed worldwide, it has become internationalized, such that language specific char-
acter sets can now be used in email messages. The base standard still requires email messages to be transferred
using only 7-bit ASCII characters, so a slew of RFCs have been written describing how to encode email containing
non-ASCII characters into RFC 2822-compliant format. These RFCs include RFC 2045, RFC 2046, RFC 2047,
andRFC 2231. The email package supports these standards in its email.header and email.charsetmodules.

If you want to include non-ASCII characters in your email headers, say in the Subject or To fields, you should use
the Header class and assign the field in the Message object to an instance of Header instead of using a string for
the header value. Import the Header class from the email.header module. For example:

>>> from email.message import Message

>>> from email.header import Header

>>> msg = Message()

>>> h = Header('p\xf6stal', 'iso-8859-1')

>>> msg['Subject'] = h

>>> msg.as_string()

'Subject: =?iso-8859-1?q?p=F6stal?=\n\n'

Notice here how we wanted the Subject field to contain a non-ASCII character? We did this by creating a Header
instance and passing in the character set that the byte string was encoded in. When the subsequent Message instance
was flattened, the Subject field was properly RFC 2047 encoded. MIME-aware mail readers would show this
header using the embedded ISO-8859-1 character.

Here is the Header class description:

class email.header.Header(s=None, charset=None, maxlinelen=None, header_name=None,
continuation_ws=’ ’, errors=’strict’)

Create a MIME-compliant header that can contain strings in different character sets.

Optional s is the initial header value. If None (the default), the initial header value is not set. You can later
append to the header with append() method calls. s may be an instance of bytes or str, but see the
append() documentation for semantics.

Optional charset serves two purposes: it has the same meaning as the charset argument to the append()
method. It also sets the default character set for all subsequent append() calls that omit the charset argument.
If charset is not provided in the constructor (the default), the us-ascii character set is used both as s’s initial
charset and as the default for subsequent append() calls.

The maximum line length can be specified explicitly via maxlinelen. For splitting the first line to a shorter
value (to account for the field header which isn’t included in s, e.g. Subject) pass in the name of the field in

20.1. email— An email and MIME handling package 1279

https://github.com/python/cpython/tree/3.13/Lib/email/header.py
https://datatracker.ietf.org/doc/html/rfc2822.html
https://datatracker.ietf.org/doc/html/rfc822.html
https://datatracker.ietf.org/doc/html/rfc2822.html
https://datatracker.ietf.org/doc/html/rfc2822.html
https://datatracker.ietf.org/doc/html/rfc2822.html
https://datatracker.ietf.org/doc/html/rfc2045.html
https://datatracker.ietf.org/doc/html/rfc2046.html
https://datatracker.ietf.org/doc/html/rfc2047.html
https://datatracker.ietf.org/doc/html/rfc2231.html
https://datatracker.ietf.org/doc/html/rfc2047.html

The Python Library Reference, Release 3.13.1

header_name. The default maxlinelen is 78, and the default value for header_name is None, meaning it is not
taken into account for the first line of a long, split header.

Optional continuation_ws must be RFC 2822-compliant folding whitespace, and is usually either a space or a
hard tab character. This character will be prepended to continuation lines. continuation_ws defaults to a single
space character.

Optional errors is passed straight through to the append() method.

append(s, charset=None, errors=’strict’)
Append the string s to the MIME header.

Optional charset, if given, should be a Charset instance (see email.charset) or the name of a char-
acter set, which will be converted to a Charset instance. A value of None (the default) means that the
charset given in the constructor is used.

s may be an instance of bytes or str. If it is an instance of bytes, then charset is the encoding of that
byte string, and a UnicodeError will be raised if the string cannot be decoded with that character set.

If s is an instance of str, then charset is a hint specifying the character set of the characters in the string.

In either case, when producing an RFC 2822-compliant header using RFC 2047 rules, the string will be
encoded using the output codec of the charset. If the string cannot be encoded using the output codec, a
UnicodeError will be raised.

Optional errors is passed as the errors argument to the decode call if s is a byte string.

encode(splitchars=’;, \t’, maxlinelen=None, linesep=’\n’)
Encode a message header into an RFC-compliant format, possibly wrapping long lines and encapsulating
non-ASCII parts in base64 or quoted-printable encodings.

Optional splitchars is a string containing characters which should be given extra weight by the splitting
algorithm during normal header wrapping. This is in very rough support of RFC 2822’s ‘higher level
syntactic breaks’: split points preceded by a splitchar are preferred during line splitting, with the char-
acters preferred in the order in which they appear in the string. Space and tab may be included in the
string to indicate whether preference should be given to one over the other as a split point when other
split chars do not appear in the line being split. Splitchars does not affect RFC 2047 encoded lines.

maxlinelen, if given, overrides the instance’s value for the maximum line length.

linesep specifies the characters used to separate the lines of the folded header. It defaults to the most
useful value for Python application code (\n), but \r\n can be specified in order to produce headers
with RFC-compliant line separators.

Changed in version 3.2: Added the linesep argument.

The Header class also provides a number of methods to support standard operators and built-in functions.

__str__()

Returns an approximation of the Header as a string, using an unlimited line length. All pieces are
converted to unicode using the specified encoding and joined together appropriately. Any pieces with a
charset of 'unknown-8bit' are decoded as ASCII using the 'replace' error handler.

Changed in version 3.2: Added handling for the 'unknown-8bit' charset.

__eq__(other)

This method allows you to compare two Header instances for equality.

__ne__(other)
This method allows you to compare two Header instances for inequality.

The email.header module also provides the following convenient functions.

email.header.decode_header(header)
Decode a message header value without converting the character set. The header value is in header.

1280 Chapter 20. Internet Data Handling

https://datatracker.ietf.org/doc/html/rfc2822.html
https://datatracker.ietf.org/doc/html/rfc2822.html
https://datatracker.ietf.org/doc/html/rfc2047.html
https://datatracker.ietf.org/doc/html/rfc2822.html
https://datatracker.ietf.org/doc/html/rfc2047.html

The Python Library Reference, Release 3.13.1

This function returns a list of (decoded_string, charset) pairs containing each of the decoded parts of
the header. charset is None for non-encoded parts of the header, otherwise a lower case string containing the
name of the character set specified in the encoded string.

Here’s an example:

>>> from email.header import decode_header

>>> decode_header('=?iso-8859-1?q?p=F6stal?=')

[(b'p\xf6stal', 'iso-8859-1')]

email.header.make_header(decoded_seq, maxlinelen=None, header_name=None, continuation_ws=’ ’)

Create a Header instance from a sequence of pairs as returned by decode_header().

decode_header() takes a header value string and returns a sequence of pairs of the format
(decoded_string, charset) where charset is the name of the character set.

This function takes one of those sequence of pairs and returns a Header instance. Optional maxlinelen,
header_name, and continuation_ws are as in the Header constructor.

20.1.12 email.charset: Representing character sets

Source code: Lib/email/charset.py

This module is part of the legacy (Compat32) email API. In the new API only the aliases table is used.

The remaining text in this section is the original documentation of the module.

This module provides a class Charset for representing character sets and character set conversions in email mes-
sages, as well as a character set registry and several convenience methods for manipulating this registry. Instances of
Charset are used in several other modules within the email package.

Import this class from the email.charset module.

class email.charset.Charset(input_charset=DEFAULT_CHARSET)
Map character sets to their email properties.

This class provides information about the requirements imposed on email for a specific character set. It also
provides convenience routines for converting between character sets, given the availability of the applicable
codecs. Given a character set, it will do its best to provide information on how to use that character set in an
email message in an RFC-compliant way.

Certain character sets must be encoded with quoted-printable or base64 when used in email headers or bodies.
Certain character sets must be converted outright, and are not allowed in email.

Optional input_charset is as described below; it is always coerced to lower case. After being alias normalized
it is also used as a lookup into the registry of character sets to find out the header encoding, body encoding,
and output conversion codec to be used for the character set. For example, if input_charset is iso-8859-1,
then headers and bodies will be encoded using quoted-printable and no output conversion codec is necessary.
If input_charset is euc-jp, then headers will be encoded with base64, bodies will not be encoded, but output
text will be converted from the euc-jp character set to the iso-2022-jp character set.

Charset instances have the following data attributes:

input_charset

The initial character set specified. Common aliases are converted to their official email names (e.g.
latin_1 is converted to iso-8859-1). Defaults to 7-bit us-ascii.

header_encoding

If the character set must be encoded before it can be used in an email header, this attribute will be
set to charset.QP (for quoted-printable), charset.BASE64 (for base64 encoding), or charset.
SHORTEST for the shortest of QP or BASE64 encoding. Otherwise, it will be None.

20.1. email— An email and MIME handling package 1281

https://github.com/python/cpython/tree/3.13/Lib/email/charset.py

The Python Library Reference, Release 3.13.1

body_encoding

Same as header_encoding, but describes the encoding for the mail message’s body, which indeed may be
different than the header encoding. charset.SHORTEST is not allowed for body_encoding.

output_charset

Some character sets must be converted before they can be used in email headers or bodies. If the in-
put_charset is one of them, this attribute will contain the name of the character set output will be con-
verted to. Otherwise, it will be None.

input_codec

The name of the Python codec used to convert the input_charset to Unicode. If no conversion codec is
necessary, this attribute will be None.

output_codec

The name of the Python codec used to convert Unicode to the output_charset. If no conversion codec is
necessary, this attribute will have the same value as the input_codec.

Charset instances also have the following methods:

get_body_encoding()

Return the content transfer encoding used for body encoding.

This is either the string quoted-printable or base64 depending on the encoding used, or it is a
function, in which case you should call the function with a single argument, the Message object being
encoded. The function should then set the Content-Transfer-Encoding header itself to whatever
is appropriate.

Returns the string quoted-printable if body_encoding is QP, returns the string base64 if
body_encoding is BASE64, and returns the string 7bit otherwise.

get_output_charset()

Return the output character set.

This is the output_charset attribute if that is not None, otherwise it is input_charset.

header_encode(string)
Header-encode the string string.

The type of encoding (base64 or quoted-printable) will be based on the header_encoding attribute.

header_encode_lines(string, maxlengths)
Header-encode a string by converting it first to bytes.

This is similar to header_encode() except that the string is fit into maximum line lengths as given
by the argument maxlengths, which must be an iterator: each element returned from this iterator will
provide the next maximum line length.

body_encode(string)
Body-encode the string string.

The type of encoding (base64 or quoted-printable) will be based on the body_encoding attribute.

The Charset class also provides a number of methods to support standard operations and built-in functions.

__str__()

Returns input_charset as a string coerced to lower case. __repr__() is an alias for __str__().

__eq__(other)
This method allows you to compare two Charset instances for equality.

__ne__(other)
This method allows you to compare two Charset instances for inequality.

The email.charset module also provides the following functions for adding new entries to the global character
set, alias, and codec registries:

1282 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

email.charset.add_charset(charset, header_enc=None, body_enc=None, output_charset=None)
Add character properties to the global registry.

charset is the input character set, and must be the canonical name of a character set.

Optional header_enc and body_enc is either charset.QP for quoted-printable, charset.BASE64 for base64
encoding, charset.SHORTEST for the shortest of quoted-printable or base64 encoding, or None for no en-
coding. SHORTEST is only valid for header_enc. The default is None for no encoding.

Optional output_charset is the character set that the output should be in. Conversions will proceed from input
charset, to Unicode, to the output charset when the method Charset.convert() is called. The default is to
output in the same character set as the input.

Both input_charset and output_charset must have Unicode codec entries in the module’s character set-to-codec
mapping; use add_codec() to add codecs the module does not know about. See the codecs module’s
documentation for more information.

The global character set registry is kept in the module global dictionary CHARSETS.

email.charset.add_alias(alias, canonical)
Add a character set alias. alias is the alias name, e.g. latin-1. canonical is the character set’s canonical
name, e.g. iso-8859-1.

The global charset alias registry is kept in the module global dictionary ALIASES.

email.charset.add_codec(charset, codecname)
Add a codec that map characters in the given character set to and from Unicode.

charset is the canonical name of a character set. codecname is the name of a Python codec, as appropriate for
the second argument to the str’s encode() method.

20.1.13 email.encoders: Encoders

Source code: Lib/email/encoders.py

This module is part of the legacy (Compat32) email API. In the new API the functionality is provided by the cte
parameter of the set_content() method.

This module is deprecated in Python 3. The functions provided here should not be called explicitly since the
MIMEText class sets the content type and CTE header using the _subtype and _charset values passed during the
instantiation of that class.

The remaining text in this section is the original documentation of the module.

When creating Message objects from scratch, you often need to encode the payloads for transport through compliant
mail servers. This is especially true for image/* and text/* type messages containing binary data.

The email package provides some convenient encoders in its encoders module. These encoders are actually
used by the MIMEAudio and MIMEImage class constructors to provide default encodings. All encoder functions take
exactly one argument, the message object to encode. They usually extract the payload, encode it, and reset the payload
to this newly encoded value. They should also set the Content-Transfer-Encoding header as appropriate.

Note that these functions are not meaningful for a multipart message. They must be applied to individual subparts
instead, and will raise a TypeError if passed a message whose type is multipart.

Here are the encoding functions provided:

email.encoders.encode_quopri(msg)

Encodes the payload into quoted-printable form and sets the Content-Transfer-Encoding header to
quoted-printable1. This is a good encoding to use when most of your payload is normal printable data,
but contains a few unprintable characters.

1 Note that encoding with encode_quopri() also encodes all tabs and space characters in the data.

20.1. email— An email and MIME handling package 1283

https://github.com/python/cpython/tree/3.13/Lib/email/encoders.py

The Python Library Reference, Release 3.13.1

email.encoders.encode_base64(msg)
Encodes the payload into base64 form and sets the Content-Transfer-Encoding header to base64. This
is a good encoding to use when most of your payload is unprintable data since it is a more compact form than
quoted-printable. The drawback of base64 encoding is that it renders the text non-human readable.

email.encoders.encode_7or8bit(msg)
This doesn’t actually modify the message’s payload, but it does set the Content-Transfer-Encoding

header to either 7bit or 8bit as appropriate, based on the payload data.

email.encoders.encode_noop(msg)
This does nothing; it doesn’t even set the Content-Transfer-Encoding header.

20.1.14 email.utils: Miscellaneous utilities

Source code: Lib/email/utils.py

There are a couple of useful utilities provided in the email.utils module:

email.utils.localtime(dt=None)

Return local time as an aware datetime object. If called without arguments, return current time. Otherwise dt
argument should be a datetime instance, and it is converted to the local time zone according to the system
time zone database. If dt is naive (that is, dt.tzinfo is None), it is assumed to be in local time. The isdst
parameter is ignored.

Added in version 3.3.

Deprecated since version 3.12, will be removed in version 3.14: The isdst parameter.

email.utils.make_msgid(idstring=None, domain=None)
Returns a string suitable for an RFC 2822-compliant Message-ID header. Optional idstring if given, is a
string used to strengthen the uniqueness of the message id. Optional domain if given provides the portion of
the msgid after the ‘@’. The default is the local hostname. It is not normally necessary to override this default,
but may be useful certain cases, such as a constructing distributed system that uses a consistent domain name
across multiple hosts.

Changed in version 3.2: Added the domain keyword.

The remaining functions are part of the legacy (Compat32) email API. There is no need to directly use these with
the new API, since the parsing and formatting they provide is done automatically by the header parsing machinery
of the new API.

email.utils.quote(str)
Return a new string with backslashes in str replaced by two backslashes, and double quotes replaced by
backslash-double quote.

email.utils.unquote(str)

Return a new string which is an unquoted version of str. If str ends and begins with double quotes, they are
stripped off. Likewise if str ends and begins with angle brackets, they are stripped off.

email.utils.parseaddr(address, *, strict=True)
Parse address – which should be the value of some address-containing field such as To or Cc – into its con-
stituent realname and email address parts. Returns a tuple of that information, unless the parse fails, in which
case a 2-tuple of ('', '') is returned.

If strict is true, use a strict parser which rejects malformed inputs.

Changed in version 3.13: Add strict optional parameter and reject malformed inputs by default.

1284 Chapter 20. Internet Data Handling

https://github.com/python/cpython/tree/3.13/Lib/email/utils.py
https://datatracker.ietf.org/doc/html/rfc2822.html

The Python Library Reference, Release 3.13.1

email.utils.formataddr(pair, charset=’utf-8’)
The inverse of parseaddr(), this takes a 2-tuple of the form (realname, email_address) and returns
the string value suitable for a To or Cc header. If the first element of pair is false, then the second element is
returned unmodified.

Optional charset is the character set that will be used in the RFC 2047 encoding of the realname if the
realname contains non-ASCII characters. Can be an instance of str or a Charset. Defaults to utf-8.

Changed in version 3.3: Added the charset option.

email.utils.getaddresses(fieldvalues, *, strict=True)
This method returns a list of 2-tuples of the form returned by parseaddr(). fieldvalues is a sequence of
header field values as might be returned by Message.get_all.

If strict is true, use a strict parser which rejects malformed inputs.

Here’s a simple example that gets all the recipients of a message:

from email.utils import getaddresses

tos = msg.get_all('to', [])

ccs = msg.get_all('cc', [])

resent_tos = msg.get_all('resent-to', [])

resent_ccs = msg.get_all('resent-cc', [])

all_recipients = getaddresses(tos + ccs + resent_tos + resent_ccs)

Changed in version 3.13: Add strict optional parameter and reject malformed inputs by default.

email.utils.parsedate(date)
Attempts to parse a date according to the rules in RFC 2822. however, some mailers don’t follow that format
as specified, so parsedate() tries to guess correctly in such cases. date is a string containing an RFC 2822
date, such as "Mon, 20 Nov 1995 19:12:08 -0500". If it succeeds in parsing the date, parsedate()
returns a 9-tuple that can be passed directly to time.mktime(); otherwise None will be returned. Note that
indexes 6, 7, and 8 of the result tuple are not usable.

email.utils.parsedate_tz(date)
Performs the same function as parsedate(), but returns either None or a 10-tuple; the first 9 elements make
up a tuple that can be passed directly to time.mktime(), and the tenth is the offset of the date’s timezone
from UTC (which is the official term for Greenwich Mean Time)1. If the input string has no timezone, the last
element of the tuple returned is 0, which represents UTC. Note that indexes 6, 7, and 8 of the result tuple are
not usable.

email.utils.parsedate_to_datetime(date)

The inverse of format_datetime(). Performs the same function as parsedate(), but on success returns
a datetime; otherwise ValueError is raised if date contains an invalid value such as an hour greater than 23
or a timezone offset not between -24 and 24 hours. If the input date has a timezone of -0000, the datetime
will be a naive datetime, and if the date is conforming to the RFCs it will represent a time in UTC but with
no indication of the actual source timezone of the message the date comes from. If the input date has any
other valid timezone offset, the datetime will be an aware datetime with the corresponding a timezone
tzinfo.

Added in version 3.3.

email.utils.mktime_tz(tuple)

Turn a 10-tuple as returned by parsedate_tz() into a UTC timestamp (seconds since the Epoch). If the
timezone item in the tuple is None, assume local time.

email.utils.formatdate(timeval=None, localtime=False, usegmt=False)
Returns a date string as per RFC 2822, e.g.:

1 Note that the sign of the timezone offset is the opposite of the sign of the time.timezone variable for the same timezone; the latter variable
follows the POSIX standard while this module follows RFC 2822.

20.1. email— An email and MIME handling package 1285

https://datatracker.ietf.org/doc/html/rfc2047.html
https://datatracker.ietf.org/doc/html/rfc2822.html
https://datatracker.ietf.org/doc/html/rfc2822.html
https://datatracker.ietf.org/doc/html/rfc2822.html
https://datatracker.ietf.org/doc/html/rfc2822.html

The Python Library Reference, Release 3.13.1

Fri, 09 Nov 2001 01:08:47 -0000

Optional timeval if given is a floating-point time value as accepted by time.gmtime() and time.

localtime(), otherwise the current time is used.

Optional localtime is a flag that when True, interprets timeval, and returns a date relative to the local timezone
instead of UTC, properly taking daylight savings time into account. The default is False meaning UTC is
used.

Optional usegmt is a flag that when True, outputs a date string with the timezone as an ascii string GMT, rather
than a numeric -0000. This is needed for some protocols (such as HTTP). This only applies when localtime
is False. The default is False.

email.utils.format_datetime(dt, usegmt=False)

Like formatdate, but the input is a datetime instance. If it is a naive datetime, it is assumed to be “UTC
with no information about the source timezone”, and the conventional -0000 is used for the timezone. If it
is an aware datetime, then the numeric timezone offset is used. If it is an aware timezone with offset zero,
then usegmt may be set to True, in which case the string GMT is used instead of the numeric timezone offset.
This provides a way to generate standards conformant HTTP date headers.

Added in version 3.3.

email.utils.decode_rfc2231(s)
Decode the string s according to RFC 2231.

email.utils.encode_rfc2231(s, charset=None, language=None)
Encode the string s according to RFC 2231. Optional charset and language, if given is the character set name
and language name to use. If neither is given, s is returned as-is. If charset is given but language is not, the
string is encoded using the empty string for language.

email.utils.collapse_rfc2231_value(value, errors=’replace’, fallback_charset=’us-ascii’)
When a header parameter is encoded in RFC 2231 format, Message.get_param may return a 3-tuple con-
taining the character set, language, and value. collapse_rfc2231_value() turns this into a unicode string.
Optional errors is passed to the errors argument of str’s encode() method; it defaults to 'replace'. Op-
tional fallback_charset specifies the character set to use if the one in the RFC 2231 header is not known by
Python; it defaults to 'us-ascii'.

For convenience, if the value passed to collapse_rfc2231_value() is not a tuple, it should be a string
and it is returned unquoted.

email.utils.decode_params(params)

Decode parameters list according to RFC 2231. params is a sequence of 2-tuples containing elements of the
form (content-type, string-value).

20.1.15 email.iterators: Iterators

Source code: Lib/email/iterators.py

Iterating over a message object tree is fairly easy with the Message.walkmethod. The email.iteratorsmodule
provides some useful higher level iterations over message object trees.

email.iterators.body_line_iterator(msg, decode=False)
This iterates over all the payloads in all the subparts of msg, returning the string payloads line-by-line. It skips
over all the subpart headers, and it skips over any subpart with a payload that isn’t a Python string. This is
somewhat equivalent to reading the flat text representation of the message from a file using readline(),
skipping over all the intervening headers.

Optional decode is passed through to Message.get_payload.

1286 Chapter 20. Internet Data Handling

https://datatracker.ietf.org/doc/html/rfc2231.html
https://datatracker.ietf.org/doc/html/rfc2231.html
https://datatracker.ietf.org/doc/html/rfc2231.html
https://datatracker.ietf.org/doc/html/rfc2231.html
https://datatracker.ietf.org/doc/html/rfc2231.html
https://github.com/python/cpython/tree/3.13/Lib/email/iterators.py

The Python Library Reference, Release 3.13.1

email.iterators.typed_subpart_iterator(msg, maintype=’text’, subtype=None)
This iterates over all the subparts of msg, returning only those subparts that match the MIME type specified
by maintype and subtype.

Note that subtype is optional; if omitted, then subpart MIME type matching is done only with the main type.
maintype is optional too; it defaults to text.

Thus, by default typed_subpart_iterator() returns each subpart that has a MIME type of text/*.

The following function has been added as a useful debugging tool. It should not be considered part of the supported
public interface for the package.

email.iterators._structure(msg, fp=None, level=0, include_default=False)
Prints an indented representation of the content types of the message object structure. For example:

>>> msg = email.message_from_file(somefile)

>>> _structure(msg)

multipart/mixed

text/plain

text/plain

multipart/digest

message/rfc822

text/plain

message/rfc822

text/plain

message/rfc822

text/plain

message/rfc822

text/plain

message/rfc822

text/plain

text/plain

Optional fp is a file-like object to print the output to. It must be suitable for Python’s print() function. level
is used internally. include_default, if true, prints the default type as well.

See also

Module smtplib
SMTP (Simple Mail Transport Protocol) client

Module poplib
POP (Post Office Protocol) client

Module imaplib
IMAP (Internet Message Access Protocol) client

Module mailbox
Tools for creating, reading, and managing collections of messages on disk using a variety standard formats.

20.2 json— JSON encoder and decoder

Source code: Lib/json/__init__.py

JSON (JavaScript Object Notation), specified by RFC 7159 (which obsoletes RFC 4627) and by ECMA-404, is a
lightweight data interchange format inspired by JavaScript object literal syntax (although it is not a strict subset of
JavaScript1).

1 As noted in the errata for RFC 7159, JSON permits literal U+2028 (LINE SEPARATOR) and U+2029 (PARAGRAPH SEPARATOR)
characters in strings, whereas JavaScript (as of ECMAScript Edition 5.1) does not.

20.2. json— JSON encoder and decoder 1287

https://github.com/python/cpython/tree/3.13/Lib/json/__init__.py
https://json.org
https://datatracker.ietf.org/doc/html/rfc7159.html
https://datatracker.ietf.org/doc/html/rfc4627.html
https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://en.wikipedia.org/wiki/JavaScript
https://www.rfc-editor.org/errata_search.php?rfc=7159

The Python Library Reference, Release 3.13.1

Warning

Be cautious when parsing JSON data from untrusted sources. A malicious JSON string may cause the decoder
to consume considerable CPU and memory resources. Limiting the size of data to be parsed is recommended.

json exposes an API familiar to users of the standard library marshal and pickle modules.

Encoding basic Python object hierarchies:

>>> import json

>>> json.dumps(['foo', {'bar': ('baz', None, 1.0, 2)}])

'["foo", {"bar": ["baz", null, 1.0, 2]}]'

>>> print(json.dumps("\"foo\bar"))

"\"foo\bar"

>>> print(json.dumps('\u1234'))

"\u1234"

>>> print(json.dumps('\\'))

"\\"

>>> print(json.dumps({"c": 0, "b": 0, "a": 0}, sort_keys=True))

{"a": 0, "b": 0, "c": 0}

>>> from io import StringIO

>>> io = StringIO()

>>> json.dump(['streaming API'], io)

>>> io.getvalue()

'["streaming API"]'

Compact encoding:

>>> import json

>>> json.dumps([1, 2, 3, {'4': 5, '6': 7}], separators=(',', ':'))

'[1,2,3,{"4":5,"6":7}]'

Pretty printing:

>>> import json

>>> print(json.dumps({'6': 7, '4': 5}, sort_keys=True, indent=4))

{

"4": 5,

"6": 7

}

Specializing JSON object encoding:

>>> import json

>>> def custom_json(obj):

... if isinstance(obj, complex):

... return {'__complex__': True, 'real': obj.real, 'imag': obj.imag}

... raise TypeError(f'Cannot serialize object of {type(obj)}')

...

>>> json.dumps(1 + 2j, default=custom_json)

'{"__complex__": true, "real": 1.0, "imag": 2.0}'

Decoding JSON:

>>> import json

>>> json.loads('["foo", {"bar":["baz", null, 1.0, 2]}]')

['foo', {'bar': ['baz', None, 1.0, 2]}]

>>> json.loads('"\\"foo\\bar"')

(continues on next page)

1288 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

(continued from previous page)

'"foo\x08ar'

>>> from io import StringIO

>>> io = StringIO('["streaming API"]')

>>> json.load(io)

['streaming API']

Specializing JSON object decoding:

>>> import json

>>> def as_complex(dct):

... if '__complex__' in dct:

... return complex(dct['real'], dct['imag'])

... return dct

...

>>> json.loads('{"__complex__": true, "real": 1, "imag": 2}',

... object_hook=as_complex)

(1+2j)

>>> import decimal

>>> json.loads('1.1', parse_float=decimal.Decimal)

Decimal('1.1')

Extending JSONEncoder:

>>> import json

>>> class ComplexEncoder(json.JSONEncoder):

... def default(self, obj):

... if isinstance(obj, complex):

... return [obj.real, obj.imag]

... # Let the base class default method raise the TypeError

... return super().default(obj)

...

>>> json.dumps(2 + 1j, cls=ComplexEncoder)

'[2.0, 1.0]'

>>> ComplexEncoder().encode(2 + 1j)

'[2.0, 1.0]'

>>> list(ComplexEncoder().iterencode(2 + 1j))

['[2.0', ', 1.0', ']']

Using json.tool from the shell to validate and pretty-print:

$ echo '{"json":"obj"}' | python -m json.tool

{

"json": "obj"

}

$ echo '{1.2:3.4}' | python -m json.tool

Expecting property name enclosed in double quotes: line 1 column 2 (char 1)

See Command Line Interface for detailed documentation.

Note

JSON is a subset of YAML 1.2. The JSON produced by this module’s default settings (in particular, the default
separators value) is also a subset of YAML 1.0 and 1.1. This module can thus also be used as a YAML serializer.

20.2. json— JSON encoder and decoder 1289

https://yaml.org/

The Python Library Reference, Release 3.13.1

Note

This module’s encoders and decoders preserve input and output order by default. Order is only lost if the under-
lying containers are unordered.

20.2.1 Basic Usage

json.dump(obj, fp, *, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None,
indent=None, separators=None, default=None, sort_keys=False, **kw)

Serialize obj as a JSON formatted stream to fp (a .write()-supporting file-like object) using this conversion
table.

If skipkeys is true (default: False), then dict keys that are not of a basic type (str, int, float, bool, None)
will be skipped instead of raising a TypeError.

The json module always produces str objects, not bytes objects. Therefore, fp.write() must support
str input.

If ensure_ascii is true (the default), the output is guaranteed to have all incoming non-ASCII characters escaped.
If ensure_ascii is false, these characters will be output as-is.

If check_circular is false (default: True), then the circular reference check for container types will be skipped
and a circular reference will result in a RecursionError (or worse).

If allow_nan is false (default: True), then it will be a ValueError to serialize out of range float values (nan,
inf, -inf) in strict compliance of the JSON specification. If allow_nan is true, their JavaScript equivalents
(NaN, Infinity, -Infinity) will be used.

If indent is a non-negative integer or string, then JSON array elements and object members will be pretty-
printed with that indent level. An indent level of 0, negative, or "" will only insert newlines. None (the
default) selects the most compact representation. Using a positive integer indent indents that many spaces per
level. If indent is a string (such as "\t"), that string is used to indent each level.

Changed in version 3.2: Allow strings for indent in addition to integers.

If specified, separators should be an (item_separator, key_separator) tuple. The default is (', ',

': ') if indent is None and (',', ': ') otherwise. To get the most compact JSON representation, you
should specify (',', ':') to eliminate whitespace.

Changed in version 3.4: Use (',', ': ') as default if indent is not None.

If specified, default should be a function that gets called for objects that can’t otherwise be serialized. It should
return a JSON encodable version of the object or raise a TypeError. If not specified, TypeError is raised.

If sort_keys is true (default: False), then the output of dictionaries will be sorted by key.

To use a custom JSONEncoder subclass (e.g. one that overrides the default()method to serialize additional
types), specify it with the cls kwarg; otherwise JSONEncoder is used.

Changed in version 3.6: All optional parameters are now keyword-only.

Note

Unlike pickle and marshal, JSON is not a framed protocol, so trying to serialize multiple objects with
repeated calls to dump() using the same fp will result in an invalid JSON file.

json.dumps(obj, *, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None,
indent=None, separators=None, default=None, sort_keys=False, **kw)

Serialize obj to a JSON formatted str using this conversion table. The arguments have the same meaning as
in dump().

1290 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

Note

Keys in key/value pairs of JSON are always of the type str. When a dictionary is converted into JSON, all
the keys of the dictionary are coerced to strings. As a result of this, if a dictionary is converted into JSON
and then back into a dictionary, the dictionary may not equal the original one. That is, loads(dumps(x))
!= x if x has non-string keys.

json.load(fp, *, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None,
object_pairs_hook=None, **kw)

Deserialize fp (a .read()-supporting text file or binary file containing a JSON document) to a Python object
using this conversion table.

object_hook is an optional function that will be called with the result of any object literal decoded (a dict).
The return value of object_hook will be used instead of the dict. This feature can be used to implement
custom decoders (e.g. JSON-RPC class hinting).

object_pairs_hook is an optional function that will be called with the result of any object literal decoded with an
ordered list of pairs. The return value of object_pairs_hook will be used instead of the dict. This feature can
be used to implement custom decoders. If object_hook is also defined, the object_pairs_hook takes priority.

Changed in version 3.1: Added support for object_pairs_hook.

parse_float is an optional function that will be called with the string of every JSON float to be decoded. By
default, this is equivalent to float(num_str). This can be used to use another datatype or parser for JSON
floats (e.g. decimal.Decimal).

parse_int is an optional function that will be called with the string of every JSON int to be decoded. By default,
this is equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers
(e.g. float).

Changed in version 3.11: The default parse_int of int() now limits the maximum length of the integer string
via the interpreter’s integer string conversion length limitation to help avoid denial of service attacks.

parse_constant is an optional function that will be called with one of the following strings: '-Infinity',
'Infinity', 'NaN'. This can be used to raise an exception if invalid JSON numbers are encountered.

Changed in version 3.1: parse_constant doesn’t get called on ‘null’, ‘true’, ‘false’ anymore.

To use a custom JSONDecoder subclass, specify it with the cls kwarg; otherwise JSONDecoder is used.
Additional keyword arguments will be passed to the constructor of the class.

If the data being deserialized is not a valid JSON document, a JSONDecodeError will be raised.

Changed in version 3.6: All optional parameters are now keyword-only.

Changed in version 3.6: fp can now be a binary file. The input encoding should be UTF-8, UTF-16 or UTF-32.

json.loads(s, *, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None,
object_pairs_hook=None, **kw)

Deserialize s (a str, bytes or bytearray instance containing a JSON document) to a Python object using
this conversion table.

The other arguments have the same meaning as in load().

If the data being deserialized is not a valid JSON document, a JSONDecodeError will be raised.

Changed in version 3.6: s can now be of type bytes or bytearray. The input encoding should be UTF-8,
UTF-16 or UTF-32.

Changed in version 3.9: The keyword argument encoding has been removed.

20.2. json— JSON encoder and decoder 1291

https://www.jsonrpc.org

The Python Library Reference, Release 3.13.1

20.2.2 Encoders and Decoders

class json.JSONDecoder(*, object_hook=None, parse_float=None, parse_int=None, parse_constant=None,
strict=True, object_pairs_hook=None)

Simple JSON decoder.

Performs the following translations in decoding by default:

JSON Python

object dict
array list
string str
number (int) int
number (real) float
true True
false False
null None

It also understands NaN, Infinity, and -Infinity as their corresponding float values, which is outside
the JSON spec.

object_hook is an optional function that will be called with the result of every JSON object decoded and its
return value will be used in place of the given dict. This can be used to provide custom deserializations (e.g.
to support JSON-RPC class hinting).

object_pairs_hook is an optional function that will be called with the result of every JSON object decoded with
an ordered list of pairs. The return value of object_pairs_hook will be used instead of the dict. This feature
can be used to implement custom decoders. If object_hook is also defined, the object_pairs_hook takes priority.

Changed in version 3.1: Added support for object_pairs_hook.

parse_float is an optional function that will be called with the string of every JSON float to be decoded. By
default, this is equivalent to float(num_str). This can be used to use another datatype or parser for JSON
floats (e.g. decimal.Decimal).

parse_int is an optional function that will be called with the string of every JSON int to be decoded. By default,
this is equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers
(e.g. float).

parse_constant is an optional function that will be called with one of the following strings: '-Infinity',
'Infinity', 'NaN'. This can be used to raise an exception if invalid JSON numbers are encountered.

If strict is false (True is the default), then control characters will be allowed inside strings. Control characters
in this context are those with character codes in the 0–31 range, including '\t' (tab), '\n', '\r' and '\0'.

If the data being deserialized is not a valid JSON document, a JSONDecodeError will be raised.

Changed in version 3.6: All parameters are now keyword-only.

decode(s)
Return the Python representation of s (a str instance containing a JSON document).

JSONDecodeError will be raised if the given JSON document is not valid.

raw_decode(s)
Decode a JSON document from s (a str beginning with a JSON document) and return a 2-tuple of the
Python representation and the index in s where the document ended.

This can be used to decode a JSON document from a string that may have extraneous data at the end.

class json.JSONEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None, default=None)

Extensible JSON encoder for Python data structures.

1292 Chapter 20. Internet Data Handling

https://www.jsonrpc.org

The Python Library Reference, Release 3.13.1

Supports the following objects and types by default:

Python JSON

dict object
list, tuple array
str string
int, float, int- & float-derived Enums number
True true
False false
None null

Changed in version 3.4: Added support for int- and float-derived Enum classes.

To extend this to recognize other objects, subclass and implement a default()method with another method
that returns a serializable object for o if possible, otherwise it should call the superclass implementation (to
raise TypeError).

If skipkeys is false (the default), a TypeError will be raised when trying to encode keys that are not str, int,
float or None. If skipkeys is true, such items are simply skipped.

If ensure_ascii is true (the default), the output is guaranteed to have all incoming non-ASCII characters escaped.
If ensure_ascii is false, these characters will be output as-is.

If check_circular is true (the default), then lists, dicts, and custom encoded objects will be checked for cir-
cular references during encoding to prevent an infinite recursion (which would cause a RecursionError).
Otherwise, no such check takes place.

If allow_nan is true (the default), then NaN, Infinity, and -Infinity will be encoded as such. This behav-
ior is not JSON specification compliant, but is consistent with most JavaScript based encoders and decoders.
Otherwise, it will be a ValueError to encode such floats.

If sort_keys is true (default: False), then the output of dictionaries will be sorted by key; this is useful for
regression tests to ensure that JSON serializations can be compared on a day-to-day basis.

If indent is a non-negative integer or string, then JSON array elements and object members will be pretty-
printed with that indent level. An indent level of 0, negative, or "" will only insert newlines. None (the
default) selects the most compact representation. Using a positive integer indent indents that many spaces per
level. If indent is a string (such as "\t"), that string is used to indent each level.

Changed in version 3.2: Allow strings for indent in addition to integers.

If specified, separators should be an (item_separator, key_separator) tuple. The default is (', ',

': ') if indent is None and (',', ': ') otherwise. To get the most compact JSON representation, you
should specify (',', ':') to eliminate whitespace.

Changed in version 3.4: Use (',', ': ') as default if indent is not None.

If specified, default should be a function that gets called for objects that can’t otherwise be serialized. It should
return a JSON encodable version of the object or raise a TypeError. If not specified, TypeError is raised.

Changed in version 3.6: All parameters are now keyword-only.

default(o)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base
implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default() like this:

def default(self, o):

try:

iterable = iter(o)

except TypeError:

pass

(continues on next page)

20.2. json— JSON encoder and decoder 1293

The Python Library Reference, Release 3.13.1

(continued from previous page)

else:

return list(iterable)

Let the base class default method raise the TypeError

return super().default(o)

encode(o)

Return a JSON string representation of a Python data structure, o. For example:

>>> json.JSONEncoder().encode({"foo": ["bar", "baz"]})

'{"foo": ["bar", "baz"]}'

iterencode(o)

Encode the given object, o, and yield each string representation as available. For example:

for chunk in json.JSONEncoder().iterencode(bigobject):

mysocket.write(chunk)

20.2.3 Exceptions

exception json.JSONDecodeError(msg, doc, pos)
Subclass of ValueError with the following additional attributes:

msg

The unformatted error message.

doc

The JSON document being parsed.

pos

The start index of doc where parsing failed.

lineno

The line corresponding to pos.

colno

The column corresponding to pos.

Added in version 3.5.

20.2.4 Standard Compliance and Interoperability

The JSON format is specified by RFC 7159 and by ECMA-404. This section details this module’s level of compli-
ance with the RFC. For simplicity, JSONEncoder and JSONDecoder subclasses, and parameters other than those
explicitly mentioned, are not considered.

This module does not comply with the RFC in a strict fashion, implementing some extensions that are valid JavaScript
but not valid JSON. In particular:

• Infinite and NaN number values are accepted and output;

• Repeated names within an object are accepted, and only the value of the last name-value pair is used.

Since the RFC permits RFC-compliant parsers to accept input texts that are not RFC-compliant, this module’s de-
serializer is technically RFC-compliant under default settings.

Character Encodings

The RFC requires that JSON be represented using either UTF-8, UTF-16, or UTF-32, with UTF-8 being the rec-
ommended default for maximum interoperability.

1294 Chapter 20. Internet Data Handling

https://datatracker.ietf.org/doc/html/rfc7159.html
https://ecma-international.org/publications-and-standards/standards/ecma-404/

The Python Library Reference, Release 3.13.1

As permitted, though not required, by the RFC, this module’s serializer sets ensure_ascii=True by default, thus es-
caping the output so that the resulting strings only contain ASCII characters.

Other than the ensure_ascii parameter, this module is defined strictly in terms of conversion between Python objects
and Unicode strings, and thus does not otherwise directly address the issue of character encodings.

The RFC prohibits adding a byte order mark (BOM) to the start of a JSON text, and this module’s serializer does
not add a BOM to its output. The RFC permits, but does not require, JSON deserializers to ignore an initial BOM
in their input. This module’s deserializer raises a ValueError when an initial BOM is present.

The RFC does not explicitly forbid JSON strings which contain byte sequences that don’t correspond to valid Unicode
characters (e.g. unpaired UTF-16 surrogates), but it does note that they may cause interoperability problems. By
default, this module accepts and outputs (when present in the original str) code points for such sequences.

Infinite and NaN Number Values

The RFC does not permit the representation of infinite or NaN number values. Despite that, by default, this module
accepts and outputs Infinity, -Infinity, and NaN as if they were valid JSON number literal values:

>>> # Neither of these calls raises an exception, but the results are not valid␣

↪→JSON

>>> json.dumps(float('-inf'))

'-Infinity'

>>> json.dumps(float('nan'))

'NaN'

>>> # Same when deserializing

>>> json.loads('-Infinity')

-inf

>>> json.loads('NaN')

nan

In the serializer, the allow_nan parameter can be used to alter this behavior. In the deserializer, the parse_constant
parameter can be used to alter this behavior.

Repeated Names Within an Object

The RFC specifies that the names within a JSON object should be unique, but does not mandate how repeated names
in JSON objects should be handled. By default, this module does not raise an exception; instead, it ignores all but the
last name-value pair for a given name:

>>> weird_json = '{"x": 1, "x": 2, "x": 3}'

>>> json.loads(weird_json)

{'x': 3}

The object_pairs_hook parameter can be used to alter this behavior.

Top-level Non-Object, Non-Array Values

The old version of JSON specified by the obsolete RFC 4627 required that the top-level value of a JSON text must
be either a JSON object or array (Python dict or list), and could not be a JSON null, boolean, number, or string
value. RFC 7159 removed that restriction, and this module does not and has never implemented that restriction in
either its serializer or its deserializer.

Regardless, for maximum interoperability, you may wish to voluntarily adhere to the restriction yourself.

Implementation Limitations

Some JSON deserializer implementations may set limits on:

• the size of accepted JSON texts

• the maximum level of nesting of JSON objects and arrays

20.2. json— JSON encoder and decoder 1295

https://datatracker.ietf.org/doc/html/rfc4627.html
https://datatracker.ietf.org/doc/html/rfc7159.html

The Python Library Reference, Release 3.13.1

• the range and precision of JSON numbers

• the content and maximum length of JSON strings

This module does not impose any such limits beyond those of the relevant Python datatypes themselves or the Python
interpreter itself.

When serializing to JSON, beware any such limitations in applications that may consume your JSON. In particular,
it is common for JSON numbers to be deserialized into IEEE 754 double precision numbers and thus subject to that
representation’s range and precision limitations. This is especially relevant when serializing Python int values of
extremely large magnitude, or when serializing instances of “exotic” numerical types such as decimal.Decimal.

20.2.5 Command Line Interface

Source code: Lib/json/tool.py

The json.tool module provides a simple command line interface to validate and pretty-print JSON objects.

If the optional infile and outfile arguments are not specified, sys.stdin and sys.stdout will be used
respectively:

$ echo '{"json": "obj"}' | python -m json.tool

{

"json": "obj"

}

$ echo '{1.2:3.4}' | python -m json.tool

Expecting property name enclosed in double quotes: line 1 column 2 (char 1)

Changed in version 3.5: The output is now in the same order as the input. Use the --sort-keys option to sort the
output of dictionaries alphabetically by key.

Command line options

infile

The JSON file to be validated or pretty-printed:

$ python -m json.tool mp_films.json

[

{

"title": "And Now for Something Completely Different",

"year": 1971

},

{

"title": "Monty Python and the Holy Grail",

"year": 1975

}

]

If infile is not specified, read from sys.stdin.

outfile

Write the output of the infile to the given outfile. Otherwise, write it to sys.stdout.

--sort-keys

Sort the output of dictionaries alphabetically by key.

Added in version 3.5.

1296 Chapter 20. Internet Data Handling

https://github.com/python/cpython/tree/3.13/Lib/json/tool.py

The Python Library Reference, Release 3.13.1

--no-ensure-ascii

Disable escaping of non-ascii characters, see json.dumps() for more information.

Added in version 3.9.

--json-lines

Parse every input line as separate JSON object.

Added in version 3.8.

--indent, --tab, --no-indent, --compact

Mutually exclusive options for whitespace control.

Added in version 3.9.

-h, --help

Show the help message.

20.3 mailbox—Manipulate mailboxes in various formats

Source code: Lib/mailbox.py

This module defines two classes, Mailbox and Message, for accessing and manipulating on-disk mailboxes and the
messages they contain. Mailbox offers a dictionary-like mapping from keys to messages. Message extends the
email.message module’s Message class with format-specific state and behavior. Supported mailbox formats are
Maildir, mbox, MH, Babyl, and MMDF.

See also

Module email
Represent and manipulate messages.

20.3.1 Mailbox objects

class mailbox.Mailbox

A mailbox, which may be inspected and modified.

The Mailbox class defines an interface and is not intended to be instantiated. Instead, format-specific sub-
classes should inherit from Mailbox and your code should instantiate a particular subclass.

The Mailbox interface is dictionary-like, with small keys corresponding to messages. Keys are issued by the
Mailbox instance with which they will be used and are only meaningful to that Mailbox instance. A key
continues to identify a message even if the corresponding message is modified, such as by replacing it with
another message.

Messages may be added to a Mailbox instance using the set-like method add() and removed using a del
statement or the set-like methods remove() and discard().

Mailbox interface semantics differ from dictionary semantics in some noteworthy ways. Each time a message
is requested, a new representation (typically a Message instance) is generated based upon the current state of
the mailbox. Similarly, when a message is added to a Mailbox instance, the provided message representation’s
contents are copied. In neither case is a reference to the message representation kept by the Mailbox instance.

The default Mailbox iterator iterates over message representations, not keys as the default dictionary
iterator does. Moreover, modification of a mailbox during iteration is safe and well-defined. Messages added
to the mailbox after an iterator is created will not be seen by the iterator. Messages removed from the mailbox
before the iterator yields them will be silently skipped, though using a key from an iterator may result in a
KeyError exception if the corresponding message is subsequently removed.

20.3. mailbox—Manipulate mailboxes in various formats 1297

https://github.com/python/cpython/tree/3.13/Lib/mailbox.py

The Python Library Reference, Release 3.13.1

Warning

Be very cautious when modifying mailboxes that might be simultaneously changed by some other process.
The safest mailbox format to use for such tasks is Maildir; try to avoid using single-file formats such as
mbox for concurrent writing. If you’re modifying a mailbox, you must lock it by calling the lock() and
unlock()methods before reading any messages in the file or making any changes by adding or deleting a
message. Failing to lock the mailbox runs the risk of losing messages or corrupting the entire mailbox.

Mailbox instances have the following methods:

add(message)
Add message to the mailbox and return the key that has been assigned to it.

Parameter message may be a Message instance, an email.message.Message instance, a string, a
byte string, or a file-like object (which should be open in binary mode). If message is an instance of
the appropriate format-specific Message subclass (e.g., if it’s an mboxMessage instance and this is an
mbox instance), its format-specific information is used. Otherwise, reasonable defaults for format-specific
information are used.

Changed in version 3.2: Support for binary input was added.

remove(key)
__delitem__(key)
discard(key)

Delete the message corresponding to key from the mailbox.

If no such message exists, a KeyError exception is raised if the method was called as remove() or
__delitem__() but no exception is raised if the method was called as discard(). The behavior
of discard() may be preferred if the underlying mailbox format supports concurrent modification by
other processes.

__setitem__(key, message)
Replace the message corresponding to key with message. Raise a KeyError exception if no message
already corresponds to key.

As with add(), parameter message may be a Message instance, an email.message.Message in-
stance, a string, a byte string, or a file-like object (which should be open in binary mode). If message is
an instance of the appropriate format-specific Message subclass (e.g., if it’s an mboxMessage instance
and this is an mbox instance), its format-specific information is used. Otherwise, the format-specific
information of the message that currently corresponds to key is left unchanged.

iterkeys()

Return an iterator over all keys

keys()

The same as iterkeys(), except that a list is returned rather than an iterator

itervalues()

__iter__()

Return an iterator over representations of all messages. The messages are represented as instances of the
appropriate format-specific Message subclass unless a custom message factory was specified when the
Mailbox instance was initialized.

Note

The behavior of __iter__() is unlike that of dictionaries, which iterate over keys.

1298 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

values()

The same as itervalues(), except that a list is returned rather than an iterator

iteritems()

Return an iterator over (key, message) pairs, where key is a key and message is a message representation.
The messages are represented as instances of the appropriate format-specific Message subclass unless a
custom message factory was specified when the Mailbox instance was initialized.

items()

The same as iteritems(), except that a list of pairs is returned rather than an iterator of pairs.

get(key, default=None)
__getitem__(key)

Return a representation of themessage corresponding to key. If no suchmessage exists, default is returned
if the method was called as get() and a KeyError exception is raised if the method was called as
__getitem__(). Themessage is represented as an instance of the appropriate format-specific Message
subclass unless a custom message factory was specified when the Mailbox instance was initialized.

get_message(key)

Return a representation of the message corresponding to key as an instance of the appropriate format-
specific Message subclass, or raise a KeyError exception if no such message exists.

get_bytes(key)
Return a byte representation of the message corresponding to key, or raise a KeyError exception if no
such message exists.

Added in version 3.2.

get_string(key)
Return a string representation of the message corresponding to key, or raise a KeyError exception if no
such message exists. The message is processed through email.message.Message to convert it to a
7bit clean representation.

get_file(key)
Return a file-like representation of the message corresponding to key, or raise a KeyError exception if
no such message exists. The file-like object behaves as if open in binary mode. This file should be closed
once it is no longer needed.

Changed in version 3.2: The file object really is a binary file; previously it was incorrectly returned in text
mode. Also, the file-like object now supports the context manager protocol: you can use a with statement
to automatically close it.

Note

Unlike other representations of messages, file-like representations are not necessarily independent of
the Mailbox instance that created them or of the underlying mailbox. More specific documentation
is provided by each subclass.

__contains__(key)
Return True if key corresponds to a message, False otherwise.

__len__()

Return a count of messages in the mailbox.

clear()

Delete all messages from the mailbox.

pop(key, default=None)
Return a representation of the message corresponding to key and delete the message. If no such mes-
sage exists, return default. The message is represented as an instance of the appropriate format-specific

20.3. mailbox—Manipulate mailboxes in various formats 1299

The Python Library Reference, Release 3.13.1

Message subclass unless a custom message factory was specified when the Mailbox instance was ini-
tialized.

popitem()

Return an arbitrary (key, message) pair, where key is a key and message is a message representation, and
delete the corresponding message. If the mailbox is empty, raise a KeyError exception. The message is
represented as an instance of the appropriate format-specific Message subclass unless a custom message
factory was specified when the Mailbox instance was initialized.

update(arg)
Parameter arg should be a key-to-message mapping or an iterable of (key, message) pairs. Updates the
mailbox so that, for each given key and message, the message corresponding to key is set to message as if
by using __setitem__(). As with __setitem__(), each key must already correspond to a message
in the mailbox or else a KeyError exception will be raised, so in general it is incorrect for arg to be a
Mailbox instance.

Note

Unlike with dictionaries, keyword arguments are not supported.

flush()

Write any pending changes to the filesystem. For some Mailbox subclasses, changes are always written
immediately and flush() does nothing, but you should still make a habit of calling this method.

lock()

Acquire an exclusive advisory lock on the mailbox so that other processes know not to modify it. An
ExternalClashError is raised if the lock is not available. The particular locking mechanisms used
depend upon the mailbox format. You should always lock the mailbox before making any modifications
to its contents.

unlock()

Release the lock on the mailbox, if any.

close()

Flush the mailbox, unlock it if necessary, and close any open files. For some Mailbox subclasses, this
method does nothing.

Maildir objects

class mailbox.Maildir(dirname, factory=None, create=True)
A subclass of Mailbox for mailboxes in Maildir format. Parameter factory is a callable object that accepts a
file-like message representation (which behaves as if opened in binary mode) and returns a custom represen-
tation. If factory is None, MaildirMessage is used as the default message representation. If create is True,
the mailbox is created if it does not exist.

If create is True and the dirname path exists, it will be treated as an existing maildir without attempting to
verify its directory layout.

It is for historical reasons that dirname is named as such rather than path.

Maildir is a directory-based mailbox format invented for the qmail mail transfer agent and now widely sup-
ported by other programs. Messages in aMaildir mailbox are stored in separate files within a common directory
structure. This design allows Maildir mailboxes to be accessed and modified by multiple unrelated programs
without data corruption, so file locking is unnecessary.

Maildir mailboxes contain three subdirectories, namely: tmp, new, and cur. Messages are created momentar-
ily in the tmp subdirectory and then moved to the new subdirectory to finalize delivery. A mail user agent may
subsequently move the message to the cur subdirectory and store information about the state of the message
in a special “info” section appended to its file name.

1300 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

Folders of the style introduced by the Courier mail transfer agent are also supported. Any subdirectory of the
main mailbox is considered a folder if '.' is the first character in its name. Folder names are represented by
Maildir without the leading '.'. Each folder is itself a Maildir mailbox but should not contain other folders.
Instead, a logical nesting is indicated using '.' to delimit levels, e.g., “Archived.2005.07”.

colon

TheMaildir specification requires the use of a colon (':') in certain message file names. However, some
operating systems do not permit this character in file names, If you wish to use a Maildir-like format on
such an operating system, you should specify another character to use instead. The exclamation point
('!') is a popular choice. For example:

import mailbox

mailbox.Maildir.colon = '!'

The colon attribute may also be set on a per-instance basis.

Changed in version 3.13: Maildir now ignores files with a leading dot.

Maildir instances have all of the methods of Mailbox in addition to the following:

list_folders()

Return a list of the names of all folders.

get_folder(folder)
Return a Maildir instance representing the folder whose name is folder. A NoSuchMailboxError

exception is raised if the folder does not exist.

add_folder(folder)
Create a folder whose name is folder and return a Maildir instance representing it.

remove_folder(folder)
Delete the folder whose name is folder. If the folder contains anymessages, a NotEmptyError exception
will be raised and the folder will not be deleted.

clean()

Delete temporary files from the mailbox that have not been accessed in the last 36 hours. The Maildir
specification says that mail-reading programs should do this occasionally.

get_flags(key)
Return as a string the flags that are set on the message corresponding to key. This is the same as
get_message(key).get_flags() but much faster, because it does not open the message file. Use
this method when iterating over the keys to determine which messages are interesting to get.

If you do have a MaildirMessage object, use its get_flags() method instead, because changes
made by the message’s set_flags(), add_flag() and remove_flag() methods are not reflected
here until the mailbox’s __setitem__() method is called.

Added in version 3.13.

set_flags(key, flags)
On the message corresponding to key, set the flags specified by flags and unset all others. Calling
some_mailbox.set_flags(key, flags) is similar to

one_message = some_mailbox.get_message(key)

one_message.set_flags(flags)

some_mailbox[key] = one_message

but faster, because it does not open the message file.

If you do have a MaildirMessage object, use its set_flags()method instead, because changes made
with this mailbox method will not be visible to the message object’s method, get_flags().

Added in version 3.13.

20.3. mailbox—Manipulate mailboxes in various formats 1301

The Python Library Reference, Release 3.13.1

add_flag(key, flag)
On the message corresponding to key, set the flags specified by flag without changing other flags. To add
more than one flag at a time, flag may be a string of more than one character.

Considerations for using this method versus the message object’s add_flag() method are similar to
those for set_flags(); see the discussion there.

Added in version 3.13.

remove_flag(key, flag)
On the message corresponding to key, unset the flags specified by flag without changing other flags. To
remove more than one flag at a time, flag may be a string of more than one character.

Considerations for using this method versus the message object’s remove_flag() method are similar
to those for set_flags(); see the discussion there.

Added in version 3.13.

get_info(key)

Return a string containing the info for the message corresponding to key. This is the same as
get_message(key).get_info() but much faster, because it does not open the message file. Use
this method when iterating over the keys to determine which messages are interesting to get.

If you do have a MaildirMessage object, use its get_info() method instead, because changes
made by the message’s set_info()method are not reflected here until the mailbox’s __setitem__()
method is called.

Added in version 3.13.

set_info(key, info)
Set the info of the message corresponding to key to info. Calling some_mailbox.set_info(key,
flags) is similar to

one_message = some_mailbox.get_message(key)

one_message.set_info(info)

some_mailbox[key] = one_message

but faster, because it does not open the message file.

If you do have a MaildirMessage object, use its set_info()method instead, because changes made
with this mailbox method will not be visible to the message object’s method, get_info().

Added in version 3.13.

Some Mailbox methods implemented by Maildir deserve special remarks:

add(message)

__setitem__(key, message)

update(arg)

Warning

These methods generate unique file names based upon the current process ID. When using multiple
threads, undetected name clashes may occur and cause corruption of the mailbox unless threads are
coordinated to avoid using these methods to manipulate the same mailbox simultaneously.

flush()

All changes to Maildir mailboxes are immediately applied, so this method does nothing.

lock()

1302 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

unlock()

Maildir mailboxes do not support (or require) locking, so these methods do nothing.

close()

Maildir instances do not keep any open files and the underlying mailboxes do not support locking, so
this method does nothing.

get_file(key)
Depending upon the host platform, it may not be possible to modify or remove the underlying message
while the returned file remains open.

See also

maildir man page from Courier
A specification of the format. Describes a common extension for supporting folders.

Using maildir format
Notes on Maildir by its inventor. Includes an updated name-creation scheme and details on “info” seman-
tics.

mbox objects

class mailbox.mbox(path, factory=None, create=True)
A subclass of Mailbox for mailboxes in mbox format. Parameter factory is a callable object that accepts a file-
like message representation (which behaves as if opened in binary mode) and returns a custom representation.
If factory is None, mboxMessage is used as the default message representation. If create is True, the mailbox
is created if it does not exist.

The mbox format is the classic format for storing mail on Unix systems. All messages in an mbox mailbox
are stored in a single file with the beginning of each message indicated by a line whose first five characters are
“From “.

Several variations of the mbox format exist to address perceived shortcomings in the original. In the interest
of compatibility, mbox implements the original format, which is sometimes referred to as mboxo. This means
that the Content-Length header, if present, is ignored and that any occurrences of “From “ at the beginning
of a line in a message body are transformed to “>From “ when storing the message, although occurrences of
“>From “ are not transformed to “From “ when reading the message.

Some Mailbox methods implemented by mbox deserve special remarks:

get_file(key)
Using the file after calling flush() or close() on the mbox instance may yield unpredictable results
or raise an exception.

lock()

unlock()

Three locking mechanisms are used—dot locking and, if available, the flock() and lockf() system
calls.

See also

mbox man page from tin
A specification of the format, with details on locking.

Configuring Netscape Mail on Unix: Why The Content-Length Format is Bad
An argument for using the original mbox format rather than a variation.

“mbox” is a family of several mutually incompatible mailbox formats
A history of mbox variations.

20.3. mailbox—Manipulate mailboxes in various formats 1303

https://www.courier-mta.org/maildir.html
https://cr.yp.to/proto/maildir.html
http://www.tin.org/bin/man.cgi?section=5&topic=mbox
https://www.jwz.org/doc/content-length.html
https://www.loc.gov/preservation/digital/formats/fdd/fdd000383.shtml

The Python Library Reference, Release 3.13.1

MH objects

class mailbox.MH(path, factory=None, create=True)
A subclass of Mailbox for mailboxes in MH format. Parameter factory is a callable object that accepts a file-
like message representation (which behaves as if opened in binary mode) and returns a custom representation.
If factory is None, MHMessage is used as the default message representation. If create is True, the mailbox
is created if it does not exist.

MH is a directory-based mailbox format invented for the MH Message Handling System, a mail user agent.
Each message in an MH mailbox resides in its own file. An MH mailbox may contain other MH mailboxes
(called folders) in addition to messages. Folders may be nested indefinitely. MH mailboxes also support
sequences, which are named lists used to logically group messages without moving them to sub-folders. Se-
quences are defined in a file called .mh_sequences in each folder.

The MH class manipulates MHmailboxes, but it does not attempt to emulate all of mh’s behaviors. In particular,
it does not modify and is not affected by the context or .mh_profile files that are used by mh to store its
state and configuration.

MH instances have all of the methods of Mailbox in addition to the following:

Changed in version 3.13: Supported folders that don’t contain a .mh_sequences file.

list_folders()

Return a list of the names of all folders.

get_folder(folder)
Return an MH instance representing the folder whose name is folder. A NoSuchMailboxError exception
is raised if the folder does not exist.

add_folder(folder)
Create a folder whose name is folder and return an MH instance representing it.

remove_folder(folder)
Delete the folder whose name is folder. If the folder contains anymessages, a NotEmptyError exception
will be raised and the folder will not be deleted.

get_sequences()

Return a dictionary of sequence names mapped to key lists. If there are no sequences, the empty dictio-
nary is returned.

set_sequences(sequences)

Re-define the sequences that exist in the mailbox based upon sequences, a dictionary of names mapped
to key lists, like returned by get_sequences().

pack()

Rename messages in the mailbox as necessary to eliminate gaps in numbering. Entries in the sequences
list are updated correspondingly.

Note

Already-issued keys are invalidated by this operation and should not be subsequently used.

Some Mailbox methods implemented by MH deserve special remarks:

remove(key)

__delitem__(key)
discard(key)

These methods immediately delete the message. The MH convention of marking a message for deletion
by prepending a comma to its name is not used.

lock()

1304 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

unlock()

Three locking mechanisms are used—dot locking and, if available, the flock() and lockf() system
calls. For MH mailboxes, locking the mailbox means locking the .mh_sequences file and, only for the
duration of any operations that affect them, locking individual message files.

get_file(key)
Depending upon the host platform, it may not be possible to remove the underlying message while the
returned file remains open.

flush()

All changes to MH mailboxes are immediately applied, so this method does nothing.

close()

MH instances do not keep any open files, so this method is equivalent to unlock().

See also

nmh - Message Handling System
Home page of nmh, an updated version of the original mh.

MH & nmh: Email for Users & Programmers
A GPL-licensed book on mh and nmh, with some information on the mailbox format.

Babyl objects

class mailbox.Babyl(path, factory=None, create=True)
A subclass of Mailbox for mailboxes in Babyl format. Parameter factory is a callable object that accepts a file-
like message representation (which behaves as if opened in binary mode) and returns a custom representation.
If factory is None, BabylMessage is used as the default message representation. If create is True, themailbox
is created if it does not exist.

Babyl is a single-file mailbox format used by the Rmail mail user agent included with Emacs. The beginning
of a message is indicated by a line containing the two characters Control-Underscore ('\037') and Control-L
('\014'). The end of a message is indicated by the start of the next message or, in the case of the last message,
a line containing a Control-Underscore ('\037') character.

Messages in a Babyl mailbox have two sets of headers, original headers and so-called visible headers. Visible
headers are typically a subset of the original headers that have been reformatted or abridged to be more at-
tractive. Each message in a Babyl mailbox also has an accompanying list of labels, or short strings that record
extra information about the message, and a list of all user-defined labels found in the mailbox is kept in the
Babyl options section.

Babyl instances have all of the methods of Mailbox in addition to the following:

get_labels()

Return a list of the names of all user-defined labels used in the mailbox.

Note

The actual messages are inspected to determine which labels exist in the mailbox rather than con-
sulting the list of labels in the Babyl options section, but the Babyl section is updated whenever the
mailbox is modified.

Some Mailbox methods implemented by Babyl deserve special remarks:

get_file(key)
In Babyl mailboxes, the headers of a message are not stored contiguously with the body of the message.
To generate a file-like representation, the headers and body are copied together into an io.BytesIO
instance, which has an API identical to that of a file. As a result, the file-like object is truly independent
of the underlying mailbox but does not save memory compared to a string representation.

20.3. mailbox—Manipulate mailboxes in various formats 1305

https://www.nongnu.org/nmh/
https://rand-mh.sourceforge.io/book/

The Python Library Reference, Release 3.13.1

lock()

unlock()

Three locking mechanisms are used—dot locking and, if available, the flock() and lockf() system
calls.

See also

Format of Version 5 Babyl Files
A specification of the Babyl format.

Reading Mail with Rmail
The Rmail manual, with some information on Babyl semantics.

MMDF objects

class mailbox.MMDF(path, factory=None, create=True)
A subclass of Mailbox for mailboxes in MMDF format. Parameter factory is a callable object that accepts a
file-like message representation (which behaves as if opened in binary mode) and returns a custom represen-
tation. If factory is None, MMDFMessage is used as the default message representation. If create is True, the
mailbox is created if it does not exist.

MMDF is a single-file mailbox format invented for the Multichannel Memorandum Distribution Facility, a
mail transfer agent. Each message is in the same form as an mbox message but is bracketed before and after
by lines containing four Control-A ('\001') characters. As with the mbox format, the beginning of each
message is indicated by a line whose first five characters are “From “, but additional occurrences of “From
“ are not transformed to “>From “ when storing messages because the extra message separator lines prevent
mistaking such occurrences for the starts of subsequent messages.

Some Mailbox methods implemented by MMDF deserve special remarks:

get_file(key)
Using the file after calling flush() or close() on the MMDF instance may yield unpredictable results
or raise an exception.

lock()

unlock()

Three locking mechanisms are used—dot locking and, if available, the flock() and lockf() system
calls.

See also

mmdf man page from tin
A specification of MMDF format from the documentation of tin, a newsreader.

MMDF
AWikipedia article describing the Multichannel Memorandum Distribution Facility.

20.3.2 Message objects

class mailbox.Message(message=None)
A subclass of the email.message module’s Message. Subclasses of mailbox.Message add mailbox-
format-specific state and behavior.

Ifmessage is omitted, the new instance is created in a default, empty state. Ifmessage is an email.message.
Message instance, its contents are copied; furthermore, any format-specific information is converted insofar
as possible if message is a Message instance. If message is a string, a byte string, or a file, it should contain an
RFC 2822-compliant message, which is read and parsed. Files should be open in binary mode, but text mode
files are accepted for backward compatibility.

1306 Chapter 20. Internet Data Handling

https://quimby.gnus.org/notes/BABYL
https://www.gnu.org/software/emacs/manual/html_node/emacs/Rmail.html
http://www.tin.org/bin/man.cgi?section=5&topic=mmdf
https://en.wikipedia.org/wiki/MMDF
https://datatracker.ietf.org/doc/html/rfc2822.html

The Python Library Reference, Release 3.13.1

The format-specific state and behaviors offered by subclasses vary, but in general it is only the properties that
are not specific to a particular mailbox that are supported (although presumably the properties are specific
to a particular mailbox format). For example, file offsets for single-file mailbox formats and file names for
directory-based mailbox formats are not retained, because they are only applicable to the original mailbox.
But state such as whether a message has been read by the user or marked as important is retained, because it
applies to the message itself.

There is no requirement that Message instances be used to represent messages retrieved using Mailbox

instances. In some situations, the time and memory required to generate Message representations might not
be acceptable. For such situations, Mailbox instances also offer string and file-like representations, and a
custom message factory may be specified when a Mailbox instance is initialized.

MaildirMessage objects

class mailbox.MaildirMessage(message=None)

A message with Maildir-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

Typically, a mail user agent application moves all of the messages in the new subdirectory to the cur subdi-
rectory after the first time the user opens and closes the mailbox, recording that the messages are old whether
or not they’ve actually been read. Each message in cur has an “info” section added to its file name to store
information about its state. (Some mail readers may also add an “info” section to messages in new.) The “info”
section may take one of two forms: it may contain “2,” followed by a list of standardized flags (e.g., “2,FR”)
or it may contain “1,” followed by so-called experimental information. Standard flags for Maildir messages are
as follows:

Flag Meaning Explanation

D Draft Under composition
F Flagged Marked as important
P Passed Forwarded, resent, or bounced
R Replied Replied to
S Seen Read
T Trashed Marked for subsequent deletion

MaildirMessage instances offer the following methods:

get_subdir()

Return either “new” (if the message should be stored in the new subdirectory) or “cur” (if the message
should be stored in the cur subdirectory).

Note

A message is typically moved from new to cur after its mailbox has been accessed, whether or not
the message has been read. A message msg has been read if "S" in msg.get_flags() is True.

set_subdir(subdir)
Set the subdirectory the message should be stored in. Parameter subdir must be either “new” or “cur”.

get_flags()

Return a string specifying the flags that are currently set. If the message complies with the standard
Maildir format, the result is the concatenation in alphabetical order of zero or one occurrence of each of
'D', 'F', 'P', 'R', 'S', and 'T'. The empty string is returned if no flags are set or if “info” contains
experimental semantics.

set_flags(flags)

Set the flags specified by flags and unset all others.

20.3. mailbox—Manipulate mailboxes in various formats 1307

The Python Library Reference, Release 3.13.1

add_flag(flag)
Set the flag(s) specified by flag without changing other flags. To add more than one flag at a time, flag
may be a string of more than one character. The current “info” is overwritten whether or not it contains
experimental information rather than flags.

remove_flag(flag)
Unset the flag(s) specified by flag without changing other flags. To remove more than one flag at a time,
flag maybe a string of more than one character. If “info” contains experimental information rather than
flags, the current “info” is not modified.

get_date()

Return the delivery date of the message as a floating-point number representing seconds since the epoch.

set_date(date)

Set the delivery date of themessage to date, a floating-point number representing seconds since the epoch.

get_info()

Return a string containing the “info” for a message. This is useful for accessing and modifying “info” that
is experimental (i.e., not a list of flags).

set_info(info)
Set “info” to info, which should be a string.

When a MaildirMessage instance is created based upon an mboxMessage or MMDFMessage instance, the Status
and X-Status headers are omitted and the following conversions take place:

Resulting state mboxMessage or MMDFMessage state

“cur” subdirectory O flag
F flag F flag
R flag A flag
S flag R flag
T flag D flag

When a MaildirMessage instance is created based upon an MHMessage instance, the following conversions take
place:

Resulting state MHMessage state

“cur” subdirectory “unseen” sequence
“cur” subdirectory and S flag no “unseen” sequence
F flag “flagged” sequence
R flag “replied” sequence

When a MaildirMessage instance is created based upon a BabylMessage instance, the following conversions
take place:

Resulting state BabylMessage state

“cur” subdirectory “unseen” label
“cur” subdirectory and S flag no “unseen” label
P flag “forwarded” or “resent” label
R flag “answered” label
T flag “deleted” label

1308 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

mboxMessage objects

class mailbox.mboxMessage(message=None)
A message with mbox-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

Messages in an mbox mailbox are stored together in a single file. The sender’s envelope address and the time
of delivery are typically stored in a line beginning with “From “ that is used to indicate the start of a message,
though there is considerable variation in the exact format of this data among mbox implementations. Flags
that indicate the state of the message, such as whether it has been read or marked as important, are typically
stored in Status and X-Status headers.

Conventional flags for mbox messages are as follows:

Flag Meaning Explanation

R Read Read
O Old Previously detected by MUA
D Deleted Marked for subsequent deletion
F Flagged Marked as important
A Answered Replied to

The “R” and “O” flags are stored in the Status header, and the “D”, “F”, and “A” flags are stored in the
X-Status header. The flags and headers typically appear in the order mentioned.

mboxMessage instances offer the following methods:

get_from()

Return a string representing the “From “ line that marks the start of the message in an mbox mailbox.
The leading “From “ and the trailing newline are excluded.

set_from(from_, time_=None)
Set the “From “ line to from_, which should be specified without a leading “From “ or trailing newline.
For convenience, time_ may be specified and will be formatted appropriately and appended to from_. If
time_ is specified, it should be a time.struct_time instance, a tuple suitable for passing to time.
strftime(), or True (to use time.gmtime()).

get_flags()

Return a string specifying the flags that are currently set. If the message complies with the conventional
format, the result is the concatenation in the following order of zero or one occurrence of each of 'R',
'O', 'D', 'F', and 'A'.

set_flags(flags)

Set the flags specified by flags and unset all others. Parameter flags should be the concatenation in any
order of zero or more occurrences of each of 'R', 'O', 'D', 'F', and 'A'.

add_flag(flag)
Set the flag(s) specified by flag without changing other flags. To add more than one flag at a time, flag
may be a string of more than one character.

remove_flag(flag)

Unset the flag(s) specified by flag without changing other flags. To remove more than one flag at a time,
flag maybe a string of more than one character.

When an mboxMessage instance is created based upon a MaildirMessage instance, a “From “ line is generated
based upon the MaildirMessage instance’s delivery date, and the following conversions take place:

20.3. mailbox—Manipulate mailboxes in various formats 1309

The Python Library Reference, Release 3.13.1

Resulting state MaildirMessage state

R flag S flag
O flag “cur” subdirectory
D flag T flag
F flag F flag
A flag R flag

When an mboxMessage instance is created based upon an MHMessage instance, the following conversions take
place:

Resulting state MHMessage state

R flag and O flag no “unseen” sequence
O flag “unseen” sequence
F flag “flagged” sequence
A flag “replied” sequence

When an mboxMessage instance is created based upon a BabylMessage instance, the following conversions take
place:

Resulting state BabylMessage state

R flag and O flag no “unseen” label
O flag “unseen” label
D flag “deleted” label
A flag “answered” label

When a mboxMessage instance is created based upon an MMDFMessage instance, the “From “ line is copied and all
flags directly correspond:

Resulting state MMDFMessage state

R flag R flag
O flag O flag
D flag D flag
F flag F flag
A flag A flag

MHMessage objects

class mailbox.MHMessage(message=None)
A message with MH-specific behaviors. Parameter message has the same meaning as with the Message

constructor.

MH messages do not support marks or flags in the traditional sense, but they do support sequences, which are
logical groupings of arbitrary messages. Some mail reading programs (although not the standard mh and nmh)
use sequences in much the same way flags are used with other formats, as follows:

Sequence Explanation

unseen Not read, but previously detected by MUA
replied Replied to
flagged Marked as important

MHMessage instances offer the following methods:

1310 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

get_sequences()

Return a list of the names of sequences that include this message.

set_sequences(sequences)
Set the list of sequences that include this message.

add_sequence(sequence)
Add sequence to the list of sequences that include this message.

remove_sequence(sequence)
Remove sequence from the list of sequences that include this message.

When an MHMessage instance is created based upon a MaildirMessage instance, the following conversions take
place:

Resulting state MaildirMessage state

“unseen” sequence no S flag
“replied” sequence R flag
“flagged” sequence F flag

When an MHMessage instance is created based upon an mboxMessage or MMDFMessage instance, the Status and
X-Status headers are omitted and the following conversions take place:

Resulting state mboxMessage or MMDFMessage state

“unseen” sequence no R flag
“replied” sequence A flag
“flagged” sequence F flag

When an MHMessage instance is created based upon a BabylMessage instance, the following conversions take
place:

Resulting state BabylMessage state

“unseen” sequence “unseen” label
“replied” sequence “answered” label

BabylMessage objects

class mailbox.BabylMessage(message=None)
A message with Babyl-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

Certain message labels, called attributes, are defined by convention to have special meanings. The attributes
are as follows:

Label Explanation

unseen Not read, but previously detected by MUA
deleted Marked for subsequent deletion
filed Copied to another file or mailbox
answered Replied to
forwarded Forwarded
edited Modified by the user
resent Resent

By default, Rmail displays only visible headers. The BabylMessage class, though, uses the original headers
because they are more complete. Visible headers may be accessed explicitly if desired.

20.3. mailbox—Manipulate mailboxes in various formats 1311

The Python Library Reference, Release 3.13.1

BabylMessage instances offer the following methods:

get_labels()

Return a list of labels on the message.

set_labels(labels)

Set the list of labels on the message to labels.

add_label(label)

Add label to the list of labels on the message.

remove_label(label)
Remove label from the list of labels on the message.

get_visible()

Return a Message instance whose headers are the message’s visible headers and whose body is empty.

set_visible(visible)

Set the message’s visible headers to be the same as the headers in message. Parameter visible should be a
Message instance, an email.message.Message instance, a string, or a file-like object (which should
be open in text mode).

update_visible()

When a BabylMessage instance’s original headers aremodified, the visible headers are not automatically
modified to correspond. This method updates the visible headers as follows: each visible header with
a corresponding original header is set to the value of the original header, each visible header without a
corresponding original header is removed, and any of Date, From, Reply-To, To, CC, and Subject
that are present in the original headers but not the visible headers are added to the visible headers.

When a BabylMessage instance is created based upon a MaildirMessage instance, the following conversions
take place:

Resulting state MaildirMessage state

“unseen” label no S flag
“deleted” label T flag
“answered” label R flag
“forwarded” label P flag

When a BabylMessage instance is created based upon an mboxMessage or MMDFMessage instance, the Status
and X-Status headers are omitted and the following conversions take place:

Resulting state mboxMessage or MMDFMessage state

“unseen” label no R flag
“deleted” label D flag
“answered” label A flag

When a BabylMessage instance is created based upon an MHMessage instance, the following conversions take
place:

Resulting state MHMessage state

“unseen” label “unseen” sequence
“answered” label “replied” sequence

1312 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

MMDFMessage objects

class mailbox.MMDFMessage(message=None)
A message with MMDF-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

As with message in an mbox mailbox, MMDF messages are stored with the sender’s address and the delivery
date in an initial line beginning with “From “. Likewise, flags that indicate the state of the message are typically
stored in Status and X-Status headers.

Conventional flags for MMDF messages are identical to those of mbox message and are as follows:

Flag Meaning Explanation

R Read Read
O Old Previously detected by MUA
D Deleted Marked for subsequent deletion
F Flagged Marked as important
A Answered Replied to

The “R” and “O” flags are stored in the Status header, and the “D”, “F”, and “A” flags are stored in the
X-Status header. The flags and headers typically appear in the order mentioned.

MMDFMessage instances offer the following methods, which are identical to those offered by mboxMessage:

get_from()

Return a string representing the “From “ line that marks the start of the message in an mbox mailbox.
The leading “From “ and the trailing newline are excluded.

set_from(from_, time_=None)
Set the “From “ line to from_, which should be specified without a leading “From “ or trailing newline.
For convenience, time_ may be specified and will be formatted appropriately and appended to from_. If
time_ is specified, it should be a time.struct_time instance, a tuple suitable for passing to time.
strftime(), or True (to use time.gmtime()).

get_flags()

Return a string specifying the flags that are currently set. If the message complies with the conventional
format, the result is the concatenation in the following order of zero or one occurrence of each of 'R',
'O', 'D', 'F', and 'A'.

set_flags(flags)
Set the flags specified by flags and unset all others. Parameter flags should be the concatenation in any
order of zero or more occurrences of each of 'R', 'O', 'D', 'F', and 'A'.

add_flag(flag)
Set the flag(s) specified by flag without changing other flags. To add more than one flag at a time, flag
may be a string of more than one character.

remove_flag(flag)
Unset the flag(s) specified by flag without changing other flags. To remove more than one flag at a time,
flag maybe a string of more than one character.

When an MMDFMessage instance is created based upon a MaildirMessage instance, a “From “ line is generated
based upon the MaildirMessage instance’s delivery date, and the following conversions take place:

Resulting state MaildirMessage state

R flag S flag
O flag “cur” subdirectory
D flag T flag
F flag F flag
A flag R flag

20.3. mailbox—Manipulate mailboxes in various formats 1313

The Python Library Reference, Release 3.13.1

When an MMDFMessage instance is created based upon an MHMessage instance, the following conversions take
place:

Resulting state MHMessage state

R flag and O flag no “unseen” sequence
O flag “unseen” sequence
F flag “flagged” sequence
A flag “replied” sequence

When an MMDFMessage instance is created based upon a BabylMessage instance, the following conversions take
place:

Resulting state BabylMessage state

R flag and O flag no “unseen” label
O flag “unseen” label
D flag “deleted” label
A flag “answered” label

When an MMDFMessage instance is created based upon an mboxMessage instance, the “From “ line is copied and
all flags directly correspond:

Resulting state mboxMessage state

R flag R flag
O flag O flag
D flag D flag
F flag F flag
A flag A flag

20.3.3 Exceptions

The following exception classes are defined in the mailbox module:

exception mailbox.Error

The based class for all other module-specific exceptions.

exception mailbox.NoSuchMailboxError

Raised when a mailbox is expected but is not found, such as when instantiating a Mailbox subclass with a
path that does not exist (and with the create parameter set to False), or when opening a folder that does not
exist.

exception mailbox.NotEmptyError

Raised when amailbox is not empty but is expected to be, such as when deleting a folder that contains messages.

exception mailbox.ExternalClashError

Raised when some mailbox-related condition beyond the control of the program causes it to be unable to
proceed, such as when failing to acquire a lock that another program already holds a lock, or when a uniquely
generated file name already exists.

exception mailbox.FormatError

Raised when the data in a file cannot be parsed, such as when an MH instance attempts to read a corrupted
.mh_sequences file.

1314 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

20.3.4 Examples

A simple example of printing the subjects of all messages in a mailbox that seem interesting:

import mailbox

for message in mailbox.mbox('~/mbox'):

subject = message['subject'] # Could possibly be None.

if subject and 'python' in subject.lower():

print(subject)

To copy all mail from a Babyl mailbox to an MH mailbox, converting all of the format-specific information that can
be converted:

import mailbox

destination = mailbox.MH('~/Mail')

destination.lock()

for message in mailbox.Babyl('~/RMAIL'):

destination.add(mailbox.MHMessage(message))

destination.flush()

destination.unlock()

This example sorts mail from several mailing lists into different mailboxes, being careful to avoid mail corruption due
to concurrent modification by other programs, mail loss due to interruption of the program, or premature termination
due to malformed messages in the mailbox:

import mailbox

import email.errors

list_names = ('python-list', 'python-dev', 'python-bugs')

boxes = {name: mailbox.mbox('~/email/%s' % name) for name in list_names}

inbox = mailbox.Maildir('~/Maildir', factory=None)

for key in inbox.iterkeys():

try:

message = inbox[key]

except email.errors.MessageParseError:

continue # The message is malformed. Just leave it.

for name in list_names:

list_id = message['list-id']

if list_id and name in list_id:

Get mailbox to use

box = boxes[name]

Write copy to disk before removing original.

If there's a crash, you might duplicate a message, but

that's better than losing a message completely.

box.lock()

box.add(message)

box.flush()

box.unlock()

Remove original message

inbox.lock()

inbox.discard(key)

inbox.flush()

inbox.unlock()

(continues on next page)

20.3. mailbox—Manipulate mailboxes in various formats 1315

The Python Library Reference, Release 3.13.1

(continued from previous page)

break # Found destination, so stop looking.

for box in boxes.itervalues():

box.close()

20.4 mimetypes—Map filenames to MIME types

Source code: Lib/mimetypes.py

The mimetypes module converts between a filename or URL and the MIME type associated with the filename
extension. Conversions are provided from filename to MIME type and from MIME type to filename extension;
encodings are not supported for the latter conversion.

The module provides one class and a number of convenience functions. The functions are the normal interface to
this module, but some applications may be interested in the class as well.

The functions described below provide the primary interface for this module. If the module has not been initialized,
they will call init() if they rely on the information init() sets up.

mimetypes.guess_type(url, strict=True)
Guess the type of a file based on its filename, path or URL, given by url. URL can be a string or a path-like
object.

The return value is a tuple (type, encoding) where type is None if the type can’t be guessed (missing or
unknown suffix) or a string of the form 'type/subtype', usable for a MIME content-type header.

encoding is None for no encoding or the name of the program used to encode (e.g. compress or gzip).
The encoding is suitable for use as a Content-Encoding header, not as a Content-Transfer-Encoding
header. The mappings are table driven. Encoding suffixes are case sensitive; type suffixes are first tried case
sensitively, then case insensitively.

The optional strict argument is a flag specifying whether the list of known MIME types is limited to only the
official types registered with IANA. When strict is True (the default), only the IANA types are supported;
when strict is False, some additional non-standard but commonly used MIME types are also recognized.

Changed in version 3.8: Added support for url being a path-like object.

Deprecated since version 3.13: Passing a file path instead of URL is soft deprecated. Use
guess_file_type() for this.

mimetypes.guess_file_type(path, *, strict=True)
Guess the type of a file based on its path, given by path. Similar to the guess_type() function, but accepts
a path instead of URL. Path can be a string, a bytes object or a path-like object.

Added in version 3.13.

mimetypes.guess_all_extensions(type, strict=True)
Guess the extensions for a file based on its MIME type, given by type. The return value is a list of strings
giving all possible filename extensions, including the leading dot ('.'). The extensions are not guaranteed
to have been associated with any particular data stream, but would be mapped to the MIME type type by
guess_type() and guess_file_type().

The optional strict argument has the same meaning as with the guess_type() function.

mimetypes.guess_extension(type, strict=True)
Guess the extension for a file based on its MIME type, given by type. The return value is a string giving a
filename extension, including the leading dot ('.'). The extension is not guaranteed to have been associ-
ated with any particular data stream, but would be mapped to the MIME type type by guess_type() and
guess_file_type(). If no extension can be guessed for type, None is returned.

The optional strict argument has the same meaning as with the guess_type() function.

1316 Chapter 20. Internet Data Handling

https://github.com/python/cpython/tree/3.13/Lib/mimetypes.py
https://www.iana.org/assignments/media-types/media-types.xhtml

The Python Library Reference, Release 3.13.1

Some additional functions and data items are available for controlling the behavior of the module.

mimetypes.init(files=None)
Initialize the internal data structures. If given, files must be a sequence of file names which should be used to
augment the default type map. If omitted, the file names to use are taken from knownfiles; on Windows,
the current registry settings are loaded. Each file named in files or knownfiles takes precedence over those
named before it. Calling init() repeatedly is allowed.

Specifying an empty list for files will prevent the system defaults from being applied: only the well-known
values will be present from a built-in list.

If files is None the internal data structure is completely rebuilt to its initial default value. This is a stable
operation and will produce the same results when called multiple times.

Changed in version 3.2: Previously, Windows registry settings were ignored.

mimetypes.read_mime_types(filename)
Load the type map given in the file filename, if it exists. The type map is returned as a dictionary mapping
filename extensions, including the leading dot ('.'), to strings of the form 'type/subtype'. If the file
filename does not exist or cannot be read, None is returned.

mimetypes.add_type(type, ext, strict=True)
Add a mapping from the MIME type type to the extension ext. When the extension is already known, the new
type will replace the old one. When the type is already known the extension will be added to the list of known
extensions.

When strict is True (the default), the mapping will be added to the official MIME types, otherwise to the
non-standard ones.

mimetypes.inited

Flag indicating whether or not the global data structures have been initialized. This is set to True by init().

mimetypes.knownfiles

List of type map file names commonly installed. These files are typically named mime.types and are installed
in different locations by different packages.

mimetypes.suffix_map

Dictionarymapping suffixes to suffixes. This is used to allow recognition of encoded files for which the encoding
and the type are indicated by the same extension. For example, the .tgz extension is mapped to .tar.gz to
allow the encoding and type to be recognized separately.

mimetypes.encodings_map

Dictionary mapping filename extensions to encoding types.

mimetypes.types_map

Dictionary mapping filename extensions to MIME types.

mimetypes.common_types

Dictionary mapping filename extensions to non-standard, but commonly found MIME types.

An example usage of the module:

>>> import mimetypes

>>> mimetypes.init()

>>> mimetypes.knownfiles

['/etc/mime.types', '/etc/httpd/mime.types', ...]

>>> mimetypes.suffix_map['.tgz']

'.tar.gz'

>>> mimetypes.encodings_map['.gz']

'gzip'

>>> mimetypes.types_map['.tgz']

'application/x-tar-gz'

20.4. mimetypes—Map filenames to MIME types 1317

The Python Library Reference, Release 3.13.1

20.4.1 MimeTypes Objects

The MimeTypes class may be useful for applications whichmaywant more than oneMIME-type database; it provides
an interface similar to the one of the mimetypes module.

class mimetypes.MimeTypes(filenames=(), strict=True)
This class represents a MIME-types database. By default, it provides access to the same database as the rest
of this module. The initial database is a copy of that provided by the module, and may be extended by loading
additional mime.types-style files into the database using the read() or readfp() methods. The mapping
dictionaries may also be cleared before loading additional data if the default data is not desired.

The optional filenames parameter can be used to cause additional files to be loaded “on top” of the default
database.

suffix_map

Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which the
encoding and the type are indicated by the same extension. For example, the .tgz extension is mapped
to .tar.gz to allow the encoding and type to be recognized separately. This is initially a copy of the
global suffix_map defined in the module.

encodings_map

Dictionary mapping filename extensions to encoding types. This is initially a copy of the global
encodings_map defined in the module.

types_map

Tuple containing two dictionaries, mapping filename extensions to MIME types: the first dictionary
is for the non-standards types and the second one is for the standard types. They are initialized by
common_types and types_map.

types_map_inv

Tuple containing two dictionaries, mapping MIME types to a list of filename extensions: the first dictio-
nary is for the non-standards types and the second one is for the standard types. They are initialized by
common_types and types_map.

guess_extension(type, strict=True)
Similar to the guess_extension() function, using the tables stored as part of the object.

guess_type(url, strict=True)
Similar to the guess_type() function, using the tables stored as part of the object.

guess_file_type(path, *, strict=True)
Similar to the guess_file_type() function, using the tables stored as part of the object.

Added in version 3.13.

guess_all_extensions(type, strict=True)
Similar to the guess_all_extensions() function, using the tables stored as part of the object.

read(filename, strict=True)
Load MIME information from a file named filename. This uses readfp() to parse the file.

If strict is True, information will be added to list of standard types, else to the list of non-standard types.

readfp(fp, strict=True)
Load MIME type information from an open file fp. The file must have the format of the standard mime.
types files.

If strict is True, information will be added to the list of standard types, else to the list of non-standard
types.

read_windows_registry(strict=True)
Load MIME type information from the Windows registry.

Availability: Windows.

1318 Chapter 20. Internet Data Handling

The Python Library Reference, Release 3.13.1

If strict is True, information will be added to the list of standard types, else to the list of non-standard
types.

Added in version 3.2.

add_type(type, ext, strict=True)
Add a mapping from the MIME type type to the extension ext. When the extension is already known, the
new type will replace the old one. When the type is already known the extension will be added to the list
of known extensions.

When strict is True (the default), the mapping will be added to the official MIME types, otherwise to the
non-standard ones.

20.5 base64— Base16, Base32, Base64, Base85 Data Encodings

Source code: Lib/base64.py

This module provides functions for encoding binary data to printable ASCII characters and decoding such encodings
back to binary data. It provides encoding and decoding functions for the encodings specified in RFC 4648, which
defines the Base16, Base32, and Base64 algorithms, and for the de-facto standard Ascii85 and Base85 encodings.

The RFC 4648 encodings are suitable for encoding binary data so that it can be safely sent by email, used as parts
of URLs, or included as part of an HTTP POST request. The encoding algorithm is not the same as the uuencode
program.

There are two interfaces provided by this module. The modern interface supports encoding bytes-like objects to ASCII
bytes, and decoding bytes-like objects or strings containing ASCII to bytes. Both base-64 alphabets defined inRFC
4648 (normal, and URL- and filesystem-safe) are supported.

The legacy interface does not support decoding from strings, but it does provide functions for encoding and decoding
to and from file objects. It only supports the Base64 standard alphabet, and it adds newlines every 76 characters as
per RFC 2045. Note that if you are looking for RFC 2045 support you probably want to be looking at the email
package instead.

Changed in version 3.3: ASCII-only Unicode strings are now accepted by the decoding functions of the modern
interface.

Changed in version 3.4: Any bytes-like objects are now accepted by all encoding and decoding functions in this
module. Ascii85/Base85 support added.

The modern interface provides:

base64.b64encode(s, altchars=None)
Encode the bytes-like object s using Base64 and return the encoded bytes.

Optional altchars must be a bytes-like object of length 2 which specifies an alternative alphabet for the + and /
characters. This allows an application to e.g. generate URL or filesystem safe Base64 strings. The default is
None, for which the standard Base64 alphabet is used.

May assert or raise a ValueError if the length of altchars is not 2. Raises a TypeError if altchars is not a
bytes-like object.

base64.b64decode(s, altchars=None, validate=False)
Decode the Base64 encoded bytes-like object or ASCII string s and return the decoded bytes.

Optional altcharsmust be a bytes-like object or ASCII string of length 2 which specifies the alternative alphabet
used instead of the + and / characters.

A binascii.Error exception is raised if s is incorrectly padded.

If validate is False (the default), characters that are neither in the normal base-64 alphabet nor the alternative
alphabet are discarded prior to the padding check. If validate is True, these non-alphabet characters in the
input result in a binascii.Error.

20.5. base64— Base16, Base32, Base64, Base85 Data Encodings 1319

https://github.com/python/cpython/tree/3.13/Lib/base64.py
https://datatracker.ietf.org/doc/html/rfc4648.html
https://datatracker.ietf.org/doc/html/rfc4648.html
https://datatracker.ietf.org/doc/html/rfc4648.html
https://datatracker.ietf.org/doc/html/rfc4648.html
https://datatracker.ietf.org/doc/html/rfc2045.html
https://datatracker.ietf.org/doc/html/rfc2045.html

The Python Library Reference, Release 3.13.1

For more information about the strict base64 check, see binascii.a2b_base64()

May assert or raise a ValueError if the length of altchars is not 2.

base64.standard_b64encode(s)
Encode bytes-like object s using the standard Base64 alphabet and return the encoded bytes.

base64.standard_b64decode(s)
Decode bytes-like object or ASCII string s using the standard Base64 alphabet and return the decoded bytes.

base64.urlsafe_b64encode(s)
Encode bytes-like object s using the URL- and filesystem-safe alphabet, which substitutes - instead of + and _
instead of / in the standard Base64 alphabet, and return the encoded bytes. The result can still contain =.

base64.urlsafe_b64decode(s)

Decode bytes-like object or ASCII string s using the URL- and filesystem-safe alphabet, which substitutes -
instead of + and _ instead of / in the standard Base64 alphabet, and return the decoded bytes.

base64.b32encode(s)
Encode the bytes-like object s using Base32 and return the encoded bytes.

base64.b32decode(s, casefold=False, map01=None)
Decode the Base32 encoded bytes-like object or ASCII string s and return the decoded bytes.

Optional casefold is a flag specifying whether a lowercase alphabet is acceptable as input. For security purposes,
the default is False.

RFC 4648 allows for optional mapping of the digit 0 (zero) to the letter O (oh), and for optional mapping
of the digit 1 (one) to either the letter I (eye) or letter L (el). The optional argument map01 when not None,
specifies which letter the digit 1 should be mapped to (when map01 is not None, the digit 0 is always mapped
to the letter O). For security purposes the default is None, so that 0 and 1 are not allowed in the input.

A binascii.Error is raised if s is incorrectly padded or if there are non-alphabet characters present in the
input.

base64.b32hexencode(s)
Similar to b32encode() but uses the Extended Hex Alphabet, as defined in RFC 4648.

Added in version 3.10.

base64.b32hexdecode(s, casefold=False)
Similar to b32decode() but uses the Extended Hex Alphabet, as defined in RFC 4648.

This version does not allow the digit 0 (zero) to the letter O (oh) and digit 1 (one) to either the letter I (eye)
or letter L (el) mappings, all these characters are included in the Extended Hex Alphabet and are not inter-
changeable.

Added in version 3.10.

base64.b16encode(s)

Encode the bytes-like object s using Base16 and return the encoded bytes.

base64.b16decode(s, casefold=False)
Decode the Base16 encoded bytes-like object or ASCII string s and return the decoded bytes.

Optional casefold is a flag specifying whether a lowercase alphabet is acceptable as input. For security purposes,
the default is False.

A binascii.Error is raised if s is incorrectly padded or if there are non-alphabet characters present in the
input.

base64.a85encode(b, *, foldspaces=False, wrapcol=0, pad=False, adobe=False)
Encode the bytes-like object b using Ascii85 and return the encoded bytes.

foldspaces is an optional flag that uses the special short sequence ‘y’ instead of 4 consecutive spaces (ASCII
0x20) as supported by ‘btoa’. This feature is not supported by the “standard” Ascii85 encoding.

1320 Chapter 20. Internet Data Handling

https://datatracker.ietf.org/doc/html/rfc4648.html
https://datatracker.ietf.org/doc/html/rfc4648.html
https://datatracker.ietf.org/doc/html/rfc4648.html

The Python Library Reference, Release 3.13.1

wrapcol controls whether the output should have newline (b'\n') characters added to it. If this is non-zero,
each output line will be at most this many characters long, excluding the trailing newline.

pad controls whether the input is padded to amultiple of 4 before encoding. Note that the btoa implementation
always pads.

adobe controls whether the encoded byte sequence is framed with <~ and ~>, which is used by the Adobe
implementation.

Added in version 3.4.

base64.a85decode(b, *, foldspaces=False, adobe=False, ignorechars=b’ \t\n\r\x0b’)
Decode the Ascii85 encoded bytes-like object or ASCII string b and return the decoded bytes.

foldspaces is a flag that specifies whether the ‘y’ short sequence should be accepted as shorthand for 4 consec-
utive spaces (ASCII 0x20). This feature is not supported by the “standard” Ascii85 encoding.

adobe controls whether the input sequence is in Adobe Ascii85 format (i.e. is framed with <~ and ~>).

ignorechars should be a bytes-like object or ASCII string containing characters to ignore from the input. This
should only contain whitespace characters, and by default contains all whitespace characters in ASCII.

Added in version 3.4.

base64.b85encode(b, pad=False)
Encode the bytes-like object b using base85 (as used in e.g. git-style binary diffs) and return the encoded bytes.

If pad is true, the input is padded with b'\0' so its length is a multiple of 4 bytes before encoding.

Added in version 3.4.

base64.b85decode(b)
Decode the base85-encoded bytes-like object or ASCII string b and return the decoded bytes. Padding is
implicitly removed, if necessary.

Added in version 3.4.

base64.z85encode(s)
Encode the bytes-like object s using Z85 (as used in ZeroMQ) and return the encoded bytes. See Z85 speci-
fication for more information.

Added in version 3.13.

base64.z85decode(s)
Decode the Z85-encoded bytes-like object or ASCII string s and return the decoded bytes. See Z85 specifi-
cation for more information.

Added in version 3.13.

The legacy interface:

base64.decode(input, output)
Decode the contents of the binary input file and write the resulting binary data to the output file. input and
output must be file objects. input will be read until input.readline() returns an empty bytes object.

base64.decodebytes(s)

Decode the bytes-like object s, which must contain one or more lines of base64 encoded data, and return the
decoded bytes.

Added in version 3.1.

base64.encode(input, output)
Encode the contents of the binary input file and write the resulting base64 encoded data to the output file.
input and output must be file objects. input will be read until input.read() returns an empty bytes object.
encode() inserts a newline character (b'\n') after every 76 bytes of the output, as well as ensuring that the
output always ends with a newline, as per RFC 2045 (MIME).

20.5. base64— Base16, Base32, Base64, Base85 Data Encodings 1321

https://rfc.zeromq.org/spec/32/
https://rfc.zeromq.org/spec/32/
https://rfc.zeromq.org/spec/32/
https://rfc.zeromq.org/spec/32/
https://datatracker.ietf.org/doc/html/rfc2045.html

The Python Library Reference, Release 3.13.1

base64.encodebytes(s)
Encode the bytes-like object s, which can contain arbitrary binary data, and return bytes containing the base64-
encoded data, with newlines (b'\n') inserted after every 76 bytes of output, and ensuring that there is a trailing
newline, as per RFC 2045 (MIME).

Added in version 3.1.

An example usage of the module:

>>> import base64

>>> encoded = base64.b64encode(b'data to be encoded')

>>> encoded

b'ZGF0YSB0byBiZSBlbmNvZGVk'

>>> data = base64.b64decode(encoded)

>>> data

b'data to be encoded'

20.5.1 Security Considerations

A new security considerations section was added to RFC 4648 (section 12); it’s recommended to review the security
section for any code deployed to production.

See also

Module binascii
Support module containing ASCII-to-binary and binary-to-ASCII conversions.

RFC 1521 - MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and
Describing the Format of Internet Message Bodies

Section 5.2, “Base64 Content-Transfer-Encoding,” provides the definition of the base64 encoding.

20.6 binascii— Convert between binary and ASCII

The binasciimodule contains a number of methods to convert between binary and various ASCII-encoded binary
representations. Normally, you will not use these functions directly but use wrapper modules like base64 instead.
The binascii module contains low-level functions written in C for greater speed that are used by the higher-level
modules.

Note

a2b_* functions accept Unicode strings containing only ASCII characters. Other functions only accept bytes-like
objects (such as bytes, bytearray and other objects that support the buffer protocol).

Changed in version 3.3: ASCII-only unicode strings are now accepted by the a2b_* functions.

The binascii module defines the following functions:

binascii.a2b_uu(string)
Convert a single line of uuencoded data back to binary and return the binary data. Lines normally contain 45
(binary) bytes, except for the last line. Line data may be followed by whitespace.

binascii.b2a_uu(data, *, backtick=False)
Convert binary data to a line of ASCII characters, the return value is the converted line, including a newline
char. The length of data should be at most 45. If backtick is true, zeros are represented by '`' instead of
spaces.

Changed in version 3.7: Added the backtick parameter.

1322 Chapter 20. Internet Data Handling

https://datatracker.ietf.org/doc/html/rfc2045.html
https://datatracker.ietf.org/doc/html/rfc4648.html
https://datatracker.ietf.org/doc/html/rfc1521.html

The Python Library Reference, Release 3.13.1

binascii.a2b_base64(string, / , *, strict_mode=False)
Convert a block of base64 data back to binary and return the binary data. More than one line may be passed
at a time.

If strict_mode is true, only valid base64 data will be converted. Invalid base64 data will raise binascii.
Error.

Valid base64:

• Conforms to RFC 3548.

• Contains only characters from the base64 alphabet.

• Contains no excess data after padding (including excess padding, newlines, etc.).

• Does not start with a padding.

Changed in version 3.11: Added the strict_mode parameter.

binascii.b2a_base64(data, *, newline=True)

Convert binary data to a line of ASCII characters in base64 coding. The return value is the converted line,
including a newline char if newline is true. The output of this function conforms to RFC 3548.

Changed in version 3.6: Added the newline parameter.

binascii.a2b_qp(data, header=False)
Convert a block of quoted-printable data back to binary and return the binary data. More than one line may be
passed at a time. If the optional argument header is present and true, underscores will be decoded as spaces.

binascii.b2a_qp(data, quotetabs=False, istext=True, header=False)
Convert binary data to a line(s) of ASCII characters in quoted-printable encoding. The return value is the
converted line(s). If the optional argument quotetabs is present and true, all tabs and spaces will be encoded.
If the optional argument istext is present and true, newlines are not encoded but trailing whitespace will be
encoded. If the optional argument header is present and true, spaces will be encoded as underscores per
RFC 1522. If the optional argument header is present and false, newline characters will be encoded as well;
otherwise linefeed conversion might corrupt the binary data stream.

binascii.crc_hqx(data, value)
Compute a 16-bit CRC value of data, starting with value as the initial CRC, and return the result. This uses
the CRC-CCITT polynomial x16 + x12 + x5 + 1, often represented as 0x1021. This CRC is used in the binhex4
format.

binascii.crc32(data[, value])
Compute CRC-32, the unsigned 32-bit checksum of data, starting with an initial CRC of value. The default
initial CRC is zero. The algorithm is consistent with the ZIP file checksum. Since the algorithm is designed
for use as a checksum algorithm, it is not suitable for use as a general hash algorithm. Use as follows:

print(binascii.crc32(b"hello world"))

Or, in two pieces:

crc = binascii.crc32(b"hello")

crc = binascii.crc32(b" world", crc)

print('crc32 = {:#010x}'.format(crc))

Changed in version 3.0: The result is always unsigned.

binascii.b2a_hex(data[, sep[, bytes_per_sep=1]])
binascii.hexlify(data[, sep[, bytes_per_sep=1]])

Return the hexadecimal representation of the binary data. Every byte of data is converted into the corre-
sponding 2-digit hex representation. The returned bytes object is therefore twice as long as the length of
data.

Similar functionality (but returning a text string) is also conveniently accessible using the bytes.hex()

method.

20.6. binascii— Convert between binary and ASCII 1323

https://datatracker.ietf.org/doc/html/rfc3548.html
https://datatracker.ietf.org/doc/html/rfc3548.html
https://datatracker.ietf.org/doc/html/rfc1522.html

The Python Library Reference, Release 3.13.1

If sep is specified, it must be a single character str or bytes object. It will be inserted in the output after every
bytes_per_sep input bytes. Separator placement is counted from the right end of the output by default, if you
wish to count from the left, supply a negative bytes_per_sep value.

>>> import binascii

>>> binascii.b2a_hex(b'\xb9\x01\xef')

b'b901ef'

>>> binascii.hexlify(b'\xb9\x01\xef', '-')

b'b9-01-ef'

>>> binascii.b2a_hex(b'\xb9\x01\xef', b'_', 2)

b'b9_01ef'

>>> binascii.b2a_hex(b'\xb9\x01\xef', b' ', -2)

b'b901 ef'

Changed in version 3.8: The sep and bytes_per_sep parameters were added.

binascii.a2b_hex(hexstr)

binascii.unhexlify(hexstr)
Return the binary data represented by the hexadecimal string hexstr. This function is the inverse of
b2a_hex(). hexstr must contain an even number of hexadecimal digits (which can be upper or lower case),
otherwise an Error exception is raised.

Similar functionality (accepting only text string arguments, but more liberal towards whitespace) is also ac-
cessible using the bytes.fromhex() class method.

exception binascii.Error

Exception raised on errors. These are usually programming errors.

exception binascii.Incomplete

Exception raised on incomplete data. These are usually not programming errors, but may be handled by reading
a little more data and trying again.

See also

Module base64
Support for RFC compliant base64-style encoding in base 16, 32, 64, and 85.

Module quopri
Support for quoted-printable encoding used in MIME email messages.

20.7 quopri— Encode and decode MIME quoted-printable data

Source code: Lib/quopri.py

This module performs quoted-printable transport encoding and decoding, as defined in RFC 1521: “MIME (Mul-
tipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet
Message Bodies”. The quoted-printable encoding is designed for data where there are relatively few nonprintable
characters; the base64 encoding scheme available via the base64 module is more compact if there are many such
characters, as when sending a graphics file.

quopri.decode(input, output, header=False)
Decode the contents of the input file and write the resulting decoded binary data to the output file. input and
output must be binary file objects. If the optional argument header is present and true, underscore will be
decoded as space. This is used to decode “Q”-encoded headers as described in RFC 1522: “MIME (Multi-
purpose Internet Mail Extensions) Part Two: Message Header Extensions for Non-ASCII Text”.

1324 Chapter 20. Internet Data Handling

https://github.com/python/cpython/tree/3.13/Lib/quopri.py
https://datatracker.ietf.org/doc/html/rfc1521.html
https://datatracker.ietf.org/doc/html/rfc1522.html

The Python Library Reference, Release 3.13.1

quopri.encode(input, output, quotetabs, header=False)
Encode the contents of the input file and write the resulting quoted-printable data to the output file. input and
output must be binary file objects. quotetabs, a non-optional flag which controls whether to encode embedded
spaces and tabs; when true it encodes such embedded whitespace, and when false it leaves them unencoded.
Note that spaces and tabs appearing at the end of lines are always encoded, as per RFC 1521. header is a flag
which controls if spaces are encoded as underscores as per RFC 1522.

quopri.decodestring(s, header=False)
Like decode(), except that it accepts a source bytes and returns the corresponding decoded bytes.

quopri.encodestring(s, quotetabs=False, header=False)
Like encode(), except that it accepts a source bytes and returns the corresponding encoded bytes. By
default, it sends a False value to quotetabs parameter of the encode() function.

See also

Module base64
Encode and decode MIME base64 data

20.7. quopri— Encode and decode MIME quoted-printable data 1325

https://datatracker.ietf.org/doc/html/rfc1521.html
https://datatracker.ietf.org/doc/html/rfc1522.html

The Python Library Reference, Release 3.13.1

1326 Chapter 20. Internet Data Handling

CHAPTER

TWENTYONE

STRUCTURED MARKUP PROCESSING TOOLS

Python supports a variety of modules to work with various forms of structured data markup. This includes modules
to work with the Standard Generalized Markup Language (SGML) and the Hypertext Markup Language (HTML),
and several interfaces for working with the Extensible Markup Language (XML).

21.1 html— HyperText Markup Language support

Source code: Lib/html/__init__.py

This module defines utilities to manipulate HTML.

html.escape(s, quote=True)
Convert the characters &, < and > in string s to HTML-safe sequences. Use this if you need to display text that
might contain such characters in HTML. If the optional flag quote is true, the characters (") and (') are also
translated; this helps for inclusion in an HTML attribute value delimited by quotes, as in .

Added in version 3.2.

html.unescape(s)
Convert all named and numeric character references (e.g. >, >, >) in the string s to the corre-
sponding Unicode characters. This function uses the rules defined by the HTML 5 standard for both valid and
invalid character references, and the list of HTML 5 named character references.

Added in version 3.4.

Submodules in the html package are:

• html.parser – HTML/XHTML parser with lenient parsing mode

• html.entities – HTML entity definitions

21.2 html.parser— Simple HTML and XHTML parser

Source code: Lib/html/parser.py

This module defines a class HTMLParser which serves as the basis for parsing text files formatted in HTML (Hy-
perText Mark-up Language) and XHTML.

class html.parser.HTMLParser(*, convert_charrefs=True)
Create a parser instance able to parse invalid markup.

If convert_charrefs is True (the default), all character references (except the ones in script/style elements)
are automatically converted to the corresponding Unicode characters.

1327

https://github.com/python/cpython/tree/3.13/Lib/html/__init__.py
https://github.com/python/cpython/tree/3.13/Lib/html/parser.py

The Python Library Reference, Release 3.13.1

An HTMLParser instance is fed HTML data and calls handler methods when start tags, end tags, text, com-
ments, and other markup elements are encountered. The user should subclass HTMLParser and override its
methods to implement the desired behavior.

This parser does not check that end tags match start tags or call the end-tag handler for elements which are
closed implicitly by closing an outer element.

Changed in version 3.4: convert_charrefs keyword argument added.

Changed in version 3.5: The default value for argument convert_charrefs is now True.

21.2.1 Example HTML Parser Application

As a basic example, below is a simple HTML parser that uses the HTMLParser class to print out start tags, end tags,
and data as they are encountered:

from html.parser import HTMLParser

class MyHTMLParser(HTMLParser):

def handle_starttag(self, tag, attrs):

print("Encountered a start tag:", tag)

def handle_endtag(self, tag):

print("Encountered an end tag :", tag)

def handle_data(self, data):

print("Encountered some data :", data)

parser = MyHTMLParser()

parser.feed('<html><head><title>Test</title></head>'

'<body><h1>Parse me!</h1></body></html>')

The output will then be:

Encountered a start tag: html

Encountered a start tag: head

Encountered a start tag: title

Encountered some data : Test

Encountered an end tag : title

Encountered an end tag : head

Encountered a start tag: body

Encountered a start tag: h1

Encountered some data : Parse me!

Encountered an end tag : h1

Encountered an end tag : body

Encountered an end tag : html

21.2.2 HTMLParser Methods

HTMLParser instances have the following methods:

HTMLParser.feed(data)

Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is
buffered until more data is fed or close() is called. data must be str.

HTMLParser.close()

Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be
redefined by a derived class to define additional processing at the end of the input, but the redefined version
should always call the HTMLParser base class method close().

1328 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

HTMLParser.reset()

Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

HTMLParser.getpos()

Return current line number and offset.

HTMLParser.get_starttag_text()

Return the text of the most recently opened start tag. This should not normally be needed for structured
processing, but may be useful in dealing with HTML “as deployed” or for re-generating input with minimal
changes (whitespace between attributes can be preserved, etc.).

The following methods are called when data or markup elements are encountered and they are meant to be overridden
in a subclass. The base class implementations do nothing (except for handle_startendtag()):

HTMLParser.handle_starttag(tag, attrs)
This method is called to handle the start tag of an element (e.g. <div id="main">).

The tag argument is the name of the tag converted to lower case. The attrs argument is a list of (name,
value) pairs containing the attributes found inside the tag’s <> brackets. The name will be translated to lower
case, and quotes in the value have been removed, and character and entity references have been replaced.

For instance, for the tag , this method would be called as
handle_starttag('a', [('href', 'https://www.cwi.nl/')]).

All entity references from html.entities are replaced in the attribute values.

HTMLParser.handle_endtag(tag)
This method is called to handle the end tag of an element (e.g. </div>).

The tag argument is the name of the tag converted to lower case.

HTMLParser.handle_startendtag(tag, attrs)
Similar to handle_starttag(), but called when the parser encounters an XHTML-style empty tag (). This method may be overridden by subclasses which require this particular lexical information; the
default implementation simply calls handle_starttag() and handle_endtag().

HTMLParser.handle_data(data)
This method is called to process arbitrary data (e.g. text nodes and the content of <script>...</script>
and <style>...</style>).

HTMLParser.handle_entityref(name)
This method is called to process a named character reference of the form &name; (e.g. >), where name is
a general entity reference (e.g. 'gt'). This method is never called if convert_charrefs is True.

HTMLParser.handle_charref(name)
This method is called to process decimal and hexadecimal numeric character references of the form &#NNN;

and &#xNNN;. For example, the decimal equivalent for > is >, whereas the hexadecimal is >;
in this case the method will receive '62' or 'x3E'. This method is never called if convert_charrefs is True.

HTMLParser.handle_comment(data)
This method is called when a comment is encountered (e.g. <!--comment-->).

For example, the comment <!-- comment --> will cause this method to be called with the argument '
comment '.

The content of Internet Explorer conditional comments (condcoms) will also be sent to this method,
so, for <!--[if IE 9]>IE9-specific content<![endif]-->, this method will receive '[if IE

9]>IE9-specific content<![endif]'.

HTMLParser.handle_decl(decl)

This method is called to handle an HTML doctype declaration (e.g. <!DOCTYPE html>).

The decl parameter will be the entire contents of the declaration inside the <!...> markup (e.g. 'DOCTYPE
html').

21.2. html.parser— Simple HTML and XHTML parser 1329

The Python Library Reference, Release 3.13.1

HTMLParser.handle_pi(data)
Method called when a processing instruction is encountered. The data parameter will contain the entire pro-
cessing instruction. For example, for the processing instruction <?proc color='red'>, this method would
be called as handle_pi("proc color='red'"). It is intended to be overridden by a derived class; the
base class implementation does nothing.

Note

The HTMLParser class uses the SGML syntactic rules for processing instructions. An XHTML processing
instruction using the trailing '?' will cause the '?' to be included in data.

HTMLParser.unknown_decl(data)

This method is called when an unrecognized declaration is read by the parser.

The data parameter will be the entire contents of the declaration inside the <![...]>markup. It is sometimes
useful to be overridden by a derived class. The base class implementation does nothing.

21.2.3 Examples

The following class implements a parser that will be used to illustrate more examples:

from html.parser import HTMLParser

from html.entities import name2codepoint

class MyHTMLParser(HTMLParser):

def handle_starttag(self, tag, attrs):

print("Start tag:", tag)

for attr in attrs:

print(" attr:", attr)

def handle_endtag(self, tag):

print("End tag :", tag)

def handle_data(self, data):

print("Data :", data)

def handle_comment(self, data):

print("Comment :", data)

def handle_entityref(self, name):

c = chr(name2codepoint[name])

print("Named ent:", c)

def handle_charref(self, name):

if name.startswith('x'):

c = chr(int(name[1:], 16))

else:

c = chr(int(name))

print("Num ent :", c)

def handle_decl(self, data):

print("Decl :", data)

parser = MyHTMLParser()

Parsing a doctype:

1330 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

>>> parser.feed('<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" '

... '"http://www.w3.org/TR/html4/strict.dtd">')

Decl : DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/

↪→html4/strict.dtd"

Parsing an element with a few attributes and a title:

>>> parser.feed('')

Start tag: img

attr: ('src', 'python-logo.png')

attr: ('alt', 'The Python logo')

>>>

>>> parser.feed('<h1>Python</h1>')

Start tag: h1

Data : Python

End tag : h1

The content of script and style elements is returned as is, without further parsing:

>>> parser.feed('<style type="text/css">#python { color: green }</style>')

Start tag: style

attr: ('type', 'text/css')

Data : #python { color: green }

End tag : style

>>> parser.feed('<script type="text/javascript">'

... 'alert("hello!");</script>')

Start tag: script

attr: ('type', 'text/javascript')

Data : alert("hello!");

End tag : script

Parsing comments:

>>> parser.feed('<!-- a comment -->'

... '<!--[if IE 9]>IE-specific content<![endif]-->')

Comment : a comment

Comment : [if IE 9]>IE-specific content<![endif]

Parsing named and numeric character references and converting them to the correct char (note: these 3 references
are all equivalent to '>'):

>>> parser.feed('>>>')

Named ent: >

Num ent : >

Num ent : >

Feeding incomplete chunks to feed() works, but handle_data() might be called more than once (unless con-
vert_charrefs is set to True):

>>> for chunk in ['<sp', 'an>buff', 'ered ', 'text</s', 'pan>']:

... parser.feed(chunk)

...

Start tag: span

Data : buff

Data : ered

Data : text

End tag : span

21.2. html.parser— Simple HTML and XHTML parser 1331

The Python Library Reference, Release 3.13.1

Parsing invalid HTML (e.g. unquoted attributes) also works:

>>> parser.feed('<p>tag soup</p >')

Start tag: p

Start tag: a

attr: ('class', 'link')

attr: ('href', '#main')

Data : tag soup

End tag : p

End tag : a

21.3 html.entities— Definitions of HTML general entities

Source code: Lib/html/entities.py

This module defines four dictionaries, html5, name2codepoint, codepoint2name, and entitydefs.

html.entities.html5

A dictionary that maps HTML5 named character references1 to the equivalent Unicode character(s), e.g.
html5['gt;'] == '>'. Note that the trailing semicolon is included in the name (e.g. 'gt;'), however
some of the names are accepted by the standard even without the semicolon: in this case the name is present
with and without the ';'. See also html.unescape().

Added in version 3.3.

html.entities.entitydefs

A dictionary mapping XHTML 1.0 entity definitions to their replacement text in ISO Latin-1.

html.entities.name2codepoint

A dictionary that maps HTML4 entity names to the Unicode code points.

html.entities.codepoint2name

A dictionary that maps Unicode code points to HTML4 entity names.

21.4 XML Processing Modules

Source code: Lib/xml/

Python’s interfaces for processing XML are grouped in the xml package.

Warning

The XML modules are not secure against erroneous or maliciously constructed data. If you need to parse un-
trusted or unauthenticated data see the XML vulnerabilities and The defusedxml Package sections.

It is important to note that modules in the xml package require that there be at least one SAX-compliant XML parser
available. The Expat parser is included with Python, so the xml.parsers.expat module will always be available.

The documentation for the xml.dom and xml.sax packages are the definition of the Python bindings for the DOM
and SAX interfaces.

The XML handling submodules are:

• xml.etree.ElementTree: the ElementTree API, a simple and lightweight XML processor

1 See https://html.spec.whatwg.org/multipage/named-characters.html#named-character-references

1332 Chapter 21. Structured Markup Processing Tools

https://github.com/python/cpython/tree/3.13/Lib/html/entities.py
https://github.com/python/cpython/tree/3.13/Lib/xml/
https://html.spec.whatwg.org/multipage/named-characters.html#named-character-references

The Python Library Reference, Release 3.13.1

• xml.dom: the DOM API definition

• xml.dom.minidom: a minimal DOM implementation

• xml.dom.pulldom: support for building partial DOM trees

• xml.sax: SAX2 base classes and convenience functions

• xml.parsers.expat: the Expat parser binding

21.4.1 XML vulnerabilities

The XML processing modules are not secure against maliciously constructed data. An attacker can abuse XML
features to carry out denial of service attacks, access local files, generate network connections to other machines, or
circumvent firewalls.

The following table gives an overview of the known attacks and whether the various modules are vulnerable to them.

kind sax etree minidom pulldom xmlrpc

billion laughs Vulnerable
(1)

Vulnerable
(1)

Vulnerable
(1)

Vulnerable
(1)

Vulnerable
(1)

quadratic blowup Vulnerable
(1)

Vulnerable
(1)

Vulnerable
(1)

Vulnerable
(1)

Vulnerable
(1)

external entity expan-
sion

Safe (5) Safe (2) Safe (3) Safe (5) Safe (4)

DTD retrieval Safe (5) Safe Safe Safe (5) Safe
decompression bomb Safe Safe Safe Safe Vulnerable
large tokens Vulnerable

(6)
Vulnerable
(6)

Vulnerable
(6)

Vulnerable
(6)

Vulnerable
(6)

1. Expat 2.4.1 and newer is not vulnerable to the “billion laughs” and “quadratic blowup” vulnerabilities. Items still
listed as vulnerable due to potential reliance on system-provided libraries. Check pyexpat.EXPAT_VERSION.

2. xml.etree.ElementTree doesn’t expand external entities and raises a ParseError when an entity occurs.

3. xml.dom.minidom doesn’t expand external entities and simply returns the unexpanded entity verbatim.

4. xmlrpc.client doesn’t expand external entities and omits them.

5. Since Python 3.7.1, external general entities are no longer processed by default.

6. Expat 2.6.0 and newer is not vulnerable to denial of service through quadratic runtime caused by parsing
large tokens. Items still listed as vulnerable due to potential reliance on system-provided libraries. Check
pyexpat.EXPAT_VERSION.

billion laughs / exponential entity expansion
The Billion Laughs attack – also known as exponential entity expansion – uses multiple levels of nested entities.
Each entity refers to another entity several times, and the final entity definition contains a small string. The
exponential expansion results in several gigabytes of text and consumes lots of memory and CPU time.

quadratic blowup entity expansion
A quadratic blowup attack is similar to a Billion Laughs attack; it abuses entity expansion, too. Instead of
nested entities it repeats one large entity with a couple of thousand chars over and over again. The attack isn’t
as efficient as the exponential case but it avoids triggering parser countermeasures that forbid deeply nested
entities.

external entity expansion
Entity declarations can contain more than just text for replacement. They can also point to external resources
or local files. The XML parser accesses the resource and embeds the content into the XML document.

DTD retrieval
Some XML libraries like Python’s xml.dom.pulldom retrieve document type definitions from remote or
local locations. The feature has similar implications as the external entity expansion issue.

21.4. XML Processing Modules 1333

https://en.wikipedia.org/wiki/Document_type_definition
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Document_type_definition

The Python Library Reference, Release 3.13.1

decompression bomb
Decompression bombs (aka ZIP bomb) apply to all XML libraries that can parse compressed XML streams
such as gzipped HTTP streams or LZMA-compressed files. For an attacker it can reduce the amount of
transmitted data by three magnitudes or more.

large tokens
Expat needs to re-parse unfinished tokens; without the protection introduced in Expat 2.6.0, this can lead to
quadratic runtime that can be used to cause denial of service in the application parsing XML. The issue is
known as CVE 2023-52425.

The documentation for defusedxml on PyPI has further information about all known attack vectors with examples
and references.

21.4.2 The defusedxml Package

defusedxml is a pure Python package with modified subclasses of all stdlib XML parsers that prevent any potentially
malicious operation. Use of this package is recommended for any server code that parses untrusted XML data.
The package also ships with example exploits and extended documentation on more XML exploits such as XPath
injection.

21.5 xml.etree.ElementTree— The ElementTree XML API

Source code: Lib/xml/etree/ElementTree.py

The xml.etree.ElementTreemodule implements a simple and efficient API for parsing and creating XML data.

Changed in version 3.3: This module will use a fast implementation whenever available.

Deprecated since version 3.3: The xml.etree.cElementTree module is deprecated.

Warning

The xml.etree.ElementTreemodule is not secure against maliciously constructed data. If you need to parse
untrusted or unauthenticated data see XML vulnerabilities.

21.5.1 Tutorial

This is a short tutorial for using xml.etree.ElementTree (ET in short). The goal is to demonstrate some of the
building blocks and basic concepts of the module.

XML tree and elements

XML is an inherently hierarchical data format, and the most natural way to represent it is with a tree. ET has two
classes for this purpose - ElementTree represents the whole XML document as a tree, and Element represents a
single node in this tree. Interactions with the whole document (reading and writing to/from files) are usually done
on the ElementTree level. Interactions with a single XML element and its sub-elements are done on the Element
level.

Parsing XML

We’ll be using the fictive country_data.xml XML document as the sample data for this section:

<?xml version="1.0"?>

<data>

<country name="Liechtenstein">

<rank>1</rank>

<year>2008</year>

(continues on next page)

1334 Chapter 21. Structured Markup Processing Tools

https://en.wikipedia.org/wiki/Zip_bomb
https://www.cve.org/CVERecord?id=CVE-2023-52425
https://pypi.org/project/defusedxml/
https://pypi.org/project/defusedxml/
https://github.com/python/cpython/tree/3.13/Lib/xml/etree/ElementTree.py

The Python Library Reference, Release 3.13.1

(continued from previous page)

<gdppc>141100</gdppc>

<neighbor name="Austria" direction="E"/>

<neighbor name="Switzerland" direction="W"/>

</country>

<country name="Singapore">

<rank>4</rank>

<year>2011</year>

<gdppc>59900</gdppc>

<neighbor name="Malaysia" direction="N"/>

</country>

<country name="Panama">

<rank>68</rank>

<year>2011</year>

<gdppc>13600</gdppc>

<neighbor name="Costa Rica" direction="W"/>

<neighbor name="Colombia" direction="E"/>

</country>

</data>

We can import this data by reading from a file:

import xml.etree.ElementTree as ET

tree = ET.parse('country_data.xml')

root = tree.getroot()

Or directly from a string:

root = ET.fromstring(country_data_as_string)

fromstring() parses XML from a string directly into an Element, which is the root element of the parsed tree.
Other parsing functions may create an ElementTree. Check the documentation to be sure.

As an Element, root has a tag and a dictionary of attributes:

>>> root.tag

'data'

>>> root.attrib

{}

It also has children nodes over which we can iterate:

>>> for child in root:

... print(child.tag, child.attrib)

...

country {'name': 'Liechtenstein'}

country {'name': 'Singapore'}

country {'name': 'Panama'}

Children are nested, and we can access specific child nodes by index:

>>> root[0][1].text

'2008'

Note

Not all elements of the XML input will end up as elements of the parsed tree. Currently, this module skips over
any XML comments, processing instructions, and document type declarations in the input. Nevertheless, trees

21.5. xml.etree.ElementTree— The ElementTree XML API 1335

The Python Library Reference, Release 3.13.1

built using this module’s API rather than parsing from XML text can have comments and processing instructions
in them; they will be included when generating XML output. A document type declaration may be accessed by
passing a custom TreeBuilder instance to the XMLParser constructor.

Pull API for non-blocking parsing

Most parsing functions provided by this module require the whole document to be read at once before returning
any result. It is possible to use an XMLParser and feed data into it incrementally, but it is a push API that calls
methods on a callback target, which is too low-level and inconvenient for most needs. Sometimes what the user really
wants is to be able to parse XML incrementally, without blocking operations, while enjoying the convenience of fully
constructed Element objects.

Themost powerful tool for doing this is XMLPullParser. It does not require a blocking read to obtain the XML data,
and is instead fed with data incrementally with XMLPullParser.feed() calls. To get the parsed XML elements,
call XMLPullParser.read_events(). Here is an example:

>>> parser = ET.XMLPullParser(['start', 'end'])

>>> parser.feed('<mytag>sometext')

>>> list(parser.read_events())

[('start', <Element 'mytag' at 0x7fa66db2be58>)]

>>> parser.feed(' more text</mytag>')

>>> for event, elem in parser.read_events():

... print(event)

... print(elem.tag, 'text=', elem.text)

...

end

mytag text= sometext more text

The obvious use case is applications that operate in a non-blocking fashion where the XML data is being received
from a socket or read incrementally from some storage device. In such cases, blocking reads are unacceptable.

Because it’s so flexible, XMLPullParser can be inconvenient to use for simpler use-cases. If you don’t mind your
application blocking on reading XML data but would still like to have incremental parsing capabilities, take a look
at iterparse(). It can be useful when you’re reading a large XML document and don’t want to hold it wholly in
memory.

Where immediate feedback through events is wanted, calling method XMLPullParser.flush() can help reduce
delay; please make sure to study the related security notes.

Finding interesting elements

Element has some useful methods that help iterate recursively over all the sub-tree below it (its children, their
children, and so on). For example, Element.iter():

>>> for neighbor in root.iter('neighbor'):

... print(neighbor.attrib)

...

{'name': 'Austria', 'direction': 'E'}

{'name': 'Switzerland', 'direction': 'W'}

{'name': 'Malaysia', 'direction': 'N'}

{'name': 'Costa Rica', 'direction': 'W'}

{'name': 'Colombia', 'direction': 'E'}

Element.findall() finds only elements with a tag which are direct children of the current element. Element.
find() finds the first child with a particular tag, and Element.text accesses the element’s text content. Element.
get() accesses the element’s attributes:

>>> for country in root.findall('country'):

... rank = country.find('rank').text

(continues on next page)

1336 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

... name = country.get('name')

... print(name, rank)

...

Liechtenstein 1

Singapore 4

Panama 68

More sophisticated specification of which elements to look for is possible by using XPath.

Modifying an XML File

ElementTree provides a simple way to build XML documents and write them to files. The ElementTree.

write() method serves this purpose.

Once created, an Element object may be manipulated by directly changing its fields (such as Element.text),
adding and modifying attributes (Element.set() method), as well as adding new children (for example with
Element.append()).

Let’s say we want to add one to each country’s rank, and add an updated attribute to the rank element:

>>> for rank in root.iter('rank'):

... new_rank = int(rank.text) + 1

... rank.text = str(new_rank)

... rank.set('updated', 'yes')

...

>>> tree.write('output.xml')

Our XML now looks like this:

<?xml version="1.0"?>

<data>

<country name="Liechtenstein">

<rank updated="yes">2</rank>

<year>2008</year>

<gdppc>141100</gdppc>

<neighbor name="Austria" direction="E"/>

<neighbor name="Switzerland" direction="W"/>

</country>

<country name="Singapore">

<rank updated="yes">5</rank>

<year>2011</year>

<gdppc>59900</gdppc>

<neighbor name="Malaysia" direction="N"/>

</country>

<country name="Panama">

<rank updated="yes">69</rank>

<year>2011</year>

<gdppc>13600</gdppc>

<neighbor name="Costa Rica" direction="W"/>

<neighbor name="Colombia" direction="E"/>

</country>

</data>

We can remove elements using Element.remove(). Let’s say we want to remove all countries with a rank higher
than 50:

>>> for country in root.findall('country'):

... # using root.findall() to avoid removal during traversal

(continues on next page)

21.5. xml.etree.ElementTree— The ElementTree XML API 1337

The Python Library Reference, Release 3.13.1

(continued from previous page)

... rank = int(country.find('rank').text)

... if rank > 50:

... root.remove(country)

...

>>> tree.write('output.xml')

Note that concurrent modification while iterating can lead to problems, just like when iterating and modifying Python
lists or dicts. Therefore, the example first collects all matching elements with root.findall(), and only then
iterates over the list of matches.

Our XML now looks like this:

<?xml version="1.0"?>

<data>

<country name="Liechtenstein">

<rank updated="yes">2</rank>

<year>2008</year>

<gdppc>141100</gdppc>

<neighbor name="Austria" direction="E"/>

<neighbor name="Switzerland" direction="W"/>

</country>

<country name="Singapore">

<rank updated="yes">5</rank>

<year>2011</year>

<gdppc>59900</gdppc>

<neighbor name="Malaysia" direction="N"/>

</country>

</data>

Building XML documents

The SubElement() function also provides a convenient way to create new sub-elements for a given element:

>>> a = ET.Element('a')

>>> b = ET.SubElement(a, 'b')

>>> c = ET.SubElement(a, 'c')

>>> d = ET.SubElement(c, 'd')

>>> ET.dump(a)

<a><c><d /></c>

Parsing XML with Namespaces

If the XML input has namespaces, tags and attributes with prefixes in the form prefix:sometag get expanded to
{uri}sometag where the prefix is replaced by the full URI. Also, if there is a default namespace, that full URI gets
prepended to all of the non-prefixed tags.

Here is an XML example that incorporates two namespaces, one with the prefix “fictional” and the other serving as
the default namespace:

<?xml version="1.0"?>

<actors xmlns:fictional="http://characters.example.com"

xmlns="http://people.example.com">

<actor>

<name>John Cleese</name>

<fictional:character>Lancelot</fictional:character>

<fictional:character>Archie Leach</fictional:character>

</actor>

(continues on next page)

1338 Chapter 21. Structured Markup Processing Tools

https://en.wikipedia.org/wiki/XML_namespace
https://www.w3.org/TR/xml-names/#defaulting

The Python Library Reference, Release 3.13.1

(continued from previous page)

<actor>

<name>Eric Idle</name>

<fictional:character>Sir Robin</fictional:character>

<fictional:character>Gunther</fictional:character>

<fictional:character>Commander Clement</fictional:character>

</actor>

</actors>

One way to search and explore this XML example is to manually add the URI to every tag or attribute in the xpath
of a find() or findall():

root = fromstring(xml_text)

for actor in root.findall('{http://people.example.com}actor'):

name = actor.find('{http://people.example.com}name')

print(name.text)

for char in actor.findall('{http://characters.example.com}character'):

print(' |-->', char.text)

A better way to search the namespaced XML example is to create a dictionary with your own prefixes and use those
in the search functions:

ns = {'real_person': 'http://people.example.com',

'role': 'http://characters.example.com'}

for actor in root.findall('real_person:actor', ns):

name = actor.find('real_person:name', ns)

print(name.text)

for char in actor.findall('role:character', ns):

print(' |-->', char.text)

These two approaches both output:

John Cleese

|--> Lancelot

|--> Archie Leach

Eric Idle

|--> Sir Robin

|--> Gunther

|--> Commander Clement

21.5.2 XPath support

This module provides limited support for XPath expressions for locating elements in a tree. The goal is to support a
small subset of the abbreviated syntax; a full XPath engine is outside the scope of the module.

Example

Here’s an example that demonstrates some of the XPath capabilities of the module. We’ll be using the countrydata
XML document from the Parsing XML section:

import xml.etree.ElementTree as ET

root = ET.fromstring(countrydata)

Top-level elements

root.findall(".")

(continues on next page)

21.5. xml.etree.ElementTree— The ElementTree XML API 1339

https://www.w3.org/TR/xpath

The Python Library Reference, Release 3.13.1

(continued from previous page)

All 'neighbor' grand-children of 'country' children of the top-level

elements

root.findall("./country/neighbor")

Nodes with name='Singapore' that have a 'year' child

root.findall(".//year/..[@name='Singapore']")

'year' nodes that are children of nodes with name='Singapore'

root.findall(".//*[@name='Singapore']/year")

All 'neighbor' nodes that are the second child of their parent

root.findall(".//neighbor[2]")

For XML with namespaces, use the usual qualified {namespace}tag notation:

All dublin-core "title" tags in the document

root.findall(".//{http://purl.org/dc/elements/1.1/}title")

1340 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

Supported XPath syntax

Syntax Meaning

tag Selects all child elements with the given tag. For example, spam selects all child
elements named spam, and spam/egg selects all grandchildren named egg in all
children named spam. {namespace}* selects all tags in the given namespace,
{*}spam selects tags named spam in any (or no) namespace, and {}* only selects
tags that are not in a namespace.
Changed in version 3.8: Support for star-wildcards was added.

* Selects all child elements, including comments and processing instructions. For
example, */egg selects all grandchildren named egg.

. Selects the current node. This is mostly useful at the beginning of the path, to
indicate that it’s a relative path.

// Selects all subelements, on all levels beneath the current element. For example,
.//egg selects all egg elements in the entire tree.

.. Selects the parent element. Returns None if the path attempts to reach the ancestors
of the start element (the element find was called on).

[@attrib] Selects all elements that have the given attribute.
[@attrib='value'] Selects all elements for which the given attribute has the given value. The value

cannot contain quotes.
[@attrib!='value'] Selects all elements for which the given attribute does not have the given value. The

value cannot contain quotes.
Added in version 3.10.

[tag] Selects all elements that have a child named tag. Only immediate children are
supported.

[.='text'] Selects all elements whose complete text content, including descendants, equals the
given text.
Added in version 3.7.

[.!='text'] Selects all elements whose complete text content, including descendants, does not
equal the given text.
Added in version 3.10.

[tag='text'] Selects all elements that have a child named tag whose complete text content,
including descendants, equals the given text.

[tag!='text'] Selects all elements that have a child named tag whose complete text content,
including descendants, does not equal the given text.
Added in version 3.10.

[position] Selects all elements that are located at the given position. The position can be either
an integer (1 is the first position), the expression last() (for the last position), or a
position relative to the last position (e.g. last()-1).

Predicates (expressions within square brackets) must be preceded by a tag name, an asterisk, or another predicate.
position predicates must be preceded by a tag name.

21.5.3 Reference

Functions

xml.etree.ElementTree.canonicalize(xml_data=None, *, out=None, from_file=None, **options)
C14N 2.0 transformation function.

Canonicalization is a way to normalise XML output in a way that allows byte-by-byte comparisons and dig-
ital signatures. It reduces the freedom that XML serializers have and instead generates a more constrained
XML representation. The main restrictions regard the placement of namespace declarations, the ordering of
attributes, and ignorable whitespace.

This function takes an XML data string (xml_data) or a file path or file-like object (from_file) as input, converts
it to the canonical form, and writes it out using the out file(-like) object, if provided, or returns it as a text string
if not. The output file receives text, not bytes. It should therefore be opened in text mode with utf-8 encoding.

21.5. xml.etree.ElementTree— The ElementTree XML API 1341

https://www.w3.org/TR/xml-c14n2/

The Python Library Reference, Release 3.13.1

Typical uses:

xml_data = "<root>...</root>"

print(canonicalize(xml_data))

with open("c14n_output.xml", mode='w', encoding='utf-8') as out_file:

canonicalize(xml_data, out=out_file)

with open("c14n_output.xml", mode='w', encoding='utf-8') as out_file:

canonicalize(from_file="inputfile.xml", out=out_file)

The configuration options are as follows:

• with_comments: set to true to include comments (default: false)

• strip_text: set to true to strip whitespace before and after text content
(default: false)

• rewrite_prefixes: set to true to replace namespace prefixes by “n{number}”
(default: false)

• qname_aware_tags: a set of qname aware tag names in which prefixes
should be replaced in text content (default: empty)

• qname_aware_attrs: a set of qname aware attribute names in which prefixes
should be replaced in text content (default: empty)

• exclude_attrs: a set of attribute names that should not be serialised

• exclude_tags: a set of tag names that should not be serialised

In the option list above, “a set” refers to any collection or iterable of strings, no ordering is expected.

Added in version 3.8.

xml.etree.ElementTree.Comment(text=None)
Comment element factory. This factory function creates a special element that will be serialized as an XML
comment by the standard serializer. The comment string can be either a bytestring or a Unicode string. text is
a string containing the comment string. Returns an element instance representing a comment.

Note that XMLParser skips over comments in the input instead of creating comment objects for them. An
ElementTree will only contain comment nodes if they have been inserted into to the tree using one of the
Element methods.

xml.etree.ElementTree.dump(elem)
Writes an element tree or element structure to sys.stdout. This function should be used for debugging only.

The exact output format is implementation dependent. In this version, it’s written as an ordinary XML file.

elem is an element tree or an individual element.

Changed in version 3.8: The dump() function now preserves the attribute order specified by the user.

xml.etree.ElementTree.fromstring(text, parser=None)
Parses an XML section from a string constant. Same as XML(). text is a string containing XML data. parser
is an optional parser instance. If not given, the standard XMLParser parser is used. Returns an Element
instance.

xml.etree.ElementTree.fromstringlist(sequence, parser=None)
Parses an XML document from a sequence of string fragments. sequence is a list or other sequence containing
XML data fragments. parser is an optional parser instance. If not given, the standard XMLParser parser is
used. Returns an Element instance.

Added in version 3.2.

1342 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

xml.etree.ElementTree.indent(tree, space=’ ’, level=0)
Appends whitespace to the subtree to indent the tree visually. This can be used to generate pretty-printed XML
output. tree can be an Element or ElementTree. space is the whitespace string that will be inserted for each
indentation level, two space characters by default. For indenting partial subtrees inside of an already indented
tree, pass the initial indentation level as level.

Added in version 3.9.

xml.etree.ElementTree.iselement(element)

Check if an object appears to be a valid element object. element is an element instance. Return True if this is
an element object.

xml.etree.ElementTree.iterparse(source, events=None, parser=None)
Parses an XML section into an element tree incrementally, and reports what’s going on to the user. source is
a filename or file object containing XML data. events is a sequence of events to report back. The supported
events are the strings "start", "end", "comment", "pi", "start-ns" and "end-ns" (the “ns” events are
used to get detailed namespace information). If events is omitted, only "end" events are reported. parser is
an optional parser instance. If not given, the standard XMLParser parser is used. parser must be a subclass of
XMLParser and can only use the default TreeBuilder as a target. Returns an iterator providing (event,
elem) pairs; it has a root attribute that references the root element of the resulting XML tree once source is
fully read. The iterator has the close() method that closes the internal file object if source is a filename.

Note that while iterparse() builds the tree incrementally, it issues blocking reads on source (or the file it
names). As such, it’s unsuitable for applications where blocking reads can’t be made. For fully non-blocking
parsing, see XMLPullParser.

Note

iterparse() only guarantees that it has seen the “>” character of a starting tag when it emits a “start”
event, so the attributes are defined, but the contents of the text and tail attributes are undefined at that point.
The same applies to the element children; they may or may not be present.

If you need a fully populated element, look for “end” events instead.

Deprecated since version 3.4: The parser argument.

Changed in version 3.8: The comment and pi events were added.

Changed in version 3.13: Added the close() method.

xml.etree.ElementTree.parse(source, parser=None)
Parses an XML section into an element tree. source is a filename or file object containing XML data. parser is
an optional parser instance. If not given, the standard XMLParser parser is used. Returns an ElementTree
instance.

xml.etree.ElementTree.ProcessingInstruction(target, text=None)
PI element factory. This factory function creates a special element that will be serialized as an XML processing
instruction. target is a string containing the PI target. text is a string containing the PI contents, if given. Returns
an element instance, representing a processing instruction.

Note that XMLParser skips over processing instructions in the input instead of creating PI objects for them.
An ElementTree will only contain processing instruction nodes if they have been inserted into to the tree
using one of the Element methods.

xml.etree.ElementTree.register_namespace(prefix, uri)
Registers a namespace prefix. The registry is global, and any existing mapping for either the given prefix or
the namespace URI will be removed. prefix is a namespace prefix. uri is a namespace uri. Tags and attributes
in this namespace will be serialized with the given prefix, if at all possible.

Added in version 3.2.

21.5. xml.etree.ElementTree— The ElementTree XML API 1343

The Python Library Reference, Release 3.13.1

xml.etree.ElementTree.SubElement(parent, tag, attrib={}, **extra)
Subelement factory. This function creates an element instance, and appends it to an existing element.

The element name, attribute names, and attribute values can be either bytestrings or Unicode strings. parent is
the parent element. tag is the subelement name. attrib is an optional dictionary, containing element attributes.
extra contains additional attributes, given as keyword arguments. Returns an element instance.

xml.etree.ElementTree.tostring(element, encoding=’us-ascii’, method=’xml’, *, xml_declaration=None,
default_namespace=None, short_empty_elements=True)

Generates a string representation of an XML element, including all subelements. element is an Element

instance. encoding1 is the output encoding (default is US-ASCII). Use encoding="unicode" to generate
a Unicode string (otherwise, a bytestring is generated). method is either "xml", "html" or "text" (de-
fault is "xml"). xml_declaration, default_namespace and short_empty_elements has the same meaning as in
ElementTree.write(). Returns an (optionally) encoded string containing the XML data.

Changed in version 3.4: Added the short_empty_elements parameter.

Changed in version 3.8: Added the xml_declaration and default_namespace parameters.

Changed in version 3.8: The tostring() function now preserves the attribute order specified by the user.

xml.etree.ElementTree.tostringlist(element, encoding=’us-ascii’, method=’xml’, *,
xml_declaration=None, default_namespace=None,
short_empty_elements=True)

Generates a string representation of an XML element, including all subelements. element is an Element

instance. encoding1 is the output encoding (default is US-ASCII). Use encoding="unicode" to gener-
ate a Unicode string (otherwise, a bytestring is generated). method is either "xml", "html" or "text"
(default is "xml"). xml_declaration, default_namespace and short_empty_elements has the same mean-
ing as in ElementTree.write(). Returns a list of (optionally) encoded strings containing the XML
data. It does not guarantee any specific sequence, except that b"".join(tostringlist(element)) ==

tostring(element).

Added in version 3.2.

Changed in version 3.4: Added the short_empty_elements parameter.

Changed in version 3.8: Added the xml_declaration and default_namespace parameters.

Changed in version 3.8: The tostringlist() function now preserves the attribute order specified by the
user.

xml.etree.ElementTree.XML(text, parser=None)
Parses an XML section from a string constant. This function can be used to embed “XML literals” in Python
code. text is a string containing XML data. parser is an optional parser instance. If not given, the standard
XMLParser parser is used. Returns an Element instance.

xml.etree.ElementTree.XMLID(text, parser=None)
Parses an XML section from a string constant, and also returns a dictionary which maps from element id:s to
elements. text is a string containing XML data. parser is an optional parser instance. If not given, the standard
XMLParser parser is used. Returns a tuple containing an Element instance and a dictionary.

21.5.4 XInclude support

This module provides limited support for XInclude directives, via the xml.etree.ElementInclude helper mod-
ule. This module can be used to insert subtrees and text strings into element trees, based on information in the
tree.

1 The encoding string included in XML output should conform to the appropriate standards. For example, “UTF-8” is valid, but “UTF8”
is not. See https://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl and https://www.iana.org/assignments/character-sets/
character-sets.xhtml.

1344 Chapter 21. Structured Markup Processing Tools

https://www.w3.org/TR/xinclude/
https://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
https://www.iana.org/assignments/character-sets/character-sets.xhtml
https://www.iana.org/assignments/character-sets/character-sets.xhtml

The Python Library Reference, Release 3.13.1

Example

Here’s an example that demonstrates use of the XInclude module. To include an XML document in the current doc-
ument, use the {http://www.w3.org/2001/XInclude}include element and set the parse attribute to "xml",
and use the href attribute to specify the document to include.

<?xml version="1.0"?>

<document xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="source.xml" parse="xml" />

</document>

By default, the href attribute is treated as a file name. You can use custom loaders to override this behaviour. Also
note that the standard helper does not support XPointer syntax.

To process this file, load it as usual, and pass the root element to the xml.etree.ElementTree module:

from xml.etree import ElementTree, ElementInclude

tree = ElementTree.parse("document.xml")

root = tree.getroot()

ElementInclude.include(root)

The ElementInclude module replaces the {http://www.w3.org/2001/XInclude}include element with the
root element from the source.xml document. The result might look something like this:

<document xmlns:xi="http://www.w3.org/2001/XInclude">

<para>This is a paragraph.</para>

</document>

If the parse attribute is omitted, it defaults to “xml”. The href attribute is required.

To include a text document, use the {http://www.w3.org/2001/XInclude}include element, and set the
parse attribute to “text”:

<?xml version="1.0"?>

<document xmlns:xi="http://www.w3.org/2001/XInclude">

Copyright (c) <xi:include href="year.txt" parse="text" />.

</document>

The result might look something like:

<document xmlns:xi="http://www.w3.org/2001/XInclude">

Copyright (c) 2003.

</document>

21.5.5 Reference

Functions

xml.etree.ElementInclude.default_loader(href, parse, encoding=None)
Default loader. This default loader reads an included resource from disk. href is a URL. parse is for parse
mode either “xml” or “text”. encoding is an optional text encoding. If not given, encoding is utf-8. Returns
the expanded resource. If the parse mode is "xml", this is an Element instance. If the parse mode is "text",
this is a string. If the loader fails, it can return None or raise an exception.

xml.etree.ElementInclude.include(elem, loader=None, base_url=None, max_depth=6)

This function expands XInclude directives in-place in tree pointed by elem. elem is either the root Element
or an ElementTree instance to find such element. loader is an optional resource loader. If omitted, it
defaults to default_loader(). If given, it should be a callable that implements the same interface as

21.5. xml.etree.ElementTree— The ElementTree XML API 1345

The Python Library Reference, Release 3.13.1

default_loader(). base_url is base URL of the original file, to resolve relative include file references.
max_depth is the maximum number of recursive inclusions. Limited to reduce the risk of malicious content
explosion. Pass None to disable the limitation.

Changed in version 3.9: Added the base_url and max_depth parameters.

Element Objects

class xml.etree.ElementTree.Element(tag, attrib={}, **extra)
Element class. This class defines the Element interface, and provides a reference implementation of this in-
terface.

The element name, attribute names, and attribute values can be either bytestrings or Unicode strings. tag is
the element name. attrib is an optional dictionary, containing element attributes. extra contains additional
attributes, given as keyword arguments.

tag

A string identifying what kind of data this element represents (the element type, in other words).

text

tail

These attributes can be used to hold additional data associated with the element. Their values are usually
strings but may be any application-specific object. If the element is created from an XML file, the text
attribute holds either the text between the element’s start tag and its first child or end tag, or None, and
the tail attribute holds either the text between the element’s end tag and the next tag, or None. For the
XML data

<a>1<c>2<d/>3</c>4

the a element has None for both text and tail attributes, the b element has text "1" and tail "4", the c
element has text "2" and tail None, and the d element has text None and tail "3".

To collect the inner text of an element, see itertext(), for example "".join(element.

itertext()).

Applications may store arbitrary objects in these attributes.

attrib

A dictionary containing the element’s attributes. Note that while the attrib value is always a real mutable
Python dictionary, an ElementTree implementation may choose to use another internal representation,
and create the dictionary only if someone asks for it. To take advantage of such implementations, use
the dictionary methods below whenever possible.

The following dictionary-like methods work on the element attributes.

clear()

Resets an element. This function removes all subelements, clears all attributes, and sets the text and tail
attributes to None.

get(key, default=None)
Gets the element attribute named key.

Returns the attribute value, or default if the attribute was not found.

items()

Returns the element attributes as a sequence of (name, value) pairs. The attributes are returned in an
arbitrary order.

keys()

Returns the elements attribute names as a list. The names are returned in an arbitrary order.

1346 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

set(key, value)
Set the attribute key on the element to value.

The following methods work on the element’s children (subelements).

append(subelement)

Adds the element subelement to the end of this element’s internal list of subelements. Raises TypeError
if subelement is not an Element.

extend(subelements)
Appends subelements from an iterable of elements. Raises TypeError if a subelement is not an
Element.

Added in version 3.2.

find(match, namespaces=None)
Finds the first subelement matching match. match may be a tag name or a path. Returns an element
instance or None. namespaces is an optional mapping from namespace prefix to full name. Pass '' as
prefix to move all unprefixed tag names in the expression into the given namespace.

findall(match, namespaces=None)
Finds all matching subelements, by tag name or path. Returns a list containing all matching elements in
document order. namespaces is an optional mapping from namespace prefix to full name. Pass '' as
prefix to move all unprefixed tag names in the expression into the given namespace.

findtext(match, default=None, namespaces=None)
Finds text for the first subelement matching match. match may be a tag name or a path. Returns the
text content of the first matching element, or default if no element was found. Note that if the matching
element has no text content an empty string is returned. namespaces is an optional mapping from names-
pace prefix to full name. Pass '' as prefix to move all unprefixed tag names in the expression into the
given namespace.

insert(index, subelement)
Inserts subelement at the given position in this element. Raises TypeError if subelement is not an
Element.

iter(tag=None)
Creates a tree iterator with the current element as the root. The iterator iterates over this element and all
elements below it, in document (depth first) order. If tag is not None or '*', only elements whose tag
equals tag are returned from the iterator. If the tree structure is modified during iteration, the result is
undefined.

Added in version 3.2.

iterfind(match, namespaces=None)

Finds all matching subelements, by tag name or path. Returns an iterable yielding all matching elements
in document order. namespaces is an optional mapping from namespace prefix to full name.

Added in version 3.2.

itertext()

Creates a text iterator. The iterator loops over this element and all subelements, in document order, and
returns all inner text.

Added in version 3.2.

makeelement(tag, attrib)
Creates a new element object of the same type as this element. Do not call this method, use the
SubElement() factory function instead.

remove(subelement)

Removes subelement from the element. Unlike the find* methods this method compares elements based
on the instance identity, not on tag value or contents.

21.5. xml.etree.ElementTree— The ElementTree XML API 1347

The Python Library Reference, Release 3.13.1

Element objects also support the following sequence type methods for working with subelements:
__delitem__(), __getitem__(), __setitem__(), __len__().

Caution: Elements with no subelements will test as False. In a future release of Python, all elements will
test as True regardless of whether subelements exist. Instead, prefer explicit len(elem) or elem is not

None tests.:

element = root.find('foo')

if not element: # careful!

print("element not found, or element has no subelements")

if element is None:

print("element not found")

Changed in version 3.12: Testing the truth value of an Element emits DeprecationWarning.

Prior to Python 3.8, the serialisation order of the XML attributes of elements was artificially made predictable
by sorting the attributes by their name. Based on the now guaranteed ordering of dicts, this arbitrary reordering
was removed in Python 3.8 to preserve the order in which attributes were originally parsed or created by user
code.

In general, user code should try not to depend on a specific ordering of attributes, given that the XML Infor-
mation Set explicitly excludes the attribute order from conveying information. Code should be prepared to
deal with any ordering on input. In cases where deterministic XML output is required, e.g. for cryptographic
signing or test data sets, canonical serialisation is available with the canonicalize() function.

In cases where canonical output is not applicable but a specific attribute order is still desirable on output, code
should aim for creating the attributes directly in the desired order, to avoid perceptual mismatches for readers
of the code. In cases where this is difficult to achieve, a recipe like the following can be applied prior to
serialisation to enforce an order independently from the Element creation:

def reorder_attributes(root):

for el in root.iter():

attrib = el.attrib

if len(attrib) > 1:

adjust attribute order, e.g. by sorting

attribs = sorted(attrib.items())

attrib.clear()

attrib.update(attribs)

ElementTree Objects

class xml.etree.ElementTree.ElementTree(element=None, file=None)
ElementTree wrapper class. This class represents an entire element hierarchy, and adds some extra support for
serialization to and from standard XML.

element is the root element. The tree is initialized with the contents of the XML file if given.

_setroot(element)

Replaces the root element for this tree. This discards the current contents of the tree, and replaces it with
the given element. Use with care. element is an element instance.

find(match, namespaces=None)
Same as Element.find(), starting at the root of the tree.

findall(match, namespaces=None)
Same as Element.findall(), starting at the root of the tree.

findtext(match, default=None, namespaces=None)
Same as Element.findtext(), starting at the root of the tree.

1348 Chapter 21. Structured Markup Processing Tools

https://www.w3.org/TR/xml-infoset/
https://www.w3.org/TR/xml-infoset/

The Python Library Reference, Release 3.13.1

getroot()

Returns the root element for this tree.

iter(tag=None)

Creates and returns a tree iterator for the root element. The iterator loops over all elements in this tree,
in section order. tag is the tag to look for (default is to return all elements).

iterfind(match, namespaces=None)
Same as Element.iterfind(), starting at the root of the tree.

Added in version 3.2.

parse(source, parser=None)
Loads an external XML section into this element tree. source is a file name or file object. parser is an
optional parser instance. If not given, the standard XMLParser parser is used. Returns the section root
element.

write(file, encoding=’us-ascii’, xml_declaration=None, default_namespace=None, method=’xml’, *,
short_empty_elements=True)

Writes the element tree to a file, as XML. file is a file name, or a file object opened for writing. encod-
ingPage 1344, 1 is the output encoding (default is US-ASCII). xml_declaration controls if an XML declara-
tion should be added to the file. Use False for never, True for always, None for only if not US-ASCII or
UTF-8 or Unicode (default is None). default_namespace sets the default XML namespace (for “xmlns”).
method is either "xml", "html" or "text" (default is "xml"). The keyword-only short_empty_elements
parameter controls the formatting of elements that contain no content. If True (the default), they are
emitted as a single self-closed tag, otherwise they are emitted as a pair of start/end tags.

The output is either a string (str) or binary (bytes). This is controlled by the encoding argument. If
encoding is "unicode", the output is a string; otherwise, it’s binary. Note that this may conflict with the
type of file if it’s an open file object; make sure you do not try to write a string to a binary stream and
vice versa.

Changed in version 3.4: Added the short_empty_elements parameter.

Changed in version 3.8: The write() method now preserves the attribute order specified by the user.

This is the XML file that is going to be manipulated:

<html>

<head>

<title>Example page</title>

</head>

<body>

<p>Moved to example.org

or example.com.</p>

</body>

</html>

Example of changing the attribute “target” of every link in first paragraph:

>>> from xml.etree.ElementTree import ElementTree

>>> tree = ElementTree()

>>> tree.parse("index.xhtml")

<Element 'html' at 0xb77e6fac>

>>> p = tree.find("body/p") # Finds first occurrence of tag p in body

>>> p

<Element 'p' at 0xb77ec26c>

>>> links = list(p.iter("a")) # Returns list of all links

>>> links

[<Element 'a' at 0xb77ec2ac>, <Element 'a' at 0xb77ec1cc>]

>>> for i in links: # Iterates through all found links

(continues on next page)

21.5. xml.etree.ElementTree— The ElementTree XML API 1349

The Python Library Reference, Release 3.13.1

(continued from previous page)

... i.attrib["target"] = "blank"

...

>>> tree.write("output.xhtml")

QName Objects

class xml.etree.ElementTree.QName(text_or_uri, tag=None)
QNamewrapper. This can be used to wrap a QName attribute value, in order to get proper namespace handling
on output. text_or_uri is a string containing the QName value, in the form {uri}local, or, if the tag argument is
given, the URI part of a QName. If tag is given, the first argument is interpreted as a URI, and this argument
is interpreted as a local name. QName instances are opaque.

TreeBuilder Objects

class xml.etree.ElementTree.TreeBuilder(element_factory=None, *, comment_factory=None,
pi_factory=None, insert_comments=False, insert_pis=False)

Generic element structure builder. This builder converts a sequence of start, data, end, comment and pi method
calls to a well-formed element structure. You can use this class to build an element structure using a custom
XML parser, or a parser for some other XML-like format.

element_factory, when given, must be a callable accepting two positional arguments: a tag and a dict of at-
tributes. It is expected to return a new element instance.

The comment_factory and pi_factory functions, when given, should behave like the Comment() and
ProcessingInstruction() functions to create comments and processing instructions. When not given,
the default factories will be used. When insert_comments and/or insert_pis is true, comments/pis will be in-
serted into the tree if they appear within the root element (but not outside of it).

close()

Flushes the builder buffers, and returns the toplevel document element. Returns an Element instance.

data(data)
Adds text to the current element. data is a string. This should be either a bytestring, or a Unicode string.

end(tag)
Closes the current element. tag is the element name. Returns the closed element.

start(tag, attrs)
Opens a new element. tag is the element name. attrs is a dictionary containing element attributes. Returns
the opened element.

comment(text)
Creates a comment with the given text. If insert_comments is true, this will also add it to the tree.

Added in version 3.8.

pi(target, text)
Creates a process instruction with the given target name and text. If insert_pis is true, this will also
add it to the tree.

Added in version 3.8.

In addition, a custom TreeBuilder object can provide the following methods:

doctype(name, pubid, system)
Handles a doctype declaration. name is the doctype name. pubid is the public identifier. system is the
system identifier. This method does not exist on the default TreeBuilder class.

Added in version 3.2.

1350 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

start_ns(prefix, uri)
Is called whenever the parser encounters a new namespace declaration, before the start() callback for
the opening element that defines it. prefix is '' for the default namespace and the declared namespace
prefix name otherwise. uri is the namespace URI.

Added in version 3.8.

end_ns(prefix)
Is called after the end() callback of an element that declared a namespace prefix mapping, with the
name of the prefix that went out of scope.

Added in version 3.8.

class xml.etree.ElementTree.C14NWriterTarget(write, *, with_comments=False, strip_text=False,
rewrite_prefixes=False, qname_aware_tags=None,
qname_aware_attrs=None, exclude_attrs=None,
exclude_tags=None)

A C14N 2.0 writer. Arguments are the same as for the canonicalize() function. This class does not build
a tree but translates the callback events directly into a serialised form using the write function.

Added in version 3.8.

XMLParser Objects

class xml.etree.ElementTree.XMLParser(*, target=None, encoding=None)
This class is the low-level building block of the module. It uses xml.parsers.expat for efficient, event-
based parsing of XML. It can be fed XML data incrementally with the feed() method, and parsing events
are translated to a push API - by invoking callbacks on the target object. If target is omitted, the standard
TreeBuilder is used. If encodingPage 1344, 1 is given, the value overrides the encoding specified in the XML
file.

Changed in version 3.8: Parameters are now keyword-only. The html argument is no longer supported.

close()

Finishes feeding data to the parser. Returns the result of calling the close()method of the target passed
during construction; by default, this is the toplevel document element.

feed(data)
Feeds data to the parser. data is encoded data.

flush()

Triggers parsing of any previously fed unparsed data, which can be used to ensure more immediate feed-
back, in particular with Expat >=2.6.0. The implementation of flush() temporarily disables reparse de-
ferral with Expat (if currently enabled) and triggers a reparse. Disabling reparse deferral has security con-
sequences; please see xml.parsers.expat.xmlparser.SetReparseDeferralEnabled() for
details.

Note that flush() has been backported to some prior releases of CPython as a security fix. Check for
availability of flush() using hasattr() if used in code running across a variety of Python versions.

Added in version 3.13.

XMLParser.feed() calls target’s start(tag, attrs_dict)method for each opening tag, its end(tag)
method for each closing tag, and data is processed by method data(data). For further supported callback
methods, see the TreeBuilder class. XMLParser.close() calls target’s method close(). XMLParser
can be used not only for building a tree structure. This is an example of counting the maximum depth of an
XML file:

>>> from xml.etree.ElementTree import XMLParser

>>> class MaxDepth: # The target object of the parser

... maxDepth = 0

... depth = 0

(continues on next page)

21.5. xml.etree.ElementTree— The ElementTree XML API 1351

https://www.w3.org/TR/xml-c14n2/

The Python Library Reference, Release 3.13.1

(continued from previous page)

... def start(self, tag, attrib): # Called for each opening tag.

... self.depth += 1

... if self.depth > self.maxDepth:

... self.maxDepth = self.depth

... def end(self, tag): # Called for each closing tag.

... self.depth -= 1

... def data(self, data):

... pass # We do not need to do anything with data.

... def close(self): # Called when all data has been parsed.

... return self.maxDepth

...

>>> target = MaxDepth()

>>> parser = XMLParser(target=target)

>>> exampleXml = """

... <a>

...

...

...

... <c>

... <d>

... </d>

... </c>

...

... """

>>> parser.feed(exampleXml)

>>> parser.close()

4

XMLPullParser Objects

class xml.etree.ElementTree.XMLPullParser(events=None)
A pull parser suitable for non-blocking applications. Its input-side API is similar to that of XMLParser, but
instead of pushing calls to a callback target, XMLPullParser collects an internal list of parsing events and
lets the user read from it. events is a sequence of events to report back. The supported events are the strings
"start", "end", "comment", "pi", "start-ns" and "end-ns" (the “ns” events are used to get detailed
namespace information). If events is omitted, only "end" events are reported.

feed(data)
Feed the given bytes data to the parser.

flush()

Triggers parsing of any previously fed unparsed data, which can be used to ensure more immediate feed-
back, in particular with Expat >=2.6.0. The implementation of flush() temporarily disables reparse de-
ferral with Expat (if currently enabled) and triggers a reparse. Disabling reparse deferral has security con-
sequences; please see xml.parsers.expat.xmlparser.SetReparseDeferralEnabled() for
details.

Note that flush() has been backported to some prior releases of CPython as a security fix. Check for
availability of flush() using hasattr() if used in code running across a variety of Python versions.

Added in version 3.13.

close()

Signal the parser that the data stream is terminated. Unlike XMLParser.close(), this method al-
ways returns None. Any events not yet retrieved when the parser is closed can still be read with
read_events().

read_events()

Return an iterator over the events which have been encountered in the data fed to the parser. The iterator

1352 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

yields (event, elem) pairs, where event is a string representing the type of event (e.g. "end") and
elem is the encountered Element object, or other context value as follows.

• start, end: the current Element.

• comment, pi: the current comment / processing instruction

• start-ns: a tuple (prefix, uri) naming the declared namespace mapping.

• end-ns: None (this may change in a future version)

Events provided in a previous call to read_events() will not be yielded again. Events are consumed
from the internal queue only when they are retrieved from the iterator, so multiple readers iterating in
parallel over iterators obtained from read_events() will have unpredictable results.

Note

XMLPullParser only guarantees that it has seen the “>” character of a starting tag when it emits a “start”
event, so the attributes are defined, but the contents of the text and tail attributes are undefined at that point.
The same applies to the element children; they may or may not be present.

If you need a fully populated element, look for “end” events instead.

Added in version 3.4.

Changed in version 3.8: The comment and pi events were added.

Exceptions

class xml.etree.ElementTree.ParseError

XML parse error, raised by the various parsing methods in this module when parsing fails. The string repre-
sentation of an instance of this exception will contain a user-friendly error message. In addition, it will have
the following attributes available:

code

A numeric error code from the expat parser. See the documentation of xml.parsers.expat for the
list of error codes and their meanings.

position

A tuple of line, column numbers, specifying where the error occurred.

21.6 xml.dom— The Document Object Model API

Source code: Lib/xml/dom/__init__.py

The Document Object Model, or “DOM,” is a cross-language API from theWorldWideWeb Consortium (W3C) for
accessing and modifying XML documents. A DOM implementation presents an XML document as a tree structure,
or allows client code to build such a structure from scratch. It then gives access to the structure through a set of
objects which provided well-known interfaces.

The DOM is extremely useful for random-access applications. SAX only allows you a view of one bit of the document
at a time. If you are looking at one SAX element, you have no access to another. If you are looking at a text node,
you have no access to a containing element. When you write a SAX application, you need to keep track of your
program’s position in the document somewhere in your own code. SAX does not do it for you. Also, if you need to
look ahead in the XML document, you are just out of luck.

Some applications are simply impossible in an event driven model with no access to a tree. Of course you could
build some sort of tree yourself in SAX events, but the DOM allows you to avoid writing that code. The DOM is a
standard tree representation for XML data.

21.6. xml.dom— The Document Object Model API 1353

https://github.com/python/cpython/tree/3.13/Lib/xml/dom/__init__.py

The Python Library Reference, Release 3.13.1

The Document Object Model is being defined by the W3C in stages, or “levels” in their terminology. The Python
mapping of the API is substantially based on the DOM Level 2 recommendation.

DOM applications typically start by parsing some XML into a DOM. How this is accomplished is not covered at all by
DOMLevel 1, and Level 2 provides only limited improvements: There is a DOMImplementation object class which
provides access to Document creation methods, but no way to access an XML reader/parser/Document builder in
an implementation-independent way. There is also no well-defined way to access these methods without an existing
Document object. In Python, each DOM implementation will provide a function getDOMImplementation().
DOM Level 3 adds a Load/Store specification, which defines an interface to the reader, but this is not yet available
in the Python standard library.

Once you have a DOM document object, you can access the parts of your XML document through its properties and
methods. These properties are defined in the DOM specification; this portion of the reference manual describes the
interpretation of the specification in Python.

The specification provided by the W3C defines the DOM API for Java, ECMAScript, and OMG IDL. The Python
mapping defined here is based in large part on the IDL version of the specification, but strict compliance is not
required (though implementations are free to support the strict mapping from IDL). See section Conformance for a
detailed discussion of mapping requirements.

See also

Document Object Model (DOM) Level 2 Specification
The W3C recommendation upon which the Python DOM API is based.

Document Object Model (DOM) Level 1 Specification
The W3C recommendation for the DOM supported by xml.dom.minidom.

Python Language Mapping Specification
This specifies the mapping from OMG IDL to Python.

21.6.1 Module Contents

The xml.dom contains the following functions:

xml.dom.registerDOMImplementation(name, factory)
Register the factory function with the name name. The factory function should return an object which imple-
ments the DOMImplementation interface. The factory function can return the same object every time, or
a new one for each call, as appropriate for the specific implementation (e.g. if that implementation supports
some customization).

xml.dom.getDOMImplementation(name=None, features=())
Return a suitable DOM implementation. The name is either well-known, the module name of a DOM imple-
mentation, or None. If it is not None, imports the corresponding module and returns a DOMImplementation
object if the import succeeds. If no name is given, and if the environment variable PYTHON_DOM is set, this
variable is used to find the implementation.

If name is not given, this examines the available implementations to find one with the required feature set. If
no implementation can be found, raise an ImportError. The features list must be a sequence of (feature,
version) pairs which are passed to the hasFeature()method on available DOMImplementation objects.

Some convenience constants are also provided:

xml.dom.EMPTY_NAMESPACE

The value used to indicate that no namespace is associated with a node in the DOM. This is typically found as
the namespaceURI of a node, or used as the namespaceURI parameter to a namespaces-specific method.

xml.dom.XML_NAMESPACE

The namespace URI associated with the reserved prefix xml, as defined by Namespaces in XML (section 4).

1354 Chapter 21. Structured Markup Processing Tools

https://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
https://www.w3.org/TR/REC-DOM-Level-1/
https://www.omg.org/spec/PYTH/1.2/PDF
https://www.w3.org/TR/REC-xml-names/

The Python Library Reference, Release 3.13.1

xml.dom.XMLNS_NAMESPACE

The namespace URI for namespace declarations, as defined by Document Object Model (DOM) Level 2 Core
Specification (section 1.1.8).

xml.dom.XHTML_NAMESPACE

The URI of the XHTML namespace as defined by XHTML 1.0: The Extensible HyperText Markup Language
(section 3.1.1).

In addition, xml.dom contains a base Node class and the DOM exception classes. The Node class provided by
this module does not implement any of the methods or attributes defined by the DOM specification; concrete DOM
implementations must provide those. The Node class provided as part of this module does provide the constants used
for the nodeType attribute on concrete Node objects; they are located within the class rather than at the module
level to conform with the DOM specifications.

21.6.2 Objects in the DOM

The definitive documentation for the DOM is the DOM specification from the W3C.

Note that DOM attributes may also be manipulated as nodes instead of as simple strings. It is fairly rare that you
must do this, however, so this usage is not yet documented.

Interface Section Purpose

DOMImplementation DOMImplementation Ob-
jects

Interface to the underlying implementation.

Node Node Objects Base interface for most objects in a document.
NodeList NodeList Objects Interface for a sequence of nodes.
DocumentType DocumentType Objects Information about the declarations needed to process a

document.
Document Document Objects Object which represents an entire document.
Element Element Objects Element nodes in the document hierarchy.
Attr Attr Objects Attribute value nodes on element nodes.
Comment Comment Objects Representation of comments in the source document.
Text Text and CDATASection

Objects
Nodes containing textual content from the document.

ProcessingInstructionProcessingInstruction Ob-
jects

Processing instruction representation.

An additional section describes the exceptions defined for working with the DOM in Python.

DOMImplementation Objects

The DOMImplementation interface provides a way for applications to determine the availability of particular fea-
tures in the DOM they are using. DOM Level 2 added the ability to create new Document and DocumentType
objects using the DOMImplementation as well.

DOMImplementation.hasFeature(feature, version)
Return True if the feature identified by the pair of strings feature and version is implemented.

DOMImplementation.createDocument(namespaceUri, qualifiedName, doctype)
Return a new Document object (the root of the DOM), with a child Element object having the
given namespaceUri and qualifiedName. The doctype must be a DocumentType object created by
createDocumentType(), or None. In the Python DOM API, the first two arguments can also be None
in order to indicate that no Element child is to be created.

DOMImplementation.createDocumentType(qualifiedName, publicId, systemId)

Return a new DocumentType object that encapsulates the given qualifiedName, publicId, and systemId strings,
representing the information contained in an XML document type declaration.

21.6. xml.dom— The Document Object Model API 1355

https://www.w3.org/TR/DOM-Level-2-Core/core.html
https://www.w3.org/TR/DOM-Level-2-Core/core.html
https://www.w3.org/TR/xhtml1/

The Python Library Reference, Release 3.13.1

Node Objects

All of the components of an XML document are subclasses of Node.

Node.nodeType

An integer representing the node type. Symbolic constants for the types are on the Node ob-
ject: ELEMENT_NODE, ATTRIBUTE_NODE, TEXT_NODE, CDATA_SECTION_NODE, ENTITY_NODE,
PROCESSING_INSTRUCTION_NODE, COMMENT_NODE, DOCUMENT_NODE, DOCUMENT_TYPE_NODE,
NOTATION_NODE. This is a read-only attribute.

Node.parentNode

The parent of the current node, or None for the document node. The value is always a Node object or None.
For Element nodes, this will be the parent element, except for the root element, in which case it will be the
Document object. For Attr nodes, this is always None. This is a read-only attribute.

Node.attributes

A NamedNodeMap of attribute objects. Only elements have actual values for this; others provide None for this
attribute. This is a read-only attribute.

Node.previousSibling

The node that immediately precedes this one with the same parent. For instance the element with an end-tag
that comes just before the self element’s start-tag. Of course, XML documents are made up of more than just
elements so the previous sibling could be text, a comment, or something else. If this node is the first child of
the parent, this attribute will be None. This is a read-only attribute.

Node.nextSibling

The node that immediately follows this one with the same parent. See also previousSibling. If this is the
last child of the parent, this attribute will be None. This is a read-only attribute.

Node.childNodes

A list of nodes contained within this node. This is a read-only attribute.

Node.firstChild

The first child of the node, if there are any, or None. This is a read-only attribute.

Node.lastChild

The last child of the node, if there are any, or None. This is a read-only attribute.

Node.localName

The part of the tagName following the colon if there is one, else the entire tagName. The value is a string.

Node.prefix

The part of the tagName preceding the colon if there is one, else the empty string. The value is a string, or
None.

Node.namespaceURI

The namespace associated with the element name. This will be a string or None. This is a read-only attribute.

Node.nodeName

This has a different meaning for each node type; see the DOM specification for details. You can always get
the information you would get here from another property such as the tagName property for elements or the
name property for attributes. For all node types, the value of this attribute will be either a string or None. This
is a read-only attribute.

Node.nodeValue

This has a different meaning for each node type; see the DOM specification for details. The situation is similar
to that with nodeName. The value is a string or None.

Node.hasAttributes()

Return True if the node has any attributes.

1356 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

Node.hasChildNodes()

Return True if the node has any child nodes.

Node.isSameNode(other)

Return True if other refers to the same node as this node. This is especially useful for DOM implementations
which use any sort of proxy architecture (because more than one object can refer to the same node).

Note

This is based on a proposed DOMLevel 3 API which is still in the “working draft” stage, but this particular
interface appears uncontroversial. Changes from the W3C will not necessarily affect this method in the
Python DOM interface (though any new W3C API for this would also be supported).

Node.appendChild(newChild)
Add a new child node to this node at the end of the list of children, returning newChild. If the node was already
in the tree, it is removed first.

Node.insertBefore(newChild, refChild)
Insert a new child node before an existing child. It must be the case that refChild is a child of this node; if
not, ValueError is raised. newChild is returned. If refChild is None, it inserts newChild at the end of the
children’s list.

Node.removeChild(oldChild)
Remove a child node. oldChildmust be a child of this node; if not, ValueError is raised. oldChild is returned
on success. If oldChild will not be used further, its unlink() method should be called.

Node.replaceChild(newChild, oldChild)
Replace an existing node with a new node. It must be the case that oldChild is a child of this node; if not,
ValueError is raised.

Node.normalize()

Join adjacent text nodes so that all stretches of text are stored as single Text instances. This simplifies pro-
cessing text from a DOM tree for many applications.

Node.cloneNode(deep)
Clone this node. Setting deep means to clone all child nodes as well. This returns the clone.

NodeList Objects

A NodeList represents a sequence of nodes. These objects are used in two ways in the DOM Core recom-
mendation: an Element object provides one as its list of child nodes, and the getElementsByTagName() and
getElementsByTagNameNS() methods of Node return objects with this interface to represent query results.

The DOM Level 2 recommendation defines one method and one attribute for these objects:

NodeList.item(i)
Return the i’th item from the sequence, if there is one, or None. The index i is not allowed to be less than zero
or greater than or equal to the length of the sequence.

NodeList.length

The number of nodes in the sequence.

In addition, the Python DOM interface requires that some additional support is provided to allow NodeList ob-
jects to be used as Python sequences. All NodeList implementations must include support for __len__() and
__getitem__(); this allows iteration over the NodeList in for statements and proper support for the len()
built-in function.

If a DOM implementation supports modification of the document, the NodeList implementation must also support
the __setitem__() and __delitem__() methods.

21.6. xml.dom— The Document Object Model API 1357

The Python Library Reference, Release 3.13.1

DocumentType Objects

Information about the notations and entities declared by a document (including the external subset if the parser uses
it and can provide the information) is available from a DocumentType object. The DocumentType for a document
is available from the Document object’s doctype attribute; if there is no DOCTYPE declaration for the document,
the document’s doctype attribute will be set to None instead of an instance of this interface.

DocumentType is a specialization of Node, and adds the following attributes:

DocumentType.publicId

The public identifier for the external subset of the document type definition. This will be a string or None.

DocumentType.systemId

The system identifier for the external subset of the document type definition. This will be a URI as a string, or
None.

DocumentType.internalSubset

A string giving the complete internal subset from the document. This does not include the brackets which
enclose the subset. If the document has no internal subset, this should be None.

DocumentType.name

The name of the root element as given in the DOCTYPE declaration, if present.

DocumentType.entities

This is a NamedNodeMap giving the definitions of external entities. For entity names defined more than once,
only the first definition is provided (others are ignored as required by the XML recommendation). This may
be None if the information is not provided by the parser, or if no entities are defined.

DocumentType.notations

This is a NamedNodeMap giving the definitions of notations. For notation names defined more than once, only
the first definition is provided (others are ignored as required by the XML recommendation). This may be
None if the information is not provided by the parser, or if no notations are defined.

Document Objects

A Document represents an entire XML document, including its constituent elements, attributes, processing instruc-
tions, comments etc. Remember that it inherits properties from Node.

Document.documentElement

The one and only root element of the document.

Document.createElement(tagName)

Create and return a new element node. The element is not inserted into the document when it is created. You
need to explicitly insert it with one of the other methods such as insertBefore() or appendChild().

Document.createElementNS(namespaceURI, tagName)
Create and return a new element with a namespace. The tagName may have a prefix. The element is not
inserted into the document when it is created. You need to explicitly insert it with one of the other methods
such as insertBefore() or appendChild().

Document.createTextNode(data)

Create and return a text node containing the data passed as a parameter. As with the other creation methods,
this one does not insert the node into the tree.

Document.createComment(data)
Create and return a comment node containing the data passed as a parameter. As with the other creation
methods, this one does not insert the node into the tree.

Document.createProcessingInstruction(target, data)
Create and return a processing instruction node containing the target and data passed as parameters. As with
the other creation methods, this one does not insert the node into the tree.

1358 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

Document.createAttribute(name)
Create and return an attribute node. This method does not associate the attribute node with any particular
element. You must use setAttributeNode() on the appropriate Element object to use the newly created
attribute instance.

Document.createAttributeNS(namespaceURI, qualifiedName)
Create and return an attribute node with a namespace. The tagName may have a prefix. This method does
not associate the attribute node with any particular element. You must use setAttributeNode() on the
appropriate Element object to use the newly created attribute instance.

Document.getElementsByTagName(tagName)
Search for all descendants (direct children, children’s children, etc.) with a particular element type name.

Document.getElementsByTagNameNS(namespaceURI, localName)
Search for all descendants (direct children, children’s children, etc.) with a particular namespace URI and
localname. The localname is the part of the namespace after the prefix.

Element Objects

Element is a subclass of Node, so inherits all the attributes of that class.

Element.tagName

The element type name. In a namespace-using document it may have colons in it. The value is a string.

Element.getElementsByTagName(tagName)
Same as equivalent method in the Document class.

Element.getElementsByTagNameNS(namespaceURI, localName)
Same as equivalent method in the Document class.

Element.hasAttribute(name)
Return True if the element has an attribute named by name.

Element.hasAttributeNS(namespaceURI, localName)
Return True if the element has an attribute named by namespaceURI and localName.

Element.getAttribute(name)
Return the value of the attribute named by name as a string. If no such attribute exists, an empty string is
returned, as if the attribute had no value.

Element.getAttributeNode(attrname)
Return the Attr node for the attribute named by attrname.

Element.getAttributeNS(namespaceURI, localName)
Return the value of the attribute named by namespaceURI and localName as a string. If no such attribute
exists, an empty string is returned, as if the attribute had no value.

Element.getAttributeNodeNS(namespaceURI, localName)
Return an attribute value as a node, given a namespaceURI and localName.

Element.removeAttribute(name)
Remove an attribute by name. If there is no matching attribute, a NotFoundErr is raised.

Element.removeAttributeNode(oldAttr)
Remove and return oldAttr from the attribute list, if present. If oldAttr is not present, NotFoundErr is raised.

Element.removeAttributeNS(namespaceURI, localName)
Remove an attribute by name. Note that it uses a localName, not a qname. No exception is raised if there is
no matching attribute.

Element.setAttribute(name, value)
Set an attribute value from a string.

21.6. xml.dom— The Document Object Model API 1359

The Python Library Reference, Release 3.13.1

Element.setAttributeNode(newAttr)
Add a new attribute node to the element, replacing an existing attribute if necessary if the name attribute
matches. If a replacement occurs, the old attribute node will be returned. If newAttr is already in use,
InuseAttributeErr will be raised.

Element.setAttributeNodeNS(newAttr)
Add a new attribute node to the element, replacing an existing attribute if necessary if the namespaceURI
and localName attributes match. If a replacement occurs, the old attribute node will be returned. If newAttr
is already in use, InuseAttributeErr will be raised.

Element.setAttributeNS(namespaceURI, qname, value)
Set an attribute value from a string, given a namespaceURI and a qname. Note that a qname is the whole
attribute name. This is different than above.

Attr Objects

Attr inherits from Node, so inherits all its attributes.

Attr.name

The attribute name. In a namespace-using document it may include a colon.

Attr.localName

The part of the name following the colon if there is one, else the entire name. This is a read-only attribute.

Attr.prefix

The part of the name preceding the colon if there is one, else the empty string.

Attr.value

The text value of the attribute. This is a synonym for the nodeValue attribute.

NamedNodeMap Objects

NamedNodeMap does not inherit from Node.

NamedNodeMap.length

The length of the attribute list.

NamedNodeMap.item(index)
Return an attribute with a particular index. The order you get the attributes in is arbitrary but will be consistent
for the life of a DOM. Each item is an attribute node. Get its value with the value attribute.

There are also experimental methods that give this class more mapping behavior. You can use them or you can use
the standardized getAttribute*() family of methods on the Element objects.

Comment Objects

Comment represents a comment in the XML document. It is a subclass of Node, but cannot have child nodes.

Comment.data

The content of the comment as a string. The attribute contains all characters between the leading <!-- and
trailing -->, but does not include them.

Text and CDATASection Objects

The Text interface represents text in the XML document. If the parser and DOM implementation support the
DOM’s XML extension, portions of the text enclosed in CDATA marked sections are stored in CDATASection

objects. These two interfaces are identical, but provide different values for the nodeType attribute.

These interfaces extend the Node interface. They cannot have child nodes.

1360 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

Text.data

The content of the text node as a string.

Note

The use of a CDATASection node does not indicate that the node represents a complete CDATAmarked section,
only that the content of the node was part of a CDATA section. A single CDATA section may be represented by
more than one node in the document tree. There is no way to determine whether two adjacent CDATASection
nodes represent different CDATA marked sections.

ProcessingInstruction Objects

Represents a processing instruction in the XML document; this inherits from the Node interface and cannot have
child nodes.

ProcessingInstruction.target

The content of the processing instruction up to the first whitespace character. This is a read-only attribute.

ProcessingInstruction.data

The content of the processing instruction following the first whitespace character.

Exceptions

The DOM Level 2 recommendation defines a single exception, DOMException, and a number of constants that
allow applications to determine what sort of error occurred. DOMException instances carry a code attribute that
provides the appropriate value for the specific exception.

The Python DOM interface provides the constants, but also expands the set of exceptions so that a specific exception
exists for each of the exception codes defined by the DOM. The implementations must raise the appropriate specific
exception, each of which carries the appropriate value for the code attribute.

exception xml.dom.DOMException

Base exception class used for all specific DOM exceptions. This exception class cannot be directly instantiated.

exception xml.dom.DomstringSizeErr

Raised when a specified range of text does not fit into a string. This is not known to be used in the Python
DOM implementations, but may be received from DOM implementations not written in Python.

exception xml.dom.HierarchyRequestErr

Raised when an attempt is made to insert a node where the node type is not allowed.

exception xml.dom.IndexSizeErr

Raised when an index or size parameter to a method is negative or exceeds the allowed values.

exception xml.dom.InuseAttributeErr

Raised when an attempt is made to insert an Attr node that is already present elsewhere in the document.

exception xml.dom.InvalidAccessErr

Raised if a parameter or an operation is not supported on the underlying object.

exception xml.dom.InvalidCharacterErr

This exception is raised when a string parameter contains a character that is not permitted in the context it’s
being used in by the XML 1.0 recommendation. For example, attempting to create an Element node with a
space in the element type name will cause this error to be raised.

exception xml.dom.InvalidModificationErr

Raised when an attempt is made to modify the type of a node.

exception xml.dom.InvalidStateErr

Raised when an attempt is made to use an object that is not defined or is no longer usable.

21.6. xml.dom— The Document Object Model API 1361

The Python Library Reference, Release 3.13.1

exception xml.dom.NamespaceErr

If an attempt is made to change any object in a way that is not permitted with regard to the Namespaces in
XML recommendation, this exception is raised.

exception xml.dom.NotFoundErr

Exception when a node does not exist in the referenced context. For example, NamedNodeMap.

removeNamedItem() will raise this if the node passed in does not exist in the map.

exception xml.dom.NotSupportedErr

Raised when the implementation does not support the requested type of object or operation.

exception xml.dom.NoDataAllowedErr

This is raised if data is specified for a node which does not support data.

exception xml.dom.NoModificationAllowedErr

Raised on attempts to modify an object where modifications are not allowed (such as for read-only nodes).

exception xml.dom.SyntaxErr

Raised when an invalid or illegal string is specified.

exception xml.dom.WrongDocumentErr

Raised when a node is inserted in a different document than it currently belongs to, and the implementation
does not support migrating the node from one document to the other.

The exception codes defined in the DOM recommendation map to the exceptions described above according to this
table:

Constant Exception

DOMSTRING_SIZE_ERR DomstringSizeErr

HIERARCHY_REQUEST_ERR HierarchyRequestErr

INDEX_SIZE_ERR IndexSizeErr

INUSE_ATTRIBUTE_ERR InuseAttributeErr

INVALID_ACCESS_ERR InvalidAccessErr

INVALID_CHARACTER_ERR InvalidCharacterErr

INVALID_MODIFICATION_ERR InvalidModificationErr

INVALID_STATE_ERR InvalidStateErr

NAMESPACE_ERR NamespaceErr

NOT_FOUND_ERR NotFoundErr

NOT_SUPPORTED_ERR NotSupportedErr

NO_DATA_ALLOWED_ERR NoDataAllowedErr

NO_MODIFICATION_ALLOWED_ERR NoModificationAllowedErr

SYNTAX_ERR SyntaxErr

WRONG_DOCUMENT_ERR WrongDocumentErr

21.6.3 Conformance

This section describes the conformance requirements and relationships between the Python DOM API, the W3C
DOM recommendations, and the OMG IDL mapping for Python.

Type Mapping

The IDL types used in the DOM specification are mapped to Python types according to the following table.

1362 Chapter 21. Structured Markup Processing Tools

https://www.w3.org/TR/REC-xml-names/
https://www.w3.org/TR/REC-xml-names/

The Python Library Reference, Release 3.13.1

IDL Type Python Type

boolean bool or int
int int

long int int

unsigned int int

DOMString str or bytes
null None

Accessor Methods

The mapping from OMG IDL to Python defines accessor functions for IDL attribute declarations in much the
way the Java mapping does. Mapping the IDL declarations

readonly attribute string someValue;

attribute string anotherValue;

yields three accessor functions: a “get” method for someValue (_get_someValue()), and “get” and “set” methods
for anotherValue (_get_anotherValue() and _set_anotherValue()). The mapping, in particular, does
not require that the IDL attributes are accessible as normal Python attributes: object.someValue is not required
to work, and may raise an AttributeError.

The Python DOM API, however, does require that normal attribute access work. This means that the typical surro-
gates generated by Python IDL compilers are not likely to work, and wrapper objects may be needed on the client if
the DOM objects are accessed via CORBA.While this does require some additional consideration for CORBADOM
clients, the implementers with experience using DOM over CORBA from Python do not consider this a problem.
Attributes that are declared readonly may not restrict write access in all DOM implementations.

In the Python DOM API, accessor functions are not required. If provided, they should take the form defined by the
Python IDL mapping, but these methods are considered unnecessary since the attributes are accessible directly from
Python. “Set” accessors should never be provided for readonly attributes.

The IDL definitions do not fully embody the requirements of the W3C DOM API, such as the notion of certain
objects, such as the return value of getElementsByTagName(), being “live”. The Python DOM API does not
require implementations to enforce such requirements.

21.7 xml.dom.minidom—Minimal DOM implementation

Source code: Lib/xml/dom/minidom.py

xml.dom.minidom is a minimal implementation of the Document Object Model interface, with an API similar to
that in other languages. It is intended to be simpler than the full DOM and also significantly smaller. Users who are
not already proficient with the DOM should consider using the xml.etree.ElementTree module for their XML
processing instead.

Warning

The xml.dom.minidommodule is not secure against maliciously constructed data. If you need to parse untrusted
or unauthenticated data see XML vulnerabilities.

DOM applications typically start by parsing some XML into a DOM.With xml.dom.minidom, this is done through
the parse functions:

from xml.dom.minidom import parse, parseString

dom1 = parse('c:\\temp\\mydata.xml') # parse an XML file by name

(continues on next page)

21.7. xml.dom.minidom—Minimal DOM implementation 1363

https://github.com/python/cpython/tree/3.13/Lib/xml/dom/minidom.py

The Python Library Reference, Release 3.13.1

(continued from previous page)

datasource = open('c:\\temp\\mydata.xml')

dom2 = parse(datasource) # parse an open file

dom3 = parseString('<myxml>Some data<empty/> some more data</myxml>')

The parse() function can take either a filename or an open file object.

xml.dom.minidom.parse(filename_or_file, parser=None, bufsize=None)
Return a Document from the given input. filename_or_file may be either a file name, or a file-like object.
parser, if given, must be a SAX2 parser object. This function will change the document handler of the parser
and activate namespace support; other parser configuration (like setting an entity resolver) must have been
done in advance.

If you have XML in a string, you can use the parseString() function instead:

xml.dom.minidom.parseString(string, parser=None)
Return a Document that represents the string. This method creates an io.StringIO object for the string and
passes that on to parse().

Both functions return a Document object representing the content of the document.

What the parse() and parseString() functions do is connect an XML parser with a “DOM builder” that can
accept parse events from any SAX parser and convert them into a DOM tree. The name of the functions are perhaps
misleading, but are easy to grasp when learning the interfaces. The parsing of the document will be completed before
these functions return; it’s simply that these functions do not provide a parser implementation themselves.

You can also create a Document by calling a method on a “DOM Implementation” object. You can get this object
either by calling the getDOMImplementation() function in the xml.dom package or the xml.dom.minidom
module. Once you have a Document, you can add child nodes to it to populate the DOM:

from xml.dom.minidom import getDOMImplementation

impl = getDOMImplementation()

newdoc = impl.createDocument(None, "some_tag", None)

top_element = newdoc.documentElement

text = newdoc.createTextNode('Some textual content.')

top_element.appendChild(text)

Once you have a DOM document object, you can access the parts of your XML document through its properties and
methods. These properties are defined in the DOM specification. The main property of the document object is the
documentElement property. It gives you the main element in the XML document: the one that holds all others.
Here is an example program:

dom3 = parseString("<myxml>Some data</myxml>")

assert dom3.documentElement.tagName == "myxml"

When you are finished with a DOM tree, you may optionally call the unlink() method to encourage early cleanup
of the now-unneeded objects. unlink() is an xml.dom.minidom-specific extension to the DOMAPI that renders
the node and its descendants essentially useless. Otherwise, Python’s garbage collector will eventually take care of
the objects in the tree.

See also

Document Object Model (DOM) Level 1 Specification
The W3C recommendation for the DOM supported by xml.dom.minidom.

1364 Chapter 21. Structured Markup Processing Tools

https://www.w3.org/TR/REC-DOM-Level-1/

The Python Library Reference, Release 3.13.1

21.7.1 DOM Objects

The definition of the DOM API for Python is given as part of the xml.dom module documentation. This section
lists the differences between the API and xml.dom.minidom.

Node.unlink()

Break internal references within the DOM so that it will be garbage collected on versions of Python without
cyclic GC. Even when cyclic GC is available, using this can make large amounts of memory available sooner,
so calling this on DOM objects as soon as they are no longer needed is good practice. This only needs to be
called on the Document object, but may be called on child nodes to discard children of that node.

You can avoid calling this method explicitly by using the with statement. The following codewill automatically
unlink dom when the with block is exited:

with xml.dom.minidom.parse(datasource) as dom:

... # Work with dom.

Node.writexml(writer, indent=” , addindent=” , newl=” , encoding=None, standalone=None)
Write XML to the writer object. The writer receives texts but not bytes as input, it should have a write()
method which matches that of the file object interface. The indent parameter is the indentation of the current
node. The addindent parameter is the incremental indentation to use for subnodes of the current one. The
newl parameter specifies the string to use to terminate newlines.

For the Document node, an additional keyword argument encoding can be used to specify the encoding field
of the XML header.

Similarly, explicitly stating the standalone argument causes the standalone document declarations to be added
to the prologue of the XML document. If the value is set to True, standalone="yes" is added, otherwise
it is set to "no". Not stating the argument will omit the declaration from the document.

Changed in version 3.8: The writexml() method now preserves the attribute order specified by the user.

Changed in version 3.9: The standalone parameter was added.

Node.toxml(encoding=None, standalone=None)
Return a string or byte string containing the XML represented by the DOM node.

With an explicit encoding1 argument, the result is a byte string in the specified encoding. With no encoding
argument, the result is a Unicode string, and the XML declaration in the resulting string does not specify an
encoding. Encoding this string in an encoding other than UTF-8 is likely incorrect, since UTF-8 is the default
encoding of XML.

The standalone argument behaves exactly as in writexml().

Changed in version 3.8: The toxml() method now preserves the attribute order specified by the user.

Changed in version 3.9: The standalone parameter was added.

Node.toprettyxml(indent=’\t’, newl=’\n’, encoding=None, standalone=None)
Return a pretty-printed version of the document. indent specifies the indentation string and defaults to a tabu-
lator; newl specifies the string emitted at the end of each line and defaults to \n.

The encoding argument behaves like the corresponding argument of toxml().

The standalone argument behaves exactly as in writexml().

Changed in version 3.8: The toprettyxml()method now preserves the attribute order specified by the user.

Changed in version 3.9: The standalone parameter was added.

1 The encoding name included in the XML output should conform to the appropriate standards. For example, “UTF-8” is valid, but
“UTF8” is not valid in an XML document’s declaration, even though Python accepts it as an encoding name. See https://www.w3.org/TR/
2006/REC-xml11-20060816/#NT-EncodingDecl and https://www.iana.org/assignments/character-sets/character-sets.xhtml.

21.7. xml.dom.minidom—Minimal DOM implementation 1365

https://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
https://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
https://www.iana.org/assignments/character-sets/character-sets.xhtml

The Python Library Reference, Release 3.13.1

21.7.2 DOM Example

This example program is a fairly realistic example of a simple program. In this particular case, we do not take much
advantage of the flexibility of the DOM.

import xml.dom.minidom

document = """\

<slideshow>

<title>Demo slideshow</title>

<slide><title>Slide title</title>

<point>This is a demo</point>

<point>Of a program for processing slides</point>

</slide>

<slide><title>Another demo slide</title>

<point>It is important</point>

<point>To have more than</point>

<point>one slide</point>

</slide>

</slideshow>

"""

dom = xml.dom.minidom.parseString(document)

def getText(nodelist):

rc = []

for node in nodelist:

if node.nodeType == node.TEXT_NODE:

rc.append(node.data)

return ''.join(rc)

def handleSlideshow(slideshow):

print("<html>")

handleSlideshowTitle(slideshow.getElementsByTagName("title")[0])

slides = slideshow.getElementsByTagName("slide")

handleToc(slides)

handleSlides(slides)

print("</html>")

def handleSlides(slides):

for slide in slides:

handleSlide(slide)

def handleSlide(slide):

handleSlideTitle(slide.getElementsByTagName("title")[0])

handlePoints(slide.getElementsByTagName("point"))

def handleSlideshowTitle(title):

print(f"<title>{getText(title.childNodes)}</title>")

def handleSlideTitle(title):

print(f"<h2>{getText(title.childNodes)}</h2>")

def handlePoints(points):

print("")

for point in points:

handlePoint(point)

(continues on next page)

1366 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

print("")

def handlePoint(point):

print(f"{getText(point.childNodes)}")

def handleToc(slides):

for slide in slides:

title = slide.getElementsByTagName("title")[0]

print(f"<p>{getText(title.childNodes)}</p>")

handleSlideshow(dom)

21.7.3 minidom and the DOM standard

The xml.dom.minidom module is essentially a DOM 1.0-compatible DOM with some DOM 2 features (primarily
namespace features).

Usage of the DOM interface in Python is straight-forward. The following mapping rules apply:

• Interfaces are accessed through instance objects. Applications should not instantiate the classes themselves;
they should use the creator functions available on the Document object. Derived interfaces support all opera-
tions (and attributes) from the base interfaces, plus any new operations.

• Operations are used as methods. Since the DOM uses only in parameters, the arguments are passed in normal
order (from left to right). There are no optional arguments. void operations return None.

• IDL attributes map to instance attributes. For compatibility with the OMG IDL language mapping for Python,
an attribute foo can also be accessed through accessor methods _get_foo() and _set_foo(). readonly
attributes must not be changed; this is not enforced at runtime.

• The types short int, unsigned int, unsigned long long, and boolean all map to Python integer
objects.

• The type DOMString maps to Python strings. xml.dom.minidom supports either bytes or strings, but will
normally produce strings. Values of type DOMStringmay also be None where allowed to have the IDL null

value by the DOM specification from the W3C.

• const declarations map to variables in their respective scope (e.g. xml.dom.minidom.Node.

PROCESSING_INSTRUCTION_NODE); they must not be changed.

• DOMException is currently not supported in xml.dom.minidom. Instead, xml.dom.minidom uses stan-
dard Python exceptions such as TypeError and AttributeError.

• NodeList objects are implemented using Python’s built-in list type. These objects provide the interface de-
fined in the DOM specification, but with earlier versions of Python they do not support the official API. They
are, however, much more “Pythonic” than the interface defined in the W3C recommendations.

The following interfaces have no implementation in xml.dom.minidom:

• DOMTimeStamp

• EntityReference

Most of these reflect information in the XML document that is not of general utility to most DOM users.

21.8 xml.dom.pulldom— Support for building partial DOM trees

Source code: Lib/xml/dom/pulldom.py

The xml.dom.pulldommodule provides a “pull parser” which can also be asked to produce DOM-accessible frag-
ments of the document where necessary. The basic concept involves pulling “events” from a stream of incoming

21.8. xml.dom.pulldom— Support for building partial DOM trees 1367

https://github.com/python/cpython/tree/3.13/Lib/xml/dom/pulldom.py

The Python Library Reference, Release 3.13.1

XML and processing them. In contrast to SAX which also employs an event-driven processing model together with
callbacks, the user of a pull parser is responsible for explicitly pulling events from the stream, looping over those
events until either processing is finished or an error condition occurs.

Warning

The xml.dom.pulldommodule is not secure against maliciously constructed data. If you need to parse untrusted
or unauthenticated data see XML vulnerabilities.

Changed in version 3.7.1: The SAX parser no longer processes general external entities by default to increase security
by default. To enable processing of external entities, pass a custom parser instance in:

from xml.dom.pulldom import parse

from xml.sax import make_parser

from xml.sax.handler import feature_external_ges

parser = make_parser()

parser.setFeature(feature_external_ges, True)

parse(filename, parser=parser)

Example:

from xml.dom import pulldom

doc = pulldom.parse('sales_items.xml')

for event, node in doc:

if event == pulldom.START_ELEMENT and node.tagName == 'item':

if int(node.getAttribute('price')) > 50:

doc.expandNode(node)

print(node.toxml())

event is a constant and can be one of:

• START_ELEMENT

• END_ELEMENT

• COMMENT

• START_DOCUMENT

• END_DOCUMENT

• CHARACTERS

• PROCESSING_INSTRUCTION

• IGNORABLE_WHITESPACE

node is an object of type xml.dom.minidom.Document, xml.dom.minidom.Element or xml.dom.minidom.
Text.

Since the document is treated as a “flat” stream of events, the document “tree” is implicitly traversed and the desired
elements are found regardless of their depth in the tree. In other words, one does not need to consider hierarchical
issues such as recursive searching of the document nodes, although if the context of elements were important, one
would either need to maintain some context-related state (i.e. remembering where one is in the document at any given
point) or to make use of the DOMEventStream.expandNode() method and switch to DOM-related processing.

class xml.dom.pulldom.PullDom(documentFactory=None)
Subclass of xml.sax.handler.ContentHandler.

class xml.dom.pulldom.SAX2DOM(documentFactory=None)
Subclass of xml.sax.handler.ContentHandler.

1368 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

xml.dom.pulldom.parse(stream_or_string, parser=None, bufsize=None)
Return a DOMEventStream from the given input. stream_or_string may be either a file name, or a file-like
object. parser, if given, must be an XMLReader object. This function will change the document handler of the
parser and activate namespace support; other parser configuration (like setting an entity resolver) must have
been done in advance.

If you have XML in a string, you can use the parseString() function instead:

xml.dom.pulldom.parseString(string, parser=None)
Return a DOMEventStream that represents the (Unicode) string.

xml.dom.pulldom.default_bufsize

Default value for the bufsize parameter to parse().

The value of this variable can be changed before calling parse() and the new value will take effect.

21.8.1 DOMEventStream Objects

class xml.dom.pulldom.DOMEventStream(stream, parser, bufsize)
Changed in version 3.11: Support for __getitem__() method has been removed.

getEvent()

Return a tuple containing event and the current node as xml.dom.minidom.Document if event equals
START_DOCUMENT, xml.dom.minidom.Element if event equals START_ELEMENT or END_ELEMENT
or xml.dom.minidom.Text if event equals CHARACTERS. The current node does not contain informa-
tion about its children, unless expandNode() is called.

expandNode(node)
Expands all children of node into node. Example:

from xml.dom import pulldom

xml = '<html><title>Foo</title> <p>Some text <div>and more</div></p> </

↪→html>'

doc = pulldom.parseString(xml)

for event, node in doc:

if event == pulldom.START_ELEMENT and node.tagName == 'p':

Following statement only prints '<p/>'

print(node.toxml())

doc.expandNode(node)

Following statement prints node with all its children '<p>Some␣

↪→text <div>and more</div></p>'

print(node.toxml())

reset()

21.9 xml.sax— Support for SAX2 parsers

Source code: Lib/xml/sax/__init__.py

The xml.sax package provides a number of modules which implement the Simple API for XML (SAX) interface
for Python. The package itself provides the SAX exceptions and the convenience functions which will be most used
by users of the SAX API.

Warning

The xml.sax module is not secure against maliciously constructed data. If you need to parse untrusted or
unauthenticated data see XML vulnerabilities.

21.9. xml.sax— Support for SAX2 parsers 1369

https://github.com/python/cpython/tree/3.13/Lib/xml/sax/__init__.py

The Python Library Reference, Release 3.13.1

Changed in version 3.7.1: The SAX parser no longer processes general external entities by default to increase security.
Before, the parser created network connections to fetch remote files or loaded local files from the file system for DTD
and entities. The feature can be enabled again with method setFeature() on the parser object and argument
feature_external_ges.

The convenience functions are:

xml.sax.make_parser(parser_list=[])

Create and return a SAX XMLReader object. The first parser found will be used. If parser_list is provided, it
must be an iterable of strings which name modules that have a function named create_parser(). Modules
listed in parser_list will be used before modules in the default list of parsers.

Changed in version 3.8: The parser_list argument can be any iterable, not just a list.

xml.sax.parse(filename_or_stream, handler, error_handler=handler.ErrorHandler())

Create a SAX parser and use it to parse a document. The document, passed in as filename_or_stream, can
be a filename or a file object. The handler parameter needs to be a SAX ContentHandler instance. If
error_handler is given, it must be a SAX ErrorHandler instance; if omitted, SAXParseException will be
raised on all errors. There is no return value; all work must be done by the handler passed in.

xml.sax.parseString(string, handler, error_handler=handler.ErrorHandler())
Similar to parse(), but parses from a buffer string received as a parameter. string must be a str instance or
a bytes-like object.

Changed in version 3.5: Added support of str instances.

A typical SAX application uses three kinds of objects: readers, handlers and input sources. “Reader” in this context
is another term for parser, i.e. some piece of code that reads the bytes or characters from the input source, and
produces a sequence of events. The events then get distributed to the handler objects, i.e. the reader invokes a
method on the handler. A SAX application must therefore obtain a reader object, create or open the input sources,
create the handlers, and connect these objects all together. As the final step of preparation, the reader is called to
parse the input. During parsing, methods on the handler objects are called based on structural and syntactic events
from the input data.

For these objects, only the interfaces are relevant; they are normally not instantiated by the application itself. Since
Python does not have an explicit notion of interface, they are formally introduced as classes, but applications may
use implementations which do not inherit from the provided classes. The InputSource, Locator, Attributes,
AttributesNS, and XMLReader interfaces are defined in the module xml.sax.xmlreader. The handler inter-
faces are defined in xml.sax.handler. For convenience, InputSource (which is often instantiated directly) and
the handler classes are also available from xml.sax. These interfaces are described below.

In addition to these classes, xml.sax provides the following exception classes.

exception xml.sax.SAXException(msg, exception=None)
Encapsulate an XML error or warning. This class can contain basic error or warning information from either
theXMLparser or the application: it can be subclassed to provide additional functionality or to add localization.
Note that although the handlers defined in the ErrorHandler interface receive instances of this exception, it
is not required to actually raise the exception — it is also useful as a container for information.

When instantiated,msg should be a human-readable description of the error. The optional exception parameter,
if given, should be None or an exception that was caught by the parsing code and is being passed along as
information.

This is the base class for the other SAX exception classes.

exception xml.sax.SAXParseException(msg, exception, locator)
Subclass of SAXException raised on parse errors. Instances of this class are passed to the methods of the
SAX ErrorHandler interface to provide information about the parse error. This class supports the SAX
Locator interface as well as the SAXException interface.

exception xml.sax.SAXNotRecognizedException(msg, exception=None)
Subclass of SAXException raised when a SAX XMLReader is confronted with an unrecognized feature or
property. SAX applications and extensions may use this class for similar purposes.

1370 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

exception xml.sax.SAXNotSupportedException(msg, exception=None)
Subclass of SAXException raised when a SAX XMLReader is asked to enable a feature that is not supported,
or to set a property to a value that the implementation does not support. SAX applications and extensions may
use this class for similar purposes.

See also

SAX: The Simple API for XML
This site is the focal point for the definition of the SAX API. It provides a Java implementation and online
documentation. Links to implementations and historical information are also available.

Module xml.sax.handler
Definitions of the interfaces for application-provided objects.

Module xml.sax.saxutils
Convenience functions for use in SAX applications.

Module xml.sax.xmlreader
Definitions of the interfaces for parser-provided objects.

21.9.1 SAXException Objects

The SAXException exception class supports the following methods:

SAXException.getMessage()

Return a human-readable message describing the error condition.

SAXException.getException()

Return an encapsulated exception object, or None.

21.10 xml.sax.handler— Base classes for SAX handlers

Source code: Lib/xml/sax/handler.py

The SAX API defines five kinds of handlers: content handlers, DTD handlers, error handlers, entity resolvers and
lexical handlers. Applications normally only need to implement those interfaces whose events they are interested in;
they can implement the interfaces in a single object or in multiple objects. Handler implementations should inherit
from the base classes provided in the module xml.sax.handler, so that all methods get default implementations.

class xml.sax.handler.ContentHandler

This is the main callback interface in SAX, and the one most important to applications. The order of events
in this interface mirrors the order of the information in the document.

class xml.sax.handler.DTDHandler

Handle DTD events.

This interface specifies only those DTD events required for basic parsing (unparsed entities and attributes).

class xml.sax.handler.EntityResolver

Basic interface for resolving entities. If you create an object implementing this interface, then register the
object with your Parser, the parser will call the method in your object to resolve all external entities.

class xml.sax.handler.ErrorHandler

Interface used by the parser to present error and warning messages to the application. The methods of this
object control whether errors are immediately converted to exceptions or are handled in some other way.

21.10. xml.sax.handler— Base classes for SAX handlers 1371

http://www.saxproject.org/
https://github.com/python/cpython/tree/3.13/Lib/xml/sax/handler.py

The Python Library Reference, Release 3.13.1

class xml.sax.handler.LexicalHandler

Interface used by the parser to represent low frequency events whichmay not be of interest tomany applications.

In addition to these classes, xml.sax.handler provides symbolic constants for the feature and property names.

xml.sax.handler.feature_namespaces

value: "http://xml.org/sax/features/namespaces"
true: Perform Namespace processing.
false: Optionally do not perform Namespace processing (implies namespace-prefixes; default).
access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.feature_namespace_prefixes

value: "http://xml.org/sax/features/namespace-prefixes"
true: Report the original prefixed names and attributes used for Namespace declarations.
false: Do not report attributes used for Namespace declarations, and optionally do not report original prefixed
names (default).
access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.feature_string_interning

value: "http://xml.org/sax/features/string-interning"
true: All element names, prefixes, attribute names, Namespace URIs, and local names are interned using the
built-in intern function.
false: Names are not necessarily interned, although they may be (default).
access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.feature_validation

value: "http://xml.org/sax/features/validation"
true: Report all validation errors (implies external-general-entities and external-parameter-entities).
false: Do not report validation errors.
access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.feature_external_ges

value: "http://xml.org/sax/features/external-general-entities"
true: Include all external general (text) entities.
false: Do not include external general entities.
access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.feature_external_pes

value: "http://xml.org/sax/features/external-parameter-entities"
true: Include all external parameter entities, including the external DTD subset.
false: Do not include any external parameter entities, even the external DTD subset.
access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.all_features

List of all features.

xml.sax.handler.property_lexical_handler

value: "http://xml.org/sax/properties/lexical-handler"
data type: xml.sax.handler.LexicalHandler (not supported in Python 2)
description: An optional extension handler for lexical events like comments.
access: read/write

1372 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

xml.sax.handler.property_declaration_handler

value: "http://xml.org/sax/properties/declaration-handler"
data type: xml.sax.sax2lib.DeclHandler (not supported in Python 2)
description: An optional extension handler for DTD-related events other than notations and unparsed entities.
access: read/write

xml.sax.handler.property_dom_node

value: "http://xml.org/sax/properties/dom-node"
data type: org.w3c.dom.Node (not supported in Python 2)
description: When parsing, the current DOM node being visited if this is a DOM iterator; when not parsing,
the root DOM node for iteration.
access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.property_xml_string

value: "http://xml.org/sax/properties/xml-string"
data type: Bytes
description: The literal string of characters that was the source for the current event.
access: read-only

xml.sax.handler.all_properties

List of all known property names.

21.10.1 ContentHandler Objects

Users are expected to subclass ContentHandler to support their application. The following methods are called by
the parser on the appropriate events in the input document:

ContentHandler.setDocumentLocator(locator)
Called by the parser to give the application a locator for locating the origin of document events.

SAX parsers are strongly encouraged (though not absolutely required) to supply a locator: if it does so, it must
supply the locator to the application by invoking this method before invoking any of the other methods in the
DocumentHandler interface.

The locator allows the application to determine the end position of any document-related event, even if the
parser is not reporting an error. Typically, the application will use this information for reporting its own errors
(such as character content that does not match an application’s business rules). The information returned by
the locator is probably not sufficient for use with a search engine.

Note that the locator will return correct information only during the invocation of the events in this interface.
The application should not attempt to use it at any other time.

ContentHandler.startDocument()

Receive notification of the beginning of a document.

The SAXparser will invoke thismethod only once, before any othermethods in this interface or inDTDHandler
(except for setDocumentLocator()).

ContentHandler.endDocument()

Receive notification of the end of a document.

The SAX parser will invoke this method only once, and it will be the last method invoked during the parse.
The parser shall not invoke this method until it has either abandoned parsing (because of an unrecoverable
error) or reached the end of input.

ContentHandler.startPrefixMapping(prefix, uri)
Begin the scope of a prefix-URI Namespace mapping.

21.10. xml.sax.handler— Base classes for SAX handlers 1373

The Python Library Reference, Release 3.13.1

The information from this event is not necessary for normal Namespace processing: the SAX XML reader
will automatically replace prefixes for element and attribute names when the feature_namespaces feature
is enabled (the default).

There are cases, however, when applications need to use prefixes in character data or in attribute values, where
they cannot safely be expanded automatically; the startPrefixMapping() and endPrefixMapping()

events supply the information to the application to expand prefixes in those contexts itself, if necessary.

Note that startPrefixMapping() and endPrefixMapping() events are not guaranteed to be prop-
erly nested relative to each-other: all startPrefixMapping() events will occur before the correspond-
ing startElement() event, and all endPrefixMapping() events will occur after the corresponding
endElement() event, but their order is not guaranteed.

ContentHandler.endPrefixMapping(prefix)
End the scope of a prefix-URI mapping.

See startPrefixMapping() for details. This event will always occur after the corresponding
endElement() event, but the order of endPrefixMapping() events is not otherwise guaranteed.

ContentHandler.startElement(name, attrs)
Signals the start of an element in non-namespace mode.

The name parameter contains the raw XML 1.0 name of the element type as a string and the attrs parameter
holds an object of the Attributes interface (see The Attributes Interface) containing the attributes of the
element. The object passed as attrsmay be re-used by the parser; holding on to a reference to it is not a reliable
way to keep a copy of the attributes. To keep a copy of the attributes, use the copy() method of the attrs
object.

ContentHandler.endElement(name)
Signals the end of an element in non-namespace mode.

The name parameter contains the name of the element type, just as with the startElement() event.

ContentHandler.startElementNS(name, qname, attrs)
Signals the start of an element in namespace mode.

The name parameter contains the name of the element type as a (uri, localname) tuple, the qname param-
eter contains the raw XML 1.0 name used in the source document, and the attrs parameter holds an instance
of the AttributesNS interface (see The AttributesNS Interface) containing the attributes of the element. If
no namespace is associated with the element, the uri component of name will be None. The object passed as
attrs may be re-used by the parser; holding on to a reference to it is not a reliable way to keep a copy of the
attributes. To keep a copy of the attributes, use the copy() method of the attrs object.

Parsers may set the qname parameter to None, unless the feature_namespace_prefixes feature is acti-
vated.

ContentHandler.endElementNS(name, qname)
Signals the end of an element in namespace mode.

The name parameter contains the name of the element type, just as with the startElementNS() method,
likewise the qname parameter.

ContentHandler.characters(content)

Receive notification of character data.

The Parser will call this method to report each chunk of character data. SAX parsers may return all contiguous
character data in a single chunk, or they may split it into several chunks; however, all of the characters in any
single event must come from the same external entity so that the Locator provides useful information.

content may be a string or bytes instance; the expat reader module always produces strings.

1374 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

Note

The earlier SAX 1 interface provided by the Python XML Special Interest Group used a more Java-like
interface for this method. Since most parsers used from Python did not take advantage of the older inter-
face, the simpler signature was chosen to replace it. To convert old code to the new interface, use content
instead of slicing content with the old offset and length parameters.

ContentHandler.ignorableWhitespace(whitespace)
Receive notification of ignorable whitespace in element content.

Validating Parsers must use this method to report each chunk of ignorable whitespace (see the W3C XML 1.0
recommendation, section 2.10): non-validating parsers may also use this method if they are capable of parsing
and using content models.

SAX parsers may return all contiguous whitespace in a single chunk, or they may split it into several chunks;
however, all of the characters in any single event must come from the same external entity, so that the Locator
provides useful information.

ContentHandler.processingInstruction(target, data)
Receive notification of a processing instruction.

The Parser will invoke this method once for each processing instruction found: note that processing instructions
may occur before or after the main document element.

A SAX parser should never report an XML declaration (XML 1.0, section 2.8) or a text declaration (XML
1.0, section 4.3.1) using this method.

ContentHandler.skippedEntity(name)
Receive notification of a skipped entity.

The Parser will invoke this method once for each entity skipped. Non-validating processors may skip entities if
they have not seen the declarations (because, for example, the entity was declared in an external DTD subset).
All processors may skip external entities, depending on the values of the feature_external_ges and the
feature_external_pes properties.

21.10.2 DTDHandler Objects

DTDHandler instances provide the following methods:

DTDHandler.notationDecl(name, publicId, systemId)
Handle a notation declaration event.

DTDHandler.unparsedEntityDecl(name, publicId, systemId, ndata)
Handle an unparsed entity declaration event.

21.10.3 EntityResolver Objects

EntityResolver.resolveEntity(publicId, systemId)
Resolve the system identifier of an entity and return either the system identifier to read from as a string, or an
InputSource to read from. The default implementation returns systemId.

21.10.4 ErrorHandler Objects

Objects with this interface are used to receive error and warning information from the XMLReader. If you create an
object that implements this interface, then register the object with your XMLReader, the parser will call the methods
in your object to report all warnings and errors. There are three levels of errors available: warnings, (possibly)
recoverable errors, and unrecoverable errors. All methods take a SAXParseException as the only parameter.
Errors and warnings may be converted to an exception by raising the passed-in exception object.

21.10. xml.sax.handler— Base classes for SAX handlers 1375

The Python Library Reference, Release 3.13.1

ErrorHandler.error(exception)
Called when the parser encounters a recoverable error. If this method does not raise an exception, parsing may
continue, but further document information should not be expected by the application. Allowing the parser to
continue may allow additional errors to be discovered in the input document.

ErrorHandler.fatalError(exception)
Called when the parser encounters an error it cannot recover from; parsing is expected to terminate when this
method returns.

ErrorHandler.warning(exception)
Called when the parser presents minor warning information to the application. Parsing is expected to continue
when this method returns, and document information will continue to be passed to the application. Raising an
exception in this method will cause parsing to end.

21.10.5 LexicalHandler Objects

Optional SAX2 handler for lexical events.

This handler is used to obtain lexical information about an XML document. Lexical information includes informa-
tion describing the document encoding used and XML comments embedded in the document, as well as section
boundaries for the DTD and for any CDATA sections. The lexical handlers are used in the same manner as content
handlers.

Set the LexicalHandler of an XMLReader by using the setProperty method with the property identifier 'http://
xml.org/sax/properties/lexical-handler'.

LexicalHandler.comment(content)
Reports a comment anywhere in the document (including the DTD and outside the document element).

LexicalHandler.startDTD(name, public_id, system_id)
Reports the start of the DTD declarations if the document has an associated DTD.

LexicalHandler.endDTD()

Reports the end of DTD declaration.

LexicalHandler.startCDATA()

Reports the start of a CDATA marked section.

The contents of the CDATA marked section will be reported through the characters handler.

LexicalHandler.endCDATA()

Reports the end of a CDATA marked section.

21.11 xml.sax.saxutils— SAX Utilities

Source code: Lib/xml/sax/saxutils.py

Themodule xml.sax.saxutils contains a number of classes and functions that are commonly useful when creating
SAX applications, either in direct use, or as base classes.

xml.sax.saxutils.escape(data, entities={})
Escape '&', '<', and '>' in a string of data.

You can escape other strings of data by passing a dictionary as the optional entities parameter. The keys and
values must all be strings; each key will be replaced with its corresponding value. The characters '&', '<'
and '>' are always escaped, even if entities is provided.

1376 Chapter 21. Structured Markup Processing Tools

https://github.com/python/cpython/tree/3.13/Lib/xml/sax/saxutils.py

The Python Library Reference, Release 3.13.1

Note

This function should only be used to escape characters that can’t be used directly in XML. Do not use this
function as a general string translation function.

xml.sax.saxutils.unescape(data, entities={})
Unescape '&', '<', and '>' in a string of data.

You can unescape other strings of data by passing a dictionary as the optional entities parameter. The keys
and values must all be strings; each key will be replaced with its corresponding value. '&', '<', and
'>' are always unescaped, even if entities is provided.

xml.sax.saxutils.quoteattr(data, entities={})
Similar to escape(), but also prepares data to be used as an attribute value. The return value is a quoted
version of data with any additional required replacements. quoteattr() will select a quote character based
on the content of data, attempting to avoid encoding any quote characters in the string. If both single- and
double-quote characters are already in data, the double-quote characters will be encoded and data will be
wrapped in double-quotes. The resulting string can be used directly as an attribute value:

>>> print("<element attr=%s>" % quoteattr("ab ' cd \" ef"))

<element attr="ab ' cd " ef">

This function is useful when generating attribute values for HTML or any SGML using the reference concrete
syntax.

class xml.sax.saxutils.XMLGenerator(out=None, encoding=’iso-8859-1’, short_empty_elements=False)
This class implements the ContentHandler interface by writing SAX events back into an XML document.
In other words, using an XMLGenerator as the content handler will reproduce the original document being
parsed. out should be a file-like object which will default to sys.stdout. encoding is the encoding of the out-
put stream which defaults to 'iso-8859-1'. short_empty_elements controls the formatting of elements that
contain no content: if False (the default) they are emitted as a pair of start/end tags, if set to True they are
emitted as a single self-closed tag.

Changed in version 3.2: Added the short_empty_elements parameter.

class xml.sax.saxutils.XMLFilterBase(base)
This class is designed to sit between an XMLReader and the client application’s event handlers. By default, it
does nothing but pass requests up to the reader and events on to the handlers unmodified, but subclasses can
override specific methods to modify the event stream or the configuration requests as they pass through.

xml.sax.saxutils.prepare_input_source(source, base=”)
This function takes an input source and an optional base URL and returns a fully resolved InputSource object
ready for reading. The input source can be given as a string, a file-like object, or an InputSource object;
parsers will use this function to implement the polymorphic source argument to their parse() method.

21.12 xml.sax.xmlreader— Interface for XML parsers

Source code: Lib/xml/sax/xmlreader.py

SAX parsers implement the XMLReader interface. They are implemented in a Python module, which must provide a
function create_parser(). This function is invoked by xml.sax.make_parser() with no arguments to create
a new parser object.

class xml.sax.xmlreader.XMLReader

Base class which can be inherited by SAX parsers.

21.12. xml.sax.xmlreader— Interface for XML parsers 1377

https://github.com/python/cpython/tree/3.13/Lib/xml/sax/xmlreader.py

The Python Library Reference, Release 3.13.1

class xml.sax.xmlreader.IncrementalParser

In some cases, it is desirable not to parse an input source at once, but to feed chunks of the document as
they get available. Note that the reader will normally not read the entire file, but read it in chunks as well;
still parse() won’t return until the entire document is processed. So these interfaces should be used if the
blocking behaviour of parse() is not desirable.

When the parser is instantiated it is ready to begin accepting data from the feed method immediately. After
parsing has been finished with a call to close the reset method must be called to make the parser ready to accept
new data, either from feed or using the parse method.

Note that these methods must not be called during parsing, that is, after parse has been called and before it
returns.

By default, the class also implements the parse method of the XMLReader interface using the feed, close and
reset methods of the IncrementalParser interface as a convenience to SAX 2.0 driver writers.

class xml.sax.xmlreader.Locator

Interface for associating a SAX event with a document location. A locator object will return valid results only
during calls to DocumentHandler methods; at any other time, the results are unpredictable. If information is
not available, methods may return None.

class xml.sax.xmlreader.InputSource(system_id=None)

Encapsulation of the information needed by the XMLReader to read entities.

This class may include information about the public identifier, system identifier, byte stream (possibly with
character encoding information) and/or the character stream of an entity.

Applications will create objects of this class for use in the XMLReader.parse() method and for returning
from EntityResolver.resolveEntity.

An InputSource belongs to the application, the XMLReader is not allowed to modify InputSource objects
passed to it from the application, although it may make copies and modify those.

class xml.sax.xmlreader.AttributesImpl(attrs)
This is an implementation of the Attributes interface (see section The Attributes Interface). This is a
dictionary-like object which represents the element attributes in a startElement() call. In addition to
the most useful dictionary operations, it supports a number of other methods as described by the interface.
Objects of this class should be instantiated by readers; attrs must be a dictionary-like object containing a
mapping from attribute names to attribute values.

class xml.sax.xmlreader.AttributesNSImpl(attrs, qnames)
Namespace-aware variant of AttributesImpl, which will be passed to startElementNS(). It is derived
from AttributesImpl, but understands attribute names as two-tuples of namespaceURI and localname. In
addition, it provides a number of methods expecting qualified names as they appear in the original document.
This class implements the AttributesNS interface (see section The AttributesNS Interface).

21.12.1 XMLReader Objects

The XMLReader interface supports the following methods:

XMLReader.parse(source)
Process an input source, producing SAX events. The source object can be a system identifier (a string iden-
tifying the input source – typically a file name or a URL), a pathlib.Path or path-like object, or an
InputSource object. When parse() returns, the input is completely processed, and the parser object
can be discarded or reset.

Changed in version 3.5: Added support of character streams.

Changed in version 3.8: Added support of path-like objects.

XMLReader.getContentHandler()

Return the current ContentHandler.

1378 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

XMLReader.setContentHandler(handler)
Set the current ContentHandler. If no ContentHandler is set, content events will be discarded.

XMLReader.getDTDHandler()

Return the current DTDHandler.

XMLReader.setDTDHandler(handler)

Set the current DTDHandler. If no DTDHandler is set, DTD events will be discarded.

XMLReader.getEntityResolver()

Return the current EntityResolver.

XMLReader.setEntityResolver(handler)
Set the current EntityResolver. If no EntityResolver is set, attempts to resolve an external entity will
result in opening the system identifier for the entity, and fail if it is not available.

XMLReader.getErrorHandler()

Return the current ErrorHandler.

XMLReader.setErrorHandler(handler)

Set the current error handler. If no ErrorHandler is set, errors will be raised as exceptions, and warnings
will be printed.

XMLReader.setLocale(locale)
Allow an application to set the locale for errors and warnings.

SAX parsers are not required to provide localization for errors and warnings; if they cannot support the re-
quested locale, however, they must raise a SAX exception. Applications may request a locale change in the
middle of a parse.

XMLReader.getFeature(featurename)
Return the current setting for feature featurename. If the feature is not recognized,
SAXNotRecognizedException is raised. The well-known featurenames are listed in the module
xml.sax.handler.

XMLReader.setFeature(featurename, value)
Set the featurename to value. If the feature is not recognized, SAXNotRecognizedException is raised. If
the feature or its setting is not supported by the parser, SAXNotSupportedException is raised.

XMLReader.getProperty(propertyname)
Return the current setting for property propertyname. If the property is not recognized, a
SAXNotRecognizedException is raised. The well-known propertynames are listed in the module xml.
sax.handler.

XMLReader.setProperty(propertyname, value)
Set the propertyname to value. If the property is not recognized, SAXNotRecognizedException is raised.
If the property or its setting is not supported by the parser, SAXNotSupportedException is raised.

21.12.2 IncrementalParser Objects

Instances of IncrementalParser offer the following additional methods:

IncrementalParser.feed(data)
Process a chunk of data.

IncrementalParser.close()

Assume the end of the document. That will check well-formedness conditions that can be checked only at the
end, invoke handlers, and may clean up resources allocated during parsing.

IncrementalParser.reset()

This method is called after close has been called to reset the parser so that it is ready to parse new documents.
The results of calling parse or feed after close without calling reset are undefined.

21.12. xml.sax.xmlreader— Interface for XML parsers 1379

The Python Library Reference, Release 3.13.1

21.12.3 Locator Objects

Instances of Locator provide these methods:

Locator.getColumnNumber()

Return the column number where the current event begins.

Locator.getLineNumber()

Return the line number where the current event begins.

Locator.getPublicId()

Return the public identifier for the current event.

Locator.getSystemId()

Return the system identifier for the current event.

21.12.4 InputSource Objects

InputSource.setPublicId(id)

Sets the public identifier of this InputSource.

InputSource.getPublicId()

Returns the public identifier of this InputSource.

InputSource.setSystemId(id)
Sets the system identifier of this InputSource.

InputSource.getSystemId()

Returns the system identifier of this InputSource.

InputSource.setEncoding(encoding)
Sets the character encoding of this InputSource.

The encoding must be a string acceptable for an XML encoding declaration (see section 4.3.3 of the XML
recommendation).

The encoding attribute of the InputSource is ignored if the InputSource also contains a character stream.

InputSource.getEncoding()

Get the character encoding of this InputSource.

InputSource.setByteStream(bytefile)

Set the byte stream (a binary file) for this input source.

The SAX parser will ignore this if there is also a character stream specified, but it will use a byte stream in
preference to opening a URI connection itself.

If the application knows the character encoding of the byte stream, it should set it with the setEncodingmethod.

InputSource.getByteStream()

Get the byte stream for this input source.

The getEncoding method will return the character encoding for this byte stream, or None if unknown.

InputSource.setCharacterStream(charfile)

Set the character stream (a text file) for this input source.

If there is a character stream specified, the SAX parser will ignore any byte stream and will not attempt to
open a URI connection to the system identifier.

InputSource.getCharacterStream()

Get the character stream for this input source.

1380 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

21.12.5 The Attributes Interface

Attributes objects implement a portion of the mapping protocol, including the methods copy(), get(),
__contains__(), items(), keys(), and values(). The following methods are also provided:

Attributes.getLength()

Return the number of attributes.

Attributes.getNames()

Return the names of the attributes.

Attributes.getType(name)

Returns the type of the attribute name, which is normally 'CDATA'.

Attributes.getValue(name)
Return the value of attribute name.

21.12.6 The AttributesNS Interface

This interface is a subtype of the Attributes interface (see section The Attributes Interface). All methods supported
by that interface are also available on AttributesNS objects.

The following methods are also available:

AttributesNS.getValueByQName(name)
Return the value for a qualified name.

AttributesNS.getNameByQName(name)
Return the (namespace, localname) pair for a qualified name.

AttributesNS.getQNameByName(name)
Return the qualified name for a (namespace, localname) pair.

AttributesNS.getQNames()

Return the qualified names of all attributes.

21.13 xml.parsers.expat— Fast XML parsing using Expat

Warning

The pyexpat module is not secure against maliciously constructed data. If you need to parse untrusted or
unauthenticated data see XML vulnerabilities.

The xml.parsers.expatmodule is a Python interface to the Expat non-validating XML parser. The module pro-
vides a single extension type, xmlparser, that represents the current state of an XML parser. After an xmlparser
object has been created, various attributes of the object can be set to handler functions. When an XML document
is then fed to the parser, the handler functions are called for the character data and markup in the XML document.

This module uses the pyexpat module to provide access to the Expat parser. Direct use of the pyexpat module is
deprecated.

This module provides one exception and one type object:

exception xml.parsers.expat.ExpatError

The exception raised when Expat reports an error. See section ExpatError Exceptions for more information on
interpreting Expat errors.

21.13. xml.parsers.expat— Fast XML parsing using Expat 1381

The Python Library Reference, Release 3.13.1

exception xml.parsers.expat.error

Alias for ExpatError.

xml.parsers.expat.XMLParserType

The type of the return values from the ParserCreate() function.

The xml.parsers.expat module contains two functions:

xml.parsers.expat.ErrorString(errno)
Returns an explanatory string for a given error number errno.

xml.parsers.expat.ParserCreate(encoding=None, namespace_separator=None)
Creates and returns a new xmlparser object. encoding, if specified, must be a string naming the encoding
used by the XML data. Expat doesn’t support as many encodings as Python does, and its repertoire of encodings
can’t be extended; it supports UTF-8, UTF-16, ISO-8859-1 (Latin1), and ASCII. If encoding1 is given it will
override the implicit or explicit encoding of the document.

Expat can optionally do XML namespace processing for you, enabled by providing a value for names-
pace_separator. The value must be a one-character string; a ValueError will be raised if the string has
an illegal length (None is considered the same as omission). When namespace processing is enabled, element
type names and attribute names that belong to a namespace will be expanded. The element name passed to
the element handlers StartElementHandler and EndElementHandler will be the concatenation of the
namespace URI, the namespace separator character, and the local part of the name. If the namespace sep-
arator is a zero byte (chr(0)) then the namespace URI and the local part will be concatenated without any
separator.

For example, if namespace_separator is set to a space character (' ') and the following document is parsed:

<?xml version="1.0"?>

<root xmlns = "http://default-namespace.org/"

xmlns:py = "http://www.python.org/ns/">

<py:elem1 />

<elem2 xmlns="" />

</root>

StartElementHandler will receive the following strings for each element:

http://default-namespace.org/ root

http://www.python.org/ns/ elem1

elem2

Due to limitations in the Expat library used by pyexpat, the xmlparser instance returned can only be used
to parse a single XML document. Call ParserCreate for each document to provide unique parser instances.

See also

The Expat XML Parser
Home page of the Expat project.

21.13.1 XMLParser Objects

xmlparser objects have the following methods:

xmlparser.Parse(data[, isfinal])
Parses the contents of the string data, calling the appropriate handler functions to process the parsed data.
isfinal must be true on the final call to this method; it allows the parsing of a single file in fragments, not the
submission of multiple files. data can be the empty string at any time.

1 The encoding string included in XML output should conform to the appropriate standards. For example, “UTF-8” is valid, but “UTF8”
is not. See https://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl and https://www.iana.org/assignments/character-sets/
character-sets.xhtml.

1382 Chapter 21. Structured Markup Processing Tools

http://www.libexpat.org/
https://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
https://www.iana.org/assignments/character-sets/character-sets.xhtml
https://www.iana.org/assignments/character-sets/character-sets.xhtml

The Python Library Reference, Release 3.13.1

xmlparser.ParseFile(file)
Parse XML data reading from the object file. file only needs to provide the read(nbytes)method, returning
the empty string when there’s no more data.

xmlparser.SetBase(base)
Sets the base to be used for resolving relative URIs in system identifiers in declarations. Resolving rel-
ative identifiers is left to the application: this value will be passed through as the base argument to the
ExternalEntityRefHandler(), NotationDeclHandler(), and UnparsedEntityDeclHandler()
functions.

xmlparser.GetBase()

Returns a string containing the base set by a previous call to SetBase(), or None if SetBase() hasn’t been
called.

xmlparser.GetInputContext()

Returns the input data that generated the current event as a string. The data is in the encoding of the entity
which contains the text. When called while an event handler is not active, the return value is None.

xmlparser.ExternalEntityParserCreate(context[, encoding])
Create a “child” parser which can be used to parse an external parsed entity referred to by content parsed by the
parent parser. The context parameter should be the string passed to the ExternalEntityRefHandler()
handler function, described below. The child parser is created with the ordered_attributes and
specified_attributes set to the values of this parser.

xmlparser.SetParamEntityParsing(flag)
Control parsing of parameter entities (including the external DTD subset). Possible flag values
are XML_PARAM_ENTITY_PARSING_NEVER, XML_PARAM_ENTITY_PARSING_UNLESS_STANDALONE and
XML_PARAM_ENTITY_PARSING_ALWAYS. Return true if setting the flag was successful.

xmlparser.UseForeignDTD([flag])
Calling this with a true value for flag (the default) will cause Expat to call the ExternalEntityRefHandler
with None for all arguments to allow an alternate DTD to be loaded. If the document does not
contain a document type declaration, the ExternalEntityRefHandler will still be called, but the
StartDoctypeDeclHandler and EndDoctypeDeclHandler will not be called.

Passing a false value for flag will cancel a previous call that passed a true value, but otherwise has no effect.

This method can only be called before the Parse() or ParseFile() methods are called; calling it after
either of those have been called causes ExpatError to be raised with the code attribute set to errors.

codes[errors.XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING].

xmlparser.SetReparseDeferralEnabled(enabled)

Warning

Calling SetReparseDeferralEnabled(False) has security implications, as detailed below; please
make sure to understand these consequences prior to using the SetReparseDeferralEnabledmethod.

Expat 2.6.0 introduced a security mechanism called “reparse deferral” where instead of causing denial of
service through quadratic runtime from reparsing large tokens, reparsing of unfinished tokens is now delayed
by default until a sufficient amount of input is reached. Due to this delay, registered handlers may— depending
of the sizing of input chunks pushed to Expat— no longer be called right after pushing new input to the parser.
Where immediate feedback and taking over responsibility of protecting against denial of service from large
tokens are both wanted, calling SetReparseDeferralEnabled(False) disables reparse deferral for the
current Expat parser instance, temporarily or altogether. Calling SetReparseDeferralEnabled(True)
allows re-enabling reparse deferral.

Note that SetReparseDeferralEnabled() has been backported to some prior releases of CPython as a
security fix. Check for availability of SetReparseDeferralEnabled() using hasattr() if used in code
running across a variety of Python versions.

21.13. xml.parsers.expat— Fast XML parsing using Expat 1383

The Python Library Reference, Release 3.13.1

Added in version 3.13.

xmlparser.GetReparseDeferralEnabled()

Returns whether reparse deferral is currently enabled for the given Expat parser instance.

Added in version 3.13.

xmlparser objects have the following attributes:

xmlparser.buffer_size

The size of the buffer used when buffer_text is true. A new buffer size can be set by assigning a new integer
value to this attribute. When the size is changed, the buffer will be flushed.

xmlparser.buffer_text

Setting this to true causes the xmlparser object to buffer textual content returned by Expat to avoid multiple
calls to the CharacterDataHandler() callback whenever possible. This can improve performance sub-
stantially since Expat normally breaks character data into chunks at every line ending. This attribute is false
by default, and may be changed at any time. Note that when it is false, data that does not contain newlines may
be chunked too.

xmlparser.buffer_used

If buffer_text is enabled, the number of bytes stored in the buffer. These bytes represent UTF-8 encoded
text. This attribute has no meaningful interpretation when buffer_text is false.

xmlparser.ordered_attributes

Setting this attribute to a non-zero integer causes the attributes to be reported as a list rather than a dictionary.
The attributes are presented in the order found in the document text. For each attribute, two list entries are
presented: the attribute name and the attribute value. (Older versions of this module also used this format.)
By default, this attribute is false; it may be changed at any time.

xmlparser.specified_attributes

If set to a non-zero integer, the parser will report only those attributes which were specified in the document
instance and not those which were derived from attribute declarations. Applications which set this need to be
especially careful to use what additional information is available from the declarations as needed to comply
with the standards for the behavior of XML processors. By default, this attribute is false; it may be changed at
any time.

The following attributes contain values relating to the most recent error encountered by an xmlparser object,
and will only have correct values once a call to Parse() or ParseFile() has raised an xml.parsers.expat.
ExpatError exception.

xmlparser.ErrorByteIndex

Byte index at which an error occurred.

xmlparser.ErrorCode

Numeric code specifying the problem. This value can be passed to the ErrorString() function, or compared
to one of the constants defined in the errors object.

xmlparser.ErrorColumnNumber

Column number at which an error occurred.

xmlparser.ErrorLineNumber

Line number at which an error occurred.

The following attributes contain values relating to the current parse location in an xmlparser object. During a
callback reporting a parse event they indicate the location of the first of the sequence of characters that generated
the event. When called outside of a callback, the position indicated will be just past the last parse event (regardless
of whether there was an associated callback).

xmlparser.CurrentByteIndex

Current byte index in the parser input.

1384 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

xmlparser.CurrentColumnNumber

Current column number in the parser input.

xmlparser.CurrentLineNumber

Current line number in the parser input.

Here is the list of handlers that can be set. To set a handler on an xmlparser object o, use o.handlername =

func. handlername must be taken from the following list, and func must be a callable object accepting the correct
number of arguments. The arguments are all strings, unless otherwise stated.

xmlparser.XmlDeclHandler(version, encoding, standalone)
Called when the XML declaration is parsed. The XML declaration is the (optional) declaration of the appli-
cable version of the XML recommendation, the encoding of the document text, and an optional “standalone”
declaration. version and encoding will be strings, and standalone will be 1 if the document is declared stan-
dalone, 0 if it is declared not to be standalone, or -1 if the standalone clause was omitted. This is only available
with Expat version 1.95.0 or newer.

xmlparser.StartDoctypeDeclHandler(doctypeName, systemId, publicId, has_internal_subset)
Called when Expat begins parsing the document type declaration (<!DOCTYPE ...). The doctypeName is
provided exactly as presented. The systemId and publicId parameters give the system and public identifiers if
specified, or None if omitted. has_internal_subset will be true if the document contains and internal document
declaration subset. This requires Expat version 1.2 or newer.

xmlparser.EndDoctypeDeclHandler()

Called when Expat is done parsing the document type declaration. This requires Expat version 1.2 or newer.

xmlparser.ElementDeclHandler(name, model)
Called once for each element type declaration. name is the name of the element type, and model is a repre-
sentation of the content model.

xmlparser.AttlistDeclHandler(elname, attname, type, default, required)
Called for each declared attribute for an element type. If an attribute list declaration declares three attributes,
this handler is called three times, once for each attribute. elname is the name of the element to which the
declaration applies and attname is the name of the attribute declared. The attribute type is a string passed as
type; the possible values are 'CDATA', 'ID', 'IDREF', … default gives the default value for the attribute used
when the attribute is not specified by the document instance, or None if there is no default value (#IMPLIED
values). If the attribute is required to be given in the document instance, required will be true. This requires
Expat version 1.95.0 or newer.

xmlparser.StartElementHandler(name, attributes)
Called for the start of every element. name is a string containing the element name, and attributes is the element
attributes. If ordered_attributes is true, this is a list (see ordered_attributes for a full description).
Otherwise it’s a dictionary mapping names to values.

xmlparser.EndElementHandler(name)
Called for the end of every element.

xmlparser.ProcessingInstructionHandler(target, data)
Called for every processing instruction.

xmlparser.CharacterDataHandler(data)
Called for character data. This will be called for normal character data, CDATAmarked content, and ignorable
whitespace. Applications which must distinguish these cases can use the StartCdataSectionHandler,
EndCdataSectionHandler, and ElementDeclHandler callbacks to collect the required information.
Note that the character data may be chunked even if it is short and so you may receive more than one call
to CharacterDataHandler(). Set the buffer_text instance attribute to True to avoid that.

xmlparser.UnparsedEntityDeclHandler(entityName, base, systemId, publicId, notationName)
Called for unparsed (NDATA) entity declarations. This is only present for version 1.2 of the Expat library; for
more recent versions, use EntityDeclHandler instead. (The underlying function in the Expat library has
been declared obsolete.)

21.13. xml.parsers.expat— Fast XML parsing using Expat 1385

The Python Library Reference, Release 3.13.1

xmlparser.EntityDeclHandler(entityName, is_parameter_entity, value, base, systemId, publicId,
notationName)

Called for all entity declarations. For parameter and internal entities, value will be a string giving the declared
contents of the entity; this will be None for external entities. The notationName parameter will be None for
parsed entities, and the name of the notation for unparsed entities. is_parameter_entity will be true if the entity
is a parameter entity or false for general entities (most applications only need to be concerned with general
entities). This is only available starting with version 1.95.0 of the Expat library.

xmlparser.NotationDeclHandler(notationName, base, systemId, publicId)
Called for notation declarations. notationName, base, and systemId, and publicId are strings if given. If the
public identifier is omitted, publicId will be None.

xmlparser.StartNamespaceDeclHandler(prefix, uri)
Called when an element contains a namespace declaration. Namespace declarations are processed before the
StartElementHandler is called for the element on which declarations are placed.

xmlparser.EndNamespaceDeclHandler(prefix)
Called when the closing tag is reached for an element that contained a namespace declaration. This is
called once for each namespace declaration on the element in the reverse of the order for which the
StartNamespaceDeclHandler was called to indicate the start of each namespace declaration’s scope. Calls
to this handler are made after the corresponding EndElementHandler for the end of the element.

xmlparser.CommentHandler(data)
Called for comments. data is the text of the comment, excluding the leading '<!--' and trailing '-->'.

xmlparser.StartCdataSectionHandler()

Called at the start of a CDATA section. This and EndCdataSectionHandler are needed to be able to
identify the syntactical start and end for CDATA sections.

xmlparser.EndCdataSectionHandler()

Called at the end of a CDATA section.

xmlparser.DefaultHandler(data)
Called for any characters in the XML document for which no applicable handler has been specified. This means
characters that are part of a construct which could be reported, but for which no handler has been supplied.

xmlparser.DefaultHandlerExpand(data)
This is the same as the DefaultHandler(), but doesn’t inhibit expansion of internal entities. The entity
reference will not be passed to the default handler.

xmlparser.NotStandaloneHandler()

Called if the XML document hasn’t been declared as being a standalone document. This happens when there is
an external subset or a reference to a parameter entity, but the XML declaration does not set standalone to yes
in an XML declaration. If this handler returns 0, then the parser will raise an XML_ERROR_NOT_STANDALONE
error. If this handler is not set, no exception is raised by the parser for this condition.

xmlparser.ExternalEntityRefHandler(context, base, systemId, publicId)
Called for references to external entities. base is the current base, as set by a previous call to SetBase(). The
public and system identifiers, systemId and publicId, are strings if given; if the public identifier is not given,
publicId will be None. The context value is opaque and should only be used as described below.

For external entities to be parsed, this handler must be implemented. It is responsible for creating the sub-
parser using ExternalEntityParserCreate(context), initializing it with the appropriate callbacks,
and parsing the entity. This handler should return an integer; if it returns 0, the parser will raise an
XML_ERROR_EXTERNAL_ENTITY_HANDLING error, otherwise parsing will continue.

If this handler is not provided, external entities are reported by the DefaultHandler callback, if provided.

1386 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

21.13.2 ExpatError Exceptions

ExpatError exceptions have a number of interesting attributes:

ExpatError.code

Expat’s internal error number for the specific error. The errors.messages dictionary maps these error
numbers to Expat’s error messages. For example:

from xml.parsers.expat import ParserCreate, ExpatError, errors

p = ParserCreate()

try:

p.Parse(some_xml_document)

except ExpatError as err:

print("Error:", errors.messages[err.code])

The errors module also provides error message constants and a dictionary codes mapping these messages
back to the error codes, see below.

ExpatError.lineno

Line number on which the error was detected. The first line is numbered 1.

ExpatError.offset

Character offset into the line where the error occurred. The first column is numbered 0.

21.13.3 Example

The following program defines three handlers that just print out their arguments.

import xml.parsers.expat

3 handler functions

def start_element(name, attrs):

print('Start element:', name, attrs)

def end_element(name):

print('End element:', name)

def char_data(data):

print('Character data:', repr(data))

p = xml.parsers.expat.ParserCreate()

p.StartElementHandler = start_element

p.EndElementHandler = end_element

p.CharacterDataHandler = char_data

p.Parse("""<?xml version="1.0"?>

<parent id="top"><child1 name="paul">Text goes here</child1>

<child2 name="fred">More text</child2>

</parent>""", 1)

The output from this program is:

Start element: parent {'id': 'top'}

Start element: child1 {'name': 'paul'}

Character data: 'Text goes here'

End element: child1

Character data: '\n'

Start element: child2 {'name': 'fred'}

Character data: 'More text'

(continues on next page)

21.13. xml.parsers.expat— Fast XML parsing using Expat 1387

The Python Library Reference, Release 3.13.1

(continued from previous page)

End element: child2

Character data: '\n'

End element: parent

21.13.4 Content Model Descriptions

Content models are described using nested tuples. Each tuple contains four values: the type, the quantifier, the name,
and a tuple of children. Children are simply additional content model descriptions.

The values of the first two fields are constants defined in the xml.parsers.expat.modelmodule. These constants
can be collected in two groups: the model type group and the quantifier group.

The constants in the model type group are:

xml.parsers.expat.model.XML_CTYPE_ANY

The element named by the model name was declared to have a content model of ANY.

xml.parsers.expat.model.XML_CTYPE_CHOICE

The named element allows a choice from a number of options; this is used for content models such as (A |

B | C).

xml.parsers.expat.model.XML_CTYPE_EMPTY

Elements which are declared to be EMPTY have this model type.

xml.parsers.expat.model.XML_CTYPE_MIXED

xml.parsers.expat.model.XML_CTYPE_NAME

xml.parsers.expat.model.XML_CTYPE_SEQ

Models which represent a series of models which follow one after the other are indicated with this model type.
This is used for models such as (A, B, C).

The constants in the quantifier group are:

xml.parsers.expat.model.XML_CQUANT_NONE

No modifier is given, so it can appear exactly once, as for A.

xml.parsers.expat.model.XML_CQUANT_OPT

The model is optional: it can appear once or not at all, as for A?.

xml.parsers.expat.model.XML_CQUANT_PLUS

The model must occur one or more times (like A+).

xml.parsers.expat.model.XML_CQUANT_REP

The model must occur zero or more times, as for A*.

21.13.5 Expat error constants

The following constants are provided in the xml.parsers.expat.errors module. These constants are useful in
interpreting some of the attributes of the ExpatError exception objects raised when an error has occurred. Since
for backwards compatibility reasons, the constants’ value is the error message and not the numeric error code, you do
this by comparing its code attribute with errors.codes[errors.XML_ERROR_CONSTANT_NAME].

The errors module has the following attributes:

xml.parsers.expat.errors.codes

A dictionary mapping string descriptions to their error codes.

Added in version 3.2.

1388 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

xml.parsers.expat.errors.messages

A dictionary mapping numeric error codes to their string descriptions.

Added in version 3.2.

xml.parsers.expat.errors.XML_ERROR_ASYNC_ENTITY

xml.parsers.expat.errors.XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF

An entity reference in an attribute value referred to an external entity instead of an internal entity.

xml.parsers.expat.errors.XML_ERROR_BAD_CHAR_REF

A character reference referred to a character which is illegal in XML (for example, character 0, or ‘�’).

xml.parsers.expat.errors.XML_ERROR_BINARY_ENTITY_REF

An entity reference referred to an entity which was declared with a notation, so cannot be parsed.

xml.parsers.expat.errors.XML_ERROR_DUPLICATE_ATTRIBUTE

An attribute was used more than once in a start tag.

xml.parsers.expat.errors.XML_ERROR_INCORRECT_ENCODING

xml.parsers.expat.errors.XML_ERROR_INVALID_TOKEN

Raised when an input byte could not properly be assigned to a character; for example, a NUL byte (value 0)
in a UTF-8 input stream.

xml.parsers.expat.errors.XML_ERROR_JUNK_AFTER_DOC_ELEMENT

Something other than whitespace occurred after the document element.

xml.parsers.expat.errors.XML_ERROR_MISPLACED_XML_PI

An XML declaration was found somewhere other than the start of the input data.

xml.parsers.expat.errors.XML_ERROR_NO_ELEMENTS

The document contains no elements (XML requires all documents to contain exactly one top-level element)..

xml.parsers.expat.errors.XML_ERROR_NO_MEMORY

Expat was not able to allocate memory internally.

xml.parsers.expat.errors.XML_ERROR_PARAM_ENTITY_REF

A parameter entity reference was found where it was not allowed.

xml.parsers.expat.errors.XML_ERROR_PARTIAL_CHAR

An incomplete character was found in the input.

xml.parsers.expat.errors.XML_ERROR_RECURSIVE_ENTITY_REF

An entity reference contained another reference to the same entity; possibly via a different name, and possibly
indirectly.

xml.parsers.expat.errors.XML_ERROR_SYNTAX

Some unspecified syntax error was encountered.

xml.parsers.expat.errors.XML_ERROR_TAG_MISMATCH

An end tag did not match the innermost open start tag.

xml.parsers.expat.errors.XML_ERROR_UNCLOSED_TOKEN

Some token (such as a start tag) was not closed before the end of the stream or the next token was encountered.

xml.parsers.expat.errors.XML_ERROR_UNDEFINED_ENTITY

A reference was made to an entity which was not defined.

xml.parsers.expat.errors.XML_ERROR_UNKNOWN_ENCODING

The document encoding is not supported by Expat.

21.13. xml.parsers.expat— Fast XML parsing using Expat 1389

The Python Library Reference, Release 3.13.1

xml.parsers.expat.errors.XML_ERROR_UNCLOSED_CDATA_SECTION

A CDATA marked section was not closed.

xml.parsers.expat.errors.XML_ERROR_EXTERNAL_ENTITY_HANDLING

xml.parsers.expat.errors.XML_ERROR_NOT_STANDALONE

The parser determined that the document was not “standalone” though it declared itself to be in the XML
declaration, and the NotStandaloneHandler was set and returned 0.

xml.parsers.expat.errors.XML_ERROR_UNEXPECTED_STATE

xml.parsers.expat.errors.XML_ERROR_ENTITY_DECLARED_IN_PE

xml.parsers.expat.errors.XML_ERROR_FEATURE_REQUIRES_XML_DTD

An operation was requested that requires DTD support to be compiled in, but Expat was configured without
DTD support. This should never be reported by a standard build of the xml.parsers.expat module.

xml.parsers.expat.errors.XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING

A behavioral change was requested after parsing started that can only be changed before parsing has started.
This is (currently) only raised by UseForeignDTD().

xml.parsers.expat.errors.XML_ERROR_UNBOUND_PREFIX

An undeclared prefix was found when namespace processing was enabled.

xml.parsers.expat.errors.XML_ERROR_UNDECLARING_PREFIX

The document attempted to remove the namespace declaration associated with a prefix.

xml.parsers.expat.errors.XML_ERROR_INCOMPLETE_PE

A parameter entity contained incomplete markup.

xml.parsers.expat.errors.XML_ERROR_XML_DECL

The document contained no document element at all.

xml.parsers.expat.errors.XML_ERROR_TEXT_DECL

There was an error parsing a text declaration in an external entity.

xml.parsers.expat.errors.XML_ERROR_PUBLICID

Characters were found in the public id that are not allowed.

xml.parsers.expat.errors.XML_ERROR_SUSPENDED

The requested operation was made on a suspended parser, but isn’t allowed. This includes attempts to provide
additional input or to stop the parser.

xml.parsers.expat.errors.XML_ERROR_NOT_SUSPENDED

An attempt to resume the parser was made when the parser had not been suspended.

xml.parsers.expat.errors.XML_ERROR_ABORTED

This should not be reported to Python applications.

xml.parsers.expat.errors.XML_ERROR_FINISHED

The requested operation was made on a parser which was finished parsing input, but isn’t allowed. This includes
attempts to provide additional input or to stop the parser.

xml.parsers.expat.errors.XML_ERROR_SUSPEND_PE

xml.parsers.expat.errors.XML_ERROR_RESERVED_PREFIX_XML

An attempt was made to undeclare reserved namespace prefix xml or to bind it to another namespace URI.

xml.parsers.expat.errors.XML_ERROR_RESERVED_PREFIX_XMLNS

An attempt was made to declare or undeclare reserved namespace prefix xmlns.

1390 Chapter 21. Structured Markup Processing Tools

The Python Library Reference, Release 3.13.1

xml.parsers.expat.errors.XML_ERROR_RESERVED_NAMESPACE_URI

An attempt was made to bind the URI of one the reserved namespace prefixes xml and xmlns to another
namespace prefix.

xml.parsers.expat.errors.XML_ERROR_INVALID_ARGUMENT

This should not be reported to Python applications.

xml.parsers.expat.errors.XML_ERROR_NO_BUFFER

This should not be reported to Python applications.

xml.parsers.expat.errors.XML_ERROR_AMPLIFICATION_LIMIT_BREACH

The limit on input amplification factor (from DTD and entities) has been breached.

21.13. xml.parsers.expat— Fast XML parsing using Expat 1391

The Python Library Reference, Release 3.13.1

1392 Chapter 21. Structured Markup Processing Tools

CHAPTER

TWENTYTWO

INTERNET PROTOCOLS AND SUPPORT

The modules described in this chapter implement internet protocols and support for related technology. They are
all implemented in Python. Most of these modules require the presence of the system-dependent module socket,
which is currently supported on most popular platforms. Here is an overview:

22.1 webbrowser— Convenient web-browser controller

Source code: Lib/webbrowser.py

The webbrowser module provides a high-level interface to allow displaying web-based documents to users. Under
most circumstances, simply calling the open() function from this module will do the right thing.

Under Unix, graphical browsers are preferred under X11, but text-mode browsers will be used if graphical browsers
are not available or an X11 display isn’t available. If text-mode browsers are used, the calling process will block until
the user exits the browser.

If the environment variable BROWSER exists, it is interpreted as the os.pathsep-separated list of browsers to try
ahead of the platform defaults. When the value of a list part contains the string %s, then it is interpreted as a literal
browser command line to be used with the argument URL substituted for %s; if the part does not contain %s, it is
simply interpreted as the name of the browser to launch.1

For non-Unix platforms, or when a remote browser is available on Unix, the controlling process will not wait for the
user to finish with the browser, but allow the remote browser to maintain its own windows on the display. If remote
browsers are not available on Unix, the controlling process will launch a new browser and wait.

On iOS, the BROWSER environment variable, as well as any arguments controlling autoraise, browser preference, and
new tab/window creation will be ignored. Web pages will always be opened in the user’s preferred browser, in a new
tab, with the browser being brought to the foreground. The use of the webbrowser module on iOS requires the
ctypes module. If ctypes isn’t available, calls to open() will fail.

The script webbrowser can be used as a command-line interface for the module. It accepts a URL as the argument.
It accepts the following optional parameters:

• -n/--new-window opens the URL in a new browser window, if possible.

• -t/--new-tab opens the URL in a new browser page (“tab”).

The options are, naturally, mutually exclusive. Usage example:

python -m webbrowser -t "https://www.python.org"

Availability: not WASI, not Android.

The following exception is defined:

1 Executables named here without a full path will be searched in the directories given in the PATH environment variable.

1393

https://github.com/python/cpython/tree/3.13/Lib/webbrowser.py

The Python Library Reference, Release 3.13.1

exception webbrowser.Error

Exception raised when a browser control error occurs.

The following functions are defined:

webbrowser.open(url, new=0, autoraise=True)
Display url using the default browser. If new is 0, the url is opened in the same browser window if possible.
If new is 1, a new browser window is opened if possible. If new is 2, a new browser page (“tab”) is opened if
possible. If autoraise is True, the window is raised if possible (note that under many window managers this
will occur regardless of the setting of this variable).

Returns True if a browser was successfully launched, False otherwise.

Note that on some platforms, trying to open a filename using this function, may work and start the operating
system’s associated program. However, this is neither supported nor portable.

Raises an auditing event webbrowser.open with argument url.

webbrowser.open_new(url)

Open url in a new window of the default browser, if possible, otherwise, open url in the only browser window.

Returns True if a browser was successfully launched, False otherwise.

webbrowser.open_new_tab(url)
Open url in a new page (“tab”) of the default browser, if possible, otherwise equivalent to open_new().

Returns True if a browser was successfully launched, False otherwise.

webbrowser.get(using=None)
Return a controller object for the browser type using. If using is None, return a controller for a default browser
appropriate to the caller’s environment.

webbrowser.register(name, constructor, instance=None, *, preferred=False)
Register the browser type name. Once a browser type is registered, the get() function can return a controller
for that browser type. If instance is not provided, or is None, constructor will be called without parameters to
create an instance when needed. If instance is provided, constructor will never be called, and may be None.

Setting preferred to Truemakes this browser a preferred result for a get() call with no argument. Otherwise,
this entry point is only useful if you plan to either set the BROWSER variable or call get() with a nonempty
argument matching the name of a handler you declare.

Changed in version 3.7: preferred keyword-only parameter was added.

A number of browser types are predefined. This table gives the type names that may be passed to the get() function
and the corresponding instantiations for the controller classes, all defined in this module.

1394 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

Type Name Class Name Notes

'mozilla' Mozilla('mozilla')

'firefox' Mozilla('mozilla')

'epiphany' Epiphany('epiphany')

'kfmclient' Konqueror() (1)
'konqueror' Konqueror() (1)
'kfm' Konqueror() (1)
'opera' Opera()

'links' GenericBrowser('links')

'elinks' Elinks('elinks')

'lynx' GenericBrowser('lynx')

'w3m' GenericBrowser('w3m')

'windows-default' WindowsDefault (2)
'macosx' MacOSXOSAScript('default') (3)
'safari' MacOSXOSAScript('safari') (3)
'google-chrome' Chrome('google-chrome')

'chrome' Chrome('chrome')

'chromium' Chromium('chromium')

'chromium-browser' Chromium('chromium-browser')

'iosbrowser' IOSBrowser (4)

Notes:

(1) “Konqueror” is the filemanager for the KDE desktop environment for Unix, and onlymakes sense to use if KDE
is running. Some way of reliably detecting KDEwould be nice; the KDEDIR variable is not sufficient. Note also
that the name “kfm” is used even when using the konqueror command with KDE 2 — the implementation
selects the best strategy for running Konqueror.

(2) Only on Windows platforms.

(3) Only on macOS.

(4) Only on iOS.

Added in version 3.2: A new MacOSXOSAScript class has been added and is used on Mac instead of the previous
MacOSX class. This adds support for opening browsers not currently set as the OS default.

Added in version 3.3: Support for Chrome/Chromium has been added.

Changed in version 3.12: Support for several obsolete browsers has been removed. Removed browsers include Grail,
Mosaic, Netscape, Galeon, Skipstone, Iceape, and Firefox versions 35 and below.

Changed in version 3.13: Support for iOS has been added.

Here are some simple examples:

url = 'https://docs.python.org/'

Open URL in a new tab, if a browser window is already open.

webbrowser.open_new_tab(url)

Open URL in new window, raising the window if possible.

webbrowser.open_new(url)

22.1.1 Browser Controller Objects

Browser controllers provide these methods which parallel three of the module-level convenience functions:

controller.name

System-dependent name for the browser.

22.1. webbrowser— Convenient web-browser controller 1395

The Python Library Reference, Release 3.13.1

controller.open(url, new=0, autoraise=True)
Display url using the browser handled by this controller. If new is 1, a new browser window is opened if
possible. If new is 2, a new browser page (“tab”) is opened if possible.

controller.open_new(url)
Open url in a new window of the browser handled by this controller, if possible, otherwise, open url in the
only browser window. Alias open_new().

controller.open_new_tab(url)

Open url in a new page (“tab”) of the browser handled by this controller, if possible, otherwise equivalent to
open_new().

22.2 wsgiref—WSGI Utilities and Reference Implementation

Source code: Lib/wsgiref

TheWeb Server Gateway Interface (WSGI) is a standard interface between web server software and web applications
written in Python. Having a standard interface makes it easy to use an application that supports WSGI with a number
of different web servers.

Only authors of web servers and programming frameworks need to know every detail and corner case of the WSGI
design. You don’t need to understand every detail of WSGI just to install a WSGI application or to write a web
application using an existing framework.

wsgiref is a reference implementation of the WSGI specification that can be used to add WSGI support to a web
server or framework. It provides utilities for manipulating WSGI environment variables and response headers, base
classes for implementing WSGI servers, a demo HTTP server that serves WSGI applications, types for static type
checking, and a validation tool that checksWSGI servers and applications for conformance to theWSGI specification
(PEP 3333).

See wsgi.readthedocs.io for more information about WSGI, and links to tutorials and other resources.

22.2.1 wsgiref.util – WSGI environment utilities

This module provides a variety of utility functions for working with WSGI environments. A WSGI environment is
a dictionary containing HTTP request variables as described in PEP 3333. All of the functions taking an environ
parameter expect a WSGI-compliant dictionary to be supplied; please see PEP 3333 for a detailed specification and
WSGIEnvironment for a type alias that can be used in type annotations.

wsgiref.util.guess_scheme(environ)

Return a guess for whether wsgi.url_scheme should be “http” or “https”, by checking for a HTTPS envi-
ronment variable in the environ dictionary. The return value is a string.

This function is useful when creating a gateway that wraps CGI or a CGI-like protocol such as FastCGI. Typ-
ically, servers providing such protocols will include a HTTPS variable with a value of “1”, “yes”, or “on” when
a request is received via SSL. So, this function returns “https” if such a value is found, and “http” otherwise.

wsgiref.util.request_uri(environ, include_query=True)
Return the full request URI, optionally including the query string, using the algorithm found in the “URL
Reconstruction” section of PEP 3333. If include_query is false, the query string is not included in the resulting
URI.

wsgiref.util.application_uri(environ)
Similar to request_uri(), except that the PATH_INFO and QUERY_STRING variables are ignored. The
result is the base URI of the application object addressed by the request.

1396 Chapter 22. Internet Protocols and Support

https://github.com/python/cpython/tree/3.13/Lib/wsgiref
https://peps.python.org/pep-3333/
https://wsgi.readthedocs.io/
https://peps.python.org/pep-3333/
https://peps.python.org/pep-3333/
https://peps.python.org/pep-3333/

The Python Library Reference, Release 3.13.1

wsgiref.util.shift_path_info(environ)
Shift a single name from PATH_INFO to SCRIPT_NAME and return the name. The environ dictionary is mod-
ified in-place; use a copy if you need to keep the original PATH_INFO or SCRIPT_NAME intact.

If there are no remaining path segments in PATH_INFO, None is returned.

Typically, this routine is used to process each portion of a request URI path, for example to treat the path as
a series of dictionary keys. This routine modifies the passed-in environment to make it suitable for invoking
anotherWSGI application that is located at the target URI. For example, if there is aWSGI application at /foo,
and the request URI path is /foo/bar/baz, and the WSGI application at /foo calls shift_path_info(),
it will receive the string “bar”, and the environment will be updated to be suitable for passing to a WSGI
application at /foo/bar. That is, SCRIPT_NAME will change from /foo to /foo/bar, and PATH_INFO will
change from /bar/baz to /baz.

When PATH_INFO is just a “/”, this routine returns an empty string and appends a trailing slash to
SCRIPT_NAME, even though empty path segments are normally ignored, and SCRIPT_NAME doesn’t normally
end in a slash. This is intentional behavior, to ensure that an application can tell the difference between URIs
ending in /x from ones ending in /x/ when using this routine to do object traversal.

wsgiref.util.setup_testing_defaults(environ)

Update environ with trivial defaults for testing purposes.

This routine adds various parameters required for WSGI, including HTTP_HOST, SERVER_NAME,
SERVER_PORT, REQUEST_METHOD, SCRIPT_NAME, PATH_INFO, and all of the PEP 3333-defined wsgi.

* variables. It only supplies default values, and does not replace any existing settings for these variables.

This routine is intended to make it easier for unit tests of WSGI servers and applications to set up dummy
environments. It should NOT be used by actual WSGI servers or applications, since the data is fake!

Example usage:

from wsgiref.util import setup_testing_defaults

from wsgiref.simple_server import make_server

A relatively simple WSGI application. It's going to print out the

environment dictionary after being updated by setup_testing_defaults

def simple_app(environ, start_response):

setup_testing_defaults(environ)

status = '200 OK'

headers = [('Content-type', 'text/plain; charset=utf-8')]

start_response(status, headers)

ret = [("%s: %s\n" % (key, value)).encode("utf-8")

for key, value in environ.items()]

return ret

with make_server('', 8000, simple_app) as httpd:

print("Serving on port 8000...")

httpd.serve_forever()

In addition to the environment functions above, the wsgiref.util module also provides these miscellaneous util-
ities:

wsgiref.util.is_hop_by_hop(header_name)

Return True if ‘header_name’ is an HTTP/1.1 “Hop-by-Hop” header, as defined by RFC 2616.

class wsgiref.util.FileWrapper(filelike, blksize=8192)
A concrete implementation of the wsgiref.types.FileWrapper protocol used to convert a file-like object
to an iterator. The resulting objects are iterables. As the object is iterated over, the optional blksize parameter

22.2. wsgiref—WSGI Utilities and Reference Implementation 1397

https://peps.python.org/pep-3333/
https://datatracker.ietf.org/doc/html/rfc2616.html

The Python Library Reference, Release 3.13.1

will be repeatedly passed to the filelike object’s read() method to obtain bytestrings to yield. When read()
returns an empty bytestring, iteration is ended and is not resumable.

If filelike has a close()method, the returned object will also have a close()method, and it will invoke the
filelike object’s close() method when called.

Example usage:

from io import StringIO

from wsgiref.util import FileWrapper

We're using a StringIO-buffer for as the file-like object

filelike = StringIO("This is an example file-like object"*10)

wrapper = FileWrapper(filelike, blksize=5)

for chunk in wrapper:

print(chunk)

Changed in version 3.11: Support for __getitem__() method has been removed.

22.2.2 wsgiref.headers – WSGI response header tools

This module provides a single class, Headers, for convenient manipulation of WSGI response headers using a
mapping-like interface.

class wsgiref.headers.Headers([headers])
Create a mapping-like object wrapping headers, which must be a list of header name/value tuples as described
in PEP 3333. The default value of headers is an empty list.

Headers objects support typical mapping operations including __getitem__(), get(), __setitem__(),
setdefault(), __delitem__() and __contains__(). For each of these methods, the key is the header
name (treated case-insensitively), and the value is the first value associated with that header name. Setting a
header deletes any existing values for that header, then adds a new value at the end of the wrapped header list.
Headers’ existing order is generally maintained, with new headers added to the end of the wrapped list.

Unlike a dictionary, Headers objects do not raise an error when you try to get or delete a key that isn’t in the
wrapped header list. Getting a nonexistent header just returns None, and deleting a nonexistent header does
nothing.

Headers objects also support keys(), values(), and items() methods. The lists returned by keys()
and items() can include the same key more than once if there is a multi-valued header. The len() of a
Headers object is the same as the length of its items(), which is the same as the length of the wrapped
header list. In fact, the items() method just returns a copy of the wrapped header list.

Calling bytes() on a Headers object returns a formatted bytestring suitable for transmission as HTTP re-
sponse headers. Each header is placed on a line with its value, separated by a colon and a space. Each line is
terminated by a carriage return and line feed, and the bytestring is terminated with a blank line.

In addition to their mapping interface and formatting features, Headers objects also have the following meth-
ods for querying and adding multi-valued headers, and for adding headers with MIME parameters:

get_all(name)
Return a list of all the values for the named header.

The returned list will be sorted in the order they appeared in the original header list or were added to
this instance, and may contain duplicates. Any fields deleted and re-inserted are always appended to the
header list. If no fields exist with the given name, returns an empty list.

add_header(name, value, **_params)

Add a (possibly multi-valued) header, with optional MIME parameters specified via keyword arguments.

name is the header field to add. Keyword arguments can be used to set MIME parameters for the header
field. Each parameter must be a string or None. Underscores in parameter names are converted to dashes,
since dashes are illegal in Python identifiers, but many MIME parameter names include dashes. If the

1398 Chapter 22. Internet Protocols and Support

https://peps.python.org/pep-3333/

The Python Library Reference, Release 3.13.1

parameter value is a string, it is added to the header value parameters in the form name="value". If it is
None, only the parameter name is added. (This is used for MIME parameters without a value.) Example
usage:

h.add_header('content-disposition', 'attachment', filename='bud.gif')

The above will add a header that looks like this:

Content-Disposition: attachment; filename="bud.gif"

Changed in version 3.5: headers parameter is optional.

22.2.3 wsgiref.simple_server – a simple WSGI HTTP server

This module implements a simple HTTP server (based on http.server) that serves WSGI applications. Each
server instance serves a single WSGI application on a given host and port. If you want to serve multiple applications
on a single host and port, you should create a WSGI application that parses PATH_INFO to select which application
to invoke for each request. (E.g., using the shift_path_info() function from wsgiref.util.)

wsgiref.simple_server.make_server(host, port, app, server_class=WSGIServer,
handler_class=WSGIRequestHandler)

Create a new WSGI server listening on host and port, accepting connections for app. The return value is an
instance of the supplied server_class, and will process requests using the specified handler_class. app must be
a WSGI application object, as defined by PEP 3333.

Example usage:

from wsgiref.simple_server import make_server, demo_app

with make_server('', 8000, demo_app) as httpd:

print("Serving HTTP on port 8000...")

Respond to requests until process is killed

httpd.serve_forever()

Alternative: serve one request, then exit

httpd.handle_request()

wsgiref.simple_server.demo_app(environ, start_response)
This function is a small but complete WSGI application that returns a text page containing the message “Hello
world!” and a list of the key/value pairs provided in the environ parameter. It’s useful for verifying that aWSGI
server (such as wsgiref.simple_server) is able to run a simple WSGI application correctly.

class wsgiref.simple_server.WSGIServer(server_address, RequestHandlerClass)

Create a WSGIServer instance. server_address should be a (host,port) tuple, and RequestHandlerClass
should be the subclass of http.server.BaseHTTPRequestHandler that will be used to process requests.

You do not normally need to call this constructor, as the make_server() function can handle all the details
for you.

WSGIServer is a subclass of http.server.HTTPServer, so all of its methods (such as serve_forever()
and handle_request()) are available. WSGIServer also provides these WSGI-specific methods:

set_app(application)
Sets the callable application as the WSGI application that will receive requests.

get_app()

Returns the currently set application callable.

Normally, however, you do not need to use these additional methods, as set_app() is normally called by
make_server(), and the get_app() exists mainly for the benefit of request handler instances.

22.2. wsgiref—WSGI Utilities and Reference Implementation 1399

https://peps.python.org/pep-3333/

The Python Library Reference, Release 3.13.1

class wsgiref.simple_server.WSGIRequestHandler(request, client_address, server)
Create an HTTP handler for the given request (i.e. a socket), client_address (a (host,port) tuple), and
server (WSGIServer instance).

You do not need to create instances of this class directly; they are automatically created as needed by
WSGIServer objects. You can, however, subclass this class and supply it as a handler_class to the
make_server() function. Some possibly relevant methods for overriding in subclasses:

get_environ()

Return a WSGIEnvironment dictionary for a request. The default implementation copies the contents
of the WSGIServer object’s base_environ dictionary attribute and then adds various headers derived
from the HTTP request. Each call to this method should return a new dictionary containing all of the
relevant CGI environment variables as specified in PEP 3333.

get_stderr()

Return the object that should be used as the wsgi.errors stream. The default implementation just
returns sys.stderr.

handle()

Process the HTTP request. The default implementation creates a handler instance using a wsgiref.
handlers class to implement the actual WSGI application interface.

22.2.4 wsgiref.validate—WSGI conformance checker

When creating new WSGI application objects, frameworks, servers, or middleware, it can be useful to validate the
new code’s conformance using wsgiref.validate. This module provides a function that createsWSGI application
objects that validate communications between a WSGI server or gateway and a WSGI application object, to check
both sides for protocol conformance.

Note that this utility does not guarantee complete PEP 3333 compliance; an absence of errors from this module
does not necessarily mean that errors do not exist. However, if this module does produce an error, then it is virtually
certain that either the server or application is not 100% compliant.

This module is based on the paste.lint module from Ian Bicking’s “Python Paste” library.

wsgiref.validate.validator(application)
Wrap application and return a newWSGI application object. The returned application will forward all requests
to the original application, and will check that both the application and the server invoking it are conforming
to the WSGI specification and to RFC 2616.

Any detected nonconformance results in an AssertionError being raised; note, however, that how these
errors are handled is server-dependent. For example, wsgiref.simple_server and other servers based on
wsgiref.handlers (that don’t override the error handling methods to do something else) will simply output
a message that an error has occurred, and dump the traceback to sys.stderr or some other error stream.

This wrapper may also generate output using the warningsmodule to indicate behaviors that are questionable
but which may not actually be prohibited by PEP 3333. Unless they are suppressed using Python command-
line options or the warnings API, any such warnings will be written to sys.stderr (not wsgi.errors,
unless they happen to be the same object).

Example usage:

from wsgiref.validate import validator

from wsgiref.simple_server import make_server

Our callable object which is intentionally not compliant to the

standard, so the validator is going to break

def simple_app(environ, start_response):

status = '200 OK' # HTTP Status

headers = [('Content-type', 'text/plain')] # HTTP Headers

start_response(status, headers)

(continues on next page)

1400 Chapter 22. Internet Protocols and Support

https://peps.python.org/pep-3333/
https://peps.python.org/pep-3333/
https://datatracker.ietf.org/doc/html/rfc2616.html
https://peps.python.org/pep-3333/

The Python Library Reference, Release 3.13.1

(continued from previous page)

This is going to break because we need to return a list, and

the validator is going to inform us

return b"Hello World"

This is the application wrapped in a validator

validator_app = validator(simple_app)

with make_server('', 8000, validator_app) as httpd:

print("Listening on port 8000....")

httpd.serve_forever()

22.2.5 wsgiref.handlers – server/gateway base classes

This module provides base handler classes for implementing WSGI servers and gateways. These base classes handle
most of the work of communicating with a WSGI application, as long as they are given a CGI-like environment,
along with input, output, and error streams.

class wsgiref.handlers.CGIHandler

CGI-based invocation via sys.stdin, sys.stdout, sys.stderr and os.environ. This is useful when
you have a WSGI application and want to run it as a CGI script. Simply invoke CGIHandler().run(app),
where app is the WSGI application object you wish to invoke.

This class is a subclass of BaseCGIHandler that sets wsgi.run_once to true, wsgi.multithread to
false, and wsgi.multiprocess to true, and always uses sys and os to obtain the necessary CGI streams
and environment.

class wsgiref.handlers.IISCGIHandler

A specialized alternative to CGIHandler, for use when deploying on Microsoft’s IIS web server, without
having set the config allowPathInfo option (IIS>=7) or metabase allowPathInfoForScriptMappings (IIS<7).

By default, IIS gives a PATH_INFO that duplicates the SCRIPT_NAME at the front, causing problems for WSGI
applications that wish to implement routing. This handler strips any such duplicated path.

IIS can be configured to pass the correct PATH_INFO, but this causes another bug where PATH_TRANSLATED
is wrong. Luckily this variable is rarely used and is not guaranteed by WSGI. On IIS<7, though, the setting
can only be made on a vhost level, affecting all other script mappings, many of which break when exposed to
the PATH_TRANSLATED bug. For this reason IIS<7 is almost never deployed with the fix (Even IIS7 rarely
uses it because there is still no UI for it.).

There is no way for CGI code to tell whether the option was set, so a separate handler class is provided. It
is used in the same way as CGIHandler, i.e., by calling IISCGIHandler().run(app), where app is the
WSGI application object you wish to invoke.

Added in version 3.2.

class wsgiref.handlers.BaseCGIHandler(stdin, stdout, stderr, environ, multithread=True,
multiprocess=False)

Similar to CGIHandler, but instead of using the sys and os modules, the CGI environment and I/O streams
are specified explicitly. The multithread and multiprocess values are used to set the wsgi.multithread and
wsgi.multiprocess flags for any applications run by the handler instance.

This class is a subclass of SimpleHandler intended for use with software other than HTTP “origin servers”.
If you are writing a gateway protocol implementation (such as CGI, FastCGI, SCGI, etc.) that uses a Status:
header to send an HTTP status, you probably want to subclass this instead of SimpleHandler.

class wsgiref.handlers.SimpleHandler(stdin, stdout, stderr, environ, multithread=True,
multiprocess=False)

Similar to BaseCGIHandler, but designed for use with HTTP origin servers. If you are writing an HTTP
server implementation, you will probably want to subclass this instead of BaseCGIHandler.

22.2. wsgiref—WSGI Utilities and Reference Implementation 1401

The Python Library Reference, Release 3.13.1

This class is a subclass of BaseHandler. It overrides the __init__(), get_stdin(), get_stderr(),
add_cgi_vars(), _write(), and _flush() methods to support explicitly setting the environment and
streams via the constructor. The supplied environment and streams are stored in the stdin, stdout, stderr,
and environ attributes.

The write() method of stdout should write each chunk in full, like io.BufferedIOBase.

class wsgiref.handlers.BaseHandler

This is an abstract base class for running WSGI applications. Each instance will handle a single HTTP request,
although in principle you could create a subclass that was reusable for multiple requests.

BaseHandler instances have only one method intended for external use:

run(app)
Run the specified WSGI application, app.

All of the other BaseHandler methods are invoked by this method in the process of running the application,
and thus exist primarily to allow customizing the process.

The following methods MUST be overridden in a subclass:

_write(data)
Buffer the bytes data for transmission to the client. It’s okay if this method actually transmits the data;
BaseHandler just separates write and flush operations for greater efficiency when the underlying system
actually has such a distinction.

_flush()

Force buffered data to be transmitted to the client. It’s okay if this method is a no-op (i.e., if _write()
actually sends the data).

get_stdin()

Return an object compatible with InputStream suitable for use as the wsgi.input of the request
currently being processed.

get_stderr()

Return an object compatible with ErrorStream suitable for use as the wsgi.errors of the request
currently being processed.

add_cgi_vars()

Insert CGI variables for the current request into the environ attribute.

Here are some other methods and attributes you may wish to override. This list is only a summary, however,
and does not include every method that can be overridden. You should consult the docstrings and source code
for additional information before attempting to create a customized BaseHandler subclass.

Attributes and methods for customizing the WSGI environment:

wsgi_multithread

The value to be used for the wsgi.multithread environment variable. It defaults to true in
BaseHandler, but may have a different default (or be set by the constructor) in the other subclasses.

wsgi_multiprocess

The value to be used for the wsgi.multiprocess environment variable. It defaults to true in
BaseHandler, but may have a different default (or be set by the constructor) in the other subclasses.

wsgi_run_once

The value to be used for the wsgi.run_once environment variable. It defaults to false in BaseHandler,
but CGIHandler sets it to true by default.

os_environ

The default environment variables to be included in every request’s WSGI environment. By default, this
is a copy of os.environ at the time that wsgiref.handlers was imported, but subclasses can either
create their own at the class or instance level. Note that the dictionary should be considered read-only,
since the default value is shared between multiple classes and instances.

1402 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

server_software

If the origin_server attribute is set, this attribute’s value is used to set the default SERVER_SOFTWARE
WSGI environment variable, and also to set a default Server: header in HTTP responses. It is ignored
for handlers (such as BaseCGIHandler and CGIHandler) that are not HTTP origin servers.

Changed in version 3.3: The term “Python” is replacedwith implementation specific term like “CPython”,
“Jython” etc.

get_scheme()

Return the URL scheme being used for the current request. The default implementation uses the
guess_scheme() function from wsgiref.util to guess whether the scheme should be “http” or
“https”, based on the current request’s environ variables.

setup_environ()

Set the environ attribute to a fully populated WSGI environment. The default implementation uses all
of the above methods and attributes, plus the get_stdin(), get_stderr(), and add_cgi_vars()
methods and the wsgi_file_wrapper attribute. It also inserts a SERVER_SOFTWARE key if not present,
as long as the origin_server attribute is a true value and the server_software attribute is set.

Methods and attributes for customizing exception handling:

log_exception(exc_info)

Log the exc_info tuple in the server log. exc_info is a (type, value, traceback) tuple. The de-
fault implementation simply writes the traceback to the request’s wsgi.errors stream and flushes it.
Subclasses can override this method to change the format or retarget the output, mail the traceback to an
administrator, or whatever other action may be deemed suitable.

traceback_limit

The maximum number of frames to include in tracebacks output by the default log_exception()
method. If None, all frames are included.

error_output(environ, start_response)
This method is a WSGI application to generate an error page for the user. It is only invoked if an error
occurs before headers are sent to the client.

This method can access the current error using sys.exception(), and should pass that information to
start_response when calling it (as described in the “Error Handling” section of PEP 3333).

The default implementation just uses the error_status, error_headers, and error_body at-
tributes to generate an output page. Subclasses can override this to produce more dynamic error output.

Note, however, that it’s not recommended from a security perspective to spit out diagnostics to any old
user; ideally, you should have to do something special to enable diagnostic output, which is why the
default implementation doesn’t include any.

error_status

The HTTP status used for error responses. This should be a status string as defined in PEP 3333; it
defaults to a 500 code and message.

error_headers

The HTTP headers used for error responses. This should be a list of WSGI response headers ((name,
value) tuples), as described in PEP 3333. The default list just sets the content type to text/plain.

error_body

The error response body. This should be an HTTP response body bytestring. It defaults to the plain text,
“A server error occurred. Please contact the administrator.”

Methods and attributes for PEP 3333’s “Optional Platform-Specific File Handling” feature:

wsgi_file_wrapper

A wsgi.file_wrapper factory, compatible with wsgiref.types.FileWrapper, or None. The
default value of this attribute is the wsgiref.util.FileWrapper class.

22.2. wsgiref—WSGI Utilities and Reference Implementation 1403

https://peps.python.org/pep-3333/
https://peps.python.org/pep-3333/
https://peps.python.org/pep-3333/
https://peps.python.org/pep-3333/

The Python Library Reference, Release 3.13.1

sendfile()

Override to implement platform-specific file transmission. This method is called only if the application’s
return value is an instance of the class specified by the wsgi_file_wrapper attribute. It should return
a true value if it was able to successfully transmit the file, so that the default transmission code will not
be executed. The default implementation of this method just returns a false value.

Miscellaneous methods and attributes:

origin_server

This attribute should be set to a true value if the handler’s _write() and _flush() are being used to
communicate directly to the client, rather than via a CGI-like gateway protocol that wants the HTTP
status in a special Status: header.

This attribute’s default value is true in BaseHandler, but false in BaseCGIHandler and CGIHandler.

http_version

If origin_server is true, this string attribute is used to set the HTTP version of the response set to
the client. It defaults to "1.0".

wsgiref.handlers.read_environ()

Transcode CGI variables from os.environ to PEP 3333 “bytes in unicode” strings, returning a new dictio-
nary. This function is used by CGIHandler and IISCGIHandler in place of directly using os.environ,
which is not necessarily WSGI-compliant on all platforms and web servers using Python 3 – specifically, ones
where the OS’s actual environment is Unicode (i.e. Windows), or ones where the environment is bytes, but
the system encoding used by Python to decode it is anything other than ISO-8859-1 (e.g. Unix systems using
UTF-8).

If you are implementing a CGI-based handler of your own, you probably want to use this routine instead of
just copying values out of os.environ directly.

Added in version 3.2.

22.2.6 wsgiref.types – WSGI types for static type checking

This module provides various types for static type checking as described in PEP 3333.

Added in version 3.11.

class wsgiref.types.StartResponse

A typing.Protocol describing start_response() callables (PEP 3333).

wsgiref.types.WSGIEnvironment

A type alias describing a WSGI environment dictionary.

wsgiref.types.WSGIApplication

A type alias describing a WSGI application callable.

class wsgiref.types.InputStream

A typing.Protocol describing aWSGI Input Stream.

class wsgiref.types.ErrorStream

A typing.Protocol describing aWSGI Error Stream.

class wsgiref.types.FileWrapper

A typing.Protocol describing a file wrapper. See wsgiref.util.FileWrapper for a concrete imple-
mentation of this protocol.

22.2.7 Examples

This is a working “Hello World” WSGI application:

1404 Chapter 22. Internet Protocols and Support

https://peps.python.org/pep-3333/
https://peps.python.org/pep-3333/
https://peps.python.org/pep-3333/#the-start-response-callable
https://peps.python.org/pep-3333/
https://peps.python.org/pep-3333/#input-and-error-streams
https://peps.python.org/pep-3333/#input-and-error-streams
https://peps.python.org/pep-3333/#optional-platform-specific-file-handling

The Python Library Reference, Release 3.13.1

"""

Every WSGI application must have an application object - a callable

object that accepts two arguments. For that purpose, we're going to

use a function (note that you're not limited to a function, you can

use a class for example). The first argument passed to the function

is a dictionary containing CGI-style environment variables and the

second variable is the callable object.

"""

from wsgiref.simple_server import make_server

def hello_world_app(environ, start_response):

status = "200 OK" # HTTP Status

headers = [("Content-type", "text/plain; charset=utf-8")] # HTTP Headers

start_response(status, headers)

The returned object is going to be printed

return [b"Hello World"]

with make_server("", 8000, hello_world_app) as httpd:

print("Serving on port 8000...")

Serve until process is killed

httpd.serve_forever()

Example of a WSGI application serving the current directory, accept optional directory and port number (default:
8000) on the command line:

"""

Small wsgiref based web server. Takes a path to serve from and an

optional port number (defaults to 8000), then tries to serve files.

MIME types are guessed from the file names, 404 errors are raised

if the file is not found.

"""

import mimetypes

import os

import sys

from wsgiref import simple_server, util

def app(environ, respond):

Get the file name and MIME type

fn = os.path.join(path, environ["PATH_INFO"][1:])

if "." not in fn.split(os.path.sep)[-1]:

fn = os.path.join(fn, "index.html")

mime_type = mimetypes.guess_file_type(fn)[0]

Return 200 OK if file exists, otherwise 404 Not Found

if os.path.exists(fn):

respond("200 OK", [("Content-Type", mime_type)])

return util.FileWrapper(open(fn, "rb"))

else:

respond("404 Not Found", [("Content-Type", "text/plain")])

return [b"not found"]

if __name__ == "__main__":

(continues on next page)

22.2. wsgiref—WSGI Utilities and Reference Implementation 1405

The Python Library Reference, Release 3.13.1

(continued from previous page)

Get the path and port from command-line arguments

path = sys.argv[1] if len(sys.argv) > 1 else os.getcwd()

port = int(sys.argv[2]) if len(sys.argv) > 2 else 8000

Make and start the server until control-c

httpd = simple_server.make_server("", port, app)

print(f"Serving {path} on port {port}, control-C to stop")

try:

httpd.serve_forever()

except KeyboardInterrupt:

print("Shutting down.")

httpd.server_close()

22.3 urllib— URL handling modules

Source code: Lib/urllib/

urllib is a package that collects several modules for working with URLs:

• urllib.request for opening and reading URLs

• urllib.error containing the exceptions raised by urllib.request

• urllib.parse for parsing URLs

• urllib.robotparser for parsing robots.txt files

22.4 urllib.request— Extensible library for opening URLs

Source code: Lib/urllib/request.py

The urllib.request module defines functions and classes which help in opening URLs (mostly HTTP) in a
complex world — basic and digest authentication, redirections, cookies and more.

See also

The Requests package is recommended for a higher-level HTTP client interface.

Warning

On macOS it is unsafe to use this module in programs using os.fork() because the getproxies() imple-
mentation for macOS uses a higher-level system API. Set the environment variable no_proxy to * to avoid this
problem (e.g. os.environ["no_proxy"] = "*").

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

The urllib.request module defines the following functions:

1406 Chapter 22. Internet Protocols and Support

https://github.com/python/cpython/tree/3.13/Lib/urllib/
https://github.com/python/cpython/tree/3.13/Lib/urllib/request.py
https://requests.readthedocs.io/en/master/

The Python Library Reference, Release 3.13.1

urllib.request.urlopen(url, data=None, [timeout,]*, context=None)
Open url, which can be either a string containing a valid, properly encoded URL, or a Request object.

data must be an object specifying additional data to be sent to the server, or None if no such data is needed.
See Request for details.

urllib.request module uses HTTP/1.1 and includes Connection:close header in its HTTP requests.

The optional timeout parameter specifies a timeout in seconds for blocking operations like the connection
attempt (if not specified, the global default timeout setting will be used). This actually only works for HTTP,
HTTPS and FTP connections.

If context is specified, it must be a ssl.SSLContext instance describing the various SSL options. See
HTTPSConnection for more details.

This function always returns an object which can work as a context manager and has the properties url, headers,
and status. See urllib.response.addinfourl for more detail on these properties.

For HTTP andHTTPSURLs, this function returns a http.client.HTTPResponse object slightly modified.
In addition to the three new methods above, the msg attribute contains the same information as the reason
attribute — the reason phrase returned by server — instead of the response headers as it is specified in the
documentation for HTTPResponse.

For FTP, file, and data URLs and requests explicitly handled by legacy URLopener and FancyURLopener
classes, this function returns a urllib.response.addinfourl object.

Raises URLError on protocol errors.

Note that None may be returned if no handler handles the request (though the default installed global
OpenerDirector uses UnknownHandler to ensure this never happens).

In addition, if proxy settings are detected (for example, when a *_proxy environment variable like
http_proxy is set), ProxyHandler is default installed and makes sure the requests are handled through
the proxy.

The legacy urllib.urlopen function from Python 2.6 and earlier has been discontinued; urllib.

request.urlopen() corresponds to the old urllib2.urlopen. Proxy handling, which was done by pass-
ing a dictionary parameter to urllib.urlopen, can be obtained by using ProxyHandler objects.

The default opener raises an auditing event urllib.Request with arguments fullurl, data, headers,
method taken from the request object.

Changed in version 3.2: cafile and capath were added.

HTTPS virtual hosts are now supported if possible (that is, if ssl.HAS_SNI is true).

data can be an iterable object.

Changed in version 3.3: cadefault was added.

Changed in version 3.4.3: context was added.

Changed in version 3.10: HTTPS connection now send an ALPN extension with protocol indicator http/1.1
when no context is given. Custom context should set ALPN protocols with set_alpn_protocols().

Changed in version 3.13: Remove cafile, capath and cadefault parameters: use the context parameter instead.

urllib.request.install_opener(opener)

Install an OpenerDirector instance as the default global opener. Installing an opener is only necessary if you
want urlopen to use that opener; otherwise, simply call OpenerDirector.open() instead of urlopen().
The code does not check for a real OpenerDirector, and any class with the appropriate interface will work.

urllib.request.build_opener([handler, ...])
Return an OpenerDirector instance, which chains the handlers in the order given. handlers can be either
instances of BaseHandler, or subclasses of BaseHandler (in which case it must be possible to call the
constructor without any parameters). Instances of the following classes will be in front of the handlers, unless

22.4. urllib.request— Extensible library for opening URLs 1407

The Python Library Reference, Release 3.13.1

the handlers contain them, instances of them or subclasses of them: ProxyHandler (if proxy settings are
detected), UnknownHandler, HTTPHandler, HTTPDefaultErrorHandler, HTTPRedirectHandler,
FTPHandler, FileHandler, HTTPErrorProcessor.

If the Python installation has SSL support (i.e., if the sslmodule can be imported), HTTPSHandler will also
be added.

A BaseHandler subclass may also change its handler_order attribute to modify its position in the handlers
list.

urllib.request.pathname2url(path)
Convert the given local path to a file: URL. This function uses quote() function to encode the path. For
historical reasons, the return value omits the file: scheme prefix. This example shows the function being
used on Windows:

>>> from urllib.request import pathname2url

>>> path = 'C:\\Program Files'

>>> 'file:' + pathname2url(path)

'file:///C:/Program%20Files'

urllib.request.url2pathname(url)

Convert the given file: URL to a local path. This function uses unquote() to decode the URL. For
historical reasons, the given valuemust omit the file: scheme prefix. This example shows the function being
used on Windows:

>>> from urllib.request import url2pathname

>>> url = 'file:///C:/Program%20Files'

>>> url2pathname(url.removeprefix('file:'))

'C:\\Program Files'

urllib.request.getproxies()

This helper function returns a dictionary of scheme to proxy server URLmappings. It scans the environment for
variables named <scheme>_proxy, in a case insensitive approach, for all operating systems first, and when
it cannot find it, looks for proxy information from System Configuration for macOS and Windows Systems
Registry for Windows. If both lowercase and uppercase environment variables exist (and disagree), lowercase
is preferred.

Note

If the environment variable REQUEST_METHOD is set, which usually indicates your script is running in a
CGI environment, the environment variable HTTP_PROXY (uppercase _PROXY) will be ignored. This is
because that variable can be injected by a client using the “Proxy:” HTTP header. If you need to use an
HTTP proxy in a CGI environment, either use ProxyHandler explicitly, or make sure the variable name
is in lowercase (or at least the _proxy suffix).

The following classes are provided:

class urllib.request.Request(url, data=None, headers={}, origin_req_host=None, unverifiable=False,
method=None)

This class is an abstraction of a URL request.

url should be a string containing a valid, properly encoded URL.

data must be an object specifying additional data to send to the server, or None if no such data is needed.
Currently HTTP requests are the only ones that use data. The supported object types include bytes, file-like
objects, and iterables of bytes-like objects. If no Content-Length nor Transfer-Encoding header field
has been provided, HTTPHandler will set these headers according to the type of data. Content-Lengthwill
be used to send bytes objects, while Transfer-Encoding: chunked as specified in RFC 7230, Section
3.3.1 will be used to send files and other iterables.

1408 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc7230.html

The Python Library Reference, Release 3.13.1

For an HTTP POST request method, data should be a buffer in the standard application/

x-www-form-urlencoded format. The urllib.parse.urlencode() function takes a mapping or se-
quence of 2-tuples and returns an ASCII string in this format. It should be encoded to bytes before being used
as the data parameter.

headers should be a dictionary, and will be treated as if add_header() was called with each key and value
as arguments. This is often used to “spoof” the User-Agent header value, which is used by a browser to
identify itself – some HTTP servers only allow requests coming from common browsers as opposed to scripts.
For example, Mozilla Firefox may identify itself as "Mozilla/5.0 (X11; U; Linux i686) Gecko/

20071127 Firefox/2.0.0.11", while urllib’s default user agent string is "Python-urllib/2.6" (on
Python 2.6). All header keys are sent in camel case.

An appropriate Content-Type header should be included if the data argument is present. If this header has
not been provided and data is not None, Content-Type: application/x-www-form-urlencoded will
be added as a default.

The next two arguments are only of interest for correct handling of third-party HTTP cookies:

origin_req_host should be the request-host of the origin transaction, as defined by RFC 2965. It defaults to
http.cookiejar.request_host(self). This is the host name or IP address of the original request that
was initiated by the user. For example, if the request is for an image in an HTML document, this should be
the request-host of the request for the page containing the image.

unverifiable should indicate whether the request is unverifiable, as defined by RFC 2965. It defaults to False.
An unverifiable request is one whose URL the user did not have the option to approve. For example, if the
request is for an image in an HTML document, and the user had no option to approve the automatic fetching
of the image, this should be true.

method should be a string that indicates the HTTP request method that will be used (e.g. 'HEAD'). If provided,
its value is stored in the method attribute and is used by get_method(). The default is 'GET' if data is None
or 'POST' otherwise. Subclasses may indicate a different default method by setting the method attribute in
the class itself.

Note

The request will not work as expected if the data object is unable to deliver its content more than once (e.g.
a file or an iterable that can produce the content only once) and the request is retried for HTTP redirects
or authentication. The data is sent to the HTTP server right away after the headers. There is no support
for a 100-continue expectation in the library.

Changed in version 3.3: Request.method argument is added to the Request class.

Changed in version 3.4: Default Request.method may be indicated at the class level.

Changed in version 3.6: Do not raise an error if the Content-Length has not been provided and data is
neither None nor a bytes object. Fall back to use chunked transfer encoding instead.

class urllib.request.OpenerDirector

The OpenerDirector class opens URLs via BaseHandlers chained together. It manages the chaining of
handlers, and recovery from errors.

class urllib.request.BaseHandler

This is the base class for all registered handlers — and handles only the simple mechanics of registration.

class urllib.request.HTTPDefaultErrorHandler

A class which defines a default handler for HTTP error responses; all responses are turned into HTTPError
exceptions.

class urllib.request.HTTPRedirectHandler

A class to handle redirections.

22.4. urllib.request— Extensible library for opening URLs 1409

https://datatracker.ietf.org/doc/html/rfc2965.html
https://datatracker.ietf.org/doc/html/rfc2965.html

The Python Library Reference, Release 3.13.1

class urllib.request.HTTPCookieProcessor(cookiejar=None)
A class to handle HTTP Cookies.

class urllib.request.ProxyHandler(proxies=None)

Cause requests to go through a proxy. If proxies is given, it must be a dictionary mapping protocol
names to URLs of proxies. The default is to read the list of proxies from the environment variables
<protocol>_proxy. If no proxy environment variables are set, then in a Windows environment proxy set-
tings are obtained from the registry’s Internet Settings section, and in a macOS environment proxy information
is retrieved from the System Configuration Framework.

To disable autodetected proxy pass an empty dictionary.

The no_proxy environment variable can be used to specify hosts which shouldn’t be reached via proxy; if
set, it should be a comma-separated list of hostname suffixes, optionally with :port appended, for example
cern.ch,ncsa.uiuc.edu,some.host:8080.

Note

HTTP_PROXY will be ignored if a variable REQUEST_METHOD is set; see the documentation on
getproxies().

class urllib.request.HTTPPasswordMgr

Keep a database of (realm, uri) -> (user, password) mappings.

class urllib.request.HTTPPasswordMgrWithDefaultRealm

Keep a database of (realm, uri) -> (user, password) mappings. A realm of None is considered a
catch-all realm, which is searched if no other realm fits.

class urllib.request.HTTPPasswordMgrWithPriorAuth

A variant of HTTPPasswordMgrWithDefaultRealm that also has a database of uri ->

is_authenticated mappings. Can be used by a BasicAuth handler to determine when to send au-
thentication credentials immediately instead of waiting for a 401 response first.

Added in version 3.5.

class urllib.request.AbstractBasicAuthHandler(password_mgr=None)
This is a mixin class that helps with HTTP authentication, both to the remote host and to a proxy. pass-
word_mgr, if given, should be something that is compatible with HTTPPasswordMgr; refer to section HTTP-
PasswordMgr Objects for information on the interface that must be supported. If passwd_mgr also provides
is_authenticated and update_authenticated methods (see HTTPPasswordMgrWithPriorAuth Ob-
jects), then the handler will use the is_authenticated result for a given URI to determine whether or not to
send authentication credentials with the request. If is_authenticated returns True for the URI, credentials
are sent. If is_authenticated is False, credentials are not sent, and then if a 401 response is received the
request is re-sent with the authentication credentials. If authentication succeeds, update_authenticated
is called to set is_authenticated True for the URI, so that subsequent requests to the URI or any of its
super-URIs will automatically include the authentication credentials.

Added in version 3.5: Added is_authenticated support.

class urllib.request.HTTPBasicAuthHandler(password_mgr=None)
Handle authentication with the remote host. password_mgr, if given, should be something that is compatible
with HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on the interface that
must be supported. HTTPBasicAuthHandler will raise a ValueError when presented with a wrong Authen-
tication scheme.

class urllib.request.ProxyBasicAuthHandler(password_mgr=None)

Handle authentication with the proxy. password_mgr, if given, should be something that is compatible with
HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on the interface that must be
supported.

1410 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

class urllib.request.AbstractDigestAuthHandler(password_mgr=None)
This is a mixin class that helps with HTTP authentication, both to the remote host and to a proxy. pass-
word_mgr, if given, should be something that is compatible with HTTPPasswordMgr; refer to section HTTP-
PasswordMgr Objects for information on the interface that must be supported.

class urllib.request.HTTPDigestAuthHandler(password_mgr=None)
Handle authentication with the remote host. password_mgr, if given, should be something that is compatible
with HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on the interface that
must be supported. When both Digest Authentication Handler and Basic Authentication Handler are both
added, Digest Authentication is always tried first. If the Digest Authentication returns a 40x response again,
it is sent to Basic Authentication handler to Handle. This Handler method will raise a ValueError when
presented with an authentication scheme other than Digest or Basic.

Changed in version 3.3: Raise ValueError on unsupported Authentication Scheme.

class urllib.request.ProxyDigestAuthHandler(password_mgr=None)
Handle authentication with the proxy. password_mgr, if given, should be something that is compatible with
HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on the interface that must be
supported.

class urllib.request.HTTPHandler

A class to handle opening of HTTP URLs.

class urllib.request.HTTPSHandler(debuglevel=0, context=None, check_hostname=None)
A class to handle opening of HTTPS URLs. context and check_hostname have the same meaning as in http.
client.HTTPSConnection.

Changed in version 3.2: context and check_hostname were added.

class urllib.request.FileHandler

Open local files.

class urllib.request.DataHandler

Open data URLs.

Added in version 3.4.

class urllib.request.FTPHandler

Open FTP URLs.

class urllib.request.CacheFTPHandler

Open FTP URLs, keeping a cache of open FTP connections to minimize delays.

class urllib.request.UnknownHandler

A catch-all class to handle unknown URLs.

class urllib.request.HTTPErrorProcessor

Process HTTP error responses.

22.4.1 Request Objects

The following methods describe Request’s public interface, and so all may be overridden in subclasses. It also
defines several public attributes that can be used by clients to inspect the parsed request.

Request.full_url

The original URL passed to the constructor.

Changed in version 3.4.

Request.full_url is a property with setter, getter and a deleter. Getting full_url returns the original request
URL with the fragment, if it was present.

22.4. urllib.request— Extensible library for opening URLs 1411

The Python Library Reference, Release 3.13.1

Request.type

The URI scheme.

Request.host

The URI authority, typically a host, but may also contain a port separated by a colon.

Request.origin_req_host

The original host for the request, without port.

Request.selector

The URI path. If the Request uses a proxy, then selector will be the full URL that is passed to the proxy.

Request.data

The entity body for the request, or None if not specified.

Changed in version 3.4: Changing value of Request.data now deletes “Content-Length” header if it was
previously set or calculated.

Request.unverifiable

boolean, indicates whether the request is unverifiable as defined by RFC 2965.

Request.method

The HTTP request method to use. By default its value is None, which means that get_method() will do its
normal computation of the method to be used. Its value can be set (thus overriding the default computation in
get_method()) either by providing a default value by setting it at the class level in a Request subclass, or
by passing a value in to the Request constructor via the method argument.

Added in version 3.3.

Changed in version 3.4: A default value can now be set in subclasses; previously it could only be set via the
constructor argument.

Request.get_method()

Return a string indicating the HTTP request method. If Request.method is not None, return its value,
otherwise return 'GET' if Request.data is None, or 'POST' if it’s not. This is only meaningful for HTTP
requests.

Changed in version 3.3: get_method now looks at the value of Request.method.

Request.add_header(key, val)
Add another header to the request. Headers are currently ignored by all handlers except HTTP handlers, where
they are added to the list of headers sent to the server. Note that there cannot be more than one header with
the same name, and later calls will overwrite previous calls in case the key collides. Currently, this is no loss of
HTTP functionality, since all headers which have meaning when used more than once have a (header-specific)
way of gaining the same functionality using only one header. Note that headers added using this method are
also added to redirected requests.

Request.add_unredirected_header(key, header)
Add a header that will not be added to a redirected request.

Request.has_header(header)

Return whether the instance has the named header (checks both regular and unredirected).

Request.remove_header(header)
Remove named header from the request instance (both from regular and unredirected headers).

Added in version 3.4.

Request.get_full_url()

Return the URL given in the constructor.

Changed in version 3.4.

Returns Request.full_url

1412 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc2965.html

The Python Library Reference, Release 3.13.1

Request.set_proxy(host, type)
Prepare the request by connecting to a proxy server. The host and type will replace those of the instance, and
the instance’s selector will be the original URL given in the constructor.

Request.get_header(header_name, default=None)
Return the value of the given header. If the header is not present, return the default value.

Request.header_items()

Return a list of tuples (header_name, header_value) of the Request headers.

Changed in version 3.4: The request methods add_data, has_data, get_data, get_type, get_host, get_selector,
get_origin_req_host and is_unverifiable that were deprecated since 3.3 have been removed.

22.4.2 OpenerDirector Objects

OpenerDirector instances have the following methods:

OpenerDirector.add_handler(handler)
handler should be an instance of BaseHandler. The following methods are searched, and added to the
possible chains (note that HTTP errors are a special case). Note that, in the following, protocol should be
replaced with the actual protocol to handle, for example http_response() would be the HTTP protocol
response handler. Also type should be replaced with the actual HTTP code, for example http_error_404()
would handle HTTP 404 errors.

• <protocol>_open()— signal that the handler knows how to open protocol URLs.

See BaseHandler.<protocol>_open() for more information.

• http_error_<type>()— signal that the handler knows how to handle HTTP errors with HTTP error
code type.

See BaseHandler.http_error_<nnn>() for more information.

• <protocol>_error()—signal that the handler knows how to handle errors from (non-http) protocol.

• <protocol>_request()— signal that the handler knows how to pre-process protocol requests.

See BaseHandler.<protocol>_request() for more information.

• <protocol>_response()— signal that the handler knows how to post-process protocol responses.

See BaseHandler.<protocol>_response() for more information.

OpenerDirector.open(url, data=None[, timeout])
Open the given url (which can be a request object or a string), optionally passing the given data. Arguments,
return values and exceptions raised are the same as those of urlopen() (which simply calls the open()
method on the currently installed global OpenerDirector). The optional timeout parameter specifies a time-
out in seconds for blocking operations like the connection attempt (if not specified, the global default timeout
setting will be used). The timeout feature actually works only for HTTP, HTTPS and FTP connections.

OpenerDirector.error(proto, *args)
Handle an error of the given protocol. This will call the registered error handlers for the given protocol with
the given arguments (which are protocol specific). The HTTP protocol is a special case which uses the HTTP
response code to determine the specific error handler; refer to the http_error_<type>() methods of the
handler classes.

Return values and exceptions raised are the same as those of urlopen().

OpenerDirector objects open URLs in three stages:

The order in which these methods are called within each stage is determined by sorting the handler instances.

1. Every handler with a method named like <protocol>_request() has that method called to pre-process the
request.

22.4. urllib.request— Extensible library for opening URLs 1413

The Python Library Reference, Release 3.13.1

2. Handlers with a method named like <protocol>_open() are called to handle the request. This stage ends
when a handler either returns a non-None value (ie. a response), or raises an exception (usually URLError).
Exceptions are allowed to propagate.

In fact, the above algorithm is first tried for methods named default_open(). If all such methods return
None, the algorithm is repeated for methods named like <protocol>_open(). If all such methods return
None, the algorithm is repeated for methods named unknown_open().

Note that the implementation of these methods may involve calls of the parent OpenerDirector instance’s
open() and error() methods.

3. Every handler with a method named like <protocol>_response() has that method called to post-process
the response.

22.4.3 BaseHandler Objects

BaseHandler objects provide a couple of methods that are directly useful, and others that are meant to be used by
derived classes. These are intended for direct use:

BaseHandler.add_parent(director)
Add a director as parent.

BaseHandler.close()

Remove any parents.

The following attribute and methods should only be used by classes derived from BaseHandler.

Note

The convention has been adopted that subclasses defining <protocol>_request() or
<protocol>_response() methods are named *Processor; all others are named *Handler.

BaseHandler.parent

A valid OpenerDirector, which can be used to open using a different protocol, or handle errors.

BaseHandler.default_open(req)
This method is not defined in BaseHandler, but subclasses should define it if they want to catch all URLs.

This method, if implemented, will be called by the parent OpenerDirector. It should return a file-like
object as described in the return value of the open() method of OpenerDirector, or None. It should raise
URLError, unless a truly exceptional thing happens (for example, MemoryError should not be mapped to
URLError).

This method will be called before any protocol-specific open method.

BaseHandler.<protocol>_open(req)

This method is not defined in BaseHandler, but subclasses should define it if they want to handle URLs with
the given protocol.

This method, if defined, will be called by the parent OpenerDirector. Return values should be the same as
for default_open().

BaseHandler.unknown_open(req)
This method is not defined in BaseHandler, but subclasses should define it if they want to catch all URLs
with no specific registered handler to open it.

This method, if implemented, will be called by the parent OpenerDirector. Return values should be the
same as for default_open().

BaseHandler.http_error_default(req, fp, code, msg, hdrs)
This method is not defined in BaseHandler, but subclasses should override it if they intend to provide a catch-
all for otherwise unhandled HTTP errors. It will be called automatically by the OpenerDirector getting the
error, and should not normally be called in other circumstances.

1414 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

reqwill be a Request object, fpwill be a file-like object with the HTTP error body, codewill be the three-digit
code of the error, msg will be the user-visible explanation of the code and hdrs will be a mapping object with
the headers of the error.

Return values and exceptions raised should be the same as those of urlopen().

BaseHandler.http_error_<nnn>(req, fp, code, msg, hdrs)

nnn should be a three-digit HTTP error code. This method is also not defined in BaseHandler, but will be
called, if it exists, on an instance of a subclass, when an HTTP error with code nnn occurs.

Subclasses should override this method to handle specific HTTP errors.

Arguments, return values and exceptions raised should be the same as for http_error_default().

BaseHandler.<protocol>_request(req)

Thismethod is not defined in BaseHandler, but subclasses should define it if they want to pre-process requests
of the given protocol.

This method, if defined, will be called by the parent OpenerDirector. req will be a Request object. The
return value should be a Request object.

BaseHandler.<protocol>_response(req, response)

This method is not defined in BaseHandler, but subclasses should define it if they want to post-process
responses of the given protocol.

This method, if defined, will be called by the parent OpenerDirector. req will be a Request object.
response will be an object implementing the same interface as the return value of urlopen(). The return
value should implement the same interface as the return value of urlopen().

22.4.4 HTTPRedirectHandler Objects

Note

Some HTTP redirections require action from this module’s client code. If this is the case, HTTPError is raised.
See RFC 2616 for details of the precise meanings of the various redirection codes.

An HTTPError exception raised as a security consideration if the HTTPRedirectHandler is presented with a
redirected URL which is not an HTTP, HTTPS or FTP URL.

HTTPRedirectHandler.redirect_request(req, fp, code, msg, hdrs, newurl)
Return a Request or None in response to a redirect. This is called by the default implementations of the
http_error_30*() methods when a redirection is received from the server. If a redirection should take
place, return a new Request to allow http_error_30*() to perform the redirect to newurl. Otherwise,
raise HTTPError if no other handler should try to handle this URL, or return None if you can’t but another
handler might.

Note

The default implementation of this method does not strictly follow RFC 2616, which says that 301 and
302 responses to POST requests must not be automatically redirected without confirmation by the user. In
reality, browsers do allow automatic redirection of these responses, changing the POST to a GET, and the
default implementation reproduces this behavior.

HTTPRedirectHandler.http_error_301(req, fp, code, msg, hdrs)
Redirect to the Location: or URI: URL. This method is called by the parent OpenerDirector when
getting an HTTP ‘moved permanently’ response.

HTTPRedirectHandler.http_error_302(req, fp, code, msg, hdrs)
The same as http_error_301(), but called for the ‘found’ response.

22.4. urllib.request— Extensible library for opening URLs 1415

https://datatracker.ietf.org/doc/html/rfc2616.html
https://datatracker.ietf.org/doc/html/rfc2616.html

The Python Library Reference, Release 3.13.1

HTTPRedirectHandler.http_error_303(req, fp, code, msg, hdrs)
The same as http_error_301(), but called for the ‘see other’ response.

HTTPRedirectHandler.http_error_307(req, fp, code, msg, hdrs)
The same as http_error_301(), but called for the ‘temporary redirect’ response. It does not allow changing
the request method from POST to GET.

HTTPRedirectHandler.http_error_308(req, fp, code, msg, hdrs)
The same as http_error_301(), but called for the ‘permanent redirect’ response. It does not allow changing
the request method from POST to GET.

Added in version 3.11.

22.4.5 HTTPCookieProcessor Objects

HTTPCookieProcessor instances have one attribute:

HTTPCookieProcessor.cookiejar

The http.cookiejar.CookieJar in which cookies are stored.

22.4.6 ProxyHandler Objects

ProxyHandler.<protocol>_open(request)

The ProxyHandler will have a method <protocol>_open() for every protocol which has a proxy in the
proxies dictionary given in the constructor. The method will modify requests to go through the proxy, by calling
request.set_proxy(), and call the next handler in the chain to actually execute the protocol.

22.4.7 HTTPPasswordMgr Objects

These methods are available on HTTPPasswordMgr and HTTPPasswordMgrWithDefaultRealm objects.

HTTPPasswordMgr.add_password(realm, uri, user, passwd)
uri can be either a single URI, or a sequence of URIs. realm, user and passwd must be strings. This causes
(user, passwd) to be used as authentication tokens when authentication for realm and a super-URI of any
of the given URIs is given.

HTTPPasswordMgr.find_user_password(realm, authuri)
Get user/password for given realm and URI, if any. This method will return (None, None) if there is no
matching user/password.

For HTTPPasswordMgrWithDefaultRealm objects, the realm None will be searched if the given realm has
no matching user/password.

22.4.8 HTTPPasswordMgrWithPriorAuth Objects

This password manager extends HTTPPasswordMgrWithDefaultRealm to support tracking URIs for which au-
thentication credentials should always be sent.

HTTPPasswordMgrWithPriorAuth.add_password(realm, uri, user, passwd, is_authenticated=False)
realm, uri, user, passwd are as for HTTPPasswordMgr.add_password(). is_authenticated sets the initial
value of the is_authenticated flag for the given URI or list of URIs. If is_authenticated is specified as
True, realm is ignored.

HTTPPasswordMgrWithPriorAuth.find_user_password(realm, authuri)
Same as for HTTPPasswordMgrWithDefaultRealm objects

HTTPPasswordMgrWithPriorAuth.update_authenticated(self, uri, is_authenticated=False)
Update the is_authenticated flag for the given uri or list of URIs.

HTTPPasswordMgrWithPriorAuth.is_authenticated(self, authuri)
Returns the current state of the is_authenticated flag for the given URI.

1416 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

22.4.9 AbstractBasicAuthHandler Objects

AbstractBasicAuthHandler.http_error_auth_reqed(authreq, host, req, headers)
Handle an authentication request by getting a user/password pair, and re-trying the request. authreq should
be the name of the header where the information about the realm is included in the request, host specifies the
URL and path to authenticate for, req should be the (failed) Request object, and headers should be the error
headers.

host is either an authority (e.g. "python.org") or a URL containing an authority component (e.g. "http:/
/python.org/"). In either case, the authority must not contain a userinfo component (so, "python.org"
and "python.org:80" are fine, "joe:password@python.org" is not).

22.4.10 HTTPBasicAuthHandler Objects

HTTPBasicAuthHandler.http_error_401(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

22.4.11 ProxyBasicAuthHandler Objects

ProxyBasicAuthHandler.http_error_407(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

22.4.12 AbstractDigestAuthHandler Objects

AbstractDigestAuthHandler.http_error_auth_reqed(authreq, host, req, headers)
authreq should be the name of the header where the information about the realm is included in the request,
host should be the host to authenticate to, req should be the (failed) Request object, and headers should be
the error headers.

22.4.13 HTTPDigestAuthHandler Objects

HTTPDigestAuthHandler.http_error_401(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

22.4.14 ProxyDigestAuthHandler Objects

ProxyDigestAuthHandler.http_error_407(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

22.4.15 HTTPHandler Objects

HTTPHandler.http_open(req)
Send an HTTP request, which can be either GET or POST, depending on req.has_data().

22.4.16 HTTPSHandler Objects

HTTPSHandler.https_open(req)
Send an HTTPS request, which can be either GET or POST, depending on req.has_data().

22.4.17 FileHandler Objects

FileHandler.file_open(req)
Open the file locally, if there is no host name, or the host name is 'localhost'.

Changed in version 3.2: This method is applicable only for local hostnames. When a remote hostname is given,
a URLError is raised.

22.4. urllib.request— Extensible library for opening URLs 1417

The Python Library Reference, Release 3.13.1

22.4.18 DataHandler Objects

DataHandler.data_open(req)

Read a data URL. This kind of URL contains the content encoded in the URL itself. The data URL syntax is
specified in RFC 2397. This implementation ignores white spaces in base64 encoded data URLs so the URL
may be wrapped in whatever source file it comes from. But even though some browsers don’t mind about a
missing padding at the end of a base64 encoded data URL, this implementation will raise a ValueError in
that case.

22.4.19 FTPHandler Objects

FTPHandler.ftp_open(req)

Open the FTP file indicated by req. The login is always done with empty username and password.

22.4.20 CacheFTPHandler Objects

CacheFTPHandler objects are FTPHandler objects with the following additional methods:

CacheFTPHandler.setTimeout(t)

Set timeout of connections to t seconds.

CacheFTPHandler.setMaxConns(m)
Set maximum number of cached connections to m.

22.4.21 UnknownHandler Objects

UnknownHandler.unknown_open()

Raise a URLError exception.

22.4.22 HTTPErrorProcessor Objects

HTTPErrorProcessor.http_response(request, response)
Process HTTP error responses.

For 200 error codes, the response object is returned immediately.

For non-200 error codes, this simply passes the job on to the http_error_<type>() handler methods, via
OpenerDirector.error(). Eventually, HTTPDefaultErrorHandler will raise an HTTPError if no
other handler handles the error.

HTTPErrorProcessor.https_response(request, response)
Process HTTPS error responses.

The behavior is same as http_response().

22.4.23 Examples

In addition to the examples below, more examples are given in urllib-howto.

This example gets the python.org main page and displays the first 300 bytes of it.

>>> import urllib.request

>>> with urllib.request.urlopen('http://www.python.org/') as f:

... print(f.read(300))

...

b'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">\n\n\n<html

xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">\n\n<head>\n

<meta http-equiv="content-type" content="text/html; charset=utf-8" />\n

<title>Python Programming '

1418 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc2397.html

The Python Library Reference, Release 3.13.1

Note that urlopen returns a bytes object. This is because there is no way for urlopen to automatically determine the
encoding of the byte stream it receives from the HTTP server. In general, a program will decode the returned bytes
object to string once it determines or guesses the appropriate encoding.

The following W3C document, https://www.w3.org/International/O-charset, lists the various ways in which an
(X)HTML or an XML document could have specified its encoding information.

As the python.org website uses utf-8 encoding as specified in its meta tag, we will use the same for decoding the bytes
object.

>>> with urllib.request.urlopen('http://www.python.org/') as f:

... print(f.read(100).decode('utf-8'))

...

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtm

It is also possible to achieve the same result without using the context manager approach.

>>> import urllib.request

>>> f = urllib.request.urlopen('http://www.python.org/')

>>> print(f.read(100).decode('utf-8'))

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtm

In the following example, we are sending a data-stream to the stdin of a CGI and reading the data it returns to us.
Note that this example will only work when the Python installation supports SSL.

>>> import urllib.request

>>> req = urllib.request.Request(url='https://localhost/cgi-bin/test.cgi',

... data=b'This data is passed to stdin of the CGI')

>>> with urllib.request.urlopen(req) as f:

... print(f.read().decode('utf-8'))

...

Got Data: "This data is passed to stdin of the CGI"

The code for the sample CGI used in the above example is:

#!/usr/bin/env python

import sys

data = sys.stdin.read()

print('Content-type: text/plain\n\nGot Data: "%s"' % data)

Here is an example of doing a PUT request using Request:

import urllib.request

DATA = b'some data'

req = urllib.request.Request(url='http://localhost:8080', data=DATA, method='PUT')

with urllib.request.urlopen(req) as f:

pass

print(f.status)

print(f.reason)

Use of Basic HTTP Authentication:

import urllib.request

Create an OpenerDirector with support for Basic HTTP Authentication...

auth_handler = urllib.request.HTTPBasicAuthHandler()

auth_handler.add_password(realm='PDQ Application',

uri='https://mahler:8092/site-updates.py',

user='klem',

(continues on next page)

22.4. urllib.request— Extensible library for opening URLs 1419

https://www.w3.org/International/O-charset

The Python Library Reference, Release 3.13.1

(continued from previous page)

passwd='kadidd!ehopper')

opener = urllib.request.build_opener(auth_handler)

...and install it globally so it can be used with urlopen.

urllib.request.install_opener(opener)

urllib.request.urlopen('http://www.example.com/login.html')

build_opener() provides many handlers by default, including a ProxyHandler. By default, ProxyHandler
uses the environment variables named <scheme>_proxy, where <scheme> is the URL scheme involved. For
example, the http_proxy environment variable is read to obtain the HTTP proxy’s URL.

This example replaces the default ProxyHandler with one that uses programmatically supplied proxy URLs, and
adds proxy authorization support with ProxyBasicAuthHandler.

proxy_handler = urllib.request.ProxyHandler({'http': 'http://www.example.com:3128/

↪→'})

proxy_auth_handler = urllib.request.ProxyBasicAuthHandler()

proxy_auth_handler.add_password('realm', 'host', 'username', 'password')

opener = urllib.request.build_opener(proxy_handler, proxy_auth_handler)

This time, rather than install the OpenerDirector, we use it directly:

opener.open('http://www.example.com/login.html')

Adding HTTP headers:

Use the headers argument to the Request constructor, or:

import urllib.request

req = urllib.request.Request('http://www.example.com/')

req.add_header('Referer', 'http://www.python.org/')

Customize the default User-Agent header value:

req.add_header('User-Agent', 'urllib-example/0.1 (Contact: . . .)')

r = urllib.request.urlopen(req)

OpenerDirector automatically adds a User-Agent header to every Request. To change this:

import urllib.request

opener = urllib.request.build_opener()

opener.addheaders = [('User-agent', 'Mozilla/5.0')]

opener.open('http://www.example.com/')

Also, remember that a few standard headers (Content-Length, Content-Type and Host) are added when the
Request is passed to urlopen() (or OpenerDirector.open()).

Here is an example session that uses the GET method to retrieve a URL containing parameters:

>>> import urllib.request

>>> import urllib.parse

>>> params = urllib.parse.urlencode({'spam': 1, 'eggs': 2, 'bacon': 0})

>>> url = "http://www.musi-cal.com/cgi-bin/query?%s" % params

>>> with urllib.request.urlopen(url) as f:

... print(f.read().decode('utf-8'))

...

The following example uses the POST method instead. Note that params output from urlencode is encoded to bytes
before it is sent to urlopen as data:

>>> import urllib.request

>>> import urllib.parse

>>> data = urllib.parse.urlencode({'spam': 1, 'eggs': 2, 'bacon': 0})

(continues on next page)

1420 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> data = data.encode('ascii')

>>> with urllib.request.urlopen("http://requestb.in/xrbl82xr", data) as f:

... print(f.read().decode('utf-8'))

...

The following example uses an explicitly specified HTTP proxy, overriding environment settings:

>>> import urllib.request

>>> proxies = {'http': 'http://proxy.example.com:8080/'}

>>> opener = urllib.request.FancyURLopener(proxies)

>>> with opener.open("http://www.python.org") as f:

... f.read().decode('utf-8')

...

The following example uses no proxies at all, overriding environment settings:

>>> import urllib.request

>>> opener = urllib.request.FancyURLopener({})

>>> with opener.open("http://www.python.org/") as f:

... f.read().decode('utf-8')

...

22.4.24 Legacy interface

The following functions and classes are ported from the Python 2 module urllib (as opposed to urllib2). They
might become deprecated at some point in the future.

urllib.request.urlretrieve(url, filename=None, reporthook=None, data=None)
Copy a network object denoted by a URL to a local file. If the URL points to a local file, the object will not be
copied unless filename is supplied. Return a tuple (filename, headers) where filename is the local file
name under which the object can be found, and headers is whatever the info()method of the object returned
by urlopen() returned (for a remote object). Exceptions are the same as for urlopen().

The second argument, if present, specifies the file location to copy to (if absent, the location will be a tempfile
with a generated name). The third argument, if present, is a callable that will be called once on establishment of
the network connection and once after each block read thereafter. The callable will be passed three arguments;
a count of blocks transferred so far, a block size in bytes, and the total size of the file. The third argument may
be -1 on older FTP servers which do not return a file size in response to a retrieval request.

The following example illustrates the most common usage scenario:

>>> import urllib.request

>>> local_filename, headers = urllib.request.urlretrieve('http://python.org/')

>>> html = open(local_filename)

>>> html.close()

If the url uses the http: scheme identifier, the optional data argument may be given to specify a POST request
(normally the request type is GET). The data argument must be a bytes object in standard application/

x-www-form-urlencoded format; see the urllib.parse.urlencode() function.

urlretrieve() will raise ContentTooShortError when it detects that the amount of data available was
less than the expected amount (which is the size reported by a Content-Length header). This can occur, for
example, when the download is interrupted.

The Content-Length is treated as a lower bound: if there’s more data to read, urlretrieve reads more data, but
if less data is available, it raises the exception.

You can still retrieve the downloaded data in this case, it is stored in the content attribute of the exception
instance.

22.4. urllib.request— Extensible library for opening URLs 1421

The Python Library Reference, Release 3.13.1

If no Content-Length header was supplied, urlretrieve can not check the size of the data it has downloaded, and
just returns it. In this case you just have to assume that the download was successful.

urllib.request.urlcleanup()

Cleans up temporary files that may have been left behind by previous calls to urlretrieve().

class urllib.request.URLopener(proxies=None, **x509)
Deprecated since version 3.3.

Base class for opening and reading URLs. Unless you need to support opening objects using schemes other
than http:, ftp:, or file:, you probably want to use FancyURLopener.

By default, the URLopener class sends a User-Agent header of urllib/VVV, where VVV is the urllib
version number. Applications can define their own User-Agent header by subclassing URLopener or
FancyURLopener and setting the class attribute version to an appropriate string value in the subclass def-
inition.

The optional proxies parameter should be a dictionary mapping scheme names to proxy URLs, where an empty
dictionary turns proxies off completely. Its default value is None, in which case environmental proxy settings
will be used if present, as discussed in the definition of urlopen(), above.

Additional keyword parameters, collected in x509, may be used for authentication of the client when using
the https: scheme. The keywords key_file and cert_file are supported to provide an SSL key and certificate;
both are needed to support client authentication.

URLopener objects will raise an OSError exception if the server returns an error code.

open(fullurl, data=None)
Open fullurl using the appropriate protocol. This method sets up cache and proxy information,
then calls the appropriate open method with its input arguments. If the scheme is not recognized,
open_unknown() is called. The data argument has the same meaning as the data argument of
urlopen().

This method always quotes fullurl using quote().

open_unknown(fullurl, data=None)
Overridable interface to open unknown URL types.

retrieve(url, filename=None, reporthook=None, data=None)
Retrieves the contents of url and places it in filename. The return value is a tuple consisting of a local
filename and either an email.message.Message object containing the response headers (for remote
URLs) or None (for local URLs). The caller must then open and read the contents of filename. If
filename is not given and the URL refers to a local file, the input filename is returned. If the URL is
non-local and filename is not given, the filename is the output of tempfile.mktemp() with a suffix
that matches the suffix of the last path component of the input URL. If reporthook is given, it must be
a function accepting three numeric parameters: A chunk number, the maximum size chunks are read in
and the total size of the download (-1 if unknown). It will be called once at the start and after each chunk
of data is read from the network. reporthook is ignored for local URLs.

If the url uses the http: scheme identifier, the optional data argument may be given to specify a
POST request (normally the request type is GET). The data argument must in standard application/
x-www-form-urlencoded format; see the urllib.parse.urlencode() function.

version

Variable that specifies the user agent of the opener object. To get urllib to tell servers that it is a
particular user agent, set this in a subclass as a class variable or in the constructor before calling the base
constructor.

class urllib.request.FancyURLopener(...)
Deprecated since version 3.3.

FancyURLopener subclasses URLopener providing default handling for the following HTTP response codes:
301, 302, 303, 307 and 401. For the 30x response codes listed above, the Location header is used to fetch

1422 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

the actual URL. For 401 response codes (authentication required), basic HTTP authentication is performed.
For the 30x response codes, recursion is bounded by the value of the maxtries attribute, which defaults to 10.

For all other response codes, the method http_error_default() is called which you can override in sub-
classes to handle the error appropriately.

Note

According to the letter of RFC 2616, 301 and 302 responses to POST requests must not be automatically
redirected without confirmation by the user. In reality, browsers do allow automatic redirection of these
responses, changing the POST to a GET, and urllib reproduces this behaviour.

The parameters to the constructor are the same as those for URLopener.

Note

When performing basic authentication, a FancyURLopener instance calls its prompt_user_passwd()
method. The default implementation asks the users for the required information on the controlling terminal.
A subclass may override this method to support more appropriate behavior if needed.

The FancyURLopener class offers one additional method that should be overloaded to provide the appropriate
behavior:

prompt_user_passwd(host, realm)
Return information needed to authenticate the user at the given host in the specified security realm. The
return value should be a tuple, (user, password), which can be used for basic authentication.

The implementation prompts for this information on the terminal; an application should override this
method to use an appropriate interaction model in the local environment.

22.4.25 urllib.request Restrictions

• Currently, only the following protocols are supported: HTTP (versions 0.9 and 1.0), FTP, local files, and data
URLs.

Changed in version 3.4: Added support for data URLs.

• The caching feature of urlretrieve() has been disabled until someone finds the time to hack proper pro-
cessing of Expiration time headers.

• There should be a function to query whether a particular URL is in the cache.

• For backward compatibility, if a URL appears to point to a local file but the file can’t be opened, the URL is
re-interpreted using the FTP protocol. This can sometimes cause confusing error messages.

• The urlopen() and urlretrieve() functions can cause arbitrarily long delays while waiting for a network
connection to be set up. This means that it is difficult to build an interactive web client using these functions
without using threads.

• The data returned by urlopen() or urlretrieve() is the raw data returned by the server. This may
be binary data (such as an image), plain text or (for example) HTML. The HTTP protocol provides type
information in the reply header, which can be inspected by looking at the Content-Type header. If the
returned data is HTML, you can use the module html.parser to parse it.

• The code handling the FTP protocol cannot differentiate between a file and a directory. This can lead to
unexpected behavior when attempting to read a URL that points to a file that is not accessible. If the URL
ends in a /, it is assumed to refer to a directory and will be handled accordingly. But if an attempt to read a
file leads to a 550 error (meaning the URL cannot be found or is not accessible, often for permission reasons),
then the path is treated as a directory in order to handle the case when a directory is specified by a URL
but the trailing / has been left off. This can cause misleading results when you try to fetch a file whose read
permissions make it inaccessible; the FTP code will try to read it, fail with a 550 error, and then perform a

22.4. urllib.request— Extensible library for opening URLs 1423

https://datatracker.ietf.org/doc/html/rfc2616.html

The Python Library Reference, Release 3.13.1

directory listing for the unreadable file. If fine-grained control is needed, consider using the ftplib module,
subclassing FancyURLopener, or changing _urlopener to meet your needs.

22.5 urllib.response— Response classes used by urllib

The urllib.response module defines functions and classes which define a minimal file-like interface, including
read() and readline(). Functions defined by this module are used internally by the urllib.request module.
The typical response object is a urllib.response.addinfourl instance:

class urllib.response.addinfourl

url

URL of the resource retrieved, commonly used to determine if a redirect was followed.

headers

Returns the headers of the response in the form of an EmailMessage instance.

status

Added in version 3.9.

Status code returned by server.

geturl()

Deprecated since version 3.9: Deprecated in favor of url.

info()

Deprecated since version 3.9: Deprecated in favor of headers.

code

Deprecated since version 3.9: Deprecated in favor of status.

getcode()

Deprecated since version 3.9: Deprecated in favor of status.

22.6 urllib.parse— Parse URLs into components

Source code: Lib/urllib/parse.py

This module defines a standard interface to break Uniform Resource Locator (URL) strings up in components (ad-
dressing scheme, network location, path etc.), to combine the components back into a URL string, and to convert a
“relative URL” to an absolute URL given a “base URL.”

The module has been designed to match the internet RFC on Relative Uniform Resource Locators. It supports the
following URL schemes: file, ftp, gopher, hdl, http, https, imap, itms-services, mailto, mms, news,
nntp, prospero, rsync, rtsp, rtsps, rtspu, sftp, shttp, sip, sips, snews, svn, svn+ssh, telnet, wais,
ws, wss.

CPython implementation detail: The inclusion of the itms-services URL scheme can prevent an app
from passing Apple’s App Store review process for the macOS and iOS App Stores. Handling for the
itms-services scheme is always removed on iOS; on macOS, it may be removed if CPython has been built
with the --with-app-store-compliance option.

The urllib.parse module defines functions that fall into two broad categories: URL parsing and URL quoting.
These are covered in detail in the following sections.

This module’s functions use the deprecated term netloc (or net_loc), which was introduced in RFC 1808. How-
ever, this term has been obsoleted by RFC 3986, which introduced the term authority as its replacement. The
use of netloc is continued for backward compatibility.

1424 Chapter 22. Internet Protocols and Support

https://github.com/python/cpython/tree/3.13/Lib/urllib/parse.py
https://datatracker.ietf.org/doc/html/rfc1808.html
https://datatracker.ietf.org/doc/html/rfc3986.html

The Python Library Reference, Release 3.13.1

22.6.1 URL Parsing

The URL parsing functions focus on splitting a URL string into its components, or on combining URL components
into a URL string.

urllib.parse.urlparse(urlstring, scheme=” , allow_fragments=True)
Parse a URL into six components, returning a 6-item named tuple. This corresponds to the general structure of
a URL: scheme://netloc/path;parameters?query#fragment. Each tuple item is a string, possibly
empty. The components are not broken up into smaller parts (for example, the network location is a single
string), and % escapes are not expanded. The delimiters as shown above are not part of the result, except for
a leading slash in the path component, which is retained if present. For example:

>>> from urllib.parse import urlparse

>>> urlparse("scheme://netloc/path;parameters?query#fragment")

ParseResult(scheme='scheme', netloc='netloc', path='/path;parameters', params='

↪→',

query='query', fragment='fragment')

>>> o = urlparse("http://docs.python.org:80/3/library/urllib.parse.html?"

... "highlight=params#url-parsing")

>>> o

ParseResult(scheme='http', netloc='docs.python.org:80',

path='/3/library/urllib.parse.html', params='',

query='highlight=params', fragment='url-parsing')

>>> o.scheme

'http'

>>> o.netloc

'docs.python.org:80'

>>> o.hostname

'docs.python.org'

>>> o.port

80

>>> o._replace(fragment="").geturl()

'http://docs.python.org:80/3/library/urllib.parse.html?highlight=params'

Following the syntax specifications in RFC 1808, urlparse recognizes a netloc only if it is properly introduced
by ‘//’. Otherwise the input is presumed to be a relative URL and thus to start with a path component.

>>> from urllib.parse import urlparse

>>> urlparse('//www.cwi.nl:80/%7Eguido/Python.html')

ParseResult(scheme='', netloc='www.cwi.nl:80', path='/%7Eguido/Python.html',

params='', query='', fragment='')

>>> urlparse('www.cwi.nl/%7Eguido/Python.html')

ParseResult(scheme='', netloc='', path='www.cwi.nl/%7Eguido/Python.html',

params='', query='', fragment='')

>>> urlparse('help/Python.html')

ParseResult(scheme='', netloc='', path='help/Python.html', params='',

query='', fragment='')

The scheme argument gives the default addressing scheme, to be used only if the URL does not specify one. It
should be the same type (text or bytes) as urlstring, except that the default value '' is always allowed, and is
automatically converted to b'' if appropriate.

If the allow_fragments argument is false, fragment identifiers are not recognized. Instead, they are parsed as
part of the path, parameters or query component, and fragment is set to the empty string in the return value.

The return value is a named tuple, which means that its items can be accessed by index or as named attributes,
which are:

22.6. urllib.parse— Parse URLs into components 1425

https://datatracker.ietf.org/doc/html/rfc1808.html

The Python Library Reference, Release 3.13.1

Attribute Index Value Value if not present

scheme 0 URL scheme specifier scheme parameter
netloc 1 Network location part empty string
path 2 Hierarchical path empty string
params 3 Parameters for last path element empty string
query 4 Query component empty string
fragment 5 Fragment identifier empty string
username User name None

password Password None

hostname Host name (lower case) None

port Port number as integer, if present None

Reading the port attribute will raise a ValueError if an invalid port is specified in the URL. See section
Structured Parse Results for more information on the result object.

Unmatched square brackets in the netloc attribute will raise a ValueError.

Characters in the netloc attribute that decompose under NFKC normalization (as used by the IDNA encod-
ing) into any of /, ?, #, @, or : will raise a ValueError. If the URL is decomposed before parsing, no error
will be raised.

As is the case with all named tuples, the subclass has a few additional methods and attributes that are particularly
useful. One such method is _replace(). The _replace() method will return a new ParseResult object
replacing specified fields with new values.

>>> from urllib.parse import urlparse

>>> u = urlparse('//www.cwi.nl:80/%7Eguido/Python.html')

>>> u

ParseResult(scheme='', netloc='www.cwi.nl:80', path='/%7Eguido/Python.html',

params='', query='', fragment='')

>>> u._replace(scheme='http')

ParseResult(scheme='http', netloc='www.cwi.nl:80', path='/%7Eguido/Python.html

↪→',

params='', query='', fragment='')

Warning

urlparse() does not perform validation. See URL parsing security for details.

Changed in version 3.2: Added IPv6 URL parsing capabilities.

Changed in version 3.3: The fragment is now parsed for all URL schemes (unless allow_fragments is false),
in accordance with RFC 3986. Previously, an allowlist of schemes that support fragments existed.

Changed in version 3.6: Out-of-range port numbers now raise ValueError, instead of returning None.

Changed in version 3.8: Characters that affect netloc parsing under NFKC normalization will now raise
ValueError.

urllib.parse.parse_qs(qs, keep_blank_values=False, strict_parsing=False, encoding=’utf-8’, errors=’replace’,
max_num_fields=None, separator=’&’)

Parse a query string given as a string argument (data of type application/x-www-form-urlencoded).
Data are returned as a dictionary. The dictionary keys are the unique query variable names and the values are
lists of values for each name.

The optional argument keep_blank_values is a flag indicating whether blank values in percent-encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

1426 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc3986.html

The Python Library Reference, Release 3.13.1

The optional argument strict_parsing is a flag indicating what to do with parsing errors. If false (the default),
errors are silently ignored. If true, errors raise a ValueError exception.

The optional encoding and errors parameters specify how to decode percent-encoded sequences into Unicode
characters, as accepted by the bytes.decode() method.

The optional argument max_num_fields is the maximum number of fields to read. If set, then throws a
ValueError if there are more than max_num_fields fields read.

The optional argument separator is the symbol to use for separating the query arguments. It defaults to &.

Use the urllib.parse.urlencode() function (with the doseq parameter set to True) to convert such
dictionaries into query strings.

Changed in version 3.2: Add encoding and errors parameters.

Changed in version 3.8: Added max_num_fields parameter.

Changed in version 3.10: Added separator parameter with the default value of &. Python versions earlier than
Python 3.10 allowed using both ; and & as query parameter separator. This has been changed to allow only a
single separator key, with & as the default separator.

urllib.parse.parse_qsl(qs, keep_blank_values=False, strict_parsing=False, encoding=’utf-8’,
errors=’replace’, max_num_fields=None, separator=’&’)

Parse a query string given as a string argument (data of type application/x-www-form-urlencoded).
Data are returned as a list of name, value pairs.

The optional argument keep_blank_values is a flag indicating whether blank values in percent-encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

The optional argument strict_parsing is a flag indicating what to do with parsing errors. If false (the default),
errors are silently ignored. If true, errors raise a ValueError exception.

The optional encoding and errors parameters specify how to decode percent-encoded sequences into Unicode
characters, as accepted by the bytes.decode() method.

The optional argument max_num_fields is the maximum number of fields to read. If set, then throws a
ValueError if there are more than max_num_fields fields read.

The optional argument separator is the symbol to use for separating the query arguments. It defaults to &.

Use the urllib.parse.urlencode() function to convert such lists of pairs into query strings.

Changed in version 3.2: Add encoding and errors parameters.

Changed in version 3.8: Added max_num_fields parameter.

Changed in version 3.10: Added separator parameter with the default value of &. Python versions earlier than
Python 3.10 allowed using both ; and & as query parameter separator. This has been changed to allow only a
single separator key, with & as the default separator.

urllib.parse.urlunparse(parts)
Construct a URL from a tuple as returned by urlparse(). The parts argument can be any six-item iter-
able. This may result in a slightly different, but equivalent URL, if the URL that was parsed originally had
unnecessary delimiters (for example, a ? with an empty query; the RFC states that these are equivalent).

urllib.parse.urlsplit(urlstring, scheme=” , allow_fragments=True)
This is similar to urlparse(), but does not split the params from the URL. This should generally be used
instead of urlparse() if the more recent URL syntax allowing parameters to be applied to each segment of
the path portion of the URL (see RFC 2396) is wanted. A separate function is needed to separate the path
segments and parameters. This function returns a 5-item named tuple:

(addressing scheme, network location, path, query, fragment identifier).

The return value is a named tuple, its items can be accessed by index or as named attributes:

22.6. urllib.parse— Parse URLs into components 1427

https://datatracker.ietf.org/doc/html/rfc2396.html

The Python Library Reference, Release 3.13.1

Attribute Index Value Value if not present

scheme 0 URL scheme specifier scheme parameter
netloc 1 Network location part empty string
path 2 Hierarchical path empty string
query 3 Query component empty string
fragment 4 Fragment identifier empty string
username User name None

password Password None

hostname Host name (lower case) None

port Port number as integer, if present None

Reading the port attribute will raise a ValueError if an invalid port is specified in the URL. See section
Structured Parse Results for more information on the result object.

Unmatched square brackets in the netloc attribute will raise a ValueError.

Characters in the netloc attribute that decompose under NFKC normalization (as used by the IDNA encod-
ing) into any of /, ?, #, @, or : will raise a ValueError. If the URL is decomposed before parsing, no error
will be raised.

Following some of the WHATWG spec that updates RFC 3986, leading C0 control and space characters are
stripped from the URL. \n, \r and tab \t characters are removed from the URL at any position.

Warning

urlsplit() does not perform validation. See URL parsing security for details.

Changed in version 3.6: Out-of-range port numbers now raise ValueError, instead of returning None.

Changed in version 3.8: Characters that affect netloc parsing under NFKC normalization will now raise
ValueError.

Changed in version 3.10: ASCII newline and tab characters are stripped from the URL.

Changed in version 3.12: Leading WHATWG C0 control and space characters are stripped from the URL.

urllib.parse.urlunsplit(parts)
Combine the elements of a tuple as returned by urlsplit() into a complete URL as a string. The parts
argument can be any five-item iterable. This may result in a slightly different, but equivalent URL, if the URL
that was parsed originally had unnecessary delimiters (for example, a ? with an empty query; the RFC states
that these are equivalent).

urllib.parse.urljoin(base, url, allow_fragments=True)

Construct a full (“absolute”) URL by combining a “base URL” (base) with another URL (url). Informally, this
uses components of the base URL, in particular the addressing scheme, the network location and (part of) the
path, to provide missing components in the relative URL. For example:

>>> from urllib.parse import urljoin

>>> urljoin('http://www.cwi.nl/%7Eguido/Python.html', 'FAQ.html')

'http://www.cwi.nl/%7Eguido/FAQ.html'

The allow_fragments argument has the same meaning and default as for urlparse().

Note

If url is an absolute URL (that is, it starts with // or scheme://), the url’s hostname and/or scheme will
be present in the result. For example:

1428 Chapter 22. Internet Protocols and Support

https://url.spec.whatwg.org/#concept-basic-url-parser

The Python Library Reference, Release 3.13.1

>>> urljoin('http://www.cwi.nl/%7Eguido/Python.html',

... '//www.python.org/%7Eguido')

'http://www.python.org/%7Eguido'

If you do not want that behavior, preprocess the url with urlsplit() and urlunsplit(), removing
possible scheme and netloc parts.

Warning

Because an absolute URL may be passed as the url parameter, it is generally not secure to use urljoin
with an attacker-controlled url. For example in, urljoin("https://website.com/users/",
username), if username can contain an absolute URL, the result of urljoin will be the absolute URL.

Changed in version 3.5: Behavior updated to match the semantics defined in RFC 3986.

urllib.parse.urldefrag(url)

If url contains a fragment identifier, return a modified version of url with no fragment identifier, and the
fragment identifier as a separate string. If there is no fragment identifier in url, return url unmodified and an
empty string.

The return value is a named tuple, its items can be accessed by index or as named attributes:

Attribute Index Value Value if not present

url 0 URL with no fragment empty string
fragment 1 Fragment identifier empty string

See section Structured Parse Results for more information on the result object.

Changed in version 3.2: Result is a structured object rather than a simple 2-tuple.

urllib.parse.unwrap(url)
Extract the url from a wrapped URL (that is, a string formatted as <URL:scheme://host/path>,
<scheme://host/path>, URL:scheme://host/path or scheme://host/path). If url is not a
wrapped URL, it is returned without changes.

22.6.2 URL parsing security

The urlsplit() and urlparse() APIs do not perform validation of inputs. They may not raise errors on inputs
that other applications consider invalid. They may also succeed on some inputs that might not be considered URLs
elsewhere. Their purpose is for practical functionality rather than purity.

Instead of raising an exception on unusual input, they may instead return some component parts as empty strings. Or
components may contain more than perhaps they should.

We recommend that users of these APIs where the values may be used anywhere with security implications code
defensively. Do some verification within your code before trusting a returned component part. Does that scheme
make sense? Is that a sensible path? Is there anything strange about that hostname? etc.

What constitutes a URL is not universally well defined. Different applications have different needs and desired
constraints. For instance the living WHATWG spec describes what user facing web clients such as a web browser
require. While RFC 3986 is more general. These functions incorporate some aspects of both, but cannot be claimed
compliant with either. The APIs and existing user code with expectations on specific behaviors predate both standards
leading us to be very cautious about making API behavior changes.

22.6. urllib.parse— Parse URLs into components 1429

https://datatracker.ietf.org/doc/html/rfc3986.html
https://url.spec.whatwg.org/#concept-basic-url-parser
https://datatracker.ietf.org/doc/html/rfc3986.html

The Python Library Reference, Release 3.13.1

22.6.3 Parsing ASCII Encoded Bytes

The URL parsing functions were originally designed to operate on character strings only. In practice, it is useful to be
able to manipulate properly quoted and encoded URLs as sequences of ASCII bytes. Accordingly, the URL parsing
functions in this module all operate on bytes and bytearray objects in addition to str objects.

If str data is passed in, the result will also contain only str data. If bytes or bytearray data is passed in, the
result will contain only bytes data.

Attempting to mix str data with bytes or bytearray in a single function call will result in a TypeError being
raised, while attempting to pass in non-ASCII byte values will trigger UnicodeDecodeError.

To support easier conversion of result objects between str and bytes, all return values from URL parsing functions
provide either an encode() method (when the result contains str data) or a decode() method (when the result
contains bytes data). The signatures of these methods match those of the corresponding str and bytes methods
(except that the default encoding is 'ascii' rather than 'utf-8'). Each produces a value of a corresponding type
that contains either bytes data (for encode() methods) or str data (for decode() methods).

Applications that need to operate on potentially improperly quoted URLs that may contain non-ASCII data will need
to do their own decoding from bytes to characters before invoking the URL parsing methods.

The behaviour described in this section applies only to the URL parsing functions. The URL quoting functions use
their own rules when producing or consuming byte sequences as detailed in the documentation of the individual URL
quoting functions.

Changed in version 3.2: URL parsing functions now accept ASCII encoded byte sequences

22.6.4 Structured Parse Results

The result objects from the urlparse(), urlsplit() and urldefrag() functions are subclasses of the tuple
type. These subclasses add the attributes listed in the documentation for those functions, the encoding and decoding
support described in the previous section, as well as an additional method:

urllib.parse.SplitResult.geturl()

Return the re-combined version of the original URL as a string. This may differ from the original URL in
that the scheme may be normalized to lower case and empty components may be dropped. Specifically, empty
parameters, queries, and fragment identifiers will be removed.

For urldefrag() results, only empty fragment identifiers will be removed. For urlsplit() and
urlparse() results, all noted changes will be made to the URL returned by this method.

The result of this method remains unchanged if passed back through the original parsing function:

>>> from urllib.parse import urlsplit

>>> url = 'HTTP://www.Python.org/doc/#'

>>> r1 = urlsplit(url)

>>> r1.geturl()

'http://www.Python.org/doc/'

>>> r2 = urlsplit(r1.geturl())

>>> r2.geturl()

'http://www.Python.org/doc/'

The following classes provide the implementations of the structured parse results when operating on str objects:

class urllib.parse.DefragResult(url, fragment)
Concrete class for urldefrag() results containing str data. The encode() method returns a
DefragResultBytes instance.

Added in version 3.2.

class urllib.parse.ParseResult(scheme, netloc, path, params, query, fragment)

Concrete class for urlparse() results containing str data. The encode() method returns a
ParseResultBytes instance.

1430 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

class urllib.parse.SplitResult(scheme, netloc, path, query, fragment)
Concrete class for urlsplit() results containing str data. The encode() method returns a
SplitResultBytes instance.

The following classes provide the implementations of the parse results when operating on bytes or bytearray
objects:

class urllib.parse.DefragResultBytes(url, fragment)
Concrete class for urldefrag() results containing bytes data. The decode() method returns a
DefragResult instance.

Added in version 3.2.

class urllib.parse.ParseResultBytes(scheme, netloc, path, params, query, fragment)
Concrete class for urlparse() results containing bytes data. The decode() method returns a
ParseResult instance.

Added in version 3.2.

class urllib.parse.SplitResultBytes(scheme, netloc, path, query, fragment)
Concrete class for urlsplit() results containing bytes data. The decode() method returns a
SplitResult instance.

Added in version 3.2.

22.6.5 URL Quoting

The URL quoting functions focus on taking program data and making it safe for use as URL components by quoting
special characters and appropriately encoding non-ASCII text. They also support reversing these operations to recre-
ate the original data from the contents of a URL component if that task isn’t already covered by the URL parsing
functions above.

urllib.parse.quote(string, safe=’/’, encoding=None, errors=None)
Replace special characters in string using the %xx escape. Letters, digits, and the characters '_.-~' are never
quoted. By default, this function is intended for quoting the path section of a URL. The optional safe parameter
specifies additional ASCII characters that should not be quoted — its default value is '/'.

string may be either a str or a bytes object.

Changed in version 3.7: Moved from RFC 2396 to RFC 3986 for quoting URL strings. “~” is now included
in the set of unreserved characters.

The optional encoding and errors parameters specify how to deal with non-ASCII characters, as accepted by the
str.encode() method. encoding defaults to 'utf-8'. errors defaults to 'strict', meaning unsupported
characters raise a UnicodeEncodeError. encoding and errors must not be supplied if string is a bytes, or
a TypeError is raised.

Note that quote(string, safe, encoding, errors) is equivalent to quote_from_bytes(string.
encode(encoding, errors), safe).

Example: quote('/El Niño/') yields '/El%20Ni%C3%B1o/'.

urllib.parse.quote_plus(string, safe=” , encoding=None, errors=None)
Like quote(), but also replace spaces with plus signs, as required for quoting HTML form values when
building up a query string to go into a URL. Plus signs in the original string are escaped unless they are
included in safe. It also does not have safe default to '/'.

Example: quote_plus('/El Niño/') yields '%2FEl+Ni%C3%B1o%2F'.

urllib.parse.quote_from_bytes(bytes, safe=’/’)
Like quote(), but accepts a bytes object rather than a str, and does not perform string-to-bytes encoding.

Example: quote_from_bytes(b'a&\xef') yields 'a%26%EF'.

22.6. urllib.parse— Parse URLs into components 1431

https://datatracker.ietf.org/doc/html/rfc2396.html
https://datatracker.ietf.org/doc/html/rfc3986.html

The Python Library Reference, Release 3.13.1

urllib.parse.unquote(string, encoding=’utf-8’, errors=’replace’)
Replace %xx escapes with their single-character equivalent. The optional encoding and errors parameters spec-
ify how to decode percent-encoded sequences into Unicode characters, as accepted by the bytes.decode()
method.

string may be either a str or a bytes object.

encoding defaults to 'utf-8'. errors defaults to 'replace', meaning invalid sequences are replaced by a
placeholder character.

Example: unquote('/El%20Ni%C3%B1o/') yields '/El Niño/'.

Changed in version 3.9: string parameter supports bytes and str objects (previously only str).

urllib.parse.unquote_plus(string, encoding=’utf-8’, errors=’replace’)
Like unquote(), but also replace plus signs with spaces, as required for unquoting HTML form values.

string must be a str.

Example: unquote_plus('/El+Ni%C3%B1o/') yields '/El Niño/'.

urllib.parse.unquote_to_bytes(string)
Replace %xx escapes with their single-octet equivalent, and return a bytes object.

string may be either a str or a bytes object.

If it is a str, unescaped non-ASCII characters in string are encoded into UTF-8 bytes.

Example: unquote_to_bytes('a%26%EF') yields b'a&\xef'.

urllib.parse.urlencode(query, doseq=False, safe=” , encoding=None, errors=None, quote_via=quote_plus)
Convert a mapping object or a sequence of two-element tuples, which may contain str or bytes objects, to a
percent-encoded ASCII text string. If the resultant string is to be used as a data for POST operation with the
urlopen() function, then it should be encoded to bytes, otherwise it would result in a TypeError.

The resulting string is a series of key=value pairs separated by '&' characters, where both key and value
are quoted using the quote_via function. By default, quote_plus() is used to quote the values, which means
spaces are quoted as a '+' character and ‘/’ characters are encoded as %2F, which follows the standard for GET
requests (application/x-www-form-urlencoded). An alternate function that can be passed as quote_via
is quote(), which will encode spaces as %20 and not encode ‘/’ characters. For maximum control of what is
quoted, use quote and specify a value for safe.

When a sequence of two-element tuples is used as the query argument, the first element of each tuple is a
key and the second is a value. The value element in itself can be a sequence and in that case, if the optional
parameter doseq evaluates to True, individual key=value pairs separated by '&' are generated for each
element of the value sequence for the key. The order of parameters in the encoded string will match the order
of parameter tuples in the sequence.

The safe, encoding, and errors parameters are passed down to quote_via (the encoding and errors parameters
are only passed when a query element is a str).

To reverse this encoding process, parse_qs() and parse_qsl() are provided in this module to parse query
strings into Python data structures.

Refer to urllib examples to find out how the urllib.parse.urlencode()method can be used for generating
the query string of a URL or data for a POST request.

Changed in version 3.2: query supports bytes and string objects.

Changed in version 3.5: Added the quote_via parameter.

See also

WHATWG - URL Living standard
Working Group for the URL Standard that defines URLs, domains, IP addresses, the application/x-www-
form-urlencoded format, and their API.

1432 Chapter 22. Internet Protocols and Support

https://url.spec.whatwg.org/

The Python Library Reference, Release 3.13.1

RFC 3986 - Uniform Resource Identifiers
This is the current standard (STD66). Any changes to urllib.parse module should conform to this. Certain
deviations could be observed, which are mostly for backward compatibility purposes and for certain de-
facto parsing requirements as commonly observed in major browsers.

RFC 2732 - Format for Literal IPv6 Addresses in URL’s.
This specifies the parsing requirements of IPv6 URLs.

RFC 2396 - Uniform Resource Identifiers (URI): Generic Syntax
Document describing the generic syntactic requirements for both Uniform Resource Names (URNs) and
Uniform Resource Locators (URLs).

RFC 2368 - The mailto URL scheme.
Parsing requirements for mailto URL schemes.

RFC 1808 - Relative Uniform Resource Locators
This Request For Comments includes the rules for joining an absolute and a relative URL, including a fair
number of “Abnormal Examples” which govern the treatment of border cases.

RFC 1738 - Uniform Resource Locators (URL)
This specifies the formal syntax and semantics of absolute URLs.

22.7 urllib.error— Exception classes raised by urllib.request

Source code: Lib/urllib/error.py

The urllib.error module defines the exception classes for exceptions raised by urllib.request. The base
exception class is URLError.

The following exceptions are raised by urllib.error as appropriate:

exception urllib.error.URLError

The handlers raise this exception (or derived exceptions) when they run into a problem. It is a subclass of
OSError.

reason

The reason for this error. It can be a message string or another exception instance.

Changed in version 3.3: URLError used to be a subtype of IOError, which is now an alias of OSError.

exception urllib.error.HTTPError(url, code, msg, hdrs, fp)
Though being an exception (a subclass of URLError), an HTTPError can also function as a non-exceptional
file-like return value (the same thing that urlopen() returns). This is useful when handling exotic HTTP
errors, such as requests for authentication.

url

Contains the request URL. An alias for filename attribute.

code

An HTTP status code as defined in RFC 2616. This numeric value corresponds to a value found in the
dictionary of codes as found in http.server.BaseHTTPRequestHandler.responses.

reason

This is usually a string explaining the reason for this error. An alias for msg attribute.

headers

The HTTP response headers for the HTTP request that caused the HTTPError. An alias for hdrs at-
tribute.

Added in version 3.4.

22.7. urllib.error— Exception classes raised by urllib.request 1433

https://datatracker.ietf.org/doc/html/rfc3986.html
https://datatracker.ietf.org/doc/html/rfc2732.html
https://datatracker.ietf.org/doc/html/rfc2396.html
https://datatracker.ietf.org/doc/html/rfc2368.html
https://datatracker.ietf.org/doc/html/rfc1808.html
https://datatracker.ietf.org/doc/html/rfc1738.html
https://github.com/python/cpython/tree/3.13/Lib/urllib/error.py
https://datatracker.ietf.org/doc/html/rfc2616.html

The Python Library Reference, Release 3.13.1

fp

A file-like object where the HTTP error body can be read from.

exception urllib.error.ContentTooShortError(msg, content)
This exception is raised when the urlretrieve() function detects that the amount of the downloaded data
is less than the expected amount (given by the Content-Length header).

content

The downloaded (and supposedly truncated) data.

22.8 urllib.robotparser— Parser for robots.txt

Source code: Lib/urllib/robotparser.py

This module provides a single class, RobotFileParser, which answers questions about whether or not a particular
user agent can fetch a URL on the web site that published the robots.txt file. For more details on the structure of
robots.txt files, see http://www.robotstxt.org/orig.html.

class urllib.robotparser.RobotFileParser(url=”)
This class provides methods to read, parse and answer questions about the robots.txt file at url.

set_url(url)
Sets the URL referring to a robots.txt file.

read()

Reads the robots.txt URL and feeds it to the parser.

parse(lines)
Parses the lines argument.

can_fetch(useragent, url)
Returns True if the useragent is allowed to fetch the url according to the rules contained in the parsed
robots.txt file.

mtime()

Returns the time the robots.txt file was last fetched. This is useful for long-running web spiders that
need to check for new robots.txt files periodically.

modified()

Sets the time the robots.txt file was last fetched to the current time.

crawl_delay(useragent)
Returns the value of the Crawl-delay parameter from robots.txt for the useragent in question. If
there is no such parameter or it doesn’t apply to the useragent specified or the robots.txt entry for this
parameter has invalid syntax, return None.

Added in version 3.6.

request_rate(useragent)

Returns the contents of the Request-rate parameter from robots.txt as a named tuple
RequestRate(requests, seconds). If there is no such parameter or it doesn’t apply to the usera-
gent specified or the robots.txt entry for this parameter has invalid syntax, return None.

Added in version 3.6.

site_maps()

Returns the contents of the Sitemap parameter from robots.txt in the form of a list(). If there
is no such parameter or the robots.txt entry for this parameter has invalid syntax, return None.

Added in version 3.8.

1434 Chapter 22. Internet Protocols and Support

https://github.com/python/cpython/tree/3.13/Lib/urllib/robotparser.py
http://www.robotstxt.org/orig.html

The Python Library Reference, Release 3.13.1

The following example demonstrates basic use of the RobotFileParser class:

>>> import urllib.robotparser

>>> rp = urllib.robotparser.RobotFileParser()

>>> rp.set_url("http://www.musi-cal.com/robots.txt")

>>> rp.read()

>>> rrate = rp.request_rate("*")

>>> rrate.requests

3

>>> rrate.seconds

20

>>> rp.crawl_delay("*")

6

>>> rp.can_fetch("*", "http://www.musi-cal.com/cgi-bin/search?city=San+Francisco")

False

>>> rp.can_fetch("*", "http://www.musi-cal.com/")

True

22.9 http— HTTP modules

Source code: Lib/http/__init__.py

http is a package that collects several modules for working with the HyperText Transfer Protocol:

• http.client is a low-level HTTP protocol client; for high-level URL opening use urllib.request

• http.server contains basic HTTP server classes based on socketserver

• http.cookies has utilities for implementing state management with cookies

• http.cookiejar provides persistence of cookies

The http module also defines the following enums that help you work with http related code:

class http.HTTPStatus

Added in version 3.5.

A subclass of enum.IntEnum that defines a set of HTTP status codes, reason phrases and long descriptions
written in English.

Usage:

>>> from http import HTTPStatus

>>> HTTPStatus.OK

HTTPStatus.OK

>>> HTTPStatus.OK == 200

True

>>> HTTPStatus.OK.value

200

>>> HTTPStatus.OK.phrase

'OK'

>>> HTTPStatus.OK.description

'Request fulfilled, document follows'

>>> list(HTTPStatus)

[HTTPStatus.CONTINUE, HTTPStatus.SWITCHING_PROTOCOLS, ...]

22.9. http— HTTP modules 1435

https://github.com/python/cpython/tree/3.13/Lib/http/__init__.py

The Python Library Reference, Release 3.13.1

22.9.1 HTTP status codes

Supported, IANA-registered status codes available in http.HTTPStatus are:

Code Enum Name Details

100 CONTINUE HTTP Semantics RFC 9110, Section 15.2.1
101 SWITCHING_PROTOCOLS HTTP Semantics RFC 9110, Section 15.2.2
102 PROCESSING WebDAV RFC 2518, Section 10.1
103 EARLY_HINTS An HTTP Status Code for Indicating Hints RFC 8297
200 OK HTTP Semantics RFC 9110, Section 15.3.1
201 CREATED HTTP Semantics RFC 9110, Section 15.3.2
202 ACCEPTED HTTP Semantics RFC 9110, Section 15.3.3
203 NON_AUTHORITATIVE_INFORMATION HTTP Semantics RFC 9110, Section 15.3.4
204 NO_CONTENT HTTP Semantics RFC 9110, Section 15.3.5
205 RESET_CONTENT HTTP Semantics RFC 9110, Section 15.3.6
206 PARTIAL_CONTENT HTTP Semantics RFC 9110, Section 15.3.7
207 MULTI_STATUS WebDAV RFC 4918, Section 11.1
208 ALREADY_REPORTED WebDAV Binding Extensions RFC 5842, Section 7.1 (Experimental)
226 IM_USED Delta Encoding in HTTP RFC 3229, Section 10.4.1
300 MULTIPLE_CHOICES HTTP Semantics RFC 9110, Section 15.4.1
301 MOVED_PERMANENTLY HTTP Semantics RFC 9110, Section 15.4.2
302 FOUND HTTP Semantics RFC 9110, Section 15.4.3
303 SEE_OTHER HTTP Semantics RFC 9110, Section 15.4.4
304 NOT_MODIFIED HTTP Semantics RFC 9110, Section 15.4.5
305 USE_PROXY HTTP Semantics RFC 9110, Section 15.4.6
307 TEMPORARY_REDIRECT HTTP Semantics RFC 9110, Section 15.4.8
308 PERMANENT_REDIRECT HTTP Semantics RFC 9110, Section 15.4.9
400 BAD_REQUEST HTTP Semantics RFC 9110, Section 15.5.1
401 UNAUTHORIZED HTTP Semantics RFC 9110, Section 15.5.2
402 PAYMENT_REQUIRED HTTP Semantics RFC 9110, Section 15.5.3
403 FORBIDDEN HTTP Semantics RFC 9110, Section 15.5.4
404 NOT_FOUND HTTP Semantics RFC 9110, Section 15.5.5
405 METHOD_NOT_ALLOWED HTTP Semantics RFC 9110, Section 15.5.6
406 NOT_ACCEPTABLE HTTP Semantics RFC 9110, Section 15.5.7
407 PROXY_AUTHENTICATION_REQUIRED HTTP Semantics RFC 9110, Section 15.5.8
408 REQUEST_TIMEOUT HTTP Semantics RFC 9110, Section 15.5.9
409 CONFLICT HTTP Semantics RFC 9110, Section 15.5.10
410 GONE HTTP Semantics RFC 9110, Section 15.5.11
411 LENGTH_REQUIRED HTTP Semantics RFC 9110, Section 15.5.12
412 PRECONDITION_FAILED HTTP Semantics RFC 9110, Section 15.5.13
413 CONTENT_TOO_LARGE HTTP Semantics RFC 9110, Section 15.5.14
414 URI_TOO_LONG HTTP Semantics RFC 9110, Section 15.5.15
415 UNSUPPORTED_MEDIA_TYPE HTTP Semantics RFC 9110, Section 15.5.16
416 RANGE_NOT_SATISFIABLE HTTP Semantics RFC 9110, Section 15.5.17
417 EXPECTATION_FAILED HTTP Semantics RFC 9110, Section 15.5.18
418 IM_A_TEAPOT HTCPCP/1.0 RFC 2324, Section 2.3.2
421 MISDIRECTED_REQUEST HTTP Semantics RFC 9110, Section 15.5.20
422 UNPROCESSABLE_CONTENT HTTP Semantics RFC 9110, Section 15.5.21
423 LOCKED WebDAV RFC 4918, Section 11.3
424 FAILED_DEPENDENCY WebDAV RFC 4918, Section 11.4
425 TOO_EARLY Using Early Data in HTTP RFC 8470
426 UPGRADE_REQUIRED HTTP Semantics RFC 9110, Section 15.5.22
428 PRECONDITION_REQUIRED Additional HTTP Status Codes RFC 6585
429 TOO_MANY_REQUESTS Additional HTTP Status Codes RFC 6585
431 REQUEST_HEADER_FIELDS_TOO_LARGE Additional HTTP Status Codes RFC 6585
451 UNAVAILABLE_FOR_LEGAL_REASONS An HTTP Status Code to Report Legal Obstacles RFC 7725
500 INTERNAL_SERVER_ERROR HTTP Semantics RFC 9110, Section 15.6.1

continues on next page

1436 Chapter 22. Internet Protocols and Support

https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc2518.html
https://datatracker.ietf.org/doc/html/rfc8297.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc4918.html
https://datatracker.ietf.org/doc/html/rfc5842.html
https://datatracker.ietf.org/doc/html/rfc3229.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc2324.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc4918.html
https://datatracker.ietf.org/doc/html/rfc4918.html
https://datatracker.ietf.org/doc/html/rfc8470.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc6585.html
https://datatracker.ietf.org/doc/html/rfc6585.html
https://datatracker.ietf.org/doc/html/rfc6585.html
https://datatracker.ietf.org/doc/html/rfc7725.html
https://datatracker.ietf.org/doc/html/rfc9110.html

The Python Library Reference, Release 3.13.1

Table 1 – continued from previous page

Code Enum Name Details

501 NOT_IMPLEMENTED HTTP Semantics RFC 9110, Section 15.6.2
502 BAD_GATEWAY HTTP Semantics RFC 9110, Section 15.6.3
503 SERVICE_UNAVAILABLE HTTP Semantics RFC 9110, Section 15.6.4
504 GATEWAY_TIMEOUT HTTP Semantics RFC 9110, Section 15.6.5
505 HTTP_VERSION_NOT_SUPPORTED HTTP Semantics RFC 9110, Section 15.6.6
506 VARIANT_ALSO_NEGOTIATES Transparent Content Negotiation in HTTP RFC 2295, Section 8.1 (Experimental)
507 INSUFFICIENT_STORAGE WebDAV RFC 4918, Section 11.5
508 LOOP_DETECTED WebDAV Binding Extensions RFC 5842, Section 7.2 (Experimental)
510 NOT_EXTENDED An HTTP Extension Framework RFC 2774, Section 7 (Experimental)
511 NETWORK_AUTHENTICATION_REQUIRED Additional HTTP Status Codes RFC 6585, Section 6

In order to preserve backwards compatibility, enum values are also present in the http.client module in the
form of constants. The enum name is equal to the constant name (i.e. http.HTTPStatus.OK is also available as
http.client.OK).

Changed in version 3.7: Added 421 MISDIRECTED_REQUEST status code.

Added in version 3.8: Added 451 UNAVAILABLE_FOR_LEGAL_REASONS status code.

Added in version 3.9: Added 103 EARLY_HINTS, 418 IM_A_TEAPOT and 425 TOO_EARLY status codes.

Changed in version 3.13: Implemented RFC9110 naming for status constants. Old constant names are preserved for
backwards compatibility.

22.9.2 HTTP status category

Added in version 3.12.

The enum values have several properties to indicate the HTTP status category:

Property Indicates that Details

is_informational 100 <= status <= 199 HTTP Semantics RFC 9110, Section 15
is_success 200 <= status <= 299 HTTP Semantics RFC 9110, Section 15
is_redirection 300 <= status <= 399 HTTP Semantics RFC 9110, Section 15
is_client_error 400 <= status <= 499 HTTP Semantics RFC 9110, Section 15
is_server_error 500 <= status <= 599 HTTP Semantics RFC 9110, Section 15

Usage:

>>> from http import HTTPStatus

>>> HTTPStatus.OK.is_success

True

>>> HTTPStatus.OK.is_client_error

False

class http.HTTPMethod

Added in version 3.11.

A subclass of enum.StrEnum that defines a set of HTTP methods and descriptions written in English.

Usage:

>>> from http import HTTPMethod

>>>

>>> HTTPMethod.GET

<HTTPMethod.GET>

>>> HTTPMethod.GET == 'GET'

(continues on next page)

22.9. http— HTTP modules 1437

https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc2295.html
https://datatracker.ietf.org/doc/html/rfc4918.html
https://datatracker.ietf.org/doc/html/rfc5842.html
https://datatracker.ietf.org/doc/html/rfc2774.html
https://datatracker.ietf.org/doc/html/rfc6585.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html

The Python Library Reference, Release 3.13.1

(continued from previous page)

True

>>> HTTPMethod.GET.value

'GET'

>>> HTTPMethod.GET.description

'Retrieve the target.'

>>> list(HTTPMethod)

[<HTTPMethod.CONNECT>,

<HTTPMethod.DELETE>,

<HTTPMethod.GET>,

<HTTPMethod.HEAD>,

<HTTPMethod.OPTIONS>,

<HTTPMethod.PATCH>,

<HTTPMethod.POST>,

<HTTPMethod.PUT>,

<HTTPMethod.TRACE>]

22.9.3 HTTP methods

Supported, IANA-registered methods available in http.HTTPMethod are:

Method Enum Name Details

GET GET HTTP Semantics RFC 9110, Section 9.3.1
HEAD HEAD HTTP Semantics RFC 9110, Section 9.3.2
POST POST HTTP Semantics RFC 9110, Section 9.3.3
PUT PUT HTTP Semantics RFC 9110, Section 9.3.4
DELETE DELETE HTTP Semantics RFC 9110, Section 9.3.5
CONNECT CONNECT HTTP Semantics RFC 9110, Section 9.3.6
OPTIONS OPTIONS HTTP Semantics RFC 9110, Section 9.3.7
TRACE TRACE HTTP Semantics RFC 9110, Section 9.3.8
PATCH PATCH HTTP/1.1 RFC 5789

22.10 http.client— HTTP protocol client

Source code: Lib/http/client.py

This module defines classes that implement the client side of the HTTP and HTTPS protocols. It is normally not
used directly — the module urllib.request uses it to handle URLs that use HTTP and HTTPS.

See also

The Requests package is recommended for a higher-level HTTP client interface.

Note

HTTPS support is only available if Python was compiled with SSL support (through the ssl module).

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

The module provides the following classes:

1438 Chapter 22. Internet Protocols and Support

https://www.iana.org/assignments/http-methods/http-methods.xhtml
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc9110.html
https://datatracker.ietf.org/doc/html/rfc5789.html
https://github.com/python/cpython/tree/3.13/Lib/http/client.py
https://requests.readthedocs.io/en/latest/

The Python Library Reference, Release 3.13.1

class http.client.HTTPConnection(host, port=None, [timeout,]source_address=None, blocksize=8192)
An HTTPConnection instance represents one transaction with an HTTP server. It should be instantiated by
passing it a host and optional port number. If no port number is passed, the port is extracted from the host
string if it has the form host:port, else the default HTTP port (80) is used. If the optional timeout parameter
is given, blocking operations (like connection attempts) will timeout after that many seconds (if it is not given,
the global default timeout setting is used). The optional source_address parameter may be a tuple of a (host,
port) to use as the source address the HTTP connection is made from. The optional blocksize parameter sets
the buffer size in bytes for sending a file-like message body.

For example, the following calls all create instances that connect to the server at the same host and port:

>>> h1 = http.client.HTTPConnection('www.python.org')

>>> h2 = http.client.HTTPConnection('www.python.org:80')

>>> h3 = http.client.HTTPConnection('www.python.org', 80)

>>> h4 = http.client.HTTPConnection('www.python.org', 80, timeout=10)

Changed in version 3.2: source_address was added.

Changed in version 3.4: The strict parameter was removed. HTTP 0.9-style “Simple Responses” are no longer
supported.

Changed in version 3.7: blocksize parameter was added.

class http.client.HTTPSConnection(host, port=None, *, [timeout,]source_address=None, context=None,
blocksize=8192)

A subclass of HTTPConnection that uses SSL for communication with secure servers. Default port is 443.
If context is specified, it must be a ssl.SSLContext instance describing the various SSL options.

Please read Security considerations for more information on best practices.

Changed in version 3.2: source_address, context and check_hostname were added.

Changed in version 3.2: This class now supports HTTPS virtual hosts if possible (that is, if ssl.HAS_SNI is
true).

Changed in version 3.4: The strict parameter was removed. HTTP 0.9-style “Simple Responses” are no longer
supported.

Changed in version 3.4.3: This class now performs all the necessary certificate and hostname checks by default.
To revert to the previous, unverified, behavior ssl._create_unverified_context() can be passed to
the context parameter.

Changed in version 3.8: This class now enables TLS 1.3 ssl.SSLContext.post_handshake_auth for
the default context or when cert_file is passed with a custom context.

Changed in version 3.10: This class now sends an ALPN extension with protocol indicator http/1.1 when
no context is given. Custom context should set ALPN protocols with set_alpn_protocols().

Changed in version 3.12: The deprecated key_file, cert_file and check_hostname parameters have been re-
moved.

class http.client.HTTPResponse(sock, debuglevel=0, method=None, url=None)
Class whose instances are returned upon successful connection. Not instantiated directly by user.

Changed in version 3.4: The strict parameter was removed. HTTP 0.9 style “Simple Responses” are no longer
supported.

This module provides the following function:

http.client.parse_headers(fp)
Parse the headers from a file pointer fp representing a HTTP request/response. The file has to be a
BufferedIOBase reader (i.e. not text) and must provide a valid RFC 2822 style header.

This function returns an instance of http.client.HTTPMessage that holds the header fields, but no payload
(the same as HTTPResponse.msg and http.server.BaseHTTPRequestHandler.headers). After re-
turning, the file pointer fp is ready to read the HTTP body.

22.10. http.client— HTTP protocol client 1439

https://datatracker.ietf.org/doc/html/rfc2822.html

The Python Library Reference, Release 3.13.1

Note

parse_headers() does not parse the start-line of a HTTP message; it only parses the Name: value

lines. The file has to be ready to read these field lines, so the first line should already be consumed before
calling the function.

The following exceptions are raised as appropriate:

exception http.client.HTTPException

The base class of the other exceptions in this module. It is a subclass of Exception.

exception http.client.NotConnected

A subclass of HTTPException.

exception http.client.InvalidURL

A subclass of HTTPException, raised if a port is given and is either non-numeric or empty.

exception http.client.UnknownProtocol

A subclass of HTTPException.

exception http.client.UnknownTransferEncoding

A subclass of HTTPException.

exception http.client.UnimplementedFileMode

A subclass of HTTPException.

exception http.client.IncompleteRead

A subclass of HTTPException.

exception http.client.ImproperConnectionState

A subclass of HTTPException.

exception http.client.CannotSendRequest

A subclass of ImproperConnectionState.

exception http.client.CannotSendHeader

A subclass of ImproperConnectionState.

exception http.client.ResponseNotReady

A subclass of ImproperConnectionState.

exception http.client.BadStatusLine

A subclass of HTTPException. Raised if a server responds with a HTTP status code that we don’t understand.

exception http.client.LineTooLong

A subclass of HTTPException. Raised if an excessively long line is received in the HTTP protocol from the
server.

exception http.client.RemoteDisconnected

A subclass of ConnectionResetError and BadStatusLine. Raised by HTTPConnection.

getresponse()when the attempt to read the response results in no data read from the connection, indicating
that the remote end has closed the connection.

Added in version 3.5: Previously, BadStatusLine('') was raised.

The constants defined in this module are:

http.client.HTTP_PORT

The default port for the HTTP protocol (always 80).

http.client.HTTPS_PORT

The default port for the HTTPS protocol (always 443).

1440 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

http.client.responses

This dictionary maps the HTTP 1.1 status codes to the W3C names.

Example: http.client.responses[http.client.NOT_FOUND] is 'Not Found'.

See HTTP status codes for a list of HTTP status codes that are available in this module as constants.

22.10.1 HTTPConnection Objects

HTTPConnection instances have the following methods:

HTTPConnection.request(method, url, body=None, headers={}, *, encode_chunked=False)
This will send a request to the server using the HTTP request method method and the request URI url. The
provided urlmust be an absolute path to conform withRFC 2616 §5.1.2 (unless connecting to an HTTP proxy
server or using the OPTIONS or CONNECT methods).

If body is specified, the specified data is sent after the headers are finished. It may be a str, a bytes-like object,
an open file object, or an iterable of bytes. If body is a string, it is encoded as ISO-8859-1, the default for
HTTP. If it is a bytes-like object, the bytes are sent as is. If it is a file object, the contents of the file is sent; this
file object should support at least the read()method. If the file object is an instance of io.TextIOBase, the
data returned by the read() method will be encoded as ISO-8859-1, otherwise the data returned by read()
is sent as is. If body is an iterable, the elements of the iterable are sent as is until the iterable is exhausted.

The headers argument should be a mapping of extra HTTP headers to send with the request. A Host header
must be provided to conform with RFC 2616 §5.1.2 (unless connecting to an HTTP proxy server or using the
OPTIONS or CONNECT methods).

If headers contains neither Content-Length nor Transfer-Encoding, but there is a request body, one of those
header fields will be added automatically. If body is None, the Content-Length header is set to 0 for methods
that expect a body (PUT, POST, and PATCH). If body is a string or a bytes-like object that is not also a file,
the Content-Length header is set to its length. Any other type of body (files and iterables in general) will be
chunk-encoded, and the Transfer-Encoding header will automatically be set instead of Content-Length.

The encode_chunked argument is only relevant if Transfer-Encoding is specified in headers. If encode_chunked
is False, the HTTPConnection object assumes that all encoding is handled by the calling code. If it is True,
the body will be chunk-encoded.

For example, to perform a GET request to https://docs.python.org/3/:

>>> import http.client

>>> host = "docs.python.org"

>>> conn = http.client.HTTPSConnection(host)

>>> conn.request("GET", "/3/", headers={"Host": host})

>>> response = conn.getresponse()

>>> print(response.status, response.reason)

200 OK

Note

Chunked transfer encoding has been added to the HTTP protocol version 1.1. Unless the HTTP server
is known to handle HTTP 1.1, the caller must either specify the Content-Length, or must pass a str or
bytes-like object that is not also a file as the body representation.

Changed in version 3.2: body can now be an iterable.

Changed in version 3.6: If neither Content-Length nor Transfer-Encoding are set in headers, file and iterable
body objects are now chunk-encoded. The encode_chunked argument was added. No attempt is made to
determine the Content-Length for file objects.

22.10. http.client— HTTP protocol client 1441

https://datatracker.ietf.org/doc/html/rfc2616.html#section-5.1.2
https://datatracker.ietf.org/doc/html/rfc2616.html#section-14.23
https://datatracker.ietf.org/doc/html/rfc2616.html#section-5.1.2

The Python Library Reference, Release 3.13.1

HTTPConnection.getresponse()

Should be called after a request is sent to get the response from the server. Returns an HTTPResponse instance.

Note

Note that you must have read the whole response before you can send a new request to the server.

Changed in version 3.5: If a ConnectionError or subclass is raised, the HTTPConnection object will be
ready to reconnect when a new request is sent.

HTTPConnection.set_debuglevel(level)
Set the debugging level. The default debug level is 0, meaning no debugging output is printed. Any value
greater than 0 will cause all currently defined debug output to be printed to stdout. The debuglevel is passed
to any new HTTPResponse objects that are created.

Added in version 3.1.

HTTPConnection.set_tunnel(host, port=None, headers=None)
Set the host and the port for HTTP Connect Tunnelling. This allows running the connection through a proxy
server.

The host and port arguments specify the endpoint of the tunneled connection (i.e. the address included in the
CONNECT request, not the address of the proxy server).

The headers argument should be a mapping of extra HTTP headers to send with the CONNECT request.

As HTTP/1.1 is used for HTTP CONNECT tunnelling request, as per the RFC, a HTTP Host: header must
be provided, matching the authority-form of the request target provided as the destination for the CONNECT
request. If a HTTP Host: header is not provided via the headers argument, one is generated and transmitted
automatically.

For example, to tunnel through a HTTPS proxy server running locally on port 8080, we would pass the address
of the proxy to the HTTPSConnection constructor, and the address of the host that we eventually want to
reach to the set_tunnel() method:

>>> import http.client

>>> conn = http.client.HTTPSConnection("localhost", 8080)

>>> conn.set_tunnel("www.python.org")

>>> conn.request("HEAD","/index.html")

Added in version 3.2.

Changed in version 3.12: HTTP CONNECT tunnelling requests use protocol HTTP/1.1, upgraded from pro-
tocol HTTP/1.0. Host: HTTP headers are mandatory for HTTP/1.1, so one will be automatically generated
and transmitted if not provided in the headers argument.

HTTPConnection.get_proxy_response_headers()

Returns a dictionary with the headers of the response received from the proxy server to the CONNECT request.

If the CONNECT request was not sent, the method returns None.

Added in version 3.12.

HTTPConnection.connect()

Connect to the server specified when the object was created. By default, this is called automatically when
making a request if the client does not already have a connection.

Raises an auditing event http.client.connect with arguments self, host, port.

HTTPConnection.close()

Close the connection to the server.

1442 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.6

The Python Library Reference, Release 3.13.1

HTTPConnection.blocksize

Buffer size in bytes for sending a file-like message body.

Added in version 3.7.

As an alternative to using the request() method described above, you can also send your request step by step, by
using the four functions below.

HTTPConnection.putrequest(method, url, skip_host=False, skip_accept_encoding=False)
This should be the first call after the connection to the server has been made. It sends a line to the server
consisting of the method string, the url string, and the HTTP version (HTTP/1.1). To disable automatic
sending of Host: or Accept-Encoding: headers (for example to accept additional content encodings),
specify skip_host or skip_accept_encoding with non-False values.

HTTPConnection.putheader(header, argument[, ...])
Send an RFC 822-style header to the server. It sends a line to the server consisting of the header, a colon and
a space, and the first argument. If more arguments are given, continuation lines are sent, each consisting of a
tab and an argument.

HTTPConnection.endheaders(message_body=None, *, encode_chunked=False)
Send a blank line to the server, signalling the end of the headers. The optional message_body argument can be
used to pass a message body associated with the request.

If encode_chunked is True, the result of each iteration of message_body will be chunk-encoded as specified in
RFC7230, Section 3.3.1. How the data is encoded is dependent on the type ofmessage_body. Ifmessage_body
implements the buffer interface the encoding will result in a single chunk. Ifmessage_body is a collections.
abc.Iterable, each iteration of message_body will result in a chunk. If message_body is a file object, each
call to .read() will result in a chunk. The method automatically signals the end of the chunk-encoded data
immediately after message_body.

Note

Due to the chunked encoding specification, empty chunks yielded by an iterator body will be ignored by
the chunk-encoder. This is to avoid premature termination of the read of the request by the target server
due to malformed encoding.

Changed in version 3.6: Added chunked encoding support and the encode_chunked parameter.

HTTPConnection.send(data)

Send data to the server. This should be used directly only after the endheaders() method has been called
and before getresponse() is called.

Raises an auditing event http.client.send with arguments self, data.

22.10.2 HTTPResponse Objects

An HTTPResponse instance wraps the HTTP response from the server. It provides access to the request headers
and the entity body. The response is an iterable object and can be used in a with statement.

Changed in version 3.5: The io.BufferedIOBase interface is now implemented and all of its reader operations
are supported.

HTTPResponse.read([amt])
Reads and returns the response body, or up to the next amt bytes.

HTTPResponse.readinto(b)

Reads up to the next len(b) bytes of the response body into the buffer b. Returns the number of bytes read.

Added in version 3.3.

22.10. http.client— HTTP protocol client 1443

https://datatracker.ietf.org/doc/html/rfc822.html
https://datatracker.ietf.org/doc/html/rfc7230.html

The Python Library Reference, Release 3.13.1

HTTPResponse.getheader(name, default=None)
Return the value of the header name, or default if there is no header matching name. If there is more than one
header with the name name, return all of the values joined by ‘, ‘. If default is any iterable other than a single
string, its elements are similarly returned joined by commas.

HTTPResponse.getheaders()

Return a list of (header, value) tuples.

HTTPResponse.fileno()

Return the fileno of the underlying socket.

HTTPResponse.msg

A http.client.HTTPMessage instance containing the response headers. http.client.HTTPMessage
is a subclass of email.message.Message.

HTTPResponse.version

HTTP protocol version used by server. 10 for HTTP/1.0, 11 for HTTP/1.1.

HTTPResponse.url

URL of the resource retrieved, commonly used to determine if a redirect was followed.

HTTPResponse.headers

Headers of the response in the form of an email.message.EmailMessage instance.

HTTPResponse.status

Status code returned by server.

HTTPResponse.reason

Reason phrase returned by server.

HTTPResponse.debuglevel

A debugging hook. If debuglevel is greater than zero, messages will be printed to stdout as the response is
read and parsed.

HTTPResponse.closed

Is True if the stream is closed.

HTTPResponse.geturl()

Deprecated since version 3.9: Deprecated in favor of url.

HTTPResponse.info()

Deprecated since version 3.9: Deprecated in favor of headers.

HTTPResponse.getcode()

Deprecated since version 3.9: Deprecated in favor of status.

22.10.3 Examples

Here is an example session that uses the GET method:

>>> import http.client

>>> conn = http.client.HTTPSConnection("www.python.org")

>>> conn.request("GET", "/")

>>> r1 = conn.getresponse()

>>> print(r1.status, r1.reason)

200 OK

>>> data1 = r1.read() # This will return entire content.

>>> # The following example demonstrates reading data in chunks.

>>> conn.request("GET", "/")

>>> r1 = conn.getresponse()

>>> while chunk := r1.read(200):

(continues on next page)

1444 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

(continued from previous page)

... print(repr(chunk))

b'<!doctype html>\n<!--[if"...

...

>>> # Example of an invalid request

>>> conn = http.client.HTTPSConnection("docs.python.org")

>>> conn.request("GET", "/parrot.spam")

>>> r2 = conn.getresponse()

>>> print(r2.status, r2.reason)

404 Not Found

>>> data2 = r2.read()

>>> conn.close()

Here is an example session that uses the HEAD method. Note that the HEAD method never returns any data.

>>> import http.client

>>> conn = http.client.HTTPSConnection("www.python.org")

>>> conn.request("HEAD", "/")

>>> res = conn.getresponse()

>>> print(res.status, res.reason)

200 OK

>>> data = res.read()

>>> print(len(data))

0

>>> data == b''

True

Here is an example session that uses the POST method:

>>> import http.client, urllib.parse

>>> params = urllib.parse.urlencode({'@number': 12524, '@type': 'issue', '@action

↪→': 'show'})

>>> headers = {"Content-type": "application/x-www-form-urlencoded",

... "Accept": "text/plain"}

>>> conn = http.client.HTTPConnection("bugs.python.org")

>>> conn.request("POST", "", params, headers)

>>> response = conn.getresponse()

>>> print(response.status, response.reason)

302 Found

>>> data = response.read()

>>> data

b'Redirecting to https://bugs.python.

↪→org/issue12524'

>>> conn.close()

Client side HTTP PUT requests are very similar to POST requests. The difference lies only on the server side where
HTTP servers will allow resources to be created via PUT requests. It should be noted that custom HTTP methods
are also handled in urllib.request.Request by setting the appropriate method attribute. Here is an example
session that uses the PUT method:

>>> # This creates an HTTP request

>>> # with the content of BODY as the enclosed representation

>>> # for the resource http://localhost:8080/file

...

>>> import http.client

>>> BODY = "***filecontents***"

>>> conn = http.client.HTTPConnection("localhost", 8080)

>>> conn.request("PUT", "/file", BODY)

(continues on next page)

22.10. http.client— HTTP protocol client 1445

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> response = conn.getresponse()

>>> print(response.status, response.reason)

200, OK

22.10.4 HTTPMessage Objects

class http.client.HTTPMessage(email.message.Message)

An http.client.HTTPMessage instance holds the headers from an HTTP response. It is implemented using the
email.message.Message class.

22.11 ftplib— FTP protocol client

Source code: Lib/ftplib.py

This module defines the class FTP and a few related items. The FTP class implements the client side of the FTP
protocol. You can use this to write Python programs that perform a variety of automated FTP jobs, such as mir-
roring other FTP servers. It is also used by the module urllib.request to handle URLs that use FTP. For more
information on FTP (File Transfer Protocol), see internet RFC 959.

The default encoding is UTF-8, following RFC 2640.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

Here’s a sample session using the ftplib module:

>>> from ftplib import FTP

>>> ftp = FTP('ftp.us.debian.org') # connect to host, default port

>>> ftp.login() # user anonymous, passwd anonymous@

'230 Login successful.'

>>> ftp.cwd('debian') # change into "debian" directory

'250 Directory successfully changed.'

>>> ftp.retrlines('LIST') # list directory contents

-rw-rw-r-- 1 1176 1176 1063 Jun 15 10:18 README

...

drwxr-sr-x 5 1176 1176 4096 Dec 19 2000 pool

drwxr-sr-x 4 1176 1176 4096 Nov 17 2008 project

drwxr-xr-x 3 1176 1176 4096 Oct 10 2012 tools

'226 Directory send OK.'

>>> with open('README', 'wb') as fp:

>>> ftp.retrbinary('RETR README', fp.write)

'226 Transfer complete.'

>>> ftp.quit()

'221 Goodbye.'

22.11.1 Reference

FTP objects

class ftplib.FTP(host=” , user=” , passwd=” , acct=” , timeout=None, source_address=None, *, encoding=’utf-8’)
Return a new instance of the FTP class.

Parameters

• host (str) – The hostname to connect to. If given, connect(host) is implicitly called
by the constructor.

1446 Chapter 22. Internet Protocols and Support

https://github.com/python/cpython/tree/3.13/Lib/ftplib.py
https://datatracker.ietf.org/doc/html/rfc959.html
https://datatracker.ietf.org/doc/html/rfc2640.html

The Python Library Reference, Release 3.13.1

• user (str) – The username to log in with (default: 'anonymous'). If given,
login(host, passwd, acct) is implicitly called by the constructor.

• passwd (str) – The password to use when logging in. If not given, and if passwd is the
empty string or "-", a password will be automatically generated.

• acct (str) – Account information to be used for the ACCT FTP command. Few systems
implement this. See RFC-959 for more details.

• timeout (float | None) – A timeout in seconds for blocking operations like
connect() (default: the global default timeout setting).

• source_address (tuple | None) – A 2-tuple (host, port) for the socket to bind
to as its source address before connecting.

• encoding (str) – The encoding for directories and filenames (default: 'utf-8').

The FTP class supports the with statement, e.g.:

>>> from ftplib import FTP

>>> with FTP("ftp1.at.proftpd.org") as ftp:

... ftp.login()

... ftp.dir()

...

'230 Anonymous login ok, restrictions apply.'

dr-xr-xr-x 9 ftp ftp 154 May 6 10:43 .

dr-xr-xr-x 9 ftp ftp 154 May 6 10:43 ..

dr-xr-xr-x 5 ftp ftp 4096 May 6 10:43 CentOS

dr-xr-xr-x 3 ftp ftp 18 Jul 10 2008 Fedora

>>>

Changed in version 3.2: Support for the with statement was added.

Changed in version 3.3: source_address parameter was added.

Changed in version 3.9: If the timeout parameter is set to be zero, it will raise a ValueError to prevent
the creation of a non-blocking socket. The encoding parameter was added, and the default was changed from
Latin-1 to UTF-8 to follow RFC 2640.

Several FTP methods are available in two flavors: one for handling text files and another for binary files. The
methods are named for the command which is used followed by lines for the text version or binary for the
binary version.

FTP instances have the following methods:

set_debuglevel(level)
Set the instance’s debugging level as an int. This controls the amount of debugging output printed. The
debug levels are:

• 0 (default): No debug output.

• 1: Produce a moderate amount of debug output, generally a single line per request.

• 2 or higher: Produce the maximum amount of debugging output, logging each line sent and received
on the control connection.

connect(host=” , port=0, timeout=None, source_address=None)
Connect to the given host and port. This function should be called only once for each instance; it should
not be called if a host argument was given when the FTP instance was created. All other FTP methods
can only be called after a connection has successfully been made.

Parameters

• host (str) – The host to connect to.

• port (int) – The TCP port to connect to (default: 21, as specified by the FTP protocol
specification). It is rarely needed to specify a different port number.

22.11. ftplib— FTP protocol client 1447

https://datatracker.ietf.org/doc/html/rfc959.html
https://datatracker.ietf.org/doc/html/rfc2640.html

The Python Library Reference, Release 3.13.1

• timeout (float | None) – A timeout in seconds for the connection attempt (default:
the global default timeout setting).

• source_address (tuple | None) – A 2-tuple (host, port) for the socket to
bind to as its source address before connecting.

Raises an auditing event ftplib.connect with arguments self, host, port.

Changed in version 3.3: source_address parameter was added.

getwelcome()

Return the welcome message sent by the server in reply to the initial connection. (This message some-
times contains disclaimers or help information that may be relevant to the user.)

login(user=’anonymous’, passwd=” , acct=”)
Log on to the connected FTP server. This function should be called only once for each instance, after a
connection has been established; it should not be called if the host and user arguments were given when
the FTP instance was created. Most FTP commands are only allowed after the client has logged in.

Parameters

• user (str) – The username to log in with (default: 'anonymous').

• passwd (str) – The password to use when logging in. If not given, and if passwd is the
empty string or "-", a password will be automatically generated.

• acct (str) – Account information to be used for the ACCT FTP command. Few systems
implement this. See RFC-959 for more details.

abort()

Abort a file transfer that is in progress. Using this does not always work, but it’s worth a try.

sendcmd(cmd)
Send a simple command string to the server and return the response string.

Raises an auditing event ftplib.sendcmd with arguments self, cmd.

voidcmd(cmd)
Send a simple command string to the server and handle the response. Return the response string if the
response code corresponds to success (codes in the range 200–299). Raise error_reply otherwise.

Raises an auditing event ftplib.sendcmd with arguments self, cmd.

retrbinary(cmd, callback, blocksize=8192, rest=None)
Retrieve a file in binary transfer mode.

Parameters

• cmd (str) – An appropriate RETR command: "RETR filename".

• callback (callable) – A single parameter callable that is called for each block of data
received, with its single argument being the data as bytes.

• blocksize (int) – The maximum chunk size to read on the low-level socket object
created to do the actual transfer. This also corresponds to the largest size of data that
will be passed to callback. Defaults to 8192.

• rest (int) – A REST command to be sent to the server. See the documentation for the
rest parameter of the transfercmd() method.

retrlines(cmd, callback=None)
Retrieve a file or directory listing in the encoding specified by the encoding parameter at initialization.
cmd should be an appropriate RETR command (see retrbinary()) or a command such as LIST or
NLST (usually just the string 'LIST'). LIST retrieves a list of files and information about those files.
NLST retrieves a list of file names. The callback function is called for each line with a string argument
containing the line with the trailing CRLF stripped. The default callback prints the line to sys.stdout.

1448 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc959.html

The Python Library Reference, Release 3.13.1

set_pasv(val)
Enable “passive” mode if val is true, otherwise disable passive mode. Passive mode is on by default.

storbinary(cmd, fp, blocksize=8192, callback=None, rest=None)
Store a file in binary transfer mode.

Parameters

• cmd (str) – An appropriate STOR command: "STOR filename".

• fp (file object) – A file object (opened in binary mode) which is read until EOF, using
its read() method in blocks of size blocksize to provide the data to be stored.

• blocksize (int) – The read block size. Defaults to 8192.

• callback (callable) – A single parameter callable that is called for each block of data
sent, with its single argument being the data as bytes.

• rest (int) – A REST command to be sent to the server. See the documentation for the
rest parameter of the transfercmd() method.

Changed in version 3.2: The rest parameter was added.

storlines(cmd, fp, callback=None)
Store a file in line mode. cmd should be an appropriate STOR command (see storbinary()). Lines are
read until EOF from the file object fp (opened in binary mode) using its readline()method to provide
the data to be stored. callback is an optional single parameter callable that is called on each line after it
is sent.

transfercmd(cmd, rest=None)
Initiate a transfer over the data connection. If the transfer is active, send an EPRT or PORT command and
the transfer command specified by cmd, and accept the connection. If the server is passive, send an EPSV
or PASV command, connect to it, and start the transfer command. Either way, return the socket for the
connection.

If optional rest is given, a REST command is sent to the server, passing rest as an argument. rest is usually
a byte offset into the requested file, telling the server to restart sending the file’s bytes at the requested
offset, skipping over the initial bytes. Note however that the transfercmd() method converts rest to
a string with the encoding parameter specified at initialization, but no check is performed on the string’s
contents. If the server does not recognize the REST command, an error_reply exception will be raised.
If this happens, simply call transfercmd() without a rest argument.

ntransfercmd(cmd, rest=None)
Like transfercmd(), but returns a tuple of the data connection and the expected size of the data. If
the expected size could not be computed, None will be returned as the expected size. cmd and rest means
the same thing as in transfercmd().

mlsd(path=” , facts=[])
List a directory in a standardized format by using MLSD command (RFC 3659). If path is omitted the
current directory is assumed. facts is a list of strings representing the type of information desired (e.g.
["type", "size", "perm"]). Return a generator object yielding a tuple of two elements for every
file found in path. First element is the file name, the second one is a dictionary containing facts about the
file name. Content of this dictionary might be limited by the facts argument but server is not guaranteed
to return all requested facts.

Added in version 3.3.

nlst(argument[, ...])
Return a list of file names as returned by the NLST command. The optional argument is a directory to list
(default is the current server directory). Multiple arguments can be used to pass non-standard options to
the NLST command.

22.11. ftplib— FTP protocol client 1449

https://datatracker.ietf.org/doc/html/rfc3659.html

The Python Library Reference, Release 3.13.1

Note

If your server supports the command, mlsd() offers a better API.

dir(argument[, ...])
Produce a directory listing as returned by the LIST command, printing it to standard output. The optional
argument is a directory to list (default is the current server directory). Multiple arguments can be used
to pass non-standard options to the LIST command. If the last argument is a function, it is used as a
callback function as for retrlines(); the default prints to sys.stdout. This method returns None.

Note

If your server supports the command, mlsd() offers a better API.

rename(fromname, toname)
Rename file fromname on the server to toname.

delete(filename)

Remove the file named filename from the server. If successful, returns the text of the response, otherwise
raises error_perm on permission errors or error_reply on other errors.

cwd(pathname)
Set the current directory on the server.

mkd(pathname)
Create a new directory on the server.

pwd()

Return the pathname of the current directory on the server.

rmd(dirname)
Remove the directory named dirname on the server.

size(filename)
Request the size of the file named filename on the server. On success, the size of the file is returned as an
integer, otherwise None is returned. Note that the SIZE command is not standardized, but is supported
by many common server implementations.

quit()

Send a QUIT command to the server and close the connection. This is the “polite” way to close a con-
nection, but it may raise an exception if the server responds with an error to the QUIT command. This
implies a call to the close() method which renders the FTP instance useless for subsequent calls (see
below).

close()

Close the connection unilaterally. This should not be applied to an already closed connection such as
after a successful call to quit(). After this call the FTP instance should not be used any more (after a
call to close() or quit() you cannot reopen the connection by issuing another login() method).

FTP_TLS objects

class ftplib.FTP_TLS(host=” , user=” , passwd=” , acct=” , *, context=None, timeout=None,
source_address=None, encoding=’utf-8’)

An FTP subclass which adds TLS support to FTP as described in RFC 4217. Connect to port 21 implicitly
securing the FTP control connection before authenticating.

1450 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc4217.html

The Python Library Reference, Release 3.13.1

Note

The user must explicitly secure the data connection by calling the prot_p() method.

Parameters

• host (str) – The hostname to connect to. If given, connect(host) is implicitly called
by the constructor.

• user (str) – The username to log in with (default: 'anonymous'). If given,
login(host, passwd, acct) is implicitly called by the constructor.

• passwd (str) – The password to use when logging in. If not given, and if passwd is the
empty string or "-", a password will be automatically generated.

• acct (str) – Account information to be used for the ACCT FTP command. Few systems
implement this. See RFC-959 for more details.

• context (ssl.SSLContext) – An SSL context object which allows bundling SSL con-
figuration options, certificates and private keys into a single, potentially long-lived, struc-
ture. Please read Security considerations for best practices.

• timeout (float | None) – A timeout in seconds for blocking operations like
connect() (default: the global default timeout setting).

• source_address (tuple | None) – A 2-tuple (host, port) for the socket to bind
to as its source address before connecting.

• encoding (str) – The encoding for directories and filenames (default: 'utf-8').

Added in version 3.2.

Changed in version 3.3: Added the source_address parameter.

Changed in version 3.4: The class now supports hostname check with ssl.SSLContext.check_hostname
and Server Name Indication (see ssl.HAS_SNI).

Changed in version 3.9: If the timeout parameter is set to be zero, it will raise a ValueError to prevent
the creation of a non-blocking socket. The encoding parameter was added, and the default was changed from
Latin-1 to UTF-8 to follow RFC 2640.

Changed in version 3.12: The deprecated keyfile and certfile parameters have been removed.

Here’s a sample session using the FTP_TLS class:

>>> ftps = FTP_TLS('ftp.pureftpd.org')

>>> ftps.login()

'230 Anonymous user logged in'

>>> ftps.prot_p()

'200 Data protection level set to "private"'

>>> ftps.nlst()

['6jack', 'OpenBSD', 'antilink', 'blogbench', 'bsdcam', 'clockspeed', 'djbdns-

↪→jedi', 'docs', 'eaccelerator-jedi', 'favicon.ico', 'francotone', 'fugu',

↪→'ignore', 'libpuzzle', 'metalog', 'minidentd', 'misc', 'mysql-udf-global-

↪→user-variables', 'php-jenkins-hash', 'php-skein-hash', 'php-webdav',

↪→'phpaudit', 'phpbench', 'pincaster', 'ping', 'posto', 'pub', 'public',

↪→'public_keys', 'pure-ftpd', 'qscan', 'qtc', 'sharedance', 'skycache', 'sound

↪→', 'tmp', 'ucarp']

FTP_TLS class inherits from FTP, defining these additional methods and attributes:

ssl_version

The SSL version to use (defaults to ssl.PROTOCOL_SSLv23).

22.11. ftplib— FTP protocol client 1451

https://datatracker.ietf.org/doc/html/rfc959.html
https://datatracker.ietf.org/doc/html/rfc2640.html

The Python Library Reference, Release 3.13.1

auth()

Set up a secure control connection by using TLS or SSL, depending on what is specified in the
ssl_version attribute.

Changed in version 3.4: The method now supports hostname check with ssl.SSLContext.

check_hostname and Server Name Indication (see ssl.HAS_SNI).

ccc()

Revert control channel back to plaintext. This can be useful to take advantage of firewalls that know how
to handle NAT with non-secure FTP without opening fixed ports.

Added in version 3.3.

prot_p()

Set up secure data connection.

prot_c()

Set up clear text data connection.

Module variables

exception ftplib.error_reply

Exception raised when an unexpected reply is received from the server.

exception ftplib.error_temp

Exception raised when an error code signifying a temporary error (response codes in the range 400–499) is
received.

exception ftplib.error_perm

Exception raised when an error code signifying a permanent error (response codes in the range 500–599) is
received.

exception ftplib.error_proto

Exception raised when a reply is received from the server that does not fit the response specifications of the
File Transfer Protocol, i.e. begin with a digit in the range 1–5.

ftplib.all_errors

The set of all exceptions (as a tuple) that methods of FTP instances may raise as a result of problems with the
FTP connection (as opposed to programming errors made by the caller). This set includes the four exceptions
listed above as well as OSError and EOFError.

See also

Module netrc
Parser for the .netrc file format. The file .netrc is typically used by FTP clients to load user authenti-
cation information before prompting the user.

22.12 poplib— POP3 protocol client

Source code: Lib/poplib.py

This module defines a class, POP3, which encapsulates a connection to a POP3 server and implements the protocol
as defined in RFC 1939. The POP3 class supports both the minimal and optional command sets from RFC 1939.
The POP3 class also supports the STLS command introduced in RFC 2595 to enable encrypted communication on
an already established connection.

Additionally, this module provides a class POP3_SSL, which provides support for connecting to POP3 servers that
use SSL as an underlying protocol layer.

1452 Chapter 22. Internet Protocols and Support

https://github.com/python/cpython/tree/3.13/Lib/poplib.py
https://datatracker.ietf.org/doc/html/rfc1939.html
https://datatracker.ietf.org/doc/html/rfc1939.html
https://datatracker.ietf.org/doc/html/rfc2595.html

The Python Library Reference, Release 3.13.1

Note that POP3, though widely supported, is obsolescent. The implementation quality of POP3 servers varies widely,
and too many are quite poor. If your mailserver supports IMAP, you would be better off using the imaplib.IMAP4
class, as IMAP servers tend to be better implemented.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

The poplib module provides two classes:

class poplib.POP3(host, port=POP3_PORT[, timeout])
This class implements the actual POP3 protocol. The connection is created when the instance is initialized. If
port is omitted, the standard POP3 port (110) is used. The optional timeout parameter specifies a timeout in
seconds for the connection attempt (if not specified, the global default timeout setting will be used).

Raises an auditing event poplib.connect with arguments self, host, port.

All commands will raise an auditing event poplib.putline with arguments self and line, where line
is the bytes about to be sent to the remote host.

Changed in version 3.9: If the timeout parameter is set to be zero, it will raise a ValueError to prevent the
creation of a non-blocking socket.

class poplib.POP3_SSL(host, port=POP3_SSL_PORT , *, timeout=None, context=None)
This is a subclass of POP3 that connects to the server over an SSL encrypted socket. If port is not specified,
995, the standard POP3-over-SSL port is used. timeout works as in the POP3 constructor. context is an optional
ssl.SSLContext object which allows bundling SSL configuration options, certificates and private keys into
a single (potentially long-lived) structure. Please read Security considerations for best practices.

Raises an auditing event poplib.connect with arguments self, host, port.

All commands will raise an auditing event poplib.putline with arguments self and line, where line
is the bytes about to be sent to the remote host.

Changed in version 3.2: context parameter added.

Changed in version 3.4: The class now supports hostname check with ssl.SSLContext.check_hostname
and Server Name Indication (see ssl.HAS_SNI).

Changed in version 3.9: If the timeout parameter is set to be zero, it will raise a ValueError to prevent the
creation of a non-blocking socket.

Changed in version 3.12: The deprecated keyfile and certfile parameters have been removed.

One exception is defined as an attribute of the poplib module:

exception poplib.error_proto

Exception raised on any errors from this module (errors from socketmodule are not caught). The reason for
the exception is passed to the constructor as a string.

See also

Module imaplib
The standard Python IMAP module.

Frequently Asked Questions About Fetchmail
The FAQ for the fetchmail POP/IMAP client collects information on POP3 server variations and RFC
noncompliance that may be useful if you need to write an application based on the POP protocol.

22.12. poplib— POP3 protocol client 1453

http://www.catb.org/~esr/fetchmail/fetchmail-FAQ.html

The Python Library Reference, Release 3.13.1

22.12.1 POP3 Objects

All POP3 commands are represented by methods of the same name, in lowercase; most return the response text sent
by the server.

A POP3 instance has the following methods:

POP3.set_debuglevel(level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default, 0,
produces no debugging output. A value of 1 produces a moderate amount of debugging output, generally a
single line per request. A value of 2 or higher produces the maximum amount of debugging output, logging
each line sent and received on the control connection.

POP3.getwelcome()

Returns the greeting string sent by the POP3 server.

POP3.capa()

Query the server’s capabilities as specified in RFC 2449. Returns a dictionary in the form {'name':

['param'...]}.

Added in version 3.4.

POP3.user(username)

Send user command, response should indicate that a password is required.

POP3.pass_(password)
Send password, response includes message count and mailbox size. Note: the mailbox on the server is locked
until quit() is called.

POP3.apop(user, secret)
Use the more secure APOP authentication to log into the POP3 server.

POP3.rpop(user)
Use RPOP authentication (similar to UNIX r-commands) to log into POP3 server.

POP3.stat()

Get mailbox status. The result is a tuple of 2 integers: (message count, mailbox size).

POP3.list([which])
Request message list, result is in the form (response, ['mesg_num octets', ...], octets). If
which is set, it is the message to list.

POP3.retr(which)

Retrieve whole message number which, and set its seen flag. Result is in form (response, ['line', ..

.], octets).

POP3.dele(which)

Flag message number which for deletion. On most servers deletions are not actually performed until QUIT
(the major exception is Eudora QPOP, which deliberately violates the RFCs by doing pending deletes on any
disconnect).

POP3.rset()

Remove any deletion marks for the mailbox.

POP3.noop()

Do nothing. Might be used as a keep-alive.

POP3.quit()

Signoff: commit changes, unlock mailbox, drop connection.

1454 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc2449.html

The Python Library Reference, Release 3.13.1

POP3.top(which, howmuch)
Retrieves the message header plus howmuch lines of the message after the header of message number which.
Result is in form (response, ['line', ...], octets).

The POP3 TOP command this method uses, unlike the RETR command, doesn’t set the message’s seen flag;
unfortunately, TOP is poorly specified in the RFCs and is frequently broken in off-brand servers. Test this
method by hand against the POP3 servers you will use before trusting it.

POP3.uidl(which=None)

Return message digest (unique id) list. If which is specified, result contains the unique id for that message
in the form 'response mesgnum uid, otherwise result is list (response, ['mesgnum uid', ...],

octets).

POP3.utf8()

Try to switch to UTF-8 mode. Returns the server response if successful, raises error_proto if not. Specified
in RFC 6856.

Added in version 3.5.

POP3.stls(context=None)

Start a TLS session on the active connection as specified in RFC 2595. This is only allowed before user
authentication

context parameter is a ssl.SSLContext object which allows bundling SSL configuration options, certificates
and private keys into a single (potentially long-lived) structure. Please read Security considerations for best
practices.

This method supports hostname checking via ssl.SSLContext.check_hostname and Server Name Indi-
cation (see ssl.HAS_SNI).

Added in version 3.4.

Instances of POP3_SSL have no additional methods. The interface of this subclass is identical to its parent.

22.12.2 POP3 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all messages:

import getpass, poplib

M = poplib.POP3('localhost')

M.user(getpass.getuser())

M.pass_(getpass.getpass())

numMessages = len(M.list()[1])

for i in range(numMessages):

for j in M.retr(i+1)[1]:

print(j)

At the end of the module, there is a test section that contains a more extensive example of usage.

22.13 imaplib— IMAP4 protocol client

Source code: Lib/imaplib.py

This module defines three classes, IMAP4, IMAP4_SSL and IMAP4_stream, which encapsulate a connection to an
IMAP4 server and implement a large subset of the IMAP4rev1 client protocol as defined inRFC2060. It is backward
compatible with IMAP4 (RFC 1730) servers, but note that the STATUS command is not supported in IMAP4.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

22.13. imaplib— IMAP4 protocol client 1455

https://datatracker.ietf.org/doc/html/rfc6856.html
https://datatracker.ietf.org/doc/html/rfc2595.html
https://github.com/python/cpython/tree/3.13/Lib/imaplib.py
https://datatracker.ietf.org/doc/html/rfc2060.html
https://datatracker.ietf.org/doc/html/rfc1730.html

The Python Library Reference, Release 3.13.1

Three classes are provided by the imaplib module, IMAP4 is the base class:

class imaplib.IMAP4(host=” , port=IMAP4_PORT , timeout=None)
This class implements the actual IMAP4 protocol. The connection is created and protocol version (IMAP4 or
IMAP4rev1) is determined when the instance is initialized. If host is not specified, '' (the local host) is used.
If port is omitted, the standard IMAP4 port (143) is used. The optional timeout parameter specifies a timeout
in seconds for the connection attempt. If timeout is not given or is None, the global default socket timeout is
used.

The IMAP4 class supports the with statement. When used like this, the IMAP4 LOGOUT command is issued
automatically when the with statement exits. E.g.:

>>> from imaplib import IMAP4

>>> with IMAP4("domain.org") as M:

... M.noop()

...

('OK', [b'Nothing Accomplished. d25if65hy903weo.87'])

Changed in version 3.5: Support for the with statement was added.

Changed in version 3.9: The optional timeout parameter was added.

Three exceptions are defined as attributes of the IMAP4 class:

exception IMAP4.error

Exception raised on any errors. The reason for the exception is passed to the constructor as a string.

exception IMAP4.abort

IMAP4 server errors cause this exception to be raised. This is a sub-class of IMAP4.error. Note that closing
the instance and instantiating a new one will usually allow recovery from this exception.

exception IMAP4.readonly

This exception is raised when a writable mailbox has its status changed by the server. This is a sub-class of
IMAP4.error. Some other client now has write permission, and the mailbox will need to be re-opened to
re-obtain write permission.

There’s also a subclass for secure connections:

class imaplib.IMAP4_SSL(host=” , port=IMAP4_SSL_PORT , *, ssl_context=None, timeout=None)
This is a subclass derived from IMAP4 that connects over an SSL encrypted socket (to use this class you need a
socket module that was compiled with SSL support). If host is not specified, '' (the local host) is used. If port
is omitted, the standard IMAP4-over-SSL port (993) is used. ssl_context is a ssl.SSLContext object which
allows bundling SSL configuration options, certificates and private keys into a single (potentially long-lived)
structure. Please read Security considerations for best practices.

The optional timeout parameter specifies a timeout in seconds for the connection attempt. If timeout is not
given or is None, the global default socket timeout is used.

Changed in version 3.3: ssl_context parameter was added.

Changed in version 3.4: The class now supports hostname check with ssl.SSLContext.check_hostname
and Server Name Indication (see ssl.HAS_SNI).

Changed in version 3.9: The optional timeout parameter was added.

Changed in version 3.12: The deprecated keyfile and certfile parameters have been removed.

The second subclass allows for connections created by a child process:

class imaplib.IMAP4_stream(command)

This is a subclass derived from IMAP4 that connects to the stdin/stdout file descriptors created by passing
command to subprocess.Popen().

The following utility functions are defined:

1456 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

imaplib.Internaldate2tuple(datestr)
Parse an IMAP4 INTERNALDATE string and return corresponding local time. The return value is a time.
struct_time tuple or None if the string has wrong format.

imaplib.Int2AP(num)
Converts an integer into a bytes representation using characters from the set [A .. P].

imaplib.ParseFlags(flagstr)
Converts an IMAP4 FLAGS response to a tuple of individual flags.

imaplib.Time2Internaldate(date_time)

Convert date_time to an IMAP4 INTERNALDATE representation. The return value is a string in the form:
"DD-Mmm-YYYY HH:MM:SS +HHMM" (including double-quotes). The date_time argument can be a number
(int or float) representing seconds since epoch (as returned by time.time()), a 9-tuple representing local time
an instance of time.struct_time (as returned by time.localtime()), an aware instance of datetime.
datetime, or a double-quoted string. In the last case, it is assumed to already be in the correct format.

Note that IMAP4 message numbers change as the mailbox changes; in particular, after an EXPUNGE command
performs deletions the remaining messages are renumbered. So it is highly advisable to use UIDs instead, with the
UID command.

At the end of the module, there is a test section that contains a more extensive example of usage.

See also

Documents describing the protocol, sources for servers implementing it, by the University ofWashington’s IMAP
Information Center can all be found at (Source Code) https://github.com/uw-imap/imap (Not Maintained).

22.13.1 IMAP4 Objects

All IMAP4rev1 commands are represented by methods of the same name, either uppercase or lowercase.

All arguments to commands are converted to strings, except for AUTHENTICATE, and the last argument to APPEND
which is passed as an IMAP4 literal. If necessary (the string contains IMAP4 protocol-sensitive characters and isn’t
enclosed with either parentheses or double quotes) each string is quoted. However, the password argument to the
LOGIN command is always quoted. If you want to avoid having an argument string quoted (eg: the flags argument
to STORE) then enclose the string in parentheses (eg: r'(\Deleted)').

Each command returns a tuple: (type, [data, ...]) where type is usually 'OK' or 'NO', and data is either the
text from the command response, or mandated results from the command. Each data is either a bytes, or a tuple.
If a tuple, then the first part is the header of the response, and the second part contains the data (ie: ‘literal’ value).

The message_set options to commands below is a string specifying one or more messages to be acted upon. It may
be a simple message number ('1'), a range of message numbers ('2:4'), or a group of non-contiguous ranges
separated by commas ('1:3,6:9'). A range can contain an asterisk to indicate an infinite upper bound ('3:*').

An IMAP4 instance has the following methods:

IMAP4.append(mailbox, flags, date_time, message)

Append message to named mailbox.

IMAP4.authenticate(mechanism, authobject)
Authenticate command — requires response processing.

mechanism specifies which authentication mechanism is to be used - it should appear in the instance variable
capabilities in the form AUTH=mechanism.

authobject must be a callable object:

data = authobject(response)

22.13. imaplib— IMAP4 protocol client 1457

https://github.com/uw-imap/imap

The Python Library Reference, Release 3.13.1

It will be called to process server continuation responses; the response argument it is passed will be bytes.
It should return bytes data that will be base64 encoded and sent to the server. It should return None if the
client abort response * should be sent instead.

Changed in version 3.5: string usernames and passwords are now encoded to utf-8 instead of being limited
to ASCII.

IMAP4.check()

Checkpoint mailbox on server.

IMAP4.close()

Close currently selected mailbox. Deleted messages are removed from writable mailbox. This is the recom-
mended command before LOGOUT.

IMAP4.copy(message_set, new_mailbox)

Copy message_set messages onto end of new_mailbox.

IMAP4.create(mailbox)

Create new mailbox named mailbox.

IMAP4.delete(mailbox)
Delete old mailbox named mailbox.

IMAP4.deleteacl(mailbox, who)
Delete the ACLs (remove any rights) set for who on mailbox.

IMAP4.enable(capability)
Enable capability (see RFC 5161). Most capabilities do not need to be enabled. Currently only the
UTF8=ACCEPT capability is supported (see RFC 6855).

Added in version 3.5: The enable() method itself, and RFC 6855 support.

IMAP4.expunge()

Permanently remove deleted items from selected mailbox. Generates an EXPUNGE response for each deleted
message. Returned data contains a list of EXPUNGE message numbers in order received.

IMAP4.fetch(message_set, message_parts)
Fetch (parts of)messages. message_parts should be a string ofmessage part names enclosedwithin parentheses,
eg: "(UID BODY[TEXT])". Returned data are tuples of message part envelope and data.

IMAP4.getacl(mailbox)
Get the ACLs for mailbox. The method is non-standard, but is supported by the Cyrus server.

IMAP4.getannotation(mailbox, entry, attribute)
Retrieve the specified ANNOTATIONs for mailbox. The method is non-standard, but is supported by the Cyrus
server.

IMAP4.getquota(root)
Get the quota root’s resource usage and limits. This method is part of the IMAP4 QUOTA extension defined
in rfc2087.

IMAP4.getquotaroot(mailbox)

Get the list of quota roots for the named mailbox. This method is part of the IMAP4 QUOTA extension
defined in rfc2087.

IMAP4.list([directory[, pattern]])
List mailbox names in directory matching pattern. directory defaults to the top-level mail folder, and pattern
defaults to match anything. Returned data contains a list of LIST responses.

IMAP4.login(user, password)

Identify the client using a plaintext password. The password will be quoted.

1458 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc5161.html
https://datatracker.ietf.org/doc/html/rfc6855.html
https://datatracker.ietf.org/doc/html/rfc6855.html

The Python Library Reference, Release 3.13.1

IMAP4.login_cram_md5(user, password)
Force use of CRAM-MD5 authentication when identifying the client to protect the password. Will only work if
the server CAPABILITY response includes the phrase AUTH=CRAM-MD5.

IMAP4.logout()

Shutdown connection to server. Returns server BYE response.

Changed in version 3.8: The method no longer ignores silently arbitrary exceptions.

IMAP4.lsub(directory=’””’, pattern=’*’)
List subscribed mailbox names in directory matching pattern. directory defaults to the top level directory and
pattern defaults to match any mailbox. Returned data are tuples of message part envelope and data.

IMAP4.myrights(mailbox)
Show my ACLs for a mailbox (i.e. the rights that I have on mailbox).

IMAP4.namespace()

Returns IMAP namespaces as defined in RFC 2342.

IMAP4.noop()

Send NOOP to server.

IMAP4.open(host, port, timeout=None)

Opens socket to port at host. The optional timeout parameter specifies a timeout in seconds for the connection
attempt. If timeout is not given or is None, the global default socket timeout is used. Also note that if the
timeout parameter is set to be zero, it will raise a ValueError to reject creating a non-blocking socket. This
method is implicitly called by the IMAP4 constructor. The connection objects established by this method will
be used in the IMAP4.read(), IMAP4.readline(), IMAP4.send(), and IMAP4.shutdown() methods.
You may override this method.

Raises an auditing event imaplib.open with arguments self, host, port.

Changed in version 3.9: The timeout parameter was added.

IMAP4.partial(message_num, message_part, start, length)
Fetch truncated part of a message. Returned data is a tuple of message part envelope and data.

IMAP4.proxyauth(user)
Assume authentication as user. Allows an authorised administrator to proxy into any user’s mailbox.

IMAP4.read(size)
Reads size bytes from the remote server. You may override this method.

IMAP4.readline()

Reads one line from the remote server. You may override this method.

IMAP4.recent()

Prompt server for an update. Returned data is None if no new messages, else value of RECENT response.

IMAP4.rename(oldmailbox, newmailbox)
Rename mailbox named oldmailbox to newmailbox.

IMAP4.response(code)

Return data for response code if received, or None. Returns the given code, instead of the usual type.

IMAP4.search(charset, criterion[, ...])
Search mailbox for matching messages. charset may be None, in which case no CHARSET will be specified in
the request to the server. The IMAP protocol requires that at least one criterion be specified; an exception will
be raised when the server returns an error. charset must be None if the UTF8=ACCEPT capability was enabled
using the enable() command.

Example:

22.13. imaplib— IMAP4 protocol client 1459

https://datatracker.ietf.org/doc/html/rfc2342.html

The Python Library Reference, Release 3.13.1

M is a connected IMAP4 instance...

typ, msgnums = M.search(None, 'FROM', '"LDJ"')

or:

typ, msgnums = M.search(None, '(FROM "LDJ")')

IMAP4.select(mailbox=’INBOX’, readonly=False)
Select a mailbox. Returned data is the count of messages in mailbox (EXISTS response). The default mailbox
is 'INBOX'. If the readonly flag is set, modifications to the mailbox are not allowed.

IMAP4.send(data)

Sends data to the remote server. You may override this method.

Raises an auditing event imaplib.send with arguments self, data.

IMAP4.setacl(mailbox, who, what)

Set an ACL for mailbox. The method is non-standard, but is supported by the Cyrus server.

IMAP4.setannotation(mailbox, entry, attribute[, ...])
Set ANNOTATIONs for mailbox. The method is non-standard, but is supported by the Cyrus server.

IMAP4.setquota(root, limits)
Set the quota root’s resource limits. This method is part of the IMAP4 QUOTA extension defined in rfc2087.

IMAP4.shutdown()

Close connection established in open. This method is implicitly called by IMAP4.logout(). You may
override this method.

IMAP4.socket()

Returns socket instance used to connect to server.

IMAP4.sort(sort_criteria, charset, search_criterion[, ...])
The sort command is a variant of search with sorting semantics for the results. Returned data contains a
space separated list of matching message numbers.

Sort has two arguments before the search_criterion argument(s); a parenthesized list of sort_criteria, and the
searching charset. Note that unlike search, the searching charset argument is mandatory. There is also a uid
sort command which corresponds to sort the way that uid search corresponds to search. The sort
command first searches the mailbox for messages that match the given searching criteria using the charset
argument for the interpretation of strings in the searching criteria. It then returns the numbers of matching
messages.

This is an IMAP4rev1 extension command.

IMAP4.starttls(ssl_context=None)
Send a STARTTLS command. The ssl_context argument is optional and should be a ssl.SSLContext object.
This will enable encryption on the IMAP connection. Please read Security considerations for best practices.

Added in version 3.2.

Changed in version 3.4: The method now supports hostname check with ssl.SSLContext.

check_hostname and Server Name Indication (see ssl.HAS_SNI).

IMAP4.status(mailbox, names)

Request named status conditions for mailbox.

IMAP4.store(message_set, command, flag_list)
Alters flag dispositions for messages in mailbox. command is specified by section 6.4.6 of RFC 2060 as being
one of “FLAGS”, “+FLAGS”, or “-FLAGS”, optionally with a suffix of “.SILENT”.

For example, to set the delete flag on all messages:

1460 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc2060.html

The Python Library Reference, Release 3.13.1

typ, data = M.search(None, 'ALL')

for num in data[0].split():

M.store(num, '+FLAGS', '\\Deleted')

M.expunge()

Note

Creating flags containing ‘]’ (for example: “[test]”) violates RFC 3501 (the IMAP protocol). However,
imaplib has historically allowed creation of such tags, and popular IMAP servers, such as Gmail, accept
and produce such flags. There are non-Python programs which also create such tags. Although it is an
RFC violation and IMAP clients and servers are supposed to be strict, imaplib still continues to allow such
tags to be created for backward compatibility reasons, and as of Python 3.6, handles them if they are sent
from the server, since this improves real-world compatibility.

IMAP4.subscribe(mailbox)
Subscribe to new mailbox.

IMAP4.thread(threading_algorithm, charset, search_criterion[, ...])
The thread command is a variant of search with threading semantics for the results. Returned data contains
a space separated list of thread members.

Thread members consist of zero or more messages numbers, delimited by spaces, indicating successive parent
and child.

Thread has two arguments before the search_criterion argument(s); a threading_algorithm, and the searching
charset. Note that unlike search, the searching charset argument is mandatory. There is also a uid thread

command which corresponds to thread the way that uid search corresponds to search. The thread
command first searches the mailbox for messages that match the given searching criteria using the charset
argument for the interpretation of strings in the searching criteria. It then returns the matching messages
threaded according to the specified threading algorithm.

This is an IMAP4rev1 extension command.

IMAP4.uid(command, arg[, ...])
Execute command args with messages identified by UID, rather than message number. Returns response
appropriate to command. At least one argument must be supplied; if none are provided, the server will return
an error and an exception will be raised.

IMAP4.unsubscribe(mailbox)

Unsubscribe from old mailbox.

IMAP4.unselect()

imaplib.IMAP4.unselect() frees server’s resources associated with the selected mailbox and returns the
server to the authenticated state. This command performs the same actions as imaplib.IMAP4.close(),
except that no messages are permanently removed from the currently selected mailbox.

Added in version 3.9.

IMAP4.xatom(name[, ...])
Allow simple extension commands notified by server in CAPABILITY response.

The following attributes are defined on instances of IMAP4:

IMAP4.PROTOCOL_VERSION

The most recent supported protocol in the CAPABILITY response from the server.

IMAP4.debug

Integer value to control debugging output. The initialize value is taken from the module variable Debug.
Values greater than three trace each command.

22.13. imaplib— IMAP4 protocol client 1461

https://datatracker.ietf.org/doc/html/rfc3501.html

The Python Library Reference, Release 3.13.1

IMAP4.utf8_enabled

Boolean value that is normally False, but is set to True if an enable() command is successfully issued for
the UTF8=ACCEPT capability.

Added in version 3.5.

22.13.2 IMAP4 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all messages:

import getpass, imaplib

M = imaplib.IMAP4(host='example.org')

M.login(getpass.getuser(), getpass.getpass())

M.select()

typ, data = M.search(None, 'ALL')

for num in data[0].split():

typ, data = M.fetch(num, '(RFC822)')

print('Message %s\n%s\n' % (num, data[0][1]))

M.close()

M.logout()

22.14 smtplib— SMTP protocol client

Source code: Lib/smtplib.py

The smtplib module defines an SMTP client session object that can be used to send mail to any internet machine
with an SMTP or ESMTP listener daemon. For details of SMTP and ESMTP operation, consult RFC 821 (Simple
Mail Transfer Protocol) and RFC 1869 (SMTP Service Extensions).

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

class smtplib.SMTP(host=” , port=0, local_hostname=None, [timeout,]source_address=None)
An SMTP instance encapsulates an SMTP connection. It has methods that support a full repertoire of SMTP
and ESMTP operations. If the optional host and port parameters are given, the SMTP connect() method
is called with those parameters during initialization. If specified, local_hostname is used as the FQDN of the
local host in the HELO/EHLO command. Otherwise, the local hostname is found using socket.getfqdn().
If the connect() call returns anything other than a success code, an SMTPConnectError is raised. The
optional timeout parameter specifies a timeout in seconds for blocking operations like the connection attempt
(if not specified, the global default timeout setting will be used). If the timeout expires, TimeoutError is
raised. The optional source_address parameter allows binding to some specific source address in a machine
with multiple network interfaces, and/or to some specific source TCP port. It takes a 2-tuple (host, port),
for the socket to bind to as its source address before connecting. If omitted (or if host or port are '' and/or 0
respectively) the OS default behavior will be used.

For normal use, you should only require the initialization/connect, sendmail(), and SMTP.quit()methods.
An example is included below.

The SMTP class supports the with statement. When used like this, the SMTP QUIT command is issued
automatically when the with statement exits. E.g.:

>>> from smtplib import SMTP

>>> with SMTP("domain.org") as smtp:

... smtp.noop()

...

(250, b'Ok')

>>>

1462 Chapter 22. Internet Protocols and Support

https://github.com/python/cpython/tree/3.13/Lib/smtplib.py
https://datatracker.ietf.org/doc/html/rfc821.html
https://datatracker.ietf.org/doc/html/rfc1869.html

The Python Library Reference, Release 3.13.1

All commands will raise an auditing event smtplib.SMTP.send with arguments self and data, where
data is the bytes about to be sent to the remote host.

Changed in version 3.3: Support for the with statement was added.

Changed in version 3.3: source_address argument was added.

Added in version 3.5: The SMTPUTF8 extension (RFC 6531) is now supported.

Changed in version 3.9: If the timeout parameter is set to be zero, it will raise a ValueError to prevent the
creation of a non-blocking socket.

class smtplib.SMTP_SSL(host=” , port=0, local_hostname=None, *, [timeout,]context=None,
source_address=None)

An SMTP_SSL instance behaves exactly the same as instances of SMTP. SMTP_SSL should be used for situations
where SSL is required from the beginning of the connection and using starttls() is not appropriate. If host
is not specified, the local host is used. If port is zero, the standard SMTP-over-SSL port (465) is used. The
optional arguments local_hostname, timeout and source_address have the same meaning as they do in the SMTP
class. context, also optional, can contain a SSLContext and allows configuring various aspects of the secure
connection. Please read Security considerations for best practices.

Changed in version 3.3: context was added.

Changed in version 3.3: The source_address argument was added.

Changed in version 3.4: The class now supports hostname check with ssl.SSLContext.check_hostname
and Server Name Indication (see ssl.HAS_SNI).

Changed in version 3.9: If the timeout parameter is set to be zero, it will raise a ValueError to prevent the
creation of a non-blocking socket

Changed in version 3.12: The deprecated keyfile and certfile parameters have been removed.

class smtplib.LMTP(host=” , port=LMTP_PORT , local_hostname=None, source_address=None[, timeout])
The LMTP protocol, which is very similar to ESMTP, is heavily based on the standard SMTP client. It’s
common to use Unix sockets for LMTP, so our connect() method must support that as well as a regular
host:port server. The optional arguments local_hostname and source_address have the same meaning as they
do in the SMTP class. To specify a Unix socket, you must use an absolute path for host, starting with a ‘/’.

Authentication is supported, using the regular SMTP mechanism. When using a Unix socket, LMTP generally
don’t support or require any authentication, but your mileage might vary.

Changed in version 3.9: The optional timeout parameter was added.

A nice selection of exceptions is defined as well:

exception smtplib.SMTPException

Subclass of OSError that is the base exception class for all the other exceptions provided by this module.

Changed in version 3.4: SMTPException became subclass of OSError

exception smtplib.SMTPServerDisconnected

This exception is raised when the server unexpectedly disconnects, or when an attempt is made to use the SMTP
instance before connecting it to a server.

exception smtplib.SMTPResponseException

Base class for all exceptions that include an SMTP error code. These exceptions are generated in some instances
when the SMTP server returns an error code. The error code is stored in the smtp_code attribute of the error,
and the smtp_error attribute is set to the error message.

exception smtplib.SMTPSenderRefused

Sender address refused. In addition to the attributes set by on all SMTPResponseException exceptions, this
sets ‘sender’ to the string that the SMTP server refused.

22.14. smtplib— SMTP protocol client 1463

https://datatracker.ietf.org/doc/html/rfc6531.html

The Python Library Reference, Release 3.13.1

exception smtplib.SMTPRecipientsRefused

All recipient addresses refused. The errors for each recipient are accessible through the attribute recipients,
which is a dictionary of exactly the same sort as SMTP.sendmail() returns.

exception smtplib.SMTPDataError

The SMTP server refused to accept the message data.

exception smtplib.SMTPConnectError

Error occurred during establishment of a connection with the server.

exception smtplib.SMTPHeloError

The server refused our HELO message.

exception smtplib.SMTPNotSupportedError

The command or option attempted is not supported by the server.

Added in version 3.5.

exception smtplib.SMTPAuthenticationError

SMTP authentication went wrong. Most probably the server didn’t accept the username/password combination
provided.

See also

RFC 821 - Simple Mail Transfer Protocol
Protocol definition for SMTP. This document covers the model, operating procedure, and protocol details
for SMTP.

RFC 1869 - SMTP Service Extensions
Definition of the ESMTP extensions for SMTP. This describes a framework for extending SMTP with
new commands, supporting dynamic discovery of the commands provided by the server, and defines a few
additional commands.

22.14.1 SMTP Objects

An SMTP instance has the following methods:

SMTP.set_debuglevel(level)
Set the debug output level. A value of 1 or True for level results in debug messages for connection and for
all messages sent to and received from the server. A value of 2 for level results in these messages being
timestamped.

Changed in version 3.5: Added debuglevel 2.

SMTP.docmd(cmd, args=”)
Send a command cmd to the server. The optional argument args is simply concatenated to the command,
separated by a space.

This returns a 2-tuple composed of a numeric response code and the actual response line (multiline responses
are joined into one long line.)

In normal operation it should not be necessary to call this method explicitly. It is used to implement other
methods and may be useful for testing private extensions.

If the connection to the server is lost while waiting for the reply, SMTPServerDisconnected will be raised.

SMTP.connect(host=’localhost’, port=0)
Connect to a host on a given port. The defaults are to connect to the local host at the standard SMTP port
(25). If the hostname ends with a colon (':') followed by a number, that suffix will be stripped off and the
number interpreted as the port number to use. This method is automatically invoked by the constructor if a
host is specified during instantiation. Returns a 2-tuple of the response code and message sent by the server in
its connection response.

1464 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc821.html
https://datatracker.ietf.org/doc/html/rfc1869.html

The Python Library Reference, Release 3.13.1

Raises an auditing event smtplib.connect with arguments self, host, port.

SMTP.helo(name=”)
Identify yourself to the SMTP server using HELO. The hostname argument defaults to the fully qualified domain
name of the local host. The message returned by the server is stored as the helo_resp attribute of the object.

In normal operation it should not be necessary to call this method explicitly. It will be implicitly called by the
sendmail() when necessary.

SMTP.ehlo(name=”)

Identify yourself to an ESMTP server using EHLO. The hostname argument defaults to the fully qualified do-
main name of the local host. Examine the response for ESMTP option and store them for use by has_extn().
Also sets several informational attributes: the message returned by the server is stored as the ehlo_resp
attribute, does_esmtp is set to True or False depending on whether the server supports ESMTP, and
esmtp_features will be a dictionary containing the names of the SMTP service extensions this server sup-
ports, and their parameters (if any).

Unless you wish to use has_extn() before sending mail, it should not be necessary to call this method
explicitly. It will be implicitly called by sendmail() when necessary.

SMTP.ehlo_or_helo_if_needed()

This method calls ehlo() and/or helo() if there has been no previous EHLO or HELO command this session.
It tries ESMTP EHLO first.

SMTPHeloError

The server didn’t reply properly to the HELO greeting.

SMTP.has_extn(name)
Return True if name is in the set of SMTP service extensions returned by the server, False otherwise. Case
is ignored.

SMTP.verify(address)
Check the validity of an address on this server using SMTP VRFY. Returns a tuple consisting of code 250 and
a fullRFC 822 address (including human name) if the user address is valid. Otherwise returns an SMTP error
code of 400 or greater and an error string.

Note

Many sites disable SMTP VRFY in order to foil spammers.

SMTP.login(user, password, *, initial_response_ok=True)
Log in on an SMTP server that requires authentication. The arguments are the username and the password
to authenticate with. If there has been no previous EHLO or HELO command this session, this method tries
ESMTP EHLO first. This method will return normally if the authentication was successful, or may raise the
following exceptions:

SMTPHeloError

The server didn’t reply properly to the HELO greeting.

SMTPAuthenticationError

The server didn’t accept the username/password combination.

SMTPNotSupportedError

The AUTH command is not supported by the server.

SMTPException

No suitable authentication method was found.

Each of the authentication methods supported by smtplib are tried in turn if they are advertised as supported
by the server. See auth() for a list of supported authentication methods. initial_response_ok is passed through
to auth().

22.14. smtplib— SMTP protocol client 1465

https://datatracker.ietf.org/doc/html/rfc822.html

The Python Library Reference, Release 3.13.1

Optional keyword argument initial_response_ok specifies whether, for authentication methods that support it,
an “initial response” as specified inRFC 4954 can be sent along with the AUTH command, rather than requiring
a challenge/response.

Changed in version 3.5: SMTPNotSupportedError may be raised, and the initial_response_ok parameter
was added.

SMTP.auth(mechanism, authobject, *, initial_response_ok=True)
Issue an SMTP AUTH command for the specified authentication mechanism, and handle the challenge response
via authobject.

mechanism specifies which authentication mechanism is to be used as argument to the AUTH command; the
valid values are those listed in the auth element of esmtp_features.

authobject must be a callable object taking an optional single argument:

data = authobject(challenge=None)

If optional keyword argument initial_response_ok is true, authobject()will be called first with no argument.
It can return the RFC 4954 “initial response” ASCII str which will be encoded and sent with the AUTH
command as below. If the authobject() does not support an initial response (e.g. because it requires a
challenge), it should return None when called with challenge=None. If initial_response_ok is false, then
authobject() will not be called first with None.

If the initial response check returns None, or if initial_response_ok is false, authobject() will be called to
process the server’s challenge response; the challenge argument it is passed will be a bytes. It should return
ASCII str data that will be base64 encoded and sent to the server.

The SMTP class provides authobjects for the CRAM-MD5, PLAIN, and LOGIN mechanisms; they are named
SMTP.auth_cram_md5, SMTP.auth_plain, and SMTP.auth_login respectively. They all require that
the user and password properties of the SMTP instance are set to appropriate values.

User code does not normally need to call auth directly, but can instead call the login() method, which will
try each of the above mechanisms in turn, in the order listed. auth is exposed to facilitate the implementation
of authentication methods not (or not yet) supported directly by smtplib.

Added in version 3.5.

SMTP.starttls(*, context=None)
Put the SMTP connection in TLS (Transport Layer Security) mode. All SMTP commands that follow will be
encrypted. You should then call ehlo() again.

If keyfile and certfile are provided, they are used to create an ssl.SSLContext.

Optional context parameter is an ssl.SSLContext object; This is an alternative to using a keyfile and a
certfile and if specified both keyfile and certfile should be None.

If there has been no previous EHLO or HELO command this session, this method tries ESMTP EHLO first.

Changed in version 3.12: The deprecated keyfile and certfile parameters have been removed.

SMTPHeloError

The server didn’t reply properly to the HELO greeting.

SMTPNotSupportedError

The server does not support the STARTTLS extension.

RuntimeError

SSL/TLS support is not available to your Python interpreter.

Changed in version 3.3: context was added.

Changed in version 3.4: The method now supports hostname check with SSLContext.check_hostname
and Server Name Indicator (see HAS_SNI).

Changed in version 3.5: The error raised for lack of STARTTLS support is now the
SMTPNotSupportedError subclass instead of the base SMTPException.

1466 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc4954.html
https://datatracker.ietf.org/doc/html/rfc4954.html

The Python Library Reference, Release 3.13.1

SMTP.sendmail(from_addr, to_addrs, msg, mail_options=(), rcpt_options=())
Send mail. The required arguments are an RFC 822 from-address string, a list of RFC 822 to-address strings
(a bare string will be treated as a list with 1 address), and a message string. The caller may pass a list of ESMTP
options (such as 8bitmime) to be used in MAIL FROM commands as mail_options. ESMTP options (such as
DSN commands) that should be used with all RCPT commands can be passed as rcpt_options. (If you need to
use different ESMTP options to different recipients you have to use the low-level methods such as mail(),
rcpt() and data() to send the message.)

Note

The from_addr and to_addrs parameters are used to construct the message envelope used by the transport
agents. sendmail does not modify the message headers in any way.

msg may be a string containing characters in the ASCII range, or a byte string. A string is encoded to bytes
using the ascii codec, and lone \r and \n characters are converted to \r\n characters. A byte string is not
modified.

If there has been no previous EHLO or HELO command this session, this method tries ESMTP EHLO first. If
the server does ESMTP, message size and each of the specified options will be passed to it (if the option is in
the feature set the server advertises). If EHLO fails, HELO will be tried and ESMTP options suppressed.

This method will return normally if the mail is accepted for at least one recipient. Otherwise it will raise an
exception. That is, if this method does not raise an exception, then someone should get your mail. If this
method does not raise an exception, it returns a dictionary, with one entry for each recipient that was refused.
Each entry contains a tuple of the SMTP error code and the accompanying error message sent by the server.

If SMTPUTF8 is included in mail_options, and the server supports it, from_addr and to_addrs may contain
non-ASCII characters.

This method may raise the following exceptions:

SMTPRecipientsRefused

All recipients were refused. Nobody got the mail. The recipients attribute of the exception object is a
dictionary with information about the refused recipients (like the one returned when at least one recipient
was accepted).

SMTPHeloError

The server didn’t reply properly to the HELO greeting.

SMTPSenderRefused

The server didn’t accept the from_addr.

SMTPDataError

The server replied with an unexpected error code (other than a refusal of a recipient).

SMTPNotSupportedError

SMTPUTF8 was given in the mail_options but is not supported by the server.

Unless otherwise noted, the connection will be open even after an exception is raised.

Changed in version 3.2: msg may be a byte string.

Changed in version 3.5: SMTPUTF8 support added, and SMTPNotSupportedError may be raised if
SMTPUTF8 is specified but the server does not support it.

SMTP.send_message(msg, from_addr=None, to_addrs=None, mail_options=(), rcpt_options=())
This is a convenience method for calling sendmail()with the message represented by an email.message.
Message object. The arguments have the same meaning as for sendmail(), except that msg is a Message
object.

If from_addr is None or to_addrs is None, send_message fills those arguments with addresses extracted
from the headers of msg as specified in RFC 5322: from_addr is set to the Sender field if it is present, and
otherwise to the From field. to_addrs combines the values (if any) of the To, Cc, and Bcc fields from msg. If
exactly one set of Resent-* headers appear in the message, the regular headers are ignored and the Resent-*

22.14. smtplib— SMTP protocol client 1467

https://datatracker.ietf.org/doc/html/rfc822.html
https://datatracker.ietf.org/doc/html/rfc822.html
https://datatracker.ietf.org/doc/html/rfc5322.html

The Python Library Reference, Release 3.13.1

headers are used instead. If the message contains more than one set of Resent-* headers, a ValueError is
raised, since there is no way to unambiguously detect the most recent set of Resent- headers.

send_message serializes msg using BytesGenerator with \r\n as the linesep, and calls sendmail()
to transmit the resulting message. Regardless of the values of from_addr and to_addrs, send_message
does not transmit any Bcc or Resent-Bcc headers that may appear in msg. If any of the addresses in
from_addr and to_addrs contain non-ASCII characters and the server does not advertise SMTPUTF8 support,
an SMTPNotSupported error is raised. Otherwise the Message is serialized with a clone of its policy with
the utf8 attribute set to True, and SMTPUTF8 and BODY=8BITMIME are added to mail_options.

Added in version 3.2.

Added in version 3.5: Support for internationalized addresses (SMTPUTF8).

SMTP.quit()

Terminate the SMTP session and close the connection. Return the result of the SMTP QUIT command.

Low-level methods corresponding to the standard SMTP/ESMTP commands HELP, RSET, NOOP, MAIL, RCPT, and
DATA are also supported. Normally these do not need to be called directly, so they are not documented here. For
details, consult the module code.

22.14.2 SMTP Example

This example prompts the user for addresses needed in the message envelope (‘To’ and ‘From’ addresses), and the
message to be delivered. Note that the headers to be included with the message must be included in the message as
entered; this example doesn’t do any processing of the RFC 822 headers. In particular, the ‘To’ and ‘From’ addresses
must be included in the message headers explicitly:

import smtplib

def prompt(title):

return input(title).strip()

from_addr = prompt("From: ")

to_addrs = prompt("To: ").split()

print("Enter message, end with ^D (Unix) or ^Z (Windows):")

Add the From: and To: headers at the start!

lines = [f"From: {from_addr}", f"To: {', '.join(to_addrs)}", ""]

while True:

try:

line = input()

except EOFError:

break

else:

lines.append(line)

msg = "\r\n".join(lines)

print("Message length is", len(msg))

server = smtplib.SMTP("localhost")

server.set_debuglevel(1)

server.sendmail(from_addr, to_addrs, msg)

server.quit()

Note

In general, you will want to use the email package’s features to construct an email message, which you can then
send via send_message(); see email: Examples.

1468 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc822.html

The Python Library Reference, Release 3.13.1

22.15 uuid— UUID objects according to RFC 4122

Source code: Lib/uuid.py

This module provides immutable UUID objects (the UUID class) and the functions uuid1(), uuid3(), uuid4(),
uuid5() for generating version 1, 3, 4, and 5 UUIDs as specified in RFC 4122.

If all you want is a unique ID, you should probably call uuid1() or uuid4(). Note that uuid1()may compromise
privacy since it creates a UUID containing the computer’s network address. uuid4() creates a random UUID.

Depending on support from the underlying platform, uuid1() may or may not return a “safe” UUID. A safe UUID
is one which is generated using synchronization methods that ensure no two processes can obtain the same UUID.
All instances of UUID have an is_safe attribute which relays any information about the UUID’s safety, using this
enumeration:

class uuid.SafeUUID

Added in version 3.7.

safe

The UUID was generated by the platform in a multiprocessing-safe way.

unsafe

The UUID was not generated in a multiprocessing-safe way.

unknown

The platform does not provide information on whether the UUID was generated safely or not.

class uuid.UUID(hex=None, bytes=None, bytes_le=None, fields=None, int=None, version=None, *,
is_safe=SafeUUID.unknown)

Create a UUID from either a string of 32 hexadecimal digits, a string of 16 bytes in big-endian order as the
bytes argument, a string of 16 bytes in little-endian order as the bytes_le argument, a tuple of six integers (32-
bit time_low, 16-bit time_mid, 16-bit time_hi_version, 8-bit clock_seq_hi_variant, 8-bit clock_seq_low, 48-bit
node) as the fields argument, or a single 128-bit integer as the int argument. When a string of hex digits is
given, curly braces, hyphens, and a URN prefix are all optional. For example, these expressions all yield the
same UUID:

UUID('{12345678-1234-5678-1234-567812345678}')

UUID('12345678123456781234567812345678')

UUID('urn:uuid:12345678-1234-5678-1234-567812345678')

UUID(bytes=b'\x12\x34\x56\x78'*4)

UUID(bytes_le=b'\x78\x56\x34\x12\x34\x12\x78\x56' +

b'\x12\x34\x56\x78\x12\x34\x56\x78')

UUID(fields=(0x12345678, 0x1234, 0x5678, 0x12, 0x34, 0x567812345678))

UUID(int=0x12345678123456781234567812345678)

Exactly one of hex, bytes, bytes_le, fields, or int must be given. The version argument is optional; if given, the
resulting UUID will have its variant and version number set according to RFC 4122, overriding bits in the
given hex, bytes, bytes_le, fields, or int.

Comparison of UUID objects are made by way of comparing their UUID.int attributes. Comparison with a
non-UUID object raises a TypeError.

str(uuid) returns a string in the form 12345678-1234-5678-1234-567812345678 where the 32 hex-
adecimal digits represent the UUID.

UUID instances have these read-only attributes:

UUID.bytes

The UUID as a 16-byte string (containing the six integer fields in big-endian byte order).

22.15. uuid— UUID objects according to RFC 4122 1469

https://github.com/python/cpython/tree/3.13/Lib/uuid.py
https://datatracker.ietf.org/doc/html/rfc4122.html
https://datatracker.ietf.org/doc/html/rfc4122.html

The Python Library Reference, Release 3.13.1

UUID.bytes_le

The UUID as a 16-byte string (with time_low, time_mid, and time_hi_version in little-endian byte order).

UUID.fields

A tuple of the six integer fields of the UUID, which are also available as six individual attributes and two
derived attributes:

Field Meaning

UUID.time_low
The first 32 bits of the UUID.

UUID.time_mid
The next 16 bits of the UUID.

UUID.time_hi_version
The next 16 bits of the UUID.

UUID.clock_seq_hi_variant
The next 8 bits of the UUID.

UUID.clock_seq_low
The next 8 bits of the UUID.

UUID.node
The last 48 bits of the UUID.

UUID.time
The 60-bit timestamp.

UUID.clock_seq
The 14-bit sequence number.

UUID.hex

The UUID as a 32-character lowercase hexadecimal string.

UUID.int

The UUID as a 128-bit integer.

UUID.urn

The UUID as a URN as specified in RFC 4122.

UUID.variant

The UUID variant, which determines the internal layout of the UUID. This will be one of the constants
RESERVED_NCS, RFC_4122, RESERVED_MICROSOFT, or RESERVED_FUTURE.

UUID.version

The UUID version number (1 through 5, meaningful only when the variant is RFC_4122).

UUID.is_safe

An enumeration of SafeUUIDwhich indicates whether the platform generated the UUID in a multiprocessing-
safe way.

Added in version 3.7.

The uuid module defines the following functions:

uuid.getnode()

Get the hardware address as a 48-bit positive integer. The first time this runs, it may launch a separate program,
which could be quite slow. If all attempts to obtain the hardware address fail, we choose a random 48-bit

1470 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc4122.html

The Python Library Reference, Release 3.13.1

number with the multicast bit (least significant bit of the first octet) set to 1 as recommended in RFC 4122.
“Hardware address” means the MAC address of a network interface. On a machine with multiple network
interfaces, universally administered MAC addresses (i.e. where the second least significant bit of the first octet
is unset) will be preferred over locally administered MAC addresses, but with no other ordering guarantees.

Changed in version 3.7: Universally administered MAC addresses are preferred over locally administered
MAC addresses, since the former are guaranteed to be globally unique, while the latter are not.

uuid.uuid1(node=None, clock_seq=None)
Generate a UUID from a host ID, sequence number, and the current time. If node is not given, getnode()
is used to obtain the hardware address. If clock_seq is given, it is used as the sequence number; otherwise a
random 14-bit sequence number is chosen.

uuid.uuid3(namespace, name)
Generate a UUID based on the MD5 hash of a namespace identifier (which is a UUID) and a name (which is
a bytes object or a string that will be encoded using UTF-8).

uuid.uuid4()

Generate a random UUID.

uuid.uuid5(namespace, name)

Generate a UUID based on the SHA-1 hash of a namespace identifier (which is a UUID) and a name (which
is a bytes object or a string that will be encoded using UTF-8).

The uuid module defines the following namespace identifiers for use with uuid3() or uuid5().

uuid.NAMESPACE_DNS

When this namespace is specified, the name string is a fully qualified domain name.

uuid.NAMESPACE_URL

When this namespace is specified, the name string is a URL.

uuid.NAMESPACE_OID

When this namespace is specified, the name string is an ISO OID.

uuid.NAMESPACE_X500

When this namespace is specified, the name string is an X.500 DN in DER or a text output format.

The uuid module defines the following constants for the possible values of the variant attribute:

uuid.RESERVED_NCS

Reserved for NCS compatibility.

uuid.RFC_4122

Specifies the UUID layout given in RFC 4122.

uuid.RESERVED_MICROSOFT

Reserved for Microsoft compatibility.

uuid.RESERVED_FUTURE

Reserved for future definition.

See also

RFC 4122 - A Universally Unique IDentifier (UUID) URN Namespace
This specification defines a Uniform Resource Name namespace for UUIDs, the internal format of UUIDs,
and methods of generating UUIDs.

22.15. uuid— UUID objects according to RFC 4122 1471

https://datatracker.ietf.org/doc/html/rfc4122.html
https://datatracker.ietf.org/doc/html/rfc4122.html
https://datatracker.ietf.org/doc/html/rfc4122.html

The Python Library Reference, Release 3.13.1

22.15.1 Command-Line Usage

Added in version 3.12.

The uuid module can be executed as a script from the command line.

python -m uuid [-h] [-u {uuid1,uuid3,uuid4,uuid5}] [-n NAMESPACE] [-N NAME]

The following options are accepted:

-h, --help

Show the help message and exit.

-u <uuid>

--uuid <uuid>

Specify the function name to use to generate the uuid. By default uuid4() is used.

-n <namespace>

--namespace <namespace>

The namespace is a UUID, or @ns where ns is a well-known predefined UUID addressed by namespace name.
Such as @dns, @url, @oid, and @x500. Only required for uuid3() / uuid5() functions.

-N <name>

--name <name>

The name used as part of generating the uuid. Only required for uuid3() / uuid5() functions.

22.15.2 Example

Here are some examples of typical usage of the uuid module:

>>> import uuid

>>> # make a UUID based on the host ID and current time

>>> uuid.uuid1()

UUID('a8098c1a-f86e-11da-bd1a-00112444be1e')

>>> # make a UUID using an MD5 hash of a namespace UUID and a name

>>> uuid.uuid3(uuid.NAMESPACE_DNS, 'python.org')

UUID('6fa459ea-ee8a-3ca4-894e-db77e160355e')

>>> # make a random UUID

>>> uuid.uuid4()

UUID('16fd2706-8baf-433b-82eb-8c7fada847da')

>>> # make a UUID using a SHA-1 hash of a namespace UUID and a name

>>> uuid.uuid5(uuid.NAMESPACE_DNS, 'python.org')

UUID('886313e1-3b8a-5372-9b90-0c9aee199e5d')

>>> # make a UUID from a string of hex digits (braces and hyphens ignored)

>>> x = uuid.UUID('{00010203-0405-0607-0809-0a0b0c0d0e0f}')

>>> # convert a UUID to a string of hex digits in standard form

>>> str(x)

'00010203-0405-0607-0809-0a0b0c0d0e0f'

>>> # get the raw 16 bytes of the UUID

>>> x.bytes

b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f'

(continues on next page)

1472 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> # make a UUID from a 16-byte string

>>> uuid.UUID(bytes=x.bytes)

UUID('00010203-0405-0607-0809-0a0b0c0d0e0f')

22.15.3 Command-Line Example

Here are some examples of typical usage of the uuid command line interface:

generate a random uuid - by default uuid4() is used

$ python -m uuid

generate a uuid using uuid1()

$ python -m uuid -u uuid1

generate a uuid using uuid5

$ python -m uuid -u uuid5 -n @url -N example.com

22.16 socketserver— A framework for network servers

Source code: Lib/socketserver.py

The socketserver module simplifies the task of writing network servers.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

There are four basic concrete server classes:

class socketserver.TCPServer(server_address, RequestHandlerClass, bind_and_activate=True)
This uses the internet TCP protocol, which provides for continuous streams of data between the client and
server. If bind_and_activate is true, the constructor automatically attempts to invoke server_bind() and
server_activate(). The other parameters are passed to the BaseServer base class.

class socketserver.UDPServer(server_address, RequestHandlerClass, bind_and_activate=True)
This uses datagrams, which are discrete packets of information that may arrive out of order or be lost while in
transit. The parameters are the same as for TCPServer.

class socketserver.UnixStreamServer(server_address, RequestHandlerClass, bind_and_activate=True)
class socketserver.UnixDatagramServer(server_address, RequestHandlerClass,

bind_and_activate=True)

These more infrequently used classes are similar to the TCP and UDP classes, but use Unix domain sockets;
they’re not available on non-Unix platforms. The parameters are the same as for TCPServer.

These four classes process requests synchronously; each request must be completed before the next request can be
started. This isn’t suitable if each request takes a long time to complete, because it requires a lot of computation,
or because it returns a lot of data which the client is slow to process. The solution is to create a separate process
or thread to handle each request; the ForkingMixIn and ThreadingMixIn mix-in classes can be used to support
asynchronous behaviour.

Creating a server requires several steps. First, you must create a request handler class by subclassing the
BaseRequestHandler class and overriding its handle() method; this method will process incoming requests.
Second, you must instantiate one of the server classes, passing it the server’s address and the request handler class. It
is recommended to use the server in a with statement. Then call the handle_request() or serve_forever()
method of the server object to process one or many requests. Finally, call server_close() to close the socket
(unless you used a with statement).

22.16. socketserver— A framework for network servers 1473

https://github.com/python/cpython/tree/3.13/Lib/socketserver.py

The Python Library Reference, Release 3.13.1

When inheriting from ThreadingMixIn for threaded connection behavior, you should explicitly declare how
you want your threads to behave on an abrupt shutdown. The ThreadingMixIn class defines an attribute dae-
mon_threads, which indicates whether or not the server should wait for thread termination. You should set the flag
explicitly if you would like threads to behave autonomously; the default is False, meaning that Python will not exit
until all threads created by ThreadingMixIn have exited.

Server classes have the same external methods and attributes, no matter what network protocol they use.

22.16.1 Server Creation Notes

There are five classes in an inheritance diagram, four of which represent synchronous servers of four types:

+------------+

| BaseServer |

+------------+

|

v

+-----------+ +------------------+

| TCPServer |------->| UnixStreamServer |

+-----------+ +------------------+

|

v

+-----------+ +--------------------+

| UDPServer |------->| UnixDatagramServer |

+-----------+ +--------------------+

Note that UnixDatagramServer derives from UDPServer, not from UnixStreamServer— the only difference
between an IP and a Unix server is the address family.

class socketserver.ForkingMixIn

class socketserver.ThreadingMixIn

Forking and threading versions of each type of server can be created using these mix-in classes. For instance,
ThreadingUDPServer is created as follows:

class ThreadingUDPServer(ThreadingMixIn, UDPServer):

pass

The mix-in class comes first, since it overrides a method defined in UDPServer. Setting the various attributes
also changes the behavior of the underlying server mechanism.

ForkingMixIn and the Forking classes mentioned below are only available on POSIX platforms that support
fork().

block_on_close

ForkingMixIn.server_close waits until all child processes complete, except if block_on_close
attribute is False.

ThreadingMixIn.server_close waits until all non-daemon threads complete, except if
block_on_close attribute is False.

daemon_threads

For ThreadingMixIn use daemonic threads by setting ThreadingMixIn.daemon_threads to True
to not wait until threads complete.

Changed in version 3.7: ForkingMixIn.server_close and ThreadingMixIn.server_close now
waits until all child processes and non-daemonic threads complete. Add a new ForkingMixIn.

block_on_close class attribute to opt-in for the pre-3.7 behaviour.

class socketserver.ForkingTCPServer

class socketserver.ForkingUDPServer

class socketserver.ThreadingTCPServer

1474 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

class socketserver.ThreadingUDPServer

class socketserver.ForkingUnixStreamServer

class socketserver.ForkingUnixDatagramServer

class socketserver.ThreadingUnixStreamServer

class socketserver.ThreadingUnixDatagramServer

These classes are pre-defined using the mix-in classes.

Added in version 3.12: The ForkingUnixStreamServer and ForkingUnixDatagramServer classes were
added.

To implement a service, you must derive a class from BaseRequestHandler and redefine its handle() method.
You can then run various versions of the service by combining one of the server classes with your request handler
class. The request handler class must be different for datagram or stream services. This can be hidden by using the
handler subclasses StreamRequestHandler or DatagramRequestHandler.

Of course, you still have to use your head! For instance, it makes no sense to use a forking server if the service
contains state in memory that can be modified by different requests, since the modifications in the child process
would never reach the initial state kept in the parent process and passed to each child. In this case, you can use a
threading server, but you will probably have to use locks to protect the integrity of the shared data.

On the other hand, if you are building an HTTP server where all data is stored externally (for instance, in the file
system), a synchronous class will essentially render the service “deaf” while one request is being handled – which
may be for a very long time if a client is slow to receive all the data it has requested. Here a threading or forking
server is appropriate.

In some cases, it may be appropriate to process part of a request synchronously, but to finish processing in a forked
child depending on the request data. This can be implemented by using a synchronous server and doing an explicit
fork in the request handler class handle() method.

Another approach to handling multiple simultaneous requests in an environment that supports neither threads nor
fork() (or where these are too expensive or inappropriate for the service) is to maintain an explicit table of partially
finished requests and to use selectors to decide which request to work on next (or whether to handle a new
incoming request). This is particularly important for stream services where each client can potentially be connected
for a long time (if threads or subprocesses cannot be used).

22.16.2 Server Objects

class socketserver.BaseServer(server_address, RequestHandlerClass)
This is the superclass of all Server objects in the module. It defines the interface, given below, but does not
implement most of the methods, which is done in subclasses. The two parameters are stored in the respective
server_address and RequestHandlerClass attributes.

fileno()

Return an integer file descriptor for the socket on which the server is listening. This function is most
commonly passed to selectors, to allow monitoring multiple servers in the same process.

handle_request()

Process a single request. This function calls the following methods in order: get_request(),
verify_request(), and process_request(). If the user-provided handle()method of the han-
dler class raises an exception, the server’s handle_error() method will be called. If no request is
received within timeout seconds, handle_timeout() will be called and handle_request() will
return.

serve_forever(poll_interval=0.5)

Handle requests until an explicit shutdown() request. Poll for shutdown every poll_interval seconds.
Ignores the timeout attribute. It also calls service_actions(), which may be used by a subclass
or mixin to provide actions specific to a given service. For example, the ForkingMixIn class uses
service_actions() to clean up zombie child processes.

Changed in version 3.3: Added service_actions call to the serve_forever method.

22.16. socketserver— A framework for network servers 1475

The Python Library Reference, Release 3.13.1

service_actions()

This is called in the serve_forever() loop. This method can be overridden by subclasses or mixin
classes to perform actions specific to a given service, such as cleanup actions.

Added in version 3.3.

shutdown()

Tell the serve_forever() loop to stop and wait until it does. shutdown() must be called while
serve_forever() is running in a different thread otherwise it will deadlock.

server_close()

Clean up the server. May be overridden.

address_family

The family of protocols to which the server’s socket belongs. Common examples are socket.AF_INET
and socket.AF_UNIX.

RequestHandlerClass

The user-provided request handler class; an instance of this class is created for each request.

server_address

The address on which the server is listening. The format of addresses varies depending on the protocol
family; see the documentation for the socket module for details. For internet protocols, this is a tuple
containing a string giving the address, and an integer port number: ('127.0.0.1', 80), for example.

socket

The socket object on which the server will listen for incoming requests.

The server classes support the following class variables:

allow_reuse_address

Whether the server will allow the reuse of an address. This defaults to False, and can be set in subclasses
to change the policy.

request_queue_size

The size of the request queue. If it takes a long time to process a single request, any requests that arrive
while the server is busy are placed into a queue, up to request_queue_size requests. Once the queue
is full, further requests from clients will get a “Connection denied” error. The default value is usually 5,
but this can be overridden by subclasses.

socket_type

The type of socket used by the server; socket.SOCK_STREAM and socket.SOCK_DGRAM are two
common values.

timeout

Timeout duration, measured in seconds, or None if no timeout is desired. If handle_request()
receives no incoming requests within the timeout period, the handle_timeout() method is called.

There are various server methods that can be overridden by subclasses of base server classes like TCPServer;
these methods aren’t useful to external users of the server object.

finish_request(request, client_address)
Actually processes the request by instantiating RequestHandlerClass and calling its handle()
method.

get_request()

Must accept a request from the socket, and return a 2-tuple containing the new socket object to be used
to communicate with the client, and the client’s address.

handle_error(request, client_address)
This function is called if the handle() method of a RequestHandlerClass instance raises an ex-
ception. The default action is to print the traceback to standard error and continue handling further
requests.

1476 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

Changed in version 3.6: Now only called for exceptions derived from the Exception class.

handle_timeout()

This function is called when the timeout attribute has been set to a value other than None and the
timeout period has passed with no requests being received. The default action for forking servers is to
collect the status of any child processes that have exited, while in threading servers this method does
nothing.

process_request(request, client_address)
Calls finish_request() to create an instance of the RequestHandlerClass. If desired, this func-
tion can create a new process or thread to handle the request; the ForkingMixIn and ThreadingMixIn
classes do this.

server_activate()

Called by the server’s constructor to activate the server. The default behavior for a TCP server just invokes
listen() on the server’s socket. May be overridden.

server_bind()

Called by the server’s constructor to bind the socket to the desired address. May be overridden.

verify_request(request, client_address)
Must return a Boolean value; if the value is True, the request will be processed, and if it’s False, the
request will be denied. This function can be overridden to implement access controls for a server. The
default implementation always returns True.

Changed in version 3.6: Support for the context manager protocol was added. Exiting the context manager is
equivalent to calling server_close().

22.16.3 Request Handler Objects

class socketserver.BaseRequestHandler

This is the superclass of all request handler objects. It defines the interface, given below. A concrete request
handler subclass must define a new handle() method, and can override any of the other methods. A new
instance of the subclass is created for each request.

setup()

Called before the handle() method to perform any initialization actions required. The default imple-
mentation does nothing.

handle()

This functionmust do all the work required to service a request. The default implementation does nothing.
Several instance attributes are available to it; the request is available as request; the client address as
client_address; and the server instance as server, in case it needs access to per-server information.

The type of request is different for datagram or stream services. For stream services, request is a
socket object; for datagram services, request is a pair of string and socket.

finish()

Called after the handle()method to perform any clean-up actions required. The default implementation
does nothing. If setup() raises an exception, this function will not be called.

request

The new socket.socket object to be used to communicate with the client.

client_address

Client address returned by BaseServer.get_request().

server

BaseServer object used for handling the request.

class socketserver.StreamRequestHandler

22.16. socketserver— A framework for network servers 1477

The Python Library Reference, Release 3.13.1

class socketserver.DatagramRequestHandler

These BaseRequestHandler subclasses override the setup() and finish()methods, and provide rfile
and wfile attributes.

rfile

A file object from which receives the request is read. Support the io.BufferedIOBase readable in-
terface.

wfile

A file object to which the reply is written. Support the io.BufferedIOBase writable interface

Changed in version 3.6: wfile also supports the io.BufferedIOBase writable interface.

22.16.4 Examples

socketserver.TCPServer Example

This is the server side:

import socketserver

class MyTCPHandler(socketserver.BaseRequestHandler):

"""

The request handler class for our server.

It is instantiated once per connection to the server, and must

override the handle() method to implement communication to the

client.

"""

def handle(self):

self.request is the TCP socket connected to the client

self.data = self.request.recv(1024).strip()

print("Received from {}:".format(self.client_address[0]))

print(self.data)

just send back the same data, but upper-cased

self.request.sendall(self.data.upper())

if __name__ == "__main__":

HOST, PORT = "localhost", 9999

Create the server, binding to localhost on port 9999

with socketserver.TCPServer((HOST, PORT), MyTCPHandler) as server:

Activate the server; this will keep running until you

interrupt the program with Ctrl-C

server.serve_forever()

An alternative request handler class that makes use of streams (file-like objects that simplify communication by
providing the standard file interface):

class MyTCPHandler(socketserver.StreamRequestHandler):

def handle(self):

self.rfile is a file-like object created by the handler;

we can now use e.g. readline() instead of raw recv() calls

self.data = self.rfile.readline().strip()

print("{} wrote:".format(self.client_address[0]))

print(self.data)

Likewise, self.wfile is a file-like object used to write back

(continues on next page)

1478 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

(continued from previous page)

to the client

self.wfile.write(self.data.upper())

The difference is that the readline() call in the second handler will call recv()multiple times until it encounters
a newline character, while the single recv() call in the first handler will just return what has been received so far
from the client’s sendall() call (typically all of it, but this is not guaranteed by the TCP protocol).

This is the client side:

import socket

import sys

HOST, PORT = "localhost", 9999

data = " ".join(sys.argv[1:])

Create a socket (SOCK_STREAM means a TCP socket)

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:

Connect to server and send data

sock.connect((HOST, PORT))

sock.sendall(bytes(data + "\n", "utf-8"))

Receive data from the server and shut down

received = str(sock.recv(1024), "utf-8")

print("Sent: {}".format(data))

print("Received: {}".format(received))

The output of the example should look something like this:

Server:

$ python TCPServer.py

127.0.0.1 wrote:

b'hello world with TCP'

127.0.0.1 wrote:

b'python is nice'

Client:

$ python TCPClient.py hello world with TCP

Sent: hello world with TCP

Received: HELLO WORLD WITH TCP

$ python TCPClient.py python is nice

Sent: python is nice

Received: PYTHON IS NICE

socketserver.UDPServer Example

This is the server side:

import socketserver

class MyUDPHandler(socketserver.BaseRequestHandler):

"""

This class works similar to the TCP handler class, except that

self.request consists of a pair of data and client socket, and since

there is no connection the client address must be given explicitly

when sending data back via sendto().

(continues on next page)

22.16. socketserver— A framework for network servers 1479

The Python Library Reference, Release 3.13.1

(continued from previous page)

"""

def handle(self):

data = self.request[0].strip()

socket = self.request[1]

print("{} wrote:".format(self.client_address[0]))

print(data)

socket.sendto(data.upper(), self.client_address)

if __name__ == "__main__":

HOST, PORT = "localhost", 9999

with socketserver.UDPServer((HOST, PORT), MyUDPHandler) as server:

server.serve_forever()

This is the client side:

import socket

import sys

HOST, PORT = "localhost", 9999

data = " ".join(sys.argv[1:])

SOCK_DGRAM is the socket type to use for UDP sockets

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

As you can see, there is no connect() call; UDP has no connections.

Instead, data is directly sent to the recipient via sendto().

sock.sendto(bytes(data + "\n", "utf-8"), (HOST, PORT))

received = str(sock.recv(1024), "utf-8")

print("Sent: {}".format(data))

print("Received: {}".format(received))

The output of the example should look exactly like for the TCP server example.

Asynchronous Mixins

To build asynchronous handlers, use the ThreadingMixIn and ForkingMixIn classes.

An example for the ThreadingMixIn class:

import socket

import threading

import socketserver

class ThreadedTCPRequestHandler(socketserver.BaseRequestHandler):

def handle(self):

data = str(self.request.recv(1024), 'ascii')

cur_thread = threading.current_thread()

response = bytes("{}: {}".format(cur_thread.name, data), 'ascii')

self.request.sendall(response)

class ThreadedTCPServer(socketserver.ThreadingMixIn, socketserver.TCPServer):

pass

def client(ip, port, message):

(continues on next page)

1480 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

(continued from previous page)

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:

sock.connect((ip, port))

sock.sendall(bytes(message, 'ascii'))

response = str(sock.recv(1024), 'ascii')

print("Received: {}".format(response))

if __name__ == "__main__":

Port 0 means to select an arbitrary unused port

HOST, PORT = "localhost", 0

server = ThreadedTCPServer((HOST, PORT), ThreadedTCPRequestHandler)

with server:

ip, port = server.server_address

Start a thread with the server -- that thread will then start one

more thread for each request

server_thread = threading.Thread(target=server.serve_forever)

Exit the server thread when the main thread terminates

server_thread.daemon = True

server_thread.start()

print("Server loop running in thread:", server_thread.name)

client(ip, port, "Hello World 1")

client(ip, port, "Hello World 2")

client(ip, port, "Hello World 3")

server.shutdown()

The output of the example should look something like this:

$ python ThreadedTCPServer.py

Server loop running in thread: Thread-1

Received: Thread-2: Hello World 1

Received: Thread-3: Hello World 2

Received: Thread-4: Hello World 3

The ForkingMixIn class is used in the same way, except that the server will spawn a new process for each request.
Available only on POSIX platforms that support fork().

22.17 http.server— HTTP servers

Source code: Lib/http/server.py

This module defines classes for implementing HTTP servers.

Warning

http.server is not recommended for production. It only implements basic security checks.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

One class, HTTPServer, is a socketserver.TCPServer subclass. It creates and listens at the HTTP socket,
dispatching the requests to a handler. Code to create and run the server looks like this:

22.17. http.server— HTTP servers 1481

https://github.com/python/cpython/tree/3.13/Lib/http/server.py

The Python Library Reference, Release 3.13.1

def run(server_class=HTTPServer, handler_class=BaseHTTPRequestHandler):

server_address = ('', 8000)

httpd = server_class(server_address, handler_class)

httpd.serve_forever()

class http.server.HTTPServer(server_address, RequestHandlerClass)

This class builds on the TCPServer class by storing the server address as instance variables named
server_name and server_port. The server is accessible by the handler, typically through the handler’s
server instance variable.

class http.server.ThreadingHTTPServer(server_address, RequestHandlerClass)

This class is identical to HTTPServer but uses threads to handle requests by using the ThreadingMixIn. This
is useful to handle web browsers pre-opening sockets, on which HTTPServer would wait indefinitely.

Added in version 3.7.

The HTTPServer and ThreadingHTTPServer must be given a RequestHandlerClass on instantiation, of which
this module provides three different variants:

class http.server.BaseHTTPRequestHandler(request, client_address, server)
This class is used to handle the HTTP requests that arrive at the server. By itself, it cannot respond to
any actual HTTP requests; it must be subclassed to handle each request method (e.g. GET or POST).
BaseHTTPRequestHandler provides a number of class and instance variables, and methods for use by
subclasses.

The handler will parse the request and the headers, then call a method specific to the request type. The method
name is constructed from the request. For example, for the request method SPAM, the do_SPAM() method
will be called with no arguments. All of the relevant information is stored in instance variables of the handler.
Subclasses should not need to override or extend the __init__() method.

BaseHTTPRequestHandler has the following instance variables:

client_address

Contains a tuple of the form (host, port) referring to the client’s address.

server

Contains the server instance.

close_connection

Boolean that should be set before handle_one_request() returns, indicating if another request may
be expected, or if the connection should be shut down.

requestline

Contains the string representation of the HTTP request line. The terminating CRLF is stripped. This
attribute should be set by handle_one_request(). If no valid request line was processed, it should
be set to the empty string.

command

Contains the command (request type). For example, 'GET'.

path

Contains the request path. If query component of the URL is present, then path includes the query.
Using the terminology of RFC 3986, path here includes hier-part and the query.

request_version

Contains the version string from the request. For example, 'HTTP/1.0'.

headers

Holds an instance of the class specified by the MessageClass class variable. This instance parses and
manages the headers in the HTTP request. The parse_headers() function from http.client is
used to parse the headers and it requires that the HTTP request provide a valid RFC 2822 style header.

1482 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc3986.html
https://datatracker.ietf.org/doc/html/rfc2822.html

The Python Library Reference, Release 3.13.1

rfile

An io.BufferedIOBase input stream, ready to read from the start of the optional input data.

wfile

Contains the output stream for writing a response back to the client. Proper adherence to the HTTP
protocol must be used when writing to this stream in order to achieve successful interoperation with
HTTP clients.

Changed in version 3.6: This is an io.BufferedIOBase stream.

BaseHTTPRequestHandler has the following attributes:

server_version

Specifies the server software version. You may want to override this. The format is multiple whitespace-
separated strings, where each string is of the form name[/version]. For example, 'BaseHTTP/0.2'.

sys_version

Contains the Python system version, in a form usable by the version_string method and the
server_version class variable. For example, 'Python/1.4'.

error_message_format

Specifies a format string that should be used by send_error() method for building an error response
to the client. The string is filled by default with variables from responses based on the status code that
passed to send_error().

error_content_type

Specifies the Content-Type HTTP header of error responses sent to the client. The default value is
'text/html'.

protocol_version

Specifies the HTTP version to which the server is conformant. It is sent in responses to let the client know
the server’s communication capabilities for future requests. If set to 'HTTP/1.1', the server will permit
HTTP persistent connections; however, your server must then include an accurate Content-Length
header (using send_header()) in all of its responses to clients. For backwards compatibility, the setting
defaults to 'HTTP/1.0'.

MessageClass

Specifies an email.message.Message-like class to parse HTTP headers. Typically, this is not over-
ridden, and it defaults to http.client.HTTPMessage.

responses

This attribute contains a mapping of error code integers to two-element tuples containing a short and
long message. For example, {code: (shortmessage, longmessage)}. The shortmessage is usu-
ally used as the message key in an error response, and longmessage as the explain key. It is used by
send_response_only() and send_error() methods.

A BaseHTTPRequestHandler instance has the following methods:

handle()

Calls handle_one_request() once (or, if persistent connections are enabled, multiple times) to han-
dle incoming HTTP requests. You should never need to override it; instead, implement appropriate
do_*() methods.

handle_one_request()

This method will parse and dispatch the request to the appropriate do_*() method. You should never
need to override it.

handle_expect_100()

When an HTTP/1.1 conformant server receives an Expect: 100-continue request header it responds
back with a 100 Continue followed by 200 OK headers. This method can be overridden to raise
an error if the server does not want the client to continue. For e.g. server can choose to send 417

Expectation Failed as a response header and return False.

22.17. http.server— HTTP servers 1483

The Python Library Reference, Release 3.13.1

Added in version 3.2.

send_error(code, message=None, explain=None)
Sends and logs a complete error reply to the client. The numeric code specifies the HTTP error
code, with message as an optional, short, human readable description of the error. The explain argu-
ment can be used to provide more detailed information about the error; it will be formatted using the
error_message_format attribute and emitted, after a complete set of headers, as the response body.
The responses attribute holds the default values for message and explain that will be used if no value is
provided; for unknown codes the default value for both is the string ???. The body will be empty if the
method is HEAD or the response code is one of the following: 1xx, 204 No Content, 205 Reset

Content, 304 Not Modified.

Changed in version 3.4: The error response includes a Content-Length header. Added the explain argu-
ment.

send_response(code, message=None)
Adds a response header to the headers buffer and logs the accepted request. The HTTP response
line is written to the internal buffer, followed by Server and Date headers. The values for these two
headers are picked up from the version_string() and date_time_string() methods, respec-
tively. If the server does not intend to send any other headers using the send_header() method, then
send_response() should be followed by an end_headers() call.

Changed in version 3.3: Headers are stored to an internal buffer and end_headers() needs to be called
explicitly.

send_header(keyword, value)
Adds the HTTP header to an internal buffer which will be written to the output stream when either
end_headers() or flush_headers() is invoked. keyword should specify the header keyword, with
value specifying its value. Note that, after the send_header calls are done, end_headers()MUST BE
called in order to complete the operation.

Changed in version 3.2: Headers are stored in an internal buffer.

send_response_only(code, message=None)
Sends the response header only, used for the purposes when 100 Continue response is sent by the
server to the client. The headers not buffered and sent directly the output stream.If the message is not
specified, the HTTP message corresponding the response code is sent.

Added in version 3.2.

end_headers()

Adds a blank line (indicating the end of the HTTP headers in the response) to the headers buffer and
calls flush_headers().

Changed in version 3.2: The buffered headers are written to the output stream.

flush_headers()

Finally send the headers to the output stream and flush the internal headers buffer.

Added in version 3.3.

log_request(code=’-’, size=’-’)
Logs an accepted (successful) request. code should specify the numeric HTTP code associated with the
response. If a size of the response is available, then it should be passed as the size parameter.

log_error(...)
Logs an error when a request cannot be fulfilled. By default, it passes the message to log_message(),
so it takes the same arguments (format and additional values).

log_message(format, ...)
Logs an arbitrary message to sys.stderr. This is typically overridden to create custom error logging
mechanisms. The format argument is a standard printf-style format string, where the additional argu-
ments to log_message() are applied as inputs to the formatting. The client ip address and current date
and time are prefixed to every message logged.

1484 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

version_string()

Returns the server software’s version string. This is a combination of the server_version and
sys_version attributes.

date_time_string(timestamp=None)
Returns the date and time given by timestamp (which must be None or in the format returned by time.
time()), formatted for a message header. If timestamp is omitted, it uses the current date and time.

The result looks like 'Sun, 06 Nov 1994 08:49:37 GMT'.

log_date_time_string()

Returns the current date and time, formatted for logging.

address_string()

Returns the client address.

Changed in version 3.3: Previously, a name lookup was performed. To avoid name resolution delays, it
now always returns the IP address.

class http.server.SimpleHTTPRequestHandler(request, client_address, server, directory=None)
This class serves files from the directory directory and below, or the current directory if directory is not provided,
directly mapping the directory structure to HTTP requests.

Changed in version 3.7: Added the directory parameter.

Changed in version 3.9: The directory parameter accepts a path-like object.

A lot of the work, such as parsing the request, is done by the base class BaseHTTPRequestHandler. This
class implements the do_GET() and do_HEAD() functions.

The following are defined as class-level attributes of SimpleHTTPRequestHandler:

server_version

This will be "SimpleHTTP/" + __version__, where __version__ is defined at the module level.

extensions_map

A dictionary mapping suffixes into MIME types, contains custom overrides for the default system map-
pings. The mapping is used case-insensitively, and so should contain only lower-cased keys.

Changed in version 3.9: This dictionary is no longer filled with the default system mappings, but only
contains overrides.

The SimpleHTTPRequestHandler class defines the following methods:

do_HEAD()

This method serves the 'HEAD' request type: it sends the headers it would send for the equivalent GET
request. See the do_GET() method for a more complete explanation of the possible headers.

do_GET()

The request is mapped to a local file by interpreting the request as a path relative to the current working
directory.

If the request was mapped to a directory, the directory is checked for a file named index.html or
index.htm (in that order). If found, the file’s contents are returned; otherwise a directory listing is
generated by calling the list_directory() method. This method uses os.listdir() to scan the
directory, and returns a 404 error response if the listdir() fails.

If the request was mapped to a file, it is opened. Any OSError exception in opening the requested file
is mapped to a 404, 'File not found' error. If there was an 'If-Modified-Since' header in
the request, and the file was not modified after this time, a 304, 'Not Modified' response is sent.
Otherwise, the content type is guessed by calling the guess_type() method, which in turn uses the
extensions_map variable, and the file contents are returned.

A 'Content-type:' header with the guessed content type is output, followed by a
'Content-Length:' header with the file’s size and a 'Last-Modified:' header with the
file’s modification time.

22.17. http.server— HTTP servers 1485

The Python Library Reference, Release 3.13.1

Then follows a blank line signifying the end of the headers, and then the contents of the file are output.
If the file’s MIME type starts with text/ the file is opened in text mode; otherwise binary mode is used.

For example usage, see the implementation of the test function in Lib/http/server.py.

Changed in version 3.7: Support of the 'If-Modified-Since' header.

The SimpleHTTPRequestHandler class can be used in the following manner in order to create a very basic web-
server serving files relative to the current directory:

import http.server

import socketserver

PORT = 8000

Handler = http.server.SimpleHTTPRequestHandler

with socketserver.TCPServer(("", PORT), Handler) as httpd:

print("serving at port", PORT)

httpd.serve_forever()

SimpleHTTPRequestHandler can also be subclassed to enhance behavior, such as using different index file names
by overriding the class attribute index_pages.

http.server can also be invoked directly using the -m switch of the interpreter. Similar to the previous example,
this serves files relative to the current directory:

python -m http.server

The server listens to port 8000 by default. The default can be overridden by passing the desired port number as an
argument:

python -m http.server 9000

By default, the server binds itself to all interfaces. The option -b/--bind specifies a specific address to which it
should bind. Both IPv4 and IPv6 addresses are supported. For example, the following command causes the server to
bind to localhost only:

python -m http.server --bind 127.0.0.1

Changed in version 3.4: Added the --bind option.

Changed in version 3.8: Support IPv6 in the --bind option.

By default, the server uses the current directory. The option -d/--directory specifies a directory to which it
should serve the files. For example, the following command uses a specific directory:

python -m http.server --directory /tmp/

Changed in version 3.7: Added the --directory option.

By default, the server is conformant to HTTP/1.0. The option -p/--protocol specifies the HTTP version to which
the server is conformant. For example, the following command runs an HTTP/1.1 conformant server:

python -m http.server --protocol HTTP/1.1

Changed in version 3.11: Added the --protocol option.

class http.server.CGIHTTPRequestHandler(request, client_address, server)
This class is used to serve either files or output of CGI scripts from the current directory and be-
low. Note that mapping HTTP hierarchic structure to local directory structure is exactly as in
SimpleHTTPRequestHandler.

1486 Chapter 22. Internet Protocols and Support

https://github.com/python/cpython/tree/3.13/Lib/http/server.py

The Python Library Reference, Release 3.13.1

Note

CGI scripts run by the CGIHTTPRequestHandler class cannot execute redirects (HTTP code 302), be-
cause code 200 (script output follows) is sent prior to execution of the CGI script. This pre-empts the
status code.

The class will however, run the CGI script, instead of serving it as a file, if it guesses it to be a CGI script.
Only directory-based CGI are used — the other common server configuration is to treat special extensions as
denoting CGI scripts.

The do_GET() and do_HEAD() functions are modified to run CGI scripts and serve the output, instead of
serving files, if the request leads to somewhere below the cgi_directories path.

The CGIHTTPRequestHandler defines the following data member:

cgi_directories

This defaults to ['/cgi-bin', '/htbin'] and describes directories to treat as containing CGI
scripts.

The CGIHTTPRequestHandler defines the following method:

do_POST()

This method serves the 'POST' request type, only allowed for CGI scripts. Error 501, “Can only POST
to CGI scripts”, is output when trying to POST to a non-CGI url.

Note that CGI scripts will be run with UID of user nobody, for security reasons. Problems with the CGI script
will be translated to error 403.

Deprecated since version 3.13, will be removed in version 3.15: CGIHTTPRequestHandler is being removed
in 3.15. CGI has not been considered a good way to do things for well over a decade. This code has been
unmaintained for a while now and sees very little practical use. Retaining it could lead to further security
considerations.

CGIHTTPRequestHandler can be enabled in the command line by passing the --cgi option:

python -m http.server --cgi

Deprecated since version 3.13, will be removed in version 3.15: http.server command line --cgi support is
being removed because CGIHTTPRequestHandler is being removed.

Warning

CGIHTTPRequestHandler and the --cgi command line option are not intended for use by untrusted clients
and may be vulnerable to exploitation. Always use within a secure environment.

22.17.1 Security Considerations

SimpleHTTPRequestHandler will follow symbolic links when handling requests, this makes it possible for files
outside of the specified directory to be served.

Earlier versions of Python did not scrub control characters from the log messages emitted to stderr from python

-m http.server or the default BaseHTTPRequestHandler .log_message implementation. This could allow
remote clients connecting to your server to send nefarious control codes to your terminal.

Changed in version 3.12: Control characters are scrubbed in stderr logs.

22.17. http.server— HTTP servers 1487

The Python Library Reference, Release 3.13.1

22.18 http.cookies— HTTP state management

Source code: Lib/http/cookies.py

The http.cookies module defines classes for abstracting the concept of cookies, an HTTP state management
mechanism. It supports both simple string-only cookies, and provides an abstraction for having any serializable
data-type as cookie value.

The module formerly strictly applied the parsing rules described in the RFC 2109 and RFC 2068 specifications. It
has since been discovered that MSIE 3.0x didn’t follow the character rules outlined in those specs; many current-day
browsers and servers have also relaxed parsing rules when it comes to cookie handling. As a result, this module now
uses parsing rules that are a bit less strict than they once were.

The character set, string.ascii_letters, string.digits and !#$%&'*+-.^_`|~: denote the set of valid
characters allowed by this module in a cookie name (as key).

Changed in version 3.3: Allowed ‘:’ as a valid cookie name character.

Note

On encountering an invalid cookie, CookieError is raised, so if your cookie data comes from a browser you
should always prepare for invalid data and catch CookieError on parsing.

exception http.cookies.CookieError

Exception failing because of RFC 2109 invalidity: incorrect attributes, incorrect Set-Cookie header, etc.

class http.cookies.BaseCookie([input])
This class is a dictionary-like object whose keys are strings and whose values are Morsel instances. Note that
upon setting a key to a value, the value is first converted to a Morsel containing the key and the value.

If input is given, it is passed to the load() method.

class http.cookies.SimpleCookie([input])
This class derives from BaseCookie and overrides value_decode() and value_encode().
SimpleCookie supports strings as cookie values. When setting the value, SimpleCookie calls the
builtin str() to convert the value to a string. Values received from HTTP are kept as strings.

See also

Module http.cookiejar
HTTP cookie handling for web clients. The http.cookiejar and http.cookies modules do not de-
pend on each other.

RFC 2109 - HTTP State Management Mechanism
This is the state management specification implemented by this module.

22.18.1 Cookie Objects

BaseCookie.value_decode(val)
Return a tuple (real_value, coded_value) from a string representation. real_value can be any type.
This method does no decoding in BaseCookie— it exists so it can be overridden.

BaseCookie.value_encode(val)
Return a tuple (real_value, coded_value). val can be any type, but coded_value will always be
converted to a string. This method does no encoding in BaseCookie— it exists so it can be overridden.

In general, it should be the case that value_encode() and value_decode() are inverses on the range of
value_decode.

1488 Chapter 22. Internet Protocols and Support

https://github.com/python/cpython/tree/3.13/Lib/http/cookies.py
https://datatracker.ietf.org/doc/html/rfc2109.html
https://datatracker.ietf.org/doc/html/rfc2068.html
https://datatracker.ietf.org/doc/html/rfc2109.html
https://datatracker.ietf.org/doc/html/rfc2109.html

The Python Library Reference, Release 3.13.1

BaseCookie.output(attrs=None, header=’Set-Cookie:’, sep=’\r\n’)
Return a string representation suitable to be sent as HTTP headers. attrs and header are sent to each Morsel’s
output()method. sep is used to join the headers together, and is by default the combination '\r\n' (CRLF).

BaseCookie.js_output(attrs=None)
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript, will act the
same as if the HTTP headers was sent.

The meaning for attrs is the same as in output().

BaseCookie.load(rawdata)
If rawdata is a string, parse it as an HTTP_COOKIE and add the values found there as Morsels. If it is a
dictionary, it is equivalent to:

for k, v in rawdata.items():

cookie[k] = v

22.18.2 Morsel Objects

class http.cookies.Morsel

Abstract a key/value pair, which has some RFC 2109 attributes.

Morsels are dictionary-like objects, whose set of keys is constant — the valid RFC 2109 attributes, which are:

expires

path

comment

domain

max-age

secure

version

httponly

samesite

The attribute httponly specifies that the cookie is only transferred in HTTP requests, and is not accessible
through JavaScript. This is intended to mitigate some forms of cross-site scripting.

The attribute samesite specifies that the browser is not allowed to send the cookie along with cross-site
requests. This helps to mitigate CSRF attacks. Valid values for this attribute are “Strict” and “Lax”.

The keys are case-insensitive and their default value is ''.

Changed in version 3.5: __eq__() now takes key and value into account.

Changed in version 3.7: Attributes key, value and coded_value are read-only. Use set() for setting
them.

Changed in version 3.8: Added support for the samesite attribute.

Morsel.value

The value of the cookie.

Morsel.coded_value

The encoded value of the cookie — this is what should be sent.

Morsel.key

The name of the cookie.

Morsel.set(key, value, coded_value)
Set the key, value and coded_value attributes.

22.18. http.cookies— HTTP state management 1489

https://datatracker.ietf.org/doc/html/rfc2109.html
https://datatracker.ietf.org/doc/html/rfc2109.html

The Python Library Reference, Release 3.13.1

Morsel.isReservedKey(K)
Whether K is a member of the set of keys of a Morsel.

Morsel.output(attrs=None, header=’Set-Cookie:’)
Return a string representation of theMorsel, suitable to be sent as an HTTP header. By default, all the attributes
are included, unless attrs is given, in which case it should be a list of attributes to use. header is by default
"Set-Cookie:".

Morsel.js_output(attrs=None)
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript, will act the
same as if the HTTP header was sent.

The meaning for attrs is the same as in output().

Morsel.OutputString(attrs=None)
Return a string representing the Morsel, without any surrounding HTTP or JavaScript.

The meaning for attrs is the same as in output().

Morsel.update(values)
Update the values in the Morsel dictionary with the values in the dictionary values. Raise an error if any of
the keys in the values dict is not a valid RFC 2109 attribute.

Changed in version 3.5: an error is raised for invalid keys.

Morsel.copy(value)
Return a shallow copy of the Morsel object.

Changed in version 3.5: return a Morsel object instead of a dict.

Morsel.setdefault(key, value=None)
Raise an error if key is not a valid RFC 2109 attribute, otherwise behave the same as dict.setdefault().

22.18.3 Example

The following example demonstrates how to use the http.cookies module.

>>> from http import cookies

>>> C = cookies.SimpleCookie()

>>> C["fig"] = "newton"

>>> C["sugar"] = "wafer"

>>> print(C) # generate HTTP headers

Set-Cookie: fig=newton

Set-Cookie: sugar=wafer

>>> print(C.output()) # same thing

Set-Cookie: fig=newton

Set-Cookie: sugar=wafer

>>> C = cookies.SimpleCookie()

>>> C["rocky"] = "road"

>>> C["rocky"]["path"] = "/cookie"

>>> print(C.output(header="Cookie:"))

Cookie: rocky=road; Path=/cookie

>>> print(C.output(attrs=[], header="Cookie:"))

Cookie: rocky=road

>>> C = cookies.SimpleCookie()

>>> C.load("chips=ahoy; vienna=finger") # load from a string (HTTP header)

>>> print(C)

Set-Cookie: chips=ahoy

Set-Cookie: vienna=finger

>>> C = cookies.SimpleCookie()

>>> C.load('keebler="E=everybody; L=\\"Loves\\"; fudge=\\012;";')

(continues on next page)

1490 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc2109.html
https://datatracker.ietf.org/doc/html/rfc2109.html

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> print(C)

Set-Cookie: keebler="E=everybody; L=\"Loves\"; fudge=\012;"

>>> C = cookies.SimpleCookie()

>>> C["oreo"] = "doublestuff"

>>> C["oreo"]["path"] = "/"

>>> print(C)

Set-Cookie: oreo=doublestuff; Path=/

>>> C = cookies.SimpleCookie()

>>> C["twix"] = "none for you"

>>> C["twix"].value

'none for you'

>>> C = cookies.SimpleCookie()

>>> C["number"] = 7 # equivalent to C["number"] = str(7)

>>> C["string"] = "seven"

>>> C["number"].value

'7'

>>> C["string"].value

'seven'

>>> print(C)

Set-Cookie: number=7

Set-Cookie: string=seven

22.19 http.cookiejar— Cookie handling for HTTP clients

Source code: Lib/http/cookiejar.py

The http.cookiejar module defines classes for automatic handling of HTTP cookies. It is useful for accessing
web sites that require small pieces of data – cookies – to be set on the client machine by an HTTP response from a
web server, and then returned to the server in later HTTP requests.

Both the regular Netscape cookie protocol and the protocol defined by RFC 2965 are handled. RFC 2965 handling
is switched off by default. RFC 2109 cookies are parsed as Netscape cookies and subsequently treated either as
Netscape or RFC 2965 cookies according to the ‘policy’ in effect. Note that the great majority of cookies on the
internet are Netscape cookies. http.cookiejar attempts to follow the de-facto Netscape cookie protocol (which
differs substantially from that set out in the original Netscape specification), including taking note of the max-age
and port cookie-attributes introduced with RFC 2965.

Note

The various named parameters found in Set-Cookie and Set-Cookie2 headers (eg. domain and expires)
are conventionally referred to as attributes. To distinguish them from Python attributes, the documentation for
this module uses the term cookie-attribute instead.

The module defines the following exception:

exception http.cookiejar.LoadError

Instances of FileCookieJar raise this exception on failure to load cookies from a file. LoadError is a
subclass of OSError.

Changed in version 3.3: LoadError used to be a subtype of IOError, which is now an alias of OSError.

The following classes are provided:

class http.cookiejar.CookieJar(policy=None)
policy is an object implementing the CookiePolicy interface.

22.19. http.cookiejar— Cookie handling for HTTP clients 1491

https://github.com/python/cpython/tree/3.13/Lib/http/cookiejar.py
https://datatracker.ietf.org/doc/html/rfc2965.html
https://datatracker.ietf.org/doc/html/rfc2109.html

The Python Library Reference, Release 3.13.1

The CookieJar class stores HTTP cookies. It extracts cookies from HTTP requests, and returns them in
HTTP responses. CookieJar instances automatically expire contained cookies when necessary. Subclasses
are also responsible for storing and retrieving cookies from a file or database.

class http.cookiejar.FileCookieJar(filename=None, delayload=None, policy=None)
policy is an object implementing the CookiePolicy interface. For the other arguments, see the documentation
for the corresponding attributes.

A CookieJar which can load cookies from, and perhaps save cookies to, a file on disk. Cookies are NOT
loaded from the named file until either the load() or revert() method is called. Subclasses of this class
are documented in section FileCookieJar subclasses and co-operation with web browsers.

This should not be initialized directly – use its subclasses below instead.

Changed in version 3.8: The filename parameter supports a path-like object.

class http.cookiejar.CookiePolicy

This class is responsible for deciding whether each cookie should be accepted from / returned to the server.

class http.cookiejar.DefaultCookiePolicy(blocked_domains=None, allowed_domains=None,
netscape=True, rfc2965=False,
rfc2109_as_netscape=None, hide_cookie2=False,
strict_domain=False, strict_rfc2965_unverifiable=True,
strict_ns_unverifiable=False,
strict_ns_domain=DefaultCookiePolicy.DomainLiberal,
strict_ns_set_initial_dollar=False, strict_ns_set_path=False,
secure_protocols=(’https’, ’wss’))

Constructor arguments should be passed as keyword arguments only. blocked_domains is a sequence of domain
names that we never accept cookies from, nor return cookies to. allowed_domains if not None, this is a se-
quence of the only domains for which we accept and return cookies. secure_protocols is a sequence of protocols
for which secure cookies can be added to. By default https and wss (secure websocket) are considered secure
protocols. For all other arguments, see the documentation for CookiePolicy and DefaultCookiePolicy
objects.

DefaultCookiePolicy implements the standard accept / reject rules for Netscape and RFC 2965 cook-
ies. By default, RFC 2109 cookies (ie. cookies received in a Set-Cookie header with a version cookie-
attribute of 1) are treated according to the RFC 2965 rules. However, if RFC 2965 handling is turned off
or rfc2109_as_netscape is True, RFC 2109 cookies are ‘downgraded’ by the CookieJar instance to
Netscape cookies, by setting the version attribute of the Cookie instance to 0. DefaultCookiePolicy
also provides some parameters to allow some fine-tuning of policy.

class http.cookiejar.Cookie

This class represents Netscape, RFC 2109 and RFC 2965 cookies. It is not expected that users of http.
cookiejar construct their own Cookie instances. Instead, if necessary, call make_cookies() on a
CookieJar instance.

See also

Module urllib.request
URL opening with automatic cookie handling.

Module http.cookies
HTTP cookie classes, principally useful for server-side code. The http.cookiejar and http.cookies
modules do not depend on each other.

https://curl.se/rfc/cookie_spec.html
The specification of the original Netscape cookie protocol. Though this is still the dominant protocol, the
‘Netscape cookie protocol’ implemented by all the major browsers (and http.cookiejar) only bears a
passing resemblance to the one sketched out in cookie_spec.html.

RFC 2109 - HTTP State Management Mechanism
Obsoleted by RFC 2965. Uses Set-Cookie with version=1.

1492 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc2965.html
https://datatracker.ietf.org/doc/html/rfc2109.html
https://datatracker.ietf.org/doc/html/rfc2109.html
https://datatracker.ietf.org/doc/html/rfc2965.html
https://curl.se/rfc/cookie_spec.html
https://datatracker.ietf.org/doc/html/rfc2109.html
https://datatracker.ietf.org/doc/html/rfc2965.html

The Python Library Reference, Release 3.13.1

RFC 2965 - HTTP State Management Mechanism
The Netscape protocol with the bugs fixed. Uses Set-Cookie2 in place of Set-Cookie. Not widely
used.

https://kristol.org/cookie/errata.html
Unfinished errata to RFC 2965.

RFC 2964 - Use of HTTP State Management

22.19.1 CookieJar and FileCookieJar Objects

CookieJar objects support the iterator protocol for iterating over contained Cookie objects.

CookieJar has the following methods:

CookieJar.add_cookie_header(request)
Add correct Cookie header to request.

If policy allows (ie. the rfc2965 and hide_cookie2 attributes of the CookieJar’s CookiePolicy in-
stance are true and false respectively), the Cookie2 header is also added when appropriate.

The request object (usually a urllib.request.Request instance) must support
the methods get_full_url(), has_header(), get_header(), header_items(),
add_unredirected_header() and the attributes host, type, unverifiable and origin_req_host
as documented by urllib.request.

Changed in version 3.3: request object needs origin_req_host attribute. Dependency on a deprecated
method get_origin_req_host() has been removed.

CookieJar.extract_cookies(response, request)
Extract cookies from HTTP response and store them in the CookieJar, where allowed by policy.

The CookieJar will look for allowable Set-Cookie and Set-Cookie2 headers in the response argument,
and store cookies as appropriate (subject to the CookiePolicy.set_ok() method’s approval).

The response object (usually the result of a call to urllib.request.urlopen(), or similar) should support
an info() method, which returns an email.message.Message instance.

The request object (usually a urllib.request.Request instance) must support the method
get_full_url() and the attributes host, unverifiable and origin_req_host, as documented
by urllib.request. The request is used to set default values for cookie-attributes as well as for checking
that the cookie is allowed to be set.

Changed in version 3.3: request object needs origin_req_host attribute. Dependency on a deprecated
method get_origin_req_host() has been removed.

CookieJar.set_policy(policy)

Set the CookiePolicy instance to be used.

CookieJar.make_cookies(response, request)
Return sequence of Cookie objects extracted from response object.

See the documentation for extract_cookies() for the interfaces required of the response and request ar-
guments.

CookieJar.set_cookie_if_ok(cookie, request)
Set a Cookie if policy says it’s OK to do so.

CookieJar.set_cookie(cookie)

Set a Cookie, without checking with policy to see whether or not it should be set.

22.19. http.cookiejar— Cookie handling for HTTP clients 1493

https://datatracker.ietf.org/doc/html/rfc2965.html
https://kristol.org/cookie/errata.html
https://datatracker.ietf.org/doc/html/rfc2965.html
https://datatracker.ietf.org/doc/html/rfc2964.html

The Python Library Reference, Release 3.13.1

CookieJar.clear([domain[, path[, name]]])
Clear some cookies.

If invoked without arguments, clear all cookies. If given a single argument, only cookies belonging to that
domain will be removed. If given two arguments, cookies belonging to the specified domain and URL path
are removed. If given three arguments, then the cookie with the specified domain, path and name is removed.

Raises KeyError if no matching cookie exists.

CookieJar.clear_session_cookies()

Discard all session cookies.

Discards all contained cookies that have a true discard attribute (usually because they had either no max-age
or expires cookie-attribute, or an explicit discard cookie-attribute). For interactive browsers, the end of
a session usually corresponds to closing the browser window.

Note that the save() method won’t save session cookies anyway, unless you ask otherwise by passing a true
ignore_discard argument.

FileCookieJar implements the following additional methods:

FileCookieJar.save(filename=None, ignore_discard=False, ignore_expires=False)
Save cookies to a file.

This base class raises NotImplementedError. Subclasses may leave this method unimplemented.

filename is the name of file in which to save cookies. If filename is not specified, self.filename is used
(whose default is the value passed to the constructor, if any); if self.filename is None, ValueError is
raised.

ignore_discard: save even cookies set to be discarded. ignore_expires: save even cookies that have expired

The file is overwritten if it already exists, thus wiping all the cookies it contains. Saved cookies can be restored
later using the load() or revert() methods.

FileCookieJar.load(filename=None, ignore_discard=False, ignore_expires=False)
Load cookies from a file.

Old cookies are kept unless overwritten by newly loaded ones.

Arguments are as for save().

The named file must be in the format understood by the class, or LoadError will be raised. Also, OSError
may be raised, for example if the file does not exist.

Changed in version 3.3: IOError used to be raised, it is now an alias of OSError.

FileCookieJar.revert(filename=None, ignore_discard=False, ignore_expires=False)
Clear all cookies and reload cookies from a saved file.

revert() can raise the same exceptions as load(). If there is a failure, the object’s state will not be altered.

FileCookieJar instances have the following public attributes:

FileCookieJar.filename

Filename of default file in which to keep cookies. This attribute may be assigned to.

FileCookieJar.delayload

If true, load cookies lazily from disk. This attribute should not be assigned to. This is only a hint, since this
only affects performance, not behaviour (unless the cookies on disk are changing). A CookieJar object may
ignore it. None of the FileCookieJar classes included in the standard library lazily loads cookies.

22.19.2 FileCookieJar subclasses and co-operation with web browsers

The following CookieJar subclasses are provided for reading and writing.

1494 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

class http.cookiejar.MozillaCookieJar(filename=None, delayload=None, policy=None)
A FileCookieJar that can load from and save cookies to disk in the Mozilla cookies.txt file format
(which is also used by curl and the Lynx and Netscape browsers).

Note

This loses information about RFC 2965 cookies, and also about newer or non-standard cookie-attributes
such as port.

Warning

Back up your cookies before saving if you have cookies whose loss / corruption would be inconvenient
(there are some subtleties which may lead to slight changes in the file over a load / save round-trip).

Also note that cookies saved while Mozilla is running will get clobbered by Mozilla.

class http.cookiejar.LWPCookieJar(filename=None, delayload=None, policy=None)
A FileCookieJar that can load from and save cookies to disk in format compatible with the libwww-perl
library’s Set-Cookie3 file format. This is convenient if you want to store cookies in a human-readable file.

Changed in version 3.8: The filename parameter supports a path-like object.

22.19.3 CookiePolicy Objects

Objects implementing the CookiePolicy interface have the following methods:

CookiePolicy.set_ok(cookie, request)
Return boolean value indicating whether cookie should be accepted from server.

cookie is a Cookie instance. request is an object implementing the interface defined by the documentation for
CookieJar.extract_cookies().

CookiePolicy.return_ok(cookie, request)
Return boolean value indicating whether cookie should be returned to server.

cookie is a Cookie instance. request is an object implementing the interface defined by the documentation for
CookieJar.add_cookie_header().

CookiePolicy.domain_return_ok(domain, request)
Return False if cookies should not be returned, given cookie domain.

This method is an optimization. It removes the need for checking every cookie with a particular domain (which
might involve reading many files). Returning true from domain_return_ok() and path_return_ok()
leaves all the work to return_ok().

If domain_return_ok() returns true for the cookie domain, path_return_ok() is called for the cookie
path. Otherwise, path_return_ok() and return_ok() are never called for that cookie domain. If
path_return_ok() returns true, return_ok() is called with the Cookie object itself for a full check.
Otherwise, return_ok() is never called for that cookie path.

Note that domain_return_ok() is called for every cookie domain, not just for the request domain. For
example, the function might be called with both ".example.com" and "www.example.com" if the request
domain is "www.example.com". The same goes for path_return_ok().

The request argument is as documented for return_ok().

CookiePolicy.path_return_ok(path, request)
Return False if cookies should not be returned, given cookie path.

See the documentation for domain_return_ok().

22.19. http.cookiejar— Cookie handling for HTTP clients 1495

https://datatracker.ietf.org/doc/html/rfc2965.html

The Python Library Reference, Release 3.13.1

In addition to implementing the methods above, implementations of the CookiePolicy interface must also supply
the following attributes, indicating which protocols should be used, and how. All of these attributes may be assigned
to.

CookiePolicy.netscape

Implement Netscape protocol.

CookiePolicy.rfc2965

Implement RFC 2965 protocol.

CookiePolicy.hide_cookie2

Don’t add Cookie2 header to requests (the presence of this header indicates to the server that we understand
RFC 2965 cookies).

The most useful way to define a CookiePolicy class is by subclassing from DefaultCookiePolicy and over-
riding some or all of the methods above. CookiePolicy itself may be used as a ‘null policy’ to allow setting and
receiving any and all cookies (this is unlikely to be useful).

22.19.4 DefaultCookiePolicy Objects

Implements the standard rules for accepting and returning cookies.

Both RFC 2965 and Netscape cookies are covered. RFC 2965 handling is switched off by default.

The easiest way to provide your own policy is to override this class and call its methods in your overridden imple-
mentations before adding your own additional checks:

import http.cookiejar

class MyCookiePolicy(http.cookiejar.DefaultCookiePolicy):

def set_ok(self, cookie, request):

if not http.cookiejar.DefaultCookiePolicy.set_ok(self, cookie, request):

return False

if i_dont_want_to_store_this_cookie(cookie):

return False

return True

In addition to the features required to implement the CookiePolicy interface, this class allows you to block and
allow domains from setting and receiving cookies. There are also some strictness switches that allow you to tighten
up the rather loose Netscape protocol rules a little bit (at the cost of blocking some benign cookies).

A domain blocklist and allowlist is provided (both off by default). Only domains not in the blocklist and present in the
allowlist (if the allowlist is active) participate in cookie setting and returning. Use the blocked_domains constructor
argument, and blocked_domains() and set_blocked_domains() methods (and the corresponding argument
and methods for allowed_domains). If you set an allowlist, you can turn it off again by setting it to None.

Domains in block or allow lists that do not start with a dot must equal the cookie domain to be matched. For example,
"example.com"matches a blocklist entry of "example.com", but "www.example.com" does not. Domains that
do start with a dot are matched by more specific domains too. For example, both "www.example.com" and "www.
coyote.example.com" match ".example.com" (but "example.com" itself does not). IP addresses are an
exception, and must match exactly. For example, if blocked_domains contains "192.168.1.2" and ".168.1.2",
192.168.1.2 is blocked, but 193.168.1.2 is not.

DefaultCookiePolicy implements the following additional methods:

DefaultCookiePolicy.blocked_domains()

Return the sequence of blocked domains (as a tuple).

DefaultCookiePolicy.set_blocked_domains(blocked_domains)
Set the sequence of blocked domains.

DefaultCookiePolicy.is_blocked(domain)
Return True if domain is on the blocklist for setting or receiving cookies.

1496 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc2965.html
https://datatracker.ietf.org/doc/html/rfc2965.html
https://datatracker.ietf.org/doc/html/rfc2965.html

The Python Library Reference, Release 3.13.1

DefaultCookiePolicy.allowed_domains()

Return None, or the sequence of allowed domains (as a tuple).

DefaultCookiePolicy.set_allowed_domains(allowed_domains)

Set the sequence of allowed domains, or None.

DefaultCookiePolicy.is_not_allowed(domain)

Return True if domain is not on the allowlist for setting or receiving cookies.

DefaultCookiePolicy instances have the following attributes, which are all initialised from the constructor ar-
guments of the same name, and which may all be assigned to.

DefaultCookiePolicy.rfc2109_as_netscape

If true, request that the CookieJar instance downgrade RFC 2109 cookies (ie. cookies received in a
Set-Cookie header with a version cookie-attribute of 1) to Netscape cookies by setting the version attribute
of the Cookie instance to 0. The default value is None, in which case RFC 2109 cookies are downgraded if
and only if RFC 2965 handling is turned off. Therefore, RFC 2109 cookies are downgraded by default.

General strictness switches:

DefaultCookiePolicy.strict_domain

Don’t allow sites to set two-component domains with country-code top-level domains like .co.uk, .gov.uk,
.co.nz.etc. This is far from perfect and isn’t guaranteed to work!

RFC 2965 protocol strictness switches:

DefaultCookiePolicy.strict_rfc2965_unverifiable

Follow RFC 2965 rules on unverifiable transactions (usually, an unverifiable transaction is one resulting from
a redirect or a request for an image hosted on another site). If this is false, cookies are never blocked on the
basis of verifiability

Netscape protocol strictness switches:

DefaultCookiePolicy.strict_ns_unverifiable

Apply RFC 2965 rules on unverifiable transactions even to Netscape cookies.

DefaultCookiePolicy.strict_ns_domain

Flags indicating how strict to be with domain-matching rules for Netscape cookies. See below for acceptable
values.

DefaultCookiePolicy.strict_ns_set_initial_dollar

Ignore cookies in Set-Cookie: headers that have names starting with '$'.

DefaultCookiePolicy.strict_ns_set_path

Don’t allow setting cookies whose path doesn’t path-match request URI.

strict_ns_domain is a collection of flags. Its value is constructed by or-ing together (for example,
DomainStrictNoDots|DomainStrictNonDomain means both flags are set).

DefaultCookiePolicy.DomainStrictNoDots

When setting cookies, the ‘host prefix’ must not contain a dot (eg. www.foo.bar.com can’t set a cookie for
.bar.com, because www.foo contains a dot).

DefaultCookiePolicy.DomainStrictNonDomain

Cookies that did not explicitly specify a domain cookie-attribute can only be returned to a domain equal to
the domain that set the cookie (eg. spam.example.com won’t be returned cookies from example.com that
had no domain cookie-attribute).

DefaultCookiePolicy.DomainRFC2965Match

When setting cookies, require a full RFC 2965 domain-match.

The following attributes are provided for convenience, and are the most useful combinations of the above flags:

22.19. http.cookiejar— Cookie handling for HTTP clients 1497

https://datatracker.ietf.org/doc/html/rfc2109.html
https://datatracker.ietf.org/doc/html/rfc2965.html
https://datatracker.ietf.org/doc/html/rfc2965.html
https://datatracker.ietf.org/doc/html/rfc2965.html
https://datatracker.ietf.org/doc/html/rfc2965.html
https://datatracker.ietf.org/doc/html/rfc2965.html

The Python Library Reference, Release 3.13.1

DefaultCookiePolicy.DomainLiberal

Equivalent to 0 (ie. all of the above Netscape domain strictness flags switched off).

DefaultCookiePolicy.DomainStrict

Equivalent to DomainStrictNoDots|DomainStrictNonDomain.

22.19.5 Cookie Objects

Cookie instances have Python attributes roughly corresponding to the standard cookie-attributes specified in the
various cookie standards. The correspondence is not one-to-one, because there are complicated rules for assigning
default values, because the max-age and expires cookie-attributes contain equivalent information, and because
RFC 2109 cookies may be ‘downgraded’ by http.cookiejar from version 1 to version 0 (Netscape) cookies.

Assignment to these attributes should not be necessary other than in rare circumstances in a CookiePolicymethod.
The class does not enforce internal consistency, so you should know what you’re doing if you do that.

Cookie.version

Integer or None. Netscape cookies have version 0. RFC 2965 and RFC 2109 cookies have a version
cookie-attribute of 1. However, note that http.cookiejarmay ‘downgrade’ RFC 2109 cookies to Netscape
cookies, in which case version is 0.

Cookie.name

Cookie name (a string).

Cookie.value

Cookie value (a string), or None.

Cookie.port

String representing a port or a set of ports (eg. ‘80’, or ‘80,8080’), or None.

Cookie.domain

Cookie domain (a string).

Cookie.path

Cookie path (a string, eg. '/acme/rocket_launchers').

Cookie.secure

True if cookie should only be returned over a secure connection.

Cookie.expires

Integer expiry date in seconds since epoch, or None. See also the is_expired() method.

Cookie.discard

True if this is a session cookie.

Cookie.comment

String comment from the server explaining the function of this cookie, or None.

Cookie.comment_url

URL linking to a comment from the server explaining the function of this cookie, or None.

Cookie.rfc2109

True if this cookie was received as an RFC 2109 cookie (ie. the cookie arrived in a Set-Cookie header,
and the value of the Version cookie-attribute in that header was 1). This attribute is provided because http.
cookiejar may ‘downgrade’ RFC 2109 cookies to Netscape cookies, in which case version is 0.

Cookie.port_specified

True if a port or set of ports was explicitly specified by the server (in the Set-Cookie / Set-Cookie2
header).

Cookie.domain_specified

True if a domain was explicitly specified by the server.

1498 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc2109.html
https://datatracker.ietf.org/doc/html/rfc2965.html
https://datatracker.ietf.org/doc/html/rfc2109.html
https://datatracker.ietf.org/doc/html/rfc2109.html

The Python Library Reference, Release 3.13.1

Cookie.domain_initial_dot

True if the domain explicitly specified by the server began with a dot ('.').

Cookies may have additional non-standard cookie-attributes. These may be accessed using the following methods:

Cookie.has_nonstandard_attr(name)
Return True if cookie has the named cookie-attribute.

Cookie.get_nonstandard_attr(name, default=None)
If cookie has the named cookie-attribute, return its value. Otherwise, return default.

Cookie.set_nonstandard_attr(name, value)
Set the value of the named cookie-attribute.

The Cookie class also defines the following method:

Cookie.is_expired(now=None)
True if cookie has passed the time at which the server requested it should expire. If now is given (in seconds
since the epoch), return whether the cookie has expired at the specified time.

22.19.6 Examples

The first example shows the most common usage of http.cookiejar:

import http.cookiejar, urllib.request

cj = http.cookiejar.CookieJar()

opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj))

r = opener.open("http://example.com/")

This example illustrates how to open a URL using your Netscape, Mozilla, or Lynx cookies (assumes Unix/Netscape
convention for location of the cookies file):

import os, http.cookiejar, urllib.request

cj = http.cookiejar.MozillaCookieJar()

cj.load(os.path.join(os.path.expanduser("~"), ".netscape", "cookies.txt"))

opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj))

r = opener.open("http://example.com/")

The next example illustrates the use of DefaultCookiePolicy. Turn on RFC 2965 cookies, be more strict about
domains when setting and returning Netscape cookies, and block some domains from setting cookies or having them
returned:

import urllib.request

from http.cookiejar import CookieJar, DefaultCookiePolicy

policy = DefaultCookiePolicy(

rfc2965=True, strict_ns_domain=Policy.DomainStrict,

blocked_domains=["ads.net", ".ads.net"])

cj = CookieJar(policy)

opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj))

r = opener.open("http://example.com/")

22.20 xmlrpc— XMLRPC server and client modules

XML-RPC is a Remote Procedure Call method that uses XML passed via HTTP as a transport. With it, a client can
call methods with parameters on a remote server (the server is named by a URI) and get back structured data.

xmlrpc is a package that collects server and client modules implementing XML-RPC. The modules are:

• xmlrpc.client

• xmlrpc.server

22.20. xmlrpc— XMLRPC server and client modules 1499

https://datatracker.ietf.org/doc/html/rfc2965.html

The Python Library Reference, Release 3.13.1

22.21 xmlrpc.client— XML-RPC client access

Source code: Lib/xmlrpc/client.py

XML-RPC is a Remote Procedure Call method that uses XML passed via HTTP(S) as a transport. With it, a client
can call methods with parameters on a remote server (the server is named by a URI) and get back structured data.
This module supports writing XML-RPC client code; it handles all the details of translating between conformable
Python objects and XML on the wire.

Warning

The xmlrpc.client module is not secure against maliciously constructed data. If you need to parse untrusted
or unauthenticated data see XML vulnerabilities.

Changed in version 3.5: For HTTPSURIs, xmlrpc.client now performs all the necessary certificate and hostname
checks by default.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

class xmlrpc.client.ServerProxy(uri, transport=None, encoding=None, verbose=False, allow_none=False,
use_datetime=False, use_builtin_types=False, *, headers=(),
context=None)

A ServerProxy instance is an object that manages communication with a remote XML-RPC server. The
required first argument is a URI (Uniform Resource Indicator), and will normally be the URL of the server.
The optional second argument is a transport factory instance; by default it is an internal SafeTransport
instance for https: URLs and an internal HTTP Transport instance otherwise. The optional third argument
is an encoding, by default UTF-8. The optional fourth argument is a debugging flag.

The following parameters govern the use of the returned proxy instance. If allow_none is true, the Python
constant None will be translated into XML; the default behaviour is for None to raise a TypeError. This is
a commonly used extension to the XML-RPC specification, but isn’t supported by all clients and servers; see
http://ontosys.com/xml-rpc/extensions.php for a description. The use_builtin_types flag can be used to cause
date/time values to be presented as datetime.datetime objects and binary data to be presented as bytes
objects; this flag is false by default. datetime.datetime, bytes and bytearray objects may be passed to
calls. The headers parameter is an optional sequence of HTTP headers to send with each request, expressed
as a sequence of 2-tuples representing the header name and value. (e.g. [('Header-Name', 'value')]).
The obsolete use_datetime flag is similar to use_builtin_types but it applies only to date/time values.

Changed in version 3.3: The use_builtin_types flag was added.

Changed in version 3.8: The headers parameter was added.

Both the HTTP and HTTPS transports support the URL syntax extension for HTTP Basic Authentication:
http://user:pass@host:port/path. The user:pass portion will be base64-encoded as an HTTP
‘Authorization’ header, and sent to the remote server as part of the connection process when invoking an XML-
RPCmethod. You only need to use this if the remote server requires a Basic Authentication user and password.
If an HTTPS URL is provided, context may be ssl.SSLContext and configures the SSL settings of the
underlying HTTPS connection.

The returned instance is a proxy object with methods that can be used to invoke corresponding RPC calls on
the remote server. If the remote server supports the introspection API, the proxy can also be used to query the
remote server for the methods it supports (service discovery) and fetch other server-associated metadata.

Types that are conformable (e.g. that can be marshalled through XML), include the following (and except
where noted, they are unmarshalled as the same Python type):

1500 Chapter 22. Internet Protocols and Support

https://github.com/python/cpython/tree/3.13/Lib/xmlrpc/client.py
https://web.archive.org/web/20130120074804/http://ontosys.com/xml-rpc/extensions.php

The Python Library Reference, Release 3.13.1

XML-RPC type Python type

boolean bool

int, i1, i2, i4, i8 or biginteger int in range from -2147483648 to 2147483647. Values get the
<int> tag.

double or float float. Values get the <double> tag.
string str

array list or tuple containing conformable elements. Arrays are
returned as lists.

struct dict. Keys must be strings, values may be any conformable
type. Objects of user-defined classes can be passed in; only their
__dict__ attribute is transmitted.

dateTime.iso8601 DateTime or datetime.datetime. Returned type depends
on values of use_builtin_types and use_datetime flags.

base64 Binary, bytes or bytearray. Returned type depends on the
value of the use_builtin_types flag.

nil The None constant. Passing is allowed only if allow_none is true.
bigdecimal decimal.Decimal. Returned type only.

This is the full set of data types supported by XML-RPC.Method calls may also raise a special Fault instance,
used to signal XML-RPC server errors, or ProtocolError used to signal an error in the HTTP/HTTPS
transport layer. Both Fault and ProtocolError derive from a base class called Error. Note that the
xmlrpc client module currently does not marshal instances of subclasses of built-in types.

When passing strings, characters special to XML such as <, >, and & will be automatically escaped. However,
it’s the caller’s responsibility to ensure that the string is free of characters that aren’t allowed in XML, such as
the control characters with ASCII values between 0 and 31 (except, of course, tab, newline and carriage return);
failing to do this will result in an XML-RPC request that isn’t well-formed XML. If you have to pass arbitrary
bytes via XML-RPC, use bytes or bytearray classes or the Binary wrapper class described below.

Server is retained as an alias for ServerProxy for backwards compatibility. New code should use
ServerProxy.

Changed in version 3.5: Added the context argument.

Changed in version 3.6: Added support of type tags with prefixes (e.g. ex:nil). Added support of unmar-
shalling additional types used by Apache XML-RPC implementation for numerics: i1, i2, i8, biginteger,
float and bigdecimal. See https://ws.apache.org/xmlrpc/types.html for a description.

See also

XML-RPC HOWTO
A good description of XML-RPC operation and client software in several languages. Contains pretty much
everything an XML-RPC client developer needs to know.

XML-RPC Introspection
Describes the XML-RPC protocol extension for introspection.

XML-RPC Specification
The official specification.

22.21.1 ServerProxy Objects

A ServerProxy instance has a method corresponding to each remote procedure call accepted by the XML-RPC
server. Calling the method performs an RPC, dispatched by both name and argument signature (e.g. the samemethod
name can be overloaded with multiple argument signatures). The RPC finishes by returning a value, which may be
either returned data in a conformant type or a Fault or ProtocolError object indicating an error.

Servers that support the XML introspection API support some commonmethods grouped under the reserved system
attribute:

22.21. xmlrpc.client— XML-RPC client access 1501

https://ws.apache.org/xmlrpc/types.html
https://tldp.org/HOWTO/XML-RPC-HOWTO/index.html
https://xmlrpc-c.sourceforge.io/introspection.html
http://xmlrpc.scripting.com/spec.html

The Python Library Reference, Release 3.13.1

ServerProxy.system.listMethods()

This method returns a list of strings, one for each (non-system) method supported by the XML-RPC server.

ServerProxy.system.methodSignature(name)

This method takes one parameter, the name of a method implemented by the XML-RPC server. It returns an
array of possible signatures for this method. A signature is an array of types. The first of these types is the
return type of the method, the rest are parameters.

Because multiple signatures (ie. overloading) is permitted, this method returns a list of signatures rather than
a singleton.

Signatures themselves are restricted to the top level parameters expected by a method. For instance if a method
expects one array of structs as a parameter, and it returns a string, its signature is simply “string, array”. If it
expects three integers and returns a string, its signature is “string, int, int, int”.

If no signature is defined for the method, a non-array value is returned. In Python this means that the type of
the returned value will be something other than list.

ServerProxy.system.methodHelp(name)
This method takes one parameter, the name of a method implemented by the XML-RPC server. It returns
a documentation string describing the use of that method. If no such string is available, an empty string is
returned. The documentation string may contain HTML markup.

Changed in version 3.5: Instances of ServerProxy support the context manager protocol for closing the underlying
transport.

A working example follows. The server code:

from xmlrpc.server import SimpleXMLRPCServer

def is_even(n):

return n % 2 == 0

server = SimpleXMLRPCServer(("localhost", 8000))

print("Listening on port 8000...")

server.register_function(is_even, "is_even")

server.serve_forever()

The client code for the preceding server:

import xmlrpc.client

with xmlrpc.client.ServerProxy("http://localhost:8000/") as proxy:

print("3 is even: %s" % str(proxy.is_even(3)))

print("100 is even: %s" % str(proxy.is_even(100)))

22.21.2 DateTime Objects

class xmlrpc.client.DateTime

This class may be initialized with seconds since the epoch, a time tuple, an ISO 8601 time/date string, or
a datetime.datetime instance. It has the following methods, supported mainly for internal use by the
marshalling/unmarshalling code:

decode(string)
Accept a string as the instance’s new time value.

encode(out)
Write the XML-RPC encoding of this DateTime item to the out stream object.

It also supports certain of Python’s built-in operators through rich comparison and __repr__()methods.

A working example follows. The server code:

1502 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

import datetime

from xmlrpc.server import SimpleXMLRPCServer

import xmlrpc.client

def today():

today = datetime.datetime.today()

return xmlrpc.client.DateTime(today)

server = SimpleXMLRPCServer(("localhost", 8000))

print("Listening on port 8000...")

server.register_function(today, "today")

server.serve_forever()

The client code for the preceding server:

import xmlrpc.client

import datetime

proxy = xmlrpc.client.ServerProxy("http://localhost:8000/")

today = proxy.today()

convert the ISO8601 string to a datetime object

converted = datetime.datetime.strptime(today.value, "%Y%m%dT%H:%M:%S")

print("Today: %s" % converted.strftime("%d.%m.%Y, %H:%M"))

22.21.3 Binary Objects

class xmlrpc.client.Binary

This class may be initialized from bytes data (which may include NULs). The primary access to the content
of a Binary object is provided by an attribute:

data

The binary data encapsulated by the Binary instance. The data is provided as a bytes object.

Binary objects have the following methods, supported mainly for internal use by the mar-
shalling/unmarshalling code:

decode(bytes)
Accept a base64 bytes object and decode it as the instance’s new data.

encode(out)

Write the XML-RPC base 64 encoding of this binary item to the out stream object.

The encoded data will have newlines every 76 characters as per RFC 2045 section 6.8, which was the
de facto standard base64 specification when the XML-RPC spec was written.

It also supports certain of Python’s built-in operators through __eq__() and __ne__() methods.

Example usage of the binary objects. We’re going to transfer an image over XMLRPC:

from xmlrpc.server import SimpleXMLRPCServer

import xmlrpc.client

def python_logo():

with open("python_logo.jpg", "rb") as handle:

return xmlrpc.client.Binary(handle.read())

server = SimpleXMLRPCServer(("localhost", 8000))

print("Listening on port 8000...")

(continues on next page)

22.21. xmlrpc.client— XML-RPC client access 1503

https://datatracker.ietf.org/doc/html/rfc2045.html#section-6.8

The Python Library Reference, Release 3.13.1

(continued from previous page)

server.register_function(python_logo, 'python_logo')

server.serve_forever()

The client gets the image and saves it to a file:

import xmlrpc.client

proxy = xmlrpc.client.ServerProxy("http://localhost:8000/")

with open("fetched_python_logo.jpg", "wb") as handle:

handle.write(proxy.python_logo().data)

22.21.4 Fault Objects

class xmlrpc.client.Fault

A Fault object encapsulates the content of an XML-RPC fault tag. Fault objects have the following attributes:

faultCode

An int indicating the fault type.

faultString

A string containing a diagnostic message associated with the fault.

In the following example we’re going to intentionally cause a Fault by returning a complex type object. The server
code:

from xmlrpc.server import SimpleXMLRPCServer

A marshalling error is going to occur because we're returning a

complex number

def add(x, y):

return x+y+0j

server = SimpleXMLRPCServer(("localhost", 8000))

print("Listening on port 8000...")

server.register_function(add, 'add')

server.serve_forever()

The client code for the preceding server:

import xmlrpc.client

proxy = xmlrpc.client.ServerProxy("http://localhost:8000/")

try:

proxy.add(2, 5)

except xmlrpc.client.Fault as err:

print("A fault occurred")

print("Fault code: %d" % err.faultCode)

print("Fault string: %s" % err.faultString)

22.21.5 ProtocolError Objects

class xmlrpc.client.ProtocolError

A ProtocolError object describes a protocol error in the underlying transport layer (such as a 404 ‘not
found’ error if the server named by the URI does not exist). It has the following attributes:

1504 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

url

The URI or URL that triggered the error.

errcode

The error code.

errmsg

The error message or diagnostic string.

headers

A dict containing the headers of the HTTP/HTTPS request that triggered the error.

In the following example we’re going to intentionally cause a ProtocolError by providing an invalid URI:

import xmlrpc.client

create a ServerProxy with a URI that doesn't respond to XMLRPC requests

proxy = xmlrpc.client.ServerProxy("http://google.com/")

try:

proxy.some_method()

except xmlrpc.client.ProtocolError as err:

print("A protocol error occurred")

print("URL: %s" % err.url)

print("HTTP/HTTPS headers: %s" % err.headers)

print("Error code: %d" % err.errcode)

print("Error message: %s" % err.errmsg)

22.21.6 MultiCall Objects

The MultiCall object provides a way to encapsulate multiple calls to a remote server into a single request1.

class xmlrpc.client.MultiCall(server)
Create an object used to boxcar method calls. server is the eventual target of the call. Calls can be made
to the result object, but they will immediately return None, and only store the call name and parameters in
the MultiCall object. Calling the object itself causes all stored calls to be transmitted as a single system.
multicall request. The result of this call is a generator; iterating over this generator yields the individual
results.

A usage example of this class follows. The server code:

from xmlrpc.server import SimpleXMLRPCServer

def add(x, y):

return x + y

def subtract(x, y):

return x - y

def multiply(x, y):

return x * y

def divide(x, y):

return x // y

A simple server with simple arithmetic functions

server = SimpleXMLRPCServer(("localhost", 8000))

(continues on next page)

1 This approach has been first presented in a discussion on xmlrpc.com.

22.21. xmlrpc.client— XML-RPC client access 1505

https://web.archive.org/web/20060624230303/http://www.xmlrpc.com/discuss/msgReader\protect \TU\textdollar 1208?mode=topic

The Python Library Reference, Release 3.13.1

(continued from previous page)

print("Listening on port 8000...")

server.register_multicall_functions()

server.register_function(add, 'add')

server.register_function(subtract, 'subtract')

server.register_function(multiply, 'multiply')

server.register_function(divide, 'divide')

server.serve_forever()

The client code for the preceding server:

import xmlrpc.client

proxy = xmlrpc.client.ServerProxy("http://localhost:8000/")

multicall = xmlrpc.client.MultiCall(proxy)

multicall.add(7, 3)

multicall.subtract(7, 3)

multicall.multiply(7, 3)

multicall.divide(7, 3)

result = multicall()

print("7+3=%d, 7-3=%d, 7*3=%d, 7//3=%d" % tuple(result))

22.21.7 Convenience Functions

xmlrpc.client.dumps(params, methodname=None, methodresponse=None, encoding=None,
allow_none=False)

Convert params into an XML-RPC request. or into a response if methodresponse is true. params can be either
a tuple of arguments or an instance of the Fault exception class. Ifmethodresponse is true, only a single value
can be returned, meaning that params must be of length 1. encoding, if supplied, is the encoding to use in the
generated XML; the default is UTF-8. Python’s None value cannot be used in standard XML-RPC; to allow
using it via an extension, provide a true value for allow_none.

xmlrpc.client.loads(data, use_datetime=False, use_builtin_types=False)
Convert an XML-RPC request or response into Python objects, a (params, methodname). params is a
tuple of argument; methodname is a string, or None if no method name is present in the packet. If the XML-
RPC packet represents a fault condition, this function will raise a Fault exception. The use_builtin_types flag
can be used to cause date/time values to be presented as datetime.datetime objects and binary data to be
presented as bytes objects; this flag is false by default.

The obsolete use_datetime flag is similar to use_builtin_types but it applies only to date/time values.

Changed in version 3.3: The use_builtin_types flag was added.

22.21.8 Example of Client Usage

simple test program (from the XML-RPC specification)

from xmlrpc.client import ServerProxy, Error

server = ServerProxy("http://localhost:8000") # local server

with ServerProxy("http://betty.userland.com") as proxy:

print(proxy)

try:

print(proxy.examples.getStateName(41))

except Error as v:

print("ERROR", v)

1506 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

To access an XML-RPC server through a HTTP proxy, you need to define a custom transport. The following example
shows how:

import http.client

import xmlrpc.client

class ProxiedTransport(xmlrpc.client.Transport):

def set_proxy(self, host, port=None, headers=None):

self.proxy = host, port

self.proxy_headers = headers

def make_connection(self, host):

connection = http.client.HTTPConnection(*self.proxy)

connection.set_tunnel(host, headers=self.proxy_headers)

self._connection = host, connection

return connection

transport = ProxiedTransport()

transport.set_proxy('proxy-server', 8080)

server = xmlrpc.client.ServerProxy('http://betty.userland.com',␣

↪→transport=transport)

print(server.examples.getStateName(41))

22.21.9 Example of Client and Server Usage

See SimpleXMLRPCServer Example.

22.22 xmlrpc.server— Basic XML-RPC servers

Source code: Lib/xmlrpc/server.py

The xmlrpc.server module provides a basic server framework for XML-RPC servers written in Python.
Servers can either be free standing, using SimpleXMLRPCServer, or embedded in a CGI environment, using
CGIXMLRPCRequestHandler.

Warning

The xmlrpc.server module is not secure against maliciously constructed data. If you need to parse untrusted
or unauthenticated data see XML vulnerabilities.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

class xmlrpc.server.SimpleXMLRPCServer(addr, requestHandler=SimpleXMLRPCRequestHandler,
logRequests=True, allow_none=False, encoding=None,
bind_and_activate=True, use_builtin_types=False)

Create a new server instance. This class provides methods for registration of functions that can be called
by the XML-RPC protocol. The requestHandler parameter should be a factory for request handler in-
stances; it defaults to SimpleXMLRPCRequestHandler. The addr and requestHandler parameters are
passed to the socketserver.TCPServer constructor. If logRequests is true (the default), requests will
be logged; setting this parameter to false will turn off logging. The allow_none and encoding parameters are
passed on to xmlrpc.client and control the XML-RPC responses that will be returned from the server.
The bind_and_activate parameter controls whether server_bind() and server_activate() are called

22.22. xmlrpc.server— Basic XML-RPC servers 1507

https://github.com/python/cpython/tree/3.13/Lib/xmlrpc/server.py

The Python Library Reference, Release 3.13.1

immediately by the constructor; it defaults to true. Setting it to false allows code to manipulate the al-
low_reuse_address class variable before the address is bound. The use_builtin_types parameter is passed to
the loads() function and controls which types are processed when date/times values or binary data are re-
ceived; it defaults to false.

Changed in version 3.3: The use_builtin_types flag was added.

class xmlrpc.server.CGIXMLRPCRequestHandler(allow_none=False, encoding=None,
use_builtin_types=False)

Create a new instance to handle XML-RPC requests in a CGI environment. The allow_none and encoding
parameters are passed on to xmlrpc.client and control the XML-RPC responses that will be returned
from the server. The use_builtin_types parameter is passed to the loads() function and controls which types
are processed when date/times values or binary data are received; it defaults to false.

Changed in version 3.3: The use_builtin_types flag was added.

class xmlrpc.server.SimpleXMLRPCRequestHandler

Create a new request handler instance. This request handler supports POST requests and modifies logging so
that the logRequests parameter to the SimpleXMLRPCServer constructor parameter is honored.

22.22.1 SimpleXMLRPCServer Objects

The SimpleXMLRPCServer class is based on socketserver.TCPServer and provides a means of creating sim-
ple, stand alone XML-RPC servers.

SimpleXMLRPCServer.register_function(function=None, name=None)
Register a function that can respond to XML-RPC requests. If name is given, it will be the method name
associated with function, otherwise function.__name__ will be used. name is a string, and may contain
characters not legal in Python identifiers, including the period character.

This method can also be used as a decorator. When used as a decorator, name can only be given as a keyword
argument to register function under name. If no name is given, function.__name__ will be used.

Changed in version 3.7: register_function() can be used as a decorator.

SimpleXMLRPCServer.register_instance(instance, allow_dotted_names=False)
Register an object which is used to expose method names which have not been registered using
register_function(). If instance contains a _dispatch() method, it is called with the requested
method name and the parameters from the request. Its API is def _dispatch(self, method, params)

(note that params does not represent a variable argument list). If it calls an underlying function to perform
its task, that function is called as func(*params), expanding the parameter list. The return value from
_dispatch() is returned to the client as the result. If instance does not have a _dispatch() method, it is
searched for an attribute matching the name of the requested method.

If the optional allow_dotted_names argument is true and the instance does not have a _dispatch() method,
then if the requested method name contains periods, each component of the method name is searched for
individually, with the effect that a simple hierarchical search is performed. The value found from this search
is then called with the parameters from the request, and the return value is passed back to the client.

Warning

Enabling the allow_dotted_names option allows intruders to access your module’s global variables and may
allow intruders to execute arbitrary code on yourmachine. Only use this option on a secure, closed network.

SimpleXMLRPCServer.register_introspection_functions()

Registers the XML-RPC introspection functions system.listMethods, system.methodHelp and
system.methodSignature.

SimpleXMLRPCServer.register_multicall_functions()

Registers the XML-RPC multicall function system.multicall.

1508 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

SimpleXMLRPCRequestHandler.rpc_paths

An attribute value that must be a tuple listing valid path portions of the URL for receiving XML-RPC requests.
Requests posted to other paths will result in a 404 “no such page” HTTP error. If this tuple is empty, all paths
will be considered valid. The default value is ('/', '/RPC2').

SimpleXMLRPCServer Example

Server code:

from xmlrpc.server import SimpleXMLRPCServer

from xmlrpc.server import SimpleXMLRPCRequestHandler

Restrict to a particular path.

class RequestHandler(SimpleXMLRPCRequestHandler):

rpc_paths = ('/RPC2',)

Create server

with SimpleXMLRPCServer(('localhost', 8000),

requestHandler=RequestHandler) as server:

server.register_introspection_functions()

Register pow() function; this will use the value of

pow.__name__ as the name, which is just 'pow'.

server.register_function(pow)

Register a function under a different name

def adder_function(x, y):

return x + y

server.register_function(adder_function, 'add')

Register an instance; all the methods of the instance are

published as XML-RPC methods (in this case, just 'mul').

class MyFuncs:

def mul(self, x, y):

return x * y

server.register_instance(MyFuncs())

Run the server's main loop

server.serve_forever()

The following client code will call the methods made available by the preceding server:

import xmlrpc.client

s = xmlrpc.client.ServerProxy('http://localhost:8000')

print(s.pow(2,3)) # Returns 2**3 = 8

print(s.add(2,3)) # Returns 5

print(s.mul(5,2)) # Returns 5*2 = 10

Print list of available methods

print(s.system.listMethods())

register_function() can also be used as a decorator. The previous server example can register functions in a
decorator way:

from xmlrpc.server import SimpleXMLRPCServer

from xmlrpc.server import SimpleXMLRPCRequestHandler

(continues on next page)

22.22. xmlrpc.server— Basic XML-RPC servers 1509

The Python Library Reference, Release 3.13.1

(continued from previous page)

class RequestHandler(SimpleXMLRPCRequestHandler):

rpc_paths = ('/RPC2',)

with SimpleXMLRPCServer(('localhost', 8000),

requestHandler=RequestHandler) as server:

server.register_introspection_functions()

Register pow() function; this will use the value of

pow.__name__ as the name, which is just 'pow'.

server.register_function(pow)

Register a function under a different name, using

register_function as a decorator. *name* can only be given

as a keyword argument.

@server.register_function(name='add')

def adder_function(x, y):

return x + y

Register a function under function.__name__.

@server.register_function

def mul(x, y):

return x * y

server.serve_forever()

The following example included in the Lib/xmlrpc/server.pymodule shows a server allowing dotted names and
registering a multicall function.

Warning

Enabling the allow_dotted_names option allows intruders to access your module’s global variables and may allow
intruders to execute arbitrary code on your machine. Only use this example only within a secure, closed network.

import datetime

class ExampleService:

def getData(self):

return '42'

class currentTime:

@staticmethod

def getCurrentTime():

return datetime.datetime.now()

with SimpleXMLRPCServer(("localhost", 8000)) as server:

server.register_function(pow)

server.register_function(lambda x,y: x+y, 'add')

server.register_instance(ExampleService(), allow_dotted_names=True)

server.register_multicall_functions()

print('Serving XML-RPC on localhost port 8000')

try:

server.serve_forever()

except KeyboardInterrupt:

print("\nKeyboard interrupt received, exiting.")
(continues on next page)

1510 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

(continued from previous page)

sys.exit(0)

This ExampleService demo can be invoked from the command line:

python -m xmlrpc.server

The client that interacts with the above server is included in Lib/xmlrpc/client.py:

server = ServerProxy("http://localhost:8000")

try:

print(server.currentTime.getCurrentTime())

except Error as v:

print("ERROR", v)

multi = MultiCall(server)

multi.getData()

multi.pow(2,9)

multi.add(1,2)

try:

for response in multi():

print(response)

except Error as v:

print("ERROR", v)

This client which interacts with the demo XMLRPC server can be invoked as:

python -m xmlrpc.client

22.22.2 CGIXMLRPCRequestHandler

The CGIXMLRPCRequestHandler class can be used to handle XML-RPC requests sent to Python CGI scripts.

CGIXMLRPCRequestHandler.register_function(function=None, name=None)
Register a function that can respond to XML-RPC requests. If name is given, it will be the method name
associated with function, otherwise function.__name__ will be used. name is a string, and may contain
characters not legal in Python identifiers, including the period character.

This method can also be used as a decorator. When used as a decorator, name can only be given as a keyword
argument to register function under name. If no name is given, function.__name__ will be used.

Changed in version 3.7: register_function() can be used as a decorator.

CGIXMLRPCRequestHandler.register_instance(instance)

Register an object which is used to expose method names which have not been registered using
register_function(). If instance contains a _dispatch()method, it is called with the requestedmethod
name and the parameters from the request; the return value is returned to the client as the result. If instance
does not have a _dispatch() method, it is searched for an attribute matching the name of the requested
method; if the requested method name contains periods, each component of the method name is searched for
individually, with the effect that a simple hierarchical search is performed. The value found from this search
is then called with the parameters from the request, and the return value is passed back to the client.

CGIXMLRPCRequestHandler.register_introspection_functions()

Register the XML-RPC introspection functions system.listMethods, system.methodHelp and
system.methodSignature.

CGIXMLRPCRequestHandler.register_multicall_functions()

Register the XML-RPC multicall function system.multicall.

22.22. xmlrpc.server— Basic XML-RPC servers 1511

The Python Library Reference, Release 3.13.1

CGIXMLRPCRequestHandler.handle_request(request_text=None)
Handle an XML-RPC request. If request_text is given, it should be the POST data provided by the HTTP
server, otherwise the contents of stdin will be used.

Example:

class MyFuncs:

def mul(self, x, y):

return x * y

handler = CGIXMLRPCRequestHandler()

handler.register_function(pow)

handler.register_function(lambda x,y: x+y, 'add')

handler.register_introspection_functions()

handler.register_instance(MyFuncs())

handler.handle_request()

22.22.3 Documenting XMLRPC server

These classes extend the above classes to serve HTML documentation in response to HTTP GET requests.
Servers can either be free standing, using DocXMLRPCServer, or embedded in a CGI environment, using
DocCGIXMLRPCRequestHandler.

class xmlrpc.server.DocXMLRPCServer(addr, requestHandler=DocXMLRPCRequestHandler,
logRequests=True, allow_none=False, encoding=None,
bind_and_activate=True, use_builtin_types=True)

Create a new server instance. All parameters have the same meaning as for SimpleXMLRPCServer; re-
questHandler defaults to DocXMLRPCRequestHandler.

Changed in version 3.3: The use_builtin_types flag was added.

class xmlrpc.server.DocCGIXMLRPCRequestHandler

Create a new instance to handle XML-RPC requests in a CGI environment.

class xmlrpc.server.DocXMLRPCRequestHandler

Create a new request handler instance. This request handler supports XML-RPC POST requests, documen-
tation GET requests, and modifies logging so that the logRequests parameter to the DocXMLRPCServer con-
structor parameter is honored.

22.22.4 DocXMLRPCServer Objects

The DocXMLRPCServer class is derived from SimpleXMLRPCServer and provides a means of creating self-
documenting, stand alone XML-RPC servers. HTTP POST requests are handled as XML-RPC method calls. HTTP
GET requests are handled by generating pydoc-style HTML documentation. This allows a server to provide its own
web-based documentation.

DocXMLRPCServer.set_server_title(server_title)

Set the title used in the generated HTML documentation. This title will be used inside the HTML “title”
element.

DocXMLRPCServer.set_server_name(server_name)
Set the name used in the generated HTML documentation. This name will appear at the top of the generated
documentation inside a “h1” element.

DocXMLRPCServer.set_server_documentation(server_documentation)

Set the description used in the generated HTML documentation. This description will appear as a paragraph,
below the server name, in the documentation.

1512 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

22.22.5 DocCGIXMLRPCRequestHandler

The DocCGIXMLRPCRequestHandler class is derived from CGIXMLRPCRequestHandler and provides a means
of creating self-documenting, XML-RPC CGI scripts. HTTP POST requests are handled as XML-RPC method
calls. HTTP GET requests are handled by generating pydoc-style HTML documentation. This allows a server to
provide its own web-based documentation.

DocCGIXMLRPCRequestHandler.set_server_title(server_title)

Set the title used in the generated HTML documentation. This title will be used inside the HTML “title”
element.

DocCGIXMLRPCRequestHandler.set_server_name(server_name)
Set the name used in the generated HTML documentation. This name will appear at the top of the generated
documentation inside a “h1” element.

DocCGIXMLRPCRequestHandler.set_server_documentation(server_documentation)

Set the description used in the generated HTML documentation. This description will appear as a paragraph,
below the server name, in the documentation.

22.23 ipaddress— IPv4/IPv6 manipulation library

Source code: Lib/ipaddress.py

ipaddress provides the capabilities to create, manipulate and operate on IPv4 and IPv6 addresses and networks.

The functions and classes in this module make it straightforward to handle various tasks related to IP addresses,
including checking whether or not two hosts are on the same subnet, iterating over all hosts in a particular subnet,
checking whether or not a string represents a valid IP address or network definition, and so on.

This is the full module API reference—for an overview and introduction, see ipaddress-howto.

Added in version 3.3.

22.23.1 Convenience factory functions

The ipaddress module provides factory functions to conveniently create IP addresses, networks and interfaces:

ipaddress.ip_address(address)
Return an IPv4Address or IPv6Address object depending on the IP address passed as argument. Either
IPv4 or IPv6 addresses may be supplied; integers less than 2**32 will be considered to be IPv4 by default. A
ValueError is raised if address does not represent a valid IPv4 or IPv6 address.

>>> ipaddress.ip_address('192.168.0.1')

IPv4Address('192.168.0.1')

>>> ipaddress.ip_address('2001:db8::')

IPv6Address('2001:db8::')

ipaddress.ip_network(address, strict=True)
Return an IPv4Network or IPv6Network object depending on the IP address passed as argument. address
is a string or integer representing the IP network. Either IPv4 or IPv6 networks may be supplied; integers
less than 2**32 will be considered to be IPv4 by default. strict is passed to IPv4Network or IPv6Network
constructor. A ValueError is raised if address does not represent a valid IPv4 or IPv6 address, or if the
network has host bits set.

>>> ipaddress.ip_network('192.168.0.0/28')

IPv4Network('192.168.0.0/28')

22.23. ipaddress— IPv4/IPv6 manipulation library 1513

https://github.com/python/cpython/tree/3.13/Lib/ipaddress.py

The Python Library Reference, Release 3.13.1

ipaddress.ip_interface(address)
Return an IPv4Interface or IPv6Interface object depending on the IP address passed as argument.
address is a string or integer representing the IP address. Either IPv4 or IPv6 addresses may be supplied;
integers less than 2**32 will be considered to be IPv4 by default. A ValueError is raised if address does
not represent a valid IPv4 or IPv6 address.

One downside of these convenience functions is that the need to handle both IPv4 and IPv6 formats means that error
messages provide minimal information on the precise error, as the functions don’t know whether the IPv4 or IPv6
format was intended. More detailed error reporting can be obtained by calling the appropriate version specific class
constructors directly.

22.23.2 IP Addresses

Address objects

The IPv4Address and IPv6Address objects share a lot of common attributes. Some attributes that are only
meaningful for IPv6 addresses are also implemented by IPv4Address objects, in order to make it easier to write
code that handles both IP versions correctly. Address objects are hashable, so they can be used as keys in dictionaries.

class ipaddress.IPv4Address(address)

Construct an IPv4 address. An AddressValueError is raised if address is not a valid IPv4 address.

The following constitutes a valid IPv4 address:

1. A string in decimal-dot notation, consisting of four decimal integers in the inclusive range 0–255, sep-
arated by dots (e.g. 192.168.0.1). Each integer represents an octet (byte) in the address. Leading
zeroes are not tolerated to prevent confusion with octal notation.

2. An integer that fits into 32 bits.

3. An integer packed into a bytes object of length 4 (most significant octet first).

>>> ipaddress.IPv4Address('192.168.0.1')

IPv4Address('192.168.0.1')

>>> ipaddress.IPv4Address(3232235521)

IPv4Address('192.168.0.1')

>>> ipaddress.IPv4Address(b'\xC0\xA8\x00\x01')

IPv4Address('192.168.0.1')

Changed in version 3.8: Leading zeros are tolerated, even in ambiguous cases that look like octal notation.

Changed in version 3.9.5: Leading zeros are no longer tolerated and are treated as an error. IPv4 address
strings are now parsed as strict as glibc inet_pton().

version

The appropriate version number: 4 for IPv4, 6 for IPv6.

max_prefixlen

The total number of bits in the address representation for this version: 32 for IPv4, 128 for IPv6.

The prefix defines the number of leading bits in an address that are compared to determine whether or
not an address is part of a network.

compressed

exploded

The string representation in dotted decimal notation. Leading zeroes are never included in the represen-
tation.

As IPv4 does not define a shorthand notation for addresses with octets set to zero, these two attributes
are always the same as str(addr) for IPv4 addresses. Exposing these attributes makes it easier to write
display code that can handle both IPv4 and IPv6 addresses.

1514 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

packed

The binary representation of this address - a bytes object of the appropriate length (most significant
octet first). This is 4 bytes for IPv4 and 16 bytes for IPv6.

reverse_pointer

The name of the reverse DNS PTR record for the IP address, e.g.:

>>> ipaddress.ip_address("127.0.0.1").reverse_pointer

'1.0.0.127.in-addr.arpa'

>>> ipaddress.ip_address("2001:db8::1").reverse_pointer

'1.0.8.b.d.0.1.0.0.2.ip6.arpa'

This is the name that could be used for performing a PTR lookup, not the resolved hostname itself.

Added in version 3.5.

is_multicast

True if the address is reserved for multicast use. See RFC 3171 (for IPv4) or RFC 2373 (for IPv6).

is_private

True if the address is defined as not globally reachable by iana-ipv4-special-registry (for IPv4) or iana-
ipv6-special-registry (for IPv6) with the following exceptions:

• is_private is False for the shared address space (100.64.0.0/10)

• For IPv4-mapped IPv6-addresses the is_private value is determined by the semantics of the
underlying IPv4 addresses and the following condition holds (see IPv6Address.ipv4_mapped):

address.is_private == address.ipv4_mapped.is_private

is_private has value opposite to is_global, except for the shared address space (100.64.0.0/10
range) where they are both False.

Changed in version 3.13: Fixed some false positives and false negatives.

• 192.0.0.0/24 is considered private with the exception of 192.0.0.9/32 and 192.0.0.10/32
(previously: only the 192.0.0.0/29 sub-range was considered private).

• 64:ff9b:1::/48 is considered private.

• 2002::/16 is considered private.

• There are exceptions within 2001::/23 (otherwise considered private): 2001:1::1/128,
2001:1::2/128, 2001:3::/32, 2001:4:112::/48, 2001:20::/28, 2001:30::/28. The
exceptions are not considered private.

is_global

True if the address is defined as globally reachable by iana-ipv4-special-registry (for IPv4) or iana-ipv6-
special-registry (for IPv6) with the following exception:

For IPv4-mapped IPv6-addresses the is_private value is determined by the semantics of the under-
lying IPv4 addresses and the following condition holds (see IPv6Address.ipv4_mapped):

address.is_global == address.ipv4_mapped.is_global

is_global has value opposite to is_private, except for the shared address space (100.64.0.0/10
range) where they are both False.

Added in version 3.4.

Changed in version 3.13: Fixed some false positives and false negatives, see is_private for details.

is_unspecified

True if the address is unspecified. See RFC 5735 (for IPv4) or RFC 2373 (for IPv6).

22.23. ipaddress— IPv4/IPv6 manipulation library 1515

https://datatracker.ietf.org/doc/html/rfc3171.html
https://datatracker.ietf.org/doc/html/rfc2373.html
https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
https://datatracker.ietf.org/doc/html/rfc5735.html
https://datatracker.ietf.org/doc/html/rfc2373.html

The Python Library Reference, Release 3.13.1

is_reserved

True if the address is otherwise IETF reserved.

is_loopback

True if this is a loopback address. See RFC 3330 (for IPv4) or RFC 2373 (for IPv6).

is_link_local

True if the address is reserved for link-local usage. See RFC 3927.

ipv6_mapped

IPv4Address object representing the IPv4-mapped IPv6 address. See RFC 4291.

Added in version 3.13.

IPv4Address.__format__(fmt)
Returns a string representation of the IP address, controlled by an explicit format string. fmt can be one of the
following: 's', the default option, equivalent to str(), 'b' for a zero-padded binary string, 'X' or 'x' for
an uppercase or lowercase hexadecimal representation, or 'n', which is equivalent to 'b' for IPv4 addresses
and 'x' for IPv6. For binary and hexadecimal representations, the form specifier '#' and the grouping option
'_' are available. __format__ is used by format, str.format and f-strings.

>>> format(ipaddress.IPv4Address('192.168.0.1'))

'192.168.0.1'

>>> '{:#b}'.format(ipaddress.IPv4Address('192.168.0.1'))

'0b11000000101010000000000000000001'

>>> f'{ipaddress.IPv6Address("2001:db8::1000"):s}'

'2001:db8::1000'

>>> format(ipaddress.IPv6Address('2001:db8::1000'), '_X')

'2001_0DB8_0000_0000_0000_0000_0000_1000'

>>> '{:#_n}'.format(ipaddress.IPv6Address('2001:db8::1000'))

'0x2001_0db8_0000_0000_0000_0000_0000_1000'

Added in version 3.9.

class ipaddress.IPv6Address(address)
Construct an IPv6 address. An AddressValueError is raised if address is not a valid IPv6 address.

The following constitutes a valid IPv6 address:

1. A string consisting of eight groups of four hexadecimal digits, each group representing 16 bits. The
groups are separated by colons. This describes an exploded (longhand) notation. The string can also
be compressed (shorthand notation) by various means. See RFC 4291 for details. For example,
"0000:0000:0000:0000:0000:0abc:0007:0def" can be compressed to "::abc:7:def".

Optionally, the string may also have a scope zone ID, expressed with a suffix %scope_id. If present,
the scope ID must be non-empty, and may not contain %. See RFC 4007 for details. For example,
fe80::1234%1 might identify address fe80::1234 on the first link of the node.

2. An integer that fits into 128 bits.

3. An integer packed into a bytes object of length 16, big-endian.

>>> ipaddress.IPv6Address('2001:db8::1000')

IPv6Address('2001:db8::1000')

>>> ipaddress.IPv6Address('ff02::5678%1')

IPv6Address('ff02::5678%1')

compressed

The short form of the address representation, with leading zeroes in groups omitted and the longest sequence
of groups consisting entirely of zeroes collapsed to a single empty group.

This is also the value returned by str(addr) for IPv6 addresses.

1516 Chapter 22. Internet Protocols and Support

https://datatracker.ietf.org/doc/html/rfc3330.html
https://datatracker.ietf.org/doc/html/rfc2373.html
https://datatracker.ietf.org/doc/html/rfc3927.html
https://datatracker.ietf.org/doc/html/rfc4291.html
https://datatracker.ietf.org/doc/html/rfc4291.html
https://datatracker.ietf.org/doc/html/rfc4007.html

The Python Library Reference, Release 3.13.1

exploded

The long form of the address representation, with all leading zeroes and groups consisting entirely of zeroes
included.

For the following attributes and methods, see the corresponding documentation of the IPv4Address class:

packed

reverse_pointer

version

max_prefixlen

is_multicast

is_private

is_global

Added in version 3.4.

is_unspecified

is_reserved

is_loopback

is_link_local

is_site_local

True if the address is reserved for site-local usage. Note that the site-local address space has been dep-
recated by RFC 3879. Use is_private to test if this address is in the space of unique local addresses
as defined by RFC 4193.

ipv4_mapped

For addresses that appear to be IPv4 mapped addresses (starting with ::FFFF/96), this property will
report the embedded IPv4 address. For any other address, this property will be None.

scope_id

For scoped addresses as defined byRFC 4007, this property identifies the particular zone of the address’s
scope that the address belongs to, as a string. When no scope zone is specified, this property will be None.

sixtofour

For addresses that appear to be 6to4 addresses (starting with 2002::/16) as defined by RFC 3056, this
property will report the embedded IPv4 address. For any other address, this property will be None.

teredo

For addresses that appear to be Teredo addresses (starting with 2001::/32) as defined by RFC 4380,
this property will report the embedded (server, client) IP address pair. For any other address, this
property will be None.

IPv6Address.__format__(fmt)
Refer to the corresponding method documentation in IPv4Address.

Added in version 3.9.

Conversion to Strings and Integers

To interoperate with networking interfaces such as the socket module, addresses must be converted to strings or
integers. This is handled using the str() and int() builtin functions:

22.23. ipaddress— IPv4/IPv6 manipulation library 1517

https://datatracker.ietf.org/doc/html/rfc3879.html
https://datatracker.ietf.org/doc/html/rfc4193.html
https://datatracker.ietf.org/doc/html/rfc4007.html
https://datatracker.ietf.org/doc/html/rfc3056.html
https://datatracker.ietf.org/doc/html/rfc4380.html

The Python Library Reference, Release 3.13.1

>>> str(ipaddress.IPv4Address('192.168.0.1'))

'192.168.0.1'

>>> int(ipaddress.IPv4Address('192.168.0.1'))

3232235521

>>> str(ipaddress.IPv6Address('::1'))

'::1'

>>> int(ipaddress.IPv6Address('::1'))

1

Note that IPv6 scoped addresses are converted to integers without scope zone ID.

Operators

Address objects support some operators. Unless stated otherwise, operators can only be applied between compatible
objects (i.e. IPv4 with IPv4, IPv6 with IPv6).

Comparison operators

Address objects can be compared with the usual set of comparison operators. Same IPv6 addresses with different
scope zone IDs are not equal. Some examples:

>>> IPv4Address('127.0.0.2') > IPv4Address('127.0.0.1')

True

>>> IPv4Address('127.0.0.2') == IPv4Address('127.0.0.1')

False

>>> IPv4Address('127.0.0.2') != IPv4Address('127.0.0.1')

True

>>> IPv6Address('fe80::1234') == IPv6Address('fe80::1234%1')

False

>>> IPv6Address('fe80::1234%1') != IPv6Address('fe80::1234%2')

True

Arithmetic operators

Integers can be added to or subtracted from address objects. Some examples:

>>> IPv4Address('127.0.0.2') + 3

IPv4Address('127.0.0.5')

>>> IPv4Address('127.0.0.2') - 3

IPv4Address('126.255.255.255')

>>> IPv4Address('255.255.255.255') + 1

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ipaddress.AddressValueError: 4294967296 (>= 2**32) is not permitted as an IPv4␣

↪→address

22.23.3 IP Network definitions

The IPv4Network and IPv6Network objects provide a mechanism for defining and inspecting IP network defi-
nitions. A network definition consists of a mask and a network address, and as such defines a range of IP addresses
that equal the network address when masked (binary AND) with the mask. For example, a network definition with
the mask 255.255.255.0 and the network address 192.168.1.0 consists of IP addresses in the inclusive range
192.168.1.0 to 192.168.1.255.

1518 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

Prefix, net mask and host mask

There are several equivalent ways to specify IP network masks. A prefix /<nbits> is a notation that denotes how
many high-order bits are set in the network mask. A net mask is an IP address with some number of high-order
bits set. Thus the prefix /24 is equivalent to the net mask 255.255.255.0 in IPv4, or ffff:ff00:: in IPv6. In
addition, a host mask is the logical inverse of a net mask, and is sometimes used (for example in Cisco access control
lists) to denote a network mask. The host mask equivalent to /24 in IPv4 is 0.0.0.255.

Network objects

All attributes implemented by address objects are implemented by network objects as well. In addition, network
objects implement additional attributes. All of these are common between IPv4Network and IPv6Network, so to
avoid duplication they are only documented for IPv4Network. Network objects are hashable, so they can be used
as keys in dictionaries.

class ipaddress.IPv4Network(address, strict=True)
Construct an IPv4 network definition. address can be one of the following:

1. A string consisting of an IP address and an optional mask, separated by a slash (/). The IP address is
the network address, and the mask can be either a single number, which means it’s a prefix, or a string
representation of an IPv4 address. If it’s the latter, the mask is interpreted as a net mask if it starts with a
non-zero field, or as a host mask if it starts with a zero field, with the single exception of an all-zero mask
which is treated as a net mask. If no mask is provided, it’s considered to be /32.

For example, the following address specifications are equivalent: 192.168.1.0/24, 192.168.1.0/
255.255.255.0 and 192.168.1.0/0.0.0.255.

2. An integer that fits into 32 bits. This is equivalent to a single-address network, with the network address
being address and the mask being /32.

3. An integer packed into a bytes object of length 4, big-endian. The interpretation is similar to an integer
address.

4. A two-tuple of an address description and a netmask, where the address description is either a string, a
32-bits integer, a 4-bytes packed integer, or an existing IPv4Address object; and the netmask is either an
integer representing the prefix length (e.g. 24) or a string representing the prefix mask (e.g. 255.255.
255.0).

An AddressValueError is raised if address is not a valid IPv4 address. A NetmaskValueError is raised
if the mask is not valid for an IPv4 address.

If strict is True and host bits are set in the supplied address, then ValueError is raised. Otherwise, the host
bits are masked out to determine the appropriate network address.

Unless stated otherwise, all network methods accepting other network/address objects will raise TypeError
if the argument’s IP version is incompatible to self.

Changed in version 3.5: Added the two-tuple form for the address constructor parameter.

version

max_prefixlen

Refer to the corresponding attribute documentation in IPv4Address.

is_multicast

is_private

is_unspecified

is_reserved

is_loopback

22.23. ipaddress— IPv4/IPv6 manipulation library 1519

The Python Library Reference, Release 3.13.1

is_link_local

These attributes are true for the network as a whole if they are true for both the network address and the
broadcast address.

network_address

The network address for the network. The network address and the prefix length together uniquely define
a network.

broadcast_address

The broadcast address for the network. Packets sent to the broadcast address should be received by every
host on the network.

hostmask

The host mask, as an IPv4Address object.

netmask

The net mask, as an IPv4Address object.

with_prefixlen

compressed

exploded

A string representation of the network, with the mask in prefix notation.

with_prefixlen and compressed are always the same as str(network). exploded uses the
exploded form the network address.

with_netmask

A string representation of the network, with the mask in net mask notation.

with_hostmask

A string representation of the network, with the mask in host mask notation.

num_addresses

The total number of addresses in the network.

prefixlen

Length of the network prefix, in bits.

hosts()

Returns an iterator over the usable hosts in the network. The usable hosts are all the IP addresses that
belong to the network, except the network address itself and the network broadcast address. For networks
with a mask length of 31, the network address and network broadcast address are also included in the
result. Networks with a mask of 32 will return a list containing the single host address.

>>> list(ip_network('192.0.2.0/29').hosts())

[IPv4Address('192.0.2.1'), IPv4Address('192.0.2.2'),

IPv4Address('192.0.2.3'), IPv4Address('192.0.2.4'),

IPv4Address('192.0.2.5'), IPv4Address('192.0.2.6')]

>>> list(ip_network('192.0.2.0/31').hosts())

[IPv4Address('192.0.2.0'), IPv4Address('192.0.2.1')]

>>> list(ip_network('192.0.2.1/32').hosts())

[IPv4Address('192.0.2.1')]

overlaps(other)

True if this network is partly or wholly contained in other or other is wholly contained in this network.

address_exclude(network)
Computes the network definitions resulting from removing the given network from this one. Returns an
iterator of network objects. Raises ValueError if network is not completely contained in this network.

1520 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

>>> n1 = ip_network('192.0.2.0/28')

>>> n2 = ip_network('192.0.2.1/32')

>>> list(n1.address_exclude(n2))

[IPv4Network('192.0.2.8/29'), IPv4Network('192.0.2.4/30'),

IPv4Network('192.0.2.2/31'), IPv4Network('192.0.2.0/32')]

subnets(prefixlen_diff=1, new_prefix=None)
The subnets that join to make the current network definition, depending on the argument values. pre-
fixlen_diff is the amount our prefix length should be increased by. new_prefix is the desired new prefix
of the subnets; it must be larger than our prefix. One and only one of prefixlen_diff and new_prefix must
be set. Returns an iterator of network objects.

>>> list(ip_network('192.0.2.0/24').subnets())

[IPv4Network('192.0.2.0/25'), IPv4Network('192.0.2.128/25')]

>>> list(ip_network('192.0.2.0/24').subnets(prefixlen_diff=2))

[IPv4Network('192.0.2.0/26'), IPv4Network('192.0.2.64/26'),

IPv4Network('192.0.2.128/26'), IPv4Network('192.0.2.192/26')]

>>> list(ip_network('192.0.2.0/24').subnets(new_prefix=26))

[IPv4Network('192.0.2.0/26'), IPv4Network('192.0.2.64/26'),

IPv4Network('192.0.2.128/26'), IPv4Network('192.0.2.192/26')]

>>> list(ip_network('192.0.2.0/24').subnets(new_prefix=23))

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

raise ValueError('new prefix must be longer')

ValueError: new prefix must be longer

>>> list(ip_network('192.0.2.0/24').subnets(new_prefix=25))

[IPv4Network('192.0.2.0/25'), IPv4Network('192.0.2.128/25')]

supernet(prefixlen_diff=1, new_prefix=None)
The supernet containing this network definition, depending on the argument values. prefixlen_diff is the
amount our prefix length should be decreased by. new_prefix is the desired new prefix of the supernet; it
must be smaller than our prefix. One and only one of prefixlen_diff and new_prefix must be set. Returns
a single network object.

>>> ip_network('192.0.2.0/24').supernet()

IPv4Network('192.0.2.0/23')

>>> ip_network('192.0.2.0/24').supernet(prefixlen_diff=2)

IPv4Network('192.0.0.0/22')

>>> ip_network('192.0.2.0/24').supernet(new_prefix=20)

IPv4Network('192.0.0.0/20')

subnet_of(other)
Return True if this network is a subnet of other.

>>> a = ip_network('192.168.1.0/24')

>>> b = ip_network('192.168.1.128/30')

>>> b.subnet_of(a)

True

Added in version 3.7.

supernet_of(other)
Return True if this network is a supernet of other.

>>> a = ip_network('192.168.1.0/24')

>>> b = ip_network('192.168.1.128/30')

>>> a.supernet_of(b)

True

22.23. ipaddress— IPv4/IPv6 manipulation library 1521

The Python Library Reference, Release 3.13.1

Added in version 3.7.

compare_networks(other)
Compare this network to other. In this comparison only the network addresses are considered; host bits
aren’t. Returns either -1, 0 or 1.

>>> ip_network('192.0.2.1/32').compare_networks(ip_network('192.0.2.2/32'))

-1

>>> ip_network('192.0.2.1/32').compare_networks(ip_network('192.0.2.0/32'))

1

>>> ip_network('192.0.2.1/32').compare_networks(ip_network('192.0.2.1/32'))

0

Deprecated since version 3.7: It uses the same ordering and comparison algorithm as “<”, “==”, and “>”

class ipaddress.IPv6Network(address, strict=True)
Construct an IPv6 network definition. address can be one of the following:

1. A string consisting of an IP address and an optional prefix length, separated by a slash (/). The IP address
is the network address, and the prefix length must be a single number, the prefix. If no prefix length is
provided, it’s considered to be /128.

Note that currently expanded netmasks are not supported. That means 2001:db00::0/24 is a valid
argument while 2001:db00::0/ffff:ff00:: is not.

2. An integer that fits into 128 bits. This is equivalent to a single-address network, with the network address
being address and the mask being /128.

3. An integer packed into a bytes object of length 16, big-endian. The interpretation is similar to an integer
address.

4. A two-tuple of an address description and a netmask, where the address description is either a string,
a 128-bits integer, a 16-bytes packed integer, or an existing IPv6Address object; and the netmask is an
integer representing the prefix length.

An AddressValueError is raised if address is not a valid IPv6 address. A NetmaskValueError is raised
if the mask is not valid for an IPv6 address.

If strict is True and host bits are set in the supplied address, then ValueError is raised. Otherwise, the host
bits are masked out to determine the appropriate network address.

Changed in version 3.5: Added the two-tuple form for the address constructor parameter.

version

max_prefixlen

is_multicast

is_private

is_unspecified

is_reserved

is_loopback

is_link_local

network_address

broadcast_address

hostmask

1522 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

netmask

with_prefixlen

compressed

exploded

with_netmask

with_hostmask

num_addresses

prefixlen

hosts()

Returns an iterator over the usable hosts in the network. The usable hosts are all the IP addresses that
belong to the network, except the Subnet-Router anycast address. For networks with a mask length of
127, the Subnet-Router anycast address is also included in the result. Networks with a mask of 128 will
return a list containing the single host address.

overlaps(other)

address_exclude(network)

subnets(prefixlen_diff=1, new_prefix=None)

supernet(prefixlen_diff=1, new_prefix=None)

subnet_of(other)

supernet_of(other)

compare_networks(other)
Refer to the corresponding attribute documentation in IPv4Network.

is_site_local

These attribute is true for the network as a whole if it is true for both the network address and the broadcast
address.

Operators

Network objects support some operators. Unless stated otherwise, operators can only be applied between compatible
objects (i.e. IPv4 with IPv4, IPv6 with IPv6).

Logical operators

Network objects can be compared with the usual set of logical operators. Network objects are ordered first by network
address, then by net mask.

Iteration

Network objects can be iterated to list all the addresses belonging to the network. For iteration, all hosts are returned,
including unusable hosts (for usable hosts, use the hosts() method). An example:

>>> for addr in IPv4Network('192.0.2.0/28'):

... addr

...

IPv4Address('192.0.2.0')

IPv4Address('192.0.2.1')

IPv4Address('192.0.2.2')

(continues on next page)

22.23. ipaddress— IPv4/IPv6 manipulation library 1523

The Python Library Reference, Release 3.13.1

(continued from previous page)

IPv4Address('192.0.2.3')

IPv4Address('192.0.2.4')

IPv4Address('192.0.2.5')

IPv4Address('192.0.2.6')

IPv4Address('192.0.2.7')

IPv4Address('192.0.2.8')

IPv4Address('192.0.2.9')

IPv4Address('192.0.2.10')

IPv4Address('192.0.2.11')

IPv4Address('192.0.2.12')

IPv4Address('192.0.2.13')

IPv4Address('192.0.2.14')

IPv4Address('192.0.2.15')

Networks as containers of addresses

Network objects can act as containers of addresses. Some examples:

>>> IPv4Network('192.0.2.0/28')[0]

IPv4Address('192.0.2.0')

>>> IPv4Network('192.0.2.0/28')[15]

IPv4Address('192.0.2.15')

>>> IPv4Address('192.0.2.6') in IPv4Network('192.0.2.0/28')

True

>>> IPv4Address('192.0.3.6') in IPv4Network('192.0.2.0/28')

False

22.23.4 Interface objects

Interface objects are hashable, so they can be used as keys in dictionaries.

class ipaddress.IPv4Interface(address)
Construct an IPv4 interface. The meaning of address is as in the constructor of IPv4Network, except that
arbitrary host addresses are always accepted.

IPv4Interface is a subclass of IPv4Address, so it inherits all the attributes from that class. In addition,
the following attributes are available:

ip

The address (IPv4Address) without network information.

>>> interface = IPv4Interface('192.0.2.5/24')

>>> interface.ip

IPv4Address('192.0.2.5')

network

The network (IPv4Network) this interface belongs to.

>>> interface = IPv4Interface('192.0.2.5/24')

>>> interface.network

IPv4Network('192.0.2.0/24')

with_prefixlen

A string representation of the interface with the mask in prefix notation.

1524 Chapter 22. Internet Protocols and Support

The Python Library Reference, Release 3.13.1

>>> interface = IPv4Interface('192.0.2.5/24')

>>> interface.with_prefixlen

'192.0.2.5/24'

with_netmask

A string representation of the interface with the network as a net mask.

>>> interface = IPv4Interface('192.0.2.5/24')

>>> interface.with_netmask

'192.0.2.5/255.255.255.0'

with_hostmask

A string representation of the interface with the network as a host mask.

>>> interface = IPv4Interface('192.0.2.5/24')

>>> interface.with_hostmask

'192.0.2.5/0.0.0.255'

class ipaddress.IPv6Interface(address)

Construct an IPv6 interface. The meaning of address is as in the constructor of IPv6Network, except that
arbitrary host addresses are always accepted.

IPv6Interface is a subclass of IPv6Address, so it inherits all the attributes from that class. In addition,
the following attributes are available:

ip

network

with_prefixlen

with_netmask

with_hostmask

Refer to the corresponding attribute documentation in IPv4Interface.

Operators

Interface objects support some operators. Unless stated otherwise, operators can only be applied between compatible
objects (i.e. IPv4 with IPv4, IPv6 with IPv6).

Logical operators

Interface objects can be compared with the usual set of logical operators.

For equality comparison (== and !=), both the IP address and network must be the same for the objects to be equal.
An interface will not compare equal to any address or network object.

For ordering (<, >, etc) the rules are different. Interface and address objects with the same IP version can be compared,
and the address objects will always sort before the interface objects. Two interface objects are first compared by their
networks and, if those are the same, then by their IP addresses.

22.23.5 Other Module Level Functions

The module also provides the following module level functions:

ipaddress.v4_int_to_packed(address)
Represent an address as 4 packed bytes in network (big-endian) order. address is an integer representation of
an IPv4 IP address. A ValueError is raised if the integer is negative or too large to be an IPv4 IP address.

22.23. ipaddress— IPv4/IPv6 manipulation library 1525

The Python Library Reference, Release 3.13.1

>>> ipaddress.ip_address(3221225985)

IPv4Address('192.0.2.1')

>>> ipaddress.v4_int_to_packed(3221225985)

b'\xc0\x00\x02\x01'

ipaddress.v6_int_to_packed(address)

Represent an address as 16 packed bytes in network (big-endian) order. address is an integer representation of
an IPv6 IP address. A ValueError is raised if the integer is negative or too large to be an IPv6 IP address.

ipaddress.summarize_address_range(first, last)
Return an iterator of the summarized network range given the first and last IP addresses. first is the first
IPv4Address or IPv6Address in the range and last is the last IPv4Address or IPv6Address in the range.
A TypeError is raised if first or last are not IP addresses or are not of the same version. A ValueError is
raised if last is not greater than first or if first address version is not 4 or 6.

>>> [ipaddr for ipaddr in ipaddress.summarize_address_range(

... ipaddress.IPv4Address('192.0.2.0'),

... ipaddress.IPv4Address('192.0.2.130'))]

[IPv4Network('192.0.2.0/25'), IPv4Network('192.0.2.128/31'), IPv4Network('192.

↪→0.2.130/32')]

ipaddress.collapse_addresses(addresses)
Return an iterator of the collapsed IPv4Network or IPv6Network objects. addresses is an iterable of
IPv4Network or IPv6Network objects. A TypeError is raised if addresses contains mixed version objects.

>>> [ipaddr for ipaddr in

... ipaddress.collapse_addresses([ipaddress.IPv4Network('192.0.2.0/25'),

... ipaddress.IPv4Network('192.0.2.128/25')])]

[IPv4Network('192.0.2.0/24')]

ipaddress.get_mixed_type_key(obj)
Return a key suitable for sorting between networks and addresses. Address andNetwork objects are not sortable
by default; they’re fundamentally different, so the expression:

IPv4Address('192.0.2.0') <= IPv4Network('192.0.2.0/24')

doesn’t make sense. There are some times however, where you may wish to have ipaddress sort these
anyway. If you need to do this, you can use this function as the key argument to sorted().

obj is either a network or address object.

22.23.6 Custom Exceptions

To support more specific error reporting from class constructors, the module defines the following exceptions:

exception ipaddress.AddressValueError(ValueError)
Any value error related to the address.

exception ipaddress.NetmaskValueError(ValueError)
Any value error related to the net mask.

1526 Chapter 22. Internet Protocols and Support

CHAPTER

TWENTYTHREE

MULTIMEDIA SERVICES

The modules described in this chapter implement various algorithms or interfaces that are mainly useful for multi-
media applications. They are available at the discretion of the installation. Here’s an overview:

23.1 wave— Read and write WAV files

Source code: Lib/wave.py

The wave module provides a convenient interface to the Waveform Audio “WAVE” (or “WAV”) file format. Only
uncompressed PCM encoded wave files are supported.

Changed in version 3.12: Support for WAVE_FORMAT_EXTENSIBLE headers was added, provided that the extended
format is KSDATAFORMAT_SUBTYPE_PCM.

The wave module defines the following function and exception:

wave.open(file, mode=None)
If file is a string, open the file by that name, otherwise treat it as a file-like object. mode can be:

'rb'

Read only mode.

'wb'

Write only mode.

Note that it does not allow read/write WAV files.

A mode of 'rb' returns a Wave_read object, while a mode of 'wb' returns a Wave_write object. If mode
is omitted and a file-like object is passed as file, file.mode is used as the default value for mode.

If you pass in a file-like object, the wave object will not close it when its close() method is called; it is the
caller’s responsibility to close the file object.

The open() function may be used in a with statement. When the with block completes, the Wave_read.
close() or Wave_write.close() method is called.

Changed in version 3.4: Added support for unseekable files.

exception wave.Error

An error raised when something is impossible because it violates the WAV specification or hits an implemen-
tation deficiency.

23.1.1 Wave_read Objects

class wave.Wave_read

Read a WAV file.

Wave_read objects, as returned by open(), have the following methods:

1527

https://github.com/python/cpython/tree/3.13/Lib/wave.py

The Python Library Reference, Release 3.13.1

close()

Close the stream if it was opened by wave, and make the instance unusable. This is called automatically
on object collection.

getnchannels()

Returns number of audio channels (1 for mono, 2 for stereo).

getsampwidth()

Returns sample width in bytes.

getframerate()

Returns sampling frequency.

getnframes()

Returns number of audio frames.

getcomptype()

Returns compression type ('NONE' is the only supported type).

getcompname()

Human-readable version of getcomptype(). Usually 'not compressed' parallels 'NONE'.

getparams()

Returns a namedtuple() (nchannels, sampwidth, framerate, nframes, comptype,

compname), equivalent to output of the get*() methods.

readframes(n)
Reads and returns at most n frames of audio, as a bytes object.

rewind()

Rewind the file pointer to the beginning of the audio stream.

The following two methods are defined for compatibility with the old aifc module, and don’t do anything
interesting.

getmarkers()

Returns None.

Deprecated since version 3.13, will be removed in version 3.15: The method only existed for compati-
bility with the aifc module which has been removed in Python 3.13.

getmark(id)

Raise an error.

Deprecated since version 3.13, will be removed in version 3.15: The method only existed for compati-
bility with the aifc module which has been removed in Python 3.13.

The following two methods define a term “position” which is compatible between them, and is otherwise
implementation dependent.

setpos(pos)
Set the file pointer to the specified position.

tell()

Return current file pointer position.

23.1.2 Wave_write Objects

class wave.Wave_write

Write a WAV file.

Wave_write objects, as returned by open().

1528 Chapter 23. Multimedia Services

The Python Library Reference, Release 3.13.1

For seekable output streams, the wave header will automatically be updated to reflect the number of frames
actually written. For unseekable streams, the nframes value must be accurate when the first frame data is
written. An accurate nframes value can be achieved either by calling setnframes() or setparams() with
the number of frames that will be written before close() is called and then using writeframesraw() to
write the frame data, or by calling writeframes() with all of the frame data to be written. In the latter case
writeframes() will calculate the number of frames in the data and set nframes accordingly before writing
the frame data.

Changed in version 3.4: Added support for unseekable files.

Wave_write objects have the following methods:

close()

Make sure nframes is correct, and close the file if it was opened by wave. This method is called upon
object collection. It will raise an exception if the output stream is not seekable and nframes does not
match the number of frames actually written.

setnchannels(n)

Set the number of channels.

setsampwidth(n)
Set the sample width to n bytes.

setframerate(n)
Set the frame rate to n.

Changed in version 3.2: A non-integral input to this method is rounded to the nearest integer.

setnframes(n)
Set the number of frames to n. This will be changed later if the number of frames actually written is
different (this update attempt will raise an error if the output stream is not seekable).

setcomptype(type, name)
Set the compression type and description. At the moment, only compression type NONE is supported,
meaning no compression.

setparams(tuple)
The tuple should be (nchannels, sampwidth, framerate, nframes, comptype,

compname), with values valid for the set*() methods. Sets all parameters.

tell()

Return current position in the file, with the same disclaimer for the Wave_read.tell() and
Wave_read.setpos() methods.

writeframesraw(data)

Write audio frames, without correcting nframes.

Changed in version 3.4: Any bytes-like object is now accepted.

writeframes(data)
Write audio frames and make sure nframes is correct. It will raise an error if the output stream is not
seekable and the total number of frames that have been written after data has been written does not
match the previously set value for nframes.

Changed in version 3.4: Any bytes-like object is now accepted.

Note that it is invalid to set any parameters after calling writeframes() or writeframesraw(), and
any attempt to do so will raise wave.Error.

23.1. wave— Read and write WAV files 1529

The Python Library Reference, Release 3.13.1

23.2 colorsys— Conversions between color systems

Source code: Lib/colorsys.py

The colorsys module defines bidirectional conversions of color values between colors expressed in the RGB (Red
Green Blue) color space used in computer monitors and three other coordinate systems: YIQ, HLS (Hue Lightness
Saturation) and HSV (Hue Saturation Value). Coordinates in all of these color spaces are floating-point values. In
the YIQ space, the Y coordinate is between 0 and 1, but the I and Q coordinates can be positive or negative. In all
other spaces, the coordinates are all between 0 and 1.

See also

More information about color spaces can be found at https://poynton.ca/ColorFAQ.html and https://www.
cambridgeincolour.com/tutorials/color-spaces.htm.

The colorsys module defines the following functions:

colorsys.rgb_to_yiq(r, g, b)
Convert the color from RGB coordinates to YIQ coordinates.

colorsys.yiq_to_rgb(y, i, q)
Convert the color from YIQ coordinates to RGB coordinates.

colorsys.rgb_to_hls(r, g, b)
Convert the color from RGB coordinates to HLS coordinates.

colorsys.hls_to_rgb(h, l, s)
Convert the color from HLS coordinates to RGB coordinates.

colorsys.rgb_to_hsv(r, g, b)
Convert the color from RGB coordinates to HSV coordinates.

colorsys.hsv_to_rgb(h, s, v)
Convert the color from HSV coordinates to RGB coordinates.

Example:

>>> import colorsys

>>> colorsys.rgb_to_hsv(0.2, 0.4, 0.4)

(0.5, 0.5, 0.4)

>>> colorsys.hsv_to_rgb(0.5, 0.5, 0.4)

(0.2, 0.4, 0.4)

1530 Chapter 23. Multimedia Services

https://github.com/python/cpython/tree/3.13/Lib/colorsys.py
https://poynton.ca/ColorFAQ.html
https://www.cambridgeincolour.com/tutorials/color-spaces.htm
https://www.cambridgeincolour.com/tutorials/color-spaces.htm

CHAPTER

TWENTYFOUR

INTERNATIONALIZATION

Themodules described in this chapter help you write software that is independent of language and locale by providing
mechanisms for selecting a language to be used in programmessages or by tailoring output to match local conventions.

The list of modules described in this chapter is:

24.1 gettext—Multilingual internationalization services

Source code: Lib/gettext.py

The gettextmodule provides internationalization (I18N) and localization (L10N) services for your Pythonmodules
and applications. It supports both the GNU gettext message catalog API and a higher level, class-based API
that may be more appropriate for Python files. The interface described below allows you to write your module and
application messages in one natural language, and provide a catalog of translated messages for running under different
natural languages.

Some hints on localizing your Python modules and applications are also given.

24.1.1 GNU gettext API

The gettext module defines the following API, which is very similar to the GNU gettext API. If you use this
API you will affect the translation of your entire application globally. Often this is what you want if your application
is monolingual, with the choice of language dependent on the locale of your user. If you are localizing a Python
module, or if your application needs to switch languages on the fly, you probably want to use the class-based API
instead.

gettext.bindtextdomain(domain, localedir=None)
Bind the domain to the locale directory localedir. More concretely, gettext will look for binary .mo files
for the given domain using the path (on Unix): localedir/language/LC_MESSAGES/domain.mo, where
language is searched for in the environment variables LANGUAGE, LC_ALL, LC_MESSAGES, and LANG respec-
tively.

If localedir is omitted or None, then the current binding for domain is returned.1

gettext.textdomain(domain=None)

Change or query the current global domain. If domain is None, then the current global domain is returned,
otherwise the global domain is set to domain, which is returned.

gettext.gettext(message)

Return the localized translation ofmessage, based on the current global domain, language, and locale directory.
This function is usually aliased as _() in the local namespace (see examples below).

1 The default locale directory is system dependent; for example, on Red Hat Linux it is /usr/share/locale, but on Solaris it is /usr/
lib/locale. The gettextmodule does not try to support these system dependent defaults; instead its default is sys.base_prefix/share/
locale (see sys.base_prefix). For this reason, it is always best to call bindtextdomain() with an explicit absolute path at the start of
your application.

1531

https://github.com/python/cpython/tree/3.13/Lib/gettext.py

The Python Library Reference, Release 3.13.1

gettext.dgettext(domain, message)
Like gettext(), but look the message up in the specified domain.

gettext.ngettext(singular, plural, n)
Like gettext(), but consider plural forms. If a translation is found, apply the plural formula to n, and return
the resulting message (some languages have more than two plural forms). If no translation is found, return
singular if n is 1; return plural otherwise.

The Plural formula is taken from the catalog header. It is a C or Python expression that has a free variable n;
the expression evaluates to the index of the plural in the catalog. See the GNU gettext documentation for the
precise syntax to be used in .po files and the formulas for a variety of languages.

gettext.dngettext(domain, singular, plural, n)
Like ngettext(), but look the message up in the specified domain.

gettext.pgettext(context, message)

gettext.dpgettext(domain, context, message)

gettext.npgettext(context, singular, plural, n)

gettext.dnpgettext(domain, context, singular, plural, n)
Similar to the corresponding functions without the p in the prefix (that is, gettext(), dgettext(),
ngettext(), dngettext()), but the translation is restricted to the given message context.

Added in version 3.8.

Note that GNU gettext also defines a dcgettext()method, but this was deemed not useful and so it is currently
unimplemented.

Here’s an example of typical usage for this API:

import gettext

gettext.bindtextdomain('myapplication', '/path/to/my/language/directory')

gettext.textdomain('myapplication')

_ = gettext.gettext

...

print(_('This is a translatable string.'))

24.1.2 Class-based API

The class-based API of the gettext module gives you more flexibility and greater convenience than the GNU
gettext API. It is the recommended way of localizing your Python applications and modules. gettext defines a
GNUTranslations class which implements the parsing of GNU .mo format files, and has methods for returning
strings. Instances of this class can also install themselves in the built-in namespace as the function _().

gettext.find(domain, localedir=None, languages=None, all=False)
This function implements the standard .mo file search algorithm. It takes a domain, identical to what
textdomain() takes. Optional localedir is as in bindtextdomain(). Optional languages is a list of strings,
where each string is a language code.

If localedir is not given, then the default system locale directory is used.2 If languages is not given, then the
following environment variables are searched: LANGUAGE, LC_ALL, LC_MESSAGES, and LANG. The first one
returning a non-empty value is used for the languages variable. The environment variables should contain a
colon separated list of languages, which will be split on the colon to produce the expected list of language code
strings.

find() then expands and normalizes the languages, and then iterates through them, searching for an existing
file built of these components:

localedir/language/LC_MESSAGES/domain.mo

2 See the footnote for bindtextdomain() above.

1532 Chapter 24. Internationalization

https://www.gnu.org/software/gettext/manual/gettext.html

The Python Library Reference, Release 3.13.1

The first such file name that exists is returned by find(). If no such file is found, then None is returned.
If all is given, it returns a list of all file names, in the order in which they appear in the languages list or the
environment variables.

gettext.translation(domain, localedir=None, languages=None, class_=None, fallback=False)
Return a *Translations instance based on the domain, localedir, and languages, which are first passed to
find() to get a list of the associated .mo file paths. Instances with identical .mo file names are cached. The
actual class instantiated is class_ if provided, otherwise GNUTranslations. The class’s constructor must take
a single file object argument.

If multiple files are found, later files are used as fallbacks for earlier ones. To allow setting the fallback, copy.
copy() is used to clone each translation object from the cache; the actual instance data is still shared with the
cache.

If no .mo file is found, this function raises OSError if fallback is false (which is the default), and returns a
NullTranslations instance if fallback is true.

Changed in version 3.3: IOError used to be raised, it is now an alias of OSError.

Changed in version 3.11: codeset parameter is removed.

gettext.install(domain, localedir=None, *, names=None)

This installs the function _() in Python’s builtins namespace, based on domain and localedir which are passed
to the function translation().

For the names parameter, please see the description of the translation object’s install() method.

As seen below, you usually mark the strings in your application that are candidates for translation, by wrapping
them in a call to the _() function, like this:

print(_('This string will be translated.'))

For convenience, you want the _() function to be installed in Python’s builtins namespace, so it is easily
accessible in all modules of your application.

Changed in version 3.11: names is now a keyword-only parameter.

The NullTranslations class

Translation classes are what actually implement the translation of original source file message strings to translated
message strings. The base class used by all translation classes is NullTranslations; this provides the basic inter-
face you can use to write your own specialized translation classes. Here are the methods of NullTranslations:

class gettext.NullTranslations(fp=None)
Takes an optional file object fp, which is ignored by the base class. Initializes “protected” instance vari-
ables _info and _charset which are set by derived classes, as well as _fallback, which is set through
add_fallback(). It then calls self._parse(fp) if fp is not None.

_parse(fp)

No-op in the base class, this method takes file object fp, and reads the data from the file, initializing
its message catalog. If you have an unsupported message catalog file format, you should override this
method to parse your format.

add_fallback(fallback)

Add fallback as the fallback object for the current translation object. A translation object should consult
the fallback if it cannot provide a translation for a given message.

gettext(message)
If a fallback has been set, forward gettext() to the fallback. Otherwise, return message. Overridden
in derived classes.

24.1. gettext—Multilingual internationalization services 1533

The Python Library Reference, Release 3.13.1

ngettext(singular, plural, n)
If a fallback has been set, forward ngettext() to the fallback. Otherwise, return singular if n is 1;
return plural otherwise. Overridden in derived classes.

pgettext(context, message)
If a fallback has been set, forward pgettext() to the fallback. Otherwise, return the translatedmessage.
Overridden in derived classes.

Added in version 3.8.

npgettext(context, singular, plural, n)
If a fallback has been set, forward npgettext() to the fallback. Otherwise, return the translated mes-
sage. Overridden in derived classes.

Added in version 3.8.

info()

Return a dictionary containing the metadata found in the message catalog file.

charset()

Return the encoding of the message catalog file.

install(names=None)
This method installs gettext() into the built-in namespace, binding it to _.

If the names parameter is given, it must be a sequence containing the names of functions you want to
install in the builtins namespace in addition to _(). Supported names are 'gettext', 'ngettext',
'pgettext', and 'npgettext'.

Note that this is only one way, albeit the most convenient way, to make the _() function available to your
application. Because it affects the entire application globally, and specifically the built-in namespace,
localized modules should never install _(). Instead, they should use this code to make _() available to
their module:

import gettext

t = gettext.translation('mymodule', ...)

_ = t.gettext

This puts _() only in the module’s global namespace and so only affects calls within this module.

Changed in version 3.8: Added 'pgettext' and 'npgettext'.

The GNUTranslations class

The gettextmodule provides one additional class derived from NullTranslations: GNUTranslations. This
class overrides _parse() to enable reading GNU gettext format .mo files in both big-endian and little-endian
format.

GNUTranslations parses optional metadata out of the translation catalog. It is convention with GNU gettext to
include metadata as the translation for the empty string. This metadata is in RFC 822-style key: value pairs, and
should contain the Project-Id-Version key. If the key Content-Type is found, then the charset property
is used to initialize the “protected” _charset instance variable, defaulting to None if not found. If the charset
encoding is specified, then all message ids and message strings read from the catalog are converted to Unicode using
this encoding, else ASCII is assumed.

Since message ids are read as Unicode strings too, all *gettext() methods will assume message ids as Unicode
strings, not byte strings.

The entire set of key/value pairs are placed into a dictionary and set as the “protected” _info instance variable.

If the .mo file’s magic number is invalid, the major version number is unexpected, or if other problems occur while
reading the file, instantiating a GNUTranslations class can raise OSError.

1534 Chapter 24. Internationalization

https://datatracker.ietf.org/doc/html/rfc822.html

The Python Library Reference, Release 3.13.1

class gettext.GNUTranslations

The following methods are overridden from the base class implementation:

gettext(message)

Look up the message id in the catalog and return the corresponding message string, as a Unicode string.
If there is no entry in the catalog for the message id, and a fallback has been set, the look up is forwarded
to the fallback’s gettext() method. Otherwise, the message id is returned.

ngettext(singular, plural, n)
Do a plural-forms lookup of a message id. singular is used as the message id for purposes of lookup
in the catalog, while n is used to determine which plural form to use. The returned message string is a
Unicode string.

If the message id is not found in the catalog, and a fallback is specified, the request is forwarded to the
fallback’s ngettext() method. Otherwise, when n is 1 singular is returned, and plural is returned in
all other cases.

Here is an example:

n = len(os.listdir('.'))

cat = GNUTranslations(somefile)

message = cat.ngettext(

'There is %(num)d file in this directory',

'There are %(num)d files in this directory',

n) % {'num': n}

pgettext(context, message)
Look up the context and message id in the catalog and return the corresponding message string, as a
Unicode string. If there is no entry in the catalog for the message id and context, and a fallback has
been set, the look up is forwarded to the fallback’s pgettext() method. Otherwise, the message id is
returned.

Added in version 3.8.

npgettext(context, singular, plural, n)
Do a plural-forms lookup of a message id. singular is used as the message id for purposes of lookup in
the catalog, while n is used to determine which plural form to use.

If the message id for context is not found in the catalog, and a fallback is specified, the request is for-
warded to the fallback’s npgettext() method. Otherwise, when n is 1 singular is returned, and plural
is returned in all other cases.

Added in version 3.8.

Solaris message catalog support

The Solaris operating system defines its own binary .mo file format, but since no documentation can be found on this
format, it is not supported at this time.

The Catalog constructor

GNOME uses a version of the gettext module by James Henstridge, but this version has a slightly different API.
Its documented usage was:

import gettext

cat = gettext.Catalog(domain, localedir)

_ = cat.gettext

print(_('hello world'))

For compatibility with this older module, the function Catalog() is an alias for the translation() function
described above.

24.1. gettext—Multilingual internationalization services 1535

The Python Library Reference, Release 3.13.1

One difference between this module and Henstridge’s: his catalog objects supported access through a mapping API,
but this appears to be unused and so is not currently supported.

24.1.3 Internationalizing your programs and modules

Internationalization (I18N) refers to the operation by which a program is made aware of multiple languages. Local-
ization (L10N) refers to the adaptation of your program, once internationalized, to the local language and cultural
habits. In order to provide multilingual messages for your Python programs, you need to take the following steps:

1. prepare your program or module by specially marking translatable strings

2. run a suite of tools over your marked files to generate raw messages catalogs

3. create language-specific translations of the message catalogs

4. use the gettext module so that message strings are properly translated

In order to prepare your code for I18N, you need to look at all the strings in your files. Any string that needs to be
translated should be marked by wrapping it in _('...')— that is, a call to the function _. For example:

filename = 'mylog.txt'

message = _('writing a log message')

with open(filename, 'w') as fp:

fp.write(message)

In this example, the string 'writing a log message' is marked as a candidate for translation, while the strings
'mylog.txt' and 'w' are not.

There are a few tools to extract the strings meant for translation. The original GNU gettext only supported C or
C++ source code but its extended version xgettext scans code written in a number of languages, including Python,
to find strings marked as translatable. Babel is a Python internationalization library that includes a pybabel script
to extract and compile message catalogs. François Pinard’s program called xpot does a similar job and is available
as part of his po-utils package.

(Python also includes pure-Python versions of these programs, called pygettext.py and msgfmt.py; some Python
distributions will install them for you. pygettext.py is similar to xgettext, but only understands Python source
code and cannot handle other programming languages such as C or C++. pygettext.py supports a command-line
interface similar to xgettext; for details on its use, run pygettext.py --help. msgfmt.py is binary compatible
with GNU msgfmt. With these two programs, you may not need the GNU gettext package to internationalize
your Python applications.)

xgettext, pygettext, and similar tools generate .po files that are message catalogs. They are structured human-
readable files that contain every marked string in the source code, along with a placeholder for the translated versions
of these strings.

Copies of these .po files are then handed over to the individual human translators who write translations for every
supported natural language. They send back the completed language-specific versions as a <language-name>.po
file that’s compiled into a machine-readable .mo binary catalog file using the msgfmt program. The .mo files are
used by the gettext module for the actual translation processing at run-time.

How you use the gettext module in your code depends on whether you are internationalizing a single module or
your entire application. The next two sections will discuss each case.

Localizing your module

If you are localizing your module, you must take care not to make global changes, e.g. to the built-in namespace.
You should not use the GNU gettext API but instead the class-based API.

Let’s say your module is called “spam” and the module’s various natural language translation .mo files reside in /
usr/share/locale in GNU gettext format. Here’s what you would put at the top of your module:

import gettext

t = gettext.translation('spam', '/usr/share/locale')

_ = t.gettext

1536 Chapter 24. Internationalization

https://babel.pocoo.org/
https://github.com/pinard/po-utils

The Python Library Reference, Release 3.13.1

Localizing your application

If you are localizing your application, you can install the _() function globally into the built-in namespace, usually
in the main driver file of your application. This will let all your application-specific files just use _('...') without
having to explicitly install it in each file.

In the simple case then, you need only add the following bit of code to the main driver file of your application:

import gettext

gettext.install('myapplication')

If you need to set the locale directory, you can pass it into the install() function:

import gettext

gettext.install('myapplication', '/usr/share/locale')

Changing languages on the fly

If your program needs to support many languages at the same time, you may want to create multiple translation
instances and then switch between them explicitly, like so:

import gettext

lang1 = gettext.translation('myapplication', languages=['en'])

lang2 = gettext.translation('myapplication', languages=['fr'])

lang3 = gettext.translation('myapplication', languages=['de'])

start by using language1

lang1.install()

... time goes by, user selects language 2

lang2.install()

... more time goes by, user selects language 3

lang3.install()

Deferred translations

In most coding situations, strings are translated where they are coded. Occasionally however, you need to mark strings
for translation, but defer actual translation until later. A classic example is:

animals = ['mollusk',

'albatross',

'rat',

'penguin',

'python',]

...

for a in animals:

print(a)

Here, you want to mark the strings in the animals list as being translatable, but you don’t actually want to translate
them until they are printed.

Here is one way you can handle this situation:

def _(message): return message

animals = [_('mollusk'),

_('albatross'),

(continues on next page)

24.1. gettext—Multilingual internationalization services 1537

The Python Library Reference, Release 3.13.1

(continued from previous page)

_('rat'),

_('penguin'),

_('python'),]

del _

...

for a in animals:

print(_(a))

This works because the dummy definition of _() simply returns the string unchanged. And this dummy definition
will temporarily override any definition of _() in the built-in namespace (until the del command). Take care, though
if you have a previous definition of _() in the local namespace.

Note that the second use of _() will not identify “a” as being translatable to the gettext program, because the
parameter is not a string literal.

Another way to handle this is with the following example:

def N_(message): return message

animals = [N_('mollusk'),

N_('albatross'),

N_('rat'),

N_('penguin'),

N_('python'),]

...

for a in animals:

print(_(a))

In this case, you are marking translatable strings with the function N_(), which won’t conflict with any defini-
tion of _(). However, you will need to teach your message extraction program to look for translatable strings
marked with N_(). xgettext, pygettext, pybabel extract, and xpot all support this through the use
of the -k command-line switch. The choice of N_() here is totally arbitrary; it could have just as easily been
MarkThisStringForTranslation().

24.1.4 Acknowledgements

The following people contributed code, feedback, design suggestions, previous implementations, and valuable expe-
rience to the creation of this module:

• Peter Funk

• James Henstridge

• Juan David Ibáñez Palomar

• Marc-André Lemburg

• Martin von Löwis

• François Pinard

• Barry Warsaw

• Gustavo Niemeyer

1538 Chapter 24. Internationalization

The Python Library Reference, Release 3.13.1

24.2 locale— Internationalization services

Source code: Lib/locale.py

The locale module opens access to the POSIX locale database and functionality. The POSIX locale mechanism
allows programmers to deal with certain cultural issues in an application, without requiring the programmer to know
all the specifics of each country where the software is executed.

The locale module is implemented on top of the _locale module, which in turn uses an ANSI C locale imple-
mentation if available.

The locale module defines the following exception and functions:

exception locale.Error

Exception raised when the locale passed to setlocale() is not recognized.

locale.setlocale(category, locale=None)
If locale is given and not None, setlocale() modifies the locale setting for the category. The available
categories are listed in the data description below. localemay be a string, or an iterable of two strings (language
code and encoding). If it’s an iterable, it’s converted to a locale name using the locale aliasing engine. An empty
string specifies the user’s default settings. If the modification of the locale fails, the exception Error is raised.
If successful, the new locale setting is returned.

If locale is omitted or None, the current setting for category is returned.

setlocale() is not thread-safe on most systems. Applications typically start with a call of

import locale

locale.setlocale(locale.LC_ALL, '')

This sets the locale for all categories to the user’s default setting (typically specified in the LANG environment
variable). If the locale is not changed thereafter, using multithreading should not cause problems.

locale.localeconv()

Returns the database of the local conventions as a dictionary. This dictionary has the following strings as keys:

24.2. locale— Internationalization services 1539

https://github.com/python/cpython/tree/3.13/Lib/locale.py

The Python Library Reference, Release 3.13.1

Category Key Meaning

LC_NUMERIC 'decimal_point' Decimal point character.
'grouping' Sequence of numbers specifying which

relative positions the
'thousands_sep' is expected. If the
sequence is terminated with CHAR_MAX,
no further grouping is performed. If the
sequence terminates with a 0, the last
group size is repeatedly used.

'thousands_sep' Character used between groups.
LC_MONETARY 'int_curr_symbol' International currency symbol.

'currency_symbol' Local currency symbol.
'p_cs_precedes/n_cs_precedes' Whether the currency symbol precedes

the value (for positive resp. negative
values).

'p_sep_by_space/n_sep_by_space' Whether the currency symbol is
separated from the value by a space (for
positive resp. negative values).

'mon_decimal_point' Decimal point used for monetary
values.

'frac_digits' Number of fractional digits used in
local formatting of monetary values.

'int_frac_digits' Number of fractional digits used in
international formatting of monetary
values.

'mon_thousands_sep' Group separator used for monetary
values.

'mon_grouping' Equivalent to 'grouping', used for
monetary values.

'positive_sign' Symbol used to annotate a positive
monetary value.

'negative_sign' Symbol used to annotate a negative
monetary value.

'p_sign_posn/n_sign_posn' The position of the sign (for positive
resp. negative values), see below.

All numeric values can be set to CHAR_MAX to indicate that there is no value specified in this locale.

The possible values for 'p_sign_posn' and 'n_sign_posn' are given below.

Value Explanation

0 Currency and value are surrounded by parentheses.
1 The sign should precede the value and currency symbol.
2 The sign should follow the value and currency symbol.
3 The sign should immediately precede the value.
4 The sign should immediately follow the value.
CHAR_MAX Nothing is specified in this locale.

The function temporarily sets the LC_CTYPE locale to the LC_NUMERIC locale or the LC_MONETARY locale
if locales are different and numeric or monetary strings are non-ASCII. This temporary change affects other
threads.

Changed in version 3.7: The function now temporarily sets the LC_CTYPE locale to the LC_NUMERIC locale
in some cases.

locale.nl_langinfo(option)

1540 Chapter 24. Internationalization

The Python Library Reference, Release 3.13.1

Return some locale-specific information as a string. This function is not available on all systems, and the set
of possible options might also vary across platforms. The possible argument values are numbers, for which
symbolic constants are available in the locale module.

The nl_langinfo() function accepts one of the following keys. Most descriptions are taken from the cor-
responding description in the GNU C library.

locale.CODESET

Get a string with the name of the character encoding used in the selected locale.

locale.D_T_FMT

Get a string that can be used as a format string for time.strftime() to represent date and time in a
locale-specific way.

locale.D_FMT

Get a string that can be used as a format string for time.strftime() to represent a date in a locale-
specific way.

locale.T_FMT

Get a string that can be used as a format string for time.strftime() to represent a time in a locale-
specific way.

locale.T_FMT_AMPM

Get a format string for time.strftime() to represent time in the am/pm format.

locale.DAY_1

locale.DAY_2

locale.DAY_3

locale.DAY_4

locale.DAY_5

locale.DAY_6

locale.DAY_7

Get the name of the n-th day of the week.

Note

This follows the US convention of DAY_1 being Sunday, not the international convention (ISO 8601)
that Monday is the first day of the week.

locale.ABDAY_1

locale.ABDAY_2

locale.ABDAY_3

locale.ABDAY_4

locale.ABDAY_5

locale.ABDAY_6

locale.ABDAY_7

Get the abbreviated name of the n-th day of the week.

locale.MON_1

locale.MON_2

locale.MON_3

locale.MON_4

locale.MON_5

locale.MON_6

24.2. locale— Internationalization services 1541

The Python Library Reference, Release 3.13.1

locale.MON_7

locale.MON_8

locale.MON_9

locale.MON_10

locale.MON_11

locale.MON_12

Get the name of the n-th month.

locale.ABMON_1

locale.ABMON_2

locale.ABMON_3

locale.ABMON_4

locale.ABMON_5

locale.ABMON_6

locale.ABMON_7

locale.ABMON_8

locale.ABMON_9

locale.ABMON_10

locale.ABMON_11

locale.ABMON_12

Get the abbreviated name of the n-th month.

locale.RADIXCHAR

Get the radix character (decimal dot, decimal comma, etc.).

locale.THOUSEP

Get the separator character for thousands (groups of three digits).

locale.YESEXPR

Get a regular expression that can be used with the regex function to recognize a positive response to a
yes/no question.

locale.NOEXPR

Get a regular expression that can be used with the regex(3) function to recognize a negative response
to a yes/no question.

Note

The regular expressions for YESEXPR and NOEXPR use syntax suitable for the regex function from
the C library, which might differ from the syntax used in re.

locale.CRNCYSTR

Get the currency symbol, preceded by “-” if the symbol should appear before the value, “+” if the symbol
should appear after the value, or “.” if the symbol should replace the radix character.

locale.ERA

Get a string which describes how years are counted and displayed for each era in a locale.

Most locales do not define this value. An example of a locale which does define this value is the Japanese
one. In Japan, the traditional representation of dates includes the name of the era corresponding to the
then-emperor’s reign.

Normally it should not be necessary to use this value directly. Specifying the E modifier in their format
strings causes the time.strftime() function to use this information. The format of the returned string
is specified in The Open Group Base Specifications Issue 8, paragraph 7.3.5.2 LC_TIME C-Language
Access.

1542 Chapter 24. Internationalization

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap07.html#tag_07_03_05_02
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap07.html#tag_07_03_05_02

The Python Library Reference, Release 3.13.1

locale.ERA_D_T_FMT

Get a format string for time.strftime() to represent date and time in a locale-specific era-based way.

locale.ERA_D_FMT

Get a format string for time.strftime() to represent a date in a locale-specific era-based way.

locale.ERA_T_FMT

Get a format string for time.strftime() to represent a time in a locale-specific era-based way.

locale.ALT_DIGITS

Get a string consisting of up to 100 semicolon-separated symbols used to represent the values 0 to 99 in
a locale-specific way. In most locales this is an empty string.

locale.getdefaultlocale([envvars])
Tries to determine the default locale settings and returns them as a tuple of the form (language code,

encoding).

According to POSIX, a programwhich has not called setlocale(LC_ALL, '') runs using the portable 'C'
locale. Calling setlocale(LC_ALL, '') lets it use the default locale as defined by the LANG variable. Since
we do not want to interfere with the current locale setting we thus emulate the behavior in the way described
above.

To maintain compatibility with other platforms, not only the LANG variable is tested, but a list of variables
given as envvars parameter. The first found to be defined will be used. envvars defaults to the search path used
in GNU gettext; it must always contain the variable name 'LANG'. The GNU gettext search path contains
'LC_ALL', 'LC_CTYPE', 'LANG' and 'LANGUAGE', in that order.

Except for the code 'C', the language code corresponds to RFC 1766. language code and encoding may be
None if their values cannot be determined.

Deprecated since version 3.11, will be removed in version 3.15.

locale.getlocale(category=LC_CTYPE)
Returns the current setting for the given locale category as sequence containing language code, encoding. cat-
egory may be one of the LC_* values except LC_ALL. It defaults to LC_CTYPE.

Except for the code 'C', the language code corresponds to RFC 1766. language code and encoding may be
None if their values cannot be determined.

locale.getpreferredencoding(do_setlocale=True)
Return the locale encoding used for text data, according to user preferences. User preferences are expressed
differently on different systems, and might not be available programmatically on some systems, so this function
only returns a guess.

On some systems, it is necessary to invoke setlocale() to obtain the user preferences, so this function is
not thread-safe. If invoking setlocale is not necessary or desired, do_setlocale should be set to False.

On Android or if the Python UTF-8 Mode is enabled, always return 'utf-8', the locale encoding and the
do_setlocale argument are ignored.

The Python preinitialization configures the LC_CTYPE locale. See also the filesystem encoding and error
handler.

Changed in version 3.7: The function now always returns "utf-8" on Android or if the Python UTF-8 Mode
is enabled.

locale.getencoding()

Get the current locale encoding:

• On Android and VxWorks, return "utf-8".

• On Unix, return the encoding of the current LC_CTYPE locale. Return "utf-8" if
nl_langinfo(CODESET) returns an empty string: for example, if the current LC_CTYPE lo-
cale is not supported.

• On Windows, return the ANSI code page.

24.2. locale— Internationalization services 1543

https://datatracker.ietf.org/doc/html/rfc1766.html
https://datatracker.ietf.org/doc/html/rfc1766.html

The Python Library Reference, Release 3.13.1

The Python preinitialization configures the LC_CTYPE locale. See also the filesystem encoding and error
handler.

This function is similar to getpreferredencoding(False) except this function ignores the Python UTF-8
Mode.

Added in version 3.11.

locale.normalize(localename)
Returns a normalized locale code for the given locale name. The returned locale code is formatted for use with
setlocale(). If normalization fails, the original name is returned unchanged.

If the given encoding is not known, the function defaults to the default encoding for the locale code just like
setlocale().

locale.strcoll(string1, string2)
Compares two strings according to the current LC_COLLATE setting. As any other compare function, returns
a negative, or a positive value, or 0, depending on whether string1 collates before or after string2 or is equal to
it.

locale.strxfrm(string)

Transforms a string to one that can be used in locale-aware comparisons. For example, strxfrm(s1) <

strxfrm(s2) is equivalent to strcoll(s1, s2) < 0. This function can be used when the same string is
compared repeatedly, e.g. when collating a sequence of strings.

locale.format_string(format, val, grouping=False, monetary=False)
Formats a number val according to the current LC_NUMERIC setting. The format follows the conventions of
the % operator. For floating-point values, the decimal point is modified if appropriate. If grouping is True,
also takes the grouping into account.

If monetary is true, the conversion uses monetary thousands separator and grouping strings.

Processes formatting specifiers as in format % val, but takes the current locale settings into account.

Changed in version 3.7: The monetary keyword parameter was added.

locale.currency(val, symbol=True, grouping=False, international=False)
Formats a number val according to the current LC_MONETARY settings.

The returned string includes the currency symbol if symbol is true, which is the default. If grouping is True
(which is not the default), grouping is done with the value. If international is True (which is not the default),
the international currency symbol is used.

Note

This function will not work with the ‘C’ locale, so you have to set a locale via setlocale() first.

locale.str(float)

Formats a floating-point number using the same format as the built-in function str(float), but takes the
decimal point into account.

locale.delocalize(string)

Converts a string into a normalized number string, following the LC_NUMERIC settings.

Added in version 3.5.

locale.localize(string, grouping=False, monetary=False)

Converts a normalized number string into a formatted string following the LC_NUMERIC settings.

Added in version 3.10.

1544 Chapter 24. Internationalization

The Python Library Reference, Release 3.13.1

locale.atof(string, func=float)
Converts a string to a number, following the LC_NUMERIC settings, by calling func on the result of calling
delocalize() on string.

locale.atoi(string)
Converts a string to an integer, following the LC_NUMERIC conventions.

locale.LC_CTYPE

Locale category for the character type functions. Most importantly, this category defines the text encoding,
i.e. how bytes are interpreted as Unicode codepoints. See PEP 538 and PEP 540 for how this variable might
be automatically coerced to C.UTF-8 to avoid issues created by invalid settings in containers or incompatible
settings passed over remote SSH connections.

Python doesn’t internally use locale-dependent character transformation functions from ctype.h. Instead, an
internal pyctype.h provides locale-independent equivalents like Py_TOLOWER.

locale.LC_COLLATE

Locale category for sorting strings. The functions strcoll() and strxfrm() of the locale module are
affected.

locale.LC_TIME

Locale category for the formatting of time. The function time.strftime() follows these conventions.

locale.LC_MONETARY

Locale category for formatting of monetary values. The available options are available from the
localeconv() function.

locale.LC_MESSAGES

Locale category for message display. Python currently does not support application specific locale-aware mes-
sages. Messages displayed by the operating system, like those returned by os.strerror()might be affected
by this category.

This value may not be available on operating systems not conforming to the POSIX standard, most notably
Windows.

locale.LC_NUMERIC

Locale category for formatting numbers. The functions format_string(), atoi(), atof() and str() of
the locale module are affected by that category. All other numeric formatting operations are not affected.

locale.LC_ALL

Combination of all locale settings. If this flag is used when the locale is changed, setting the locale for all
categories is attempted. If that fails for any category, no category is changed at all. When the locale is retrieved
using this flag, a string indicating the setting for all categories is returned. This string can be later used to restore
the settings.

locale.CHAR_MAX

This is a symbolic constant used for different values returned by localeconv().

Example:

>>> import locale

>>> loc = locale.getlocale() # get current locale

use German locale; name might vary with platform

>>> locale.setlocale(locale.LC_ALL, 'de_DE')

>>> locale.strcoll('f\xe4n', 'foo') # compare a string containing an umlaut

>>> locale.setlocale(locale.LC_ALL, '') # use user's preferred locale

>>> locale.setlocale(locale.LC_ALL, 'C') # use default (C) locale

>>> locale.setlocale(locale.LC_ALL, loc) # restore saved locale

24.2. locale— Internationalization services 1545

https://peps.python.org/pep-0538/
https://peps.python.org/pep-0540/

The Python Library Reference, Release 3.13.1

24.2.1 Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be relatively expensive to change. On top
of that, some implementations are broken in such a way that frequent locale changes may cause core dumps. This
makes the locale somewhat painful to use correctly.

Initially, when a program is started, the locale is the C locale, no matter what the user’s preferred locale is. There is
one exception: the LC_CTYPE category is changed at startup to set the current locale encoding to the user’s preferred
locale encoding. The program must explicitly say that it wants the user’s preferred locale settings for other categories
by calling setlocale(LC_ALL, '').

It is generally a bad idea to call setlocale() in some library routine, since as a side effect it affects the entire
program. Saving and restoring it is almost as bad: it is expensive and affects other threads that happen to run before
the settings have been restored.

If, when coding a module for general use, you need a locale independent version of an operation that is affected by
the locale (such as certain formats used with time.strftime()), you will have to find a way to do it without using
the standard library routine. Even better is convincing yourself that using locale settings is okay. Only as a last resort
should you document that your module is not compatible with non-C locale settings.

The only way to perform numeric operations according to the locale is to use the special functions defined by this
module: atof(), atoi(), format_string(), str().

There is no way to perform case conversions and character classifications according to the locale. For (Unicode) text
strings these are done according to the character value only, while for byte strings, the conversions and classifications
are done according to the ASCII value of the byte, and bytes whose high bit is set (i.e., non-ASCII bytes) are never
converted or considered part of a character class such as letter or whitespace.

24.2.2 For extension writers and programs that embed Python

Extension modules should never call setlocale(), except to find out what the current locale is. But since the return
value can only be used portably to restore it, that is not very useful (except perhaps to find out whether or not the
locale is C).

When Python code uses the locale module to change the locale, this also affects the embedding application. If the
embedding application doesn’t want this to happen, it should remove the _locale extension module (which does all
the work) from the table of built-in modules in the config.c file, and make sure that the _locale module is not
accessible as a shared library.

24.2.3 Access to message catalogs

locale.gettext(msg)

locale.dgettext(domain, msg)

locale.dcgettext(domain, msg, category)

locale.textdomain(domain)

locale.bindtextdomain(domain, dir)

locale.bind_textdomain_codeset(domain, codeset)

The locale module exposes the C library’s gettext interface on systems that provide this interface. It con-
sists of the functions gettext(), dgettext(), dcgettext(), textdomain(), bindtextdomain(), and
bind_textdomain_codeset(). These are similar to the same functions in the gettext module, but use the
C library’s binary format for message catalogs, and the C library’s search algorithms for locating message catalogs.

Python applications should normally find no need to invoke these functions, and should use gettext instead. A
known exception to this rule are applications that link with additional C libraries which internally invoke C functions
gettext or dcgettext. For these applications, it may be necessary to bind the text domain, so that the libraries
can properly locate their message catalogs.

1546 Chapter 24. Internationalization

CHAPTER

TWENTYFIVE

PROGRAM FRAMEWORKS

The modules described in this chapter are frameworks that will largely dictate the structure of your program. Cur-
rently the modules described here are all oriented toward writing command-line interfaces.

The full list of modules described in this chapter is:

25.1 turtle— Turtle graphics

Source code: Lib/turtle.py

25.1.1 Introduction

Turtle graphics is an implementation of the popular geometric drawing tools introduced in Logo, developed byWally
Feurzeig, Seymour Papert and Cynthia Solomon in 1967.

25.1.2 Get started

Imagine a robotic turtle starting at (0, 0) in the x-y plane. After an import turtle, give it the command turtle.
forward(15), and it moves (on-screen!) 15 pixels in the direction it is facing, drawing a line as it moves. Give it
the command turtle.right(25), and it rotates in-place 25 degrees clockwise.

Turtle star

Turtle can draw intricate shapes using programs that repeat simple moves.

1547

https://github.com/python/cpython/tree/3.13/Lib/turtle.py
https://en.wikipedia.org/wiki/Turtle_(robot)

The Python Library Reference, Release 3.13.1

In Python, turtle graphics provides a representation of a physical “turtle” (a little robot with a pen) that draws on a
sheet of paper on the floor.

It’s an effective and well-proven way for learners to encounter programming concepts and interaction with software,
as it provides instant, visible feedback. It also provides convenient access to graphical output in general.

Turtle drawing was originally created as an educational tool, to be used by teachers in the classroom. For the pro-
grammer who needs to produce some graphical output it can be a way to do that without the overhead of introducing
more complex or external libraries into their work.

25.1.3 Tutorial

New users should start here. In this tutorial we’ll explore some of the basics of turtle drawing.

Starting a turtle environment

In a Python shell, import all the objects of the turtle module:

from turtle import *

If you run into a No module named '_tkinter' error, you’ll have to install the Tk interface package on
your system.

Basic drawing

Send the turtle forward 100 steps:

forward(100)

You should see (most likely, in a new window on your display) a line drawn by the turtle, heading East. Change the
direction of the turtle, so that it turns 120 degrees left (anti-clockwise):

left(120)

Let’s continue by drawing a triangle:

forward(100)

left(120)

forward(100)

Notice how the turtle, represented by an arrow, points in different directions as you steer it.

Experiment with those commands, and also with backward() and right().

Pen control

Try changing the color - for example, color('blue') - and width of the line - for example, width(3) - and then
drawing again.

You can also move the turtle around without drawing, by lifting up the pen: up() before moving. To start drawing
again, use down().

The turtle’s position

Send your turtle back to its starting-point (useful if it has disappeared off-screen):

home()

The home position is at the center of the turtle’s screen. If you ever need to know them, get the turtle’s x-y coordinates
with:

1548 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

pos()

Home is at (0, 0).

And after a while, it will probably help to clear the window so we can start anew:

clearscreen()

Making algorithmic patterns

Using loops, it’s possible to build up geometric patterns:

for steps in range(100):

for c in ('blue', 'red', 'green'):

color(c)

forward(steps)

right(30)

- which of course, are limited only by the imagination!

Let’s draw the star shape at the top of this page. We want red lines, filled in with yellow:

color('red')

fillcolor('yellow')

Just as up() and down() determine whether lines will be drawn, filling can be turned on and off:

begin_fill()

Next we’ll create a loop:

while True:

forward(200)

left(170)

if abs(pos()) < 1:

break

abs(pos()) < 1 is a good way to know when the turtle is back at its home position.

Finally, complete the filling:

end_fill()

(Note that filling only actually takes place when you give the end_fill() command.)

25.1.4 How to…

This section covers some typical turtle use-cases and approaches.

Get started as quickly as possible

One of the joys of turtle graphics is the immediate, visual feedback that’s available from simple commands - it’s an
excellent way to introduce children to programming ideas, with a minimum of overhead (not just children, of course).

The turtle module makes this possible by exposing all its basic functionality as functions, available with from

turtle import *. The turtle graphics tutorial covers this approach.

It’s worth noting that many of the turtle commands also have even more terse equivalents, such as fd() for
forward(). These are especially useful when working with learners for whom typing is not a skill.

25.1. turtle— Turtle graphics 1549

The Python Library Reference, Release 3.13.1

You’ll need to have the Tk interface package installed on your system for turtle graphics to work.
Be warned that this is not always straightforward, so check this in advance if you’re planning to use turtle
graphics with a learner.

Use the turtle module namespace

Using from turtle import * is convenient - but be warned that it imports a rather large collection of objects,
and if you’re doing anything but turtle graphics you run the risk of a name conflict (this becomes even more an issue
if you’re using turtle graphics in a script where other modules might be imported).

The solution is to use import turtle - fd() becomes turtle.fd(), width() becomes turtle.width() and
so on. (If typing “turtle” over and over again becomes tedious, use for example import turtle as t instead.)

Use turtle graphics in a script

It’s recommended to use the turtle module namespace as described immediately above, for example:

import turtle as t

from random import random

for i in range(100):

steps = int(random() * 100)

angle = int(random() * 360)

t.right(angle)

t.fd(steps)

Another step is also required though - as soon as the script ends, Python will also close the turtle’s window. Add:

t.mainloop()

to the end of the script. The script will now wait to be dismissed and will not exit until it is terminated, for example
by closing the turtle graphics window.

Use object-oriented turtle graphics

See also

Explanation of the object-oriented interface

Other than for very basic introductory purposes, or for trying things out as quickly as possible, it’s more usual and
much more powerful to use the object-oriented approach to turtle graphics. For example, this allows multiple turtles
on screen at once.

In this approach, the various turtle commands are methods of objects (mostly of Turtle objects). You can use the
object-oriented approach in the shell, but it would be more typical in a Python script.

The example above then becomes:

from turtle import Turtle

from random import random

t = Turtle()

for i in range(100):

steps = int(random() * 100)

angle = int(random() * 360)

t.right(angle)

t.fd(steps)

t.screen.mainloop()

1550 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

Note the last line. t.screen is an instance of the Screen that a Turtle instance exists on; it’s created automatically
along with the turtle.

The turtle’s screen can be customised, for example:

t.screen.title('Object-oriented turtle demo')

t.screen.bgcolor("orange")

25.1.5 Turtle graphics reference

Note

In the following documentation the argument list for functions is given. Methods, of course, have the additional
first argument self which is omitted here.

Turtle methods

Turtle motion

Move and draw

forward() | fd()
backward() | bk() | back()
right() | rt()
left() | lt()
goto() | setpos() | setposition()
teleport()

setx()

sety()

setheading() | seth()
home()

circle()

dot()

stamp()

clearstamp()

clearstamps()

undo()

speed()

Tell Turtle’s state

position() | pos()
towards()

xcor()

ycor()

heading()

distance()

Setting and measurement

degrees()

radians()

Pen control

Drawing state

pendown() | pd() | down()

25.1. turtle— Turtle graphics 1551

The Python Library Reference, Release 3.13.1

penup() | pu() | up()
pensize() | width()
pen()

isdown()

Color control

color()

pencolor()

fillcolor()

Filling

filling()

begin_fill()

end_fill()

More drawing control

reset()

clear()

write()

Turtle state

Visibility

showturtle() | st()
hideturtle() | ht()
isvisible()

Appearance

shape()

resizemode()

shapesize() | turtlesize()
shearfactor()

tiltangle()

tilt()

shapetransform()

get_shapepoly()

Using events

onclick()

onrelease()

ondrag()

Special Turtle methods

begin_poly()

end_poly()

get_poly()

clone()

getturtle() | getpen()
getscreen()

setundobuffer()

undobufferentries()

1552 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

Methods of TurtleScreen/Screen

Window control

bgcolor()

bgpic()

clearscreen()

resetscreen()

screensize()

setworldcoordinates()

Animation control

delay()

tracer()

update()

Using screen events

listen()

onkey() | onkeyrelease()
onkeypress()

onclick() | onscreenclick()
ontimer()

mainloop() | done()

Settings and special methods

mode()

colormode()

getcanvas()

getshapes()

register_shape() | addshape()
turtles()

window_height()

window_width()

Input methods

textinput()

numinput()

Methods specific to Screen

bye()

exitonclick()

setup()

title()

25.1.6 Methods of RawTurtle/Turtle and corresponding functions

Most of the examples in this section refer to a Turtle instance called turtle.

Turtle motion

turtle.forward(distance)

turtle.fd(distance)

Parameters
distance – a number (integer or float)

25.1. turtle— Turtle graphics 1553

The Python Library Reference, Release 3.13.1

Move the turtle forward by the specified distance, in the direction the turtle is headed.

>>> turtle.position()

(0.00,0.00)

>>> turtle.forward(25)

>>> turtle.position()

(25.00,0.00)

>>> turtle.forward(-75)

>>> turtle.position()

(-50.00,0.00)

turtle.back(distance)
turtle.bk(distance)

turtle.backward(distance)

Parameters
distance – a number

Move the turtle backward by distance, opposite to the direction the turtle is headed. Do not change the turtle’s
heading.

>>> turtle.position()

(0.00,0.00)

>>> turtle.backward(30)

>>> turtle.position()

(-30.00,0.00)

turtle.right(angle)
turtle.rt(angle)

Parameters
angle – a number (integer or float)

Turn turtle right by angle units. (Units are by default degrees, but can be set via the degrees() and
radians() functions.) Angle orientation depends on the turtle mode, see mode().

>>> turtle.heading()

22.0

>>> turtle.right(45)

>>> turtle.heading()

337.0

turtle.left(angle)

turtle.lt(angle)

Parameters
angle – a number (integer or float)

Turn turtle left by angle units. (Units are by default degrees, but can be set via the degrees() and radians()
functions.) Angle orientation depends on the turtle mode, see mode().

>>> turtle.heading()

22.0

>>> turtle.left(45)

>>> turtle.heading()

67.0

turtle.goto(x, y=None)
turtle.setpos(x, y=None)

1554 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

turtle.setposition(x, y=None)

Parameters

• x – a number or a pair/vector of numbers

• y – a number or None

If y is None, x must be a pair of coordinates or a Vec2D (e.g. as returned by pos()).

Move turtle to an absolute position. If the pen is down, draw line. Do not change the turtle’s orientation.

>>> tp = turtle.pos()

>>> tp

(0.00,0.00)

>>> turtle.setpos(60,30)

>>> turtle.pos()

(60.00,30.00)

>>> turtle.setpos((20,80))

>>> turtle.pos()

(20.00,80.00)

>>> turtle.setpos(tp)

>>> turtle.pos()

(0.00,0.00)

turtle.teleport(x, y=None, *, fill_gap=False)

Parameters

• x – a number or None

• y – a number or None

• fill_gap – a boolean

Move turtle to an absolute position. Unlike goto(x, y), a line will not be drawn. The turtle’s orientation does
not change. If currently filling, the polygon(s) teleported from will be filled after leaving, and filling will begin
again after teleporting. This can be disabled with fill_gap=True, which makes the imaginary line traveled
during teleporting act as a fill barrier like in goto(x, y).

>>> tp = turtle.pos()

>>> tp

(0.00,0.00)

>>> turtle.teleport(60)

>>> turtle.pos()

(60.00,0.00)

>>> turtle.teleport(y=10)

>>> turtle.pos()

(60.00,10.00)

>>> turtle.teleport(20, 30)

>>> turtle.pos()

(20.00,30.00)

Added in version 3.12.

turtle.setx(x)

Parameters
x – a number (integer or float)

Set the turtle’s first coordinate to x, leave second coordinate unchanged.

25.1. turtle— Turtle graphics 1555

The Python Library Reference, Release 3.13.1

>>> turtle.position()

(0.00,240.00)

>>> turtle.setx(10)

>>> turtle.position()

(10.00,240.00)

turtle.sety(y)

Parameters
y – a number (integer or float)

Set the turtle’s second coordinate to y, leave first coordinate unchanged.

>>> turtle.position()

(0.00,40.00)

>>> turtle.sety(-10)

>>> turtle.position()

(0.00,-10.00)

turtle.setheading(to_angle)

turtle.seth(to_angle)

Parameters
to_angle – a number (integer or float)

Set the orientation of the turtle to to_angle. Here are some common directions in degrees:

standard mode logo mode

0 - east 0 - north
90 - north 90 - east
180 - west 180 - south
270 - south 270 - west

>>> turtle.setheading(90)

>>> turtle.heading()

90.0

turtle.home()

Move turtle to the origin – coordinates (0,0) – and set its heading to its start-orientation (which depends on the
mode, see mode()).

>>> turtle.heading()

90.0

>>> turtle.position()

(0.00,-10.00)

>>> turtle.home()

>>> turtle.position()

(0.00,0.00)

>>> turtle.heading()

0.0

turtle.circle(radius, extent=None, steps=None)

Parameters

• radius – a number

• extent – a number (or None)

1556 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

• steps – an integer (or None)

Draw a circle with given radius. The center is radius units left of the turtle; extent – an angle – determines
which part of the circle is drawn. If extent is not given, draw the entire circle. If extent is not a full circle, one
endpoint of the arc is the current pen position. Draw the arc in counterclockwise direction if radius is positive,
otherwise in clockwise direction. Finally the direction of the turtle is changed by the amount of extent.

As the circle is approximated by an inscribed regular polygon, steps determines the number of steps to use. If
not given, it will be calculated automatically. May be used to draw regular polygons.

>>> turtle.home()

>>> turtle.position()

(0.00,0.00)

>>> turtle.heading()

0.0

>>> turtle.circle(50)

>>> turtle.position()

(-0.00,0.00)

>>> turtle.heading()

0.0

>>> turtle.circle(120, 180) # draw a semicircle

>>> turtle.position()

(0.00,240.00)

>>> turtle.heading()

180.0

turtle.dot(size=None, *color)

Parameters

• size – an integer >= 1 (if given)

• color – a colorstring or a numeric color tuple

Draw a circular dot with diameter size, using color. If size is not given, the maximum of pensize+4 and
2*pensize is used.

>>> turtle.home()

>>> turtle.dot()

>>> turtle.fd(50); turtle.dot(20, "blue"); turtle.fd(50)

>>> turtle.position()

(100.00,-0.00)

>>> turtle.heading()

0.0

turtle.stamp()

Stamp a copy of the turtle shape onto the canvas at the current turtle position. Return a stamp_id for that
stamp, which can be used to delete it by calling clearstamp(stamp_id).

>>> turtle.color("blue")

>>> stamp_id = turtle.stamp()

>>> turtle.fd(50)

turtle.clearstamp(stampid)

Parameters
stampid – an integer, must be return value of previous stamp() call

Delete stamp with given stampid.

25.1. turtle— Turtle graphics 1557

The Python Library Reference, Release 3.13.1

>>> turtle.position()

(150.00,-0.00)

>>> turtle.color("blue")

>>> astamp = turtle.stamp()

>>> turtle.fd(50)

>>> turtle.position()

(200.00,-0.00)

>>> turtle.clearstamp(astamp)

>>> turtle.position()

(200.00,-0.00)

turtle.clearstamps(n=None)

Parameters
n – an integer (or None)

Delete all or first/last n of turtle’s stamps. If n is None, delete all stamps, if n > 0 delete first n stamps, else if
n < 0 delete last n stamps.

>>> for i in range(8):

... unused_stamp_id = turtle.stamp()

... turtle.fd(30)

>>> turtle.clearstamps(2)

>>> turtle.clearstamps(-2)

>>> turtle.clearstamps()

turtle.undo()

Undo (repeatedly) the last turtle action(s). Number of available undo actions is determined by the size of the
undobuffer.

>>> for i in range(4):

... turtle.fd(50); turtle.lt(80)

...

>>> for i in range(8):

... turtle.undo()

turtle.speed(speed=None)

Parameters
speed – an integer in the range 0..10 or a speedstring (see below)

Set the turtle’s speed to an integer value in the range 0..10. If no argument is given, return current speed.

If input is a number greater than 10 or smaller than 0.5, speed is set to 0. Speedstrings are mapped to speed-
values as follows:

• “fastest”: 0

• “fast”: 10

• “normal”: 6

• “slow”: 3

• “slowest”: 1

Speeds from 1 to 10 enforce increasingly faster animation of line drawing and turtle turning.

Attention: speed = 0 means that no animation takes place. forward/back makes turtle jump and likewise
left/right make the turtle turn instantly.

1558 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

>>> turtle.speed()

3

>>> turtle.speed('normal')

>>> turtle.speed()

6

>>> turtle.speed(9)

>>> turtle.speed()

9

Tell Turtle’s state

turtle.position()

turtle.pos()

Return the turtle’s current location (x,y) (as a Vec2D vector).

>>> turtle.pos()

(440.00,-0.00)

turtle.towards(x, y=None)

Parameters

• x – a number or a pair/vector of numbers or a turtle instance

• y – a number if x is a number, else None

Return the angle between the line from turtle position to position specified by (x,y), the vector or the other
turtle. This depends on the turtle’s start orientation which depends on the mode - “standard”/”world” or “logo”.

>>> turtle.goto(10, 10)

>>> turtle.towards(0,0)

225.0

turtle.xcor()

Return the turtle’s x coordinate.

>>> turtle.home()

>>> turtle.left(50)

>>> turtle.forward(100)

>>> turtle.pos()

(64.28,76.60)

>>> print(round(turtle.xcor(), 5))

64.27876

turtle.ycor()

Return the turtle’s y coordinate.

>>> turtle.home()

>>> turtle.left(60)

>>> turtle.forward(100)

>>> print(turtle.pos())

(50.00,86.60)

>>> print(round(turtle.ycor(), 5))

86.60254

turtle.heading()

Return the turtle’s current heading (value depends on the turtle mode, see mode()).

25.1. turtle— Turtle graphics 1559

The Python Library Reference, Release 3.13.1

>>> turtle.home()

>>> turtle.left(67)

>>> turtle.heading()

67.0

turtle.distance(x, y=None)

Parameters

• x – a number or a pair/vector of numbers or a turtle instance

• y – a number if x is a number, else None

Return the distance from the turtle to (x,y), the given vector, or the given other turtle, in turtle step units.

>>> turtle.home()

>>> turtle.distance(30,40)

50.0

>>> turtle.distance((30,40))

50.0

>>> joe = Turtle()

>>> joe.forward(77)

>>> turtle.distance(joe)

77.0

Settings for measurement

turtle.degrees(fullcircle=360.0)

Parameters
fullcircle – a number

Set angle measurement units, i.e. set number of “degrees” for a full circle. Default value is 360 degrees.

>>> turtle.home()

>>> turtle.left(90)

>>> turtle.heading()

90.0

Change angle measurement unit to grad (also known as gon,

grade, or gradian and equals 1/100-th of the right angle.)

>>> turtle.degrees(400.0)

>>> turtle.heading()

100.0

>>> turtle.degrees(360)

>>> turtle.heading()

90.0

turtle.radians()

Set the angle measurement units to radians. Equivalent to degrees(2*math.pi).

>>> turtle.home()

>>> turtle.left(90)

>>> turtle.heading()

90.0

>>> turtle.radians()

>>> turtle.heading()

1.5707963267948966

1560 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

Pen control

Drawing state

turtle.pendown()

turtle.pd()

turtle.down()

Pull the pen down – drawing when moving.

turtle.penup()

turtle.pu()

turtle.up()

Pull the pen up – no drawing when moving.

turtle.pensize(width=None)
turtle.width(width=None)

Parameters
width – a positive number

Set the line thickness to width or return it. If resizemode is set to “auto” and turtleshape is a polygon, that
polygon is drawn with the same line thickness. If no argument is given, the current pensize is returned.

>>> turtle.pensize()

1

>>> turtle.pensize(10) # from here on lines of width 10 are drawn

turtle.pen(pen=None, **pendict)

Parameters

• pen – a dictionary with some or all of the below listed keys

• pendict – one or more keyword-arguments with the below listed keys as keywords

Return or set the pen’s attributes in a “pen-dictionary” with the following key/value pairs:

• “shown”: True/False

• “pendown”: True/False

• “pencolor”: color-string or color-tuple

• “fillcolor”: color-string or color-tuple

• “pensize”: positive number

• “speed”: number in range 0..10

• “resizemode”: “auto” or “user” or “noresize”

• “stretchfactor”: (positive number, positive number)

• “outline”: positive number

• “tilt”: number

This dictionary can be used as argument for a subsequent call to pen() to restore the former pen-state. More-
over one or more of these attributes can be provided as keyword-arguments. This can be used to set several
pen attributes in one statement.

>>> turtle.pen(fillcolor="black", pencolor="red", pensize=10)

>>> sorted(turtle.pen().items())

[('fillcolor', 'black'), ('outline', 1), ('pencolor', 'red'),

('pendown', True), ('pensize', 10), ('resizemode', 'noresize'),

('shearfactor', 0.0), ('shown', True), ('speed', 9),

(continues on next page)

25.1. turtle— Turtle graphics 1561

The Python Library Reference, Release 3.13.1

(continued from previous page)

('stretchfactor', (1.0, 1.0)), ('tilt', 0.0)]

>>> penstate=turtle.pen()

>>> turtle.color("yellow", "")

>>> turtle.penup()

>>> sorted(turtle.pen().items())[:3]

[('fillcolor', ''), ('outline', 1), ('pencolor', 'yellow')]

>>> turtle.pen(penstate, fillcolor="green")

>>> sorted(turtle.pen().items())[:3]

[('fillcolor', 'green'), ('outline', 1), ('pencolor', 'red')]

turtle.isdown()

Return True if pen is down, False if it’s up.

>>> turtle.penup()

>>> turtle.isdown()

False

>>> turtle.pendown()

>>> turtle.isdown()

True

Color control

turtle.pencolor(*args)
Return or set the pencolor.

Four input formats are allowed:

pencolor()

Return the current pencolor as color specification string or as a tuple (see example). May be used as input
to another color/pencolor/fillcolor call.

pencolor(colorstring)

Set pencolor to colorstring, which is a Tk color specification string, such as "red", "yellow", or
"#33cc8c".

pencolor((r, g, b))

Set pencolor to the RGB color represented by the tuple of r, g, and b. Each of r, g, and b must be in the
range 0..colormode, where colormode is either 1.0 or 255 (see colormode()).

pencolor(r, g, b)

Set pencolor to the RGB color represented by r, g, and b. Each of r, g, and b must be in the range
0..colormode.

If turtleshape is a polygon, the outline of that polygon is drawn with the newly set pencolor.

>>> colormode()

1.0

>>> turtle.pencolor()

'red'

>>> turtle.pencolor("brown")

>>> turtle.pencolor()

'brown'

>>> tup = (0.2, 0.8, 0.55)

>>> turtle.pencolor(tup)

>>> turtle.pencolor()

(0.2, 0.8, 0.5490196078431373)

>>> colormode(255)

>>> turtle.pencolor()

(51.0, 204.0, 140.0)
(continues on next page)

1562 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> turtle.pencolor('#32c18f')

>>> turtle.pencolor()

(50.0, 193.0, 143.0)

turtle.fillcolor(*args)

Return or set the fillcolor.

Four input formats are allowed:

fillcolor()

Return the current fillcolor as color specification string, possibly in tuple format (see example). May be
used as input to another color/pencolor/fillcolor call.

fillcolor(colorstring)

Set fillcolor to colorstring, which is a Tk color specification string, such as "red", "yellow", or
"#33cc8c".

fillcolor((r, g, b))

Set fillcolor to the RGB color represented by the tuple of r, g, and b. Each of r, g, and b must be in the
range 0..colormode, where colormode is either 1.0 or 255 (see colormode()).

fillcolor(r, g, b)

Set fillcolor to the RGB color represented by r, g, and b. Each of r, g, and b must be in the range
0..colormode.

If turtleshape is a polygon, the interior of that polygon is drawn with the newly set fillcolor.

>>> turtle.fillcolor("violet")

>>> turtle.fillcolor()

'violet'

>>> turtle.pencolor()

(50.0, 193.0, 143.0)

>>> turtle.fillcolor((50, 193, 143)) # Integers, not floats

>>> turtle.fillcolor()

(50.0, 193.0, 143.0)

>>> turtle.fillcolor('#ffffff')

>>> turtle.fillcolor()

(255.0, 255.0, 255.0)

turtle.color(*args)

Return or set pencolor and fillcolor.

Several input formats are allowed. They use 0 to 3 arguments as follows:

color()

Return the current pencolor and the current fillcolor as a pair of color specification strings or tuples as
returned by pencolor() and fillcolor().

color(colorstring), color((r,g,b)), color(r,g,b)
Inputs as in pencolor(), set both, fillcolor and pencolor, to the given value.

color(colorstring1, colorstring2), color((r1,g1,b1), (r2,g2,b2))

Equivalent to pencolor(colorstring1) and fillcolor(colorstring2) and analogously if the
other input format is used.

If turtleshape is a polygon, outline and interior of that polygon is drawn with the newly set colors.

>>> turtle.color("red", "green")

>>> turtle.color()

('red', 'green')

>>> color("#285078", "#a0c8f0")

(continues on next page)

25.1. turtle— Turtle graphics 1563

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> color()

((40.0, 80.0, 120.0), (160.0, 200.0, 240.0))

See also: Screen method colormode().

Filling

turtle.filling()

Return fillstate (True if filling, False else).

>>> turtle.begin_fill()

>>> if turtle.filling():

... turtle.pensize(5)

... else:

... turtle.pensize(3)

turtle.begin_fill()

To be called just before drawing a shape to be filled.

turtle.end_fill()

Fill the shape drawn after the last call to begin_fill().

Whether or not overlap regions for self-intersecting polygons or multiple shapes are filled depends on the
operating system graphics, type of overlap, and number of overlaps. For example, the Turtle star above may
be either all yellow or have some white regions.

>>> turtle.color("black", "red")

>>> turtle.begin_fill()

>>> turtle.circle(80)

>>> turtle.end_fill()

More drawing control

turtle.reset()

Delete the turtle’s drawings from the screen, re-center the turtle and set variables to the default values.

>>> turtle.goto(0,-22)

>>> turtle.left(100)

>>> turtle.position()

(0.00,-22.00)

>>> turtle.heading()

100.0

>>> turtle.reset()

>>> turtle.position()

(0.00,0.00)

>>> turtle.heading()

0.0

turtle.clear()

Delete the turtle’s drawings from the screen. Do not move turtle. State and position of the turtle as well as
drawings of other turtles are not affected.

turtle.write(arg, move=False, align=’left’, font=(’Arial’, 8, ’normal’))

Parameters

• arg – object to be written to the TurtleScreen

• move – True/False

1564 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

• align – one of the strings “left”, “center” or right”

• font – a triple (fontname, fontsize, fonttype)

Write text - the string representation of arg - at the current turtle position according to align (“left”, “center”
or “right”) and with the given font. If move is true, the pen is moved to the bottom-right corner of the text. By
default, move is False.

>>> turtle.write("Home = ", True, align="center")

>>> turtle.write((0,0), True)

Turtle state

Visibility

turtle.hideturtle()

turtle.ht()

Make the turtle invisible. It’s a good idea to do this while you’re in the middle of doing some complex drawing,
because hiding the turtle speeds up the drawing observably.

>>> turtle.hideturtle()

turtle.showturtle()

turtle.st()

Make the turtle visible.

>>> turtle.showturtle()

turtle.isvisible()

Return True if the Turtle is shown, False if it’s hidden.

>>> turtle.hideturtle()

>>> turtle.isvisible()

False

>>> turtle.showturtle()

>>> turtle.isvisible()

True

Appearance

turtle.shape(name=None)

Parameters
name – a string which is a valid shapename

Set turtle shape to shape with given name or, if name is not given, return name of current shape. Shape
with name must exist in the TurtleScreen’s shape dictionary. Initially there are the following polygon shapes:
“arrow”, “turtle”, “circle”, “square”, “triangle”, “classic”. To learn about how to deal with shapes see Screen
method register_shape().

>>> turtle.shape()

'classic'

>>> turtle.shape("turtle")

>>> turtle.shape()

'turtle'

turtle.resizemode(rmode=None)

Parameters
rmode – one of the strings “auto”, “user”, “noresize”

25.1. turtle— Turtle graphics 1565

The Python Library Reference, Release 3.13.1

Set resizemode to one of the values: “auto”, “user”, “noresize”. If rmode is not given, return current resizemode.
Different resizemodes have the following effects:

• “auto”: adapts the appearance of the turtle corresponding to the value of pensize.

• “user”: adapts the appearance of the turtle according to the values of stretchfactor and outlinewidth
(outline), which are set by shapesize().

• “noresize”: no adaption of the turtle’s appearance takes place.

resizemode("user") is called by shapesize() when used with arguments.

>>> turtle.resizemode()

'noresize'

>>> turtle.resizemode("auto")

>>> turtle.resizemode()

'auto'

turtle.shapesize(stretch_wid=None, stretch_len=None, outline=None)
turtle.turtlesize(stretch_wid=None, stretch_len=None, outline=None)

Parameters

• stretch_wid – positive number

• stretch_len – positive number

• outline – positive number

Return or set the pen’s attributes x/y-stretchfactors and/or outline. Set resizemode to “user”. If and only if
resizemode is set to “user”, the turtle will be displayed stretched according to its stretchfactors: stretch_wid is
stretchfactor perpendicular to its orientation, stretch_len is stretchfactor in direction of its orientation, outline
determines the width of the shape’s outline.

>>> turtle.shapesize()

(1.0, 1.0, 1)

>>> turtle.resizemode("user")

>>> turtle.shapesize(5, 5, 12)

>>> turtle.shapesize()

(5, 5, 12)

>>> turtle.shapesize(outline=8)

>>> turtle.shapesize()

(5, 5, 8)

turtle.shearfactor(shear=None)

Parameters
shear – number (optional)

Set or return the current shearfactor. Shear the turtleshape according to the given shearfactor shear, which is
the tangent of the shear angle. Do not change the turtle’s heading (direction of movement). If shear is not
given: return the current shearfactor, i. e. the tangent of the shear angle, by which lines parallel to the heading
of the turtle are sheared.

>>> turtle.shape("circle")

>>> turtle.shapesize(5,2)

>>> turtle.shearfactor(0.5)

>>> turtle.shearfactor()

0.5

turtle.tilt(angle)

Parameters
angle – a number

1566 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

Rotate the turtleshape by angle from its current tilt-angle, but do not change the turtle’s heading (direction of
movement).

>>> turtle.reset()

>>> turtle.shape("circle")

>>> turtle.shapesize(5,2)

>>> turtle.tilt(30)

>>> turtle.fd(50)

>>> turtle.tilt(30)

>>> turtle.fd(50)

turtle.tiltangle(angle=None)

Parameters
angle – a number (optional)

Set or return the current tilt-angle. If angle is given, rotate the turtleshape to point in the direction specified
by angle, regardless of its current tilt-angle. Do not change the turtle’s heading (direction of movement). If
angle is not given: return the current tilt-angle, i. e. the angle between the orientation of the turtleshape and
the heading of the turtle (its direction of movement).

>>> turtle.reset()

>>> turtle.shape("circle")

>>> turtle.shapesize(5,2)

>>> turtle.tilt(45)

>>> turtle.tiltangle()

45.0

turtle.shapetransform(t11=None, t12=None, t21=None, t22=None)

Parameters

• t11 – a number (optional)

• t12 – a number (optional)

• t21 – a number (optional)

• t12 – a number (optional)

Set or return the current transformation matrix of the turtle shape.

If none of the matrix elements are given, return the transformation matrix as a tuple of 4 elements. Otherwise
set the given elements and transform the turtleshape according to the matrix consisting of first row t11, t12
and second row t21, t22. The determinant t11 * t22 - t12 * t21 must not be zero, otherwise an error is raised.
Modify stretchfactor, shearfactor and tiltangle according to the given matrix.

>>> turtle = Turtle()

>>> turtle.shape("square")

>>> turtle.shapesize(4,2)

>>> turtle.shearfactor(-0.5)

>>> turtle.shapetransform()

(4.0, -1.0, -0.0, 2.0)

turtle.get_shapepoly()

Return the current shape polygon as tuple of coordinate pairs. This can be used to define a new shape or
components of a compound shape.

>>> turtle.shape("square")

>>> turtle.shapetransform(4, -1, 0, 2)

>>> turtle.get_shapepoly()

((50, -20), (30, 20), (-50, 20), (-30, -20))

25.1. turtle— Turtle graphics 1567

The Python Library Reference, Release 3.13.1

Using events

turtle.onclick(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the
clicked point on the canvas

• btn – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace a
former binding

Bind fun to mouse-click events on this turtle. If fun is None, existing bindings are removed. Example for the
anonymous turtle, i.e. the procedural way:

>>> def turn(x, y):

... left(180)

...

>>> onclick(turn) # Now clicking into the turtle will turn it.

>>> onclick(None) # event-binding will be removed

turtle.onrelease(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the
clicked point on the canvas

• btn – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace a
former binding

Bind fun to mouse-button-release events on this turtle. If fun is None, existing bindings are removed.

>>> class MyTurtle(Turtle):

... def glow(self,x,y):

... self.fillcolor("red")

... def unglow(self,x,y):

... self.fillcolor("")

...

>>> turtle = MyTurtle()

>>> turtle.onclick(turtle.glow) # clicking on turtle turns fillcolor red,

>>> turtle.onrelease(turtle.unglow) # releasing turns it to transparent.

turtle.ondrag(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the
clicked point on the canvas

• btn – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace a
former binding

Bind fun to mouse-move events on this turtle. If fun is None, existing bindings are removed.

Remark: Every sequence of mouse-move-events on a turtle is preceded by a mouse-click event on that turtle.

>>> turtle.ondrag(turtle.goto)

Subsequently, clicking and dragging the Turtle will move it across the screen thereby producing handdrawings
(if pen is down).

1568 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

Special Turtle methods

turtle.begin_poly()

Start recording the vertices of a polygon. Current turtle position is first vertex of polygon.

turtle.end_poly()

Stop recording the vertices of a polygon. Current turtle position is last vertex of polygon. This will be connected
with the first vertex.

turtle.get_poly()

Return the last recorded polygon.

>>> turtle.home()

>>> turtle.begin_poly()

>>> turtle.fd(100)

>>> turtle.left(20)

>>> turtle.fd(30)

>>> turtle.left(60)

>>> turtle.fd(50)

>>> turtle.end_poly()

>>> p = turtle.get_poly()

>>> register_shape("myFavouriteShape", p)

turtle.clone()

Create and return a clone of the turtle with same position, heading and turtle properties.

>>> mick = Turtle()

>>> joe = mick.clone()

turtle.getturtle()

turtle.getpen()

Return the Turtle object itself. Only reasonable use: as a function to return the “anonymous turtle”:

>>> pet = getturtle()

>>> pet.fd(50)

>>> pet

<turtle.Turtle object at 0x...>

turtle.getscreen()

Return the TurtleScreen object the turtle is drawing on. TurtleScreen methods can then be called for that
object.

>>> ts = turtle.getscreen()

>>> ts

<turtle._Screen object at 0x...>

>>> ts.bgcolor("pink")

turtle.setundobuffer(size)

Parameters
size – an integer or None

Set or disable undobuffer. If size is an integer, an empty undobuffer of given size is installed. size gives the
maximum number of turtle actions that can be undone by the undo() method/function. If size is None, the
undobuffer is disabled.

>>> turtle.setundobuffer(42)

25.1. turtle— Turtle graphics 1569

The Python Library Reference, Release 3.13.1

turtle.undobufferentries()

Return number of entries in the undobuffer.

>>> while undobufferentries():

... undo()

Compound shapes

To use compound turtle shapes, which consist of several polygons of different color, you must use the helper class
Shape explicitly as described below:

1. Create an empty Shape object of type “compound”.

2. Add as many components to this object as desired, using the addcomponent() method.

For example:

>>> s = Shape("compound")

>>> poly1 = ((0,0),(10,-5),(0,10),(-10,-5))

>>> s.addcomponent(poly1, "red", "blue")

>>> poly2 = ((0,0),(10,-5),(-10,-5))

>>> s.addcomponent(poly2, "blue", "red")

3. Now add the Shape to the Screen’s shapelist and use it:

>>> register_shape("myshape", s)

>>> shape("myshape")

Note

The Shape class is used internally by the register_shape() method in different ways. The application pro-
grammer has to deal with the Shape class only when using compound shapes like shown above!

25.1.7 Methods of TurtleScreen/Screen and corresponding functions

Most of the examples in this section refer to a TurtleScreen instance called screen.

Window control

turtle.bgcolor(*args)

Parameters
args – a color string or three numbers in the range 0..colormode or a 3-tuple of such numbers

Set or return background color of the TurtleScreen.

>>> screen.bgcolor("orange")

>>> screen.bgcolor()

'orange'

>>> screen.bgcolor("#800080")

>>> screen.bgcolor()

(128.0, 0.0, 128.0)

turtle.bgpic(picname=None)

Parameters
picname – a string, name of a gif-file or "nopic", or None

Set background image or return name of current backgroundimage. If picname is a filename, set the corre-
sponding image as background. If picname is "nopic", delete background image, if present. If picname is
None, return the filename of the current backgroundimage.

1570 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

>>> screen.bgpic()

'nopic'

>>> screen.bgpic("landscape.gif")

>>> screen.bgpic()

"landscape.gif"

turtle.clear()

Note

This TurtleScreen method is available as a global function only under the name clearscreen. The global
function clear is a different one derived from the Turtle method clear.

turtle.clearscreen()

Delete all drawings and all turtles from the TurtleScreen. Reset the now empty TurtleScreen to its initial state:
white background, no background image, no event bindings and tracing on.

turtle.reset()

Note

This TurtleScreen method is available as a global function only under the name resetscreen. The global
function reset is another one derived from the Turtle method reset.

turtle.resetscreen()

Reset all Turtles on the Screen to their initial state.

turtle.screensize(canvwidth=None, canvheight=None, bg=None)

Parameters

• canvwidth – positive integer, new width of canvas in pixels

• canvheight – positive integer, new height of canvas in pixels

• bg – colorstring or color-tuple, new background color

If no arguments are given, return current (canvaswidth, canvasheight). Else resize the canvas the turtles are
drawing on. Do not alter the drawing window. To observe hidden parts of the canvas, use the scrollbars. With
this method, one can make visible those parts of a drawing which were outside the canvas before.

>>> screen.screensize()

(400, 300)

>>> screen.screensize(2000,1500)

>>> screen.screensize()

(2000, 1500)

e.g. to search for an erroneously escaped turtle ;-)

turtle.setworldcoordinates(llx, lly, urx, ury)

Parameters

• llx – a number, x-coordinate of lower left corner of canvas

• lly – a number, y-coordinate of lower left corner of canvas

• urx – a number, x-coordinate of upper right corner of canvas

• ury – a number, y-coordinate of upper right corner of canvas

25.1. turtle— Turtle graphics 1571

The Python Library Reference, Release 3.13.1

Set up user-defined coordinate system and switch to mode “world” if necessary. This performs a screen.
reset(). If mode “world” is already active, all drawings are redrawn according to the new coordinates.

ATTENTION: in user-defined coordinate systems angles may appear distorted.

>>> screen.reset()

>>> screen.setworldcoordinates(-50,-7.5,50,7.5)

>>> for _ in range(72):

... left(10)

...

>>> for _ in range(8):

... left(45); fd(2) # a regular octagon

Animation control

turtle.delay(delay=None)

Parameters
delay – positive integer

Set or return the drawing delay in milliseconds. (This is approximately the time interval between two consec-
utive canvas updates.) The longer the drawing delay, the slower the animation.

Optional argument:

>>> screen.delay()

10

>>> screen.delay(5)

>>> screen.delay()

5

turtle.tracer(n=None, delay=None)

Parameters

• n – nonnegative integer

• delay – nonnegative integer

Turn turtle animation on/off and set delay for update drawings. If n is given, only each n-th regular screen
update is really performed. (Can be used to accelerate the drawing of complex graphics.) When called without
arguments, returns the currently stored value of n. Second argument sets delay value (see delay()).

>>> screen.tracer(8, 25)

>>> dist = 2

>>> for i in range(200):

... fd(dist)

... rt(90)

... dist += 2

turtle.update()

Perform a TurtleScreen update. To be used when tracer is turned off.

See also the RawTurtle/Turtle method speed().

Using screen events

turtle.listen(xdummy=None, ydummy=None)
Set focus on TurtleScreen (in order to collect key-events). Dummy arguments are provided in order to be able
to pass listen() to the onclick method.

turtle.onkey(fun, key)

1572 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

turtle.onkeyrelease(fun, key)

Parameters

• fun – a function with no arguments or None

• key – a string: key (e.g. “a”) or key-symbol (e.g. “space”)

Bind fun to key-release event of key. If fun is None, event bindings are removed. Remark: in order to be able
to register key-events, TurtleScreen must have the focus. (See method listen().)

>>> def f():

... fd(50)

... lt(60)

...

>>> screen.onkey(f, "Up")

>>> screen.listen()

turtle.onkeypress(fun, key=None)

Parameters

• fun – a function with no arguments or None

• key – a string: key (e.g. “a”) or key-symbol (e.g. “space”)

Bind fun to key-press event of key if key is given, or to any key-press-event if no key is given. Remark: in
order to be able to register key-events, TurtleScreen must have focus. (See method listen().)

>>> def f():

... fd(50)

...

>>> screen.onkey(f, "Up")

>>> screen.listen()

turtle.onclick(fun, btn=1, add=None)
turtle.onscreenclick(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the
clicked point on the canvas

• btn – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace a
former binding

Bind fun to mouse-click events on this screen. If fun is None, existing bindings are removed.

Example for a TurtleScreen instance named screen and a Turtle instance named turtle:

>>> screen.onclick(turtle.goto) # Subsequently clicking into the TurtleScreen␣

↪→will

>>> # make the turtle move to the clicked point.

>>> screen.onclick(None) # remove event binding again

Note

This TurtleScreen method is available as a global function only under the name onscreenclick. The
global function onclick is another one derived from the Turtle method onclick.

25.1. turtle— Turtle graphics 1573

The Python Library Reference, Release 3.13.1

turtle.ontimer(fun, t=0)

Parameters

• fun – a function with no arguments

• t – a number >= 0

Install a timer that calls fun after t milliseconds.

>>> running = True

>>> def f():

... if running:

... fd(50)

... lt(60)

... screen.ontimer(f, 250)

>>> f() ### makes the turtle march around

>>> running = False

turtle.mainloop()

turtle.done()

Starts event loop - calling Tkinter’s mainloop function. Must be the last statement in a turtle graphics program.
Must not be used if a script is run from within IDLE in -n mode (No subprocess) - for interactive use of turtle
graphics.

>>> screen.mainloop()

Input methods

turtle.textinput(title, prompt)

Parameters

• title – string

• prompt – string

Pop up a dialog window for input of a string. Parameter title is the title of the dialog window, prompt is a text
mostly describing what information to input. Return the string input. If the dialog is canceled, return None.

>>> screen.textinput("NIM", "Name of first player:")

turtle.numinput(title, prompt, default=None, minval=None, maxval=None)

Parameters

• title – string

• prompt – string

• default – number (optional)

• minval – number (optional)

• maxval – number (optional)

Pop up a dialog window for input of a number. title is the title of the dialog window, prompt is a text mostly
describing what numerical information to input. default: default value, minval: minimum value for input,
maxval: maximum value for input. The number input must be in the range minval .. maxval if these are given.
If not, a hint is issued and the dialog remains open for correction. Return the number input. If the dialog is
canceled, return None.

>>> screen.numinput("Poker", "Your stakes:", 1000, minval=10, maxval=10000)

1574 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

Settings and special methods

turtle.mode(mode=None)

Parameters
mode – one of the strings “standard”, “logo” or “world”

Set turtle mode (“standard”, “logo” or “world”) and perform reset. If mode is not given, current mode is
returned.

Mode “standard” is compatible with old turtle. Mode “logo” is compatible with most Logo turtle graphics.
Mode “world” uses user-defined “world coordinates”. Attention: in this mode angles appear distorted if x/y
unit-ratio doesn’t equal 1.

Mode Initial turtle heading positive angles

“standard” to the right (east) counterclockwise
“logo” upward (north) clockwise

>>> mode("logo") # resets turtle heading to north

>>> mode()

'logo'

turtle.colormode(cmode=None)

Parameters
cmode – one of the values 1.0 or 255

Return the colormode or set it to 1.0 or 255. Subsequently r, g, b values of color triples have to be in the range
0..*cmode*.

>>> screen.colormode(1)

>>> turtle.pencolor(240, 160, 80)

Traceback (most recent call last):

...

TurtleGraphicsError: bad color sequence: (240, 160, 80)

>>> screen.colormode()

1.0

>>> screen.colormode(255)

>>> screen.colormode()

255

>>> turtle.pencolor(240,160,80)

turtle.getcanvas()

Return the Canvas of this TurtleScreen. Useful for insiders who know what to do with a Tkinter Canvas.

>>> cv = screen.getcanvas()

>>> cv

<turtle.ScrolledCanvas object ...>

turtle.getshapes()

Return a list of names of all currently available turtle shapes.

>>> screen.getshapes()

['arrow', 'blank', 'circle', ..., 'turtle']

turtle.register_shape(name, shape=None)
turtle.addshape(name, shape=None)

There are three different ways to call this function:

25.1. turtle— Turtle graphics 1575

The Python Library Reference, Release 3.13.1

(1) name is the name of a gif-file and shape is None: Install the corresponding image shape.

>>> screen.register_shape("turtle.gif")

Note

Image shapes do not rotate when turning the turtle, so they do not display the heading of the turtle!

(2) name is an arbitrary string and shape is a tuple of pairs of coordinates: Install the corresponding polygon
shape.

>>> screen.register_shape("triangle", ((5,-3), (0,5), (-5,-3)))

(3) name is an arbitrary string and shape is a (compound) Shape object: Install the corresponding compound
shape.

Add a turtle shape to TurtleScreen’s shapelist. Only thusly registered shapes can be used by issuing the com-
mand shape(shapename).

turtle.turtles()

Return the list of turtles on the screen.

>>> for turtle in screen.turtles():

... turtle.color("red")

turtle.window_height()

Return the height of the turtle window.

>>> screen.window_height()

480

turtle.window_width()

Return the width of the turtle window.

>>> screen.window_width()

640

Methods specific to Screen, not inherited from TurtleScreen

turtle.bye()

Shut the turtlegraphics window.

turtle.exitonclick()

Bind bye() method to mouse clicks on the Screen.

If the value “using_IDLE” in the configuration dictionary is False (default value), also enter mainloop. Re-
mark: If IDLE with the -n switch (no subprocess) is used, this value should be set to True in turtle.cfg.
In this case IDLE’s own mainloop is active also for the client script.

turtle.setup(width=_CFG[’width’], height=_CFG[’height’], startx=_CFG[’leftright’],
starty=_CFG[’topbottom’])

Set the size and position of the main window. Default values of arguments are stored in the configuration
dictionary and can be changed via a turtle.cfg file.

Parameters

• width – if an integer, a size in pixels, if a float, a fraction of the screen; default is 50% of
screen

1576 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

• height – if an integer, the height in pixels, if a float, a fraction of the screen; default is
75% of screen

• startx – if positive, starting position in pixels from the left edge of the screen, if negative
from the right edge, if None, center window horizontally

• starty – if positive, starting position in pixels from the top edge of the screen, if negative
from the bottom edge, if None, center window vertically

>>> screen.setup (width=200, height=200, startx=0, starty=0)

>>> # sets window to 200x200 pixels, in upper left of screen

>>> screen.setup(width=.75, height=0.5, startx=None, starty=None)

>>> # sets window to 75% of screen by 50% of screen and centers

turtle.title(titlestring)

Parameters
titlestring – a string that is shown in the titlebar of the turtle graphics window

Set title of turtle window to titlestring.

>>> screen.title("Welcome to the turtle zoo!")

25.1.8 Public classes

class turtle.RawTurtle(canvas)
class turtle.RawPen(canvas)

Parameters
canvas – a tkinter.Canvas, a ScrolledCanvas or a TurtleScreen

Create a turtle. The turtle has all methods described above as “methods of Turtle/RawTurtle”.

class turtle.Turtle

Subclass of RawTurtle, has the same interface but draws on a default Screen object created automatically
when needed for the first time.

class turtle.TurtleScreen(cv)

Parameters
cv – a tkinter.Canvas

Provides screen oriented methods like bgcolor() etc. that are described above.

class turtle.Screen

Subclass of TurtleScreen, with four methods added.

class turtle.ScrolledCanvas(master)

Parameters
master – some Tkinter widget to contain the ScrolledCanvas, i.e. a Tkinter-canvas with
scrollbars added

Used by class Screen, which thus automatically provides a ScrolledCanvas as playground for the turtles.

class turtle.Shape(type_, data)

Parameters
type_ – one of the strings “polygon”, “image”, “compound”

Data structure modeling shapes. The pair (type_, data) must follow this specification:

25.1. turtle— Turtle graphics 1577

The Python Library Reference, Release 3.13.1

type_ data

“polygon” a polygon-tuple, i.e. a tuple of pairs of coordinates
“image” an image (in this form only used internally!)
“compound” None (a compound shape has to be constructed using the addcomponent() method)

addcomponent(poly, fill, outline=None)

Parameters

• poly – a polygon, i.e. a tuple of pairs of numbers

• fill – a color the poly will be filled with

• outline – a color for the poly’s outline (if given)

Example:

>>> poly = ((0,0),(10,-5),(0,10),(-10,-5))

>>> s = Shape("compound")

>>> s.addcomponent(poly, "red", "blue")

>>> # ... add more components and then use register_shape()

See Compound shapes.

class turtle.Vec2D(x, y)
A two-dimensional vector class, used as a helper class for implementing turtle graphics. May be useful for
turtle graphics programs too. Derived from tuple, so a vector is a tuple!

Provides (for a, b vectors, k number):

• a + b vector addition

• a - b vector subtraction

• a * b inner product

• k * a and a * k multiplication with scalar

• abs(a) absolute value of a

• a.rotate(angle) rotation

25.1.9 Explanation

A turtle object draws on a screen object, and there a number of key classes in the turtle object-oriented interface that
can be used to create them and relate them to each other.

A Turtle instance will automatically create a Screen instance if one is not already present.

Turtle is a subclass of RawTurtle, which doesn’t automatically create a drawing surface - a canvas will need to be
provided or created for it. The canvas can be a tkinter.Canvas, ScrolledCanvas or TurtleScreen.

TurtleScreen is the basic drawing surface for a turtle. Screen is a subclass of TurtleScreen, and includes
some additional methods for managing its appearance (including size and title) and behaviour. TurtleScreen’s
constructor needs a tkinter.Canvas or a ScrolledCanvas as an argument.

The functional interface for turtle graphics uses the various methods of Turtle and TurtleScreen/Screen. Be-
hind the scenes, a screen object is automatically created whenever a function derived from a Screen method is
called. Similarly, a turtle object is automatically created whenever any of the functions derived from a Turtle method
is called.

To use multiple turtles on a screen, the object-oriented interface must be used.

1578 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

25.1.10 Help and configuration

How to use help

The public methods of the Screen and Turtle classes are documented extensively via docstrings. So these can be used
as online-help via the Python help facilities:

• When using IDLE, tooltips show the signatures and first lines of the docstrings of typed in function-/method
calls.

• Calling help() on methods or functions displays the docstrings:

>>> help(Screen.bgcolor)

Help on method bgcolor in module turtle:

bgcolor(self, *args) unbound turtle.Screen method

Set or return backgroundcolor of the TurtleScreen.

Arguments (if given): a color string or three numbers

in the range 0..colormode or a 3-tuple of such numbers.

>>> screen.bgcolor("orange")

>>> screen.bgcolor()

"orange"

>>> screen.bgcolor(0.5,0,0.5)

>>> screen.bgcolor()

"#800080"

>>> help(Turtle.penup)

Help on method penup in module turtle:

penup(self) unbound turtle.Turtle method

Pull the pen up -- no drawing when moving.

Aliases: penup | pu | up

No argument

>>> turtle.penup()

• The docstrings of the functions which are derived from methods have a modified form:

>>> help(bgcolor)

Help on function bgcolor in module turtle:

bgcolor(*args)

Set or return backgroundcolor of the TurtleScreen.

Arguments (if given): a color string or three numbers

in the range 0..colormode or a 3-tuple of such numbers.

Example::

>>> bgcolor("orange")

>>> bgcolor()

"orange"

>>> bgcolor(0.5,0,0.5)

>>> bgcolor()

"#800080"
(continues on next page)

25.1. turtle— Turtle graphics 1579

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> help(penup)

Help on function penup in module turtle:

penup()

Pull the pen up -- no drawing when moving.

Aliases: penup | pu | up

No argument

Example:

>>> penup()

These modified docstrings are created automatically together with the function definitions that are derived from the
methods at import time.

Translation of docstrings into different languages

There is a utility to create a dictionary the keys of which are the method names and the values of which are the
docstrings of the public methods of the classes Screen and Turtle.

turtle.write_docstringdict(filename=’turtle_docstringdict’)

Parameters
filename – a string, used as filename

Create and write docstring-dictionary to a Python script with the given filename. This function has to be
called explicitly (it is not used by the turtle graphics classes). The docstring dictionary will be written to the
Python script filename.py. It is intended to serve as a template for translation of the docstrings into different
languages.

If you (or your students) want to use turtle with online help in your native language, you have to translate the
docstrings and save the resulting file as e.g. turtle_docstringdict_german.py.

If you have an appropriate entry in your turtle.cfg file this dictionary will be read in at import time and will
replace the original English docstrings.

At the time of this writing there are docstring dictionaries in German and in Italian. (Requests please to
glingl@aon.at.)

How to configure Screen and Turtles

The built-in default configuration mimics the appearance and behaviour of the old turtle module in order to retain
best possible compatibility with it.

If you want to use a different configuration which better reflects the features of this module or which better fits to your
needs, e.g. for use in a classroom, you can prepare a configuration file turtle.cfg which will be read at import
time and modify the configuration according to its settings.

The built in configuration would correspond to the following turtle.cfg:

width = 0.5

height = 0.75

leftright = None

topbottom = None

canvwidth = 400

canvheight = 300

mode = standard

colormode = 1.0

delay = 10
(continues on next page)

1580 Chapter 25. Program Frameworks

mailto:glingl@aon.at

The Python Library Reference, Release 3.13.1

(continued from previous page)

undobuffersize = 1000

shape = classic

pencolor = black

fillcolor = black

resizemode = noresize

visible = True

language = english

exampleturtle = turtle

examplescreen = screen

title = Python Turtle Graphics

using_IDLE = False

Short explanation of selected entries:

• The first four lines correspond to the arguments of the Screen.setup method.

• Line 5 and 6 correspond to the arguments of the method Screen.screensize.

• shape can be any of the built-in shapes, e.g: arrow, turtle, etc. For more info try help(shape).

• If you want to use no fill color (i.e. make the turtle transparent), you have to write fillcolor = "" (but all
nonempty strings must not have quotes in the cfg file).

• If you want to reflect the turtle its state, you have to use resizemode = auto.

• If you set e.g. language = italian the docstringdict turtle_docstringdict_italian.py will be
loaded at import time (if present on the import path, e.g. in the same directory as turtle).

• The entries exampleturtle and examplescreen define the names of these objects as they occur in the docstrings.
The transformation of method-docstrings to function-docstrings will delete these names from the docstrings.

• using_IDLE: Set this to True if you regularly work with IDLE and its -n switch (“no subprocess”). This will
prevent exitonclick() to enter the mainloop.

There can be a turtle.cfg file in the directory where turtle is stored and an additional one in the current working
directory. The latter will override the settings of the first one.

The Lib/turtledemo directory contains a turtle.cfg file. You can study it as an example and see its effects
when running the demos (preferably not from within the demo-viewer).

25.1.11 turtledemo— Demo scripts

The turtledemo package includes a set of demo scripts. These scripts can be run and viewed using the supplied
demo viewer as follows:

python -m turtledemo

Alternatively, you can run the demo scripts individually. For example,

python -m turtledemo.bytedesign

The turtledemo package directory contains:

• A demo viewer __main__.py which can be used to view the sourcecode of the scripts and run them at the
same time.

• Multiple scripts demonstrating different features of the turtle module. Examples can be accessed via the
Examples menu. They can also be run standalone.

• A turtle.cfg file which serves as an example of how to write and use such files.

The demo scripts are:

25.1. turtle— Turtle graphics 1581

The Python Library Reference, Release 3.13.1

Name Description Features

bytedesign complex classical turtle graphics pattern tracer(), delay,
update()

chaos graphs Verhulst dynamics, shows that computer’s
computations can generate results sometimes against the
common sense expectations

world coordinates

clock analog clock showing time of your computer turtles as clock’s hands,
ontimer

colormixer experiment with r, g, b ondrag()

forest 3 breadth-first trees randomization
fractalcurves Hilbert & Koch curves recursion
lindenmayer ethnomathematics (indian kolams) L-System
minimal_hanoi Towers of Hanoi Rectangular Turtles as

Hanoi discs (shape,
shapesize)

nim play the classical nim game with three heaps of sticks
against the computer.

turtles as nimsticks, event
driven (mouse, keyboard)

paint super minimalistic drawing program onclick()

peace elementary turtle: appearance and
animation

penrose aperiodic tiling with kites and darts stamp()

planet_and_moon simulation of gravitational system compound shapes, Vec2D
rosette a pattern from the wikipedia article on turtle graphics clone(), undo()
round_dance dancing turtles rotating pairwise in opposite direction compound shapes, clone

shapesize, tilt,
get_shapepoly, update

sorting_animate visual demonstration of different sorting methods simple alignment,
randomization

tree a (graphical) breadth first tree (using generators) clone()

two_canvases simple design turtles on two canvases
yinyang another elementary example circle()

Have fun!

25.1.12 Changes since Python 2.6

• The methods Turtle.tracer, Turtle.window_width and Turtle.window_height have been elim-
inated. Methods with these names and functionality are now available only as methods of Screen. The
functions derived from these remain available. (In fact already in Python 2.6 these methods were merely
duplications of the corresponding TurtleScreen/Screen methods.)

• Themethod Turtle.fill() has been eliminated. The behaviour of begin_fill() and end_fill() have
changed slightly: now every filling process must be completed with an end_fill() call.

• A method Turtle.filling has been added. It returns a boolean value: True if a filling process is under
way, False otherwise. This behaviour corresponds to a fill() call without arguments in Python 2.6.

25.1.13 Changes since Python 3.0

• The Turtle methods shearfactor(), shapetransform() and get_shapepoly() have been added.
Thus the full range of regular linear transforms is now available for transforming turtle shapes. tiltangle()
has been enhanced in functionality: it now can be used to get or set the tilt angle.

• The Screenmethod onkeypress() has been added as a complement to onkey(). As the latter binds actions
to the key release event, an alias: onkeyrelease() was also added for it.

• The method Screen.mainloop has been added, so there is no longer a need to use the standalone
mainloop() function when working with Screen and Turtle objects.

1582 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

• Two input methods have been added: Screen.textinput and Screen.numinput. These pop up input
dialogs and return strings and numbers respectively.

• Two example scripts tdemo_nim.py and tdemo_round_dance.py have been added to the Lib/

turtledemo directory.

25.2 cmd— Support for line-oriented command interpreters

Source code: Lib/cmd.py

The Cmd class provides a simple framework for writing line-oriented command interpreters. These are often useful
for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated interface.

class cmd.Cmd(completekey=’tab’, stdin=None, stdout=None)
A Cmd instance or subclass instance is a line-oriented interpreter framework. There is no good reason to
instantiate Cmd itself; rather, it’s useful as a superclass of an interpreter class you define yourself in order to
inherit Cmd’s methods and encapsulate action methods.

The optional argument completekey is the readline name of a completion key; it defaults to Tab. If com-
pletekey is not None and readline is available, command completion is done automatically.

The default, 'tab', is treated specially, so that it refers to the Tab key on every readline.backend. Specif-
ically, if readline.backend is editline, Cmd will use '^I' instead of 'tab'. Note that other values are
not treated this way, and might only work with a specific backend.

The optional arguments stdin and stdout specify the input and output file objects that the Cmd instance or
subclass instance will use for input and output. If not specified, they will default to sys.stdin and sys.

stdout.

If you want a given stdin to be used, make sure to set the instance’s use_rawinput attribute to False,
otherwise stdin will be ignored.

Changed in version 3.13: completekey='tab' is replaced by '^I' for editline.

25.2.1 Cmd Objects

A Cmd instance has the following methods:

Cmd.cmdloop(intro=None)
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrides the intro
class attribute).

If the readline module is loaded, input will automatically inherit bash-like history-list editing (e.g.
Control-P scrolls back to the last command, Control-N forward to the next one, Control-F moves the
cursor to the right non-destructively, Control-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the string 'EOF'.

An interpreter instance will recognize a command name foo if and only if it has a method do_foo(). As
a special case, a line beginning with the character '?' is dispatched to the method do_help(). As another
special case, a line beginning with the character '!' is dispatched to the method do_shell() (if such a
method is defined).

This method will return when the postcmd()method returns a true value. The stop argument to postcmd()
is the return value from the command’s corresponding do_*() method.

If completion is enabled, completing commands will be done automatically, and completing of commands args
is done by calling complete_foo() with arguments text, line, begidx, and endidx. text is the string prefix we
are attempting to match: all returned matches must begin with it. line is the current input line with leading

25.2. cmd— Support for line-oriented command interpreters 1583

https://github.com/python/cpython/tree/3.13/Lib/cmd.py

The Python Library Reference, Release 3.13.1

whitespace removed, begidx and endidx are the beginning and ending indexes of the prefix text, which could
be used to provide different completion depending upon which position the argument is in.

Cmd.do_help(arg)
All subclasses of Cmd inherit a predefined do_help(). This method, called with an argument 'bar', invokes
the corresponding method help_bar(), and if that is not present, prints the docstring of do_bar(), if avail-
able. With no argument, do_help() lists all available help topics (that is, all commands with corresponding
help_*() methods or commands that have docstrings), and also lists any undocumented commands.

Cmd.onecmd(str)
Interpret the argument as though it had been typed in response to the prompt. This may be overridden, but
should not normally need to be; see the precmd() and postcmd() methods for useful execution hooks. The
return value is a flag indicating whether interpretation of commands by the interpreter should stop. If there is
a do_*()method for the command str, the return value of that method is returned, otherwise the return value
from the default() method is returned.

Cmd.emptyline()

Method called when an empty line is entered in response to the prompt. If this method is not overridden, it
repeats the last nonempty command entered.

Cmd.default(line)
Method called on an input line when the command prefix is not recognized. If this method is not overridden,
it prints an error message and returns.

Cmd.completedefault(text, line, begidx, endidx)
Method called to complete an input line when no command-specific complete_*() method is available. By
default, it returns an empty list.

Cmd.columnize(list, displaywidth=80)
Method called to display a list of strings as a compact set of columns. Each column is only as wide as necessary.
Columns are separated by two spaces for readability.

Cmd.precmd(line)
Hook method executed just before the command line line is interpreted, but after the input prompt is generated
and issued. This method is a stub in Cmd; it exists to be overridden by subclasses. The return value is used as
the command which will be executed by the onecmd()method; the precmd() implementation may re-write
the command or simply return line unchanged.

Cmd.postcmd(stop, line)
Hook method executed just after a command dispatch is finished. This method is a stub in Cmd; it exists
to be overridden by subclasses. line is the command line which was executed, and stop is a flag which indi-
cates whether execution will be terminated after the call to postcmd(); this will be the return value of the
onecmd() method. The return value of this method will be used as the new value for the internal flag which
corresponds to stop; returning false will cause interpretation to continue.

Cmd.preloop()

Hookmethod executed once when cmdloop() is called. Thismethod is a stub in Cmd; it exists to be overridden
by subclasses.

Cmd.postloop()

Hook method executed once when cmdloop() is about to return. This method is a stub in Cmd; it exists to be
overridden by subclasses.

Instances of Cmd subclasses have some public instance variables:

Cmd.prompt

The prompt issued to solicit input.

Cmd.identchars

The string of characters accepted for the command prefix.

1584 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

Cmd.lastcmd

The last nonempty command prefix seen.

Cmd.cmdqueue

A list of queued input lines. The cmdqueue list is checked in cmdloop() when new input is needed; if it is
nonempty, its elements will be processed in order, as if entered at the prompt.

Cmd.intro

A string to issue as an intro or banner. May be overridden by giving the cmdloop() method an argument.

Cmd.doc_header

The header to issue if the help output has a section for documented commands.

Cmd.misc_header

The header to issue if the help output has a section for miscellaneous help topics (that is, there are help_*()
methods without corresponding do_*() methods).

Cmd.undoc_header

The header to issue if the help output has a section for undocumented commands (that is, there are do_*()
methods without corresponding help_*() methods).

Cmd.ruler

The character used to draw separator lines under the help-message headers. If empty, no ruler line is drawn.
It defaults to '='.

Cmd.use_rawinput

A flag, defaulting to true. If true, cmdloop() uses input() to display a prompt and read the next command;
if false, sys.stdout.write() and sys.stdin.readline() are used. (This means that by importing
readline, on systems that support it, the interpreter will automatically support Emacs-like line editing and
command-history keystrokes.)

25.2.2 Cmd Example

The cmd module is mainly useful for building custom shells that let a user work with a program interactively.

This section presents a simple example of how to build a shell around a few of the commands in the turtlemodule.

Basic turtle commands such as forward() are added to a Cmd subclass with method named do_forward(). The
argument is converted to a number and dispatched to the turtle module. The docstring is used in the help utility
provided by the shell.

The example also includes a basic record and playback facility implemented with the precmd() method which is
responsible for converting the input to lowercase and writing the commands to a file. The do_playback() method
reads the file and adds the recorded commands to the cmdqueue for immediate playback:

import cmd, sys

from turtle import *

class TurtleShell(cmd.Cmd):

intro = 'Welcome to the turtle shell. Type help or ? to list commands.\n'

prompt = '(turtle) '

file = None

----- basic turtle commands -----

def do_forward(self, arg):

'Move the turtle forward by the specified distance: FORWARD 10'

forward(*parse(arg))

def do_right(self, arg):

'Turn turtle right by given number of degrees: RIGHT 20'

right(*parse(arg))

def do_left(self, arg):

(continues on next page)

25.2. cmd— Support for line-oriented command interpreters 1585

The Python Library Reference, Release 3.13.1

(continued from previous page)

'Turn turtle left by given number of degrees: LEFT 90'

left(*parse(arg))

def do_goto(self, arg):

'Move turtle to an absolute position with changing orientation. GOTO 100␣

↪→200'

goto(*parse(arg))

def do_home(self, arg):

'Return turtle to the home position: HOME'

home()

def do_circle(self, arg):

'Draw circle with given radius an options extent and steps: CIRCLE 50'

circle(*parse(arg))

def do_position(self, arg):

'Print the current turtle position: POSITION'

print('Current position is %d %d\n' % position())

def do_heading(self, arg):

'Print the current turtle heading in degrees: HEADING'

print('Current heading is %d\n' % (heading(),))

def do_color(self, arg):

'Set the color: COLOR BLUE'

color(arg.lower())

def do_undo(self, arg):

'Undo (repeatedly) the last turtle action(s): UNDO'

def do_reset(self, arg):

'Clear the screen and return turtle to center: RESET'

reset()

def do_bye(self, arg):

'Stop recording, close the turtle window, and exit: BYE'

print('Thank you for using Turtle')

self.close()

bye()

return True

----- record and playback -----

def do_record(self, arg):

'Save future commands to filename: RECORD rose.cmd'

self.file = open(arg, 'w')

def do_playback(self, arg):

'Playback commands from a file: PLAYBACK rose.cmd'

self.close()

with open(arg) as f:

self.cmdqueue.extend(f.read().splitlines())

def precmd(self, line):

line = line.lower()

if self.file and 'playback' not in line:

print(line, file=self.file)

return line

def close(self):

if self.file:

self.file.close()

self.file = None

def parse(arg):

'Convert a series of zero or more numbers to an argument tuple'

return tuple(map(int, arg.split()))

(continues on next page)

1586 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

(continued from previous page)

if __name__ == '__main__':

TurtleShell().cmdloop()

Here is a sample session with the turtle shell showing the help functions, using blank lines to repeat commands, and
the simple record and playback facility:

Welcome to the turtle shell. Type help or ? to list commands.

(turtle) ?

Documented commands (type help <topic>):

==

bye color goto home playback record right

circle forward heading left position reset undo

(turtle) help forward

Move the turtle forward by the specified distance: FORWARD 10

(turtle) record spiral.cmd

(turtle) position

Current position is 0 0

(turtle) heading

Current heading is 0

(turtle) reset

(turtle) circle 20

(turtle) right 30

(turtle) circle 40

(turtle) right 30

(turtle) circle 60

(turtle) right 30

(turtle) circle 80

(turtle) right 30

(turtle) circle 100

(turtle) right 30

(turtle) circle 120

(turtle) right 30

(turtle) circle 120

(turtle) heading

Current heading is 180

(turtle) forward 100

(turtle)

(turtle) right 90

(turtle) forward 100

(turtle)

(turtle) right 90

(turtle) forward 400

(turtle) right 90

(turtle) forward 500

(turtle) right 90

(turtle) forward 400

(turtle) right 90

(turtle) forward 300

(turtle) playback spiral.cmd

Current position is 0 0

(continues on next page)

25.2. cmd— Support for line-oriented command interpreters 1587

The Python Library Reference, Release 3.13.1

(continued from previous page)

Current heading is 0

Current heading is 180

(turtle) bye

Thank you for using Turtle

25.3 shlex— Simple lexical analysis

Source code: Lib/shlex.py

The shlex class makes it easy to write lexical analyzers for simple syntaxes resembling that of the Unix shell. This
will often be useful for writing minilanguages, (for example, in run control files for Python applications) or for parsing
quoted strings.

The shlex module defines the following functions:

shlex.split(s, comments=False, posix=True)
Split the string s using shell-like syntax. If comments is False (the default), the parsing of comments in the
given string will be disabled (setting the commenters attribute of the shlex instance to the empty string).
This function operates in POSIX mode by default, but uses non-POSIX mode if the posix argument is false.

Changed in version 3.12: Passing None for s argument now raises an exception, rather than reading sys.
stdin.

shlex.join(split_command)
Concatenate the tokens of the list split_command and return a string. This function is the inverse of split().

>>> from shlex import join

>>> print(join(['echo', '-n', 'Multiple words']))

echo -n 'Multiple words'

The returned value is shell-escaped to protect against injection vulnerabilities (see quote()).

Added in version 3.8.

shlex.quote(s)

Return a shell-escaped version of the string s. The returned value is a string that can safely be used as one
token in a shell command line, for cases where you cannot use a list.

Warning

The shlex module is only designed for Unix shells.

The quote() function is not guaranteed to be correct on non-POSIX compliant shells or shells from other
operating systems such as Windows. Executing commands quoted by this module on such shells can open
up the possibility of a command injection vulnerability.

Consider using functions that pass command arguments with lists such as subprocess.run() with
shell=False.

This idiom would be unsafe:

>>> filename = 'somefile; rm -rf ~'

>>> command = 'ls -l {}'.format(filename)

(continues on next page)

1588 Chapter 25. Program Frameworks

https://github.com/python/cpython/tree/3.13/Lib/shlex.py

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> print(command) # executed by a shell: boom!

ls -l somefile; rm -rf ~

quote() lets you plug the security hole:

>>> from shlex import quote

>>> command = 'ls -l {}'.format(quote(filename))

>>> print(command)

ls -l 'somefile; rm -rf ~'

>>> remote_command = 'ssh home {}'.format(quote(command))

>>> print(remote_command)

ssh home 'ls -l '"'"'somefile; rm -rf ~'"'"''

The quoting is compatible with UNIX shells and with split():

>>> from shlex import split

>>> remote_command = split(remote_command)

>>> remote_command

['ssh', 'home', "ls -l 'somefile; rm -rf ~'"]

>>> command = split(remote_command[-1])

>>> command

['ls', '-l', 'somefile; rm -rf ~']

Added in version 3.3.

The shlex module defines the following class:

class shlex.shlex(instream=None, infile=None, posix=False, punctuation_chars=False)
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument, if present,
specifies where to read characters from. It must be a file-/stream-like object with read() and readline()
methods, or a string. If no argument is given, input will be taken from sys.stdin. The second optional
argument is a filename string, which sets the initial value of the infile attribute. If the instream argument
is omitted or equal to sys.stdin, this second argument defaults to “stdin”. The posix argument defines the
operational mode: when posix is not true (default), the shlex instance will operate in compatibility mode.
When operating in POSIX mode, shlex will try to be as close as possible to the POSIX shell parsing rules.
The punctuation_chars argument provides a way to make the behaviour even closer to how real shells parse.
This can take a number of values: the default value, False, preserves the behaviour seen under Python 3.5
and earlier. If set to True, then parsing of the characters ();<>|& is changed: any run of these characters
(considered punctuation characters) is returned as a single token. If set to a non-empty string of characters,
those characters will be used as the punctuation characters. Any characters in the wordchars attribute that
appear in punctuation_chars will be removed from wordchars. See Improved Compatibility with Shells for
more information. punctuation_chars can be set only upon shlex instance creation and can’t be modified later.

Changed in version 3.6: The punctuation_chars parameter was added.

See also

Module configparser
Parser for configuration files similar to the Windows .ini files.

25.3.1 shlex Objects

A shlex instance has the following methods:

shlex.get_token()

Return a token. If tokens have been stacked using push_token(), pop a token off the stack. Otherwise, read
one from the input stream. If reading encounters an immediate end-of-file, eof is returned (the empty string
('') in non-POSIX mode, and None in POSIX mode).

25.3. shlex— Simple lexical analysis 1589

The Python Library Reference, Release 3.13.1

shlex.push_token(str)
Push the argument onto the token stack.

shlex.read_token()

Read a raw token. Ignore the pushback stack, and do not interpret source requests. (This is not ordinarily a
useful entry point, and is documented here only for the sake of completeness.)

shlex.sourcehook(filename)
When shlex detects a source request (see source below) this method is given the following token as argu-
ment, and expected to return a tuple consisting of a filename and an open file-like object.

Normally, this method first strips any quotes off the argument. If the result is an absolute pathname, or there
was no previous source request in effect, or the previous source was a stream (such as sys.stdin), the result is
left alone. Otherwise, if the result is a relative pathname, the directory part of the name of the file immediately
before it on the source inclusion stack is prepended (this behavior is like the way the C preprocessor handles
#include "file.h").

The result of the manipulations is treated as a filename, and returned as the first component of the tuple, with
open() called on it to yield the second component. (Note: this is the reverse of the order of arguments in
instance initialization!)

This hook is exposed so that you can use it to implement directory search paths, addition of file extensions,
and other namespace hacks. There is no corresponding ‘close’ hook, but a shlex instance will call the close()
method of the sourced input stream when it returns EOF.

For more explicit control of source stacking, use the push_source() and pop_source() methods.

shlex.push_source(newstream, newfile=None)
Push an input source stream onto the input stack. If the filename argument is specified it will later be available
for use in error messages. This is the same method used internally by the sourcehook() method.

shlex.pop_source()

Pop the last-pushed input source from the input stack. This is the same method used internally when the lexer
reaches EOF on a stacked input stream.

shlex.error_leader(infile=None, lineno=None)
This method generates an error message leader in the format of a Unix C compiler error label; the format is
'"%s", line %d: ', where the %s is replaced with the name of the current source file and the %d with the
current input line number (the optional arguments can be used to override these).

This convenience is provided to encourage shlex users to generate error messages in the standard, parseable
format understood by Emacs and other Unix tools.

Instances of shlex subclasses have some public instance variables which either control lexical analysis or can be
used for debugging:

shlex.commenters

The string of characters that are recognized as comment beginners. All characters from the comment beginner
to end of line are ignored. Includes just '#' by default.

shlex.wordchars

The string of characters that will accumulate into multi-character tokens. By default, includes all ASCII al-
phanumerics and underscore. In POSIX mode, the accented characters in the Latin-1 set are also included.
If punctuation_chars is not empty, the characters ~-./*?=, which can appear in filename specifications
and command line parameters, will also be included in this attribute, and any characters which appear in
punctuation_chars will be removed from wordchars if they are present there. If whitespace_split
is set to True, this will have no effect.

shlex.whitespace

Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default, includes
space, tab, linefeed and carriage-return.

1590 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

shlex.escape

Characters that will be considered as escape. This will be only used in POSIX mode, and includes just '\' by
default.

shlex.quotes

Characters that will be considered string quotes. The token accumulates until the same quote is encountered
again (thus, different quote types protect each other as in the shell.) By default, includes ASCII single and
double quotes.

shlex.escapedquotes

Characters in quotes that will interpret escape characters defined in escape. This is only used in POSIX
mode, and includes just '"' by default.

shlex.whitespace_split

If True, tokens will only be split in whitespaces. This is useful, for example, for parsing command
lines with shlex, getting tokens in a similar way to shell arguments. When used in combination with
punctuation_chars, tokens will be split on whitespace in addition to those characters.

Changed in version 3.8: The punctuation_chars attribute was made compatible with the
whitespace_split attribute.

shlex.infile

The name of the current input file, as initially set at class instantiation time or stacked by later source requests.
It may be useful to examine this when constructing error messages.

shlex.instream

The input stream from which this shlex instance is reading characters.

shlex.source

This attribute is None by default. If you assign a string to it, that string will be recognized as a lexical-level
inclusion request similar to the source keyword in various shells. That is, the immediately following token
will be opened as a filename and input will be taken from that stream until EOF, at which point the close()
method of that stream will be called and the input source will again become the original input stream. Source
requests may be stacked any number of levels deep.

shlex.debug

If this attribute is numeric and 1 or more, a shlex instance will print verbose progress output on its behavior.
If you need to use this, you can read the module source code to learn the details.

shlex.lineno

Source line number (count of newlines seen so far plus one).

shlex.token

The token buffer. It may be useful to examine this when catching exceptions.

shlex.eof

Token used to determine end of file. This will be set to the empty string (''), in non-POSIX mode, and to
None in POSIX mode.

shlex.punctuation_chars

A read-only property. Characters that will be considered punctuation. Runs of punctuation characters will be
returned as a single token. However, note that no semantic validity checking will be performed: for example,
‘»>’ could be returned as a token, even though it may not be recognised as such by shells.

Added in version 3.6.

25.3.2 Parsing Rules

When operating in non-POSIX mode, shlex will try to obey to the following rules.

• Quote characters are not recognized within words (Do"Not"Separate is parsed as the single word
Do"Not"Separate);

25.3. shlex— Simple lexical analysis 1591

The Python Library Reference, Release 3.13.1

• Escape characters are not recognized;

• Enclosing characters in quotes preserve the literal value of all characters within the quotes;

• Closing quotes separate words ("Do"Separate is parsed as "Do" and Separate);

• If whitespace_split is False, any character not declared to be a word character, whitespace, or a quote
will be returned as a single-character token. If it is True, shlex will only split words in whitespaces;

• EOF is signaled with an empty string ('');

• It’s not possible to parse empty strings, even if quoted.

When operating in POSIX mode, shlex will try to obey to the following parsing rules.

• Quotes are stripped out, and do not separate words ("Do"Not"Separate" is parsed as the single word
DoNotSeparate);

• Non-quoted escape characters (e.g. '\') preserve the literal value of the next character that follows;

• Enclosing characters in quotes which are not part of escapedquotes (e.g. "'") preserve the literal value of
all characters within the quotes;

• Enclosing characters in quotes which are part of escapedquotes (e.g. '"') preserves the literal value of all
characters within the quotes, with the exception of the characters mentioned in escape. The escape characters
retain its special meaning only when followed by the quote in use, or the escape character itself. Otherwise the
escape character will be considered a normal character.

• EOF is signaled with a None value;

• Quoted empty strings ('') are allowed.

25.3.3 Improved Compatibility with Shells

Added in version 3.6.

The shlex class provides compatibility with the parsing performed by common Unix shells like bash, dash, and
sh. To take advantage of this compatibility, specify the punctuation_chars argument in the constructor. This
defaults to False, which preserves pre-3.6 behaviour. However, if it is set to True, then parsing of the characters
();<>|& is changed: any run of these characters is returned as a single token. While this is short of a full parser for
shells (which would be out of scope for the standard library, given the multiplicity of shells out there), it does allow
you to perform processing of command lines more easily than you could otherwise. To illustrate, you can see the
difference in the following snippet:

>>> import shlex

>>> text = "a && b; c && d || e; f >'abc'; (def \"ghi\")"

>>> s = shlex.shlex(text, posix=True)

>>> s.whitespace_split = True

>>> list(s)

['a', '&&', 'b;', 'c', '&&', 'd', '||', 'e;', 'f', '>abc;', '(def', 'ghi)']

>>> s = shlex.shlex(text, posix=True, punctuation_chars=True)

>>> s.whitespace_split = True

>>> list(s)

['a', '&&', 'b', ';', 'c', '&&', 'd', '||', 'e', ';', 'f', '>', 'abc', ';',

'(', 'def', 'ghi', ')']

Of course, tokens will be returned which are not valid for shells, and you’ll need to implement your own error checks
on the returned tokens.

Instead of passing True as the value for the punctuation_chars parameter, you can pass a string with specific char-
acters, which will be used to determine which characters constitute punctuation. For example:

>>> import shlex

>>> s = shlex.shlex("a && b || c", punctuation_chars="|")

(continues on next page)

1592 Chapter 25. Program Frameworks

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> list(s)

['a', '&', '&', 'b', '||', 'c']

Note

When punctuation_chars is specified, the wordchars attribute is augmented with the characters ~-./*?=.
That is because these characters can appear in file names (including wildcards) and command-line arguments
(e.g. --color=auto). Hence:

>>> import shlex

>>> s = shlex.shlex('~/a && b-c --color=auto || d *.py?',

... punctuation_chars=True)

>>> list(s)

['~/a', '&&', 'b-c', '--color=auto', '||', 'd', '*.py?']

However, to match the shell as closely as possible, it is recommended to always use posix and
whitespace_split when using punctuation_chars, which will negate wordchars entirely.

For best effect, punctuation_chars should be set in conjunction with posix=True. (Note that posix=False
is the default for shlex.)

25.3. shlex— Simple lexical analysis 1593

The Python Library Reference, Release 3.13.1

1594 Chapter 25. Program Frameworks

CHAPTER

TWENTYSIX

GRAPHICAL USER INTERFACES WITH TK

Tk/Tcl has long been an integral part of Python. It provides a robust and platform independent windowing toolkit,
that is available to Python programmers using the tkinter package, and its extension, the tkinter.ttk module.

The tkinter package is a thin object-oriented layer on top of Tcl/Tk. To use tkinter, you don’t need to write Tcl
code, but you will need to consult the Tk documentation, and occasionally the Tcl documentation. tkinter is a set
of wrappers that implement the Tk widgets as Python classes.

tkinter’s chief virtues are that it is fast, and that it usually comes bundled with Python. Although its standard
documentation is weak, good material is available, which includes: references, tutorials, a book and others. tkinter
is also famous for having an outdated look and feel, which has been vastly improved in Tk 8.5. Nevertheless, there are
many other GUI libraries that you could be interested in. The Python wiki lists several alternative GUI frameworks
and tools.

26.1 tkinter— Python interface to Tcl/Tk

Source code: Lib/tkinter/__init__.py

The tkinter package (“Tk interface”) is the standard Python interface to the Tcl/Tk GUI toolkit. Both Tk and
tkinter are available on most Unix platforms, including macOS, as well as on Windows systems.

Running python -m tkinter from the command line should open a window demonstrating a simple Tk interface,
letting you know that tkinter is properly installed on your system, and also showing what version of Tcl/Tk is
installed, so you can read the Tcl/Tk documentation specific to that version.

Tkinter supports a range of Tcl/Tk versions, built either with or without thread support. The official Python binary
release bundles Tcl/Tk 8.6 threaded. See the source code for the _tkinter module for more information about
supported versions.

Tkinter is not a thin wrapper, but adds a fair amount of its own logic to make the experience more pythonic. This
documentation will concentrate on these additions and changes, and refer to the official Tcl/Tk documentation for
details that are unchanged.

Note

Tcl/Tk 8.5 (2007) introduced a modern set of themed user interface components along with a new API to use
them. Both old and new APIs are still available. Most documentation you will find online still uses the old API
and can be woefully outdated.

See also

• TkDocs
Extensive tutorial on creating user interfaces with Tkinter. Explains key concepts, and illustrates
recommended approaches using the modern API.

1595

https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming
https://github.com/python/cpython/tree/3.13/Lib/tkinter/__init__.py
https://tkdocs.com/

The Python Library Reference, Release 3.13.1

• Tkinter 8.5 reference: a GUI for Python
Reference documentation for Tkinter 8.5 detailing available classes, methods, and options.

Tcl/Tk Resources:

• Tk commands
Comprehensive reference to each of the underlying Tcl/Tk commands used by Tkinter.

• Tcl/Tk Home Page
Additional documentation, and links to Tcl/Tk core development.

Books:

• Modern Tkinter for Busy Python Developers
By Mark Roseman. (ISBN 978-1999149567)

• Python GUI programming with Tkinter
By Alan D. Moore. (ISBN 978-1788835886)

• Programming Python
By Mark Lutz; has excellent coverage of Tkinter. (ISBN 978-0596158101)

• Tcl and the Tk Toolkit (2nd edition)
By John Ousterhout, inventor of Tcl/Tk, and Ken Jones; does not cover Tkinter. (ISBN 978-
0321336330)

26.1.1 Architecture

Tcl/Tk is not a single library but rather consists of a few distinct modules, each with separate functionality and its
own official documentation. Python’s binary releases also ship an add-on module together with it.

Tcl
Tcl is a dynamic interpreted programming language, just like Python. Though it can be used on its own as
a general-purpose programming language, it is most commonly embedded into C applications as a scripting
engine or an interface to the Tk toolkit. The Tcl library has a C interface to create and manage one or more
instances of a Tcl interpreter, run Tcl commands and scripts in those instances, and add custom commands
implemented in either Tcl or C. Each interpreter has an event queue, and there are facilities to send events to
it and process them. Unlike Python, Tcl’s execution model is designed around cooperative multitasking, and
Tkinter bridges this difference (see Threading model for details).

Tk
Tk is a Tcl package implemented in C that adds custom commands to create andmanipulate GUI widgets. Each
Tk object embeds its own Tcl interpreter instance with Tk loaded into it. Tk’s widgets are very customizable,
though at the cost of a dated appearance. Tk uses Tcl’s event queue to generate and process GUI events.

Ttk
Themed Tk (Ttk) is a newer family of Tk widgets that provide a much better appearance on different platforms
than many of the classic Tk widgets. Ttk is distributed as part of Tk, starting with Tk version 8.5. Python
bindings are provided in a separate module, tkinter.ttk.

Internally, Tk and Ttk use facilities of the underlying operating system, i.e., Xlib on Unix/X11, Cocoa on macOS,
GDI on Windows.

When your Python application uses a class in Tkinter, e.g., to create a widget, the tkinter module first assembles
a Tcl/Tk command string. It passes that Tcl command string to an internal _tkinter binary module, which then
calls the Tcl interpreter to evaluate it. The Tcl interpreter will then call into the Tk and/or Ttk packages, which will
in turn make calls to Xlib, Cocoa, or GDI.

26.1.2 Tkinter Modules

Support for Tkinter is spread across several modules. Most applications will need the main tkintermodule, as well
as the tkinter.ttk module, which provides the modern themed widget set and API:

1596 Chapter 26. Graphical User Interfaces with Tk

https://www.tkdocs.com/shipman/
https://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
https://www.tcl.tk
https://tkdocs.com/book.html
https://www.packtpub.com/en-us/product/python-gui-programming-with-tkinter-9781788835886
https://learning-python.com/about-pp4e.html
https://www.amazon.com/exec/obidos/ASIN/032133633X
https://wiki.tcl-lang.org/37432

The Python Library Reference, Release 3.13.1

from tkinter import *

from tkinter import ttk

class tkinter.Tk(screenName=None, baseName=None, className=’Tk’, useTk=True, sync=False, use=None)
Construct a toplevel Tk widget, which is usually the main window of an application, and initialize a Tcl inter-
preter for this widget. Each instance has its own associated Tcl interpreter.

The Tk class is typically instantiated using all default values. However, the following keyword arguments are
currently recognized:

screenName
When given (as a string), sets the DISPLAY environment variable. (X11 only)

baseName
Name of the profile file. By default, baseName is derived from the program name (sys.argv[0]).

className
Name of the widget class. Used as a profile file and also as the name with which Tcl is invoked (argv0 in
interp).

useTk
If True, initialize the Tk subsystem. The tkinter.Tcl() function sets this to False.

sync
If True, execute all X server commands synchronously, so that errors are reported immediately. Can be
used for debugging. (X11 only)

use
Specifies the id of the window in which to embed the application, instead of it being created as an
independent toplevel window. id must be specified in the same way as the value for the -use option for
toplevel widgets (that is, it has a form like that returned by winfo_id()).

Note that on some platforms this will only work correctly if id refers to a Tk frame or toplevel that has
its -container option enabled.

Tk reads and interprets profile files, named .className.tcl and .baseName.tcl, into the Tcl interpreter
and calls exec() on the contents of .className.py and .baseName.py. The path for the profile files is
the HOME environment variable or, if that isn’t defined, then os.curdir.

tk

The Tk application object created by instantiating Tk. This provides access to the Tcl interpreter. Each
widget that is attached the same instance of Tk has the same value for its tk attribute.

master

The widget object that contains this widget. For Tk, the master is None because it is the main window.
The terms master and parent are similar and sometimes used interchangeably as argument names; how-
ever, calling winfo_parent() returns a string of the widget name whereas master returns the object.
parent/child reflects the tree-like relationship while master/slave reflects the container structure.

children

The immediate descendants of this widget as a dict with the child widget names as the keys and the
child instance objects as the values.

tkinter.Tcl(screenName=None, baseName=None, className=’Tk’, useTk=False)
The Tcl() function is a factory function which creates an object much like that created by the Tk class, except
that it does not initialize the Tk subsystem. This is most often useful when driving the Tcl interpreter in an
environment where one doesn’t want to create extraneous toplevel windows, or where one cannot (such as
Unix/Linux systems without an X server). An object created by the Tcl() object can have a Toplevel window
created (and the Tk subsystem initialized) by calling its loadtk() method.

The modules that provide Tk support include:

tkinter

Main Tkinter module.

26.1. tkinter— Python interface to Tcl/Tk 1597

The Python Library Reference, Release 3.13.1

tkinter.colorchooser

Dialog to let the user choose a color.

tkinter.commondialog

Base class for the dialogs defined in the other modules listed here.

tkinter.filedialog

Common dialogs to allow the user to specify a file to open or save.

tkinter.font

Utilities to help work with fonts.

tkinter.messagebox

Access to standard Tk dialog boxes.

tkinter.scrolledtext

Text widget with a vertical scroll bar built in.

tkinter.simpledialog

Basic dialogs and convenience functions.

tkinter.ttk

Themed widget set introduced in Tk 8.5, providing modern alternatives for many of the classic widgets in the
main tkinter module.

Additional modules:

_tkinter

A binary module that contains the low-level interface to Tcl/Tk. It is automatically imported by the main
tkinter module, and should never be used directly by application programmers. It is usually a shared library
(or DLL), but might in some cases be statically linked with the Python interpreter.

idlelib

Python’s Integrated Development and Learning Environment (IDLE). Based on tkinter.

tkinter.constants

Symbolic constants that can be used in place of strings when passing various parameters to Tkinter calls.
Automatically imported by the main tkinter module.

tkinter.dnd

(experimental) Drag-and-drop support for tkinter. This will become deprecated when it is replaced with
the Tk DND.

turtle

Turtle graphics in a Tk window.

26.1.3 Tkinter Life Preserver

This section is not designed to be an exhaustive tutorial on either Tk or Tkinter. For that, refer to one of the external
resources noted earlier. Instead, this section provides a very quick orientation to what a Tkinter application looks
like, identifies foundational Tk concepts, and explains how the Tkinter wrapper is structured.

The remainder of this section will help you to identify the classes, methods, and options you’ll need in your Tkinter
application, andwhere to findmore detailed documentation on them, including in the official Tcl/Tk referencemanual.

A Hello World Program

We’ll start by walking through a “Hello World” application in Tkinter. This isn’t the smallest one we could write, but
has enough to illustrate some key concepts you’ll need to know.

from tkinter import *

from tkinter import ttk

root = Tk()

frm = ttk.Frame(root, padding=10)

frm.grid()

(continues on next page)

1598 Chapter 26. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.13.1

(continued from previous page)

ttk.Label(frm, text="Hello World!").grid(column=0, row=0)

ttk.Button(frm, text="Quit", command=root.destroy).grid(column=1, row=0)

root.mainloop()

After the imports, the next line creates an instance of the Tk class, which initializes Tk and creates its associated Tcl
interpreter. It also creates a toplevel window, known as the root window, which serves as the main window of the
application.

The following line creates a frame widget, which in this case will contain a label and a button we’ll create next. The
frame is fit inside the root window.

The next line creates a label widget holding a static text string. The grid() method is used to specify the relative
layout (position) of the label within its containing frame widget, similar to how tables in HTML work.

A button widget is then created, and placed to the right of the label. When pressed, it will call the destroy()
method of the root window.

Finally, the mainloop() method puts everything on the display, and responds to user input until the program ter-
minates.

Important Tk Concepts

Even this simple program illustrates the following key Tk concepts:

widgets
A Tkinter user interface is made up of individual widgets. Each widget is represented as a Python object,
instantiated from classes like ttk.Frame, ttk.Label, and ttk.Button.

widget hierarchy
Widgets are arranged in a hierarchy. The label and button were contained within a frame, which in turn was
contained within the root window. When creating each child widget, its parent widget is passed as the first
argument to the widget constructor.

configuration options
Widgets have configuration options, which modify their appearance and behavior, such as the text to display in
a label or button. Different classes of widgets will have different sets of options.

geometry management
Widgets aren’t automatically added to the user interface when they are created. A geometry manager like grid
controls where in the user interface they are placed.

event loop
Tkinter reacts to user input, changes from your program, and even refreshes the display only when actively
running an event loop. If your program isn’t running the event loop, your user interface won’t update.

Understanding How Tkinter Wraps Tcl/Tk

When your application uses Tkinter’s classes andmethods, internally Tkinter is assembling strings representing Tcl/Tk
commands, and executing those commands in the Tcl interpreter attached to your application’s Tk instance.

Whether it’s trying to navigate reference documentation, trying to find the right method or option, adapting some
existing code, or debugging your Tkinter application, there are times that it will be useful to understand what those
underlying Tcl/Tk commands look like.

To illustrate, here is the Tcl/Tk equivalent of the main part of the Tkinter script above.

ttk::frame .frm -padding 10

grid .frm

grid [ttk::label .frm.lbl -text "Hello World!"] -column 0 -row 0

grid [ttk::button .frm.btn -text "Quit" -command "destroy ."] -column 1 -row 0

Tcl’s syntax is similar to many shell languages, where the first word is the command to be executed, with arguments
to that command following it, separated by spaces. Without getting into too many details, notice the following:

26.1. tkinter— Python interface to Tcl/Tk 1599

The Python Library Reference, Release 3.13.1

• The commands used to create widgets (like ttk::frame) correspond to widget classes in Tkinter.

• Tcl widget options (like -text) correspond to keyword arguments in Tkinter.

• Widgets are referred to by a pathname in Tcl (like .frm.btn), whereas Tkinter doesn’t use names but object
references.

• A widget’s place in the widget hierarchy is encoded in its (hierarchical) pathname, which uses a . (dot) as a
path separator. The pathname for the root window is just . (dot). In Tkinter, the hierarchy is defined not by
pathname but by specifying the parent widget when creating each child widget.

• Operations which are implemented as separate commands in Tcl (like grid or destroy) are represented as
methods on Tkinter widget objects. As you’ll see shortly, at other times Tcl uses what appear to be method
calls on widget objects, which more closely mirror what would is used in Tkinter.

How do I…? What option does…?

If you’re not sure how to do something in Tkinter, and you can’t immediately find it in the tutorial or reference
documentation you’re using, there are a few strategies that can be helpful.

First, remember that the details of how individual widgets work may vary across different versions of both Tkinter
and Tcl/Tk. If you’re searching documentation, make sure it corresponds to the Python and Tcl/Tk versions installed
on your system.

When searching for how to use an API, it helps to know the exact name of the class, option, or method that you’re
using. Introspection, either in an interactive Python shell or with print(), can help you identify what you need.

To find out what configuration options are available on any widget, call its configure() method, which returns a
dictionary containing a variety of information about each object, including its default and current values. Use keys()
to get just the names of each option.

btn = ttk.Button(frm, ...)

print(btn.configure().keys())

As most widgets have many configuration options in common, it can be useful to find out which are specific to a
particular widget class. Comparing the list of options to that of a simpler widget, like a frame, is one way to do that.

print(set(btn.configure().keys()) - set(frm.configure().keys()))

Similarly, you can find the available methods for a widget object using the standard dir() function. If you try it,
you’ll see there are over 200 common widget methods, so again identifying those specific to a widget class is helpful.

print(dir(btn))

print(set(dir(btn)) - set(dir(frm)))

Navigating the Tcl/Tk Reference Manual

As noted, the official Tk commands reference manual (man pages) is often the most accurate description of what
specific operations on widgets do. Even when you know the name of the option or method that you need, you may
still have a few places to look.

While all operations in Tkinter are implemented as method calls on widget objects, you’ve seen that many Tcl/Tk
operations appear as commands that take a widget pathname as its first parameter, followed by optional parameters,
e.g.

destroy .

grid .frm.btn -column 0 -row 0

Others, however, look more like methods called on a widget object (in fact, when you create a widget in Tcl/Tk, it
creates a Tcl command with the name of the widget pathname, with the first parameter to that command being the
name of a method to call).

1600 Chapter 26. Graphical User Interfaces with Tk

https://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm

The Python Library Reference, Release 3.13.1

.frm.btn invoke

.frm.lbl configure -text "Goodbye"

In the official Tcl/Tk reference documentation, you’ll find most operations that look like method calls on the man
page for a specific widget (e.g., you’ll find the invoke() method on the ttk::button man page), while functions that
take a widget as a parameter often have their own man page (e.g., grid).

You’ll find many common options and methods in the options or ttk::widget man pages, while others are found in the
man page for a specific widget class.

You’ll also find that many Tkinter methods have compound names, e.g., winfo_x(), winfo_height(),
winfo_viewable(). You’d find documentation for all of these in the winfo man page.

Note

Somewhat confusingly, there are also methods on all Tkinter widgets that don’t actually operate on the widget,
but operate at a global scope, independent of any widget. Examples are methods for accessing the clipboard or
the system bell. (They happen to be implemented as methods in the base Widget class that all Tkinter widgets
inherit from).

26.1.4 Threading model

Python and Tcl/Tk have very different threading models, which tkinter tries to bridge. If you use threads, you may
need to be aware of this.

A Python interpreter may have many threads associated with it. In Tcl, multiple threads can be created, but each
thread has a separate Tcl interpreter instance associated with it. Threads can also create more than one interpreter
instance, though each interpreter instance can be used only by the one thread that created it.

Each Tk object created by tkinter contains a Tcl interpreter. It also keeps track of which thread created that
interpreter. Calls to tkinter can be made from any Python thread. Internally, if a call comes from a thread other
than the one that created the Tk object, an event is posted to the interpreter’s event queue, and when executed, the
result is returned to the calling Python thread.

Tcl/Tk applications are normally event-driven, meaning that after initialization, the interpreter runs an event loop
(i.e. Tk.mainloop()) and responds to events. Because it is single-threaded, event handlers must respond quickly,
otherwise they will block other events from being processed. To avoid this, any long-running computations should
not run in an event handler, but are either broken into smaller pieces using timers, or run in another thread. This
is different from many GUI toolkits where the GUI runs in a completely separate thread from all application code
including event handlers.

If the Tcl interpreter is not running the event loop and processing events, any tkinter calls made from threads other
than the one running the Tcl interpreter will fail.

A number of special cases exist:

• Tcl/Tk libraries can be built so they are not thread-aware. In this case, tkinter calls the library from the
originating Python thread, even if this is different than the thread that created the Tcl interpreter. A global
lock ensures only one call occurs at a time.

• While tkinter allows you to create more than one instance of a Tk object (with its own interpreter), all
interpreters that are part of the same thread share a common event queue, which gets ugly fast. In practice,
don’t create more than one instance of Tk at a time. Otherwise, it’s best to create them in separate threads and
ensure you’re running a thread-aware Tcl/Tk build.

• Blocking event handlers are not the only way to prevent the Tcl interpreter from reentering the event loop. It
is even possible to run multiple nested event loops or abandon the event loop entirely. If you’re doing anything
tricky when it comes to events or threads, be aware of these possibilities.

• There are a few select tkinter functions that presently work only when called from the thread that created
the Tcl interpreter.

26.1. tkinter— Python interface to Tcl/Tk 1601

https://www.tcl.tk/man/tcl8.6/TkCmd/ttk_button.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/grid.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/options.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/ttk_widget.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/winfo.htm

The Python Library Reference, Release 3.13.1

26.1.5 Handy Reference

Setting Options

Options control things like the color and border width of a widget. Options can be set in three ways:

At object creation time, using keyword arguments

fred = Button(self, fg="red", bg="blue")

After object creation, treating the option name like a dictionary index

fred["fg"] = "red"

fred["bg"] = "blue"

Use the config() method to update multiple attrs subsequent to object creation

fred.config(fg="red", bg="blue")

For a complete explanation of a given option and its behavior, see the Tk man pages for the widget in question.

Note that the man pages list “STANDARDOPTIONS” and “WIDGET SPECIFIC OPTIONS” for each widget. The
former is a list of options that are common to many widgets, the latter are the options that are idiosyncratic to that
particular widget. The Standard Options are documented on the options(3) man page.

No distinction between standard and widget-specific options is made in this document. Some options don’t apply to
some kinds of widgets. Whether a given widget responds to a particular option depends on the class of the widget;
buttons have a command option, labels do not.

The options supported by a given widget are listed in that widget’s man page, or can be queried at runtime by calling
the config() method without arguments, or by calling the keys() method on that widget. The return value of
these calls is a dictionary whose key is the name of the option as a string (for example, 'relief') and whose values
are 5-tuples.

Some options, like bg are synonyms for common options with long names (bg is shorthand for “background”). Passing
the config() method the name of a shorthand option will return a 2-tuple, not 5-tuple. The 2-tuple passed back
will contain the name of the synonym and the “real” option (such as ('bg', 'background')).

Index Meaning Example

0 option name 'relief'

1 option name for database lookup 'relief'

2 option class for database lookup 'Relief'

3 default value 'raised'

4 current value 'groove'

Example:

>>> print(fred.config())

{'relief': ('relief', 'relief', 'Relief', 'raised', 'groove')}

Of course, the dictionary printed will include all the options available and their values. This is meant only as an
example.

The Packer

The packer is one of Tk’s geometry-management mechanisms. Geometry managers are used to specify the relative
positioning of widgets within their container - their mutualmaster. In contrast to the more cumbersome placer (which
is used less commonly, and we do not cover here), the packer takes qualitative relationship specification - above, to
the left of, filling, etc - and works everything out to determine the exact placement coordinates for you.

The size of any master widget is determined by the size of the “slave widgets” inside. The packer is used to con-
trol where slave widgets appear inside the master into which they are packed. You can pack widgets into frames,

1602 Chapter 26. Graphical User Interfaces with Tk

https://manpages.debian.org/options(3)

The Python Library Reference, Release 3.13.1

and frames into other frames, in order to achieve the kind of layout you desire. Additionally, the arrangement is
dynamically adjusted to accommodate incremental changes to the configuration, once it is packed.

Note that widgets do not appear until they have had their geometry specified with a geometry manager. It’s a common
early mistake to leave out the geometry specification, and then be surprised when the widget is created but nothing
appears. A widget will appear only after it has had, for example, the packer’s pack() method applied to it.

The pack() method can be called with keyword-option/value pairs that control where the widget is to appear within
its container, and how it is to behave when the main application window is resized. Here are some examples:

fred.pack() # defaults to side = "top"

fred.pack(side="left")

fred.pack(expand=1)

Packer Options

For more extensive information on the packer and the options that it can take, see the man pages and page 183 of
John Ousterhout’s book.

anchor
Anchor type. Denotes where the packer is to place each slave in its parcel.

expand
Boolean, 0 or 1.

fill
Legal values: 'x', 'y', 'both', 'none'.

ipadx and ipady
A distance - designating internal padding on each side of the slave widget.

padx and pady
A distance - designating external padding on each side of the slave widget.

side
Legal values are: 'left', 'right', 'top', 'bottom'.

Coupling Widget Variables

The current-value setting of some widgets (like text entry widgets) can be connected directly to application variables
by using special options. These options are variable, textvariable, onvalue, offvalue, and value. This
connection works both ways: if the variable changes for any reason, the widget it’s connected to will be updated to
reflect the new value.

Unfortunately, in the current implementation of tkinter it is not possible to hand over an arbitrary Python variable
to a widget through a variable or textvariable option. The only kinds of variables for which this works are
variables that are subclassed from a class called Variable, defined in tkinter.

There aremany useful subclasses of Variable already defined: StringVar, IntVar, DoubleVar, and BooleanVar.
To read the current value of such a variable, call the get()method on it, and to change its value you call the set()
method. If you follow this protocol, the widget will always track the value of the variable, with no further intervention
on your part.

For example:

import tkinter as tk

class App(tk.Frame):

def __init__(self, master):

super().__init__(master)

self.pack()

self.entrythingy = tk.Entry()

(continues on next page)

26.1. tkinter— Python interface to Tcl/Tk 1603

The Python Library Reference, Release 3.13.1

(continued from previous page)

self.entrythingy.pack()

Create the application variable.

self.contents = tk.StringVar()

Set it to some value.

self.contents.set("this is a variable")

Tell the entry widget to watch this variable.

self.entrythingy["textvariable"] = self.contents

Define a callback for when the user hits return.

It prints the current value of the variable.

self.entrythingy.bind('<Key-Return>',

self.print_contents)

def print_contents(self, event):

print("Hi. The current entry content is:",

self.contents.get())

root = tk.Tk()

myapp = App(root)

myapp.mainloop()

The Window Manager

In Tk, there is a utility command, wm, for interacting with the window manager. Options to the wm command allow
you to control things like titles, placement, icon bitmaps, and the like. In tkinter, these commands have been
implemented as methods on the Wm class. Toplevel widgets are subclassed from the Wm class, and so can call the Wm
methods directly.

To get at the toplevel window that contains a given widget, you can often just refer to the widget’s master. Of course
if the widget has been packed inside of a frame, the master won’t represent a toplevel window. To get at the toplevel
window that contains an arbitrary widget, you can call the _root()method. This method begins with an underscore
to denote the fact that this function is part of the implementation, and not an interface to Tk functionality.

Here are some examples of typical usage:

import tkinter as tk

class App(tk.Frame):

def __init__(self, master=None):

super().__init__(master)

self.pack()

create the application

myapp = App()

#

here are method calls to the window manager class

#

myapp.master.title("My Do-Nothing Application")

myapp.master.maxsize(1000, 400)

start the program

myapp.mainloop()

1604 Chapter 26. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.13.1

Tk Option Data Types

anchor
Legal values are points of the compass: "n", "ne", "e", "se", "s", "sw", "w", "nw", and also "center".

bitmap
There are eight built-in, named bitmaps: 'error', 'gray25', 'gray50', 'hourglass', 'info',
'questhead', 'question', 'warning'. To specify an X bitmap filename, give the full path to the file,
preceded with an @, as in "@/usr/contrib/bitmap/gumby.bit".

boolean
You can pass integers 0 or 1 or the strings "yes" or "no".

callback
This is any Python function that takes no arguments. For example:

def print_it():

print("hi there")

fred["command"] = print_it

color
Colors can be given as the names of X colors in the rgb.txt file, or as strings representing RGB values in 4 bit:
"#RGB", 8 bit: "#RRGGBB", 12 bit: "#RRRGGGBBB", or 16 bit: "#RRRRGGGGBBBB" ranges, where R,G,B
here represent any legal hex digit. See page 160 of Ousterhout’s book for details.

cursor
The standard X cursor names from cursorfont.h can be used, without the XC_ prefix. For example to get a
hand cursor (XC_hand2), use the string "hand2". You can also specify a bitmap and mask file of your own.
See page 179 of Ousterhout’s book.

distance
Screen distances can be specified in either pixels or absolute distances. Pixels are given as numbers and absolute
distances as strings, with the trailing character denoting units: c for centimetres, i for inches, m for millimetres,
p for printer’s points. For example, 3.5 inches is expressed as "3.5i".

font
Tk uses a list font name format, such as {courier 10 bold}. Font sizes with positive numbers are measured
in points; sizes with negative numbers are measured in pixels.

geometry
This is a string of the form widthxheight, where width and height are measured in pixels for most widgets
(in characters for widgets displaying text). For example: fred["geometry"] = "200x100".

justify
Legal values are the strings: "left", "center", "right", and "fill".

region
This is a string with four space-delimited elements, each of which is a legal distance (see above). For example:
"2 3 4 5" and "3i 2i 4.5i 2i" and "3c 2c 4c 10.43c" are all legal regions.

relief
Determines what the border style of a widget will be. Legal values are: "raised", "sunken", "flat",
"groove", and "ridge".

scrollcommand
This is almost always the set() method of some scrollbar widget, but can be any widget method that takes a
single argument.

wrap
Must be one of: "none", "char", or "word".

26.1. tkinter— Python interface to Tcl/Tk 1605

The Python Library Reference, Release 3.13.1

Bindings and Events

The bind method from the widget command allows you to watch for certain events and to have a callback function
trigger when that event type occurs. The form of the bind method is:

def bind(self, sequence, func, add=''):

where:

sequence
is a string that denotes the target kind of event. (See the bind(3tk)man page, and page 201 of John Ouster-
hout’s book, Tcl and the Tk Toolkit (2nd edition), for details).

func
is a Python function, taking one argument, to be invoked when the event occurs. An Event instance will be
passed as the argument. (Functions deployed this way are commonly known as callbacks.)

add
is optional, either '' or '+'. Passing an empty string denotes that this binding is to replace any other bindings
that this event is associated with. Passing a '+' means that this function is to be added to the list of functions
bound to this event type.

For example:

def turn_red(self, event):

event.widget["activeforeground"] = "red"

self.button.bind("<Enter>", self.turn_red)

Notice how the widget field of the event is being accessed in the turn_red() callback. This field contains the widget
that caught the X event. The following table lists the other event fields you can access, and how they are denoted in
Tk, which can be useful when referring to the Tk man pages.

Tk Tkinter Event Field Tk Tkinter Event Field

%f focus %A char
%h height %E send_event
%k keycode %K keysym
%s state %N keysym_num
%t time %T type
%w width %W widget
%x x %X x_root
%y y %Y y_root

The index Parameter

A number of widgets require “index” parameters to be passed. These are used to point at a specific place in a Text
widget, or to particular characters in an Entry widget, or to particular menu items in a Menu widget.

Entry widget indexes (index, view index, etc.)
Entry widgets have options that refer to character positions in the text being displayed. You can use these
tkinter functions to access these special points in text widgets:

Text widget indexes
The index notation for Text widgets is very rich and is best described in the Tk man pages.

Menu indexes (menu.invoke(), menu.entryconfig(), etc.)
Some options and methods for menus manipulate specific menu entries. Anytime a menu index is needed for
an option or a parameter, you may pass in:

• an integer which refers to the numeric position of the entry in the widget, counted from the top, starting
with 0;

1606 Chapter 26. Graphical User Interfaces with Tk

https://manpages.debian.org/bind(3tk)

The Python Library Reference, Release 3.13.1

• the string "active", which refers to the menu position that is currently under the cursor;

• the string "last" which refers to the last menu item;

• An integer preceded by @, as in @6, where the integer is interpreted as a y pixel coordinate in the menu’s
coordinate system;

• the string "none", which indicates no menu entry at all, most often used with menu.activate() to deac-
tivate all entries, and finally,

• a text string that is pattern matched against the label of the menu entry, as scanned from the top of the
menu to the bottom. Note that this index type is considered after all the others, which means that matches
for menu items labelled last, active, or none may be interpreted as the above literals, instead.

Images

Images of different formats can be created through the corresponding subclass of tkinter.Image:

• BitmapImage for images in XBM format.

• PhotoImage for images in PGM, PPM, GIF and PNG formats. The latter is supported starting with Tk 8.6.

Either type of image is created through either the file or the data option (other options are available as well).

Changed in version 3.13: Added the PhotoImage method copy_replace() to copy a region from one image to
other image, possibly with pixel zooming and/or subsampling. Add from_coords parameter to PhotoImagemethods
copy(), zoom() and subsample(). Add zoom and subsample parameters to PhotoImage method copy().

The image object can then be used wherever an image option is supported by some widget (e.g. labels, buttons,
menus). In these cases, Tk will not keep a reference to the image. When the last Python reference to the image
object is deleted, the image data is deleted as well, and Tk will display an empty box wherever the image was used.

See also

The Pillow package adds support for formats such as BMP, JPEG, TIFF, and WebP, among others.

26.1.6 File Handlers

Tk allows you to register and unregister a callback function which will be called from the Tk mainloop when I/O is
possible on a file descriptor. Only one handler may be registered per file descriptor. Example code:

import tkinter

widget = tkinter.Tk()

mask = tkinter.READABLE | tkinter.WRITABLE

widget.tk.createfilehandler(file, mask, callback)

...

widget.tk.deletefilehandler(file)

This feature is not available on Windows.

Since you don’t know how many bytes are available for reading, you may not want to use the BufferedIOBase or
TextIOBase read() or readline() methods, since these will insist on reading a predefined number of bytes.
For sockets, the recv() or recvfrom() methods will work fine; for other files, use raw reads or os.read(file.
fileno(), maxbytecount).

Widget.tk.createfilehandler(file, mask, func)
Registers the file handler callback function func. The file argument may either be an object with a fileno()
method (such as a file or socket object), or an integer file descriptor. The mask argument is an ORed combi-
nation of any of the three constants below. The callback is called as follows:

callback(file, mask)

26.1. tkinter— Python interface to Tcl/Tk 1607

https://python-pillow.org/

The Python Library Reference, Release 3.13.1

Widget.tk.deletefilehandler(file)
Unregisters a file handler.

_tkinter.READABLE

_tkinter.WRITABLE

_tkinter.EXCEPTION

Constants used in the mask arguments.

26.2 tkinter.colorchooser— Color choosing dialog

Source code: Lib/tkinter/colorchooser.py

The tkinter.colorchoosermodule provides the Chooser class as an interface to the native color picker dialog.
Chooser implements a modal color choosing dialog window. The Chooser class inherits from the Dialog class.

class tkinter.colorchooser.Chooser(master=None, **options)

tkinter.colorchooser.askcolor(color=None, **options)
Create a color choosing dialog. A call to this method will show the window, wait for the user to make a
selection, and return the selected color (or None) to the caller.

See also

Module tkinter.commondialog
Tkinter standard dialog module

26.3 tkinter.font— Tkinter font wrapper

Source code: Lib/tkinter/font.py

The tkinter.font module provides the Font class for creating and using named fonts.

The different font weights and slants are:

tkinter.font.NORMAL

tkinter.font.BOLD

tkinter.font.ITALIC

tkinter.font.ROMAN

class tkinter.font.Font(root=None, font=None, name=None, exists=False, **options)
The Font class represents a named font. Font instances are given unique names and can be specified by their
family, size, and style configuration. Named fonts are Tk’s method of creating and identifying fonts as a single
object, rather than specifying a font by its attributes with each occurrence.

arguments:

font - font specifier tuple (family, size, options)
name - unique font name
exists - self points to existing named font if true

additional keyword options (ignored if font is specified):

family - font family i.e. Courier, Times
size - font size

If size is positive it is interpreted as size in points.

1608 Chapter 26. Graphical User Interfaces with Tk

https://github.com/python/cpython/tree/3.13/Lib/tkinter/colorchooser.py
https://github.com/python/cpython/tree/3.13/Lib/tkinter/font.py

The Python Library Reference, Release 3.13.1

If size is a negative number its absolute value is treated
as size in pixels.

weight - font emphasis (NORMAL, BOLD)
slant - ROMAN, ITALIC
underline - font underlining (0 - none, 1 - underline)
overstrike - font strikeout (0 - none, 1 - strikeout)

actual(option=None, displayof=None)
Return the attributes of the font.

cget(option)
Retrieve an attribute of the font.

config(**options)

Modify attributes of the font.

copy()

Return new instance of the current font.

measure(text, displayof=None)
Return amount of space the text would occupy on the specified display when formatted in the current
font. If no display is specified then the main application window is assumed.

metrics(*options, **kw)
Return font-specific data. Options include:

ascent - distance between baseline and highest point that a
character of the font can occupy

descent - distance between baseline and lowest point that a
character of the font can occupy

linespace - minimum vertical separation necessary between any two
characters of the font that ensures no vertical overlap between lines.

fixed - 1 if font is fixed-width else 0

tkinter.font.families(root=None, displayof=None)
Return the different font families.

tkinter.font.names(root=None)

Return the names of defined fonts.

tkinter.font.nametofont(name, root=None)
Return a Font representation of a tk named font.

Changed in version 3.10: The root parameter was added.

26.4 Tkinter Dialogs

26.4.1 tkinter.simpledialog— Standard Tkinter input dialogs

Source code: Lib/tkinter/simpledialog.py

The tkinter.simpledialogmodule contains convenience classes and functions for creating simple modal dialogs
to get a value from the user.

tkinter.simpledialog.askfloat(title, prompt, **kw)
tkinter.simpledialog.askinteger(title, prompt, **kw)

26.4. Tkinter Dialogs 1609

https://github.com/python/cpython/tree/3.13/Lib/tkinter/simpledialog.py

The Python Library Reference, Release 3.13.1

tkinter.simpledialog.askstring(title, prompt, **kw)
The above three functions provide dialogs that prompt the user to enter a value of the desired type.

class tkinter.simpledialog.Dialog(parent, title=None)
The base class for custom dialogs.

body(master)

Override to construct the dialog’s interface and return the widget that should have initial focus.

buttonbox()

Default behaviour adds OK and Cancel buttons. Override for custom button layouts.

26.4.2 tkinter.filedialog— File selection dialogs

Source code: Lib/tkinter/filedialog.py

The tkinter.filedialog module provides classes and factory functions for creating file/directory selection win-
dows.

Native Load/Save Dialogs

The following classes and functions provide file dialog windows that combine a native look-and-feel with configuration
options to customize behaviour. The following keyword arguments are applicable to the classes and functions listed
below:

parent - the window to place the dialog on top of

title - the title of the window

initialdir - the directory that the dialog starts in

initialfile - the file selected upon opening of the dialog

filetypes - a sequence of (label, pattern) tuples, ‘*’ wildcard is allowed

defaultextension - default extension to append to file (save dialogs)

multiple - when true, selection of multiple items is allowed

Static factory functions

The below functions when called create a modal, native look-and-feel dialog, wait for the user’s selection, then return
the selected value(s) or None to the caller.

tkinter.filedialog.askopenfile(mode=’r’, **options)
tkinter.filedialog.askopenfiles(mode=’r’, **options)

The above two functions create an Open dialog and return the opened file object(s) in read-only mode.

tkinter.filedialog.asksaveasfile(mode=’w’, **options)
Create a SaveAs dialog and return a file object opened in write-only mode.

tkinter.filedialog.askopenfilename(**options)

1610 Chapter 26. Graphical User Interfaces with Tk

https://github.com/python/cpython/tree/3.13/Lib/tkinter/filedialog.py

The Python Library Reference, Release 3.13.1

tkinter.filedialog.askopenfilenames(**options)
The above two functions create an Open dialog and return the selected filename(s) that correspond to existing
file(s).

tkinter.filedialog.asksaveasfilename(**options)
Create a SaveAs dialog and return the selected filename.

tkinter.filedialog.askdirectory(**options)

Prompt user to select a directory.
Additional keyword option:

mustexist - determines if selection must be an existing directory.

class tkinter.filedialog.Open(master=None, **options)
class tkinter.filedialog.SaveAs(master=None, **options)

The above two classes provide native dialog windows for saving and loading files.

Convenience classes

The below classes are used for creating file/directory windows from scratch. These do not emulate the native look-
and-feel of the platform.

class tkinter.filedialog.Directory(master=None, **options)
Create a dialog prompting the user to select a directory.

Note

The FileDialog class should be subclassed for custom event handling and behaviour.

class tkinter.filedialog.FileDialog(master, title=None)
Create a basic file selection dialog.

cancel_command(event=None)
Trigger the termination of the dialog window.

dirs_double_event(event)
Event handler for double-click event on directory.

dirs_select_event(event)
Event handler for click event on directory.

files_double_event(event)
Event handler for double-click event on file.

files_select_event(event)
Event handler for single-click event on file.

filter_command(event=None)
Filter the files by directory.

get_filter()

Retrieve the file filter currently in use.

get_selection()

Retrieve the currently selected item.

go(dir_or_file=os.curdir, pattern=’*’, default=” , key=None)
Render dialog and start event loop.

ok_event(event)
Exit dialog returning current selection.

26.4. Tkinter Dialogs 1611

The Python Library Reference, Release 3.13.1

quit(how=None)
Exit dialog returning filename, if any.

set_filter(dir, pat)
Set the file filter.

set_selection(file)

Update the current file selection to file.

class tkinter.filedialog.LoadFileDialog(master, title=None)
A subclass of FileDialog that creates a dialog window for selecting an existing file.

ok_command()

Test that a file is provided and that the selection indicates an already existing file.

class tkinter.filedialog.SaveFileDialog(master, title=None)
A subclass of FileDialog that creates a dialog window for selecting a destination file.

ok_command()

Test whether or not the selection points to a valid file that is not a directory. Confirmation is required if
an already existing file is selected.

26.4.3 tkinter.commondialog— Dialog window templates

Source code: Lib/tkinter/commondialog.py

The tkinter.commondialog module provides the Dialog class that is the base class for dialogs defined in other
supporting modules.

class tkinter.commondialog.Dialog(master=None, **options)

show(color=None, **options)
Render the Dialog window.

See also

Modules tkinter.messagebox, tut-files

26.5 tkinter.messagebox— Tkinter message prompts

Source code: Lib/tkinter/messagebox.py

The tkinter.messagebox module provides a template base class as well as a variety of convenience methods for
commonly used configurations. The message boxes are modal and will return a subset of (True, False, None, OK,
CANCEL, YES, NO) based on the user’s selection. Common message box styles and layouts include but are not limited
to:

1612 Chapter 26. Graphical User Interfaces with Tk

https://github.com/python/cpython/tree/3.13/Lib/tkinter/commondialog.py
https://github.com/python/cpython/tree/3.13/Lib/tkinter/messagebox.py

The Python Library Reference, Release 3.13.1

class tkinter.messagebox.Message(master=None, **options)
Create a message window with an application-specified message, an icon and a set of buttons. Each of the
buttons in the message window is identified by a unique symbolic name (see the type options).

The following options are supported:

command
Specifies the function to invoke when the user closes the dialog. The name of the button clicked
by the user to close the dialog is passed as argument. This is only available on macOS.

default
Gives the symbolic name of the default button for this message window (OK, CANCEL, and so
on). If this option is not specified, the first button in the dialog will be made the default.

detail
Specifies an auxiliary message to the main message given by the message option. The message
detail will be presented beneath the main message and, where supported by the OS, in a less
emphasized font than the main message.

icon
Specifies an icon to display. If this option is not specified, then the INFO icon will be displayed.

message
Specifies the message to display in this message box. The default value is an empty string.

parent
Makes the specified window the logical parent of the message box. The message box is dis-
played on top of its parent window.

title
Specifies a string to display as the title of the message box. This option is ignored on macOS,
where platform guidelines forbid the use of a title on this kind of dialog.

type
Arranges for a predefined set of buttons to be displayed.

show(**options)
Display a message window and wait for the user to select one of the buttons. Then return the symbolic
name of the selected button. Keyword arguments can override options specified in the constructor.

Information message box

tkinter.messagebox.showinfo(title=None, message=None, **options)
Creates and displays an information message box with the specified title and message.

Warning message boxes

tkinter.messagebox.showwarning(title=None, message=None, **options)
Creates and displays a warning message box with the specified title and message.

tkinter.messagebox.showerror(title=None, message=None, **options)
Creates and displays an error message box with the specified title and message.

Question message boxes

tkinter.messagebox.askquestion(title=None, message=None, *, type=YESNO, **options)
Ask a question. By default shows buttons YES and NO. Returns the symbolic name of the selected button.

tkinter.messagebox.askokcancel(title=None, message=None, **options)
Ask if operation should proceed. Shows buttons OK and CANCEL. Returns True if the answer is ok and False
otherwise.

tkinter.messagebox.askretrycancel(title=None, message=None, **options)
Ask if operation should be retried. Shows buttons RETRY and CANCEL. Return True if the answer is yes and
False otherwise.

26.5. tkinter.messagebox— Tkinter message prompts 1613

The Python Library Reference, Release 3.13.1

tkinter.messagebox.askyesno(title=None, message=None, **options)
Ask a question. Shows buttons YES and NO. Returns True if the answer is yes and False otherwise.

tkinter.messagebox.askyesnocancel(title=None, message=None, **options)
Ask a question. Shows buttons YES, NO and CANCEL. Return True if the answer is yes, None if cancelled, and
False otherwise.

Symbolic names of buttons:

tkinter.messagebox.ABORT = 'abort'

tkinter.messagebox.RETRY = 'retry'

tkinter.messagebox.IGNORE = 'ignore'

tkinter.messagebox.OK = 'ok'

tkinter.messagebox.CANCEL = 'cancel'

tkinter.messagebox.YES = 'yes'

tkinter.messagebox.NO = 'no'

Predefined sets of buttons:

tkinter.messagebox.ABORTRETRYIGNORE = 'abortretryignore'

Displays three buttons whose symbolic names are ABORT, RETRY and IGNORE.

tkinter.messagebox.OK = 'ok'

Displays one button whose symbolic name is OK.

tkinter.messagebox.OKCANCEL = 'okcancel'

Displays two buttons whose symbolic names are OK and CANCEL.

tkinter.messagebox.RETRYCANCEL = 'retrycancel'

Displays two buttons whose symbolic names are RETRY and CANCEL.

tkinter.messagebox.YESNO = 'yesno'

Displays two buttons whose symbolic names are YES and NO.

tkinter.messagebox.YESNOCANCEL = 'yesnocancel'

Displays three buttons whose symbolic names are YES, NO and CANCEL.

Icon images:

tkinter.messagebox.ERROR = 'error'

tkinter.messagebox.INFO = 'info'

tkinter.messagebox.QUESTION = 'question'

tkinter.messagebox.WARNING = 'warning'

26.6 tkinter.scrolledtext— Scrolled Text Widget

Source code: Lib/tkinter/scrolledtext.py

The tkinter.scrolledtext module provides a class of the same name which implements a basic text widget
which has a vertical scroll bar configured to do the “right thing.” Using the ScrolledText class is a lot easier than
setting up a text widget and scroll bar directly.

1614 Chapter 26. Graphical User Interfaces with Tk

https://github.com/python/cpython/tree/3.13/Lib/tkinter/scrolledtext.py

The Python Library Reference, Release 3.13.1

The text widget and scrollbar are packed together in a Frame, and the methods of the Grid and Pack geometry
managers are acquired from the Frame object. This allows the ScrolledText widget to be used directly to achieve
most normal geometry management behavior.

Should more specific control be necessary, the following attributes are available:

class tkinter.scrolledtext.ScrolledText(master=None, **kw)

frame

The frame which surrounds the text and scroll bar widgets.

vbar

The scroll bar widget.

26.7 tkinter.dnd— Drag and drop support

Source code: Lib/tkinter/dnd.py

Note

This is experimental and due to be deprecated when it is replaced with the Tk DND.

The tkinter.dnd module provides drag-and-drop support for objects within a single application, within the same
window or between windows. To enable an object to be dragged, you must create an event binding for it that starts the
drag-and-drop process. Typically, you bind a ButtonPress event to a callback function that you write (see Bindings
and Events). The function should call dnd_start(), where ‘source’ is the object to be dragged, and ‘event’ is the
event that invoked the call (the argument to your callback function).

Selection of a target object occurs as follows:

1. Top-down search of area under mouse for target widget

• Target widget should have a callable dnd_accept attribute

• If dnd_accept is not present or returns None, search moves to parent widget

• If no target widget is found, then the target object is None

2. Call to <old_target>.dnd_leave(source, event)

3. Call to <new_target>.dnd_enter(source, event)

4. Call to <target>.dnd_commit(source, event) to notify of drop

5. Call to <source>.dnd_end(target, event) to signal end of drag-and-drop

class tkinter.dnd.DndHandler(source, event)
The DndHandler class handles drag-and-drop events tracking Motion and ButtonRelease events on the root of
the event widget.

cancel(event=None)
Cancel the drag-and-drop process.

finish(event, commit=0)

Execute end of drag-and-drop functions.

on_motion(event)

Inspect area below mouse for target objects while drag is performed.

on_release(event)
Signal end of drag when the release pattern is triggered.

26.7. tkinter.dnd— Drag and drop support 1615

https://github.com/python/cpython/tree/3.13/Lib/tkinter/dnd.py

The Python Library Reference, Release 3.13.1

tkinter.dnd.dnd_start(source, event)
Factory function for drag-and-drop process.

See also

Bindings and Events

26.8 tkinter.ttk— Tk themed widgets

Source code: Lib/tkinter/ttk.py

The tkinter.ttkmodule provides access to the Tk themed widget set, introduced in Tk 8.5. It provides additional
benefits including anti-aliased font rendering under X11 and window transparency (requiring a composition window
manager on X11).

The basic idea for tkinter.ttk is to separate, to the extent possible, the code implementing a widget’s behavior
from the code implementing its appearance.

See also

Tk Widget Styling Support
A document introducing theming support for Tk

26.8.1 Using Ttk

To start using Ttk, import its module:

from tkinter import ttk

To override the basic Tk widgets, the import should follow the Tk import:

from tkinter import *

from tkinter.ttk import *

That code causes several tkinter.ttk widgets (Button, Checkbutton, Entry, Frame, Label, LabelFrame,
Menubutton, PanedWindow, Radiobutton, Scale and Scrollbar) to automatically replace the Tk widgets.

This has the direct benefit of using the new widgets which gives a better look and feel across platforms; however, the
replacement widgets are not completely compatible. The main difference is that widget options such as “fg”, “bg” and
others related to widget styling are no longer present in Ttk widgets. Instead, use the ttk.Style class for improved
styling effects.

See also

Converting existing applications to use Tile widgets
A monograph (using Tcl terminology) about differences typically encountered when moving applications
to use the new widgets.

26.8.2 Ttk Widgets

Ttk comes with 18 widgets, twelve of which already existed in tkinter: Button, Checkbutton, Entry, Frame,
Label, LabelFrame, Menubutton, PanedWindow, Radiobutton, Scale, Scrollbar, and Spinbox. The
other six are new: Combobox, Notebook, Progressbar, Separator, Sizegrip and Treeview. And all them
are subclasses of Widget.

1616 Chapter 26. Graphical User Interfaces with Tk

https://github.com/python/cpython/tree/3.13/Lib/tkinter/ttk.py
https://core.tcl.tk/tips/doc/trunk/tip/48.md
https://tktable.sourceforge.net/tile/doc/converting.txt

The Python Library Reference, Release 3.13.1

Using the Ttk widgets gives the application an improved look and feel. As discussed above, there are differences in
how the styling is coded.

Tk code:

l1 = tkinter.Label(text="Test", fg="black", bg="white")

l2 = tkinter.Label(text="Test", fg="black", bg="white")

Ttk code:

style = ttk.Style()

style.configure("BW.TLabel", foreground="black", background="white")

l1 = ttk.Label(text="Test", style="BW.TLabel")

l2 = ttk.Label(text="Test", style="BW.TLabel")

For more information about TtkStyling, see the Style class documentation.

26.8.3 Widget

ttk.Widget defines standard options and methods supported by Tk themed widgets and is not supposed to be
directly instantiated.

Standard Options

All the ttkWidgets accept the following options:

Option Description

class Specifies the window class. The class is used when querying the option database for the window’s
other options, to determine the default bindtags for the window, and to select the widget’s default
layout and style. This option is read-only, and may only be specified when the window is created.

cursor Specifies the mouse cursor to be used for the widget. If set to the empty string (the default), the
cursor is inherited for the parent widget.

takefocus Determines whether the window accepts the focus during keyboard traversal. 0, 1 or an empty
string is returned. If 0 is returned, it means that the window should be skipped entirely during
keyboard traversal. If 1, it means that the window should receive the input focus as long as it is
viewable. And an empty string means that the traversal scripts make the decision about whether
or not to focus on the window.

style May be used to specify a custom widget style.

Scrollable Widget Options

The following options are supported by widgets that are controlled by a scrollbar.

Option Description

xscrollcommand Used to communicate with horizontal scrollbars.
When the view in the widget’s window change, the widget will generate a Tcl command
based on the scrollcommand.
Usually this option consists of the method Scrollbar.set() of some scrollbar. This will
cause the scrollbar to be updated whenever the view in the window changes.

yscrollcommand Used to communicate with vertical scrollbars. For some more information, see above.

26.8. tkinter.ttk— Tk themed widgets 1617

The Python Library Reference, Release 3.13.1

Label Options

The following options are supported by labels, buttons and other button-like widgets.

Option Description

text Specifies a text string to be displayed inside the widget.
textvariable Specifies a name whose value will be used in place of the text option resource.
underline If set, specifies the index (0-based) of a character to underline in the text string.

The underline character is used for mnemonic activation.
image Specifies an image to display. This is a list of 1 or more elements. The first element

is the default image name. The rest of the list if a sequence of statespec/value pairs
as defined by Style.map(), specifying different images to use when the widget
is in a particular state or a combination of states. All images in the list should have
the same size.

compound Specifies how to display the image relative to the text, in the case both text and
images options are present. Valid values are:

• text: display text only
• image: display image only
• top, bottom, left, right: display image above, below, left of, or right of the
text, respectively.

• none: the default. display the image if present, otherwise the text.

width If greater than zero, specifies how much space, in character widths, to allocate for
the text label, if less than zero, specifies a minimum width. If zero or unspecified,
the natural width of the text label is used.

Compatibility Options

Option Description

state May be set to “normal” or “disabled” to control the “disabled” state bit. This is a write-only option:
setting it changes the widget state, but the Widget.state() method does not affect this option.

Widget States

The widget state is a bitmap of independent state flags.

Flag Description

active The mouse cursor is over the widget and pressing a mouse button will cause some action to occur
disabled Widget is disabled under program control
focus Widget has keyboard focus
pressed Widget is being pressed
selected “On”, “true”, or “current” for things like Checkbuttons and radiobuttons
background Windows and Mac have a notion of an “active” or foreground window. The background state is

set for widgets in a background window, and cleared for those in the foreground window
readonly Widget should not allow user modification
alternate A widget-specific alternate display format
invalid The widget’s value is invalid

A state specification is a sequence of state names, optionally prefixed with an exclamation point indicating that the
bit is off.

1618 Chapter 26. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.13.1

ttk.Widget

Besides the methods described below, the ttk.Widget supports the methods tkinter.Widget.cget() and
tkinter.Widget.configure().

class tkinter.ttk.Widget

identify(x, y)
Returns the name of the element at position x y, or the empty string if the point does not lie within any
element.

x and y are pixel coordinates relative to the widget.

instate(statespec, callback=None, *args, **kw)
Test the widget’s state. If a callback is not specified, returns True if the widget state matches statespec
and False otherwise. If callback is specified then it is called with args if widget state matches statespec.

state(statespec=None)
Modify or inquire widget state. If statespec is specified, sets the widget state according to it and return
a new statespec indicating which flags were changed. If statespec is not specified, returns the currently
enabled state flags.

statespec will usually be a list or a tuple.

26.8.4 Combobox

The ttk.Combobox widget combines a text field with a pop-down list of values. This widget is a subclass of Entry.

Besides the methods inherited from Widget: Widget.cget(), Widget.configure(), Widget.identify(),
Widget.instate() and Widget.state(), and the following inherited from Entry: Entry.bbox(),
Entry.delete(), Entry.icursor(), Entry.index(), Entry.insert(), Entry.selection(), Entry.
xview(), it has some other methods, described at ttk.Combobox.

Options

This widget accepts the following specific options:

Option Description

exportselection Boolean value. If set, the widget selection is linked to the Window Manager selection (which
can be returned by invoking Misc.selection_get, for example).

justify Specifies how the text is aligned within the widget. One of “left”, “center”, or “right”.
height Specifies the height of the pop-down listbox, in rows.
postcommand A script (possibly registered with Misc.register) that is called immediately before displaying

the values. It may specify which values to display.
state One of “normal”, “readonly”, or “disabled”. In the “readonly” state, the value may not be

edited directly, and the user can only selection of the values from the dropdown list. In the
“normal” state, the text field is directly editable. In the “disabled” state, no interaction is
possible.

textvariable Specifies a name whose value is linked to the widget value. Whenever the value associated
with that name changes, the widget value is updated, and vice versa. See
tkinter.StringVar.

values Specifies the list of values to display in the drop-down listbox.
width Specifies an integer value indicating the desired width of the entry window, in average-size

characters of the widget’s font.

Virtual events

The combobox widgets generates a «ComboboxSelected» virtual event when the user selects an element from the
list of values.

26.8. tkinter.ttk— Tk themed widgets 1619

The Python Library Reference, Release 3.13.1

ttk.Combobox

class tkinter.ttk.Combobox

current(newindex=None)
If newindex is specified, sets the combobox value to the element position newindex. Otherwise, returns
the index of the current value or -1 if the current value is not in the values list.

get()

Returns the current value of the combobox.

set(value)
Sets the value of the combobox to value.

26.8.5 Spinbox

The ttk.Spinbox widget is a ttk.Entry enhanced with increment and decrement arrows. It can be used for
numbers or lists of string values. This widget is a subclass of Entry.

Besides the methods inherited from Widget: Widget.cget(), Widget.configure(), Widget.identify(),
Widget.instate() and Widget.state(), and the following inherited from Entry: Entry.bbox(), Entry.
delete(), Entry.icursor(), Entry.index(), Entry.insert(), Entry.xview(), it has some other meth-
ods, described at ttk.Spinbox.

Options

This widget accepts the following specific options:

Option Description

from Float value. If set, this is the minimum value to which the decrement button will decrement. Must
be spelled as from_ when used as an argument, since from is a Python keyword.

to Float value. If set, this is the maximum value to which the increment button will increment.
increment Float value. Specifies the amount which the increment/decrement buttons change the value.

Defaults to 1.0.
values Sequence of string or float values. If specified, the increment/decrement buttons will cycle through

the items in this sequence rather than incrementing or decrementing numbers.
wrap Boolean value. If True, increment and decrement buttons will cycle from the to value to the from

value or the from value to the to value, respectively.
format String value. This specifies the format of numbers set by the increment/decrement buttons. It must

be in the form “%W.Pf”, where W is the padded width of the value, P is the precision, and ‘%’ and
‘f’ are literal.

command Python callable. Will be called with no arguments whenever either of the increment or decrement
buttons are pressed.

Virtual events

The spinbox widget generates an «Increment» virtual event when the user presses <Up>, and a «Decrement» virtual
event when the user presses <Down>.

ttk.Spinbox

class tkinter.ttk.Spinbox

get()

Returns the current value of the spinbox.

set(value)

Sets the value of the spinbox to value.

1620 Chapter 26. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.13.1

26.8.6 Notebook

Ttk Notebook widget manages a collection of windows and displays a single one at a time. Each child window is
associated with a tab, which the user may select to change the currently displayed window.

Options

This widget accepts the following specific options:

Option Description

height If present and greater than zero, specifies the desired height of the pane area (not including internal
padding or tabs). Otherwise, the maximum height of all panes is used.

padding Specifies the amount of extra space to add around the outside of the notebook. The padding is a list
up to four length specifications left top right bottom. If fewer than four elements are specified,
bottom defaults to top, right defaults to left, and top defaults to left.

width If present and greater than zero, specified the desired width of the pane area (not including internal
padding). Otherwise, the maximum width of all panes is used.

Tab Options

There are also specific options for tabs:

Option Description

state Either “normal”, “disabled” or “hidden”. If “disabled”, then the tab is not selectable. If “hidden”,
then the tab is not shown.

sticky Specifies how the child window is positioned within the pane area. Value is a string containing
zero or more of the characters “n”, “s”, “e” or “w”. Each letter refers to a side (north, south, east or
west) that the child window will stick to, as per the grid() geometry manager.

padding Specifies the amount of extra space to add between the notebook and this pane. Syntax is the same
as for the option padding used by this widget.

text Specifies a text to be displayed in the tab.
image Specifies an image to display in the tab. See the option image described in Widget.
compound Specifies how to display the image relative to the text, in the case both options text and image are

present. See Label Options for legal values.
underline Specifies the index (0-based) of a character to underline in the text string. The underlined

character is used for mnemonic activation if Notebook.enable_traversal() is called.

Tab Identifiers

The tab_id present in several methods of ttk.Notebook may take any of the following forms:

• An integer between zero and the number of tabs

• The name of a child window

• A positional specification of the form “@x,y”, which identifies the tab

• The literal string “current”, which identifies the currently selected tab

• The literal string “end”, which returns the number of tabs (only valid for Notebook.index())

Virtual Events

This widget generates a «NotebookTabChanged» virtual event after a new tab is selected.

26.8. tkinter.ttk— Tk themed widgets 1621

The Python Library Reference, Release 3.13.1

ttk.Notebook

class tkinter.ttk.Notebook

add(child, **kw)
Adds a new tab to the notebook.

If window is currently managed by the notebook but hidden, it is restored to its previous position.

See Tab Options for the list of available options.

forget(tab_id)
Removes the tab specified by tab_id, unmaps and unmanages the associated window.

hide(tab_id)

Hides the tab specified by tab_id.

The tab will not be displayed, but the associated window remains managed by the notebook and its
configuration remembered. Hidden tabs may be restored with the add() command.

identify(x, y)
Returns the name of the tab element at position x, y, or the empty string if none.

index(tab_id)

Returns the numeric index of the tab specified by tab_id, or the total number of tabs if tab_id is the string
“end”.

insert(pos, child, **kw)
Inserts a pane at the specified position.

pos is either the string “end”, an integer index, or the name of amanaged child. If child is alreadymanaged
by the notebook, moves it to the specified position.

See Tab Options for the list of available options.

select(tab_id=None)
Selects the specified tab_id.

The associated child window will be displayed, and the previously selected window (if different) is un-
mapped. If tab_id is omitted, returns the widget name of the currently selected pane.

tab(tab_id, option=None, **kw)
Query or modify the options of the specific tab_id.

If kw is not given, returns a dictionary of the tab option values. If option is specified, returns the value of
that option. Otherwise, sets the options to the corresponding values.

tabs()

Returns a list of windows managed by the notebook.

enable_traversal()

Enable keyboard traversal for a toplevel window containing this notebook.

This will extend the bindings for the toplevel window containing the notebook as follows:

• Control-Tab: selects the tab following the currently selected one.

• Shift-Control-Tab: selects the tab preceding the currently selected one.

• Alt-K: where K is the mnemonic (underlined) character of any tab, will select that tab.

Multiple notebooks in a single toplevel may be enabled for traversal, including nested notebooks. How-
ever, notebook traversal only works properly if all panes have the notebook they are in as master.

1622 Chapter 26. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.13.1

26.8.7 Progressbar

The ttk.Progressbar widget shows the status of a long-running operation. It can operate in two modes: 1) the
determinate mode which shows the amount completed relative to the total amount of work to be done and 2) the
indeterminate mode which provides an animated display to let the user know that work is progressing.

Options

This widget accepts the following specific options:

Option Description

orient One of “horizontal” or “vertical”. Specifies the orientation of the progress bar.
length Specifies the length of the long axis of the progress bar (width if horizontal, height if vertical).
mode One of “determinate” or “indeterminate”.
maximum A number specifying the maximum value. Defaults to 100.
value The current value of the progress bar. In “determinate” mode, this represents the amount of work

completed. In “indeterminate” mode, it is interpreted as modulo maximum; that is, the progress bar
completes one “cycle” when its value increases by maximum.

variable A name which is linked to the option value. If specified, the value of the progress bar is
automatically set to the value of this name whenever the latter is modified.

phase Read-only option. The widget periodically increments the value of this option whenever its value is
greater than 0 and, in determinate mode, less than maximum. This option may be used by the
current theme to provide additional animation effects.

ttk.Progressbar

class tkinter.ttk.Progressbar

start(interval=None)
Begin autoincrement mode: schedules a recurring timer event that calls Progressbar.step() every
interval milliseconds. If omitted, interval defaults to 50 milliseconds.

step(amount=None)
Increments the progress bar’s value by amount.

amount defaults to 1.0 if omitted.

stop()

Stop autoincrement mode: cancels any recurring timer event initiated by Progressbar.start() for
this progress bar.

26.8.8 Separator

The ttk.Separator widget displays a horizontal or vertical separator bar.

It has no other methods besides the ones inherited from ttk.Widget.

Options

This widget accepts the following specific option:

Option Description

orient One of “horizontal” or “vertical”. Specifies the orientation of the separator.

26.8. tkinter.ttk— Tk themed widgets 1623

The Python Library Reference, Release 3.13.1

26.8.9 Sizegrip

The ttk.Sizegrip widget (also known as a grow box) allows the user to resize the containing toplevel window by
pressing and dragging the grip.

This widget has neither specific options nor specific methods, besides the ones inherited from ttk.Widget.

Platform-specific notes

• On macOS, toplevel windows automatically include a built-in size grip by default. Adding a Sizegrip is
harmless, since the built-in grip will just mask the widget.

Bugs

• If the containing toplevel’s position was specified relative to the right or bottom of the screen (e.g. ….), the
Sizegrip widget will not resize the window.

• This widget supports only “southeast” resizing.

26.8.10 Treeview

The ttk.Treeview widget displays a hierarchical collection of items. Each item has a textual label, an optional
image, and an optional list of data values. The data values are displayed in successive columns after the tree label.

The order in which data values are displayed may be controlled by setting the widget option displaycolumns. The
tree widget can also display column headings. Columns may be accessed by number or symbolic names listed in the
widget option columns. See Column Identifiers.

Each item is identified by a unique name. The widget will generate item IDs if they are not supplied by the caller.
There is a distinguished root item, named {}. The root item itself is not displayed; its children appear at the top level
of the hierarchy.

Each item also has a list of tags, which can be used to associate event bindings with individual items and control the
appearance of the item.

The Treeviewwidget supports horizontal and vertical scrolling, according to the options described in ScrollableWidget
Options and the methods Treeview.xview() and Treeview.yview().

Options

This widget accepts the following specific options:

1624 Chapter 26. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.13.1

Option Description

columns A list of column identifiers, specifying the number of columns and their names.
displaycolumns A list of column identifiers (either symbolic or integer indices) specifying which

data columns are displayed and the order in which they appear, or the string “#all”.
height Specifies the number of rows which should be visible. Note: the requested width

is determined from the sum of the column widths.
padding Specifies the internal padding for the widget. The padding is a list of up to four

length specifications.
selectmode Controls how the built-in class bindings manage the selection. One of “extended”,

“browse” or “none”. If set to “extended” (the default), multiple items may be
selected. If “browse”, only a single item will be selected at a time. If “none”, the
selection will not be changed.
Note that the application code and tag bindings can set the selection however they
wish, regardless of the value of this option.

show A list containing zero or more of the following values, specifying which elements
of the tree to display.

• tree: display tree labels in column #0.
• headings: display the heading row.

The default is “tree headings”, i.e., show all elements.
Note: Column #0 always refers to the tree column, even if show=”tree” is not
specified.

Item Options

The following item options may be specified for items in the insert and item widget commands.

Option Description

text The textual label to display for the item.
image A Tk Image, displayed to the left of the label.
values The list of values associated with the item.

Each item should have the same number of values as the widget option columns. If there are fewer
values than columns, the remaining values are assumed empty. If there are more values than
columns, the extra values are ignored.

open True/False value indicating whether the item’s children should be displayed or hidden.
tags A list of tags associated with this item.

Tag Options

The following options may be specified on tags:

Option Description

foreground Specifies the text foreground color.
background Specifies the cell or item background color.
font Specifies the font to use when drawing text.
image Specifies the item image, in case the item’s image option is empty.

Column Identifiers

Column identifiers take any of the following forms:

• A symbolic name from the list of columns option.

• An integer n, specifying the nth data column.

• A string of the form #n, where n is an integer, specifying the nth display column.

26.8. tkinter.ttk— Tk themed widgets 1625

The Python Library Reference, Release 3.13.1

Notes:

• Item’s option values may be displayed in a different order than the order in which they are stored.

• Column #0 always refers to the tree column, even if show=”tree” is not specified.

A data column number is an index into an item’s option values list; a display column number is the column number
in the tree where the values are displayed. Tree labels are displayed in column #0. If option displaycolumns is not
set, then data column n is displayed in column #n+1. Again, column #0 always refers to the tree column.

Virtual Events

The Treeview widget generates the following virtual events.

Event Description

«TreeviewSelect» Generated whenever the selection changes.
«TreeviewOpen» Generated just before settings the focus item to open=True.
«TreeviewClose» Generated just after setting the focus item to open=False.

The Treeview.focus() and Treeview.selection() methods can be used to determine the affected item or
items.

ttk.Treeview

class tkinter.ttk.Treeview

bbox(item, column=None)
Returns the bounding box (relative to the treeview widget’s window) of the specified item in the form (x,
y, width, height).

If column is specified, returns the bounding box of that cell. If the item is not visible (i.e., if it is a
descendant of a closed item or is scrolled offscreen), returns an empty string.

get_children(item=None)
Returns the list of children belonging to item.

If item is not specified, returns root children.

set_children(item, *newchildren)

Replaces item’s child with newchildren.

Children present in item that are not present in newchildren are detached from the tree. No items in
newchildren may be an ancestor of item. Note that not specifying newchildren results in detaching item’s
children.

column(column, option=None, **kw)
Query or modify the options for the specified column.

If kw is not given, returns a dict of the column option values. If option is specified then the value for that
option is returned. Otherwise, sets the options to the corresponding values.

The valid options/values are:

id
Returns the column name. This is a read-only option.

anchor: One of the standard Tk anchor values.
Specifies how the text in this column should be aligned with respect to the cell.

minwidth: width
The minimum width of the column in pixels. The treeview widget will not make the column any
smaller than specified by this option when the widget is resized or the user drags a column.

1626 Chapter 26. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.13.1

stretch: True/False
Specifies whether the column’s width should be adjusted when the widget is resized.

width: width
The width of the column in pixels.

To configure the tree column, call this with column = “#0”

delete(*items)
Delete all specified items and all their descendants.

The root item may not be deleted.

detach(*items)
Unlinks all of the specified items from the tree.

The items and all of their descendants are still present, and may be reinserted at another point in the tree,
but will not be displayed.

The root item may not be detached.

exists(item)

Returns True if the specified item is present in the tree.

focus(item=None)
If item is specified, sets the focus item to item. Otherwise, returns the current focus item, or ‘’ if there is
none.

heading(column, option=None, **kw)
Query or modify the heading options for the specified column.

If kw is not given, returns a dict of the heading option values. If option is specified then the value for that
option is returned. Otherwise, sets the options to the corresponding values.

The valid options/values are:

text: text
The text to display in the column heading.

image: imageName
Specifies an image to display to the right of the column heading.

anchor: anchor
Specifies how the heading text should be aligned. One of the standard Tk anchor values.

command: callback
A callback to be invoked when the heading label is pressed.

To configure the tree column heading, call this with column = “#0”.

identify(component, x, y)
Returns a description of the specified component under the point given by x and y, or the empty string if
no such component is present at that position.

identify_row(y)
Returns the item ID of the item at position y.

identify_column(x)

Returns the data column identifier of the cell at position x.

The tree column has ID #0.

identify_region(x, y)
Returns one of:

26.8. tkinter.ttk— Tk themed widgets 1627

The Python Library Reference, Release 3.13.1

region meaning

heading Tree heading area.
separator Space between two columns headings.
tree The tree area.
cell A data cell.

Availability: Tk 8.6.

identify_element(x, y)
Returns the element at position x, y.

Availability: Tk 8.6.

index(item)
Returns the integer index of item within its parent’s list of children.

insert(parent, index, iid=None, **kw)
Creates a new item and returns the item identifier of the newly created item.

parent is the item ID of the parent item, or the empty string to create a new top-level item. index is an
integer, or the value “end”, specifying where in the list of parent’s children to insert the new item. If
index is less than or equal to zero, the new node is inserted at the beginning; if index is greater than or
equal to the current number of children, it is inserted at the end. If iid is specified, it is used as the item
identifier; iid must not already exist in the tree. Otherwise, a new unique identifier is generated.

See Item Options for the list of available options.

item(item, option=None, **kw)
Query or modify the options for the specified item.

If no options are given, a dict with options/values for the item is returned. If option is specified then the
value for that option is returned. Otherwise, sets the options to the corresponding values as given by kw.

move(item, parent, index)
Moves item to position index in parent’s list of children.

It is illegal to move an item under one of its descendants. If index is less than or equal to zero, item is
moved to the beginning; if greater than or equal to the number of children, it is moved to the end. If item
was detached it is reattached.

next(item)
Returns the identifier of item’s next sibling, or ‘’ if item is the last child of its parent.

parent(item)
Returns the ID of the parent of item, or ‘’ if item is at the top level of the hierarchy.

prev(item)
Returns the identifier of item’s previous sibling, or ‘’ if item is the first child of its parent.

reattach(item, parent, index)
An alias for Treeview.move().

see(item)
Ensure that item is visible.

Sets all of item’s ancestors open option to True, and scrolls the widget if necessary so that item is within
the visible portion of the tree.

selection()

Returns a tuple of selected items.

Changed in version 3.8: selection() no longer takes arguments. For changing the selection state use
the following selection methods.

1628 Chapter 26. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.13.1

selection_set(*items)
items becomes the new selection.

Changed in version 3.6: items can be passed as separate arguments, not just as a single tuple.

selection_add(*items)
Add items to the selection.

Changed in version 3.6: items can be passed as separate arguments, not just as a single tuple.

selection_remove(*items)
Remove items from the selection.

Changed in version 3.6: items can be passed as separate arguments, not just as a single tuple.

selection_toggle(*items)
Toggle the selection state of each item in items.

Changed in version 3.6: items can be passed as separate arguments, not just as a single tuple.

set(item, column=None, value=None)
With one argument, returns a dictionary of column/value pairs for the specified item. With two arguments,
returns the current value of the specified column. With three arguments, sets the value of given column
in given item to the specified value.

tag_bind(tagname, sequence=None, callback=None)
Bind a callback for the given event sequence to the tag tagname. When an event is delivered to an item,
the callbacks for each of the item’s tags option are called.

tag_configure(tagname, option=None, **kw)
Query or modify the options for the specified tagname.

If kw is not given, returns a dict of the option settings for tagname. If option is specified, returns the value
for that option for the specified tagname. Otherwise, sets the options to the corresponding values for the
given tagname.

tag_has(tagname, item=None)
If item is specified, returns 1 or 0 depending on whether the specified item has the given tagname. Oth-
erwise, returns a list of all items that have the specified tag.

Availability: Tk 8.6

xview(*args)
Query or modify horizontal position of the treeview.

yview(*args)
Query or modify vertical position of the treeview.

26.8.11 Ttk Styling

Each widget in ttk is assigned a style, which specifies the set of elements making up the widget and how they are
arranged, along with dynamic and default settings for element options. By default the style name is the same as the
widget’s class name, but it may be overridden by the widget’s style option. If you don’t know the class name of a
widget, use the method Misc.winfo_class() (somewidget.winfo_class()).

See also

Tcl’2004 conference presentation
This document explains how the theme engine works

class tkinter.ttk.Style

This class is used to manipulate the style database.

26.8. tkinter.ttk— Tk themed widgets 1629

https://tktable.sourceforge.net/tile/tile-tcl2004.pdf

The Python Library Reference, Release 3.13.1

configure(style, query_opt=None, **kw)
Query or set the default value of the specified option(s) in style.

Each key in kw is an option and each value is a string identifying the value for that option.

For example, to change every default button to be a flat button with some padding and a different back-
ground color:

from tkinter import ttk

import tkinter

root = tkinter.Tk()

ttk.Style().configure("TButton", padding=6, relief="flat",

background="#ccc")

btn = ttk.Button(text="Sample")

btn.pack()

root.mainloop()

map(style, query_opt=None, **kw)
Query or sets dynamic values of the specified option(s) in style.

Each key in kw is an option and each value should be a list or a tuple (usually) containing statespecs
grouped in tuples, lists, or some other preference. A statespec is a compound of one or more states and
then a value.

An example may make it more understandable:

import tkinter

from tkinter import ttk

root = tkinter.Tk()

style = ttk.Style()

style.map("C.TButton",

foreground=[('pressed', 'red'), ('active', 'blue')],

background=[('pressed', '!disabled', 'black'), ('active', 'white')]

)

colored_btn = ttk.Button(text="Test", style="C.TButton").pack()

root.mainloop()

Note that the order of the (states, value) sequences for an option does matter, if the order is changed to
[('active', 'blue'), ('pressed', 'red')] in the foreground option, for example, the result
would be a blue foreground when the widget were in active or pressed states.

lookup(style, option, state=None, default=None)
Returns the value specified for option in style.

If state is specified, it is expected to be a sequence of one or more states. If the default argument is set,
it is used as a fallback value in case no specification for option is found.

To check what font a Button uses by default:

from tkinter import ttk

print(ttk.Style().lookup("TButton", "font"))

1630 Chapter 26. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.13.1

layout(style, layoutspec=None)
Define the widget layout for given style. If layoutspec is omitted, return the layout specification for given
style.

layoutspec, if specified, is expected to be a list or some other sequence type (excluding strings), where
each item should be a tuple and the first item is the layout name and the second item should have the
format described in Layouts.

To understand the format, see the following example (it is not intended to do anything useful):

from tkinter import ttk

import tkinter

root = tkinter.Tk()

style = ttk.Style()

style.layout("TMenubutton", [

("Menubutton.background", None),

("Menubutton.button", {"children":

[("Menubutton.focus", {"children":

[("Menubutton.padding", {"children":

[("Menubutton.label", {"side": "left", "expand": 1})]

})]

})]

}),

])

mbtn = ttk.Menubutton(text='Text')

mbtn.pack()

root.mainloop()

element_create(elementname, etype, *args, **kw)
Create a new element in the current theme, of the given etype which is expected to be either “image”,
“from” or “vsapi”. The latter is only available in Tk 8.6 on Windows.

If “image” is used, args should contain the default image name followed by statespec/value pairs (this is
the imagespec), and kw may have the following options:

border=padding
padding is a list of up to four integers, specifying the left, top, right, and bottom borders, respectively.

height=height
Specifies a minimum height for the element. If less than zero, the base image’s height is used as a
default.

padding=padding
Specifies the element’s interior padding. Defaults to border’s value if not specified.

sticky=spec
Specifies how the image is placed within the final parcel. spec contains zero or more characters “n”,
“s”, “w”, or “e”.

width=width
Specifies a minimum width for the element. If less than zero, the base image’s width is used as a
default.

Example:

img1 = tkinter.PhotoImage(master=root, file='button.png')

img1 = tkinter.PhotoImage(master=root, file='button-pressed.png')

img1 = tkinter.PhotoImage(master=root, file='button-active.png')

style = ttk.Style(root)

(continues on next page)

26.8. tkinter.ttk— Tk themed widgets 1631

The Python Library Reference, Release 3.13.1

(continued from previous page)

style.element_create('Button.button', 'image',

img1, ('pressed', img2), ('active', img3),

border=(2, 4), sticky='we')

If “from” is used as the value of etype, element_create() will clone an existing element. args is
expected to contain a themename, from which the element will be cloned, and optionally an element to
clone from. If this element to clone from is not specified, an empty element will be used. kw is discarded.

Example:

style = ttk.Style(root)

style.element_create('plain.background', 'from', 'default')

If “vsapi” is used as the value of etype, element_create() will create a new element in the current
theme whose visual appearance is drawn using the Microsoft Visual Styles API which is responsible for
the themed styles on Windows XP and Vista. args is expected to contain the Visual Styles class and part
as given in the Microsoft documentation followed by an optional sequence of tuples of ttk states and the
corresponding Visual Styles API state value. kw may have the following options:

padding=padding
Specify the element’s interior padding. padding is a list of up to four integers specifying the left, top,
right and bottom padding quantities respectively. If fewer than four elements are specified, bottom
defaults to top, right defaults to left, and top defaults to left. In other words, a list of three numbers
specify the left, vertical, and right padding; a list of two numbers specify the horizontal and the
vertical padding; a single number specifies the same padding all the way around the widget. This
option may not be mixed with any other options.

margins=padding
Specifies the elements exterior padding. padding is a list of up to four integers specifying the left,
top, right and bottom padding quantities respectively. This option may not be mixed with any other
options.

width=width
Specifies the width for the element. If this option is set then the Visual Styles API will not be queried
for the recommended size or the part. If this option is set then height should also be set. The width
and height options cannot be mixed with the padding or margins options.

height=height
Specifies the height of the element. See the comments for width.

Example:

style = ttk.Style(root)

style.element_create('pin', 'vsapi', 'EXPLORERBAR', 3, [

('pressed', '!selected', 3),

('active', '!selected', 2),

('pressed', 'selected', 6),

('active', 'selected', 5),

('selected', 4),

('', 1)])

style.layout('Explorer.Pin',

[('Explorer.Pin.pin', {'sticky': 'news'})])

pin = ttk.Checkbutton(style='Explorer.Pin')

pin.pack(expand=True, fill='both')

Changed in version 3.13: Added support of the “vsapi” element factory.

element_names()

Returns the list of elements defined in the current theme.

1632 Chapter 26. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.13.1

element_options(elementname)
Returns the list of elementname’s options.

theme_create(themename, parent=None, settings=None)
Create a new theme.

It is an error if themename already exists. If parent is specified, the new theme will inherit styles, elements
and layouts from the parent theme. If settings are present they are expected to have the same syntax used
for theme_settings().

theme_settings(themename, settings)
Temporarily sets the current theme to themename, apply specified settings and then restore the previous
theme.

Each key in settings is a style and each value may contain the keys ‘configure’, ‘map’, ‘layout’ and ‘element
create’ and they are expected to have the same format as specified by themethods Style.configure(),
Style.map(), Style.layout() and Style.element_create() respectively.

As an example, let’s change the Combobox for the default theme a bit:

from tkinter import ttk

import tkinter

root = tkinter.Tk()

style = ttk.Style()

style.theme_settings("default", {

"TCombobox": {

"configure": {"padding": 5},

"map": {

"background": [("active", "green2"),

("!disabled", "green4")],

"fieldbackground": [("!disabled", "green3")],

"foreground": [("focus", "OliveDrab1"),

("!disabled", "OliveDrab2")]

}

}

})

combo = ttk.Combobox().pack()

root.mainloop()

theme_names()

Returns a list of all known themes.

theme_use(themename=None)

If themename is not given, returns the theme in use. Otherwise, sets the current theme to themename,
refreshes all widgets and emits a «ThemeChanged» event.

Layouts

A layout can be just None, if it takes no options, or a dict of options specifying how to arrange the element. The
layout mechanism uses a simplified version of the pack geometry manager: given an initial cavity, each element is
allocated a parcel.

The valid options/values are:

side: whichside
Specifies which side of the cavity to place the element; one of top, right, bottom or left. If omitted, the element
occupies the entire cavity.

26.8. tkinter.ttk— Tk themed widgets 1633

The Python Library Reference, Release 3.13.1

sticky: nswe
Specifies where the element is placed inside its allocated parcel.

unit: 0 or 1
If set to 1, causes the element and all of its descendants to be treated as a single element for the purposes of
Widget.identify() et al. It’s used for things like scrollbar thumbs with grips.

children: [sublayout…]
Specifies a list of elements to place inside the element. Each element is a tuple (or other sequence type) where
the first item is the layout name, and the other is a Layout.

26.9 IDLE

Source code: Lib/idlelib/

IDLE is Python’s Integrated Development and Learning Environment.

IDLE has the following features:

• cross-platform: works mostly the same on Windows, Unix, and macOS

• Python shell window (interactive interpreter) with colorizing of code input, output, and error messages

• multi-window text editor with multiple undo, Python colorizing, smart indent, call tips, auto completion, and
other features

• search within any window, replace within editor windows, and search through multiple files (grep)

• debugger with persistent breakpoints, stepping, and viewing of global and local namespaces

• configuration, browsers, and other dialogs

26.9.1 Menus

IDLE has two main window types, the Shell window and the Editor window. It is possible to have multiple editor
windows simultaneously. On Windows and Linux, each has its own top menu. Each menu documented below
indicates which window type it is associated with.

Output windows, such as used for Edit => Find in Files, are a subtype of editor window. They currently have the
same top menu but a different default title and context menu.

On macOS, there is one application menu. It dynamically changes according to the window currently selected. It has
an IDLE menu, and some entries described below are moved around to conform to Apple guidelines.

File menu (Shell and Editor)

New File
Create a new file editing window.

Open…
Open an existing file with an Open dialog.

Open Module…
Open an existing module (searches sys.path).

Recent Files
Open a list of recent files. Click one to open it.

Module Browser
Show functions, classes, and methods in the current Editor file in a tree structure. In the shell, open a module
first.

Path Browser
Show sys.path directories, modules, functions, classes and methods in a tree structure.

1634 Chapter 26. Graphical User Interfaces with Tk

https://github.com/python/cpython/tree/3.13/Lib/idlelib/

The Python Library Reference, Release 3.13.1

Save
Save the current window to the associated file, if there is one. Windows that have been changed since being
opened or last saved have a * before and after the window title. If there is no associated file, do Save As instead.

Save As…
Save the current window with a Save As dialog. The file saved becomes the new associated file for the window.
(If your file namager is set to hide extensions, the current extension will be omitted in the file name box. If the
new filename has no ‘.’, ‘.py’ and ‘.txt’ will be added for Python and text files, except that on macOS Aqua,’.py’
is added for all files.)

Save Copy As…
Save the current window to different file without changing the associated file. (See Save As note above about
filename extensions.)

Print Window
Print the current window to the default printer.

Close Window
Close the current window (if an unsaved editor, ask to save; if an unsaved Shell, ask to quit execution). Calling
exit() or close() in the Shell window also closes Shell. If this is the only window, also exit IDLE.

Exit IDLE
Close all windows and quit IDLE (ask to save unsaved edit windows).

Edit menu (Shell and Editor)

Undo
Undo the last change to the current window. A maximum of 1000 changes may be undone.

Redo
Redo the last undone change to the current window.

Select All
Select the entire contents of the current window.

Cut
Copy selection into the system-wide clipboard; then delete the selection.

Copy
Copy selection into the system-wide clipboard.

Paste
Insert contents of the system-wide clipboard into the current window.

The clipboard functions are also available in context menus.

Find…
Open a search dialog with many options

Find Again
Repeat the last search, if there is one.

Find Selection
Search for the currently selected string, if there is one.

Find in Files…
Open a file search dialog. Put results in a new output window.

Replace…
Open a search-and-replace dialog.

Go to Line
Move the cursor to the beginning of the line requested and make that line visible. A request past the end of
the file goes to the end. Clear any selection and update the line and column status.

26.9. IDLE 1635

The Python Library Reference, Release 3.13.1

Show Completions
Open a scrollable list allowing selection of existing names. See Completions in the Editing and navigation
section below.

Expand Word
Expand a prefix you have typed to match a full word in the same window; repeat to get a different expansion.

Show Call Tip
After an unclosed parenthesis for a function, open a small window with function parameter hints. See Calltips
in the Editing and navigation section below.

Show Surrounding Parens
Highlight the surrounding parenthesis.

Format menu (Editor window only)

Format Paragraph
Reformat the current blank-line-delimited paragraph in comment block or multiline string or selected line in
a string. All lines in the paragraph will be formatted to less than N columns, where N defaults to 72.

Indent Region
Shift selected lines right by the indent width (default 4 spaces).

Dedent Region
Shift selected lines left by the indent width (default 4 spaces).

Comment Out Region
Insert ## in front of selected lines.

Uncomment Region
Remove leading # or ## from selected lines.

Tabify Region
Turn leading stretches of spaces into tabs. (Note: We recommend using 4 space blocks to indent Python code.)

Untabify Region
Turn all tabs into the correct number of spaces.

Toggle Tabs
Open a dialog to switch between indenting with spaces and tabs.

New Indent Width
Open a dialog to change indent width. The accepted default by the Python community is 4 spaces.

Strip Trailing Chitespace
Remove trailing space and other whitespace characters after the last non-whitespace character of a line by
applying str.rstrip to each line, including lines within multiline strings. Except for Shell windows, remove extra
newlines at the end of the file.

Run menu (Editor window only)

Run Module
Do Check Module. If no error, restart the shell to clean the environment, then execute the module. Output
is displayed in the Shell window. Note that output requires use of print or write. When execution is
complete, the Shell retains focus and displays a prompt. At this point, one may interactively explore the result
of execution. This is similar to executing a file with python -i file at a command line.

Run… Customized
Same as Run Module, but run the module with customized settings. Command Line Arguments extend sys.
argv as if passed on a command line. The module can be run in the Shell without restarting.

Check Module
Check the syntax of the module currently open in the Editor window. If the module has not been saved IDLE
will either prompt the user to save or autosave, as selected in the General tab of the Idle Settings dialog. If
there is a syntax error, the approximate location is indicated in the Editor window.

1636 Chapter 26. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.13.1

Python Shell
Open or wake up the Python Shell window.

Shell menu (Shell window only)

View Last Restart
Scroll the shell window to the last Shell restart.

Restart Shell
Restart the shell to clean the environment and reset display and exception handling.

Previous History
Cycle through earlier commands in history which match the current entry.

Next History
Cycle through later commands in history which match the current entry.

Interrupt Execution
Stop a running program.

Debug menu (Shell window only)

Go to File/Line
Look on the current line. with the cursor, and the line above for a filename and line number. If found, open the
file if not already open, and show the line. Use this to view source lines referenced in an exception traceback
and lines found by Find in Files. Also available in the context menu of the Shell window and Output windows.

Debugger (toggle)
When activated, code entered in the Shell or run from an Editor will run under the debugger. In the Editor,
breakpoints can be set with the context menu. This feature is still incomplete and somewhat experimental.

Stack Viewer
Show the stack traceback of the last exception in a tree widget, with access to locals and globals.

Auto-open Stack Viewer
Toggle automatically opening the stack viewer on an unhandled exception.

Options menu (Shell and Editor)

Configure IDLE
Open a configuration dialog and change preferences for the following: fonts, indentation, keybindings, text color
themes, startup windows and size, additional help sources, and extensions. On macOS, open the configuration
dialog by selecting Preferences in the application menu. For more details, see Setting preferences under Help
and preferences.

Most configuration options apply to all windows or all future windows. The option items below only apply to the
active window.

Show/Hide Code Context (Editor Window only)
Open a pane at the top of the edit window which shows the block context of the code which has scrolled above
the top of the window. See Code Context in the Editing and Navigation section below.

Show/Hide Line Numbers (Editor Window only)
Open a column to the left of the edit window which shows the number of each line of text. The default is off,
which may be changed in the preferences (see Setting preferences).

Zoom/Restore Height
Toggles the window between normal size and maximum height. The initial size defaults to 40 lines by 80
chars unless changed on the General tab of the Configure IDLE dialog. The maximum height for a screen is
determined by momentarily maximizing a window the first time one is zoomed on the screen. Changing screen
settings may invalidate the saved height. This toggle has no effect when a window is maximized.

26.9. IDLE 1637

The Python Library Reference, Release 3.13.1

Window menu (Shell and Editor)

Lists the names of all open windows; select one to bring it to the foreground (deiconifying it if necessary).

Help menu (Shell and Editor)

About IDLE
Display version, copyright, license, credits, and more.

IDLE Help
Display this IDLE document, detailing the menu options, basic editing and navigation, and other tips.

Python Docs
Access local Python documentation, if installed, or start a web browser and open docs.python.org showing the
latest Python documentation.

Turtle Demo
Run the turtledemo module with example Python code and turtle drawings.

Additional help sources may be added here with the Configure IDLE dialog under the General tab. See the Help
sources subsection below for more on Help menu choices.

Context menus

Open a context menu by right-clicking in a window (Control-click on macOS). Context menus have the standard
clipboard functions also on the Edit menu.

Cut
Copy selection into the system-wide clipboard; then delete the selection.

Copy
Copy selection into the system-wide clipboard.

Paste
Insert contents of the system-wide clipboard into the current window.

Editor windows also have breakpoint functions. Lines with a breakpoint set are specially marked. Breakpoints only
have an effect when running under the debugger. Breakpoints for a file are saved in the user’s .idlerc directory.

Set Breakpoint
Set a breakpoint on the current line.

Clear Breakpoint
Clear the breakpoint on that line.

Shell and Output windows also have the following.

Go to file/line
Same as in Debug menu.

The Shell window also has an output squeezing facility explained in the Python Shell window subsection below.

Squeeze
If the cursor is over an output line, squeeze all the output between the code above and the prompt below down
to a ‘Squeezed text’ label.

26.9.2 Editing and Navigation

Editor windows

IDLE may open editor windows when it starts, depending on settings and how you start IDLE. Thereafter, use the
File menu. There can be only one open editor window for a given file.

The title bar contains the name of the file, the full path, and the version of Python and IDLE running the window. The
status bar contains the line number (‘Ln’) and column number (‘Col’). Line numbers start with 1; column numbers
with 0.

1638 Chapter 26. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.13.1

IDLE assumes that files with a known .py* extension contain Python code and that other files do not. Run Python
code with the Run menu.

Key bindings

The IDLE insertion cursor is a thin vertical bar between character positions. When characters are entered, the
insertion cursor and everything to its right moves right one character and the new character is entered in the new
space.

Several non-character keys move the cursor and possibly delete characters. Deletion does not puts text on the clip-
board, but IDLE has an undo list. Wherever this doc discusses keys, ‘C’ refers to the Control key on Windows and
Unix and the Command key on macOS. (And all such discussions assume that the keys have not been re-bound to
something else.)

• Arrow keys move the cursor one character or line.

• C-LeftArrow and C-RightArrow moves left or right one word.

• Home and End go to the beginning or end of the line.

• Page Up and Page Down go up or down one screen.

• C-Home and C-End go to beginning or end of the file.

• Backspace and Del (or C-d) delete the previous or next character.

• C-Backspace and C-Del delete one word left or right.

• C-k deletes (‘kills’) everything to the right.

Standard keybindings (like C-c to copy and C-v to paste) may work. Keybindings are selected in the Configure
IDLE dialog.

Automatic indentation

After a block-opening statement, the next line is indented by 4 spaces (in the Python Shell window by one tab). After
certain keywords (break, return etc.) the next line is dedented. In leading indentation, Backspace deletes up to 4
spaces if they are there. Tab inserts spaces (in the Python Shell window one tab), number depends on Indent width.
Currently, tabs are restricted to four spaces due to Tcl/Tk limitations.

See also the indent/dedent region commands on the Format menu.

Search and Replace

Any selection becomes a search target. However, only selections within a line work because searches are only per-
formed within lines with the terminal newline removed. If [x] Regular expression is checked, the target is
interpreted according to the Python re module.

Completions

Completions are supplied, when requested and available, for module names, attributes of classes or functions, or
filenames. Each request method displays a completion box with existing names. (See tab completions below for
an exception.) For any box, change the name being completed and the item highlighted in the box by typing and
deleting characters; by hitting Up, Down, PageUp, PageDown, Home, and End keys; and by a single click within the
box. Close the box with Escape, Enter, and double Tab keys or clicks outside the box. A double click within the
box selects and closes.

One way to open a box is to type a key character and wait for a predefined interval. This defaults to 2 seconds;
customize it in the settings dialog. (To prevent auto popups, set the delay to a large number of milliseconds, such as
100000000.) For imported module names or class or function attributes, type ‘.’. For filenames in the root directory,
type os.sep or os.altsep immediately after an opening quote. (OnWindows, one can specify a drive first.) Move
into subdirectories by typing a directory name and a separator.

Instead of waiting, or after a box is closed, open a completion box immediately with Show Completions on the Edit
menu. The default hot key is C-space. If one types a prefix for the desired name before opening the box, the first

26.9. IDLE 1639

The Python Library Reference, Release 3.13.1

match or near miss is made visible. The result is the same as if one enters a prefix after the box is displayed. Show
Completions after a quote completes filenames in the current directory instead of a root directory.

Hitting Tab after a prefix usually has the same effect as Show Completions. (With no prefix, it indents.) However, if
there is only one match to the prefix, that match is immediately added to the editor text without opening a box.

Invoking ‘Show Completions’, or hitting Tab after a prefix, outside of a string and without a preceding ‘.’ opens a
box with keywords, builtin names, and available module-level names.

When editing code in an editor (as oppose to Shell), increase the available module-level names by running your code
and not restarting the Shell thereafter. This is especially useful after adding imports at the top of a file. This also
increases possible attribute completions.

Completion boxes initially exclude names beginning with ‘_’ or, for modules, not included in ‘__all__’. The hidden
names can be accessed by typing ‘_’ after ‘.’, either before or after the box is opened.

Calltips

A calltip is shown automatically when one types (after the name of an accessible function. A function name expres-
sion may include dots and subscripts. A calltip remains until it is clicked, the cursor is moved out of the argument
area, or) is typed. Whenever the cursor is in the argument part of a definition, select Edit and “Show Call Tip” on
the menu or enter its shortcut to display a calltip.

The calltip consists of the function’s signature and docstring up to the latter’s first blank line or the fifth non-blank
line. (Some builtin functions lack an accessible signature.) A ‘/’ or ‘*’ in the signature indicates that the preceding or
following arguments are passed by position or name (keyword) only. Details are subject to change.

In Shell, the accessible functions depends on what modules have been imported into the user process, including those
imported by Idle itself, and which definitions have been run, all since the last restart.

For example, restart the Shell and enter itertools.count(. A calltip appears because Idle imports itertools into
the user process for its own use. (This could change.) Enter turtle.write(and nothing appears. Idle does not
itself import turtle. The menu entry and shortcut also do nothing. Enter import turtle. Thereafter, turtle.
write(will display a calltip.

In an editor, import statements have no effect until one runs the file. One might want to run a file after writing import
statements, after adding function definitions, or after opening an existing file.

Code Context

Within an editor window containing Python code, code context can be toggled in order to show or hide a pane at the
top of the window. When shown, this pane freezes the opening lines for block code, such as those beginning with
class, def, or if keywords, that would have otherwise scrolled out of view. The size of the pane will be expanded
and contracted as needed to show the all current levels of context, up to the maximum number of lines defined in the
Configure IDLE dialog (which defaults to 15). If there are no current context lines and the feature is toggled on, a
single blank line will display. Clicking on a line in the context pane will move that line to the top of the editor.

The text and background colors for the context pane can be configured under the Highlights tab in the Configure
IDLE dialog.

Shell window

In IDLE’s Shell, enter, edit, and recall complete statements. (Most consoles and terminals only work with a single
physical line at a time).

Submit a single-line statement for execution by hitting Return with the cursor anywhere on the line. If a line is
extended with Backslash (\), the cursor must be on the last physical line. Submit a multi-line compound statement
by entering a blank line after the statement.

When one pastes code into Shell, it is not compiled and possibly executed until one hits Return, as specified above.
One may edit pasted code first. If one pastes more than one statement into Shell, the result will be a SyntaxError
when multiple statements are compiled as if they were one.

1640 Chapter 26. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.13.1

Lines containing RESTART mean that the user execution process has been re-started. This occurs when the user
execution process has crashed, when one requests a restart on the Shell menu, or when one runs code in an editor
window.

The editing features described in previous subsections work when entering code interactively. IDLE’s Shell window
also responds to the following:

• C-c attempts to interrupt statement execution (but may fail).

• C-d closes Shell if typed at a >>> prompt.

• Alt-p and Alt-n (C-p and C-n on macOS) retrieve to the current prompt the previous or next previously
entered statement that matches anything already typed.

• Return while the cursor is on any previous statement appends the latter to anything already typed at the
prompt.

Text colors

Idle defaults to black on white text, but colors text with special meanings. For the shell, these are shell output, shell
error, user output, and user error. For Python code, at the shell prompt or in an editor, these are keywords, builtin
class and function names, names following class and def, strings, and comments. For any text window, these are
the cursor (when present), found text (when possible), and selected text.

IDLE also highlights the soft keywords match, case, and _ in pattern-matching statements. However, this high-
lighting is not perfect and will be incorrect in some rare cases, including some _-s in case patterns.

Text coloring is done in the background, so uncolorized text is occasionally visible. To change the color scheme,
use the Configure IDLE dialog Highlighting tab. The marking of debugger breakpoint lines in the editor and text in
popups and dialogs is not user-configurable.

26.9.3 Startup and Code Execution

Upon startup with the -s option, IDLE will execute the file referenced by the environment variables IDLESTARTUP
or PYTHONSTARTUP. IDLE first checks for IDLESTARTUP; if IDLESTARTUP is present the file referenced is run. If
IDLESTARTUP is not present, IDLE checks for PYTHONSTARTUP. Files referenced by these environment variables are
convenient places to store functions that are used frequently from the IDLE shell, or for executing import statements
to import common modules.

In addition, Tk also loads a startup file if it is present. Note that the Tk file is loaded unconditionally. This additional
file is .Idle.py and is looked for in the user’s home directory. Statements in this file will be executed in the Tk
namespace, so this file is not useful for importing functions to be used from IDLE’s Python shell.

Command line usage

idle.py [-c command] [-d] [-e] [-h] [-i] [-r file] [-s] [-t title] [-] [arg] ...

-c command run command in the shell window

-d enable debugger and open shell window

-e open editor window

-h print help message with legal combinations and exit

-i open shell window

-r file run file in shell window

-s run $IDLESTARTUP or $PYTHONSTARTUP first, in shell window

-t title set title of shell window

- run stdin in shell (- must be last option before args)

If there are arguments:

• If -, -c, or r is used, all arguments are placed in sys.argv[1:...] and sys.argv[0] is set to '', '-c',
or '-r'. No editor window is opened, even if that is the default set in the Options dialog.

• Otherwise, arguments are files opened for editing and sys.argv reflects the arguments passed to IDLE itself.

26.9. IDLE 1641

The Python Library Reference, Release 3.13.1

Startup failure

IDLE uses a socket to communicate between the IDLE GUI process and the user code execution process. A con-
nection must be established whenever the Shell starts or restarts. (The latter is indicated by a divider line that says
‘RESTART’). If the user process fails to connect to the GUI process, it usually displays a Tk error box with a ‘cannot
connect’ message that directs the user here. It then exits.

One specific connection failure on Unix systems results from misconfigured masquerading rules somewhere in a
system’s network setup. When IDLE is started from a terminal, one will see a message starting with ** Invalid

host:. The valid value is 127.0.0.1 (idlelib.rpc.LOCALHOST). One can diagnose with tcpconnect -irv

127.0.0.1 6543 in one terminal window and tcplisten <same args> in another.

A common cause of failure is a user-written file with the same name as a standard library module, such as random.py
and tkinter.py. When such a file is located in the same directory as a file that is about to be run, IDLE cannot import
the stdlib file. The current fix is to rename the user file.

Though less common than in the past, an antivirus or firewall program may stop the connection. If the program
cannot be taught to allow the connection, then it must be turned off for IDLE to work. It is safe to allow this internal
connection because no data is visible on external ports. A similar problem is a network mis-configuration that blocks
connections.

Python installation issues occasionally stop IDLE: multiple versions can clash, or a single installation might need
admin access. If one undo the clash, or cannot or does not want to run as admin, it might be easiest to completely
remove Python and start over.

A zombie pythonw.exe process could be a problem. On Windows, use Task Manager to check for one and stop it
if there is. Sometimes a restart initiated by a program crash or Keyboard Interrupt (control-C) may fail to connect.
Dismissing the error box or using Restart Shell on the Shell menu may fix a temporary problem.

When IDLE first starts, it attempts to read user configuration files in ~/.idlerc/ (~ is one’s home directory). If
there is a problem, an error message should be displayed. Leaving aside random disk glitches, this can be prevented
by never editing the files by hand. Instead, use the configuration dialog, under Options. Once there is an error in a
user configuration file, the best solution may be to delete it and start over with the settings dialog.

If IDLE quits with no message, and it was not started from a console, try starting it from a console or terminal
(python -m idlelib) and see if this results in an error message.

On Unix-based systems with tcl/tk older than 8.6.11 (see About IDLE) certain characters of certain fonts can
cause a tk failure with a message to the terminal. This can happen either if one starts IDLE to edit a file with such a
character or later when entering such a character. If one cannot upgrade tcl/tk, then re-configure IDLE to use a font
that works better.

Running user code

With rare exceptions, the result of executing Python code with IDLE is intended to be the same as executing the
same code by the default method, directly with Python in a text-mode system console or terminal window. However,
the different interface and operation occasionally affect visible results. For instance, sys.modules starts with more
entries, and threading.active_count() returns 2 instead of 1.

By default, IDLE runs user code in a separate OS process rather than in the user interface process that runs the shell
and editor. In the execution process, it replaces sys.stdin, sys.stdout, and sys.stderr with objects that get
input from and send output to the Shell window. The original values stored in sys.__stdin__, sys.__stdout__,
and sys.__stderr__ are not touched, but may be None.

Sending print output from one process to a text widget in another is slower than printing to a system terminal in
the same process. This has the most effect when printing multiple arguments, as the string for each argument, each
separator, the newline are sent separately. For development, this is usually not a problem, but if one wants to print
faster in IDLE, format and join together everything one wants displayed together and then print a single string. Both
format strings and str.join() can help combine fields and lines.

IDLE’s standard stream replacements are not inherited by subprocesses created in the execution process, whether
directly by user code or by modules such as multiprocessing. If such subprocess use input from sys.stdin or print
or write to sys.stdout or sys.stderr, IDLE should be started in a command line window. (On Windows, use python

1642 Chapter 26. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.13.1

or py rather than pythonw or pyw.) The secondary subprocess will then be attached to that window for input and
output.

If sys is reset by user code, such as with importlib.reload(sys), IDLE’s changes are lost and input from the
keyboard and output to the screen will not work correctly.

When Shell has the focus, it controls the keyboard and screen. This is normally transparent, but functions that directly
access the keyboard and screen will not work. These include system-specific functions that determine whether a key
has been pressed and if so, which.

The IDLE code running in the execution process adds frames to the call stack that would not be there otherwise.
IDLE wraps sys.getrecursionlimit and sys.setrecursionlimit to reduce the effect of the additional
stack frames.

When user code raises SystemExit either directly or by calling sys.exit, IDLE returns to a Shell prompt instead of
exiting.

User output in Shell

When a program outputs text, the result is determined by the corresponding output device. When IDLE executes user
code, sys.stdout and sys.stderr are connected to the display area of IDLE’s Shell. Some of its features are
inherited from the underlying Tk Text widget. Others are programmed additions. Where it matters, Shell is designed
for development rather than production runs.

For instance, Shell never throws away output. A program that sends unlimited output to Shell will eventually fill
memory, resulting in a memory error. In contrast, some system text windows only keep the last n lines of output. A
Windows console, for instance, keeps a user-settable 1 to 9999 lines, with 300 the default.

A Tk Text widget, and hence IDLE’s Shell, displays characters (codepoints) in the BMP (Basic Multilingual Plane)
subset of Unicode. Which characters are displayed with a proper glyph and which with a replacement box depends
on the operating system and installed fonts. Tab characters cause the following text to begin after the next tab stop.
(They occur every 8 ‘characters’). Newline characters cause following text to appear on a new line. Other control
characters are ignored or displayed as a space, box, or something else, depending on the operating system and font.
(Moving the text cursor through such output with arrow keys may exhibit some surprising spacing behavior.)

>>> s = 'a\tb\a<\x02><\r>\bc\nd' # Enter 22 chars.

>>> len(s)

14

>>> s # Display repr(s)

'a\tb\x07<\x02><\r>\x08c\nd'

>>> print(s, end='') # Display s as is.

Result varies by OS and font. Try it.

The repr function is used for interactive echo of expression values. It returns an altered version of the input string
in which control codes, some BMP codepoints, and all non-BMP codepoints are replaced with escape codes. As
demonstrated above, it allows one to identify the characters in a string, regardless of how they are displayed.

Normal and error output are generally kept separate (on separate lines) from code input and each other. They each
get different highlight colors.

For SyntaxError tracebacks, the normal ‘^’ marking where the error was detected is replaced by coloring the text
with an error highlight. When code run from a file causes other exceptions, one may right click on a traceback line
to jump to the corresponding line in an IDLE editor. The file will be opened if necessary.

Shell has a special facility for squeezing output lines down to a ‘Squeezed text’ label. This is done automatically for
output over N lines (N = 50 by default). N can be changed in the PyShell section of the General page of the Settings
dialog. Output with fewer lines can be squeezed by right clicking on the output. This can be useful lines long enough
to slow down scrolling.

Squeezed output is expanded in place by double-clicking the label. It can also be sent to the clipboard or a separate
view window by right-clicking the label.

26.9. IDLE 1643

The Python Library Reference, Release 3.13.1

Developing tkinter applications

IDLE is intentionally different from standard Python in order to facilitate development of tkinter programs. Enter
import tkinter as tk; root = tk.Tk() in standard Python and nothing appears. Enter the same in IDLE
and a tk window appears. In standard Python, one must also enter root.update() to see the window. IDLE does
the equivalent in the background, about 20 times a second, which is about every 50 milliseconds. Next enter b =

tk.Button(root, text='button'); b.pack(). Again, nothing visibly changes in standard Python until one
enters root.update().

Most tkinter programs run root.mainloop(), which usually does not return until the tk app is destroyed. If the
program is run with python -i or from an IDLE editor, a >>> shell prompt does not appear until mainloop()
returns, at which time there is nothing left to interact with.

When running a tkinter program from an IDLE editor, one can comment out the mainloop call. One then gets a shell
prompt immediately and can interact with the live application. One just has to remember to re-enable the mainloop
call when running in standard Python.

Running without a subprocess

By default, IDLE executes user code in a separate subprocess via a socket, which uses the internal loopback interface.
This connection is not externally visible and no data is sent to or received from the internet. If firewall software
complains anyway, you can ignore it.

If the attempt to make the socket connection fails, Idle will notify you. Such failures are sometimes transient, but if
persistent, the problem may be either a firewall blocking the connection or misconfiguration of a particular system.
Until the problem is fixed, one can run Idle with the -n command line switch.

If IDLE is started with the -n command line switch it will run in a single process and will not create the subprocess
which runs the RPC Python execution server. This can be useful if Python cannot create the subprocess or the
RPC socket interface on your platform. However, in this mode user code is not isolated from IDLE itself. Also,
the environment is not restarted when Run/Run Module (F5) is selected. If your code has been modified, you must
reload() the affected modules and re-import any specific items (e.g. from foo import baz) if the changes are to take
effect. For these reasons, it is preferable to run IDLE with the default subprocess if at all possible.

Deprecated since version 3.4.

26.9.4 Help and Preferences

Help sources

Help menu entry “IDLE Help” displays a formatted html version of the IDLE chapter of the Library Reference. The
result, in a read-only tkinter text window, is close to what one sees in a web browser. Navigate through the text with
a mousewheel, the scrollbar, or up and down arrow keys held down. Or click the TOC (Table of Contents) button
and select a section header in the opened box.

Help menu entry “Python Docs” opens the extensive sources of help, including tutorials, available at docs.python.
org/x.y, where ‘x.y’ is the currently running Python version. If your system has an off-line copy of the docs (this
may be an installation option), that will be opened instead.

Selected URLs can be added or removed from the help menu at any time using the General tab of the Configure
IDLE dialog.

Setting preferences

The font preferences, highlighting, keys, and general preferences can be changed via Configure IDLE on the Option
menu. Non-default user settings are saved in a .idlerc directory in the user’s home directory. Problems caused by
bad user configuration files are solved by editing or deleting one or more of the files in .idlerc.

On the Font tab, see the text sample for the effect of font face and size on multiple characters in multiple languages.
Edit the sample to add other characters of personal interest. Use the sample to select monospaced fonts. If particular
characters have problems in Shell or an editor, add them to the top of the sample and try changing first size and then
font.

1644 Chapter 26. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.13.1

On the Highlights and Keys tab, select a built-in or custom color theme and key set. To use a newer built-in color
theme or key set with older IDLEs, save it as a new custom theme or key set and it well be accessible to older IDLEs.

IDLE on macOS

Under System Preferences: Dock, one can set “Prefer tabs when opening documents” to “Always”. This setting is not
compatible with the tk/tkinter GUI framework used by IDLE, and it breaks a few IDLE features.

Extensions

IDLE contains an extension facility. Preferences for extensions can be changed with the Extensions tab of the pref-
erences dialog. See the beginning of config-extensions.def in the idlelib directory for further information. The only
current default extension is zzdummy, an example also used for testing.

26.9.5 idlelib

Source code: Lib/idlelib

The Lib/idlelib package implements the IDLE application. See the rest of this page for how to use IDLE.

The files in idlelib are described in idlelib/README.txt. Access it either in idlelib or click Help => About IDLE on
the IDLE menu. This file also maps IDLE menu items to the code that implements the item. Except for files listed
under ‘Startup’, the idlelib code is ‘private’ in sense that feature changes can be backported (see PEP 434).

26.9. IDLE 1645

https://github.com/python/cpython/tree/3.13/Lib/idlelib
https://peps.python.org/pep-0434/

The Python Library Reference, Release 3.13.1

1646 Chapter 26. Graphical User Interfaces with Tk

CHAPTER

TWENTYSEVEN

DEVELOPMENT TOOLS

The modules described in this chapter help you write software. For example, the pydoc module takes a module and
generates documentation based on the module’s contents. The doctest and unittest modules contains frame-
works for writing unit tests that automatically exercise code and verify that the expected output is produced.

The list of modules described in this chapter is:

27.1 typing— Support for type hints

Added in version 3.5.

Source code: Lib/typing.py

Note

The Python runtime does not enforce function and variable type annotations. They can be used by third party
tools such as type checkers, IDEs, linters, etc.

This module provides runtime support for type hints.

Consider the function below:

def surface_area_of_cube(edge_length: float) -> str:

return f"The surface area of the cube is {6 * edge_length ** 2}."

The function surface_area_of_cube takes an argument expected to be an instance of float, as indicated by
the type hint edge_length: float. The function is expected to return an instance of str, as indicated by the ->
str hint.

While type hints can be simple classes like float or str, they can also be more complex. The typing module
provides a vocabulary of more advanced type hints.

New features are frequently added to the typing module. The typing_extensions package provides backports of
these new features to older versions of Python.

See also

“Typing cheat sheet”
A quick overview of type hints (hosted at the mypy docs)

“Type System Reference” section of the mypy docs
The Python typing system is standardised via PEPs, so this reference should broadly apply to most Python
type checkers. (Some parts may still be specific to mypy.)

1647

https://github.com/python/cpython/tree/3.13/Lib/typing.py
https://pypi.org/project/typing_extensions/
https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html
https://mypy.readthedocs.io/en/stable/index.html

The Python Library Reference, Release 3.13.1

“Static Typing with Python”
Type-checker-agnostic documentation written by the community detailing type system features, useful
typing related tools and typing best practices.

27.1.1 Specification for the Python Type System

The canonical, up-to-date specification of the Python type system can be found at “Specification for the Python type
system”.

27.1.2 Type aliases

A type alias is defined using the type statement, which creates an instance of TypeAliasType. In this example,
Vector and list[float] will be treated equivalently by static type checkers:

type Vector = list[float]

def scale(scalar: float, vector: Vector) -> Vector:

return [scalar * num for num in vector]

passes type checking; a list of floats qualifies as a Vector.

new_vector = scale(2.0, [1.0, -4.2, 5.4])

Type aliases are useful for simplifying complex type signatures. For example:

from collections.abc import Sequence

type ConnectionOptions = dict[str, str]

type Address = tuple[str, int]

type Server = tuple[Address, ConnectionOptions]

def broadcast_message(message: str, servers: Sequence[Server]) -> None:

...

The static type checker will treat the previous type signature as

being exactly equivalent to this one.

def broadcast_message(

message: str,

servers: Sequence[tuple[tuple[str, int], dict[str, str]]]

) -> None:

...

The type statement is new in Python 3.12. For backwards compatibility, type aliases can also be created through
simple assignment:

Vector = list[float]

Or marked with TypeAlias to make it explicit that this is a type alias, not a normal variable assignment:

from typing import TypeAlias

Vector: TypeAlias = list[float]

27.1.3 NewType

Use the NewType helper to create distinct types:

1648 Chapter 27. Development Tools

https://typing.readthedocs.io/en/latest/
https://typing.readthedocs.io/en/latest/spec/index.html
https://typing.readthedocs.io/en/latest/spec/index.html

The Python Library Reference, Release 3.13.1

from typing import NewType

UserId = NewType('UserId', int)

some_id = UserId(524313)

The static type checker will treat the new type as if it were a subclass of the original type. This is useful in helping
catch logical errors:

def get_user_name(user_id: UserId) -> str:

...

passes type checking

user_a = get_user_name(UserId(42351))

fails type checking; an int is not a UserId

user_b = get_user_name(-1)

You may still perform all int operations on a variable of type UserId, but the result will always be of type int.
This lets you pass in a UserId wherever an int might be expected, but will prevent you from accidentally creating
a UserId in an invalid way:

'output' is of type 'int', not 'UserId'

output = UserId(23413) + UserId(54341)

Note that these checks are enforced only by the static type checker. At runtime, the statement Derived =

NewType('Derived', Base) will make Derived a callable that immediately returns whatever parameter you
pass it. That means the expression Derived(some_value) does not create a new class or introduce much over-
head beyond that of a regular function call.

More precisely, the expression some_value is Derived(some_value) is always true at runtime.

It is invalid to create a subtype of Derived:

from typing import NewType

UserId = NewType('UserId', int)

Fails at runtime and does not pass type checking

class AdminUserId(UserId): pass

However, it is possible to create a NewType based on a ‘derived’ NewType:

from typing import NewType

UserId = NewType('UserId', int)

ProUserId = NewType('ProUserId', UserId)

and typechecking for ProUserId will work as expected.

See PEP 484 for more details.

Note

Recall that the use of a type alias declares two types to be equivalent to one another. Doing type Alias =

Original will make the static type checker treat Alias as being exactly equivalent to Original in all cases.
This is useful when you want to simplify complex type signatures.

In contrast, NewType declares one type to be a subtype of another. Doing Derived = NewType('Derived',

Original) will make the static type checker treat Derived as a subclass of Original, which means a value

27.1. typing— Support for type hints 1649

https://peps.python.org/pep-0484/

The Python Library Reference, Release 3.13.1

of type Original cannot be used in places where a value of type Derived is expected. This is useful when you
want to prevent logic errors with minimal runtime cost.

Added in version 3.5.2.

Changed in version 3.10: NewType is now a class rather than a function. As a result, there is some additional runtime
cost when calling NewType over a regular function.

Changed in version 3.11: The performance of calling NewType has been restored to its level in Python 3.9.

27.1.4 Annotating callable objects

Functions – or other callable objects – can be annotated using collections.abc.Callable or deprecated
typing.Callable. Callable[[int], str] signifies a function that takes a single parameter of type int and
returns a str.

For example:

from collections.abc import Callable, Awaitable

def feeder(get_next_item: Callable[[], str]) -> None:

... # Body

def async_query(on_success: Callable[[int], None],

on_error: Callable[[int, Exception], None]) -> None:

... # Body

async def on_update(value: str) -> None:

... # Body

callback: Callable[[str], Awaitable[None]] = on_update

The subscription syntax must always be used with exactly two values: the argument list and the return type. The
argument list must be a list of types, a ParamSpec, Concatenate, or an ellipsis. The return type must be a single
type.

If a literal ellipsis ... is given as the argument list, it indicates that a callable with any arbitrary parameter list would
be acceptable:

def concat(x: str, y: str) -> str:

return x + y

x: Callable[..., str]

x = str # OK

x = concat # Also OK

Callable cannot express complex signatures such as functions that take a variadic number of arguments, overloaded
functions, or functions that have keyword-only parameters. However, these signatures can be expressed by defining
a Protocol class with a __call__() method:

from collections.abc import Iterable

from typing import Protocol

class Combiner(Protocol):

def __call__(self, *vals: bytes, maxlen: int | None = None) -> list[bytes]: ...

def batch_proc(data: Iterable[bytes], cb_results: Combiner) -> bytes:

for item in data:

...

(continues on next page)

1650 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

def good_cb(*vals: bytes, maxlen: int | None = None) -> list[bytes]:

...

def bad_cb(*vals: bytes, maxitems: int | None) -> list[bytes]:

...

batch_proc([], good_cb) # OK

batch_proc([], bad_cb) # Error! Argument 2 has incompatible type because of

different name and kind in the callback

Callables which take other callables as arguments may indicate that their parameter types are dependent on each
other using ParamSpec. Additionally, if that callable adds or removes arguments from other callables, the
Concatenate operator may be used. They take the form Callable[ParamSpecVariable, ReturnType]

and Callable[Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable], ReturnType] re-
spectively.

Changed in version 3.10: Callable now supports ParamSpec and Concatenate. See PEP 612 for more details.

See also

The documentation for ParamSpec and Concatenate provides examples of usage in Callable.

27.1.5 Generics

Since type information about objects kept in containers cannot be statically inferred in a generic way, many container
classes in the standard library support subscription to denote the expected types of container elements.

from collections.abc import Mapping, Sequence

class Employee: ...

Sequence[Employee] indicates that all elements in the sequence

must be instances of "Employee".

Mapping[str, str] indicates that all keys and all values in the mapping

must be strings.

def notify_by_email(employees: Sequence[Employee],

overrides: Mapping[str, str]) -> None: ...

Generic functions and classes can be parameterized by using type parameter syntax:

from collections.abc import Sequence

def first[T](l: Sequence[T]) -> T: # Function is generic over the TypeVar "T"

return l[0]

Or by using the TypeVar factory directly:

from collections.abc import Sequence

from typing import TypeVar

U = TypeVar('U') # Declare type variable "U"

def second(l: Sequence[U]) -> U: # Function is generic over the TypeVar "U"

return l[1]

Changed in version 3.12: Syntactic support for generics is new in Python 3.12.

27.1. typing— Support for type hints 1651

https://peps.python.org/pep-0612/

The Python Library Reference, Release 3.13.1

27.1.6 Annotating tuples

For most containers in Python, the typing system assumes that all elements in the container will be of the same type.
For example:

from collections.abc import Mapping

Type checker will infer that all elements in ``x`` are meant to be ints

x: list[int] = []

Type checker error: ``list`` only accepts a single type argument:

y: list[int, str] = [1, 'foo']

Type checker will infer that all keys in ``z`` are meant to be strings,

and that all values in ``z`` are meant to be either strings or ints

z: Mapping[str, str | int] = {}

list only accepts one type argument, so a type checker would emit an error on the y assignment above. Similarly,
Mapping only accepts two type arguments: the first indicates the type of the keys, and the second indicates the type
of the values.

Unlike most other Python containers, however, it is common in idiomatic Python code for tuples to have elements
which are not all of the same type. For this reason, tuples are special-cased in Python’s typing system. tuple accepts
any number of type arguments:

OK: ``x`` is assigned to a tuple of length 1 where the sole element is an int

x: tuple[int] = (5,)

OK: ``y`` is assigned to a tuple of length 2;

element 1 is an int, element 2 is a str

y: tuple[int, str] = (5, "foo")

Error: the type annotation indicates a tuple of length 1,

but ``z`` has been assigned to a tuple of length 3

z: tuple[int] = (1, 2, 3)

To denote a tuple which could be of any length, and in which all elements are of the same type T, use tuple[T,
...]. To denote an empty tuple, use tuple[()]. Using plain tuple as an annotation is equivalent to using
tuple[Any, ...]:

x: tuple[int, ...] = (1, 2)

These reassignments are OK: ``tuple[int, ...]`` indicates x can be of any length

x = (1, 2, 3)

x = ()

This reassignment is an error: all elements in ``x`` must be ints

x = ("foo", "bar")

``y`` can only ever be assigned to an empty tuple

y: tuple[()] = ()

z: tuple = ("foo", "bar")

These reassignments are OK: plain ``tuple`` is equivalent to ``tuple[Any, ...]``

z = (1, 2, 3)

z = ()

1652 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

27.1.7 The type of class objects

A variable annotated with C may accept a value of type C. In contrast, a variable annotated with type[C] (or
deprecated typing.Type[C]) may accept values that are classes themselves – specifically, it will accept the class
object of C. For example:

a = 3 # Has type ``int``

b = int # Has type ``type[int]``

c = type(a) # Also has type ``type[int]``

Note that type[C] is covariant:

class User: ...

class ProUser(User): ...

class TeamUser(User): ...

def make_new_user(user_class: type[User]) -> User:

...

return user_class()

make_new_user(User) # OK

make_new_user(ProUser) # Also OK: ``type[ProUser]`` is a subtype of␣

↪→``type[User]``

make_new_user(TeamUser) # Still fine

make_new_user(User()) # Error: expected ``type[User]`` but got ``User``

make_new_user(int) # Error: ``type[int]`` is not a subtype of ``type[User]``

The only legal parameters for type are classes, Any, type variables, and unions of any of these types. For example:

def new_non_team_user(user_class: type[BasicUser | ProUser]): ...

new_non_team_user(BasicUser) # OK

new_non_team_user(ProUser) # OK

new_non_team_user(TeamUser) # Error: ``type[TeamUser]`` is not a subtype

of ``type[BasicUser | ProUser]``

new_non_team_user(User) # Also an error

type[Any] is equivalent to type, which is the root of Python’s metaclass hierarchy.

27.1.8 Annotating generators and coroutines

A generator can be annotated using the generic type Generator[YieldType, SendType, ReturnType]. For
example:

def echo_round() -> Generator[int, float, str]:

sent = yield 0

while sent >= 0:

sent = yield round(sent)

return 'Done'

Note that unlike many other generic classes in the standard library, the SendType of Generator behaves con-
travariantly, not covariantly or invariantly.

The SendType and ReturnType parameters default to None:

def infinite_stream(start: int) -> Generator[int]:

while True:

yield start

start += 1

27.1. typing— Support for type hints 1653

The Python Library Reference, Release 3.13.1

It is also possible to set these types explicitly:

def infinite_stream(start: int) -> Generator[int, None, None]:

while True:

yield start

start += 1

Simple generators that only ever yield values can also be annotated as having a return type of either
Iterable[YieldType] or Iterator[YieldType]:

def infinite_stream(start: int) -> Iterator[int]:

while True:

yield start

start += 1

Async generators are handled in a similar fashion, but don’t expect a ReturnType type argument
(AsyncGenerator[YieldType, SendType]). The SendType argument defaults to None, so the following def-
initions are equivalent:

async def infinite_stream(start: int) -> AsyncGenerator[int]:

while True:

yield start

start = await increment(start)

async def infinite_stream(start: int) -> AsyncGenerator[int, None]:

while True:

yield start

start = await increment(start)

As in the synchronous case, AsyncIterable[YieldType] and AsyncIterator[YieldType] are available as
well:

async def infinite_stream(start: int) -> AsyncIterator[int]:

while True:

yield start

start = await increment(start)

Coroutines can be annotated using Coroutine[YieldType, SendType, ReturnType]. Generic arguments
correspond to those of Generator, for example:

from collections.abc import Coroutine

c: Coroutine[list[str], str, int] # Some coroutine defined elsewhere

x = c.send('hi') # Inferred type of 'x' is list[str]

async def bar() -> None:

y = await c # Inferred type of 'y' is int

27.1.9 User-defined generic types

A user-defined class can be defined as a generic class.

from logging import Logger

class LoggedVar[T]:

def __init__(self, value: T, name: str, logger: Logger) -> None:

self.name = name

self.logger = logger

self.value = value

(continues on next page)

1654 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

def set(self, new: T) -> None:

self.log('Set ' + repr(self.value))

self.value = new

def get(self) -> T:

self.log('Get ' + repr(self.value))

return self.value

def log(self, message: str) -> None:

self.logger.info('%s: %s', self.name, message)

This syntax indicates that the class LoggedVar is parameterised around a single type variable T . This also makes T
valid as a type within the class body.

Generic classes implicitly inherit from Generic. For compatibility with Python 3.11 and lower, it is also possible
to inherit explicitly from Generic to indicate a generic class:

from typing import TypeVar, Generic

T = TypeVar('T')

class LoggedVar(Generic[T]):

...

Generic classes have __class_getitem__() methods, meaning they can be parameterised at runtime (e.g.
LoggedVar[int] below):

from collections.abc import Iterable

def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:

for var in vars:

var.set(0)

A generic type can have any number of type variables. All varieties of TypeVar are permissible as parameters for a
generic type:

from typing import TypeVar, Generic, Sequence

class WeirdTrio[T, B: Sequence[bytes], S: (int, str)]:

...

OldT = TypeVar('OldT', contravariant=True)

OldB = TypeVar('OldB', bound=Sequence[bytes], covariant=True)

OldS = TypeVar('OldS', int, str)

class OldWeirdTrio(Generic[OldT, OldB, OldS]):

...

Each type variable argument to Generic must be distinct. This is thus invalid:

from typing import TypeVar, Generic

...

class Pair[M, M]: # SyntaxError

...

T = TypeVar('T')

(continues on next page)

27.1. typing— Support for type hints 1655

The Python Library Reference, Release 3.13.1

(continued from previous page)

class Pair(Generic[T, T]): # INVALID

...

Generic classes can also inherit from other classes:

from collections.abc import Sized

class LinkedList[T](Sized):

...

When inheriting from generic classes, some type parameters could be fixed:

from collections.abc import Mapping

class MyDict[T](Mapping[str, T]):

...

In this case MyDict has a single parameter, T.

Using a generic class without specifying type parameters assumes Any for each position. In the following example,
MyIterable is not generic but implicitly inherits from Iterable[Any]:

from collections.abc import Iterable

class MyIterable(Iterable): # Same as Iterable[Any]

...

User-defined generic type aliases are also supported. Examples:

from collections.abc import Iterable

type Response[S] = Iterable[S] | int

Return type here is same as Iterable[str] | int

def response(query: str) -> Response[str]:

...

type Vec[T] = Iterable[tuple[T, T]]

def inproduct[T: (int, float, complex)](v: Vec[T]) -> T: # Same as␣

↪→Iterable[tuple[T, T]]

return sum(x*y for x, y in v)

For backward compatibility, generic type aliases can also be created through a simple assignment:

from collections.abc import Iterable

from typing import TypeVar

S = TypeVar("S")

Response = Iterable[S] | int

Changed in version 3.7: Generic no longer has a custom metaclass.

Changed in version 3.12: Syntactic support for generics and type aliases is new in version 3.12. Previously, generic
classes had to explicitly inherit from Generic or contain a type variable in one of their bases.

User-defined generics for parameter expressions are also supported via parameter specification variables in the form
[**P]. The behavior is consistent with type variables’ described above as parameter specification variables are treated

1656 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

by the typing module as a specialized type variable. The one exception to this is that a list of types can be used to
substitute a ParamSpec:

>>> class Z[T, **P]: ... # T is a TypeVar; P is a ParamSpec

...

>>> Z[int, [dict, float]]

__main__.Z[int, [dict, float]]

Classes generic over a ParamSpec can also be created using explicit inheritance from Generic. In this case, ** is
not used:

from typing import ParamSpec, Generic

P = ParamSpec('P')

class Z(Generic[P]):

...

Another difference between TypeVar and ParamSpec is that a generic with only one parameter specification vari-
able will accept parameter lists in the forms X[[Type1, Type2, ...]] and also X[Type1, Type2, ...] for
aesthetic reasons. Internally, the latter is converted to the former, so the following are equivalent:

>>> class X[**P]: ...

...

>>> X[int, str]

__main__.X[[int, str]]

>>> X[[int, str]]

__main__.X[[int, str]]

Note that generics with ParamSpecmay not have correct __parameters__ after substitution in some cases because
they are intended primarily for static type checking.

Changed in version 3.10: Generic can now be parameterized over parameter expressions. See ParamSpec and
PEP 612 for more details.

A user-defined generic class can have ABCs as base classes without a metaclass conflict. Generic metaclasses are
not supported. The outcome of parameterizing generics is cached, and most types in the typing module are hashable
and comparable for equality.

27.1.10 The Any type

A special kind of type is Any. A static type checker will treat every type as being compatible with Any and Any as
being compatible with every type.

This means that it is possible to perform any operation or method call on a value of type Any and assign it to any
variable:

from typing import Any

a: Any = None

a = [] # OK

a = 2 # OK

s: str = ''

s = a # OK

def foo(item: Any) -> int:

Passes type checking; 'item' could be any type,

and that type might have a 'bar' method

(continues on next page)

27.1. typing— Support for type hints 1657

https://peps.python.org/pep-0612/

The Python Library Reference, Release 3.13.1

(continued from previous page)

item.bar()

...

Notice that no type checking is performed when assigning a value of type Any to a more precise type. For example,
the static type checker did not report an error when assigning a to s even though s was declared to be of type str
and receives an int value at runtime!

Furthermore, all functions without a return type or parameter types will implicitly default to using Any:

def legacy_parser(text):

...

return data

A static type checker will treat the above

as having the same signature as:

def legacy_parser(text: Any) -> Any:

...

return data

This behavior allows Any to be used as an escape hatch when you need to mix dynamically and statically typed code.

Contrast the behavior of Any with the behavior of object. Similar to Any, every type is a subtype of object.
However, unlike Any, the reverse is not true: object is not a subtype of every other type.

That means when the type of a value is object, a type checker will reject almost all operations on it, and assigning
it to a variable (or using it as a return value) of a more specialized type is a type error. For example:

def hash_a(item: object) -> int:

Fails type checking; an object does not have a 'magic' method.

item.magic()

...

def hash_b(item: Any) -> int:

Passes type checking

item.magic()

...

Passes type checking, since ints and strs are subclasses of object

hash_a(42)

hash_a("foo")

Passes type checking, since Any is compatible with all types

hash_b(42)

hash_b("foo")

Use object to indicate that a value could be any type in a typesafe manner. Use Any to indicate that a value is
dynamically typed.

27.1.11 Nominal vs structural subtyping

Initially PEP 484 defined the Python static type system as using nominal subtyping. This means that a class A is
allowed where a class B is expected if and only if A is a subclass of B.

This requirement previously also applied to abstract base classes, such as Iterable. The problemwith this approach
is that a class had to be explicitly marked to support them, which is unpythonic and unlike what one would normally
do in idiomatic dynamically typed Python code. For example, this conforms to PEP 484:

from collections.abc import Sized, Iterable, Iterator

(continues on next page)

1658 Chapter 27. Development Tools

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/

The Python Library Reference, Release 3.13.1

(continued from previous page)

class Bucket(Sized, Iterable[int]):

...

def __len__(self) -> int: ...

def __iter__(self) -> Iterator[int]: ...

PEP 544 allows to solve this problem by allowing users to write the above code without explicit base classes in the
class definition, allowing Bucket to be implicitly considered a subtype of both Sized and Iterable[int] by
static type checkers. This is known as structural subtyping (or static duck-typing):

from collections.abc import Iterator, Iterable

class Bucket: # Note: no base classes

...

def __len__(self) -> int: ...

def __iter__(self) -> Iterator[int]: ...

def collect(items: Iterable[int]) -> int: ...

result = collect(Bucket()) # Passes type check

Moreover, by subclassing a special class Protocol, a user can define new custom protocols to fully enjoy structural
subtyping (see examples below).

27.1.12 Module contents

The typing module defines the following classes, functions and decorators.

Special typing primitives

Special types

These can be used as types in annotations. They do not support subscription using [].

typing.Any

Special type indicating an unconstrained type.

• Every type is compatible with Any.

• Any is compatible with every type.

Changed in version 3.11: Any can now be used as a base class. This can be useful for avoiding type checker
errors with classes that can duck type anywhere or are highly dynamic.

typing.AnyStr

A constrained type variable.

Definition:

AnyStr = TypeVar('AnyStr', str, bytes)

AnyStr is meant to be used for functions that may accept str or bytes arguments but cannot allow the two
to mix.

For example:

def concat(a: AnyStr, b: AnyStr) -> AnyStr:

return a + b

concat("foo", "bar") # OK, output has type 'str'

concat(b"foo", b"bar") # OK, output has type 'bytes'

concat("foo", b"bar") # Error, cannot mix str and bytes

27.1. typing— Support for type hints 1659

https://peps.python.org/pep-0544/

The Python Library Reference, Release 3.13.1

Note that, despite its name, AnyStr has nothing to do with the Any type, nor does it mean “any string”. In
particular, AnyStr and str | bytes are different from each other and have different use cases:

Invalid use of AnyStr:

The type variable is used only once in the function signature,

so cannot be "solved" by the type checker

def greet_bad(cond: bool) -> AnyStr:

return "hi there!" if cond else b"greetings!"

The better way of annotating this function:

def greet_proper(cond: bool) -> str | bytes:

return "hi there!" if cond else b"greetings!"

Deprecated since version 3.13, will be removed in version 3.18: Deprecated in favor of the new type parameter
syntax. Use class A[T: (str, bytes)]: ... instead of importing AnyStr. See PEP 695 for more
details.

In Python 3.16, AnyStr will be removed from typing.__all__, and deprecation warnings will be emitted
at runtime when it is accessed or imported from typing. AnyStr will be removed from typing in Python
3.18.

typing.LiteralString

Special type that includes only literal strings.

Any string literal is compatible with LiteralString, as is another LiteralString. However, an object
typed as just str is not. A string created by composing LiteralString-typed objects is also acceptable as
a LiteralString.

Example:

def run_query(sql: LiteralString) -> None:

...

def caller(arbitrary_string: str, literal_string: LiteralString) -> None:

run_query("SELECT * FROM students") # OK

run_query(literal_string) # OK

run_query("SELECT * FROM " + literal_string) # OK

run_query(arbitrary_string) # type checker error

run_query(# type checker error

f"SELECT * FROM students WHERE name = {arbitrary_string}"

)

LiteralString is useful for sensitive APIs where arbitrary user-generated strings could generate problems.
For example, the two cases above that generate type checker errors could be vulnerable to an SQL injection
attack.

See PEP 675 for more details.

Added in version 3.11.

typing.Never

typing.NoReturn

Never and NoReturn represent the bottom type, a type that has no members.

They can be used to indicate that a function never returns, such as sys.exit():

from typing import Never # or NoReturn

def stop() -> Never:

raise RuntimeError('no way')

Or to define a function that should never be called, as there are no valid arguments, such as assert_never():

1660 Chapter 27. Development Tools

https://peps.python.org/pep-0695/
https://peps.python.org/pep-0675/
https://en.wikipedia.org/wiki/Bottom_type

The Python Library Reference, Release 3.13.1

from typing import Never # or NoReturn

def never_call_me(arg: Never) -> None:

pass

def int_or_str(arg: int | str) -> None:

never_call_me(arg) # type checker error

match arg:

case int():

print("It's an int")

case str():

print("It's a str")

case _:

never_call_me(arg) # OK, arg is of type Never (or NoReturn)

Never and NoReturn have the same meaning in the type system and static type checkers treat both equiva-
lently.

Added in version 3.6.2: Added NoReturn.

Added in version 3.11: Added Never.

typing.Self

Special type to represent the current enclosed class.

For example:

from typing import Self, reveal_type

class Foo:

def return_self(self) -> Self:

...

return self

class SubclassOfFoo(Foo): pass

reveal_type(Foo().return_self()) # Revealed type is "Foo"

reveal_type(SubclassOfFoo().return_self()) # Revealed type is "SubclassOfFoo"

This annotation is semantically equivalent to the following, albeit in a more succinct fashion:

from typing import TypeVar

Self = TypeVar("Self", bound="Foo")

class Foo:

def return_self(self: Self) -> Self:

...

return self

In general, if something returns self, as in the above examples, you should use Self as the return annotation.
If Foo.return_selfwas annotated as returning "Foo", then the type checker would infer the object returned
from SubclassOfFoo.return_self as being of type Foo rather than SubclassOfFoo.

Other common use cases include:

• classmethods that are used as alternative constructors and return instances of the cls parameter.

• Annotating an __enter__() method which returns self.

You should not use Self as the return annotation if the method is not guaranteed to return an instance of a
subclass when the class is subclassed:

27.1. typing— Support for type hints 1661

The Python Library Reference, Release 3.13.1

class Eggs:

Self would be an incorrect return annotation here,

as the object returned is always an instance of Eggs,

even in subclasses

def returns_eggs(self) -> "Eggs":

return Eggs()

See PEP 673 for more details.

Added in version 3.11.

typing.TypeAlias

Special annotation for explicitly declaring a type alias.

For example:

from typing import TypeAlias

Factors: TypeAlias = list[int]

TypeAlias is particularly useful on older Python versions for annotating aliases that make use of forward
references, as it can be hard for type checkers to distinguish these from normal variable assignments:

from typing import Generic, TypeAlias, TypeVar

T = TypeVar("T")

"Box" does not exist yet,

so we have to use quotes for the forward reference on Python <3.12.

Using ``TypeAlias`` tells the type checker that this is a type alias␣

↪→declaration,

not a variable assignment to a string.

BoxOfStrings: TypeAlias = "Box[str]"

class Box(Generic[T]):

@classmethod

def make_box_of_strings(cls) -> BoxOfStrings: ...

See PEP 613 for more details.

Added in version 3.10.

Deprecated since version 3.12: TypeAlias is deprecated in favor of the type statement, which creates in-
stances of TypeAliasType and which natively supports forward references. Note that while TypeAlias and
TypeAliasType serve similar purposes and have similar names, they are distinct and the latter is not the type
of the former. Removal of TypeAlias is not currently planned, but users are encouraged to migrate to type
statements.

Special forms

These can be used as types in annotations. They all support subscription using [], but each has a unique syntax.

typing.Union

Union type; Union[X, Y] is equivalent to X | Y and means either X or Y.

To define a union, use e.g. Union[int, str] or the shorthand int | str. Using that shorthand is rec-
ommended. Details:

• The arguments must be types and there must be at least one.

• Unions of unions are flattened, e.g.:

1662 Chapter 27. Development Tools

https://peps.python.org/pep-0673/
https://peps.python.org/pep-0613/

The Python Library Reference, Release 3.13.1

Union[Union[int, str], float] == Union[int, str, float]

• Unions of a single argument vanish, e.g.:

Union[int] == int # The constructor actually returns int

• Redundant arguments are skipped, e.g.:

Union[int, str, int] == Union[int, str] == int | str

• When comparing unions, the argument order is ignored, e.g.:

Union[int, str] == Union[str, int]

• You cannot subclass or instantiate a Union.

• You cannot write Union[X][Y].

Changed in version 3.7: Don’t remove explicit subclasses from unions at runtime.

Changed in version 3.10: Unions can now be written as X | Y. See union type expressions.

typing.Optional

Optional[X] is equivalent to X | None (or Union[X, None]).

Note that this is not the same concept as an optional argument, which is one that has a default. An optional
argument with a default does not require the Optional qualifier on its type annotation just because it is
optional. For example:

def foo(arg: int = 0) -> None:

...

On the other hand, if an explicit value of None is allowed, the use of Optional is appropriate, whether the
argument is optional or not. For example:

def foo(arg: Optional[int] = None) -> None:

...

Changed in version 3.10: Optional can now be written as X | None. See union type expressions.

typing.Concatenate

Special form for annotating higher-order functions.

Concatenate can be used in conjunction with Callable and ParamSpec to annotate a higher-order
callable which adds, removes, or transforms parameters of another callable. Usage is in the form
Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable]. Concatenate is currently only
valid when used as the first argument to aCallable. The last parameter to Concatenatemust be a ParamSpec
or ellipsis (...).

For example, to annotate a decorator with_lock which provides a threading.Lock to the decorated func-
tion, Concatenate can be used to indicate that with_lock expects a callable which takes in a Lock as the
first argument, and returns a callable with a different type signature. In this case, the ParamSpec indicates
that the returned callable’s parameter types are dependent on the parameter types of the callable being passed
in:

from collections.abc import Callable

from threading import Lock

from typing import Concatenate

Use this lock to ensure that only one thread is executing a function

at any time.

(continues on next page)

27.1. typing— Support for type hints 1663

The Python Library Reference, Release 3.13.1

(continued from previous page)

my_lock = Lock()

def with_lock[**P, R](f: Callable[Concatenate[Lock, P], R]) -> Callable[P, R]:

'''A type-safe decorator which provides a lock.'''

def inner(*args: P.args, **kwargs: P.kwargs) -> R:

Provide the lock as the first argument.

return f(my_lock, *args, **kwargs)

return inner

@with_lock

def sum_threadsafe(lock: Lock, numbers: list[float]) -> float:

'''Add a list of numbers together in a thread-safe manner.'''

with lock:

return sum(numbers)

We don't need to pass in the lock ourselves thanks to the decorator.

sum_threadsafe([1.1, 2.2, 3.3])

Added in version 3.10.

See also

• PEP 612 – Parameter Specification Variables (the PEP which introduced ParamSpec and
Concatenate)

• ParamSpec

• Annotating callable objects

typing.Literal

Special typing form to define “literal types”.

Literal can be used to indicate to type checkers that the annotated object has a value equivalent to one of
the provided literals.

For example:

def validate_simple(data: Any) -> Literal[True]: # always returns True

...

type Mode = Literal['r', 'rb', 'w', 'wb']

def open_helper(file: str, mode: Mode) -> str:

...

open_helper('/some/path', 'r') # Passes type check

open_helper('/other/path', 'typo') # Error in type checker

Literal[...] cannot be subclassed. At runtime, an arbitrary value is allowed as type argument to
Literal[...], but type checkers may impose restrictions. See PEP 586 for more details about literal
types.

Added in version 3.8.

Changed in version 3.9.1: Literal now de-duplicates parameters. Equality comparisons of Literal objects
are no longer order dependent. Literal objects will now raise a TypeError exception during equality
comparisons if one of their parameters are not hashable.

typing.ClassVar

Special type construct to mark class variables.

1664 Chapter 27. Development Tools

https://peps.python.org/pep-0612/
https://peps.python.org/pep-0586/

The Python Library Reference, Release 3.13.1

As introduced inPEP526, a variable annotationwrapped in ClassVar indicates that a given attribute is intended
to be used as a class variable and should not be set on instances of that class. Usage:

class Starship:

stats: ClassVar[dict[str, int]] = {} # class variable

damage: int = 10 # instance variable

ClassVar accepts only types and cannot be further subscribed.

ClassVar is not a class itself, and should not be used with isinstance() or issubclass(). ClassVar
does not change Python runtime behavior, but it can be used by third-party type checkers. For example, a type
checker might flag the following code as an error:

enterprise_d = Starship(3000)

enterprise_d.stats = {} # Error, setting class variable on instance

Starship.stats = {} # This is OK

Added in version 3.5.3.

Changed in version 3.13: ClassVar can now be nested in Final and vice versa.

typing.Final

Special typing construct to indicate final names to type checkers.

Final names cannot be reassigned in any scope. Final names declared in class scopes cannot be overridden in
subclasses.

For example:

MAX_SIZE: Final = 9000

MAX_SIZE += 1 # Error reported by type checker

class Connection:

TIMEOUT: Final[int] = 10

class FastConnector(Connection):

TIMEOUT = 1 # Error reported by type checker

There is no runtime checking of these properties. See PEP 591 for more details.

Added in version 3.8.

Changed in version 3.13: Final can now be nested in ClassVar and vice versa.

typing.Required

Special typing construct to mark a TypedDict key as required.

This is mainly useful for total=False TypedDicts. See TypedDict and PEP 655 for more details.

Added in version 3.11.

typing.NotRequired

Special typing construct to mark a TypedDict key as potentially missing.

See TypedDict and PEP 655 for more details.

Added in version 3.11.

typing.ReadOnly

A special typing construct to mark an item of a TypedDict as read-only.

For example:

27.1. typing— Support for type hints 1665

https://peps.python.org/pep-0526/
https://peps.python.org/pep-0591/
https://peps.python.org/pep-0655/
https://peps.python.org/pep-0655/

The Python Library Reference, Release 3.13.1

class Movie(TypedDict):

title: ReadOnly[str]

year: int

def mutate_movie(m: Movie) -> None:

m["year"] = 1999 # allowed

m["title"] = "The Matrix" # typechecker error

There is no runtime checking for this property.

See TypedDict and PEP 705 for more details.

Added in version 3.13.

typing.Annotated

Special typing form to add context-specific metadata to an annotation.

Add metadata x to a given type T by using the annotation Annotated[T, x]. Metadata added using
Annotated can be used by static analysis tools or at runtime. At runtime, the metadata is stored in a
__metadata__ attribute.

If a library or tool encounters an annotation Annotated[T, x] and has no special logic for the metadata, it
should ignore the metadata and simply treat the annotation as T. As such, Annotated can be useful for code
that wants to use annotations for purposes outside Python’s static typing system.

Using Annotated[T, x] as an annotation still allows for static typechecking of T, as type checkers will
simply ignore the metadata x. In this way, Annotated differs from the @no_type_check decorator, which
can also be used for adding annotations outside the scope of the typing system, but completely disables type-
checking for a function or class.

The responsibility of how to interpret the metadata lies with the tool or library encountering an Annotated
annotation. A tool or library encountering an Annotated type can scan through the metadata elements to
determine if they are of interest (e.g., using isinstance()).

Annotated[<type>, <metadata>]

Here is an example of how you might use Annotated to add metadata to type annotations if you were doing
range analysis:

@dataclass

class ValueRange:

lo: int

hi: int

T1 = Annotated[int, ValueRange(-10, 5)]

T2 = Annotated[T1, ValueRange(-20, 3)]

Details of the syntax:

• The first argument to Annotated must be a valid type

• Multiple metadata elements can be supplied (Annotated supports variadic arguments):

@dataclass

class ctype:

kind: str

Annotated[int, ValueRange(3, 10), ctype("char")]

It is up to the tool consuming the annotations to decide whether the client is allowed to add multiple
metadata elements to one annotation and how to merge those annotations.

• Annotated must be subscripted with at least two arguments (Annotated[int] is not valid)

1666 Chapter 27. Development Tools

https://peps.python.org/pep-0705/

The Python Library Reference, Release 3.13.1

• The order of the metadata elements is preserved and matters for equality checks:

assert Annotated[int, ValueRange(3, 10), ctype("char")] != Annotated[

int, ctype("char"), ValueRange(3, 10)

]

• Nested Annotated types are flattened. The order of the metadata elements starts with the innermost
annotation:

assert Annotated[Annotated[int, ValueRange(3, 10)], ctype("char")] ==␣

↪→Annotated[

int, ValueRange(3, 10), ctype("char")

]

• Duplicated metadata elements are not removed:

assert Annotated[int, ValueRange(3, 10)] != Annotated[

int, ValueRange(3, 10), ValueRange(3, 10)

]

• Annotated can be used with nested and generic aliases:

@dataclass

class MaxLen:

value: int

type Vec[T] = Annotated[list[tuple[T, T]], MaxLen(10)]

When used in a type annotation, a type checker will treat "V" the same as

``Annotated[list[tuple[int, int]], MaxLen(10)]``:

type V = Vec[int]

• Annotated cannot be used with an unpacked TypeVarTuple:

type Variadic[*Ts] = Annotated[*Ts, Ann1] # NOT valid

This would be equivalent to:

Annotated[T1, T2, T3, ..., Ann1]

where T1, T2, etc. are TypeVars. This would be invalid: only one type should be passed to Annotated.

• By default, get_type_hints() strips the metadata from annotations. Pass include_extras=True
to have the metadata preserved:

>>> from typing import Annotated, get_type_hints

>>> def func(x: Annotated[int, "metadata"]) -> None: pass

...

>>> get_type_hints(func)

{'x': <class 'int'>, 'return': <class 'NoneType'>}

>>> get_type_hints(func, include_extras=True)

{'x': typing.Annotated[int, 'metadata'], 'return': <class 'NoneType'>}

• At runtime, the metadata associated with an Annotated type can be retrieved via the __metadata__
attribute:

>>> from typing import Annotated

>>> X = Annotated[int, "very", "important", "metadata"]

>>> X

(continues on next page)

27.1. typing— Support for type hints 1667

The Python Library Reference, Release 3.13.1

(continued from previous page)

typing.Annotated[int, 'very', 'important', 'metadata']

>>> X.__metadata__

('very', 'important', 'metadata')

• At runtime, if you want to retrieve the original type wrapped by Annotated, use the __origin__
attribute:

>>> from typing import Annotated, get_origin

>>> Password = Annotated[str, "secret"]

>>> Password.__origin__

<class 'str'>

Note that using get_origin() will return Annotated itself:

>>> get_origin(Password)

typing.Annotated

See also

PEP 593 - Flexible function and variable annotations
The PEP introducing Annotated to the standard library.

Added in version 3.9.

typing.TypeIs

Special typing construct for marking user-defined type predicate functions.

TypeIs can be used to annotate the return type of a user-defined type predicate function. TypeIs only accepts
a single type argument. At runtime, functions marked this way should return a boolean and take at least one
positional argument.

TypeIs aims to benefit type narrowing – a technique used by static type checkers to determine a more precise
type of an expression within a program’s code flow. Usually type narrowing is done by analyzing conditional
code flow and applying the narrowing to a block of code. The conditional expression here is sometimes referred
to as a “type predicate”:

def is_str(val: str | float):

"isinstance" type predicate

if isinstance(val, str):

Type of ``val`` is narrowed to ``str``

...

else:

Else, type of ``val`` is narrowed to ``float``.

...

Sometimes it would be convenient to use a user-defined boolean function as a type predicate. Such a function
should use TypeIs[...] or TypeGuard as its return type to alert static type checkers to this intention.
TypeIs usually has more intuitive behavior than TypeGuard, but it cannot be used when the input and output
types are incompatible (e.g., list[object] to list[int]) or when the function does not return True for
all instances of the narrowed type.

Using -> TypeIs[NarrowedType] tells the static type checker that for a given function:

1. The return value is a boolean.

2. If the return value is True, the type of its argument is the intersection of the argument’s original type
and NarrowedType.

3. If the return value is False, the type of its argument is narrowed to exclude NarrowedType.

1668 Chapter 27. Development Tools

https://peps.python.org/pep-0593/

The Python Library Reference, Release 3.13.1

For example:

from typing import assert_type, final, TypeIs

class Parent: pass

class Child(Parent): pass

@final

class Unrelated: pass

def is_parent(val: object) -> TypeIs[Parent]:

return isinstance(val, Parent)

def run(arg: Child | Unrelated):

if is_parent(arg):

Type of ``arg`` is narrowed to the intersection

of ``Parent`` and ``Child``, which is equivalent to

``Child``.

assert_type(arg, Child)

else:

Type of ``arg`` is narrowed to exclude ``Parent``,

so only ``Unrelated`` is left.

assert_type(arg, Unrelated)

The type inside TypeIs must be consistent with the type of the function’s argument; if it is not, static type
checkers will raise an error. An incorrectly written TypeIs function can lead to unsound behavior in the type
system; it is the user’s responsibility to write such functions in a type-safe manner.

If a TypeIs function is a class or instance method, then the type in TypeIs maps to the type of the second
parameter (after cls or self).

In short, the form def foo(arg: TypeA) -> TypeIs[TypeB]: ..., means that if foo(arg) returns
True, then arg is an instance of TypeB, and if it returns False, it is not an instance of TypeB.

TypeIs also works with type variables. For more information, see PEP 742 (Narrowing types with TypeIs).

Added in version 3.13.

typing.TypeGuard

Special typing construct for marking user-defined type predicate functions.

Type predicate functions are user-defined functions that return whether their argument is an instance of a
particular type. TypeGuard works similarly to TypeIs, but has subtly different effects on type checking
behavior (see below).

Using -> TypeGuard tells the static type checker that for a given function:

1. The return value is a boolean.

2. If the return value is True, the type of its argument is the type inside TypeGuard.

TypeGuard also works with type variables. See PEP 647 for more details.

For example:

def is_str_list(val: list[object]) -> TypeGuard[list[str]]:

'''Determines whether all objects in the list are strings'''

return all(isinstance(x, str) for x in val)

def func1(val: list[object]):

if is_str_list(val):

Type of ``val`` is narrowed to ``list[str]``.

print(" ".join(val))

else:

(continues on next page)

27.1. typing— Support for type hints 1669

https://peps.python.org/pep-0742/
https://peps.python.org/pep-0647/

The Python Library Reference, Release 3.13.1

(continued from previous page)

Type of ``val`` remains as ``list[object]``.

print("Not a list of strings!")

TypeIs and TypeGuard differ in the following ways:

• TypeIs requires the narrowed type to be a subtype of the input type, while TypeGuard does not. The
main reason is to allow for things like narrowing list[object] to list[str] even though the latter
is not a subtype of the former, since list is invariant.

• When a TypeGuard function returns True, type checkers narrow the type of the variable to exactly the
TypeGuard type. When a TypeIs function returns True, type checkers can infer a more precise type
combining the previously known type of the variable with the TypeIs type. (Technically, this is known
as an intersection type.)

• When a TypeGuard function returns False, type checkers cannot narrow the type of the variable at all.
When a TypeIs function returns False, type checkers can narrow the type of the variable to exclude
the TypeIs type.

Added in version 3.10.

typing.Unpack

Typing operator to conceptually mark an object as having been unpacked.

For example, using the unpack operator * on a type variable tuple is equivalent to using Unpack to mark the
type variable tuple as having been unpacked:

Ts = TypeVarTuple('Ts')

tup: tuple[*Ts]

Effectively does:

tup: tuple[Unpack[Ts]]

In fact, Unpack can be used interchangeably with * in the context of typing.TypeVarTuple and
builtins.tuple types. You might see Unpack being used explicitly in older versions of Python, where
* couldn’t be used in certain places:

In older versions of Python, TypeVarTuple and Unpack

are located in the `typing_extensions` backports package.

from typing_extensions import TypeVarTuple, Unpack

Ts = TypeVarTuple('Ts')

tup: tuple[*Ts] # Syntax error on Python <= 3.10!

tup: tuple[Unpack[Ts]] # Semantically equivalent, and backwards-compatible

Unpack can also be used along with typing.TypedDict for typing **kwargs in a function signature:

from typing import TypedDict, Unpack

class Movie(TypedDict):

name: str

year: int

This function expects two keyword arguments - `name` of type `str`

and `year` of type `int`.

def foo(**kwargs: Unpack[Movie]): ...

See PEP 692 for more details on using Unpack for **kwargs typing.

Added in version 3.11.

1670 Chapter 27. Development Tools

https://peps.python.org/pep-0692/

The Python Library Reference, Release 3.13.1

Building generic types and type aliases

The following classes should not be used directly as annotations. Their intended purpose is to be building blocks for
creating generic types and type aliases.

These objects can be created through special syntax (type parameter lists and the type statement). For compatibility
with Python 3.11 and earlier, they can also be created without the dedicated syntax, as documented below.

class typing.Generic

Abstract base class for generic types.

A generic type is typically declared by adding a list of type parameters after the class name:

class Mapping[KT, VT]:

def __getitem__(self, key: KT) -> VT:

...

Etc.

Such a class implicitly inherits from Generic. The runtime semantics of this syntax are discussed in the
Language Reference.

This class can then be used as follows:

def lookup_name[X, Y](mapping: Mapping[X, Y], key: X, default: Y) -> Y:

try:

return mapping[key]

except KeyError:

return default

Here the brackets after the function name indicate a generic function.

For backwards compatibility, generic classes can also be declared by explicitly inheriting from Generic. In
this case, the type parameters must be declared separately:

KT = TypeVar('KT')

VT = TypeVar('VT')

class Mapping(Generic[KT, VT]):

def __getitem__(self, key: KT) -> VT:

...

Etc.

class typing.TypeVar(name, *constraints, bound=None, covariant=False, contravariant=False,
infer_variance=False, default=typing.NoDefault)

Type variable.

The preferred way to construct a type variable is via the dedicated syntax for generic functions, generic classes,
and generic type aliases:

class Sequence[T]: # T is a TypeVar

...

This syntax can also be used to create bounded and constrained type variables:

class StrSequence[S: str]: # S is a TypeVar with a `str` upper bound;

... # we can say that S is "bounded by `str`"

class StrOrBytesSequence[A: (str, bytes)]: # A is a TypeVar constrained to␣

↪→str or bytes

...

27.1. typing— Support for type hints 1671

The Python Library Reference, Release 3.13.1

However, if desired, reusable type variables can also be constructed manually, like so:

T = TypeVar('T') # Can be anything

S = TypeVar('S', bound=str) # Can be any subtype of str

A = TypeVar('A', str, bytes) # Must be exactly str or bytes

Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic
types as well as for generic function and type alias definitions. See Generic for more information on generic
types. Generic functions work as follows:

def repeat[T](x: T, n: int) -> Sequence[T]:

"""Return a list containing n references to x."""

return [x]*n

def print_capitalized[S: str](x: S) -> S:

"""Print x capitalized, and return x."""

print(x.capitalize())

return x

def concatenate[A: (str, bytes)](x: A, y: A) -> A:

"""Add two strings or bytes objects together."""

return x + y

Note that type variables can be bounded, constrained, or neither, but cannot be both bounded and constrained.

The variance of type variables is inferred by type checkers when they are created through the type parameter
syntax or when infer_variance=True is passed. Manually created type variables may be explicitly marked
covariant or contravariant by passing covariant=True or contravariant=True. By default, manually
created type variables are invariant. See PEP 484 and PEP 695 for more details.

Bounded type variables and constrained type variables have different semantics in several important ways.
Using a bounded type variable means that the TypeVar will be solved using the most specific type possible:

x = print_capitalized('a string')

reveal_type(x) # revealed type is str

class StringSubclass(str):

pass

y = print_capitalized(StringSubclass('another string'))

reveal_type(y) # revealed type is StringSubclass

z = print_capitalized(45) # error: int is not a subtype of str

The upper bound of a type variable can be a concrete type, abstract type (ABC or Protocol), or even a union
of types:

Can be anything with an __abs__ method

def print_abs[T: SupportsAbs](arg: T) -> None:

print("Absolute value:", abs(arg))

U = TypeVar('U', bound=str|bytes) # Can be any subtype of the union str|bytes

V = TypeVar('V', bound=SupportsAbs) # Can be anything with an __abs__ method

Using a constrained type variable, however, means that the TypeVar can only ever be solved as being exactly
one of the constraints given:

1672 Chapter 27. Development Tools

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0695/

The Python Library Reference, Release 3.13.1

a = concatenate('one', 'two')

reveal_type(a) # revealed type is str

b = concatenate(StringSubclass('one'), StringSubclass('two'))

reveal_type(b) # revealed type is str, despite StringSubclass being passed in

c = concatenate('one', b'two') # error: type variable 'A' can be either str␣

↪→or bytes in a function call, but not both

At runtime, isinstance(x, T) will raise TypeError.

__name__

The name of the type variable.

__covariant__

Whether the type var has been explicitly marked as covariant.

__contravariant__

Whether the type var has been explicitly marked as contravariant.

__infer_variance__

Whether the type variable’s variance should be inferred by type checkers.

Added in version 3.12.

__bound__

The upper bound of the type variable, if any.

Changed in version 3.12: For type variables created through type parameter syntax, the bound is evalu-
ated only when the attribute is accessed, not when the type variable is created (see lazy-evaluation).

__constraints__

A tuple containing the constraints of the type variable, if any.

Changed in version 3.12: For type variables created through type parameter syntax, the constraints are
evaluated only when the attribute is accessed, not when the type variable is created (see lazy-evaluation).

__default__

The default value of the type variable, or typing.NoDefault if it has no default.

Added in version 3.13.

has_default()

Return whether or not the type variable has a default value. This is equivalent to checking whether
__default__ is not the typing.NoDefault singleton, except that it does not force evaluation of the
lazily evaluated default value.

Added in version 3.13.

Changed in version 3.12: Type variables can now be declared using the type parameter syntax introduced by
PEP 695. The infer_variance parameter was added.

Changed in version 3.13: Support for default values was added.

class typing.TypeVarTuple(name, *, default=typing.NoDefault)
Type variable tuple. A specialized form of type variable that enables variadic generics.

Type variable tuples can be declared in type parameter lists using a single asterisk (*) before the name:

def move_first_element_to_last[T, *Ts](tup: tuple[T, *Ts]) -> tuple[*Ts, T]:

return (*tup[1:], tup[0])

Or by explicitly invoking the TypeVarTuple constructor:

27.1. typing— Support for type hints 1673

https://peps.python.org/pep-0695/

The Python Library Reference, Release 3.13.1

T = TypeVar("T")

Ts = TypeVarTuple("Ts")

def move_first_element_to_last(tup: tuple[T, *Ts]) -> tuple[*Ts, T]:

return (*tup[1:], tup[0])

A normal type variable enables parameterization with a single type. A type variable tuple, in contrast, al-
lows parameterization with an arbitrary number of types by acting like an arbitrary number of type variables
wrapped in a tuple. For example:

T is bound to int, Ts is bound to ()

Return value is (1,), which has type tuple[int]

move_first_element_to_last(tup=(1,))

T is bound to int, Ts is bound to (str,)

Return value is ('spam', 1), which has type tuple[str, int]

move_first_element_to_last(tup=(1, 'spam'))

T is bound to int, Ts is bound to (str, float)

Return value is ('spam', 3.0, 1), which has type tuple[str, float, int]

move_first_element_to_last(tup=(1, 'spam', 3.0))

This fails to type check (and fails at runtime)

because tuple[()] is not compatible with tuple[T, *Ts]

(at least one element is required)

move_first_element_to_last(tup=())

Note the use of the unpacking operator * in tuple[T, *Ts]. Conceptually, you can think of Ts as a tuple
of type variables (T1, T2, ...). tuple[T, *Ts] would then become tuple[T, *(T1, T2, ...)],
which is equivalent to tuple[T, T1, T2, ...]. (Note that in older versions of Python, you might see this
written using Unpack instead, as Unpack[Ts].)

Type variable tuples must always be unpacked. This helps distinguish type variable tuples from normal type
variables:

x: Ts # Not valid

x: tuple[Ts] # Not valid

x: tuple[*Ts] # The correct way to do it

Type variable tuples can be used in the same contexts as normal type variables. For example, in class definitions,
arguments, and return types:

class Array[*Shape]:

def __getitem__(self, key: tuple[*Shape]) -> float: ...

def __abs__(self) -> "Array[*Shape]": ...

def get_shape(self) -> tuple[*Shape]: ...

Type variable tuples can be happily combined with normal type variables:

class Array[DType, *Shape]: # This is fine

pass

class Array2[*Shape, DType]: # This would also be fine

pass

class Height: ...

class Width: ...

(continues on next page)

1674 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

float_array_1d: Array[float, Height] = Array() # Totally fine

int_array_2d: Array[int, Height, Width] = Array() # Yup, fine too

However, note that at most one type variable tuple may appear in a single list of type arguments or type
parameters:

x: tuple[*Ts, *Ts] # Not valid

class Array[*Shape, *Shape]: # Not valid

pass

Finally, an unpacked type variable tuple can be used as the type annotation of *args:

def call_soon[*Ts](

callback: Callable[[*Ts], None],

*args: *Ts

) -> None:

...

callback(*args)

In contrast to non-unpacked annotations of *args - e.g. *args: int, which would specify that all arguments
are int - *args: *Ts enables reference to the types of the individual arguments in *args. Here, this allows
us to ensure the types of the *args passed to call_soon match the types of the (positional) arguments of
callback.

See PEP 646 for more details on type variable tuples.

__name__

The name of the type variable tuple.

__default__

The default value of the type variable tuple, or typing.NoDefault if it has no default.

Added in version 3.13.

has_default()

Return whether or not the type variable tuple has a default value. This is equivalent to checking whether
__default__ is not the typing.NoDefault singleton, except that it does not force evaluation of the
lazily evaluated default value.

Added in version 3.13.

Added in version 3.11.

Changed in version 3.12: Type variable tuples can now be declared using the type parameter syntax introduced
by PEP 695.

Changed in version 3.13: Support for default values was added.

class typing.ParamSpec(name, *, bound=None, covariant=False, contravariant=False,
default=typing.NoDefault)

Parameter specification variable. A specialized version of type variables.

In type parameter lists, parameter specifications can be declared with two asterisks (**):

type IntFunc[**P] = Callable[P, int]

For compatibility with Python 3.11 and earlier, ParamSpec objects can also be created as follows:

P = ParamSpec('P')

Parameter specification variables exist primarily for the benefit of static type checkers. They are used to forward
the parameter types of one callable to another callable – a pattern commonly found in higher order functions

27.1. typing— Support for type hints 1675

https://peps.python.org/pep-0646/
https://peps.python.org/pep-0695/

The Python Library Reference, Release 3.13.1

and decorators. They are only valid when used in Concatenate, or as the first argument to Callable, or as
parameters for user-defined Generics. See Generic for more information on generic types.

For example, to add basic logging to a function, one can create a decorator add_logging to log function calls.
The parameter specification variable tells the type checker that the callable passed into the decorator and the
new callable returned by it have inter-dependent type parameters:

from collections.abc import Callable

import logging

def add_logging[T, **P](f: Callable[P, T]) -> Callable[P, T]:

'''A type-safe decorator to add logging to a function.'''

def inner(*args: P.args, **kwargs: P.kwargs) -> T:

logging.info(f'{f.__name__} was called')

return f(*args, **kwargs)

return inner

@add_logging

def add_two(x: float, y: float) -> float:

'''Add two numbers together.'''

return x + y

Without ParamSpec, the simplest way to annotate this previously was to use a TypeVar with upper bound
Callable[..., Any]. However this causes two problems:

1. The type checker can’t type check the inner function because *args and **kwargs have to be typed
Any.

2. cast()may be required in the body of the add_logging decorator when returning the inner function,
or the static type checker must be told to ignore the return inner.

args

kwargs

Since ParamSpec captures both positional and keyword parameters, P.args and P.kwargs can be
used to split a ParamSpec into its components. P.args represents the tuple of positional parame-
ters in a given call and should only be used to annotate *args. P.kwargs represents the mapping of
keyword parameters to their values in a given call, and should be only be used to annotate **kwargs.
Both attributes require the annotated parameter to be in scope. At runtime, P.args and P.kwargs are
instances respectively of ParamSpecArgs and ParamSpecKwargs.

__name__

The name of the parameter specification.

__default__

The default value of the parameter specification, or typing.NoDefault if it has no default.

Added in version 3.13.

has_default()

Return whether or not the parameter specification has a default value. This is equivalent to checking
whether __default__ is not the typing.NoDefault singleton, except that it does not force evaluation
of the lazily evaluated default value.

Added in version 3.13.

Parameter specification variables created with covariant=True or contravariant=True can be used to
declare covariant or contravariant generic types. The bound argument is also accepted, similar to TypeVar.
However the actual semantics of these keywords are yet to be decided.

Added in version 3.10.

Changed in version 3.12: Parameter specifications can now be declared using the type parameter syntax in-
troduced by PEP 695.

1676 Chapter 27. Development Tools

https://peps.python.org/pep-0695/

The Python Library Reference, Release 3.13.1

Changed in version 3.13: Support for default values was added.

Note

Only parameter specification variables defined in global scope can be pickled.

See also

• PEP 612 – Parameter Specification Variables (the PEP which introduced ParamSpec and
Concatenate)

• Concatenate

• Annotating callable objects

typing.ParamSpecArgs

typing.ParamSpecKwargs

Arguments and keyword arguments attributes of a ParamSpec. The P.args attribute of a ParamSpec is an
instance of ParamSpecArgs, and P.kwargs is an instance of ParamSpecKwargs. They are intended for
runtime introspection and have no special meaning to static type checkers.

Calling get_origin() on either of these objects will return the original ParamSpec:

>>> from typing import ParamSpec, get_origin

>>> P = ParamSpec("P")

>>> get_origin(P.args) is P

True

>>> get_origin(P.kwargs) is P

True

Added in version 3.10.

class typing.TypeAliasType(name, value, *, type_params=())
The type of type aliases created through the type statement.

Example:

>>> type Alias = int

>>> type(Alias)

<class 'typing.TypeAliasType'>

Added in version 3.12.

__name__

The name of the type alias:

>>> type Alias = int

>>> Alias.__name__

'Alias'

__module__

The module in which the type alias was defined:

>>> type Alias = int

>>> Alias.__module__

'__main__'

27.1. typing— Support for type hints 1677

https://peps.python.org/pep-0612/

The Python Library Reference, Release 3.13.1

__type_params__

The type parameters of the type alias, or an empty tuple if the alias is not generic:

>>> type ListOrSet[T] = list[T] | set[T]

>>> ListOrSet.__type_params__

(T,)

>>> type NotGeneric = int

>>> NotGeneric.__type_params__

()

__value__

The type alias’s value. This is lazily evaluated, so names used in the definition of the alias are not resolved
until the __value__ attribute is accessed:

>>> type Mutually = Recursive

>>> type Recursive = Mutually

>>> Mutually

Mutually

>>> Recursive

Recursive

>>> Mutually.__value__

Recursive

>>> Recursive.__value__

Mutually

Other special directives

These functions and classes should not be used directly as annotations. Their intended purpose is to be building
blocks for creating and declaring types.

class typing.NamedTuple

Typed version of collections.namedtuple().

Usage:

class Employee(NamedTuple):

name: str

id: int

This is equivalent to:

Employee = collections.namedtuple('Employee', ['name', 'id'])

To give a field a default value, you can assign to it in the class body:

class Employee(NamedTuple):

name: str

id: int = 3

employee = Employee('Guido')

assert employee.id == 3

Fields with a default value must come after any fields without a default.

The resulting class has an extra attribute __annotations__ giving a dict that maps the field names to the
field types. (The field names are in the _fields attribute and the default values are in the _field_defaults
attribute, both of which are part of the namedtuple() API.)

NamedTuple subclasses can also have docstrings and methods:

1678 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

class Employee(NamedTuple):

"""Represents an employee."""

name: str

id: int = 3

def __repr__(self) -> str:

return f'<Employee {self.name}, id={self.id}>'

NamedTuple subclasses can be generic:

class Group[T](NamedTuple):

key: T

group: list[T]

Backward-compatible usage:

For creating a generic NamedTuple on Python 3.11

T = TypeVar("T")

class Group(NamedTuple, Generic[T]):

key: T

group: list[T]

A functional syntax is also supported

Employee = NamedTuple('Employee', [('name', str), ('id', int)])

Changed in version 3.6: Added support for PEP 526 variable annotation syntax.

Changed in version 3.6.1: Added support for default values, methods, and docstrings.

Changed in version 3.8: The _field_types and __annotations__ attributes are now regular dictionaries
instead of instances of OrderedDict.

Changed in version 3.9: Removed the _field_types attribute in favor of the more standard
__annotations__ attribute which has the same information.

Changed in version 3.11: Added support for generic namedtuples.

Deprecated since version 3.13, will be removed in version 3.15: The undocumented keyword argument syntax
for creating NamedTuple classes (NT = NamedTuple("NT", x=int)) is deprecated, and will be disallowed
in 3.15. Use the class-based syntax or the functional syntax instead.

Deprecated since version 3.13, will be removed in version 3.15: When using the functional syntax to create a
NamedTuple class, failing to pass a value to the ‘fields’ parameter (NT = NamedTuple("NT")) is deprecated.
Passing None to the ‘fields’ parameter (NT = NamedTuple("NT", None)) is also deprecated. Both will be
disallowed in Python 3.15. To create a NamedTuple class with 0 fields, use class NT(NamedTuple):

pass or NT = NamedTuple("NT", []).

class typing.NewType(name, tp)
Helper class to create low-overhead distinct types.

A NewType is considered a distinct type by a typechecker. At runtime, however, calling a NewType returns
its argument unchanged.

Usage:

UserId = NewType('UserId', int) # Declare the NewType "UserId"

first_user = UserId(1) # "UserId" returns the argument unchanged at runtime

__module__

The module in which the new type is defined.

27.1. typing— Support for type hints 1679

https://peps.python.org/pep-0526/

The Python Library Reference, Release 3.13.1

__name__

The name of the new type.

__supertype__

The type that the new type is based on.

Added in version 3.5.2.

Changed in version 3.10: NewType is now a class rather than a function.

class typing.Protocol(Generic)
Base class for protocol classes.

Protocol classes are defined like this:

class Proto(Protocol):

def meth(self) -> int:

...

Such classes are primarily used with static type checkers that recognize structural subtyping (static duck-
typing), for example:

class C:

def meth(self) -> int:

return 0

def func(x: Proto) -> int:

return x.meth()

func(C()) # Passes static type check

See PEP 544 for more details. Protocol classes decorated with runtime_checkable() (described later)
act as simple-minded runtime protocols that check only the presence of given attributes, ignoring their type
signatures.

Protocol classes can be generic, for example:

class GenProto[T](Protocol):

def meth(self) -> T:

...

In code that needs to be compatible with Python 3.11 or older, generic Protocols can be written as follows:

T = TypeVar("T")

class GenProto(Protocol[T]):

def meth(self) -> T:

...

Added in version 3.8.

@typing.runtime_checkable

Mark a protocol class as a runtime protocol.

Such a protocol can be used with isinstance() and issubclass(). This raises TypeError when applied
to a non-protocol class. This allows a simple-minded structural check, very similar to “one trick ponies” in
collections.abc such as Iterable. For example:

@runtime_checkable

class Closable(Protocol):

def close(self): ...

(continues on next page)

1680 Chapter 27. Development Tools

https://peps.python.org/pep-0544/

The Python Library Reference, Release 3.13.1

(continued from previous page)

assert isinstance(open('/some/file'), Closable)

@runtime_checkable

class Named(Protocol):

name: str

import threading

assert isinstance(threading.Thread(name='Bob'), Named)

Note

runtime_checkable()will check only the presence of the required methods or attributes, not their type
signatures or types. For example, ssl.SSLObject is a class, therefore it passes an issubclass() check
against Callable. However, the ssl.SSLObject.__init__ method exists only to raise a TypeError
with a more informative message, therefore making it impossible to call (instantiate) ssl.SSLObject.

Note

An isinstance() check against a runtime-checkable protocol can be surprisingly slow compared to an
isinstance() check against a non-protocol class. Consider using alternative idioms such as hasattr()
calls for structural checks in performance-sensitive code.

Added in version 3.8.

Changed in version 3.12: The internal implementation of isinstance() checks against runtime-checkable
protocols now uses inspect.getattr_static() to look up attributes (previously, hasattr() was used).
As a result, some objects which used to be considered instances of a runtime-checkable protocol may no longer
be considered instances of that protocol on Python 3.12+, and vice versa. Most users are unlikely to be affected
by this change.

Changed in version 3.12: The members of a runtime-checkable protocol are now considered “frozen” at run-
time as soon as the class has been created. Monkey-patching attributes onto a runtime-checkable protocol will
still work, but will have no impact on isinstance() checks comparing objects to the protocol. See “What’s
new in Python 3.12” for more details.

class typing.TypedDict(dict)

Special construct to add type hints to a dictionary. At runtime it is a plain dict.

TypedDict declares a dictionary type that expects all of its instances to have a certain set of keys, where
each key is associated with a value of a consistent type. This expectation is not checked at runtime but is only
enforced by type checkers. Usage:

class Point2D(TypedDict):

x: int

y: int

label: str

a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK

b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check

assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')

An alternative way to create a TypedDict is by using function-call syntax. The second argument must be a
literal dict:

27.1. typing— Support for type hints 1681

The Python Library Reference, Release 3.13.1

Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})

This functional syntax allows defining keys which are not valid identifiers, for example because they are key-
words or contain hyphens:

raises SyntaxError

class Point2D(TypedDict):

in: int # 'in' is a keyword

x-y: int # name with hyphens

OK, functional syntax

Point2D = TypedDict('Point2D', {'in': int, 'x-y': int})

By default, all keys must be present in a TypedDict. It is possible to mark individual keys as non-required
using NotRequired:

class Point2D(TypedDict):

x: int

y: int

label: NotRequired[str]

Alternative syntax

Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': NotRequired[str]})

This means that a Point2D TypedDict can have the label key omitted.

It is also possible to mark all keys as non-required by default by specifying a totality of False:

class Point2D(TypedDict, total=False):

x: int

y: int

Alternative syntax

Point2D = TypedDict('Point2D', {'x': int, 'y': int}, total=False)

This means that a Point2D TypedDict can have any of the keys omitted. A type checker is only expected to
support a literal False or True as the value of the total argument. True is the default, and makes all items
defined in the class body required.

Individual keys of a total=False TypedDict can be marked as required using Required:

class Point2D(TypedDict, total=False):

x: Required[int]

y: Required[int]

label: str

Alternative syntax

Point2D = TypedDict('Point2D', {

'x': Required[int],

'y': Required[int],

'label': str

}, total=False)

It is possible for a TypedDict type to inherit from one or more other TypedDict types using the class-based
syntax. Usage:

class Point3D(Point2D):

z: int

Point3D has three items: x, y and z. It is equivalent to this definition:

1682 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

class Point3D(TypedDict):

x: int

y: int

z: int

A TypedDict cannot inherit from a non-TypedDict class, except for Generic. For example:

class X(TypedDict):

x: int

class Y(TypedDict):

y: int

class Z(object): pass # A non-TypedDict class

class XY(X, Y): pass # OK

class XZ(X, Z): pass # raises TypeError

A TypedDict can be generic:

class Group[T](TypedDict):

key: T

group: list[T]

To create a generic TypedDict that is compatible with Python 3.11 or lower, inherit from Generic explicitly:

T = TypeVar("T")

class Group(TypedDict, Generic[T]):

key: T

group: list[T]

A TypedDict can be introspected via annotations dicts (see annotations-howto for more information on an-
notations best practices), __total__, __required_keys__, and __optional_keys__.

__total__

Point2D.__total__ gives the value of the total argument. Example:

>>> from typing import TypedDict

>>> class Point2D(TypedDict): pass

>>> Point2D.__total__

True

>>> class Point2D(TypedDict, total=False): pass

>>> Point2D.__total__

False

>>> class Point3D(Point2D): pass

>>> Point3D.__total__

True

This attribute reflects only the value of the total argument to the current TypedDict class, not whether
the class is semantically total. For example, a TypedDict with __total__ set to True may have keys
marked with NotRequired, or it may inherit from another TypedDictwith total=False. Therefore,
it is generally better to use __required_keys__ and __optional_keys__ for introspection.

__required_keys__

Added in version 3.9.

27.1. typing— Support for type hints 1683

The Python Library Reference, Release 3.13.1

__optional_keys__

Point2D.__required_keys__ and Point2D.__optional_keys__ return frozenset objects
containing required and non-required keys, respectively.

Keys marked with Required will always appear in __required_keys__ and keys marked with
NotRequired will always appear in __optional_keys__.

For backwards compatibility with Python 3.10 and below, it is also possible to use inheritance to declare
both required and non-required keys in the same TypedDict . This is done by declaring a TypedDict
with one value for the total argument and then inheriting from it in another TypedDictwith a different
value for total:

>>> class Point2D(TypedDict, total=False):

... x: int

... y: int

...

>>> class Point3D(Point2D):

... z: int

...

>>> Point3D.__required_keys__ == frozenset({'z'})

True

>>> Point3D.__optional_keys__ == frozenset({'x', 'y'})

True

Added in version 3.9.

Note

If from __future__ import annotations is used or if annotations are given as strings, anno-
tations are not evaluated when the TypedDict is defined. Therefore, the runtime introspection that
__required_keys__ and __optional_keys__ rely on may not work properly, and the values
of the attributes may be incorrect.

Support for ReadOnly is reflected in the following attributes:

__readonly_keys__

A frozenset containing the names of all read-only keys. Keys are read-only if they carry the ReadOnly
qualifier.

Added in version 3.13.

__mutable_keys__

A frozenset containing the names of all mutable keys. Keys are mutable if they do not carry the
ReadOnly qualifier.

Added in version 3.13.

See PEP 589 for more examples and detailed rules of using TypedDict.

Added in version 3.8.

Changed in version 3.11: Added support for marking individual keys as Required or NotRequired. See
PEP 655.

Changed in version 3.11: Added support for generic TypedDicts.

Changed in version 3.13: Removed support for the keyword-argument method of creating TypedDicts.

Changed in version 3.13: Support for the ReadOnly qualifier was added.

Deprecated since version 3.13, will be removed in version 3.15: When using the functional syntax to create
a TypedDict class, failing to pass a value to the ‘fields’ parameter (TD = TypedDict("TD")) is deprecated.
Passing None to the ‘fields’ parameter (TD = TypedDict("TD", None)) is also deprecated. Both will be

1684 Chapter 27. Development Tools

https://peps.python.org/pep-0589/
https://peps.python.org/pep-0655/

The Python Library Reference, Release 3.13.1

disallowed in Python 3.15. To create a TypedDict class with 0 fields, use class TD(TypedDict): pass

or TD = TypedDict("TD", {}).

Protocols

The following protocols are provided by the typing module. All are decorated with @runtime_checkable.

class typing.SupportsAbs

An ABC with one abstract method __abs__ that is covariant in its return type.

class typing.SupportsBytes

An ABC with one abstract method __bytes__.

class typing.SupportsComplex

An ABC with one abstract method __complex__.

class typing.SupportsFloat

An ABC with one abstract method __float__.

class typing.SupportsIndex

An ABC with one abstract method __index__.

Added in version 3.8.

class typing.SupportsInt

An ABC with one abstract method __int__.

class typing.SupportsRound

An ABC with one abstract method __round__ that is covariant in its return type.

ABCs for working with IO

class typing.IO

class typing.TextIO

class typing.BinaryIO

Generic type IO[AnyStr] and its subclasses TextIO(IO[str]) and BinaryIO(IO[bytes]) represent
the types of I/O streams such as returned by open().

Functions and decorators

typing.cast(typ, val)
Cast a value to a type.

This returns the value unchanged. To the type checker this signals that the return value has the designated
type, but at runtime we intentionally don’t check anything (we want this to be as fast as possible).

typing.assert_type(val, typ, /)
Ask a static type checker to confirm that val has an inferred type of typ.

At runtime this does nothing: it returns the first argument unchanged with no checks or side effects, no matter
the actual type of the argument.

When a static type checker encounters a call to assert_type(), it emits an error if the value is not of the
specified type:

def greet(name: str) -> None:

assert_type(name, str) # OK, inferred type of `name` is `str`

assert_type(name, int) # type checker error

This function is useful for ensuring the type checker’s understanding of a script is in line with the developer’s
intentions:

27.1. typing— Support for type hints 1685

The Python Library Reference, Release 3.13.1

def complex_function(arg: object):

Do some complex type-narrowing logic,

after which we hope the inferred type will be `int`

...

Test whether the type checker correctly understands our function

assert_type(arg, int)

Added in version 3.11.

typing.assert_never(arg, /)
Ask a static type checker to confirm that a line of code is unreachable.

Example:

def int_or_str(arg: int | str) -> None:

match arg:

case int():

print("It's an int")

case str():

print("It's a str")

case _ as unreachable:

assert_never(unreachable)

Here, the annotations allow the type checker to infer that the last case can never execute, because arg is either
an int or a str, and both options are covered by earlier cases.

If a type checker finds that a call to assert_never() is reachable, it will emit an error. For example, if the
type annotation for arg was instead int | str | float, the type checker would emit an error pointing
out that unreachable is of type float. For a call to assert_never to pass type checking, the inferred
type of the argument passed in must be the bottom type, Never, and nothing else.

At runtime, this throws an exception when called.

See also

Unreachable Code and Exhaustiveness Checking has more information about exhaustiveness checking with
static typing.

Added in version 3.11.

typing.reveal_type(obj, /)
Ask a static type checker to reveal the inferred type of an expression.

When a static type checker encounters a call to this function, it emits a diagnostic with the inferred type of the
argument. For example:

x: int = 1

reveal_type(x) # Revealed type is "builtins.int"

This can be useful when you want to debug how your type checker handles a particular piece of code.

At runtime, this function prints the runtime type of its argument to sys.stderr and returns the argument
unchanged (allowing the call to be used within an expression):

x = reveal_type(1) # prints "Runtime type is int"

print(x) # prints "1"

Note that the runtime type may be different from (more or less specific than) the type statically inferred by a
type checker.

1686 Chapter 27. Development Tools

https://typing.readthedocs.io/en/latest/guides/unreachable.html

The Python Library Reference, Release 3.13.1

Most type checkers support reveal_type() anywhere, even if the name is not imported from typing.
Importing the name from typing, however, allows your code to run without runtime errors and communicates
intent more clearly.

Added in version 3.11.

@typing.dataclass_transform(*, eq_default=True, order_default=False, kw_only_default=False,
frozen_default=False, field_specifiers=(), **kwargs)

Decorator to mark an object as providing dataclass-like behavior.

dataclass_transform may be used to decorate a class, metaclass, or a function that is itself a decorator.
The presence of @dataclass_transform() tells a static type checker that the decorated object performs
runtime “magic” that transforms a class in a similar way to @dataclasses.dataclass.

Example usage with a decorator function:

@dataclass_transform()

def create_model[T](cls: type[T]) -> type[T]:

...

return cls

@create_model

class CustomerModel:

id: int

name: str

On a base class:

@dataclass_transform()

class ModelBase: ...

class CustomerModel(ModelBase):

id: int

name: str

On a metaclass:

@dataclass_transform()

class ModelMeta(type): ...

class ModelBase(metaclass=ModelMeta): ...

class CustomerModel(ModelBase):

id: int

name: str

The CustomerModel classes defined above will be treated by type checkers similarly to classes created with
@dataclasses.dataclass. For example, type checkers will assume these classes have __init__methods
that accept id and name.

The decorated class, metaclass, or function may accept the following bool arguments which type checkers will
assume have the same effect as they would have on the @dataclasses.dataclass decorator: init, eq,
order, unsafe_hash, frozen, match_args, kw_only, and slots. It must be possible for the value of
these arguments (True or False) to be statically evaluated.

The arguments to the dataclass_transform decorator can be used to customize the default behaviors of
the decorated class, metaclass, or function:

Parameters

• eq_default (bool) – Indicates whether the eq parameter is assumed to be True or
False if it is omitted by the caller. Defaults to True.

27.1. typing— Support for type hints 1687

The Python Library Reference, Release 3.13.1

• order_default (bool) – Indicates whether the order parameter is assumed to be True
or False if it is omitted by the caller. Defaults to False.

• kw_only_default (bool) – Indicates whether the kw_only parameter is assumed to
be True or False if it is omitted by the caller. Defaults to False.

• frozen_default (bool) – Indicates whether the frozen parameter is assumed to be
True or False if it is omitted by the caller. Defaults to False.

Added in version 3.12.

• field_specifiers (tuple[Callable[..., Any], ...]) – Specifies a static list
of supported classes or functions that describe fields, similar to dataclasses.field().
Defaults to ().

• **kwargs (Any) – Arbitrary other keyword arguments are accepted in order to allow for
possible future extensions.

Type checkers recognize the following optional parameters on field specifiers:

Table 1: Recognised parameters for field specifiers

Parameter name Description

init Indicates whether the field should be included in the synthesized __init__ method.
If unspecified, init defaults to True.

default Provides the default value for the field.
default_factory Provides a runtime callback that returns the default value for the field. If neither

default nor default_factory are specified, the field is assumed to have no de-
fault value and must be provided a value when the class is instantiated.

factory An alias for the default_factory parameter on field specifiers.
kw_only Indicates whether the field should be marked as keyword-only. If True, the field will

be keyword-only. If False, it will not be keyword-only. If unspecified, the value
of the kw_only parameter on the object decorated with dataclass_transform
will be used, or if that is unspecified, the value of kw_only_default on
dataclass_transform will be used.

alias Provides an alternative name for the field. This alternative name is used in the syn-
thesized __init__ method.

At runtime, this decorator records its arguments in the __dataclass_transform__ attribute on the deco-
rated object. It has no other runtime effect.

See PEP 681 for more details.

Added in version 3.11.

@typing.overload

Decorator for creating overloaded functions and methods.

The @overload decorator allows describing functions and methods that support multiple different combi-
nations of argument types. A series of @overload-decorated definitions must be followed by exactly one
non-@overload-decorated definition (for the same function/method).

@overload-decorated definitions are for the benefit of the type checker only, since they will be overwritten
by the non-@overload-decorated definition. The non-@overload-decorated definition, meanwhile, will be
used at runtime but should be ignored by a type checker. At runtime, calling an @overload-decorated function
directly will raise NotImplementedError.

An example of overload that gives a more precise type than can be expressed using a union or a type variable:

@overload

def process(response: None) -> None:

...

@overload

(continues on next page)

1688 Chapter 27. Development Tools

https://peps.python.org/pep-0681/

The Python Library Reference, Release 3.13.1

(continued from previous page)

def process(response: int) -> tuple[int, str]:

...

@overload

def process(response: bytes) -> str:

...

def process(response):

... # actual implementation goes here

See PEP 484 for more details and comparison with other typing semantics.

Changed in version 3.11: Overloaded functions can now be introspected at runtime using get_overloads().

typing.get_overloads(func)
Return a sequence of @overload-decorated definitions for func.

func is the function object for the implementation of the overloaded function. For example, given the def-
inition of process in the documentation for @overload, get_overloads(process) will return a se-
quence of three function objects for the three defined overloads. If called on a function with no overloads,
get_overloads() returns an empty sequence.

get_overloads() can be used for introspecting an overloaded function at runtime.

Added in version 3.11.

typing.clear_overloads()

Clear all registered overloads in the internal registry.

This can be used to reclaim the memory used by the registry.

Added in version 3.11.

@typing.final

Decorator to indicate final methods and final classes.

Decorating a method with @final indicates to a type checker that the method cannot be overridden in a
subclass. Decorating a class with @final indicates that it cannot be subclassed.

For example:

class Base:

@final

def done(self) -> None:

...

class Sub(Base):

def done(self) -> None: # Error reported by type checker

...

@final

class Leaf:

...

class Other(Leaf): # Error reported by type checker

...

There is no runtime checking of these properties. See PEP 591 for more details.

Added in version 3.8.

Changed in version 3.11: The decorator will now attempt to set a __final__ attribute to True on the dec-
orated object. Thus, a check like if getattr(obj, "__final__", False) can be used at runtime to
determine whether an object obj has been marked as final. If the decorated object does not support setting
attributes, the decorator returns the object unchanged without raising an exception.

27.1. typing— Support for type hints 1689

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0591/

The Python Library Reference, Release 3.13.1

@typing.no_type_check

Decorator to indicate that annotations are not type hints.

This works as a class or function decorator. With a class, it applies recursively to all methods and classes
defined in that class (but not to methods defined in its superclasses or subclasses). Type checkers will ignore
all annotations in a function or class with this decorator.

@no_type_check mutates the decorated object in place.

@typing.no_type_check_decorator

Decorator to give another decorator the no_type_check() effect.

This wraps the decorator with something that wraps the decorated function in no_type_check().

Deprecated since version 3.13, will be removed in version 3.15: No type checker ever added support for
@no_type_check_decorator. It is therefore deprecated, and will be removed in Python 3.15.

@typing.override

Decorator to indicate that a method in a subclass is intended to override a method or attribute in a superclass.

Type checkers should emit an error if a method decorated with @override does not, in fact, override anything.
This helps prevent bugs that may occur when a base class is changed without an equivalent change to a child
class.

For example:

class Base:

def log_status(self) -> None:

...

class Sub(Base):

@override

def log_status(self) -> None: # Okay: overrides Base.log_status

...

@override

def done(self) -> None: # Error reported by type checker

...

There is no runtime checking of this property.

The decorator will attempt to set an __override__ attribute to True on the decorated object. Thus, a
check like if getattr(obj, "__override__", False) can be used at runtime to determine whether
an object obj has been marked as an override. If the decorated object does not support setting attributes, the
decorator returns the object unchanged without raising an exception.

See PEP 698 for more details.

Added in version 3.12.

@typing.type_check_only

Decorator to mark a class or function as unavailable at runtime.

This decorator is itself not available at runtime. It is mainly intended to mark classes that are defined in type
stub files if an implementation returns an instance of a private class:

@type_check_only

class Response: # private or not available at runtime

code: int

def get_header(self, name: str) -> str: ...

def fetch_response() -> Response: ...

1690 Chapter 27. Development Tools

https://peps.python.org/pep-0698/

The Python Library Reference, Release 3.13.1

Note that returning instances of private classes is not recommended. It is usually preferable to make such
classes public.

Introspection helpers

typing.get_type_hints(obj, globalns=None, localns=None, include_extras=False)
Return a dictionary containing type hints for a function, method, module or class object.

This is often the same as obj.__annotations__, but this function makes the following changes to the
annotations dictionary:

• Forward references encoded as string literals or ForwardRef objects are handled by evaluating them in
globalns, localns, and (where applicable) obj’s type parameter namespace. If globalns or localns is not
given, appropriate namespace dictionaries are inferred from obj.

• None is replaced with types.NoneType.

• If @no_type_check has been applied to obj, an empty dictionary is returned.

• If obj is a class C, the function returns a dictionary that merges annotations from C’s base classes with those
on C directly. This is done by traversing C.__mro__ and iteratively combining __annotations__ dic-
tionaries. Annotations on classes appearing earlier in themethod resolution order always take precedence
over annotations on classes appearing later in the method resolution order.

• The function recursively replaces all occurrences of Annotated[T, ...] with T, unless include_extras
is set to True (see Annotated for more information).

See also inspect.get_annotations(), a lower-level function that returns annotations more directly.

Note

If any forward references in the annotations of obj are not resolvable or are not valid Python code, this
function will raise an exception such as NameError. For example, this can happen with imported type
aliases that include forward references, or with names imported under if TYPE_CHECKING.

Changed in version 3.9: Added include_extras parameter as part of PEP 593. See the documentation on
Annotated for more information.

Changed in version 3.11: Previously, Optional[t] was added for function and method annotations if a
default value equal to None was set. Now the annotation is returned unchanged.

typing.get_origin(tp)
Get the unsubscripted version of a type: for a typing object of the form X[Y, Z, ...] return X.

If X is a typing-module alias for a builtin or collections class, it will be normalized to the original class.
If X is an instance of ParamSpecArgs or ParamSpecKwargs, return the underlying ParamSpec. Return
None for unsupported objects.

Examples:

assert get_origin(str) is None

assert get_origin(Dict[str, int]) is dict

assert get_origin(Union[int, str]) is Union

assert get_origin(Annotated[str, "metadata"]) is Annotated

P = ParamSpec('P')

assert get_origin(P.args) is P

assert get_origin(P.kwargs) is P

Added in version 3.8.

typing.get_args(tp)

Get type arguments with all substitutions performed: for a typing object of the form X[Y, Z, ...] return
(Y, Z, ...).

27.1. typing— Support for type hints 1691

https://peps.python.org/pep-0593/

The Python Library Reference, Release 3.13.1

If X is a union or Literal contained in another generic type, the order of (Y, Z, ...) may be different
from the order of the original arguments [Y, Z, ...] due to type caching. Return () for unsupported
objects.

Examples:

assert get_args(int) == ()

assert get_args(Dict[int, str]) == (int, str)

assert get_args(Union[int, str]) == (int, str)

Added in version 3.8.

typing.get_protocol_members(tp)
Return the set of members defined in a Protocol.

>>> from typing import Protocol, get_protocol_members

>>> class P(Protocol):

... def a(self) -> str: ...

... b: int

>>> get_protocol_members(P) == frozenset({'a', 'b'})

True

Raise TypeError for arguments that are not Protocols.

Added in version 3.13.

typing.is_protocol(tp)
Determine if a type is a Protocol.

For example:

class P(Protocol):

def a(self) -> str: ...

b: int

is_protocol(P) # => True

is_protocol(int) # => False

Added in version 3.13.

typing.is_typeddict(tp)
Check if a type is a TypedDict.

For example:

class Film(TypedDict):

title: str

year: int

assert is_typeddict(Film)

assert not is_typeddict(list | str)

TypedDict is a factory for creating typed dicts,

not a typed dict itself

assert not is_typeddict(TypedDict)

Added in version 3.10.

class typing.ForwardRef

Class used for internal typing representation of string forward references.

For example, List["SomeClass"] is implicitly transformed into List[ForwardRef("SomeClass")].
ForwardRef should not be instantiated by a user, but may be used by introspection tools.

1692 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

Note

PEP 585 generic types such as list["SomeClass"] will not be implicitly transformed into
list[ForwardRef("SomeClass")] and thus will not automatically resolve to list[SomeClass].

Added in version 3.7.4.

typing.NoDefault

A sentinel object used to indicate that a type parameter has no default value. For example:

>>> T = TypeVar("T")

>>> T.__default__ is typing.NoDefault

True

>>> S = TypeVar("S", default=None)

>>> S.__default__ is None

True

Added in version 3.13.

Constant

typing.TYPE_CHECKING

A special constant that is assumed to be True by 3rd party static type checkers. It is False at runtime.

Usage:

if TYPE_CHECKING:

import expensive_mod

def fun(arg: 'expensive_mod.SomeType') -> None:

local_var: expensive_mod.AnotherType = other_fun()

The first type annotation must be enclosed in quotes, making it a “forward reference”, to hide the
expensive_mod reference from the interpreter runtime. Type annotations for local variables are not evalu-
ated, so the second annotation does not need to be enclosed in quotes.

Note

If from __future__ import annotations is used, annotations are not evaluated at function defi-
nition time. Instead, they are stored as strings in __annotations__. This makes it unnecessary to use
quotes around the annotation (see PEP 563).

Added in version 3.5.2.

Deprecated aliases

This module defines several deprecated aliases to pre-existing standard library classes. These were originally included
in the typing module in order to support parameterizing these generic classes using []. However, the aliases became
redundant in Python 3.9 when the corresponding pre-existing classes were enhanced to support [] (see PEP 585).

The redundant types are deprecated as of Python 3.9. However, while the aliases may be removed at some point,
removal of these aliases is not currently planned. As such, no deprecation warnings are currently issued by the
interpreter for these aliases.

If at some point it is decided to remove these deprecated aliases, a deprecation warning will be issued by the inter-
preter for at least two releases prior to removal. The aliases are guaranteed to remain in the typing module without
deprecation warnings until at least Python 3.14.

27.1. typing— Support for type hints 1693

https://peps.python.org/pep-0585/
https://peps.python.org/pep-0563/
https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.13.1

Type checkers are encouraged to flag uses of the deprecated types if the program they are checking targets a minimum
Python version of 3.9 or newer.

Aliases to built-in types

class typing.Dict(dict, MutableMapping[KT, VT])
Deprecated alias to dict.

Note that to annotate arguments, it is preferred to use an abstract collection type such as Mapping rather than
to use dict or typing.Dict.

Deprecated since version 3.9: builtins.dict now supports subscripting ([]). See PEP 585 and Generic
Alias Type.

class typing.List(list, MutableSequence[T])
Deprecated alias to list.

Note that to annotate arguments, it is preferred to use an abstract collection type such as Sequence or
Iterable rather than to use list or typing.List.

Deprecated since version 3.9: builtins.list now supports subscripting ([]). See PEP 585 and Generic
Alias Type.

class typing.Set(set, MutableSet[T])
Deprecated alias to builtins.set.

Note that to annotate arguments, it is preferred to use an abstract collection type such as collections.abc.
Set rather than to use set or typing.Set.

Deprecated since version 3.9: builtins.set now supports subscripting ([]). See PEP 585 and Generic
Alias Type.

class typing.FrozenSet(frozenset, AbstractSet[T_co])
Deprecated alias to builtins.frozenset.

Deprecated since version 3.9: builtins.frozenset now supports subscripting ([]). See PEP 585 and
Generic Alias Type.

typing.Tuple

Deprecated alias for tuple.

tuple and Tuple are special-cased in the type system; see Annotating tuples for more details.

Deprecated since version 3.9: builtins.tuple now supports subscripting ([]). See PEP 585 and Generic
Alias Type.

class typing.Type(Generic[CT_co])
Deprecated alias to type.

See The type of class objects for details on using type or typing.Type in type annotations.

Added in version 3.5.2.

Deprecated since version 3.9: builtins.type now supports subscripting ([]). See PEP 585 and Generic
Alias Type.

Aliases to types in collections

class typing.DefaultDict(collections.defaultdict, MutableMapping[KT, VT])

Deprecated alias to collections.defaultdict.

Added in version 3.5.2.

Deprecated since version 3.9: collections.defaultdict now supports subscripting ([]). See PEP 585
and Generic Alias Type.

1694 Chapter 27. Development Tools

https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.13.1

class typing.OrderedDict(collections.OrderedDict, MutableMapping[KT, VT])
Deprecated alias to collections.OrderedDict.

Added in version 3.7.2.

Deprecated since version 3.9: collections.OrderedDict now supports subscripting ([]). See PEP 585
and Generic Alias Type.

class typing.ChainMap(collections.ChainMap, MutableMapping[KT, VT])
Deprecated alias to collections.ChainMap.

Added in version 3.6.1.

Deprecated since version 3.9: collections.ChainMap now supports subscripting ([]). See PEP 585 and
Generic Alias Type.

class typing.Counter(collections.Counter, Dict[T, int])

Deprecated alias to collections.Counter.

Added in version 3.6.1.

Deprecated since version 3.9: collections.Counter now supports subscripting ([]). See PEP 585 and
Generic Alias Type.

class typing.Deque(deque, MutableSequence[T])
Deprecated alias to collections.deque.

Added in version 3.6.1.

Deprecated since version 3.9: collections.deque now supports subscripting ([]). See PEP 585 and
Generic Alias Type.

Aliases to other concrete types

class typing.Pattern

class typing.Match

Deprecated aliases corresponding to the return types from re.compile() and re.match().

These types (and the corresponding functions) are generic over AnyStr. Pattern can be specialised as
Pattern[str] or Pattern[bytes]; Match can be specialised as Match[str] or Match[bytes].

Deprecated since version 3.9: Classes Pattern and Match from re now support []. See PEP 585 and
Generic Alias Type.

class typing.Text

Deprecated alias for str.

Text is provided to supply a forward compatible path for Python 2 code: in Python 2, Text is an alias for
unicode.

Use Text to indicate that a value must contain a unicode string in a manner that is compatible with both Python
2 and Python 3:

def add_unicode_checkmark(text: Text) -> Text:

return text + u' \u2713'

Added in version 3.5.2.

Deprecated since version 3.11: Python 2 is no longer supported, and most type checkers also no longer support
type checking Python 2 code. Removal of the alias is not currently planned, but users are encouraged to use
str instead of Text.

27.1. typing— Support for type hints 1695

https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.13.1

Aliases to container ABCs in collections.abc

class typing.AbstractSet(Collection[T_co])
Deprecated alias to collections.abc.Set.

Deprecated since version 3.9: collections.abc.Set now supports subscripting ([]). See PEP 585 and
Generic Alias Type.

class typing.ByteString(Sequence[int])
This type represents the types bytes, bytearray, and memoryview of byte sequences.

Deprecated since version 3.9, will be removed in version 3.14: Prefer collections.abc.Buffer, or a
union like bytes | bytearray | memoryview.

class typing.Collection(Sized, Iterable[T_co], Container[T_co])
Deprecated alias to collections.abc.Collection.

Added in version 3.6.

Deprecated since version 3.9: collections.abc.Collection now supports subscripting ([]). See PEP
585 and Generic Alias Type.

class typing.Container(Generic[T_co])

Deprecated alias to collections.abc.Container.

Deprecated since version 3.9: collections.abc.Container now supports subscripting ([]). See PEP
585 and Generic Alias Type.

class typing.ItemsView(MappingView, AbstractSet[tuple[KT_co, VT_co]])
Deprecated alias to collections.abc.ItemsView.

Deprecated since version 3.9: collections.abc.ItemsView now supports subscripting ([]). See PEP
585 and Generic Alias Type.

class typing.KeysView(MappingView, AbstractSet[KT_co])
Deprecated alias to collections.abc.KeysView.

Deprecated since version 3.9: collections.abc.KeysView now supports subscripting ([]). See PEP 585
and Generic Alias Type.

class typing.Mapping(Collection[KT], Generic[KT, VT_co])
Deprecated alias to collections.abc.Mapping.

Deprecated since version 3.9: collections.abc.Mapping now supports subscripting ([]). See PEP 585
and Generic Alias Type.

class typing.MappingView(Sized)
Deprecated alias to collections.abc.MappingView.

Deprecated since version 3.9: collections.abc.MappingView now supports subscripting ([]). See PEP
585 and Generic Alias Type.

class typing.MutableMapping(Mapping[KT, VT])

Deprecated alias to collections.abc.MutableMapping.

Deprecated since version 3.9: collections.abc.MutableMapping now supports subscripting ([]). See
PEP 585 and Generic Alias Type.

class typing.MutableSequence(Sequence[T])
Deprecated alias to collections.abc.MutableSequence.

Deprecated since version 3.9: collections.abc.MutableSequence now supports subscripting ([]). See
PEP 585 and Generic Alias Type.

1696 Chapter 27. Development Tools

https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.13.1

class typing.MutableSet(AbstractSet[T])
Deprecated alias to collections.abc.MutableSet.

Deprecated since version 3.9: collections.abc.MutableSet now supports subscripting ([]). See PEP
585 and Generic Alias Type.

class typing.Sequence(Reversible[T_co], Collection[T_co])

Deprecated alias to collections.abc.Sequence.

Deprecated since version 3.9: collections.abc.Sequence now supports subscripting ([]). See PEP 585
and Generic Alias Type.

class typing.ValuesView(MappingView, Collection[_VT_co])

Deprecated alias to collections.abc.ValuesView.

Deprecated since version 3.9: collections.abc.ValuesView now supports subscripting ([]). See PEP
585 and Generic Alias Type.

Aliases to asynchronous ABCs in collections.abc

class typing.Coroutine(Awaitable[ReturnType], Generic[YieldType, SendType, ReturnType])

Deprecated alias to collections.abc.Coroutine.

See Annotating generators and coroutines for details on using collections.abc.Coroutine and typing.
Coroutine in type annotations.

Added in version 3.5.3.

Deprecated since version 3.9: collections.abc.Coroutine now supports subscripting ([]). See PEP
585 and Generic Alias Type.

class typing.AsyncGenerator(AsyncIterator[YieldType], Generic[YieldType, SendType])
Deprecated alias to collections.abc.AsyncGenerator.

See Annotating generators and coroutines for details on using collections.abc.AsyncGenerator and
typing.AsyncGenerator in type annotations.

Added in version 3.6.1.

Deprecated since version 3.9: collections.abc.AsyncGenerator now supports subscripting ([]). See
PEP 585 and Generic Alias Type.

Changed in version 3.13: The SendType parameter now has a default.

class typing.AsyncIterable(Generic[T_co])
Deprecated alias to collections.abc.AsyncIterable.

Added in version 3.5.2.

Deprecated since version 3.9: collections.abc.AsyncIterable now supports subscripting ([]). See
PEP 585 and Generic Alias Type.

class typing.AsyncIterator(AsyncIterable[T_co])

Deprecated alias to collections.abc.AsyncIterator.

Added in version 3.5.2.

Deprecated since version 3.9: collections.abc.AsyncIterator now supports subscripting ([]). See
PEP 585 and Generic Alias Type.

class typing.Awaitable(Generic[T_co])
Deprecated alias to collections.abc.Awaitable.

Added in version 3.5.2.

Deprecated since version 3.9: collections.abc.Awaitable now supports subscripting ([]). See PEP
585 and Generic Alias Type.

27.1. typing— Support for type hints 1697

https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.13.1

Aliases to other ABCs in collections.abc

class typing.Iterable(Generic[T_co])
Deprecated alias to collections.abc.Iterable.

Deprecated since version 3.9: collections.abc.Iterable now supports subscripting ([]). See PEP 585
and Generic Alias Type.

class typing.Iterator(Iterable[T_co])
Deprecated alias to collections.abc.Iterator.

Deprecated since version 3.9: collections.abc.Iterator now supports subscripting ([]). See PEP 585
and Generic Alias Type.

typing.Callable

Deprecated alias to collections.abc.Callable.

See Annotating callable objects for details on how to use collections.abc.Callable and typing.

Callable in type annotations.

Deprecated since version 3.9: collections.abc.Callable now supports subscripting ([]). See PEP 585
and Generic Alias Type.

Changed in version 3.10: Callable now supports ParamSpec and Concatenate. See PEP 612 for more
details.

class typing.Generator(Iterator[YieldType], Generic[YieldType, SendType, ReturnType])
Deprecated alias to collections.abc.Generator.

See Annotating generators and coroutines for details on using collections.abc.Generator and typing.
Generator in type annotations.

Deprecated since version 3.9: collections.abc.Generator now supports subscripting ([]). See PEP
585 and Generic Alias Type.

Changed in version 3.13: Default values for the send and return types were added.

class typing.Hashable

Deprecated alias to collections.abc.Hashable.

Deprecated since version 3.12: Use collections.abc.Hashable directly instead.

class typing.Reversible(Iterable[T_co])

Deprecated alias to collections.abc.Reversible.

Deprecated since version 3.9: collections.abc.Reversible now supports subscripting ([]). See PEP
585 and Generic Alias Type.

class typing.Sized

Deprecated alias to collections.abc.Sized.

Deprecated since version 3.12: Use collections.abc.Sized directly instead.

Aliases to contextlib ABCs

class typing.ContextManager(Generic[T_co, ExitT_co])

Deprecated alias to contextlib.AbstractContextManager.

The first type parameter, T_co, represents the type returned by the __enter__() method. The optional
second type parameter, ExitT_co, which defaults to bool | None, represents the type returned by the
__exit__() method.

Added in version 3.5.4.

Deprecated since version 3.9: contextlib.AbstractContextManager now supports subscripting ([]).
See PEP 585 and Generic Alias Type.

1698 Chapter 27. Development Tools

https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0612/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.13.1

Changed in version 3.13: Added the optional second type parameter, ExitT_co.

class typing.AsyncContextManager(Generic[T_co, AExitT_co])
Deprecated alias to contextlib.AbstractAsyncContextManager.

The first type parameter, T_co, represents the type returned by the __aenter__() method. The optional
second type parameter, AExitT_co, which defaults to bool | None, represents the type returned by the
__aexit__() method.

Added in version 3.6.2.

Deprecated since version 3.9: contextlib.AbstractAsyncContextManager now supports subscripting
([]). See PEP 585 and Generic Alias Type.

Changed in version 3.13: Added the optional second type parameter, AExitT_co.

27.1.13 Deprecation Timeline of Major Features

Certain features in typing are deprecated and may be removed in a future version of Python. The following table
summarizes major deprecations for your convenience. This is subject to change, and not all deprecations are listed.

Feature Depre-
cated in

Projected removal PEP/issue

typing versions of standard col-
lections

3.9 Undecided (seeDeprecated aliases for more in-
formation)

PEP 585

typing.ByteString 3.9 3.14 gh-
91896

typing.Text 3.11 Undecided gh-
92332

typing.Hashable and typing.
Sized

3.12 Undecided gh-
94309

typing.TypeAlias 3.12 Undecided PEP 695
@typing.

no_type_check_decorator

3.13 3.15 gh-
106309

typing.AnyStr 3.13 3.18 gh-
105578

27.2 pydoc— Documentation generator and online help system

Source code: Lib/pydoc.py

The pydoc module automatically generates documentation from Python modules. The documentation can be pre-
sented as pages of text on the console, served to a web browser, or saved to HTML files.

For modules, classes, functions and methods, the displayed documentation is derived from the docstring (i.e. the
__doc__ attribute) of the object, and recursively of its documentable members. If there is no docstring, pydoc tries
to obtain a description from the block of comment lines just above the definition of the class, function or method in
the source file, or at the top of the module (see inspect.getcomments()).

The built-in function help() invokes the online help system in the interactive interpreter, which uses pydoc to
generate its documentation as text on the console. The same text documentation can also be viewed from outside the
Python interpreter by running pydoc as a script at the operating system’s command prompt. For example, running

python -m pydoc sys

at a shell prompt will display documentation on the sys module, in a style similar to the manual pages shown by
the Unix man command. The argument to pydoc can be the name of a function, module, or package, or a dotted
reference to a class, method, or function within a module or module in a package. If the argument to pydoc looks

27.2. pydoc— Documentation generator and online help system 1699

https://peps.python.org/pep-0585/
https://peps.python.org/pep-0585/
https://github.com/python/cpython/issues/91896
https://github.com/python/cpython/issues/91896
https://github.com/python/cpython/issues/92332
https://github.com/python/cpython/issues/92332
https://github.com/python/cpython/issues/94309
https://github.com/python/cpython/issues/94309
https://peps.python.org/pep-0695/
https://github.com/python/cpython/issues/106309
https://github.com/python/cpython/issues/106309
https://github.com/python/cpython/issues/105578
https://github.com/python/cpython/issues/105578
https://github.com/python/cpython/tree/3.13/Lib/pydoc.py

The Python Library Reference, Release 3.13.1

like a path (that is, it contains the path separator for your operating system, such as a slash in Unix), and refers to an
existing Python source file, then documentation is produced for that file.

Note

In order to find objects and their documentation, pydoc imports the module(s) to be documented. Therefore,
any code on module level will be executed on that occasion. Use an if __name__ == '__main__': guard
to only execute code when a file is invoked as a script and not just imported.

When printing output to the console, pydoc attempts to paginate the output for easier reading. If either the MANPAGER
or the PAGER environment variable is set, pydoc will use its value as a pagination program. When both are set,
MANPAGER is used.

Specifying a -w flag before the argument will cause HTML documentation to be written out to a file in the current
directory, instead of displaying text on the console.

Specifying a -k flag before the argument will search the synopsis lines of all available modules for the keyword given
as the argument, again in a manner similar to the Unix man command. The synopsis line of a module is the first line
of its documentation string.

You can also use pydoc to start an HTTP server on the local machine that will serve documentation to visiting
web browsers. python -m pydoc -p 1234 will start a HTTP server on port 1234, allowing you to browse the
documentation at http://localhost:1234/ in your preferred web browser. Specifying 0 as the port number will
select an arbitrary unused port.

python -m pydoc -n <hostname> will start the server listening at the given hostname. By default the hostname
is ‘localhost’ but if you want the server to be reached from other machines, you may want to change the host name
that the server responds to. During development this is especially useful if you want to run pydoc from within a
container.

python -m pydoc -b will start the server and additionally open a web browser to a module index page. Each
served page has a navigation bar at the top where you can Get help on an individual item, Search all modules with a
keyword in their synopsis line, and go to the Module index, Topics and Keywords pages.

When pydoc generates documentation, it uses the current environment and path to locate modules. Thus, invoking
pydoc spam documents precisely the version of the module you would get if you started the Python interpreter and
typed import spam.

Module docs for core modules are assumed to reside in https://docs.python.org/X.Y/library/ where
X and Y are the major and minor version numbers of the Python interpreter. This can be overridden by setting
the PYTHONDOCS environment variable to a different URL or to a local directory containing the Library Reference
Manual pages.

Changed in version 3.2: Added the -b option.

Changed in version 3.3: The -g command line option was removed.

Changed in version 3.4: pydoc now uses inspect.signature() rather than inspect.getfullargspec() to
extract signature information from callables.

Changed in version 3.7: Added the -n option.

27.3 Python Development Mode

Added in version 3.7.

The Python Development Mode introduces additional runtime checks that are too expensive to be enabled by default.
It should not be more verbose than the default if the code is correct; new warnings are only emitted when an issue is
detected.

It can be enabled using the -X dev command line option or by setting the PYTHONDEVMODE environment variable
to 1.

1700 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

See also Python debug build.

27.3.1 Effects of the Python Development Mode

Enabling the Python Development Mode is similar to the following command, but with additional effects described
below:

PYTHONMALLOC=debug PYTHONASYNCIODEBUG=1 python -W default -X faulthandler

Effects of the Python Development Mode:

• Add default warning filter. The following warnings are shown:

– DeprecationWarning

– ImportWarning

– PendingDeprecationWarning

– ResourceWarning

Normally, the above warnings are filtered by the default warning filters.

It behaves as if the -W default command line option is used.

Use the -W error command line option or set the PYTHONWARNINGS environment variable to error to treat
warnings as errors.

• Install debug hooks on memory allocators to check for:

– Buffer underflow

– Buffer overflow

– Memory allocator API violation

– Unsafe usage of the GIL

See the PyMem_SetupDebugHooks() C function.

It behaves as if the PYTHONMALLOC environment variable is set to debug.

To enable the Python Development Mode without installing debug hooks on memory allocators, set the
PYTHONMALLOC environment variable to default.

• Call faulthandler.enable() at Python startup to install handlers for the SIGSEGV , SIGFPE, SIGABRT,
SIGBUS and SIGILL signals to dump the Python traceback on a crash.

It behaves as if the -X faulthandler command line option is used or if the PYTHONFAULTHANDLER envi-
ronment variable is set to 1.

• Enable asyncio debug mode. For example, asyncio checks for coroutines that were not awaited and logs
them.

It behaves as if the PYTHONASYNCIODEBUG environment variable is set to 1.

• Check the encoding and errors arguments for string encoding and decoding operations. Examples: open(),
str.encode() and bytes.decode().

By default, for best performance, the errors argument is only checked at the first encoding/decoding error and
the encoding argument is sometimes ignored for empty strings.

• The io.IOBase destructor logs close() exceptions.

• Set the dev_mode attribute of sys.flags to True.

The Python Development Mode does not enable the tracemallocmodule by default, because the overhead cost (to
performance and memory) would be too large. Enabling the tracemalloc module provides additional information
on the origin of some errors. For example, ResourceWarning logs the traceback where the resource was allocated,
and a buffer overflow error logs the traceback where the memory block was allocated.

27.3. Python Development Mode 1701

The Python Library Reference, Release 3.13.1

The Python Development Mode does not prevent the -O command line option from removing assert statements
nor from setting __debug__ to False.

The Python Development Mode can only be enabled at the Python startup. Its value can be read from sys.flags.

dev_mode.

Changed in version 3.8: The io.IOBase destructor now logs close() exceptions.

Changed in version 3.9: The encoding and errors arguments are now checked for string encoding and decoding
operations.

27.3.2 ResourceWarning Example

Example of a script counting the number of lines of the text file specified in the command line:

import sys

def main():

fp = open(sys.argv[1])

nlines = len(fp.readlines())

print(nlines)

The file is closed implicitly

if __name__ == "__main__":

main()

The script does not close the file explicitly. By default, Python does not emit any warning. Example using
README.txt, which has 269 lines:

$ python script.py README.txt

269

Enabling the Python Development Mode displays a ResourceWarning warning:

$ python -X dev script.py README.txt

269

script.py:10: ResourceWarning: unclosed file <_io.TextIOWrapper name='README.rst'␣

↪→mode='r' encoding='UTF-8'>

main()

ResourceWarning: Enable tracemalloc to get the object allocation traceback

In addition, enabling tracemalloc shows the line where the file was opened:

$ python -X dev -X tracemalloc=5 script.py README.rst

269

script.py:10: ResourceWarning: unclosed file <_io.TextIOWrapper name='README.rst'␣

↪→mode='r' encoding='UTF-8'>

main()

Object allocated at (most recent call last):

File "script.py", lineno 10

main()

File "script.py", lineno 4

fp = open(sys.argv[1])

The fix is to close explicitly the file. Example using a context manager:

def main():

Close the file explicitly when exiting the with block

with open(sys.argv[1]) as fp:

(continues on next page)

1702 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

nlines = len(fp.readlines())

print(nlines)

Not closing a resource explicitly can leave a resource open for way longer than expected; it can cause severe issues
upon exiting Python. It is bad in CPython, but it is even worse in PyPy. Closing resources explicitly makes an
application more deterministic and more reliable.

27.3.3 Bad file descriptor error example

Script displaying the first line of itself:

import os

def main():

fp = open(__file__)

firstline = fp.readline()

print(firstline.rstrip())

os.close(fp.fileno())

The file is closed implicitly

main()

By default, Python does not emit any warning:

$ python script.py

import os

The Python Development Mode shows a ResourceWarning and logs a “Bad file descriptor” error when finalizing
the file object:

$ python -X dev script.py

import os

script.py:10: ResourceWarning: unclosed file <_io.TextIOWrapper name='script.py'␣

↪→mode='r' encoding='UTF-8'>

main()

ResourceWarning: Enable tracemalloc to get the object allocation traceback

Exception ignored in: <_io.TextIOWrapper name='script.py' mode='r' encoding='UTF-8

↪→'>

Traceback (most recent call last):

File "script.py", line 10, in <module>

main()

OSError: [Errno 9] Bad file descriptor

os.close(fp.fileno()) closes the file descriptor. When the file object finalizer tries to close the file descriptor
again, it fails with the Bad file descriptor error. A file descriptor must be closed only once. In the worst case
scenario, closing it twice can lead to a crash (see bpo-18748 for an example).

The fix is to remove the os.close(fp.fileno()) line, or open the file with closefd=False.

27.4 doctest— Test interactive Python examples

Source code: Lib/doctest.py

The doctest module searches for pieces of text that look like interactive Python sessions, and then executes those
sessions to verify that they work exactly as shown. There are several common ways to use doctest:

27.4. doctest— Test interactive Python examples 1703

https://bugs.python.org/issue?@action=redirect&bpo=18748
https://github.com/python/cpython/tree/3.13/Lib/doctest.py

The Python Library Reference, Release 3.13.1

• To check that a module’s docstrings are up-to-date by verifying that all interactive examples still work as
documented.

• To perform regression testing by verifying that interactive examples from a test file or a test object work as
expected.

• To write tutorial documentation for a package, liberally illustrated with input-output examples. Depending
on whether the examples or the expository text are emphasized, this has the flavor of “literate testing” or
“executable documentation”.

Here’s a complete but small example module:

"""

This is the "example" module.

The example module supplies one function, factorial(). For example,

>>> factorial(5)

120

"""

def factorial(n):

"""Return the factorial of n, an exact integer >= 0.

>>> [factorial(n) for n in range(6)]

[1, 1, 2, 6, 24, 120]

>>> factorial(30)

265252859812191058636308480000000

>>> factorial(-1)

Traceback (most recent call last):

...

ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:

>>> factorial(30.1)

Traceback (most recent call last):

...

ValueError: n must be exact integer

>>> factorial(30.0)

265252859812191058636308480000000

It must also not be ridiculously large:

>>> factorial(1e100)

Traceback (most recent call last):

...

OverflowError: n too large

"""

import math

if not n >= 0:

raise ValueError("n must be >= 0")

if math.floor(n) != n:

raise ValueError("n must be exact integer")

if n+1 == n: # catch a value like 1e300

raise OverflowError("n too large")

result = 1

factor = 2

while factor <= n:

result *= factor

(continues on next page)

1704 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

factor += 1

return result

if __name__ == "__main__":

import doctest

doctest.testmod()

If you run example.py directly from the command line, doctest works its magic:

$ python example.py

$

There’s no output! That’s normal, and it means all the examples worked. Pass -v to the script, and doctest prints
a detailed log of what it’s trying, and prints a summary at the end:

$ python example.py -v

Trying:

factorial(5)

Expecting:

120

ok

Trying:

[factorial(n) for n in range(6)]

Expecting:

[1, 1, 2, 6, 24, 120]

ok

And so on, eventually ending with:

Trying:

factorial(1e100)

Expecting:

Traceback (most recent call last):

...

OverflowError: n too large

ok

2 items passed all tests:

1 test in __main__

6 tests in __main__.factorial

7 tests in 2 items.

7 passed.

Test passed.

$

That’s all you need to know to start making productive use of doctest! Jump in. The following sections provide
full details. Note that there are many examples of doctests in the standard Python test suite and libraries. Especially
useful examples can be found in the standard test file Lib/test/test_doctest/test_doctest.py.

27.4.1 Simple Usage: Checking Examples in Docstrings

The simplest way to start using doctest (but not necessarily the way you’ll continue to do it) is to end each module M
with:

if __name__ == "__main__":

import doctest

doctest.testmod()

27.4. doctest— Test interactive Python examples 1705

The Python Library Reference, Release 3.13.1

doctest then examines docstrings in module M.

Running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won’t display anything unless an example fails, in which case the failing example(s) and the cause(s) of the
failure(s) are printed to stdout, and the final line of output is ***Test Failed*** N failures., where N is the
number of examples that failed.

Run it with the -v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to standard output, along with assorted summaries at the end.

You can force verbose mode by passing verbose=True to testmod(), or prohibit it by passing verbose=False.
In either of those cases, sys.argv is not examined by testmod() (so passing -v or not has no effect).

There is also a command line shortcut for running testmod(). You can instruct the Python interpreter to run the
doctest module directly from the standard library and pass the module name(s) on the command line:

python -m doctest -v example.py

This will import example.py as a standalone module and run testmod() on it. Note that this may not work
correctly if the file is part of a package and imports other submodules from that package.

For more information on testmod(), see section Basic API.

27.4.2 Simple Usage: Checking Examples in a Text File

Another simple application of doctest is testing interactive examples in a text file. This can be done with the
testfile() function:

import doctest

doctest.testfile("example.txt")

That short script executes and verifies any interactive Python examples contained in the file example.txt. The
file content is treated as if it were a single giant docstring; the file doesn’t need to contain a Python program! For
example, perhaps example.txt contains this:

The ``example`` module

======================

Using ``factorial``

This is an example text file in reStructuredText format. First import

``factorial`` from the ``example`` module:

>>> from example import factorial

Now use it:

>>> factorial(6)

120

Running doctest.testfile("example.txt") then finds the error in this documentation:

File "./example.txt", line 14, in example.txt

Failed example:

(continues on next page)

1706 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

factorial(6)

Expected:

120

Got:

720

As with testmod(), testfile() won’t display anything unless an example fails. If an example does fail, then the
failing example(s) and the cause(s) of the failure(s) are printed to stdout, using the same format as testmod().

By default, testfile() looks for files in the calling module’s directory. See section Basic API for a description of
the optional arguments that can be used to tell it to look for files in other locations.

Like testmod(), testfile()’s verbosity can be set with the -v command-line switch or with the optional keyword
argument verbose.

There is also a command line shortcut for running testfile(). You can instruct the Python interpreter to run the
doctest module directly from the standard library and pass the file name(s) on the command line:

python -m doctest -v example.txt

Because the file name does not end with .py, doctest infers that it must be run with testfile(), not testmod().

For more information on testfile(), see section Basic API.

27.4.3 How It Works

This section examines in detail how doctest works: which docstrings it looks at, how it finds interactive examples,
what execution context it uses, how it handles exceptions, and how option flags can be used to control its behavior.
This is the information that you need to know to write doctest examples; for information about actually running
doctest on these examples, see the following sections.

Which Docstrings Are Examined?

The module docstring, and all function, class and method docstrings are searched. Objects imported into the module
are not searched.

In addition, there are cases when you want tests to be part of a module but not part of the help text, which requires
that the tests not be included in the docstring. Doctest looks for a module-level variable called __test__ and uses
it to locate other tests. If M.__test__ exists, it must be a dict, and each entry maps a (string) name to a function
object, class object, or string. Function and class object docstrings found from M.__test__ are searched, and strings
are treated as if they were docstrings. In output, a key K in M.__test__ appears with name M.__test__.K.

For example, place this block of code at the top of example.py:

__test__ = {

'numbers': """

>>> factorial(6)

720

>>> [factorial(n) for n in range(6)]

[1, 1, 2, 6, 24, 120]

"""

}

The value of example.__test__["numbers"] will be treated as a docstring and all the tests inside it will be run.
It is important to note that the value can be mapped to a function, class object, or module; if so, doctest searches
them recursively for docstrings, which are then scanned for tests.

Any classes found are recursively searched similarly, to test docstrings in their contained methods and nested classes.

27.4. doctest— Test interactive Python examples 1707

The Python Library Reference, Release 3.13.1

How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine, but doctest isn’t trying to do an exact
emulation of any specific Python shell.

>>> # comments are ignored

>>> x = 12

>>> x

12

>>> if x == 13:

... print("yes")

... else:

... print("no")

... print("NO")

... print("NO!!!")

...

no

NO

NO!!!

>>>

Any expected output must immediately follow the final '>>> ' or '... ' line containing the code, and the expected
output (if any) extends to the next '>>> ' or all-whitespace line.

The fine print:

• Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end of expected
output. If expected output does contain a blank line, put <BLANKLINE> in your doctest example each place a
blank line is expected.

• All hard tab characters are expanded to spaces, using 8-column tab stops. Tabs in output generated by the
tested code are not modified. Because any hard tabs in the sample output are expanded, this means that if the
code output includes hard tabs, the only way the doctest can pass is if the NORMALIZE_WHITESPACE option or
directive is in effect. Alternatively, the test can be rewritten to capture the output and compare it to an expected
value as part of the test. This handling of tabs in the source was arrived at through trial and error, and has
proven to be the least error prone way of handling them. It is possible to use a different algorithm for handling
tabs by writing a custom DocTestParser class.

• Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a different means).

• If you continue a line via backslashing in an interactive session, or for any other reason use a backslash, you
should use a raw docstring, which will preserve your backslashes exactly as you type them:

>>> def f(x):

... r'''Backslashes in a raw docstring: m\n'''

...

>>> print(f.__doc__)

Backslashes in a raw docstring: m\n

Otherwise, the backslash will be interpreted as part of the string. For example, the \n above would be inter-
preted as a newline character. Alternatively, you can double each backslash in the doctest version (and not use
a raw string):

>>> def f(x):

... '''Backslashes in a raw docstring: m\\n'''

...

>>> print(f.__doc__)

Backslashes in a raw docstring: m\n

• The starting column doesn’t matter:

1708 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

>>> assert "Easy!"

>>> import math

>>> math.floor(1.9)

1

and as many leading whitespace characters are stripped from the expected output as appeared in the initial
'>>> ' line that started the example.

What’s the Execution Context?

By default, each time doctest finds a docstring to test, it uses a shallow copy of M’s globals, so that running tests
doesn’t change the module’s real globals, and so that one test in M can’t leave behind crumbs that accidentally allow
another test to work. This means examples can freely use any names defined at top-level in M, and names defined
earlier in the docstring being run. Examples cannot see names defined in other docstrings.

You can force use of your own dict as the execution context by passing globs=your_dict to testmod() or
testfile() instead.

What About Exceptions?

No problem, provided that the traceback is the only output produced by the example: just paste in the traceback.1

Since tracebacks contain details that are likely to change rapidly (for example, exact file paths and line numbers), this
is one case where doctest works hard to be flexible in what it accepts.

Simple example:

>>> [1, 2, 3].remove(42)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: list.remove(x): x not in list

That doctest succeeds if ValueError is raised, with the list.remove(x): x not in list detail as shown.

The expected output for an exception must start with a traceback header, which may be either of the following two
lines, indented the same as the first line of the example:

Traceback (most recent call last):

Traceback (innermost last):

The traceback header is followed by an optional traceback stack, whose contents are ignored by doctest. The traceback
stack is typically omitted, or copied verbatim from an interactive session.

The traceback stack is followed by the most interesting part: the line(s) containing the exception type and detail. This
is usually the last line of a traceback, but can extend across multiple lines if the exception has a multi-line detail:

>>> raise ValueError('multi\n line\ndetail')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: multi

line

detail

The last three lines (starting with ValueError) are compared against the exception’s type and detail, and the rest
are ignored.

Best practice is to omit the traceback stack, unless it adds significant documentation value to the example. So the last
example is probably better as:

1 Examples containing both expected output and an exception are not supported. Trying to guess where one ends and the other begins is too
error-prone, and that also makes for a confusing test.

27.4. doctest— Test interactive Python examples 1709

The Python Library Reference, Release 3.13.1

>>> raise ValueError('multi\n line\ndetail')

Traceback (most recent call last):

...

ValueError: multi

line

detail

Note that tracebacks are treated very specially. In particular, in the rewritten example, the use of ... is independent
of doctest’s ELLIPSIS option. The ellipsis in that example could be left out, or could just as well be three (or three
hundred) commas or digits, or an indented transcript of a Monty Python skit.

Some details you should read once, but won’t need to remember:

• Doctest can’t guess whether your expected output came from an exception traceback or from ordinary printing.
So, e.g., an example that expects ValueError: 42 is prime will pass whether ValueError is actually
raised or if the example merely prints that traceback text. In practice, ordinary output rarely begins with a
traceback header line, so this doesn’t create real problems.

• Each line of the traceback stack (if present) must be indented further than the first line of the example, or
start with a non-alphanumeric character. The first line following the traceback header indented the same and
starting with an alphanumeric is taken to be the start of the exception detail. Of course this does the right thing
for genuine tracebacks.

• When the IGNORE_EXCEPTION_DETAIL doctest option is specified, everything following the leftmost colon
and any module information in the exception name is ignored.

• The interactive shell omits the traceback header line for some SyntaxErrors. But doctest uses the trace-
back header line to distinguish exceptions from non-exceptions. So in the rare case where you need to test a
SyntaxError that omits the traceback header, you will need to manually add the traceback header line to
your test example.

• For some exceptions, Python displays the position of the error using ^ markers and tildes:

>>> 1 + None

File "<stdin>", line 1

1 + None

~~^~~~~~

TypeError: unsupported operand type(s) for +: 'int' and 'NoneType'

Since the lines showing the position of the error come before the exception type and detail, they are not checked
by doctest. For example, the following test would pass, even though it puts the ^marker in the wrong location:

>>> 1 + None

File "<stdin>", line 1

1 + None

^~~~~~~~

TypeError: unsupported operand type(s) for +: 'int' and 'NoneType'

Option Flags

A number of option flags control various aspects of doctest’s behavior. Symbolic names for the flags are supplied as
module constants, which can be bitwise ORed together and passed to various functions. The names can also be used
in doctest directives, and may be passed to the doctest command line interface via the -o option.

Added in version 3.4: The -o command line option.

The first group of options define test semantics, controlling aspects of how doctest decides whether actual output
matches an example’s expected output:

doctest.DONT_ACCEPT_TRUE_FOR_1

By default, if an expected output block contains just 1, an actual output block containing just 1 or just True is
considered to be a match, and similarly for 0 versus False. When DONT_ACCEPT_TRUE_FOR_1 is specified,

1710 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

neither substitution is allowed. The default behavior caters to that Python changed the return type of many
functions from integer to boolean; doctests expecting “little integer” output still work in these cases. This
option will probably go away, but not for several years.

doctest.DONT_ACCEPT_BLANKLINE

By default, if an expected output block contains a line containing only the string <BLANKLINE>, then that line
will match a blank line in the actual output. Because a genuinely blank line delimits the expected output, this
is the only way to communicate that a blank line is expected. When DONT_ACCEPT_BLANKLINE is specified,
this substitution is not allowed.

doctest.NORMALIZE_WHITESPACE

When specified, all sequences of whitespace (blanks and newlines) are treated as equal. Any sequence of
whitespace within the expected output will match any sequence of whitespace within the actual output. By
default, whitespacemustmatch exactly. NORMALIZE_WHITESPACE is especially useful when a line of expected
output is very long, and you want to wrap it across multiple lines in your source.

doctest.ELLIPSIS

When specified, an ellipsis marker (...) in the expected output can match any substring in the actual output.
This includes substrings that span line boundaries, and empty substrings, so it’s best to keep usage of this
simple. Complicated uses can lead to the same kinds of “oops, it matched too much!” surprises that .* is
prone to in regular expressions.

doctest.IGNORE_EXCEPTION_DETAIL

When specified, doctests expecting exceptions pass so long as an exception of the expected type is raised, even
if the details (message and fully qualified exception name) don’t match.

For example, an example expecting ValueError: 42 will pass if the actual exception raised is
ValueError: 3*14, but will fail if, say, a TypeError is raised instead. It will also ignore any fully qualified
name included before the exception class, which can vary between implementations and versions of Python
and the code/libraries in use. Hence, all three of these variations will work with the flag specified:

>>> raise Exception('message')

Traceback (most recent call last):

Exception: message

>>> raise Exception('message')

Traceback (most recent call last):

builtins.Exception: message

>>> raise Exception('message')

Traceback (most recent call last):

__main__.Exception: message

Note that ELLIPSIS can also be used to ignore the details of the exception message, but such a test may still
fail based on whether the module name is present or matches exactly.

Changed in version 3.2: IGNORE_EXCEPTION_DETAIL now also ignores any information relating to the mod-
ule containing the exception under test.

doctest.SKIP

When specified, do not run the example at all. This can be useful in contexts where doctest examples serve as
both documentation and test cases, and an example should be included for documentation purposes, but should
not be checked. E.g., the example’s output might be random; or the example might depend on resources which
would be unavailable to the test driver.

The SKIP flag can also be used for temporarily “commenting out” examples.

doctest.COMPARISON_FLAGS

A bitmask or’ing together all the comparison flags above.

The second group of options controls how test failures are reported:

27.4. doctest— Test interactive Python examples 1711

The Python Library Reference, Release 3.13.1

doctest.REPORT_UDIFF

When specified, failures that involve multi-line expected and actual outputs are displayed using a unified diff.

doctest.REPORT_CDIFF

When specified, failures that involve multi-line expected and actual outputs will be displayed using a context
diff.

doctest.REPORT_NDIFF

When specified, differences are computed by difflib.Differ, using the same algorithm as the popular
ndiff.py utility. This is the only method that marks differences within lines as well as across lines. For
example, if a line of expected output contains digit 1 where actual output contains letter l, a line is inserted
with a caret marking the mismatching column positions.

doctest.REPORT_ONLY_FIRST_FAILURE

When specified, display the first failing example in each doctest, but suppress output for all remaining examples.
This will prevent doctest from reporting correct examples that break because of earlier failures; but it might also
hide incorrect examples that fail independently of the first failure. When REPORT_ONLY_FIRST_FAILURE is
specified, the remaining examples are still run, and still count towards the total number of failures reported;
only the output is suppressed.

doctest.FAIL_FAST

When specified, exit after the first failing example and don’t attempt to run the remaining examples. Thus, the
number of failures reported will be at most 1. This flag may be useful during debugging, since examples after
the first failure won’t even produce debugging output.

The doctest command line accepts the option -f as a shorthand for -o FAIL_FAST.

Added in version 3.4.

doctest.REPORTING_FLAGS

A bitmask or’ing together all the reporting flags above.

There is also a way to register new option flag names, though this isn’t useful unless you intend to extend doctest
internals via subclassing:

doctest.register_optionflag(name)
Create a new option flag with a given name, and return the new flag’s integer value.
register_optionflag() can be used when subclassing OutputChecker or DocTestRunner to
create new options that are supported by your subclasses. register_optionflag() should always be
called using the following idiom:

MY_FLAG = register_optionflag('MY_FLAG')

Directives

Doctest directives may be used to modify the option flags for an individual example. Doctest directives are special
Python comments following an example’s source code:

directive ::= "#" "doctest:" directive_options

directive_options ::= directive_option ("," directive_option)*

directive_option ::= on_or_off directive_option_name

on_or_off ::= "+" | "-"

directive_option_name ::= "DONT_ACCEPT_BLANKLINE" | "NORMALIZE_WHITESPACE" | ...

Whitespace is not allowed between the + or - and the directive option name. The directive option name can be any
of the option flag names explained above.

An example’s doctest directives modify doctest’s behavior for that single example. Use + to enable the named be-
havior, or - to disable it.

For example, this test passes:

1712 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

>>> print(list(range(20))) # doctest: +NORMALIZE_WHITESPACE

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Without the directive it would fail, both because the actual output doesn’t have two blanks before the single-digit list
elements, and because the actual output is on a single line. This test also passes, and also requires a directive to do
so:

>>> print(list(range(20))) # doctest: +ELLIPSIS

[0, 1, ..., 18, 19]

Multiple directives can be used on a single physical line, separated by commas:

>>> print(list(range(20))) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE

[0, 1, ..., 18, 19]

If multiple directive comments are used for a single example, then they are combined:

>>> print(list(range(20))) # doctest: +ELLIPSIS

... # doctest: +NORMALIZE_WHITESPACE

[0, 1, ..., 18, 19]

As the previous example shows, you can add ... lines to your example containing only directives. This can be useful
when an example is too long for a directive to comfortably fit on the same line:

>>> print(list(range(5)) + list(range(10, 20)) + list(range(30, 40)))

... # doctest: +ELLIPSIS

[0, ..., 4, 10, ..., 19, 30, ..., 39]

Note that since all options are disabled by default, and directives apply only to the example they appear in, enabling
options (via + in a directive) is usually the only meaningful choice. However, option flags can also be passed to
functions that run doctests, establishing different defaults. In such cases, disabling an option via - in a directive can
be useful.

Warnings

doctest is serious about requiring exact matches in expected output. If even a single character doesn’t match, the
test fails. This will probably surprise you a few times, as you learn exactly what Python does and doesn’t guarantee
about output. For example, when printing a set, Python doesn’t guarantee that the element is printed in any particular
order, so a test like

>>> foo()

{"spam", "eggs"}

is vulnerable! One workaround is to do

>>> foo() == {"spam", "eggs"}

True

instead. Another is to do

>>> d = sorted(foo())

>>> d

['eggs', 'spam']

There are others, but you get the idea.

Another bad idea is to print things that embed an object address, like

27.4. doctest— Test interactive Python examples 1713

The Python Library Reference, Release 3.13.1

>>> id(1.0) # certain to fail some of the time

7948648

>>> class C: pass

>>> C() # the default repr() for instances embeds an address

<C object at 0x00AC18F0>

The ELLIPSIS directive gives a nice approach for the last example:

>>> C() # doctest: +ELLIPSIS

<C object at 0x...>

Floating-point numbers are also subject to small output variations across platforms, because Python defers to the
platform C library for float formatting, and C libraries vary widely in quality here.

>>> 1./7 # risky

0.14285714285714285

>>> print(1./7) # safer

0.142857142857

>>> print(round(1./7, 6)) # much safer

0.142857

Numbers of the form I/2.**J are safe across all platforms, and I often contrive doctest examples to produce numbers
of that form:

>>> 3./4 # utterly safe

0.75

Simple fractions are also easier for people to understand, and that makes for better documentation.

27.4.4 Basic API

The functions testmod() and testfile() provide a simple interface to doctest that should be sufficient for most
basic uses. For a less formal introduction to these two functions, see sections Simple Usage: Checking Examples in
Docstrings and Simple Usage: Checking Examples in a Text File.

doctest.testfile(filename, module_relative=True, name=None, package=None, globs=None, verbose=None,
report=True, optionflags=0, extraglobs=None, raise_on_error=False,
parser=DocTestParser(), encoding=None)

All arguments except filename are optional, and should be specified in keyword form.

Test examples in the file named filename. Return (failure_count, test_count).

Optional argument module_relative specifies how the filename should be interpreted:

• Ifmodule_relative is True (the default), then filename specifies an OS-independent module-relative path.
By default, this path is relative to the calling module’s directory; but if the package argument is specified,
then it is relative to that package. To ensure OS-independence, filename should use / characters to
separate path segments, and may not be an absolute path (i.e., it may not begin with /).

• If module_relative is False, then filename specifies an OS-specific path. The path may be absolute or
relative; relative paths are resolved with respect to the current working directory.

Optional argument name gives the name of the test; by default, or if None, os.path.basename(filename)
is used.

Optional argument package is a Python package or the name of a Python package whose directory should
be used as the base directory for a module-relative filename. If no package is specified, then the calling
module’s directory is used as the base directory for module-relative filenames. It is an error to specify package
if module_relative is False.

1714 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

Optional argument globs gives a dict to be used as the globals when executing examples. A new shallow copy
of this dict is created for the doctest, so its examples start with a clean slate. By default, or if None, a new
empty dict is used.

Optional argument extraglobs gives a dict merged into the globals used to execute examples. This works like
dict.update(): if globs and extraglobs have a common key, the associated value in extraglobs appears in
the combined dict. By default, or if None, no extra globals are used. This is an advanced feature that allows
parameterization of doctests. For example, a doctest can be written for a base class, using a generic name for
the class, then reused to test any number of subclasses by passing an extraglobs dict mapping the generic name
to the subclass to be tested.

Optional argument verbose prints lots of stuff if true, and prints only failures if false; by default, or if None,
it’s true if and only if '-v' is in sys.argv.

Optional argument report prints a summary at the end when true, else prints nothing at the end. In verbose
mode, the summary is detailed, else the summary is very brief (in fact, empty if all tests passed).

Optional argument optionflags (default value 0) takes the bitwise OR of option flags. See section Option Flags.

Optional argument raise_on_error defaults to false. If true, an exception is raised upon the first failure or
unexpected exception in an example. This allows failures to be post-mortem debugged. Default behavior is to
continue running examples.

Optional argument parser specifies a DocTestParser (or subclass) that should be used to extract tests from
the files. It defaults to a normal parser (i.e., DocTestParser()).

Optional argument encoding specifies an encoding that should be used to convert the file to unicode.

doctest.testmod(m=None, name=None, globs=None, verbose=None, report=True, optionflags=0,
extraglobs=None, raise_on_error=False, exclude_empty=False)

All arguments are optional, and all except for m should be specified in keyword form.

Test examples in docstrings in functions and classes reachable from module m (or module __main__ if m is
not supplied or is None), starting with m.__doc__.

Also test examples reachable from dict m.__test__, if it exists. m.__test__ maps names (strings) to
functions, classes and strings; function and class docstrings are searched for examples; strings are searched
directly, as if they were docstrings.

Only docstrings attached to objects belonging to module m are searched.

Return (failure_count, test_count).

Optional argument name gives the name of the module; by default, or if None, m.__name__ is used.

Optional argument exclude_empty defaults to false. If true, objects for which no doctests are found are ex-
cluded from consideration. The default is a backward compatibility hack, so that code still using doctest.
master.summarize in conjunction with testmod() continues to get output for objects with no tests. The
exclude_empty argument to the newer DocTestFinder constructor defaults to true.

Optional arguments extraglobs, verbose, report, optionflags, raise_on_error, and globs are the same as for func-
tion testfile() above, except that globs defaults to m.__dict__.

doctest.run_docstring_examples(f, globs, verbose=False, name=’NoName’, compileflags=None,
optionflags=0)

Test examples associated with object f; for example, f may be a string, a module, a function, or a class object.

A shallow copy of dictionary argument globs is used for the execution context.

Optional argument name is used in failure messages, and defaults to "NoName".

If optional argument verbose is true, output is generated even if there are no failures. By default, output is
generated only in case of an example failure.

Optional argument compileflags gives the set of flags that should be used by the Python compiler when running
the examples. By default, or if None, flags are deduced corresponding to the set of future features found in
globs.

27.4. doctest— Test interactive Python examples 1715

The Python Library Reference, Release 3.13.1

Optional argument optionflags works as for function testfile() above.

27.4.5 Unittest API

As your collection of doctest’ed modules grows, you’ll want a way to run all their doctests systematically. doctest
provides two functions that can be used to create unittest test suites frommodules and text files containing doctests.
To integrate with unittest test discovery, include a load_tests function in your test module:

import unittest

import doctest

import my_module_with_doctests

def load_tests(loader, tests, ignore):

tests.addTests(doctest.DocTestSuite(my_module_with_doctests))

return tests

There are two main functions for creating unittest.TestSuite instances from text files and modules with
doctests:

doctest.DocFileSuite(*paths, module_relative=True, package=None, setUp=None, tearDown=None,
globs=None, optionflags=0, parser=DocTestParser(), encoding=None)

Convert doctest tests from one or more text files to a unittest.TestSuite.

The returned unittest.TestSuite is to be run by the unittest framework and runs the interactive examples
in each file. If an example in any file fails, then the synthesized unit test fails, and a failureException
exception is raised showing the name of the file containing the test and a (sometimes approximate) line number.
If all the examples in a file are skipped, then the synthesized unit test is also marked as skipped.

Pass one or more paths (as strings) to text files to be examined.

Options may be provided as keyword arguments:

Optional argument module_relative specifies how the filenames in paths should be interpreted:

• Ifmodule_relative is True (the default), then each filename in paths specifies an OS-independent module-
relative path. By default, this path is relative to the calling module’s directory; but if the package argument
is specified, then it is relative to that package. To ensure OS-independence, each filename should use /
characters to separate path segments, and may not be an absolute path (i.e., it may not begin with /).

• If module_relative is False, then each filename in paths specifies an OS-specific path. The path may be
absolute or relative; relative paths are resolved with respect to the current working directory.

Optional argument package is a Python package or the name of a Python package whose directory should be
used as the base directory for module-relative filenames in paths. If no package is specified, then the calling
module’s directory is used as the base directory for module-relative filenames. It is an error to specify package
if module_relative is False.

Optional argument setUp specifies a set-up function for the test suite. This is called before running the tests in
each file. The setUp function will be passed a DocTest object. The setUp function can access the test globals
as the globs attribute of the test passed.

Optional argument tearDown specifies a tear-down function for the test suite. This is called after running the
tests in each file. The tearDown function will be passed a DocTest object. The setUp function can access the
test globals as the globs attribute of the test passed.

Optional argument globs is a dictionary containing the initial global variables for the tests. A new copy of this
dictionary is created for each test. By default, globs is a new empty dictionary.

Optional argument optionflags specifies the default doctest options for the tests, created by or-ing together
individual option flags. See section Option Flags. See function set_unittest_reportflags() below for
a better way to set reporting options.

Optional argument parser specifies a DocTestParser (or subclass) that should be used to extract tests from
the files. It defaults to a normal parser (i.e., DocTestParser()).

1716 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

Optional argument encoding specifies an encoding that should be used to convert the file to unicode.

The global __file__ is added to the globals provided to doctests loaded from a text file using
DocFileSuite().

doctest.DocTestSuite(module=None, globs=None, extraglobs=None, test_finder=None, setUp=None,
tearDown=None, optionflags=0, checker=None)

Convert doctest tests for a module to a unittest.TestSuite.

The returned unittest.TestSuite is to be run by the unittest framework and runs each doctest in the
module. If any of the doctests fail, then the synthesized unit test fails, and a failureException exception
is raised showing the name of the file containing the test and a (sometimes approximate) line number. If all
the examples in a docstring are skipped, then the synthesized unit test is also marked as skipped.

Optional argument module provides the module to be tested. It can be a module object or a (possibly dotted)
module name. If not specified, the module calling this function is used.

Optional argument globs is a dictionary containing the initial global variables for the tests. A new copy of this
dictionary is created for each test. By default, globs is a new empty dictionary.

Optional argument extraglobs specifies an extra set of global variables, which is merged into globs. By default,
no extra globals are used.

Optional argument test_finder is the DocTestFinder object (or a drop-in replacement) that is used to extract
doctests from the module.

Optional arguments setUp, tearDown, and optionflags are the same as for function DocFileSuite() above.

This function uses the same search technique as testmod().

Changed in version 3.5: DocTestSuite() returns an empty unittest.TestSuite if module contains no
docstrings instead of raising ValueError.

exception doctest.failureException

When doctests which have been converted to unit tests by DocFileSuite() or DocTestSuite() fail, this
exception is raised showing the name of the file containing the test and a (sometimes approximate) line number.

Under the covers, DocTestSuite() creates a unittest.TestSuite out of doctest.DocTestCase instances,
and DocTestCase is a subclass of unittest.TestCase. DocTestCase isn’t documented here (it’s an internal
detail), but studying its code can answer questions about the exact details of unittest integration.

Similarly, DocFileSuite() creates a unittest.TestSuite out of doctest.DocFileCase instances, and
DocFileCase is a subclass of DocTestCase.

So both ways of creating a unittest.TestSuite run instances of DocTestCase. This is important for a subtle
reason: when you run doctest functions yourself, you can control the doctest options in use directly, by pass-
ing option flags to doctest functions. However, if you’re writing a unittest framework, unittest ultimately
controls when and how tests get run. The framework author typically wants to control doctest reporting options
(perhaps, e.g., specified by command line options), but there’s no way to pass options through unittest to doctest
test runners.

For this reason, doctest also supports a notion of doctest reporting flags specific to unittest support, via this
function:

doctest.set_unittest_reportflags(flags)
Set the doctest reporting flags to use.

Argument flags takes the bitwise OR of option flags. See section Option Flags. Only “reporting flags” can be
used.

This is a module-global setting, and affects all future doctests run by module unittest: the runTest()
method of DocTestCase looks at the option flags specified for the test case when the DocTestCase instance
was constructed. If no reporting flags were specified (which is the typical and expected case), doctest’s
unittest reporting flags are bitwise ORed into the option flags, and the option flags so augmented are passed
to the DocTestRunner instance created to run the doctest. If any reporting flags were specified when the
DocTestCase instance was constructed, doctest’s unittest reporting flags are ignored.

27.4. doctest— Test interactive Python examples 1717

The Python Library Reference, Release 3.13.1

The value of the unittest reporting flags in effect before the function was called is returned by the function.

27.4.6 Advanced API

The basic API is a simple wrapper that’s intended tomake doctest easy to use. It is fairly flexible, and shouldmeetmost
users’ needs; however, if you require more fine-grained control over testing, or wish to extend doctest’s capabilities,
then you should use the advanced API.

The advanced API revolves around two container classes, which are used to store the interactive examples extracted
from doctest cases:

• Example: A single Python statement, paired with its expected output.

• DocTest: A collection of Examples, typically extracted from a single docstring or text file.

Additional processing classes are defined to find, parse, and run, and check doctest examples:

• DocTestFinder: Finds all docstrings in a given module, and uses a DocTestParser to create a DocTest
from every docstring that contains interactive examples.

• DocTestParser: Creates a DocTest object from a string (such as an object’s docstring).

• DocTestRunner: Executes the examples in a DocTest, and uses an OutputChecker to verify their output.

• OutputChecker: Compares the actual output from a doctest example with the expected output, and decides
whether they match.

The relationships among these processing classes are summarized in the following diagram:

list of:

+------+ +---------+

|module| --DocTestFinder-> | DocTest | --DocTestRunner-> results

+------+ | ^ +---------+ | ^ (printed)

| | | Example | | |

v | | ... | v |

DocTestParser | Example | OutputChecker

+---------+

DocTest Objects

class doctest.DocTest(examples, globs, name, filename, lineno, docstring)
A collection of doctest examples that should be run in a single namespace. The constructor arguments are used
to initialize the attributes of the same names.

DocTest defines the following attributes. They are initialized by the constructor, and should not be modified
directly.

examples

A list of Example objects encoding the individual interactive Python examples that should be run by this
test.

globs

The namespace (aka globals) that the examples should be run in. This is a dictionary mapping names
to values. Any changes to the namespace made by the examples (such as binding new variables) will be
reflected in globs after the test is run.

name

A string name identifying the DocTest. Typically, this is the name of the object or file that the test was
extracted from.

filename

The name of the file that this DocTest was extracted from; or None if the filename is unknown, or if
the DocTest was not extracted from a file.

1718 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

lineno

The line number within filenamewhere this DocTest begins, or None if the line number is unavailable.
This line number is zero-based with respect to the beginning of the file.

docstring

The string that the test was extracted from, or None if the string is unavailable, or if the test was not
extracted from a string.

Example Objects

class doctest.Example(source, want, exc_msg=None, lineno=0, indent=0, options=None)
A single interactive example, consisting of a Python statement and its expected output. The constructor argu-
ments are used to initialize the attributes of the same names.

Example defines the following attributes. They are initialized by the constructor, and should not be modified
directly.

source

A string containing the example’s source code. This source code consists of a single Python statement,
and always ends with a newline; the constructor adds a newline when necessary.

want

The expected output from running the example’s source code (either from stdout, or a traceback in case
of exception). want ends with a newline unless no output is expected, in which case it’s an empty string.
The constructor adds a newline when necessary.

exc_msg

The exception message generated by the example, if the example is expected to generate an exception;
or None if it is not expected to generate an exception. This exception message is compared against the
return value of traceback.format_exception_only(). exc_msg ends with a newline unless it’s
None. The constructor adds a newline if needed.

lineno

The line number within the string containing this example where the example begins. This line number
is zero-based with respect to the beginning of the containing string.

indent

The example’s indentation in the containing string, i.e., the number of space characters that precede the
example’s first prompt.

options

A dictionary mapping from option flags to True or False, which is used to override default options for
this example. Any option flags not contained in this dictionary are left at their default value (as specified
by the DocTestRunner’s optionflags). By default, no options are set.

DocTestFinder objects

class doctest.DocTestFinder(verbose=False, parser=DocTestParser(), recurse=True, exclude_empty=True)
A processing class used to extract the DocTests that are relevant to a given object, from its docstring and the
docstrings of its contained objects. DocTests can be extracted from modules, classes, functions, methods,
staticmethods, classmethods, and properties.

The optional argument verbose can be used to display the objects searched by the finder. It defaults to False
(no output).

The optional argument parser specifies the DocTestParser object (or a drop-in replacement) that is used to
extract doctests from docstrings.

If the optional argument recurse is false, then DocTestFinder.find() will only examine the given object,
and not any contained objects.

If the optional argument exclude_empty is false, then DocTestFinder.find() will include tests for objects
with empty docstrings.

27.4. doctest— Test interactive Python examples 1719

The Python Library Reference, Release 3.13.1

DocTestFinder defines the following method:

find(obj[, name][, module][, globs][, extraglobs])
Return a list of the DocTests that are defined by obj’s docstring, or by any of its contained objects’
docstrings.

The optional argument name specifies the object’s name; this name will be used to construct names for
the returned DocTests. If name is not specified, then obj.__name__ is used.

The optional parametermodule is the module that contains the given object. If the module is not specified
or is None, then the test finder will attempt to automatically determine the correct module. The object’s
module is used:

• As a default namespace, if globs is not specified.

• To prevent the DocTestFinder from extracting DocTests from objects that are imported from other
modules. (Contained objects with modules other than module are ignored.)

• To find the name of the file containing the object.

• To help find the line number of the object within its file.

If module is False, no attempt to find the module will be made. This is obscure, of use mostly in testing
doctest itself: if module is False, or is None but cannot be found automatically, then all objects are
considered to belong to the (non-existent) module, so all contained objects will (recursively) be searched
for doctests.

The globals for each DocTest is formed by combining globs and extraglobs (bindings in extraglobs over-
ride bindings in globs). A new shallow copy of the globals dictionary is created for each DocTest. If
globs is not specified, then it defaults to the module’s __dict__, if specified, or {} otherwise. If extraglobs
is not specified, then it defaults to {}.

DocTestParser objects

class doctest.DocTestParser

A processing class used to extract interactive examples from a string, and use them to create a DocTest object.

DocTestParser defines the following methods:

get_doctest(string, globs, name, filename, lineno)
Extract all doctest examples from the given string, and collect them into a DocTest object.

globs, name, filename, and lineno are attributes for the new DocTest object. See the documentation for
DocTest for more information.

get_examples(string, name=’<string>’)
Extract all doctest examples from the given string, and return them as a list of Example objects. Line
numbers are 0-based. The optional argument name is a name identifying this string, and is only used for
error messages.

parse(string, name=’<string>’)
Divide the given string into examples and intervening text, and return them as a list of alternating
Examples and strings. Line numbers for the Examples are 0-based. The optional argument name
is a name identifying this string, and is only used for error messages.

TestResults objects

class doctest.TestResults(failed, attempted)

failed

Number of failed tests.

attempted

Number of attempted tests.

1720 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

skipped

Number of skipped tests.

Added in version 3.13.

DocTestRunner objects

class doctest.DocTestRunner(checker=None, verbose=None, optionflags=0)
A processing class used to execute and verify the interactive examples in a DocTest.

The comparison between expected outputs and actual outputs is done by an OutputChecker. This com-
parison may be customized with a number of option flags; see section Option Flags for more information.
If the option flags are insufficient, then the comparison may also be customized by passing a subclass of
OutputChecker to the constructor.

The test runner’s display output can be controlled in two ways. First, an output function can be
passed to run(); this function will be called with strings that should be displayed. It defaults to sys.

stdout.write. If capturing the output is not sufficient, then the display output can be also customized
by subclassing DocTestRunner, and overriding the methods report_start(), report_success(),
report_unexpected_exception(), and report_failure().

The optional keyword argument checker specifies the OutputChecker object (or drop-in replacement) that
should be used to compare the expected outputs to the actual outputs of doctest examples.

The optional keyword argument verbose controls the DocTestRunner’s verbosity. If verbose is True, then
information is printed about each example, as it is run. If verbose is False, then only failures are printed. If
verbose is unspecified, or None, then verbose output is used iff the command-line switch -v is used.

The optional keyword argument optionflags can be used to control how the test runner compares expected
output to actual output, and how it displays failures. For more information, see section Option Flags.

The test runner accumulates statistics. The aggregated number of attempted, failed and skipped examples is
also available via the tries, failures and skips attributes. The run() and summarize()methods return
a TestResults instance.

DocTestRunner defines the following methods:

report_start(out, test, example)
Report that the test runner is about to process the given example. This method is provided to allow
subclasses of DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. test is the test containing example. out is the output
function that was passed to DocTestRunner.run().

report_success(out, test, example, got)
Report that the given example ran successfully. This method is provided to allow subclasses of
DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. got is the actual output from the example. test is the test
containing example. out is the output function that was passed to DocTestRunner.run().

report_failure(out, test, example, got)
Report that the given example failed. This method is provided to allow subclasses of DocTestRunner
to customize their output; it should not be called directly.

example is the example about to be processed. got is the actual output from the example. test is the test
containing example. out is the output function that was passed to DocTestRunner.run().

report_unexpected_exception(out, test, example, exc_info)
Report that the given example raised an unexpected exception. This method is provided to allow sub-
classes of DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. exc_info is a tuple containing information about the
unexpected exception (as returned by sys.exc_info()). test is the test containing example. out is the
output function that was passed to DocTestRunner.run().

27.4. doctest— Test interactive Python examples 1721

The Python Library Reference, Release 3.13.1

run(test, compileflags=None, out=None, clear_globs=True)
Run the examples in test (a DocTest object), and display the results using the writer function out. Return
a TestResults instance.

The examples are run in the namespace test.globs. If clear_globs is true (the default), then this
namespace will be cleared after the test runs, to help with garbage collection. If you would like to
examine the namespace after the test completes, then use clear_globs=False.

compileflags gives the set of flags that should be used by the Python compiler when running the examples.
If not specified, then it will default to the set of future-import flags that apply to globs.

The output of each example is checked using the DocTestRunner’s output checker, and the results are
formatted by the DocTestRunner.report_*() methods.

summarize(verbose=None)

Print a summary of all the test cases that have been run by this DocTestRunner, and return a
TestResults instance.

The optional verbose argument controls how detailed the summary is. If the verbosity is not specified,
then the DocTestRunner’s verbosity is used.

DocTestParser has the following attributes:

tries

Number of attempted examples.

failures

Number of failed examples.

skips

Number of skipped examples.

Added in version 3.13.

OutputChecker objects

class doctest.OutputChecker

A class used to check the whether the actual output from a doctest example matches the expected output.
OutputChecker defines two methods: check_output(), which compares a given pair of outputs, and
returns True if they match; and output_difference(), which returns a string describing the differences
between two outputs.

OutputChecker defines the following methods:

check_output(want, got, optionflags)
Return True iff the actual output from an example (got) matches the expected output (want). These
strings are always considered to match if they are identical; but depending on what option flags the test
runner is using, several non-exact match types are also possible. See section Option Flags for more
information about option flags.

output_difference(example, got, optionflags)
Return a string describing the differences between the expected output for a given example (example)
and the actual output (got). optionflags is the set of option flags used to compare want and got.

27.4.7 Debugging

Doctest provides several mechanisms for debugging doctest examples:

• Several functions convert doctests to executable Python programs, which can be run under the Python debugger,
pdb.

• The DebugRunner class is a subclass of DocTestRunner that raises an exception for the first failing example,
containing information about that example. This information can be used to perform post-mortem debugging
on the example.

1722 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

• The unittest cases generated by DocTestSuite() support the debug() method defined by unittest.
TestCase.

• You can add a call to pdb.set_trace() in a doctest example, and you’ll drop into the Python debugger when
that line is executed. Then you can inspect current values of variables, and so on. For example, suppose a.py
contains just this module docstring:

"""

>>> def f(x):

... g(x*2)

>>> def g(x):

... print(x+3)

... import pdb; pdb.set_trace()

>>> f(3)

9

"""

Then an interactive Python session may look like this:

>>> import a, doctest

>>> doctest.testmod(a)

--Return--

> <doctest a[1]>(3)g()->None

-> import pdb; pdb.set_trace()

(Pdb) list

1 def g(x):

2 print(x+3)

3 -> import pdb; pdb.set_trace()

[EOF]

(Pdb) p x

6

(Pdb) step

--Return--

> <doctest a[0]>(2)f()->None

-> g(x*2)

(Pdb) list

1 def f(x):

2 -> g(x*2)

[EOF]

(Pdb) p x

3

(Pdb) step

--Return--

> <doctest a[2]>(1)?()->None

-> f(3)

(Pdb) cont

(0, 3)

>>>

Functions that convert doctests to Python code, and possibly run the synthesized code under the debugger:

doctest.script_from_examples(s)

Convert text with examples to a script.

Argument s is a string containing doctest examples. The string is converted to a Python script, where doctest
examples in s are converted to regular code, and everything else is converted to Python comments. The gen-
erated script is returned as a string. For example,

27.4. doctest— Test interactive Python examples 1723

The Python Library Reference, Release 3.13.1

import doctest

print(doctest.script_from_examples(r"""

Set x and y to 1 and 2.

>>> x, y = 1, 2

Print their sum:

>>> print(x+y)

3

"""))

displays:

Set x and y to 1 and 2.

x, y = 1, 2

#

Print their sum:

print(x+y)

Expected:

3

This function is used internally by other functions (see below), but can also be useful when you want to trans-
form an interactive Python session into a Python script.

doctest.testsource(module, name)
Convert the doctest for an object to a script.

Argument module is a module object, or dotted name of a module, containing the object whose doctests
are of interest. Argument name is the name (within the module) of the object with the doctests of inter-
est. The result is a string, containing the object’s docstring converted to a Python script, as described for
script_from_examples() above. For example, if module a.py contains a top-level function f(), then

import a, doctest

print(doctest.testsource(a, "a.f"))

prints a script version of function f()’s docstring, with doctests converted to code, and the rest placed in
comments.

doctest.debug(module, name, pm=False)
Debug the doctests for an object.

The module and name arguments are the same as for function testsource() above. The synthesized Python
script for the named object’s docstring is written to a temporary file, and then that file is run under the control
of the Python debugger, pdb.

A shallow copy of module.__dict__ is used for both local and global execution context.

Optional argument pm controls whether post-mortem debugging is used. If pm has a true value, the script file
is run directly, and the debugger gets involved only if the script terminates via raising an unhandled exception.
If it does, then post-mortem debugging is invoked, via pdb.post_mortem(), passing the traceback object
from the unhandled exception. If pm is not specified, or is false, the script is run under the debugger from the
start, via passing an appropriate exec() call to pdb.run().

doctest.debug_src(src, pm=False, globs=None)
Debug the doctests in a string.

This is like function debug() above, except that a string containing doctest examples is specified directly, via
the src argument.

Optional argument pm has the same meaning as in function debug() above.

Optional argument globs gives a dictionary to use as both local and global execution context. If not specified,
or None, an empty dictionary is used. If specified, a shallow copy of the dictionary is used.

1724 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

The DebugRunner class, and the special exceptions it may raise, are of most interest to testing framework authors,
and will only be sketched here. See the source code, and especially DebugRunner’s docstring (which is a doctest!)
for more details:

class doctest.DebugRunner(checker=None, verbose=None, optionflags=0)
A subclass of DocTestRunner that raises an exception as soon as a failure is encountered. If an unexpected
exception occurs, an UnexpectedException exception is raised, containing the test, the example, and the
original exception. If the output doesn’t match, then a DocTestFailure exception is raised, containing the
test, the example, and the actual output.

For information about the constructor parameters and methods, see the documentation for DocTestRunner
in section Advanced API.

There are two exceptions that may be raised by DebugRunner instances:

exception doctest.DocTestFailure(test, example, got)
An exception raised by DocTestRunner to signal that a doctest example’s actual output did not match its
expected output. The constructor arguments are used to initialize the attributes of the same names.

DocTestFailure defines the following attributes:

DocTestFailure.test

The DocTest object that was being run when the example failed.

DocTestFailure.example

The Example that failed.

DocTestFailure.got

The example’s actual output.

exception doctest.UnexpectedException(test, example, exc_info)
An exception raised by DocTestRunner to signal that a doctest example raised an unexpected exception. The
constructor arguments are used to initialize the attributes of the same names.

UnexpectedException defines the following attributes:

UnexpectedException.test

The DocTest object that was being run when the example failed.

UnexpectedException.example

The Example that failed.

UnexpectedException.exc_info

A tuple containing information about the unexpected exception, as returned by sys.exc_info().

27.4.8 Soapbox

As mentioned in the introduction, doctest has grown to have three primary uses:

1. Checking examples in docstrings.

2. Regression testing.

3. Executable documentation / literate testing.

These uses have different requirements, and it is important to distinguish them. In particular, filling your docstrings
with obscure test cases makes for bad documentation.

When writing a docstring, choose docstring examples with care. There’s an art to this that needs to be learned—it
may not be natural at first. Examples should add genuine value to the documentation. A good example can often be
worth many words. If done with care, the examples will be invaluable for your users, and will pay back the time it
takes to collect them many times over as the years go by and things change. I’m still amazed at how often one of my
doctest examples stops working after a “harmless” change.

Doctest also makes an excellent tool for regression testing, especially if you don’t skimp on explanatory text. By
interleaving prose and examples, it becomes much easier to keep track of what’s actually being tested, and why.

27.4. doctest— Test interactive Python examples 1725

The Python Library Reference, Release 3.13.1

When a test fails, good prose can make it much easier to figure out what the problem is, and how it should be fixed.
It’s true that you could write extensive comments in code-based testing, but few programmers do. Many have found
that using doctest approaches instead leads to much clearer tests. Perhaps this is simply because doctest makes writing
prose a little easier than writing code, while writing comments in code is a little harder. I think it goes deeper than just
that: the natural attitude when writing a doctest-based test is that you want to explain the fine points of your software,
and illustrate them with examples. This in turn naturally leads to test files that start with the simplest features, and
logically progress to complications and edge cases. A coherent narrative is the result, instead of a collection of isolated
functions that test isolated bits of functionality seemingly at random. It’s a different attitude, and produces different
results, blurring the distinction between testing and explaining.

Regression testing is best confined to dedicated objects or files. There are several options for organizing tests:

• Write text files containing test cases as interactive examples, and test the files using testfile() or
DocFileSuite(). This is recommended, although is easiest to do for new projects, designed from the start
to use doctest.

• Define functions named _regrtest_topic that consist of single docstrings, containing test cases for the
named topics. These functions can be included in the same file as the module, or separated out into a separate
test file.

• Define a __test__ dictionary mapping from regression test topics to docstrings containing test cases.

When you have placed your tests in a module, the module can itself be the test runner. When a test fails, you can
arrange for your test runner to re-run only the failing doctest while you debug the problem. Here is a minimal example
of such a test runner:

if __name__ == '__main__':

import doctest

flags = doctest.REPORT_NDIFF|doctest.FAIL_FAST

if len(sys.argv) > 1:

name = sys.argv[1]

if name in globals():

obj = globals()[name]

else:

obj = __test__[name]

doctest.run_docstring_examples(obj, globals(), name=name,

optionflags=flags)

else:

fail, total = doctest.testmod(optionflags=flags)

print(f"{fail} failures out of {total} tests")

27.5 unittest— Unit testing framework

Source code: Lib/unittest/__init__.py

(If you are already familiar with the basic concepts of testing, you might want to skip to the list of assert methods.)

The unittest unit testing framework was originally inspired by JUnit and has a similar flavor as major unit testing
frameworks in other languages. It supports test automation, sharing of setup and shutdown code for tests, aggregation
of tests into collections, and independence of the tests from the reporting framework.

To achieve this, unittest supports some important concepts in an object-oriented way:

test fixture
A test fixture represents the preparation needed to perform one or more tests, and any associated cleanup
actions. This may involve, for example, creating temporary or proxy databases, directories, or starting a server
process.

test case
A test case is the individual unit of testing. It checks for a specific response to a particular set of inputs.
unittest provides a base class, TestCase, which may be used to create new test cases.

1726 Chapter 27. Development Tools

https://github.com/python/cpython/tree/3.13/Lib/unittest/__init__.py

The Python Library Reference, Release 3.13.1

test suite
A test suite is a collection of test cases, test suites, or both. It is used to aggregate tests that should be executed
together.

test runner
A test runner is a component which orchestrates the execution of tests and provides the outcome to the user.
The runner may use a graphical interface, a textual interface, or return a special value to indicate the results of
executing the tests.

See also

Module doctest
Another test-support module with a very different flavor.

Simple Smalltalk Testing: With Patterns
Kent Beck’s original paper on testing frameworks using the pattern shared by unittest.

pytest
Third-party unittest framework with a lighter-weight syntax for writing tests. For example, assert
func(10) == 42.

The Python Testing Tools Taxonomy
An extensive list of Python testing tools including functional testing frameworks and mock object libraries.

Testing in Python Mailing List
A special-interest-group for discussion of testing, and testing tools, in Python.

The script Tools/unittestgui/unittestgui.py in the Python source distribution is a GUI tool for test
discovery and execution. This is intended largely for ease of use for those new to unit testing. For production
environments it is recommended that tests be driven by a continuous integration system such as Buildbot, Jenkins,
GitHub Actions, or AppVeyor.

27.5.1 Basic example

The unittestmodule provides a rich set of tools for constructing and running tests. This section demonstrates that
a small subset of the tools suffice to meet the needs of most users.

Here is a short script to test three string methods:

import unittest

class TestStringMethods(unittest.TestCase):

def test_upper(self):

self.assertEqual('foo'.upper(), 'FOO')

def test_isupper(self):

self.assertTrue('FOO'.isupper())

self.assertFalse('Foo'.isupper())

def test_split(self):

s = 'hello world'

self.assertEqual(s.split(), ['hello', 'world'])

check that s.split fails when the separator is not a string

with self.assertRaises(TypeError):

s.split(2)

if __name__ == '__main__':

unittest.main()

A testcase is created by subclassing unittest.TestCase. The three individual tests are defined with methods

27.5. unittest— Unit testing framework 1727

https://web.archive.org/web/20150315073817/http://www.xprogramming.com/testfram.htm
https://docs.pytest.org/
https://wiki.python.org/moin/PythonTestingToolsTaxonomy
http://lists.idyll.org/listinfo/testing-in-python
https://buildbot.net/
https://www.jenkins.io/
https://github.com/features/actions
https://www.appveyor.com/

The Python Library Reference, Release 3.13.1

whose names start with the letters test. This naming convention informs the test runner about which methods
represent tests.

The crux of each test is a call to assertEqual() to check for an expected result; assertTrue() or
assertFalse() to verify a condition; or assertRaises() to verify that a specific exception gets raised. These
methods are used instead of the assert statement so the test runner can accumulate all test results and produce a
report.

The setUp() and tearDown()methods allow you to define instructions that will be executed before and after each
test method. They are covered in more detail in the section Organizing test code.

The final block shows a simple way to run the tests. unittest.main() provides a command-line interface to the
test script. When run from the command line, the above script produces an output that looks like this:

...

--

Ran 3 tests in 0.000s

OK

Passing the -v option to your test script will instruct unittest.main() to enable a higher level of verbosity, and
produce the following output:

test_isupper (__main__.TestStringMethods.test_isupper) ... ok

test_split (__main__.TestStringMethods.test_split) ... ok

test_upper (__main__.TestStringMethods.test_upper) ... ok

--

Ran 3 tests in 0.001s

OK

The above examples show the most commonly used unittest features which are sufficient to meet many everyday
testing needs. The remainder of the documentation explores the full feature set from first principles.

Changed in version 3.11: The behavior of returning a value from a test method (other than the default None value),
is now deprecated.

27.5.2 Command-Line Interface

The unittest module can be used from the command line to run tests from modules, classes or even individual test
methods:

python -m unittest test_module1 test_module2

python -m unittest test_module.TestClass

python -m unittest test_module.TestClass.test_method

You can pass in a list with any combination of module names, and fully qualified class or method names.

Test modules can be specified by file path as well:

python -m unittest tests/test_something.py

This allows you to use the shell filename completion to specify the test module. The file specified must still be
importable as a module. The path is converted to a module name by removing the ‘.py’ and converting path separators
into ‘.’. If you want to execute a test file that isn’t importable as a module you should execute the file directly instead.

You can run tests with more detail (higher verbosity) by passing in the -v flag:

python -m unittest -v test_module

When executed without arguments Test Discovery is started:

1728 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

python -m unittest

For a list of all the command-line options:

python -m unittest -h

Changed in version 3.2: In earlier versions it was only possible to run individual test methods and not modules or
classes.

Command-line options

unittest supports these command-line options:

-b, --buffer

The standard output and standard error streams are buffered during the test run. Output during a passing test
is discarded. Output is echoed normally on test fail or error and is added to the failure messages.

-c, --catch

Control-C during the test run waits for the current test to end and then reports all the results so far. A second
Control-C raises the normal KeyboardInterrupt exception.

See Signal Handling for the functions that provide this functionality.

-f, --failfast

Stop the test run on the first error or failure.

-k

Only run test methods and classes that match the pattern or substring. This option may be used multiple times,
in which case all test cases that match any of the given patterns are included.

Patterns that contain a wildcard character (*) are matched against the test name using fnmatch.

fnmatchcase(); otherwise simple case-sensitive substring matching is used.

Patterns are matched against the fully qualified test method name as imported by the test loader.

For example, -k foo matches foo_tests.SomeTest.test_something, bar_tests.SomeTest.

test_foo, but not bar_tests.FooTest.test_something.

--locals

Show local variables in tracebacks.

--durations N

Show the N slowest test cases (N=0 for all).

Added in version 3.2: The command-line options -b, -c and -f were added.

Added in version 3.5: The command-line option --locals.

Added in version 3.7: The command-line option -k.

Added in version 3.12: The command-line option --durations.

The command line can also be used for test discovery, for running all of the tests in a project or just a subset.

27.5.3 Test Discovery

Added in version 3.2.

Unittest supports simple test discovery. In order to be compatible with test discovery, all of the test files must be
modules or packages importable from the top-level directory of the project (this means that their filenames must be
valid identifiers).

Test discovery is implemented in TestLoader.discover(), but can also be used from the command line. The
basic command-line usage is:

27.5. unittest— Unit testing framework 1729

The Python Library Reference, Release 3.13.1

cd project_directory

python -m unittest discover

Note

As a shortcut, python -m unittest is the equivalent of python -m unittest discover. If you want to
pass arguments to test discovery the discover sub-command must be used explicitly.

The discover sub-command has the following options:

-v, --verbose

Verbose output

-s, --start-directory directory

Directory to start discovery (. default)

-p, --pattern pattern

Pattern to match test files (test*.py default)

-t, --top-level-directory directory

Top level directory of project (defaults to start directory)

The -s, -p, and -t options can be passed in as positional arguments in that order. The following two command lines
are equivalent:

python -m unittest discover -s project_directory -p "*_test.py"

python -m unittest discover project_directory "*_test.py"

As well as being a path it is possible to pass a package name, for example myproject.subpackage.test, as the
start directory. The package name you supply will then be imported and its location on the filesystem will be used as
the start directory.

Caution

Test discovery loads tests by importing them. Once test discovery has found all the test files from the start
directory you specify it turns the paths into package names to import. For example foo/bar/baz.py will be
imported as foo.bar.baz.

If you have a package installed globally and attempt test discovery on a different copy of the package then the
import could happen from the wrong place. If this happens test discovery will warn you and exit.

If you supply the start directory as a package name rather than a path to a directory then discover assumes that
whichever location it imports from is the location you intended, so you will not get the warning.

Test modules and packages can customize test loading and discovery by through the load_tests protocol.

Changed in version 3.4: Test discovery supports namespace packages for the start directory. Note that you need to
specify the top level directory too (e.g. python -m unittest discover -s root/namespace -t root).

Changed in version 3.11: unittest dropped the namespace packages support in Python 3.11. It has been broken
since Python 3.7. Start directory and subdirectories containing tests must be regular package that have __init__.py
file.

Directories containing start directory still can be a namespace package. In this case, you need to specify start directory
as dotted package name, and target directory explicitly. For example:

proj/ <-- current directory

namespace/

mypkg/

(continues on next page)

1730 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

__init__.py

test_mypkg.py

python -m unittest discover -s namespace.mypkg -t .

27.5.4 Organizing test code

The basic building blocks of unit testing are test cases — single scenarios that must be set up and checked for cor-
rectness. In unittest, test cases are represented by unittest.TestCase instances. To make your own test cases
you must write subclasses of TestCase or use FunctionTestCase.

The testing code of a TestCase instance should be entirely self contained, such that it can be run either in isolation
or in arbitrary combination with any number of other test cases.

The simplest TestCase subclass will simply implement a test method (i.e. a method whose name starts with test)
in order to perform specific testing code:

import unittest

class DefaultWidgetSizeTestCase(unittest.TestCase):

def test_default_widget_size(self):

widget = Widget('The widget')

self.assertEqual(widget.size(), (50, 50))

Note that in order to test something, we use one of the assert* methods provided by the TestCase base class. If
the test fails, an exception will be raised with an explanatory message, and unittest will identify the test case as a
failure. Any other exceptions will be treated as errors.

Tests can be numerous, and their set-up can be repetitive. Luckily, we can factor out set-up code by implementing a
method called setUp(), which the testing framework will automatically call for every single test we run:

import unittest

class WidgetTestCase(unittest.TestCase):

def setUp(self):

self.widget = Widget('The widget')

def test_default_widget_size(self):

self.assertEqual(self.widget.size(), (50,50),

'incorrect default size')

def test_widget_resize(self):

self.widget.resize(100,150)

self.assertEqual(self.widget.size(), (100,150),

'wrong size after resize')

Note

The order in which the various tests will be run is determined by sorting the test method names with respect to
the built-in ordering for strings.

If the setUp() method raises an exception while the test is running, the framework will consider the test to have
suffered an error, and the test method will not be executed.

Similarly, we can provide a tearDown() method that tidies up after the test method has been run:

27.5. unittest— Unit testing framework 1731

The Python Library Reference, Release 3.13.1

import unittest

class WidgetTestCase(unittest.TestCase):

def setUp(self):

self.widget = Widget('The widget')

def tearDown(self):

self.widget.dispose()

If setUp() succeeded, tearDown() will be run whether the test method succeeded or not.

Such a working environment for the testing code is called a test fixture. A new TestCase instance is created as a
unique test fixture used to execute each individual test method. Thus setUp(), tearDown(), and __init__()
will be called once per test.

It is recommended that you use TestCase implementations to group tests together according to the features they test.
unittest provides a mechanism for this: the test suite, represented by unittest’s TestSuite class. In most
cases, calling unittest.main() will do the right thing and collect all the module’s test cases for you and execute
them.

However, should you want to customize the building of your test suite, you can do it yourself:

def suite():

suite = unittest.TestSuite()

suite.addTest(WidgetTestCase('test_default_widget_size'))

suite.addTest(WidgetTestCase('test_widget_resize'))

return suite

if __name__ == '__main__':

runner = unittest.TextTestRunner()

runner.run(suite())

You can place the definitions of test cases and test suites in the same modules as the code they are to test (such as
widget.py), but there are several advantages to placing the test code in a separate module, such as test_widget.
py:

• The test module can be run standalone from the command line.

• The test code can more easily be separated from shipped code.

• There is less temptation to change test code to fit the code it tests without a good reason.

• Test code should be modified much less frequently than the code it tests.

• Tested code can be refactored more easily.

• Tests for modules written in C must be in separate modules anyway, so why not be consistent?

• If the testing strategy changes, there is no need to change the source code.

27.5.5 Re-using old test code

Some users will find that they have existing test code that they would like to run from unittest, without converting
every old test function to a TestCase subclass.

For this reason, unittest provides a FunctionTestCase class. This subclass of TestCase can be used to wrap
an existing test function. Set-up and tear-down functions can also be provided.

Given the following test function:

def testSomething():

something = makeSomething()

assert something.name is not None

...

1732 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

one can create an equivalent test case instance as follows, with optional set-up and tear-down methods:

testcase = unittest.FunctionTestCase(testSomething,

setUp=makeSomethingDB,

tearDown=deleteSomethingDB)

Note

Even though FunctionTestCase can be used to quickly convert an existing test base over to a unittest-
based system, this approach is not recommended. Taking the time to set up proper TestCase subclasses will
make future test refactorings infinitely easier.

In some cases, the existing tests may have been written using the doctest module. If so, doctest provides a
DocTestSuite class that can automatically build unittest.TestSuite instances from the existing doctest-
based tests.

27.5.6 Skipping tests and expected failures

Added in version 3.1.

Unittest supports skipping individual test methods and even whole classes of tests. In addition, it supports marking a
test as an “expected failure,” a test that is broken and will fail, but shouldn’t be counted as a failure on a TestResult.

Skipping a test is simply a matter of using the skip() decorator or one of its conditional variants, calling TestCase.
skipTest() within a setUp() or test method, or raising SkipTest directly.

Basic skipping looks like this:

class MyTestCase(unittest.TestCase):

@unittest.skip("demonstrating skipping")

def test_nothing(self):

self.fail("shouldn't happen")

@unittest.skipIf(mylib.__version__ < (1, 3),

"not supported in this library version")

def test_format(self):

Tests that work for only a certain version of the library.

pass

@unittest.skipUnless(sys.platform.startswith("win"), "requires Windows")

def test_windows_support(self):

windows specific testing code

pass

def test_maybe_skipped(self):

if not external_resource_available():

self.skipTest("external resource not available")

test code that depends on the external resource

pass

This is the output of running the example above in verbose mode:

test_format (__main__.MyTestCase.test_format) ... skipped 'not supported in this␣

↪→library version'

test_nothing (__main__.MyTestCase.test_nothing) ... skipped 'demonstrating skipping

↪→'

test_maybe_skipped (__main__.MyTestCase.test_maybe_skipped) ... skipped 'external␣

(continues on next page)

27.5. unittest— Unit testing framework 1733

The Python Library Reference, Release 3.13.1

(continued from previous page)

↪→resource not available'

test_windows_support (__main__.MyTestCase.test_windows_support) ... skipped

↪→'requires Windows'

--

Ran 4 tests in 0.005s

OK (skipped=4)

Classes can be skipped just like methods:

@unittest.skip("showing class skipping")

class MySkippedTestCase(unittest.TestCase):

def test_not_run(self):

pass

TestCase.setUp() can also skip the test. This is useful when a resource that needs to be set up is not available.

Expected failures use the expectedFailure() decorator.

class ExpectedFailureTestCase(unittest.TestCase):

@unittest.expectedFailure

def test_fail(self):

self.assertEqual(1, 0, "broken")

It’s easy to roll your own skipping decorators by making a decorator that calls skip() on the test when it wants it to
be skipped. This decorator skips the test unless the passed object has a certain attribute:

def skipUnlessHasattr(obj, attr):

if hasattr(obj, attr):

return lambda func: func

return unittest.skip("{!r} doesn't have {!r}".format(obj, attr))

The following decorators and exception implement test skipping and expected failures:

@unittest.skip(reason)
Unconditionally skip the decorated test. reason should describe why the test is being skipped.

@unittest.skipIf(condition, reason)
Skip the decorated test if condition is true.

@unittest.skipUnless(condition, reason)
Skip the decorated test unless condition is true.

@unittest.expectedFailure

Mark the test as an expected failure or error. If the test fails or errors in the test function itself (rather than in
one of the test fixture methods) then it will be considered a success. If the test passes, it will be considered a
failure.

exception unittest.SkipTest(reason)

This exception is raised to skip a test.

Usually you can use TestCase.skipTest() or one of the skipping decorators instead of raising this directly.

Skipped tests will not have setUp() or tearDown() run around them. Skipped classes will not
have setUpClass() or tearDownClass() run. Skipped modules will not have setUpModule() or
tearDownModule() run.

1734 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

27.5.7 Distinguishing test iterations using subtests

Added in version 3.4.

When there are very small differences among your tests, for instance some parameters, unittest allows you to distin-
guish them inside the body of a test method using the subTest() context manager.

For example, the following test:

class NumbersTest(unittest.TestCase):

def test_even(self):

"""

Test that numbers between 0 and 5 are all even.

"""

for i in range(0, 6):

with self.subTest(i=i):

self.assertEqual(i % 2, 0)

will produce the following output:

==

FAIL: test_even (__main__.NumbersTest.test_even) (i=1)

Test that numbers between 0 and 5 are all even.

--

Traceback (most recent call last):

File "subtests.py", line 11, in test_even

self.assertEqual(i % 2, 0)

^^^^^^^^^^^^^^^^^^^^^^^^^^

AssertionError: 1 != 0

==

FAIL: test_even (__main__.NumbersTest.test_even) (i=3)

Test that numbers between 0 and 5 are all even.

--

Traceback (most recent call last):

File "subtests.py", line 11, in test_even

self.assertEqual(i % 2, 0)

^^^^^^^^^^^^^^^^^^^^^^^^^^

AssertionError: 1 != 0

==

FAIL: test_even (__main__.NumbersTest.test_even) (i=5)

Test that numbers between 0 and 5 are all even.

--

Traceback (most recent call last):

File "subtests.py", line 11, in test_even

self.assertEqual(i % 2, 0)

^^^^^^^^^^^^^^^^^^^^^^^^^^

AssertionError: 1 != 0

Without using a subtest, execution would stop after the first failure, and the error would be less easy to diagnose
because the value of i wouldn’t be displayed:

==

FAIL: test_even (__main__.NumbersTest.test_even)

--

Traceback (most recent call last):

File "subtests.py", line 32, in test_even

(continues on next page)

27.5. unittest— Unit testing framework 1735

The Python Library Reference, Release 3.13.1

(continued from previous page)

self.assertEqual(i % 2, 0)

AssertionError: 1 != 0

27.5.8 Classes and functions

This section describes in depth the API of unittest.

Test cases

class unittest.TestCase(methodName=’runTest’)

Instances of the TestCase class represent the logical test units in the unittest universe. This class is
intended to be used as a base class, with specific tests being implemented by concrete subclasses. This class
implements the interface needed by the test runner to allow it to drive the tests, and methods that the test code
can use to check for and report various kinds of failure.

Each instance of TestCase will run a single base method: the method named methodName. In most uses of
TestCase, you will neither change the methodName nor reimplement the default runTest() method.

Changed in version 3.2: TestCase can be instantiated successfully without providing a methodName. This
makes it easier to experiment with TestCase from the interactive interpreter.

TestCase instances provide three groups of methods: one group used to run the test, another used by the test
implementation to check conditions and report failures, and some inquiry methods allowing information about
the test itself to be gathered.

Methods in the first group (running the test) are:

setUp()

Method called to prepare the test fixture. This is called immediately before calling the test method; other
than AssertionError or SkipTest, any exception raised by this method will be considered an error
rather than a test failure. The default implementation does nothing.

tearDown()

Method called immediately after the test method has been called and the result recorded. This is called
even if the test method raised an exception, so the implementation in subclasses may need to be particu-
larly careful about checking internal state. Any exception, other than AssertionError or SkipTest,
raised by this method will be considered an additional error rather than a test failure (thus increasing the
total number of reported errors). This method will only be called if the setUp() succeeds, regardless
of the outcome of the test method. The default implementation does nothing.

setUpClass()

A class method called before tests in an individual class are run. setUpClass is called with the class as
the only argument and must be decorated as a classmethod():

@classmethod

def setUpClass(cls):

...

See Class and Module Fixtures for more details.

Added in version 3.2.

tearDownClass()

A class method called after tests in an individual class have run. tearDownClass is called with the class
as the only argument and must be decorated as a classmethod():

@classmethod

def tearDownClass(cls):

...

1736 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

See Class and Module Fixtures for more details.

Added in version 3.2.

run(result=None)
Run the test, collecting the result into the TestResult object passed as result. If result is omitted or
None, a temporary result object is created (by calling the defaultTestResult() method) and used.
The result object is returned to run()’s caller.

The same effect may be had by simply calling the TestCase instance.

Changed in version 3.3: Previous versions of run did not return the result. Neither did calling an instance.

skipTest(reason)
Calling this during a test method or setUp() skips the current test. See Skipping tests and expected
failures for more information.

Added in version 3.1.

subTest(msg=None, **params)
Return a context manager which executes the enclosed code block as a subtest. msg and params are
optional, arbitrary values which are displayed whenever a subtest fails, allowing you to identify them
clearly.

A test case can contain any number of subtest declarations, and they can be arbitrarily nested.

See Distinguishing test iterations using subtests for more information.

Added in version 3.4.

debug()

Run the test without collecting the result. This allows exceptions raised by the test to be propagated to
the caller, and can be used to support running tests under a debugger.

The TestCase class provides several assert methods to check for and report failures. The following table lists
the most commonly used methods (see the tables below for more assert methods):

Method Checks that New in

assertEqual(a, b) a == b

assertNotEqual(a, b) a != b

assertTrue(x) bool(x) is True

assertFalse(x) bool(x) is False

assertIs(a, b) a is b 3.1
assertIsNot(a, b) a is not b 3.1
assertIsNone(x) x is None 3.1
assertIsNotNone(x) x is not None 3.1
assertIn(a, b) a in b 3.1
assertNotIn(a, b) a not in b 3.1
assertIsInstance(a, b) isinstance(a, b) 3.2
assertNotIsInstance(a, b) not isinstance(a, b) 3.2

All the assert methods accept a msg argument that, if specified, is used as the error message on fail-
ure (see also longMessage). Note that the msg keyword argument can be passed to assertRaises(),
assertRaisesRegex(), assertWarns(), assertWarnsRegex() only when they are used as a context
manager.

assertEqual(first, second, msg=None)
Test that first and second are equal. If the values do not compare equal, the test will fail.

In addition, if first and second are the exact same type and one of list, tuple, dict, set, frozenset or str
or any type that a subclass registers with addTypeEqualityFunc() the type-specific equality function
will be called in order to generate a more useful default error message (see also the list of type-specific
methods).

27.5. unittest— Unit testing framework 1737

The Python Library Reference, Release 3.13.1

Changed in version 3.1: Added the automatic calling of type-specific equality function.

Changed in version 3.2: assertMultiLineEqual() added as the default type equality function for
comparing strings.

assertNotEqual(first, second, msg=None)
Test that first and second are not equal. If the values do compare equal, the test will fail.

assertTrue(expr, msg=None)
assertFalse(expr, msg=None)

Test that expr is true (or false).

Note that this is equivalent to bool(expr) is True and not to expr is True (use
assertIs(expr, True) for the latter). This method should also be avoided when more spe-
cific methods are available (e.g. assertEqual(a, b) instead of assertTrue(a == b)), because
they provide a better error message in case of failure.

assertIs(first, second, msg=None)

assertIsNot(first, second, msg=None)
Test that first and second are (or are not) the same object.

Added in version 3.1.

assertIsNone(expr, msg=None)
assertIsNotNone(expr, msg=None)

Test that expr is (or is not) None.

Added in version 3.1.

assertIn(member, container, msg=None)
assertNotIn(member, container, msg=None)

Test that member is (or is not) in container.

Added in version 3.1.

assertIsInstance(obj, cls, msg=None)
assertNotIsInstance(obj, cls, msg=None)

Test that obj is (or is not) an instance of cls (which can be a class or a tuple of classes, as supported by
isinstance()). To check for the exact type, use assertIs(type(obj), cls).

Added in version 3.2.

It is also possible to check the production of exceptions, warnings, and log messages using the following meth-
ods:

1738 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

Method Checks that New in

assertRaises(exc, fun,

*args, **kwds)

fun(*args, **kwds) raises
exc

assertRaisesRegex(exc,

r, fun, *args, **kwds)

fun(*args, **kwds) raises
exc and the message matches
regex r

3.1

assertWarns(warn, fun,

*args, **kwds)

fun(*args, **kwds) raises
warn

3.2

assertWarnsRegex(warn,

r, fun, *args, **kwds)

fun(*args, **kwds) raises
warn and the message matches
regex r

3.2

assertLogs(logger,

level)

The with block logs on logger
with minimum level

3.4

assertNoLogs(logger,

level) The with block does not log on
logger with minimum level

3.10

assertRaises(exception, callable, *args, **kwds)
assertRaises(exception, *, msg=None)

Test that an exception is raised when callable is called with any positional or keyword arguments that are
also passed to assertRaises(). The test passes if exception is raised, is an error if another exception
is raised, or fails if no exception is raised. To catch any of a group of exceptions, a tuple containing the
exception classes may be passed as exception.

If only the exception and possibly the msg arguments are given, return a context manager so that the code
under test can be written inline rather than as a function:

with self.assertRaises(SomeException):

do_something()

When used as a context manager, assertRaises() accepts the additional keyword argument msg.

The context manager will store the caught exception object in its exception attribute. This can be
useful if the intention is to perform additional checks on the exception raised:

with self.assertRaises(SomeException) as cm:

do_something()

the_exception = cm.exception

self.assertEqual(the_exception.error_code, 3)

Changed in version 3.1: Added the ability to use assertRaises() as a context manager.

Changed in version 3.2: Added the exception attribute.

Changed in version 3.3: Added the msg keyword argument when used as a context manager.

assertRaisesRegex(exception, regex, callable, *args, **kwds)

assertRaisesRegex(exception, regex, *, msg=None)
Like assertRaises() but also tests that regex matches on the string representation of the raised ex-
ception. regex may be a regular expression object or a string containing a regular expression suitable for
use by re.search(). Examples:

self.assertRaisesRegex(ValueError, "invalid literal for.*XYZ'$",

int, 'XYZ')

or:

27.5. unittest— Unit testing framework 1739

The Python Library Reference, Release 3.13.1

with self.assertRaisesRegex(ValueError, 'literal'):

int('XYZ')

Added in version 3.1: Added under the name assertRaisesRegexp.

Changed in version 3.2: Renamed to assertRaisesRegex().

Changed in version 3.3: Added the msg keyword argument when used as a context manager.

assertWarns(warning, callable, *args, **kwds)
assertWarns(warning, *, msg=None)

Test that a warning is triggered when callable is called with any positional or keyword arguments that
are also passed to assertWarns(). The test passes if warning is triggered and fails if it isn’t. Any
exception is an error. To catch any of a group of warnings, a tuple containing the warning classes may
be passed as warnings.

If only the warning and possibly the msg arguments are given, return a context manager so that the code
under test can be written inline rather than as a function:

with self.assertWarns(SomeWarning):

do_something()

When used as a context manager, assertWarns() accepts the additional keyword argument msg.

The context manager will store the caught warning object in its warning attribute, and the source line
which triggered the warnings in the filename and lineno attributes. This can be useful if the intention
is to perform additional checks on the warning caught:

with self.assertWarns(SomeWarning) as cm:

do_something()

self.assertIn('myfile.py', cm.filename)

self.assertEqual(320, cm.lineno)

This method works regardless of the warning filters in place when it is called.

Added in version 3.2.

Changed in version 3.3: Added the msg keyword argument when used as a context manager.

assertWarnsRegex(warning, regex, callable, *args, **kwds)
assertWarnsRegex(warning, regex, *, msg=None)

Like assertWarns() but also tests that regex matches on the message of the triggered warning. regex
may be a regular expression object or a string containing a regular expression suitable for use by re.
search(). Example:

self.assertWarnsRegex(DeprecationWarning,

r'legacy_function\(\) is deprecated',

legacy_function, 'XYZ')

or:

with self.assertWarnsRegex(RuntimeWarning, 'unsafe frobnicating'):

frobnicate('/etc/passwd')

Added in version 3.2.

Changed in version 3.3: Added the msg keyword argument when used as a context manager.

assertLogs(logger=None, level=None)
A context manager to test that at least one message is logged on the logger or one of its children, with at
least the given level.

1740 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

If given, logger should be a logging.Logger object or a str giving the name of a logger. The default
is the root logger, which will catch all messages that were not blocked by a non-propagating descendent
logger.

If given, level should be either a numeric logging level or its string equivalent (for example either "ERROR"
or logging.ERROR). The default is logging.INFO.

The test passes if at least one message emitted inside the with block matches the logger and level con-
ditions, otherwise it fails.

The object returned by the context manager is a recording helper which keeps tracks of the matching log
messages. It has two attributes:

records

A list of logging.LogRecord objects of the matching log messages.

output

A list of str objects with the formatted output of matching messages.

Example:

with self.assertLogs('foo', level='INFO') as cm:

logging.getLogger('foo').info('first message')

logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',

'ERROR:foo.bar:second message'])

Added in version 3.4.

assertNoLogs(logger=None, level=None)
A context manager to test that no messages are logged on the logger or one of its children, with at least
the given level.

If given, logger should be a logging.Logger object or a str giving the name of a logger. The default
is the root logger, which will catch all messages.

If given, level should be either a numeric logging level or its string equivalent (for example either "ERROR"
or logging.ERROR). The default is logging.INFO.

Unlike assertLogs(), nothing will be returned by the context manager.

Added in version 3.10.

There are also other methods used to perform more specific checks, such as:

Method Checks that New
in

assertAlmostEqual(a,

b)

round(a-b, 7) == 0

assertNotAlmostEqual(a,

b)

round(a-b, 7) != 0

assertGreater(a, b) a > b 3.1
assertGreaterEqual(a,

b)

a >= b 3.1

assertLess(a, b) a < b 3.1
assertLessEqual(a, b) a <= b 3.1
assertRegex(s, r) r.search(s) 3.1
assertNotRegex(s, r) not r.search(s) 3.2
assertCountEqual(a,

b)

a and b have the same elements in the same number, regardless
of their order.

3.2

assertAlmostEqual(first, second, places=7, msg=None, delta=None)

27.5. unittest— Unit testing framework 1741

The Python Library Reference, Release 3.13.1

assertNotAlmostEqual(first, second, places=7, msg=None, delta=None)
Test that first and second are approximately (or not approximately) equal by computing the difference,
rounding to the given number of decimal places (default 7), and comparing to zero. Note that these
methods round the values to the given number of decimal places (i.e. like the round() function) and
not significant digits.

If delta is supplied instead of places then the difference between first and second must be less or equal to
(or greater than) delta.

Supplying both delta and places raises a TypeError.

Changed in version 3.2: assertAlmostEqual() automatically considers almost equal objects that
compare equal. assertNotAlmostEqual() automatically fails if the objects compare equal. Added
the delta keyword argument.

assertGreater(first, second, msg=None)
assertGreaterEqual(first, second, msg=None)

assertLess(first, second, msg=None)
assertLessEqual(first, second, msg=None)

Test that first is respectively >, >=, < or <= than second depending on the method name. If not, the test
will fail:

>>> self.assertGreaterEqual(3, 4)

AssertionError: "3" unexpectedly not greater than or equal to "4"

Added in version 3.1.

assertRegex(text, regex, msg=None)
assertNotRegex(text, regex, msg=None)

Test that a regex search matches (or does not match) text. In case of failure, the error message will include
the pattern and the text (or the pattern and the part of text that unexpectedly matched). regex may be a
regular expression object or a string containing a regular expression suitable for use by re.search().

Added in version 3.1: Added under the name assertRegexpMatches.

Changed in version 3.2: The method assertRegexpMatches() has been renamed to
assertRegex().

Added in version 3.2: assertNotRegex().

assertCountEqual(first, second, msg=None)

Test that sequence first contains the same elements as second, regardless of their order. When they don’t,
an error message listing the differences between the sequences will be generated.

Duplicate elements are not ignored when comparing first and second. It verifies whether each element
has the same count in both sequences. Equivalent to: assertEqual(Counter(list(first)),

Counter(list(second))) but works with sequences of unhashable objects as well.

Added in version 3.2.

The assertEqual() method dispatches the equality check for objects of the same type to different type-
specific methods. These methods are already implemented for most of the built-in types, but it’s also possible
to register new methods using addTypeEqualityFunc():

addTypeEqualityFunc(typeobj, function)
Registers a type-specific method called by assertEqual() to check if two objects of exactly
the same typeobj (not subclasses) compare equal. function must take two positional arguments
and a third msg=None keyword argument just as assertEqual() does. It must raise self.

failureException(msg) when inequality between the first two parameters is detected – possibly
providing useful information and explaining the inequalities in details in the error message.

Added in version 3.1.

1742 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

The list of type-specific methods automatically used by assertEqual() are summarized in the following
table. Note that it’s usually not necessary to invoke these methods directly.

Method Used to compare New in

assertMultiLineEqual(a, b) strings 3.1
assertSequenceEqual(a, b) sequences 3.1
assertListEqual(a, b) lists 3.1
assertTupleEqual(a, b) tuples 3.1
assertSetEqual(a, b) sets or frozensets 3.1
assertDictEqual(a, b) dicts 3.1

assertMultiLineEqual(first, second, msg=None)

Test that the multiline string first is equal to the string second. When not equal a diff of the two strings
highlighting the differences will be included in the error message. This method is used by default when
comparing strings with assertEqual().

Added in version 3.1.

assertSequenceEqual(first, second, msg=None, seq_type=None)
Tests that two sequences are equal. If a seq_type is supplied, both first and second must be instances of
seq_type or a failure will be raised. If the sequences are different an error message is constructed that
shows the difference between the two.

This method is not called directly by assertEqual(), but it’s used to implement
assertListEqual() and assertTupleEqual().

Added in version 3.1.

assertListEqual(first, second, msg=None)
assertTupleEqual(first, second, msg=None)

Tests that two lists or tuples are equal. If not, an error message is constructed that shows only the differ-
ences between the two. An error is also raised if either of the parameters are of the wrong type. These
methods are used by default when comparing lists or tuples with assertEqual().

Added in version 3.1.

assertSetEqual(first, second, msg=None)

Tests that two sets are equal. If not, an error message is constructed that lists the differences between the
sets. This method is used by default when comparing sets or frozensets with assertEqual().

Fails if either of first or second does not have a set.difference() method.

Added in version 3.1.

assertDictEqual(first, second, msg=None)
Test that two dictionaries are equal. If not, an error message is constructed that shows the differences in
the dictionaries. This methodwill be used by default to compare dictionaries in calls to assertEqual().

Added in version 3.1.

Finally the TestCase provides the following methods and attributes:

fail(msg=None)
Signals a test failure unconditionally, with msg or None for the error message.

failureException

This class attribute gives the exception raised by the test method. If a test framework needs to use a
specialized exception, possibly to carry additional information, it must subclass this exception in order to
“play fair” with the framework. The initial value of this attribute is AssertionError.

27.5. unittest— Unit testing framework 1743

The Python Library Reference, Release 3.13.1

longMessage

This class attribute determines what happens when a custom failure message is passed as the msg ar-
gument to an assertXYY call that fails. True is the default value. In this case, the custom message is
appended to the end of the standard failure message. When set to False, the custom message replaces
the standard message.

The class setting can be overridden in individual test methods by assigning an instance attribute,
self.longMessage, to True or False before calling the assert methods.

The class setting gets reset before each test call.

Added in version 3.1.

maxDiff

This attribute controls the maximum length of diffs output by assert methods that report diffs on failure.
It defaults to 80*8 characters. Assert methods affected by this attribute are assertSequenceEqual()
(including all the sequence comparison methods that delegate to it), assertDictEqual() and
assertMultiLineEqual().

Setting maxDiff to None means that there is no maximum length of diffs.

Added in version 3.2.

Testing frameworks can use the following methods to collect information on the test:

countTestCases()

Return the number of tests represented by this test object. For TestCase instances, this will always be
1.

defaultTestResult()

Return an instance of the test result class that should be used for this test case class (if no other result
instance is provided to the run() method).

For TestCase instances, this will always be an instance of TestResult; subclasses of TestCase
should override this as necessary.

id()

Return a string identifying the specific test case. This is usually the full name of the test method, including
the module and class name.

shortDescription()

Returns a description of the test, or None if no description has been provided. The default implementation
of this method returns the first line of the test method’s docstring, if available, or None.

Changed in version 3.1: In 3.1 this was changed to add the test name to the short description even in
the presence of a docstring. This caused compatibility issues with unittest extensions and adding the test
name was moved to the TextTestResult in Python 3.2.

addCleanup(function, / , *args, **kwargs)
Add a function to be called after tearDown() to cleanup resources used during the test. Functions will
be called in reverse order to the order they are added (LIFO). They are called with any arguments and
keyword arguments passed into addCleanup() when they are added.

If setUp() fails, meaning that tearDown() is not called, then any cleanup functions added will still be
called.

Added in version 3.1.

enterContext(cm)

Enter the supplied context manager. If successful, also add its __exit__()method as a cleanup function
by addCleanup() and return the result of the __enter__() method.

Added in version 3.11.

1744 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

doCleanups()

This method is called unconditionally after tearDown(), or after setUp() if setUp() raises an ex-
ception.

It is responsible for calling all the cleanup functions added by addCleanup(). If you need cleanup
functions to be called prior to tearDown() then you can call doCleanups() yourself.

doCleanups() pops methods off the stack of cleanup functions one at a time, so it can be called at any
time.

Added in version 3.1.

classmethod addClassCleanup(function, / , *args, **kwargs)

Add a function to be called after tearDownClass() to cleanup resources used during the test class.
Functions will be called in reverse order to the order they are added (LIFO). They are called with any
arguments and keyword arguments passed into addClassCleanup() when they are added.

If setUpClass() fails, meaning that tearDownClass() is not called, then any cleanup functions
added will still be called.

Added in version 3.8.

classmethod enterClassContext(cm)

Enter the supplied context manager. If successful, also add its __exit__()method as a cleanup function
by addClassCleanup() and return the result of the __enter__() method.

Added in version 3.11.

classmethod doClassCleanups()

This method is called unconditionally after tearDownClass(), or after setUpClass() if
setUpClass() raises an exception.

It is responsible for calling all the cleanup functions added by addClassCleanup(). If you need cleanup
functions to be called prior to tearDownClass() then you can call doClassCleanups() yourself.

doClassCleanups() pops methods off the stack of cleanup functions one at a time, so it can be called
at any time.

Added in version 3.8.

class unittest.IsolatedAsyncioTestCase(methodName=’runTest’)
This class provides an API similar to TestCase and also accepts coroutines as test functions.

Added in version 3.8.

loop_factory

The loop_factory passed to asyncio.Runner. Override in subclasses with asyncio.EventLoop to
avoid using the asyncio policy system.

Added in version 3.13.

coroutine asyncSetUp()

Method called to prepare the test fixture. This is called after setUp(). This is called immediately before
calling the test method; other than AssertionError or SkipTest, any exception raised by this method
will be considered an error rather than a test failure. The default implementation does nothing.

coroutine asyncTearDown()

Method called immediately after the test method has been called and the result recorded. This is called
before tearDown(). This is called even if the test method raised an exception, so the implementation in
subclasses may need to be particularly careful about checking internal state. Any exception, other than
AssertionError or SkipTest, raised by this method will be considered an additional error rather than
a test failure (thus increasing the total number of reported errors). This method will only be called if the
asyncSetUp() succeeds, regardless of the outcome of the test method. The default implementation
does nothing.

27.5. unittest— Unit testing framework 1745

The Python Library Reference, Release 3.13.1

addAsyncCleanup(function, / , *args, **kwargs)
This method accepts a coroutine that can be used as a cleanup function.

coroutine enterAsyncContext(cm)

Enter the supplied asynchronous context manager. If successful, also add its __aexit__() method as a
cleanup function by addAsyncCleanup() and return the result of the __aenter__() method.

Added in version 3.11.

run(result=None)
Sets up a new event loop to run the test, collecting the result into the TestResult object passed as result.
If result is omitted or None, a temporary result object is created (by calling the defaultTestResult()
method) and used. The result object is returned to run()’s caller. At the end of the test all the tasks in
the event loop are cancelled.

An example illustrating the order:

from unittest import IsolatedAsyncioTestCase

events = []

class Test(IsolatedAsyncioTestCase):

def setUp(self):

events.append("setUp")

async def asyncSetUp(self):

self._async_connection = await AsyncConnection()

events.append("asyncSetUp")

async def test_response(self):

events.append("test_response")

response = await self._async_connection.get("https://example.com")

self.assertEqual(response.status_code, 200)

self.addAsyncCleanup(self.on_cleanup)

def tearDown(self):

events.append("tearDown")

async def asyncTearDown(self):

await self._async_connection.close()

events.append("asyncTearDown")

async def on_cleanup(self):

events.append("cleanup")

if __name__ == "__main__":

unittest.main()

After running the test, events would contain ["setUp", "asyncSetUp", "test_response",

"asyncTearDown", "tearDown", "cleanup"].

class unittest.FunctionTestCase(testFunc, setUp=None, tearDown=None, description=None)
This class implements the portion of the TestCase interface which allows the test runner to drive the test, but
does not provide the methods which test code can use to check and report errors. This is used to create test
cases using legacy test code, allowing it to be integrated into a unittest-based test framework.

1746 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

Grouping tests

class unittest.TestSuite(tests=())
This class represents an aggregation of individual test cases and test suites. The class presents the interface
needed by the test runner to allow it to be run as any other test case. Running a TestSuite instance is the
same as iterating over the suite, running each test individually.

If tests is given, it must be an iterable of individual test cases or other test suites that will be used to build the
suite initially. Additional methods are provided to add test cases and suites to the collection later on.

TestSuite objects behavemuch like TestCase objects, except they do not actually implement a test. Instead,
they are used to aggregate tests into groups of tests that should be run together. Some additional methods are
available to add tests to TestSuite instances:

addTest(test)
Add a TestCase or TestSuite to the suite.

addTests(tests)

Add all the tests from an iterable of TestCase and TestSuite instances to this test suite.

This is equivalent to iterating over tests, calling addTest() for each element.

TestSuite shares the following methods with TestCase:

run(result)
Run the tests associated with this suite, collecting the result into the test result object passed as result.
Note that unlike TestCase.run(), TestSuite.run() requires the result object to be passed in.

debug()

Run the tests associated with this suite without collecting the result. This allows exceptions raised by the
test to be propagated to the caller and can be used to support running tests under a debugger.

countTestCases()

Return the number of tests represented by this test object, including all individual tests and sub-suites.

__iter__()

Tests grouped by a TestSuite are always accessed by iteration. Subclasses can lazily provide tests
by overriding __iter__(). Note that this method may be called several times on a single suite (for
example when counting tests or comparing for equality) so the tests returned by repeated iterations before
TestSuite.run() must be the same for each call iteration. After TestSuite.run(), callers should
not rely on the tests returned by this method unless the caller uses a subclass that overrides TestSuite.
_removeTestAtIndex() to preserve test references.

Changed in version 3.2: In earlier versions the TestSuite accessed tests directly rather than through
iteration, so overriding __iter__() wasn’t sufficient for providing tests.

Changed in version 3.4: In earlier versions the TestSuite held references to each TestCase

after TestSuite.run(). Subclasses can restore that behavior by overriding TestSuite.

_removeTestAtIndex().

In the typical usage of a TestSuite object, the run() method is invoked by a TestRunner rather than by
the end-user test harness.

Loading and running tests

class unittest.TestLoader

The TestLoader class is used to create test suites from classes and modules. Normally, there is no need to
create an instance of this class; the unittest module provides an instance that can be shared as unittest.
defaultTestLoader. Using a subclass or instance, however, allows customization of some configurable
properties.

TestLoader objects have the following attributes:

27.5. unittest— Unit testing framework 1747

The Python Library Reference, Release 3.13.1

errors

A list of the non-fatal errors encountered while loading tests. Not reset by the loader at any point. Fatal
errors are signalled by the relevant method raising an exception to the caller. Non-fatal errors are also
indicated by a synthetic test that will raise the original error when run.

Added in version 3.5.

TestLoader objects have the following methods:

loadTestsFromTestCase(testCaseClass)

Return a suite of all test cases contained in the TestCase-derived testCaseClass.

A test case instance is created for each method named by getTestCaseNames(). By default these
are the method names beginning with test. If getTestCaseNames() returns no methods, but the
runTest() method is implemented, a single test case is created for that method instead.

loadTestsFromModule(module, *, pattern=None)
Return a suite of all test cases contained in the given module. This method searches module for classes
derived from TestCase and creates an instance of the class for each test method defined for the class.

Note

While using a hierarchy of TestCase-derived classes can be convenient in sharing fixtures and helper
functions, defining test methods on base classes that are not intended to be instantiated directly does
not play well with this method. Doing so, however, can be useful when the fixtures are different and
defined in subclasses.

If a module provides a load_tests function it will be called to load the tests. This allows modules
to customize test loading. This is the load_tests protocol. The pattern argument is passed as the third
argument to load_tests.

Changed in version 3.2: Support for load_tests added.

Changed in version 3.5: Support for a keyword-only argument pattern has been added.

Changed in version 3.12: The undocumented and unofficial use_load_tests parameter has been removed.

loadTestsFromName(name, module=None)
Return a suite of all test cases given a string specifier.

The specifier name is a “dotted name” that may resolve either to a module, a test case class, a test
method within a test case class, a TestSuite instance, or a callable object which returns a TestCase
or TestSuite instance. These checks are applied in the order listed here; that is, a method on a possible
test case class will be picked up as “a test method within a test case class”, rather than “a callable object”.

For example, if you have a module SampleTests containing a TestCase-derived class
SampleTestCase with three test methods (test_one(), test_two(), and test_three()), the
specifier 'SampleTests.SampleTestCase' would cause this method to return a suite which will
run all three test methods. Using the specifier 'SampleTests.SampleTestCase.test_two' would
cause it to return a test suite which will run only the test_two() test method. The specifier can refer
to modules and packages which have not been imported; they will be imported as a side-effect.

The method optionally resolves name relative to the given module.

Changed in version 3.5: If an ImportError or AttributeError occurs while traversing name then
a synthetic test that raises that error when run will be returned. These errors are included in the errors
accumulated by self.errors.

loadTestsFromNames(names, module=None)

Similar to loadTestsFromName(), but takes a sequence of names rather than a single name. The
return value is a test suite which supports all the tests defined for each name.

1748 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

getTestCaseNames(testCaseClass)
Return a sorted sequence of method names found within testCaseClass; this should be a subclass of
TestCase.

discover(start_dir, pattern=’test*.py’, top_level_dir=None)
Find all the test modules by recursing into subdirectories from the specified start directory, and return
a TestSuite object containing them. Only test files that match pattern will be loaded. (Using shell style
pattern matching.) Only module names that are importable (i.e. are valid Python identifiers) will be
loaded.

All test modules must be importable from the top level of the project. If the start directory is not the top
level directory then top_level_dir must be specified separately.

If importing a module fails, for example due to a syntax error, then this will be recorded as a single error
and discovery will continue. If the import failure is due to SkipTest being raised, it will be recorded
as a skip instead of an error.

If a package (a directory containing a file named __init__.py) is found, the package will be checked for
a load_tests function. If this exists then it will be called package.load_tests(loader, tests,

pattern). Test discovery takes care to ensure that a package is only checked for tests once during an
invocation, even if the load_tests function itself calls loader.discover.

If load_tests exists then discovery does not recurse into the package, load_tests is responsible for
loading all tests in the package.

The pattern is deliberately not stored as a loader attribute so that packages can continue discovery them-
selves.

top_level_dir is stored internally, and used as a default to any nested calls to discover(). That is, if a
package’s load_tests calls loader.discover(), it does not need to pass this argument.

start_dir can be a dotted module name as well as a directory.

Added in version 3.2.

Changed in version 3.4: Modules that raise SkipTest on import are recorded as skips, not errors.

Changed in version 3.4: start_dir can be a namespace packages.

Changed in version 3.4: Paths are sorted before being imported so that execution order is the same even
if the underlying file system’s ordering is not dependent on file name.

Changed in version 3.5: Found packages are now checked for load_tests regardless of whether their
path matches pattern, because it is impossible for a package name to match the default pattern.

Changed in version 3.11: start_dir can not be a namespace packages. It has been broken since Python
3.7 and Python 3.11 officially remove it.

Changed in version 3.13: top_level_dir is only stored for the duration of discover call.

The following attributes of a TestLoader can be configured either by subclassing or assignment on an in-
stance:

testMethodPrefix

String giving the prefix of method names which will be interpreted as test methods. The default value is
'test'.

This affects getTestCaseNames() and all the loadTestsFrom* methods.

sortTestMethodsUsing

Function to be used to compare method names when sorting them in getTestCaseNames() and all
the loadTestsFrom* methods.

suiteClass

Callable object that constructs a test suite from a list of tests. No methods on the resulting object are
needed. The default value is the TestSuite class.

This affects all the loadTestsFrom* methods.

27.5. unittest— Unit testing framework 1749

The Python Library Reference, Release 3.13.1

testNamePatterns

List of Unix shell-style wildcard test name patterns that test methods have to match to be included in test
suites (see -k option).

If this attribute is not None (the default), all test methods to be included in test suites must match one
of the patterns in this list. Note that matches are always performed using fnmatch.fnmatchcase(),
so unlike patterns passed to the -k option, simple substring patterns will have to be converted using *
wildcards.

This affects all the loadTestsFrom* methods.

Added in version 3.7.

class unittest.TestResult

This class is used to compile information about which tests have succeeded and which have failed.

A TestResult object stores the results of a set of tests. The TestCase and TestSuite classes ensure that
results are properly recorded; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top of unittest may want access to the TestResult object generated by
running a set of tests for reporting purposes; a TestResult instance is returned by the TestRunner.run()
method for this purpose.

TestResult instances have the following attributes that will be of interest when inspecting the results of
running a set of tests:

errors

A list containing 2-tuples of TestCase instances and strings holding formatted tracebacks. Each tuple
represents a test which raised an unexpected exception.

failures

A list containing 2-tuples of TestCase instances and strings holding formatted tracebacks. Each tuple
represents a test where a failure was explicitly signalled using the assert* methods.

skipped

A list containing 2-tuples of TestCase instances and strings holding the reason for skipping the test.

Added in version 3.1.

expectedFailures

A list containing 2-tuples of TestCase instances and strings holding formatted tracebacks. Each tuple
represents an expected failure or error of the test case.

unexpectedSuccesses

A list containing TestCase instances that were marked as expected failures, but succeeded.

collectedDurations

A list containing 2-tuples of test case names and floats representing the elapsed time of each test which
was run.

Added in version 3.12.

shouldStop

Set to True when the execution of tests should stop by stop().

testsRun

The total number of tests run so far.

buffer

If set to true, sys.stdout and sys.stderr will be buffered in between startTest() and
stopTest() being called. Collected output will only be echoed onto the real sys.stdout and sys.
stderr if the test fails or errors. Any output is also attached to the failure / error message.

Added in version 3.2.

1750 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

failfast

If set to true stop() will be called on the first failure or error, halting the test run.

Added in version 3.2.

tb_locals

If set to true then local variables will be shown in tracebacks.

Added in version 3.5.

wasSuccessful()

Return True if all tests run so far have passed, otherwise returns False.

Changed in version 3.4: Returns False if there were any unexpectedSuccesses from tests marked
with the expectedFailure() decorator.

stop()

This method can be called to signal that the set of tests being run should be aborted by setting the
shouldStop attribute to True. TestRunner objects should respect this flag and return without running
any additional tests.

For example, this feature is used by the TextTestRunner class to stop the test framework when the user
signals an interrupt from the keyboard. Interactive tools which provide TestRunner implementations
can use this in a similar manner.

The following methods of the TestResult class are used to maintain the internal data structures, and may
be extended in subclasses to support additional reporting requirements. This is particularly useful in building
tools which support interactive reporting while tests are being run.

startTest(test)
Called when the test case test is about to be run.

stopTest(test)
Called after the test case test has been executed, regardless of the outcome.

startTestRun()

Called once before any tests are executed.

Added in version 3.1.

stopTestRun()

Called once after all tests are executed.

Added in version 3.1.

addError(test, err)
Called when the test case test raises an unexpected exception. err is a tuple of the form returned by
sys.exc_info(): (type, value, traceback).

The default implementation appends a tuple (test, formatted_err) to the instance’s errors at-
tribute, where formatted_err is a formatted traceback derived from err.

addFailure(test, err)
Called when the test case test signals a failure. err is a tuple of the form returned by sys.exc_info():
(type, value, traceback).

The default implementation appends a tuple (test, formatted_err) to the instance’s failures
attribute, where formatted_err is a formatted traceback derived from err.

addSuccess(test)

Called when the test case test succeeds.

The default implementation does nothing.

27.5. unittest— Unit testing framework 1751

The Python Library Reference, Release 3.13.1

addSkip(test, reason)
Called when the test case test is skipped. reason is the reason the test gave for skipping.

The default implementation appends a tuple (test, reason) to the instance’s skipped attribute.

addExpectedFailure(test, err)
Called when the test case test fails or errors, but was marked with the expectedFailure() decorator.

The default implementation appends a tuple (test, formatted_err) to the instance’s
expectedFailures attribute, where formatted_err is a formatted traceback derived from err.

addUnexpectedSuccess(test)

Called when the test case test was marked with the expectedFailure() decorator, but succeeded.

The default implementation appends the test to the instance’s unexpectedSuccesses attribute.

addSubTest(test, subtest, outcome)
Called when a subtest finishes. test is the test case corresponding to the test method. subtest is a custom
TestCase instance describing the subtest.

If outcome is None, the subtest succeeded. Otherwise, it failed with an exception where outcome is a
tuple of the form returned by sys.exc_info(): (type, value, traceback).

The default implementation does nothing when the outcome is a success, and records subtest failures as
normal failures.

Added in version 3.4.

addDuration(test, elapsed)
Called when the test case finishes. elapsed is the time represented in seconds, and it includes the execution
of cleanup functions.

Added in version 3.12.

class unittest.TextTestResult(stream, descriptions, verbosity, *, durations=None)
A concrete implementation of TestResult used by the TextTestRunner. Subclasses should accept
**kwargs to ensure compatibility as the interface changes.

Added in version 3.2.

Changed in version 3.12: Added the durations keyword parameter.

unittest.defaultTestLoader

Instance of the TestLoader class intended to be shared. If no customization of the TestLoader is needed,
this instance can be used instead of repeatedly creating new instances.

class unittest.TextTestRunner(stream=None, descriptions=True, verbosity=1, failfast=False, buffer=False,
resultclass=None, warnings=None, *, tb_locals=False, durations=None)

Abasic test runner implementation that outputs results to a stream. If stream is None, the default, sys.stderr
is used as the output stream. This class has a few configurable parameters, but is essentially very simple.
Graphical applications which run test suites should provide alternate implementations. Such implementations
should accept **kwargs as the interface to construct runners changes when features are added to unittest.

By default this runner shows DeprecationWarning, PendingDeprecationWarning,
ResourceWarning and ImportWarning even if they are ignored by default. This behavior can be
overridden using Python’s -Wd or -Wa options (see Warning control) and leaving warnings to None.

Changed in version 3.2: Added the warnings parameter.

Changed in version 3.2: The default stream is set to sys.stderr at instantiation time rather than import time.

Changed in version 3.5: Added the tb_locals parameter.

Changed in version 3.12: Added the durations parameter.

1752 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

_makeResult()

This method returns the instance of TestResult used by run(). It is not intended to be called directly,
but can be overridden in subclasses to provide a custom TestResult.

_makeResult() instantiates the class or callable passed in the TextTestRunner constructor as the
resultclass argument. It defaults to TextTestResult if no resultclass is provided. The result
class is instantiated with the following arguments:

stream, descriptions, verbosity

run(test)

This method is the main public interface to the TextTestRunner. This method takes a TestSuite or
TestCase instance. A TestResult is created by calling _makeResult() and the test(s) are run and
the results printed to stdout.

unittest.main(module=’__main__’, defaultTest=None, argv=None, testRunner=None,
testLoader=unittest.defaultTestLoader, exit=True, verbosity=1, failfast=None, catchbreak=None,
buffer=None, warnings=None)

A command-line program that loads a set of tests from module and runs them; this is primarily for making test
modules conveniently executable. The simplest use for this function is to include the following line at the end
of a test script:

if __name__ == '__main__':

unittest.main()

You can run tests with more detailed information by passing in the verbosity argument:

if __name__ == '__main__':

unittest.main(verbosity=2)

The defaultTest argument is either the name of a single test or an iterable of test names to run if no test names
are specified via argv. If not specified or None and no test names are provided via argv, all tests found in
module are run.

The argv argument can be a list of options passed to the program, with the first element being the program
name. If not specified or None, the values of sys.argv are used.

The testRunner argument can either be a test runner class or an already created instance of it. By default main
calls sys.exit() with an exit code indicating success (0) or failure (1) of the tests run. An exit code of 5
indicates that no tests were run or skipped.

The testLoader argument has to be a TestLoader instance, and defaults to defaultTestLoader.

main supports being used from the interactive interpreter by passing in the argument exit=False. This
displays the result on standard output without calling sys.exit():

>>> from unittest import main

>>> main(module='test_module', exit=False)

The failfast, catchbreak and buffer parameters have the same effect as the same-name command-line options.

The warnings argument specifies the warning filter that should be used while running the tests. If it’s not
specified, it will remain None if a -W option is passed to python (see Warning control), otherwise it will be
set to 'default'.

Calling main returns an object with the result attribute that contains the result of the tests run as a
unittest.TestResult.

Changed in version 3.1: The exit parameter was added.

Changed in version 3.2: The verbosity, failfast, catchbreak, buffer and warnings parameters were added.

Changed in version 3.4: The defaultTest parameter was changed to also accept an iterable of test names.

27.5. unittest— Unit testing framework 1753

The Python Library Reference, Release 3.13.1

load_tests Protocol

Added in version 3.2.

Modules or packages can customize how tests are loaded from them during normal test runs or test discovery by
implementing a function called load_tests.

If a test module defines load_tests it will be called by TestLoader.loadTestsFromModule() with the fol-
lowing arguments:

load_tests(loader, standard_tests, pattern)

where pattern is passed straight through from loadTestsFromModule. It defaults to None.

It should return a TestSuite.

loader is the instance of TestLoader doing the loading. standard_tests are the tests that would be loaded by default
from the module. It is common for test modules to only want to add or remove tests from the standard set of tests.
The third argument is used when loading packages as part of test discovery.

A typical load_tests function that loads tests from a specific set of TestCase classes may look like:

test_cases = (TestCase1, TestCase2, TestCase3)

def load_tests(loader, tests, pattern):

suite = TestSuite()

for test_class in test_cases:

tests = loader.loadTestsFromTestCase(test_class)

suite.addTests(tests)

return suite

If discovery is started in a directory containing a package, either from the command line or by calling TestLoader.
discover(), then the package __init__.py will be checked for load_tests. If that function does not exist,
discovery will recurse into the package as though it were just another directory. Otherwise, discovery of the package’s
tests will be left up to load_tests which is called with the following arguments:

load_tests(loader, standard_tests, pattern)

This should return a TestSuite representing all the tests from the package. (standard_tests will only contain
tests collected from __init__.py.)

Because the pattern is passed into load_tests the package is free to continue (and potentially modify) test discov-
ery. A ‘do nothing’ load_tests function for a test package would look like:

def load_tests(loader, standard_tests, pattern):

top level directory cached on loader instance

this_dir = os.path.dirname(__file__)

package_tests = loader.discover(start_dir=this_dir, pattern=pattern)

standard_tests.addTests(package_tests)

return standard_tests

Changed in version 3.5: Discovery no longer checks package names for matching pattern due to the impossibility of
package names matching the default pattern.

27.5.9 Class and Module Fixtures

Class and module level fixtures are implemented in TestSuite. When the test suite encounters a test from a new
class then tearDownClass() from the previous class (if there is one) is called, followed by setUpClass() from
the new class.

Similarly if a test is from a different module from the previous test then tearDownModule from the previous module
is run, followed by setUpModule from the new module.

1754 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

After all the tests have run the final tearDownClass and tearDownModule are run.

Note that shared fixtures do not play well with [potential] features like test parallelization and they break test isolation.
They should be used with care.

The default ordering of tests created by the unittest test loaders is to group all tests from the same modules and classes
together. This will lead to setUpClass / setUpModule (etc) being called exactly once per class and module. If
you randomize the order, so that tests from different modules and classes are adjacent to each other, then these shared
fixture functions may be called multiple times in a single test run.

Shared fixtures are not intended to work with suites with non-standard ordering. A BaseTestSuite still exists for
frameworks that don’t want to support shared fixtures.

If there are any exceptions raised during one of the shared fixture functions the test is reported as an error. Because
there is no corresponding test instance an _ErrorHolder object (that has the same interface as a TestCase) is
created to represent the error. If you are just using the standard unittest test runner then this detail doesn’t matter,
but if you are a framework author it may be relevant.

setUpClass and tearDownClass

These must be implemented as class methods:

import unittest

class Test(unittest.TestCase):

@classmethod

def setUpClass(cls):

cls._connection = createExpensiveConnectionObject()

@classmethod

def tearDownClass(cls):

cls._connection.destroy()

If you want the setUpClass and tearDownClass on base classes called then you must call up to them yourself.
The implementations in TestCase are empty.

If an exception is raised during a setUpClass then the tests in the class are not run and the tearDownClass is not
run. Skipped classes will not have setUpClass or tearDownClass run. If the exception is a SkipTest exception
then the class will be reported as having been skipped instead of as an error.

setUpModule and tearDownModule

These should be implemented as functions:

def setUpModule():

createConnection()

def tearDownModule():

closeConnection()

If an exception is raised in a setUpModule then none of the tests in themodule will be run and the tearDownModule
will not be run. If the exception is a SkipTest exception then the module will be reported as having been skipped
instead of as an error.

To add cleanup code that must be run even in the case of an exception, use addModuleCleanup:

unittest.addModuleCleanup(function, / , *args, **kwargs)

Add a function to be called after tearDownModule() to cleanup resources used during the test class. Func-
tions will be called in reverse order to the order they are added (LIFO). They are called with any arguments
and keyword arguments passed into addModuleCleanup() when they are added.

If setUpModule() fails, meaning that tearDownModule() is not called, then any cleanup functions added
will still be called.

27.5. unittest— Unit testing framework 1755

The Python Library Reference, Release 3.13.1

Added in version 3.8.

classmethod unittest.enterModuleContext(cm)
Enter the supplied context manager. If successful, also add its __exit__() method as a cleanup function by
addModuleCleanup() and return the result of the __enter__() method.

Added in version 3.11.

unittest.doModuleCleanups()

This function is called unconditionally after tearDownModule(), or after setUpModule() if
setUpModule() raises an exception.

It is responsible for calling all the cleanup functions added by addModuleCleanup(). If you need cleanup
functions to be called prior to tearDownModule() then you can call doModuleCleanups() yourself.

doModuleCleanups() pops methods off the stack of cleanup functions one at a time, so it can be called at
any time.

Added in version 3.8.

27.5.10 Signal Handling

Added in version 3.2.

The -c/--catch command-line option to unittest, along with the catchbreak parameter to unittest.main(),
provide more friendly handling of control-C during a test run. With catch break behavior enabled control-C will
allow the currently running test to complete, and the test run will then end and report all the results so far. A second
control-c will raise a KeyboardInterrupt in the usual way.

The control-c handling signal handler attempts to remain compatible with code or tests that install their own signal.
SIGINT handler. If the unittest handler is called but isn’t the installed signal.SIGINT handler, i.e. it has been
replaced by the system under test and delegated to, then it calls the default handler. This will normally be the expected
behavior by code that replaces an installed handler and delegates to it. For individual tests that need unittest

control-c handling disabled the removeHandler() decorator can be used.

There are a few utility functions for framework authors to enable control-c handling functionality within test frame-
works.

unittest.installHandler()

Install the control-c handler. When a signal.SIGINT is received (usually in response to the user pressing
control-c) all registered results have stop() called.

unittest.registerResult(result)
Register a TestResult object for control-c handling. Registering a result stores a weak reference to it, so it
doesn’t prevent the result from being garbage collected.

Registering a TestResult object has no side-effects if control-c handling is not enabled, so test frameworks
can unconditionally register all results they create independently of whether or not handling is enabled.

unittest.removeResult(result)
Remove a registered result. Once a result has been removed then stop()will no longer be called on that result
object in response to a control-c.

unittest.removeHandler(function=None)

When called without arguments this function removes the control-c handler if it has been installed. This
function can also be used as a test decorator to temporarily remove the handler while the test is being executed:

@unittest.removeHandler

def test_signal_handling(self):

...

1756 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

27.6 unittest.mock—mock object library

Added in version 3.3.

Source code: Lib/unittest/mock.py

unittest.mock is a library for testing in Python. It allows you to replace parts of your system under test with mock
objects and make assertions about how they have been used.

unittest.mock provides a core Mock class removing the need to create a host of stubs throughout your test suite.
After performing an action, you can make assertions about which methods / attributes were used and arguments they
were called with. You can also specify return values and set needed attributes in the normal way.

Additionally, mock provides a patch() decorator that handles patching module and class level attributes within the
scope of a test, along with sentinel for creating unique objects. See the quick guide for some examples of how to
use Mock, MagicMock and patch().

Mock is designed for use with unittest and is based on the ‘action -> assertion’ pattern instead of ‘record -> replay’
used by many mocking frameworks.

There is a backport of unittest.mock for earlier versions of Python, available as mock on PyPI.

27.6.1 Quick Guide

Mock and MagicMock objects create all attributes and methods as you access them and store details of how they have
been used. You can configure them, to specify return values or limit what attributes are available, and then make
assertions about how they have been used:

>>> from unittest.mock import MagicMock

>>> thing = ProductionClass()

>>> thing.method = MagicMock(return_value=3)

>>> thing.method(3, 4, 5, key='value')

3

>>> thing.method.assert_called_with(3, 4, 5, key='value')

side_effect allows you to perform side effects, including raising an exception when a mock is called:

>>> from unittest.mock import Mock

>>> mock = Mock(side_effect=KeyError('foo'))

>>> mock()

Traceback (most recent call last):

...

KeyError: 'foo'

>>> values = {'a': 1, 'b': 2, 'c': 3}

>>> def side_effect(arg):

... return values[arg]

...

>>> mock.side_effect = side_effect

>>> mock('a'), mock('b'), mock('c')

(1, 2, 3)

>>> mock.side_effect = [5, 4, 3, 2, 1]

>>> mock(), mock(), mock()

(5, 4, 3)

Mock has many other ways you can configure it and control its behaviour. For example the spec argument configures
the mock to take its specification from another object. Attempting to access attributes or methods on the mock that
don’t exist on the spec will fail with an AttributeError.

The patch() decorator / context manager makes it easy to mock classes or objects in a module under test. The
object you specify will be replaced with a mock (or other object) during the test and restored when the test ends:

27.6. unittest.mock—mock object library 1757

https://github.com/python/cpython/tree/3.13/Lib/unittest/mock.py
https://pypi.org/project/mock/

The Python Library Reference, Release 3.13.1

>>> from unittest.mock import patch

>>> @patch('module.ClassName2')

... @patch('module.ClassName1')

... def test(MockClass1, MockClass2):

... module.ClassName1()

... module.ClassName2()

... assert MockClass1 is module.ClassName1

... assert MockClass2 is module.ClassName2

... assert MockClass1.called

... assert MockClass2.called

...

>>> test()

Note

When you nest patch decorators the mocks are passed in to the decorated function in the same order they applied
(the normal Python order that decorators are applied). This means from the bottom up, so in the example above
the mock for module.ClassName1 is passed in first.

With patch() it matters that you patch objects in the namespace where they are looked up. This is normally
straightforward, but for a quick guide read where to patch.

As well as a decorator patch() can be used as a context manager in a with statement:

>>> with patch.object(ProductionClass, 'method', return_value=None) as mock_method:

... thing = ProductionClass()

... thing.method(1, 2, 3)

...

>>> mock_method.assert_called_once_with(1, 2, 3)

There is also patch.dict() for setting values in a dictionary just during a scope and restoring the dictionary to its
original state when the test ends:

>>> foo = {'key': 'value'}

>>> original = foo.copy()

>>> with patch.dict(foo, {'newkey': 'newvalue'}, clear=True):

... assert foo == {'newkey': 'newvalue'}

...

>>> assert foo == original

Mock supports the mocking of Python magic methods. The easiest way of using magic methods is with the
MagicMock class. It allows you to do things like:

>>> mock = MagicMock()

>>> mock.__str__.return_value = 'foobarbaz'

>>> str(mock)

'foobarbaz'

>>> mock.__str__.assert_called_with()

Mock allows you to assign functions (or otherMock instances) to magic methods and they will be called appropriately.
The MagicMock class is just a Mock variant that has all of the magic methods pre-created for you (well, all the useful
ones anyway).

The following is an example of using magic methods with the ordinary Mock class:

>>> mock = Mock()

>>> mock.__str__ = Mock(return_value='wheeeeee')

(continues on next page)

1758 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> str(mock)

'wheeeeee'

For ensuring that the mock objects in your tests have the same api as the objects they are replacing, you can use
auto-speccing. Auto-speccing can be done through the autospec argument to patch, or the create_autospec()
function. Auto-speccing creates mock objects that have the same attributes and methods as the objects they are
replacing, and any functions and methods (including constructors) have the same call signature as the real object.

This ensures that your mocks will fail in the same way as your production code if they are used incorrectly:

>>> from unittest.mock import create_autospec

>>> def function(a, b, c):

... pass

...

>>> mock_function = create_autospec(function, return_value='fishy')

>>> mock_function(1, 2, 3)

'fishy'

>>> mock_function.assert_called_once_with(1, 2, 3)

>>> mock_function('wrong arguments')

Traceback (most recent call last):

...

TypeError: missing a required argument: 'b'

create_autospec() can also be used on classes, where it copies the signature of the __init__ method, and on
callable objects where it copies the signature of the __call__ method.

27.6.2 The Mock Class

Mock is a flexible mock object intended to replace the use of stubs and test doubles throughout your code. Mocks are
callable and create attributes as new mocks when you access them1. Accessing the same attribute will always return
the same mock. Mocks record how you use them, allowing you to make assertions about what your code has done
to them.

MagicMock is a subclass of Mock with all the magic methods pre-created and ready to use. There are also
non-callable variants, useful when you are mocking out objects that aren’t callable: NonCallableMock and
NonCallableMagicMock

The patch() decorators makes it easy to temporarily replace classes in a particular module with a Mock object.
By default patch() will create a MagicMock for you. You can specify an alternative class of Mock using the
new_callable argument to patch().

class unittest.mock.Mock(spec=None, side_effect=None, return_value=DEFAULT , wraps=None,
name=None, spec_set=None, unsafe=False, **kwargs)

Create a new Mock object. Mock takes several optional arguments that specify the behaviour of the Mock
object:

• spec: This can be either a list of strings or an existing object (a class or instance) that acts as the spec-
ification for the mock object. If you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing any attribute not in this list
will raise an AttributeError.

If spec is an object (rather than a list of strings) then __class__ returns the class of the spec object.
This allows mocks to pass isinstance() tests.

• spec_set: A stricter variant of spec. If used, attempting to set or get an attribute on the mock that isn’t on
the object passed as spec_set will raise an AttributeError.

1 The only exceptions are magic methods and attributes (those that have leading and trailing double underscores). Mock doesn’t create these
but instead raises an AttributeError. This is because the interpreter will often implicitly request these methods, and gets very confused to get
a new Mock object when it expects a magic method. If you need magic method support see magic methods.

27.6. unittest.mock—mock object library 1759

The Python Library Reference, Release 3.13.1

• side_effect: A function to be called whenever the Mock is called. See the side_effect attribute.
Useful for raising exceptions or dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return value of this function is used as the
return value.

Alternatively side_effect can be an exception class or instance. In this case the exception will be raised
when the mock is called.

If side_effect is an iterable then each call to the mock will return the next value from the iterable.

A side_effect can be cleared by setting it to None.

• return_value: The value returned when the mock is called. By default this is a new Mock (created on
first access). See the return_value attribute.

• unsafe: By default, accessing any attribute whose name starts with assert, assret, asert, aseert or assrt will
raise an AttributeError. Passing unsafe=True will allow access to these attributes.

Added in version 3.5.

• wraps: Item for the mock object to wrap. If wraps is not None then calling the Mock will pass the call
through to the wrapped object (returning the real result). Attribute access on the mock will return aMock
object that wraps the corresponding attribute of the wrapped object (so attempting to access an attribute
that doesn’t exist will raise an AttributeError).

If the mock has an explicit return_value set then calls are not passed to the wrapped object and the
return_value is returned instead.

• name: If the mock has a name then it will be used in the repr of the mock. This can be useful for
debugging. The name is propagated to child mocks.

Mocks can also be called with arbitrary keyword arguments. These will be used to set attributes on the mock
after it is created. See the configure_mock() method for details.

assert_called()

Assert that the mock was called at least once.

>>> mock = Mock()

>>> mock.method()

<Mock name='mock.method()' id='...'>

>>> mock.method.assert_called()

Added in version 3.6.

assert_called_once()

Assert that the mock was called exactly once.

>>> mock = Mock()

>>> mock.method()

<Mock name='mock.method()' id='...'>

>>> mock.method.assert_called_once()

>>> mock.method()

<Mock name='mock.method()' id='...'>

>>> mock.method.assert_called_once()

Traceback (most recent call last):

...

AssertionError: Expected 'method' to have been called once. Called 2 times.

Calls: [call(), call()].

Added in version 3.6.

assert_called_with(*args, **kwargs)

This method is a convenient way of asserting that the last call has been made in a particular way:

1760 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

>>> mock = Mock()

>>> mock.method(1, 2, 3, test='wow')

<Mock name='mock.method()' id='...'>

>>> mock.method.assert_called_with(1, 2, 3, test='wow')

assert_called_once_with(*args, **kwargs)
Assert that the mock was called exactly once and that call was with the specified arguments.

>>> mock = Mock(return_value=None)

>>> mock('foo', bar='baz')

>>> mock.assert_called_once_with('foo', bar='baz')

>>> mock('other', bar='values')

>>> mock.assert_called_once_with('other', bar='values')

Traceback (most recent call last):

...

AssertionError: Expected 'mock' to be called once. Called 2 times.

Calls: [call('foo', bar='baz'), call('other', bar='values')].

assert_any_call(*args, **kwargs)
assert the mock has been called with the specified arguments.

The assert passes if the mock has ever been called, unlike assert_called_with() and
assert_called_once_with() that only pass if the call is the most recent one, and in the case of
assert_called_once_with() it must also be the only call.

>>> mock = Mock(return_value=None)

>>> mock(1, 2, arg='thing')

>>> mock('some', 'thing', 'else')

>>> mock.assert_any_call(1, 2, arg='thing')

assert_has_calls(calls, any_order=False)
assert the mock has been called with the specified calls. The mock_calls list is checked for the calls.

If any_order is false then the calls must be sequential. There can be extra calls before or after the specified
calls.

If any_order is true then the calls can be in any order, but they must all appear in mock_calls.

>>> mock = Mock(return_value=None)

>>> mock(1)

>>> mock(2)

>>> mock(3)

>>> mock(4)

>>> calls = [call(2), call(3)]

>>> mock.assert_has_calls(calls)

>>> calls = [call(4), call(2), call(3)]

>>> mock.assert_has_calls(calls, any_order=True)

assert_not_called()

Assert the mock was never called.

>>> m = Mock()

>>> m.hello.assert_not_called()

>>> obj = m.hello()

>>> m.hello.assert_not_called()

Traceback (most recent call last):

...

AssertionError: Expected 'hello' to not have been called. Called 1 times.

Calls: [call()].

27.6. unittest.mock—mock object library 1761

The Python Library Reference, Release 3.13.1

Added in version 3.5.

reset_mock(*, return_value=False, side_effect=False)
The reset_mock method resets all the call attributes on a mock object:

>>> mock = Mock(return_value=None)

>>> mock('hello')

>>> mock.called

True

>>> mock.reset_mock()

>>> mock.called

False

Changed in version 3.6: Added two keyword-only arguments to the reset_mock function.

This can be useful where you want to make a series of assertions that reuse the same object. Note that
reset_mock() doesn’t clear the return_value, side_effect or any child attributes you have set
using normal assignment by default. In case you want to reset return_value or side_effect, then
pass the corresponding parameter as True. Child mocks and the return value mock (if any) are reset as
well.

Note

return_value, and side_effect are keyword-only arguments.

mock_add_spec(spec, spec_set=False)
Add a spec to a mock. spec can either be an object or a list of strings. Only attributes on the spec can be
fetched as attributes from the mock.

If spec_set is true then only attributes on the spec can be set.

attach_mock(mock, attribute)
Attach a mock as an attribute of this one, replacing its name and parent. Calls to the attached mock will
be recorded in the method_calls and mock_calls attributes of this one.

configure_mock(**kwargs)
Set attributes on the mock through keyword arguments.

Attributes plus return values and side effects can be set on child mocks using standard dot notation and
unpacking a dictionary in the method call:

>>> mock = Mock()

>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError}

>>> mock.configure_mock(**attrs)

>>> mock.method()

3

>>> mock.other()

Traceback (most recent call last):

...

KeyError

The same thing can be achieved in the constructor call to mocks:

>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError}

>>> mock = Mock(some_attribute='eggs', **attrs)

>>> mock.some_attribute

'eggs'

>>> mock.method()

3

(continues on next page)

1762 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> mock.other()

Traceback (most recent call last):

...

KeyError

configure_mock() exists to make it easier to do configuration after the mock has been created.

__dir__()

Mock objects limit the results of dir(some_mock) to useful results. For mocks with a spec this includes
all the permitted attributes for the mock.

See FILTER_DIR for what this filtering does, and how to switch it off.

_get_child_mock(**kw)
Create the child mocks for attributes and return value. By default child mocks will be the same type as
the parent. Subclasses of Mock may want to override this to customize the way child mocks are made.

For non-callable mocks the callable variant will be used (rather than any custom subclass).

called

A boolean representing whether or not the mock object has been called:

>>> mock = Mock(return_value=None)

>>> mock.called

False

>>> mock()

>>> mock.called

True

call_count

An integer telling you how many times the mock object has been called:

>>> mock = Mock(return_value=None)

>>> mock.call_count

0

>>> mock()

>>> mock()

>>> mock.call_count

2

return_value

Set this to configure the value returned by calling the mock:

>>> mock = Mock()

>>> mock.return_value = 'fish'

>>> mock()

'fish'

The default return value is a mock object and you can configure it in the normal way:

>>> mock = Mock()

>>> mock.return_value.attribute = sentinel.Attribute

>>> mock.return_value()

<Mock name='mock()()' id='...'>

>>> mock.return_value.assert_called_with()

return_value can also be set in the constructor:

27.6. unittest.mock—mock object library 1763

The Python Library Reference, Release 3.13.1

>>> mock = Mock(return_value=3)

>>> mock.return_value

3

>>> mock()

3

side_effect

This can either be a function to be called when the mock is called, an iterable or an exception (class or
instance) to be raised.

If you pass in a function it will be called with same arguments as the mock and unless the function returns
the DEFAULT singleton the call to the mock will then return whatever the function returns. If the function
returns DEFAULT then the mock will return its normal value (from the return_value).

If you pass in an iterable, it is used to retrieve an iterator which must yield a value on every call. This
value can either be an exception instance to be raised, or a value to be returned from the call to the mock
(DEFAULT handling is identical to the function case).

An example of a mock that raises an exception (to test exception handling of an API):

>>> mock = Mock()

>>> mock.side_effect = Exception('Boom!')

>>> mock()

Traceback (most recent call last):

...

Exception: Boom!

Using side_effect to return a sequence of values:

>>> mock = Mock()

>>> mock.side_effect = [3, 2, 1]

>>> mock(), mock(), mock()

(3, 2, 1)

Using a callable:

>>> mock = Mock(return_value=3)

>>> def side_effect(*args, **kwargs):

... return DEFAULT

...

>>> mock.side_effect = side_effect

>>> mock()

3

side_effect can be set in the constructor. Here’s an example that adds one to the value the mock is
called with and returns it:

>>> side_effect = lambda value: value + 1

>>> mock = Mock(side_effect=side_effect)

>>> mock(3)

4

>>> mock(-8)

-7

Setting side_effect to None clears it:

>>> m = Mock(side_effect=KeyError, return_value=3)

>>> m()

Traceback (most recent call last):

(continues on next page)

1764 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

...

KeyError

>>> m.side_effect = None

>>> m()

3

call_args

This is either None (if the mock hasn’t been called), or the arguments that the mock was last called
with. This will be in the form of a tuple: the first member, which can also be accessed through the
args property, is any ordered arguments the mock was called with (or an empty tuple) and the second
member, which can also be accessed through the kwargs property, is any keyword arguments (or an
empty dictionary).

>>> mock = Mock(return_value=None)

>>> print(mock.call_args)

None

>>> mock()

>>> mock.call_args

call()

>>> mock.call_args == ()

True

>>> mock(3, 4)

>>> mock.call_args

call(3, 4)

>>> mock.call_args == ((3, 4),)

True

>>> mock.call_args.args

(3, 4)

>>> mock.call_args.kwargs

{}

>>> mock(3, 4, 5, key='fish', next='w00t!')

>>> mock.call_args

call(3, 4, 5, key='fish', next='w00t!')

>>> mock.call_args.args

(3, 4, 5)

>>> mock.call_args.kwargs

{'key': 'fish', 'next': 'w00t!'}

call_args, along with members of the lists call_args_list, method_calls and mock_calls

are call objects. These are tuples, so they can be unpacked to get at the individual arguments and make
more complex assertions. See calls as tuples.

Changed in version 3.8: Added args and kwargs properties.

call_args_list

This is a list of all the calls made to the mock object in sequence (so the length of the list is the number
of times it has been called). Before any calls have been made it is an empty list. The call object can be
used for conveniently constructing lists of calls to compare with call_args_list.

>>> mock = Mock(return_value=None)

>>> mock()

>>> mock(3, 4)

>>> mock(key='fish', next='w00t!')

>>> mock.call_args_list

[call(), call(3, 4), call(key='fish', next='w00t!')]

>>> expected = [(), ((3, 4),), ({'key': 'fish', 'next': 'w00t!'},)]

>>> mock.call_args_list == expected

(continues on next page)

27.6. unittest.mock—mock object library 1765

The Python Library Reference, Release 3.13.1

(continued from previous page)

True

Members of call_args_list are call objects. These can be unpacked as tuples to get at the indi-
vidual arguments. See calls as tuples.

method_calls

Aswell as tracking calls to themselves, mocks also track calls to methods and attributes, and theirmethods
and attributes:

>>> mock = Mock()

>>> mock.method()

<Mock name='mock.method()' id='...'>

>>> mock.property.method.attribute()

<Mock name='mock.property.method.attribute()' id='...'>

>>> mock.method_calls

[call.method(), call.property.method.attribute()]

Members of method_calls are call objects. These can be unpacked as tuples to get at the individual
arguments. See calls as tuples.

mock_calls

mock_calls records all calls to the mock object, its methods, magic methods and return value mocks.

>>> mock = MagicMock()

>>> result = mock(1, 2, 3)

>>> mock.first(a=3)

<MagicMock name='mock.first()' id='...'>

>>> mock.second()

<MagicMock name='mock.second()' id='...'>

>>> int(mock)

1

>>> result(1)

<MagicMock name='mock()()' id='...'>

>>> expected = [call(1, 2, 3), call.first(a=3), call.second(),

... call.__int__(), call()(1)]

>>> mock.mock_calls == expected

True

Members of mock_calls are call objects. These can be unpacked as tuples to get at the individual
arguments. See calls as tuples.

Note

The way mock_calls are recorded means that where nested calls are made, the parameters of an-
cestor calls are not recorded and so will always compare equal:

>>> mock = MagicMock()

>>> mock.top(a=3).bottom()

<MagicMock name='mock.top().bottom()' id='...'>

>>> mock.mock_calls

[call.top(a=3), call.top().bottom()]

>>> mock.mock_calls[-1] == call.top(a=-1).bottom()

True

__class__

Normally the __class__ attribute of an object will return its type. For a mock object with a spec,

1766 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

__class__ returns the spec class instead. This allows mock objects to pass isinstance() tests for
the object they are replacing / masquerading as:

>>> mock = Mock(spec=3)

>>> isinstance(mock, int)

True

__class__ is assignable to, this allows a mock to pass an isinstance() check without forcing you
to use a spec:

>>> mock = Mock()

>>> mock.__class__ = dict

>>> isinstance(mock, dict)

True

class unittest.mock.NonCallableMock(spec=None, wraps=None, name=None, spec_set=None, **kwargs)

A non-callable version of Mock. The constructor parameters have the same meaning of Mock, with the excep-
tion of return_value and side_effect which have no meaning on a non-callable mock.

Mock objects that use a class or an instance as a spec or spec_set are able to pass isinstance() tests:

>>> mock = Mock(spec=SomeClass)

>>> isinstance(mock, SomeClass)

True

>>> mock = Mock(spec_set=SomeClass())

>>> isinstance(mock, SomeClass)

True

The Mock classes have support for mocking magic methods. See magic methods for the full details.

The mock classes and the patch() decorators all take arbitrary keyword arguments for configuration. For the
patch() decorators the keywords are passed to the constructor of the mock being created. The keyword arguments
are for configuring attributes of the mock:

>>> m = MagicMock(attribute=3, other='fish')

>>> m.attribute

3

>>> m.other

'fish'

The return value and side effect of child mocks can be set in the same way, using dotted notation. As you can’t use
dotted names directly in a call you have to create a dictionary and unpack it using **:

>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError}

>>> mock = Mock(some_attribute='eggs', **attrs)

>>> mock.some_attribute

'eggs'

>>> mock.method()

3

>>> mock.other()

Traceback (most recent call last):

...

KeyError

A callable mock which was created with a spec (or a spec_set) will introspect the specification object’s signature when
matching calls to the mock. Therefore, it can match the actual call’s arguments regardless of whether they were
passed positionally or by name:

27.6. unittest.mock—mock object library 1767

The Python Library Reference, Release 3.13.1

>>> def f(a, b, c): pass

...

>>> mock = Mock(spec=f)

>>> mock(1, 2, c=3)

<Mock name='mock()' id='140161580456576'>

>>> mock.assert_called_with(1, 2, 3)

>>> mock.assert_called_with(a=1, b=2, c=3)

This applies to assert_called_with(), assert_called_once_with(), assert_has_calls() and
assert_any_call(). When Autospeccing, it will also apply to method calls on the mock object.

Changed in version 3.4: Added signature introspection on specced and autospecced mock objects.

class unittest.mock.PropertyMock(*args, **kwargs)

A mock intended to be used as a property, or other descriptor, on a class. PropertyMock provides
__get__() and __set__() methods so you can specify a return value when it is fetched.

Fetching a PropertyMock instance from an object calls the mock, with no args. Setting it calls the mock with
the value being set.

>>> class Foo:

... @property

... def foo(self):

... return 'something'

... @foo.setter

... def foo(self, value):

... pass

...

>>> with patch('__main__.Foo.foo', new_callable=PropertyMock) as mock_foo:

... mock_foo.return_value = 'mockity-mock'

... this_foo = Foo()

... print(this_foo.foo)

... this_foo.foo = 6

...

mockity-mock

>>> mock_foo.mock_calls

[call(), call(6)]

Because of the way mock attributes are stored you can’t directly attach a PropertyMock to a mock object. Instead
you can attach it to the mock type object:

>>> m = MagicMock()

>>> p = PropertyMock(return_value=3)

>>> type(m).foo = p

>>> m.foo

3

>>> p.assert_called_once_with()

Caution

If an AttributeError is raised by PropertyMock, it will be interpreted as a missing descriptor and
__getattr__() will be called on the parent mock:

>>> m = MagicMock()

>>> no_attribute = PropertyMock(side_effect=AttributeError)

>>> type(m).my_property = no_attribute

>>> m.my_property

<MagicMock name='mock.my_property' id='140165240345424'>

1768 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

See __getattr__() for details.

class unittest.mock.AsyncMock(spec=None, side_effect=None, return_value=DEFAULT , wraps=None,
name=None, spec_set=None, unsafe=False, **kwargs)

An asynchronous version of MagicMock. The AsyncMock object will behave so the object is recognized as
an async function, and the result of a call is an awaitable.

>>> mock = AsyncMock()

>>> asyncio.iscoroutinefunction(mock)

True

>>> inspect.isawaitable(mock())

True

The result of mock() is an async function which will have the outcome of side_effect or return_value
after it has been awaited:

• if side_effect is a function, the async function will return the result of that function,

• if side_effect is an exception, the async function will raise the exception,

• if side_effect is an iterable, the async function will return the next value of the iterable, however, if
the sequence of result is exhausted, StopAsyncIteration is raised immediately,

• if side_effect is not defined, the async function will return the value defined by return_value,
hence, by default, the async function returns a new AsyncMock object.

Setting the spec of a Mock or MagicMock to an async function will result in a coroutine object being returned
after calling.

>>> async def async_func(): pass

...

>>> mock = MagicMock(async_func)

>>> mock

<MagicMock spec='function' id='...'>

>>> mock()

<coroutine object AsyncMockMixin._mock_call at ...>

Setting the spec of a Mock, MagicMock, or AsyncMock to a class with asynchronous and synchronous func-
tions will automatically detect the synchronous functions and set them as MagicMock (if the parent mock
is AsyncMock or MagicMock) or Mock (if the parent mock is Mock). All asynchronous functions will be
AsyncMock.

>>> class ExampleClass:

... def sync_foo():

... pass

... async def async_foo():

... pass

...

>>> a_mock = AsyncMock(ExampleClass)

>>> a_mock.sync_foo

<MagicMock name='mock.sync_foo' id='...'>

>>> a_mock.async_foo

<AsyncMock name='mock.async_foo' id='...'>

>>> mock = Mock(ExampleClass)

>>> mock.sync_foo

<Mock name='mock.sync_foo' id='...'>

>>> mock.async_foo

<AsyncMock name='mock.async_foo' id='...'>

Added in version 3.8.

27.6. unittest.mock—mock object library 1769

The Python Library Reference, Release 3.13.1

assert_awaited()

Assert that the mock was awaited at least once. Note that this is separate from the object having been
called, the await keyword must be used:

>>> mock = AsyncMock()

>>> async def main(coroutine_mock):

... await coroutine_mock

...

>>> coroutine_mock = mock()

>>> mock.called

True

>>> mock.assert_awaited()

Traceback (most recent call last):

...

AssertionError: Expected mock to have been awaited.

>>> asyncio.run(main(coroutine_mock))

>>> mock.assert_awaited()

assert_awaited_once()

Assert that the mock was awaited exactly once.

>>> mock = AsyncMock()

>>> async def main():

... await mock()

...

>>> asyncio.run(main())

>>> mock.assert_awaited_once()

>>> asyncio.run(main())

>>> mock.assert_awaited_once()

Traceback (most recent call last):

...

AssertionError: Expected mock to have been awaited once. Awaited 2 times.

assert_awaited_with(*args, **kwargs)
Assert that the last await was with the specified arguments.

>>> mock = AsyncMock()

>>> async def main(*args, **kwargs):

... await mock(*args, **kwargs)

...

>>> asyncio.run(main('foo', bar='bar'))

>>> mock.assert_awaited_with('foo', bar='bar')

>>> mock.assert_awaited_with('other')

Traceback (most recent call last):

...

AssertionError: expected await not found.

Expected: mock('other')

Actual: mock('foo', bar='bar')

assert_awaited_once_with(*args, **kwargs)

Assert that the mock was awaited exactly once and with the specified arguments.

>>> mock = AsyncMock()

>>> async def main(*args, **kwargs):

... await mock(*args, **kwargs)

...

>>> asyncio.run(main('foo', bar='bar'))

(continues on next page)

1770 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> mock.assert_awaited_once_with('foo', bar='bar')

>>> asyncio.run(main('foo', bar='bar'))

>>> mock.assert_awaited_once_with('foo', bar='bar')

Traceback (most recent call last):

...

AssertionError: Expected mock to have been awaited once. Awaited 2 times.

assert_any_await(*args, **kwargs)
Assert the mock has ever been awaited with the specified arguments.

>>> mock = AsyncMock()

>>> async def main(*args, **kwargs):

... await mock(*args, **kwargs)

...

>>> asyncio.run(main('foo', bar='bar'))

>>> asyncio.run(main('hello'))

>>> mock.assert_any_await('foo', bar='bar')

>>> mock.assert_any_await('other')

Traceback (most recent call last):

...

AssertionError: mock('other') await not found

assert_has_awaits(calls, any_order=False)
Assert the mock has been awaited with the specified calls. The await_args_list list is checked for
the awaits.

If any_order is false then the awaits must be sequential. There can be extra calls before or after the
specified awaits.

If any_order is true then the awaits can be in any order, but they must all appear in await_args_list.

>>> mock = AsyncMock()

>>> async def main(*args, **kwargs):

... await mock(*args, **kwargs)

...

>>> calls = [call("foo"), call("bar")]

>>> mock.assert_has_awaits(calls)

Traceback (most recent call last):

...

AssertionError: Awaits not found.

Expected: [call('foo'), call('bar')]

Actual: []

>>> asyncio.run(main('foo'))

>>> asyncio.run(main('bar'))

>>> mock.assert_has_awaits(calls)

assert_not_awaited()

Assert that the mock was never awaited.

>>> mock = AsyncMock()

>>> mock.assert_not_awaited()

reset_mock(*args, **kwargs)

See Mock.reset_mock(). Also sets await_count to 0, await_args to None, and clears the
await_args_list.

await_count

An integer keeping track of how many times the mock object has been awaited.

27.6. unittest.mock—mock object library 1771

The Python Library Reference, Release 3.13.1

>>> mock = AsyncMock()

>>> async def main():

... await mock()

...

>>> asyncio.run(main())

>>> mock.await_count

1

>>> asyncio.run(main())

>>> mock.await_count

2

await_args

This is either None (if the mock hasn’t been awaited), or the arguments that the mock was last awaited
with. Functions the same as Mock.call_args.

>>> mock = AsyncMock()

>>> async def main(*args):

... await mock(*args)

...

>>> mock.await_args

>>> asyncio.run(main('foo'))

>>> mock.await_args

call('foo')

>>> asyncio.run(main('bar'))

>>> mock.await_args

call('bar')

await_args_list

This is a list of all the awaits made to the mock object in sequence (so the length of the list is the number
of times it has been awaited). Before any awaits have been made it is an empty list.

>>> mock = AsyncMock()

>>> async def main(*args):

... await mock(*args)

...

>>> mock.await_args_list

[]

>>> asyncio.run(main('foo'))

>>> mock.await_args_list

[call('foo')]

>>> asyncio.run(main('bar'))

>>> mock.await_args_list

[call('foo'), call('bar')]

class unittest.mock.ThreadingMock(spec=None, side_effect=None, return_value=DEFAULT ,
wraps=None, name=None, spec_set=None, unsafe=False, *,
timeout=UNSET , **kwargs)

A version of MagicMock for multithreading tests. The ThreadingMock object provides extra methods to
wait for a call to be invoked, rather than assert on it immediately.

The default timeout is specified by the timeout argument, or if unset by the ThreadingMock.

DEFAULT_TIMEOUT attribute, which defaults to blocking (None).

You can configure the global default timeout by setting ThreadingMock.DEFAULT_TIMEOUT.

wait_until_called(*, timeout=UNSET)
Waits until the mock is called.

1772 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

If a timeout was passed at the creation of the mock or if a timeout argument is passed to this function,
the function raises an AssertionError if the call is not performed in time.

>>> mock = ThreadingMock()

>>> thread = threading.Thread(target=mock)

>>> thread.start()

>>> mock.wait_until_called(timeout=1)

>>> thread.join()

wait_until_any_call_with(*args, **kwargs)

Waits until the mock is called with the specified arguments.

If a timeout was passed at the creation of the mock the function raises an AssertionError if the call
is not performed in time.

>>> mock = ThreadingMock()

>>> thread = threading.Thread(target=mock, args=("arg1", "arg2",), kwargs={

↪→"arg": "thing"})

>>> thread.start()

>>> mock.wait_until_any_call_with("arg1", "arg2", arg="thing")

>>> thread.join()

DEFAULT_TIMEOUT

Global default timeout in seconds to create instances of ThreadingMock.

Added in version 3.13.

Calling

Mock objects are callable. The call will return the value set as the return_value attribute. The default return value
is a new Mock object; it is created the first time the return value is accessed (either explicitly or by calling the Mock)
- but it is stored and the same one returned each time.

Calls made to the object will be recorded in the attributes like call_args and call_args_list.

If side_effect is set then it will be called after the call has been recorded, so if side_effect raises an exception
the call is still recorded.

The simplest way to make a mock raise an exception when called is to make side_effect an exception class or
instance:

>>> m = MagicMock(side_effect=IndexError)

>>> m(1, 2, 3)

Traceback (most recent call last):

...

IndexError

>>> m.mock_calls

[call(1, 2, 3)]

>>> m.side_effect = KeyError('Bang!')

>>> m('two', 'three', 'four')

Traceback (most recent call last):

...

KeyError: 'Bang!'

>>> m.mock_calls

[call(1, 2, 3), call('two', 'three', 'four')]

If side_effect is a function then whatever that function returns is what calls to the mock return. The
side_effect function is called with the same arguments as the mock. This allows you to vary the return value
of the call dynamically, based on the input:

27.6. unittest.mock—mock object library 1773

The Python Library Reference, Release 3.13.1

>>> def side_effect(value):

... return value + 1

...

>>> m = MagicMock(side_effect=side_effect)

>>> m(1)

2

>>> m(2)

3

>>> m.mock_calls

[call(1), call(2)]

If you want the mock to still return the default return value (a new mock), or any set return value, then there are two
ways of doing this. Either return return_value from inside side_effect, or return DEFAULT:

>>> m = MagicMock()

>>> def side_effect(*args, **kwargs):

... return m.return_value

...

>>> m.side_effect = side_effect

>>> m.return_value = 3

>>> m()

3

>>> def side_effect(*args, **kwargs):

... return DEFAULT

...

>>> m.side_effect = side_effect

>>> m()

3

To remove a side_effect, and return to the default behaviour, set the side_effect to None:

>>> m = MagicMock(return_value=6)

>>> def side_effect(*args, **kwargs):

... return 3

...

>>> m.side_effect = side_effect

>>> m()

3

>>> m.side_effect = None

>>> m()

6

The side_effect can also be any iterable object. Repeated calls to the mock will return values from the iterable
(until the iterable is exhausted and a StopIteration is raised):

>>> m = MagicMock(side_effect=[1, 2, 3])

>>> m()

1

>>> m()

2

>>> m()

3

>>> m()

Traceback (most recent call last):

...

StopIteration

If any members of the iterable are exceptions they will be raised instead of returned:

1774 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

>>> iterable = (33, ValueError, 66)

>>> m = MagicMock(side_effect=iterable)

>>> m()

33

>>> m()

Traceback (most recent call last):

...

ValueError

>>> m()

66

Deleting Attributes

Mock objects create attributes on demand. This allows them to pretend to be objects of any type.

You may want a mock object to return False to a hasattr() call, or raise an AttributeError when an attribute
is fetched. You can do this by providing an object as a spec for a mock, but that isn’t always convenient.

You “block” attributes by deleting them. Once deleted, accessing an attribute will raise an AttributeError.

>>> mock = MagicMock()

>>> hasattr(mock, 'm')

True

>>> del mock.m

>>> hasattr(mock, 'm')

False

>>> del mock.f

>>> mock.f

Traceback (most recent call last):

...

AttributeError: f

Mock names and the name attribute

Since “name” is an argument to the Mock constructor, if you want your mock object to have a “name” attribute you
can’t just pass it in at creation time. There are two alternatives. One option is to use configure_mock():

>>> mock = MagicMock()

>>> mock.configure_mock(name='my_name')

>>> mock.name

'my_name'

A simpler option is to simply set the “name” attribute after mock creation:

>>> mock = MagicMock()

>>> mock.name = "foo"

Attaching Mocks as Attributes

When you attach a mock as an attribute of another mock (or as the return value) it becomes a “child” of that mock.
Calls to the child are recorded in the method_calls and mock_calls attributes of the parent. This is useful for
configuring child mocks and then attaching them to the parent, or for attaching mocks to a parent that records all
calls to the children and allows you to make assertions about the order of calls between mocks:

>>> parent = MagicMock()

>>> child1 = MagicMock(return_value=None)

>>> child2 = MagicMock(return_value=None)

>>> parent.child1 = child1

(continues on next page)

27.6. unittest.mock—mock object library 1775

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> parent.child2 = child2

>>> child1(1)

>>> child2(2)

>>> parent.mock_calls

[call.child1(1), call.child2(2)]

The exception to this is if the mock has a name. This allows you to prevent the “parenting” if for some reason you
don’t want it to happen.

>>> mock = MagicMock()

>>> not_a_child = MagicMock(name='not-a-child')

>>> mock.attribute = not_a_child

>>> mock.attribute()

<MagicMock name='not-a-child()' id='...'>

>>> mock.mock_calls

[]

Mocks created for you by patch() are automatically given names. To attach mocks that have names to a parent you
use the attach_mock() method:

>>> thing1 = object()

>>> thing2 = object()

>>> parent = MagicMock()

>>> with patch('__main__.thing1', return_value=None) as child1:

... with patch('__main__.thing2', return_value=None) as child2:

... parent.attach_mock(child1, 'child1')

... parent.attach_mock(child2, 'child2')

... child1('one')

... child2('two')

...

>>> parent.mock_calls

[call.child1('one'), call.child2('two')]

27.6.3 The patchers

The patch decorators are used for patching objects only within the scope of the function they decorate. They auto-
matically handle the unpatching for you, even if exceptions are raised. All of these functions can also be used in with
statements or as class decorators.

patch

Note

The key is to do the patching in the right namespace. See the section where to patch.

unittest.mock.patch(target, new=DEFAULT , spec=None, create=False, spec_set=None, autospec=None,
new_callable=None, **kwargs)

patch() acts as a function decorator, class decorator or a context manager. Inside the body of the function
or with statement, the target is patched with a new object. When the function/with statement exits the patch is
undone.

If new is omitted, then the target is replaced with an AsyncMock if the patched object is an async function or
a MagicMock otherwise. If patch() is used as a decorator and new is omitted, the created mock is passed
in as an extra argument to the decorated function. If patch() is used as a context manager the created mock
is returned by the context manager.

1776 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

target should be a string in the form 'package.module.ClassName'. The target is imported and the speci-
fied object replaced with the new object, so the target must be importable from the environment you are calling
patch() from. The target is imported when the decorated function is executed, not at decoration time.

The spec and spec_set keyword arguments are passed to the MagicMock if patch is creating one for you.

In addition you can pass spec=True or spec_set=True, which causes patch to pass in the object being
mocked as the spec/spec_set object.

new_callable allows you to specify a different class, or callable object, that will be called to create the new
object. By default AsyncMock is used for async functions and MagicMock for the rest.

A more powerful form of spec is autospec. If you set autospec=True then the mock will be created with a
spec from the object being replaced. All attributes of the mock will also have the spec of the corresponding
attribute of the object being replaced. Methods and functions being mocked will have their arguments checked
and will raise a TypeError if they are called with the wrong signature. For mocks replacing a class, their
return value (the ‘instance’) will have the same spec as the class. See the create_autospec() function and
Autospeccing.

Instead of autospec=True you can pass autospec=some_object to use an arbitrary object as the spec
instead of the one being replaced.

By default patch() will fail to replace attributes that don’t exist. If you pass in create=True, and the
attribute doesn’t exist, patch will create the attribute for you when the patched function is called, and delete it
again after the patched function has exited. This is useful for writing tests against attributes that your production
code creates at runtime. It is off by default because it can be dangerous. With it switched on you can write
passing tests against APIs that don’t actually exist!

Note

Changed in version 3.5: If you are patching builtins in a module then you don’t need to pass create=True,
it will be added by default.

Patch can be used as a TestCase class decorator. It works by decorating each test method in the class. This
reduces the boilerplate code when your test methods share a common patchings set. patch() finds tests by
looking for method names that start with patch.TEST_PREFIX. By default this is 'test', which matches
the way unittest finds tests. You can specify an alternative prefix by setting patch.TEST_PREFIX.

Patch can be used as a context manager, with the with statement. Here the patching applies to the indented
block after the with statement. If you use “as” then the patched object will be bound to the name after the “as”;
very useful if patch() is creating a mock object for you.

patch() takes arbitrary keyword arguments. These will be passed to AsyncMock if the patched object is
asynchronous, to MagicMock otherwise or to new_callable if specified.

patch.dict(...), patch.multiple(...) and patch.object(...) are available for alternate use-
cases.

patch() as function decorator, creating the mock for you and passing it into the decorated function:

>>> @patch('__main__.SomeClass')

... def function(normal_argument, mock_class):

... print(mock_class is SomeClass)

...

>>> function(None)

True

Patching a class replaces the class with a MagicMock instance. If the class is instantiated in the code under test then
it will be the return_value of the mock that will be used.

If the class is instantiated multiple times you could use side_effect to return a new mock each time. Alternatively
you can set the return_value to be anything you want.

27.6. unittest.mock—mock object library 1777

The Python Library Reference, Release 3.13.1

To configure return values on methods of instances on the patched class you must do this on the return_value.
For example:

>>> class Class:

... def method(self):

... pass

...

>>> with patch('__main__.Class') as MockClass:

... instance = MockClass.return_value

... instance.method.return_value = 'foo'

... assert Class() is instance

... assert Class().method() == 'foo'

...

If you use spec or spec_set and patch() is replacing a class, then the return value of the created mock will have the
same spec.

>>> Original = Class

>>> patcher = patch('__main__.Class', spec=True)

>>> MockClass = patcher.start()

>>> instance = MockClass()

>>> assert isinstance(instance, Original)

>>> patcher.stop()

The new_callable argument is useful where you want to use an alternative class to the default MagicMock for the
created mock. For example, if you wanted a NonCallableMock to be used:

>>> thing = object()

>>> with patch('__main__.thing', new_callable=NonCallableMock) as mock_thing:

... assert thing is mock_thing

... thing()

...

Traceback (most recent call last):

...

TypeError: 'NonCallableMock' object is not callable

Another use case might be to replace an object with an io.StringIO instance:

>>> from io import StringIO

>>> def foo():

... print('Something')

...

>>> @patch('sys.stdout', new_callable=StringIO)

... def test(mock_stdout):

... foo()

... assert mock_stdout.getvalue() == 'Something\n'

...

>>> test()

When patch() is creating a mock for you, it is common that the first thing you need to do is to configure the mock.
Some of that configuration can be done in the call to patch. Any arbitrary keywords you pass into the call will be
used to set attributes on the created mock:

>>> patcher = patch('__main__.thing', first='one', second='two')

>>> mock_thing = patcher.start()

>>> mock_thing.first

'one'

>>> mock_thing.second

'two'

1778 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

As well as attributes on the created mock attributes, like the return_value and side_effect, of child mocks
can also be configured. These aren’t syntactically valid to pass in directly as keyword arguments, but a dictionary
with these as keys can still be expanded into a patch() call using **:

>>> config = {'method.return_value': 3, 'other.side_effect': KeyError}

>>> patcher = patch('__main__.thing', **config)

>>> mock_thing = patcher.start()

>>> mock_thing.method()

3

>>> mock_thing.other()

Traceback (most recent call last):

...

KeyError

By default, attempting to patch a function in a module (or a method or an attribute in a class) that does not exist will
fail with AttributeError:

>>> @patch('sys.non_existing_attribute', 42)

... def test():

... assert sys.non_existing_attribute == 42

...

>>> test()

Traceback (most recent call last):

...

AttributeError: <module 'sys' (built-in)> does not have the attribute 'non_

↪→existing_attribute'

but adding create=True in the call to patch() will make the previous example work as expected:

>>> @patch('sys.non_existing_attribute', 42, create=True)

... def test(mock_stdout):

... assert sys.non_existing_attribute == 42

...

>>> test()

Changed in version 3.8: patch() now returns an AsyncMock if the target is an async function.

patch.object

patch.object(target, attribute, new=DEFAULT , spec=None, create=False, spec_set=None, autospec=None,
new_callable=None, **kwargs)

patch the named member (attribute) on an object (target) with a mock object.

patch.object() can be used as a decorator, class decorator or a context manager. Arguments new, spec,
create, spec_set, autospec and new_callable have the same meaning as for patch(). Like patch(), patch.
object() takes arbitrary keyword arguments for configuring the mock object it creates.

When used as a class decorator patch.object() honours patch.TEST_PREFIX for choosing which meth-
ods to wrap.

You can either call patch.object() with three arguments or two arguments. The three argument form takes the
object to be patched, the attribute name and the object to replace the attribute with.

When calling with the two argument form you omit the replacement object, and a mock is created for you and passed
in as an extra argument to the decorated function:

>>> @patch.object(SomeClass, 'class_method')

... def test(mock_method):

... SomeClass.class_method(3)

... mock_method.assert_called_with(3)

(continues on next page)

27.6. unittest.mock—mock object library 1779

The Python Library Reference, Release 3.13.1

(continued from previous page)

...

>>> test()

spec, create and the other arguments to patch.object() have the same meaning as they do for patch().

patch.dict

patch.dict(in_dict, values=(), clear=False, **kwargs)

Patch a dictionary, or dictionary like object, and restore the dictionary to its original state after the test.

in_dict can be a dictionary or a mapping like container. If it is a mapping then it must at least support getting,
setting and deleting items plus iterating over keys.

in_dict can also be a string specifying the name of the dictionary, which will then be fetched by importing it.

values can be a dictionary of values to set in the dictionary. values can also be an iterable of (key, value)

pairs.

If clear is true then the dictionary will be cleared before the new values are set.

patch.dict() can also be called with arbitrary keyword arguments to set values in the dictionary.

Changed in version 3.8: patch.dict() now returns the patched dictionary when used as a context manager.

patch.dict() can be used as a context manager, decorator or class decorator:

>>> foo = {}

>>> @patch.dict(foo, {'newkey': 'newvalue'})

... def test():

... assert foo == {'newkey': 'newvalue'}

...

>>> test()

>>> assert foo == {}

When used as a class decorator patch.dict() honours patch.TEST_PREFIX (default to 'test') for choosing
which methods to wrap:

>>> import os

>>> import unittest

>>> from unittest.mock import patch

>>> @patch.dict('os.environ', {'newkey': 'newvalue'})

... class TestSample(unittest.TestCase):

... def test_sample(self):

... self.assertEqual(os.environ['newkey'], 'newvalue')

If you want to use a different prefix for your test, you can inform the patchers of the different prefix by setting
patch.TEST_PREFIX. For more details about how to change the value of see TEST_PREFIX.

patch.dict() can be used to add members to a dictionary, or simply let a test change a dictionary, and ensure the
dictionary is restored when the test ends.

>>> foo = {}

>>> with patch.dict(foo, {'newkey': 'newvalue'}) as patched_foo:

... assert foo == {'newkey': 'newvalue'}

... assert patched_foo == {'newkey': 'newvalue'}

... # You can add, update or delete keys of foo (or patched_foo, it's the same␣

↪→dict)

... patched_foo['spam'] = 'eggs'

...

>>> assert foo == {}

>>> assert patched_foo == {}

1780 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

>>> import os

>>> with patch.dict('os.environ', {'newkey': 'newvalue'}):

... print(os.environ['newkey'])

...

newvalue

>>> assert 'newkey' not in os.environ

Keywords can be used in the patch.dict() call to set values in the dictionary:

>>> mymodule = MagicMock()

>>> mymodule.function.return_value = 'fish'

>>> with patch.dict('sys.modules', mymodule=mymodule):

... import mymodule

... mymodule.function('some', 'args')

...

'fish'

patch.dict() can be used with dictionary like objects that aren’t actually dictionaries. At the very minimum they
must support item getting, setting, deleting and either iteration or membership test. This corresponds to the magic
methods __getitem__(), __setitem__(), __delitem__() and either __iter__() or __contains__().

>>> class Container:

... def __init__(self):

... self.values = {}

... def __getitem__(self, name):

... return self.values[name]

... def __setitem__(self, name, value):

... self.values[name] = value

... def __delitem__(self, name):

... del self.values[name]

... def __iter__(self):

... return iter(self.values)

...

>>> thing = Container()

>>> thing['one'] = 1

>>> with patch.dict(thing, one=2, two=3):

... assert thing['one'] == 2

... assert thing['two'] == 3

...

>>> assert thing['one'] == 1

>>> assert list(thing) == ['one']

patch.multiple

patch.multiple(target, spec=None, create=False, spec_set=None, autospec=None, new_callable=None,
**kwargs)

Perform multiple patches in a single call. It takes the object to be patched (either as an object or a string to
fetch the object by importing) and keyword arguments for the patches:

with patch.multiple(settings, FIRST_PATCH='one', SECOND_PATCH='two'):

...

Use DEFAULT as the value if you want patch.multiple() to create mocks for you. In this case the cre-
ated mocks are passed into a decorated function by keyword, and a dictionary is returned when patch.

multiple() is used as a context manager.

patch.multiple() can be used as a decorator, class decorator or a context manager. The arguments spec,
spec_set, create, autospec and new_callable have the same meaning as for patch(). These arguments will be

27.6. unittest.mock—mock object library 1781

The Python Library Reference, Release 3.13.1

applied to all patches done by patch.multiple().

When used as a class decorator patch.multiple() honours patch.TEST_PREFIX for choosing which
methods to wrap.

If you want patch.multiple() to create mocks for you, then you can use DEFAULT as the value. If you use
patch.multiple() as a decorator then the created mocks are passed into the decorated function by keyword.

>>> thing = object()

>>> other = object()

>>> @patch.multiple('__main__', thing=DEFAULT, other=DEFAULT)

... def test_function(thing, other):

... assert isinstance(thing, MagicMock)

... assert isinstance(other, MagicMock)

...

>>> test_function()

patch.multiple() can be nested with other patch decorators, but put arguments passed by keyword after any
of the standard arguments created by patch():

>>> @patch('sys.exit')

... @patch.multiple('__main__', thing=DEFAULT, other=DEFAULT)

... def test_function(mock_exit, other, thing):

... assert 'other' in repr(other)

... assert 'thing' in repr(thing)

... assert 'exit' in repr(mock_exit)

...

>>> test_function()

If patch.multiple() is used as a context manager, the value returned by the context manager is a dictionary
where created mocks are keyed by name:

>>> with patch.multiple('__main__', thing=DEFAULT, other=DEFAULT) as values:

... assert 'other' in repr(values['other'])

... assert 'thing' in repr(values['thing'])

... assert values['thing'] is thing

... assert values['other'] is other

...

patch methods: start and stop

All the patchers have start() and stop() methods. These make it simpler to do patching in setUp methods or
where you want to do multiple patches without nesting decorators or with statements.

To use them call patch(), patch.object() or patch.dict() as normal and keep a reference to the returned
patcher object. You can then call start() to put the patch in place and stop() to undo it.

If you are using patch() to create a mock for you then it will be returned by the call to patcher.start.

>>> patcher = patch('package.module.ClassName')

>>> from package import module

>>> original = module.ClassName

>>> new_mock = patcher.start()

>>> assert module.ClassName is not original

>>> assert module.ClassName is new_mock

>>> patcher.stop()

>>> assert module.ClassName is original

>>> assert module.ClassName is not new_mock

A typical use case for this might be for doing multiple patches in the setUp method of a TestCase:

1782 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

>>> class MyTest(unittest.TestCase):

... def setUp(self):

... self.patcher1 = patch('package.module.Class1')

... self.patcher2 = patch('package.module.Class2')

... self.MockClass1 = self.patcher1.start()

... self.MockClass2 = self.patcher2.start()

...

... def tearDown(self):

... self.patcher1.stop()

... self.patcher2.stop()

...

... def test_something(self):

... assert package.module.Class1 is self.MockClass1

... assert package.module.Class2 is self.MockClass2

...

>>> MyTest('test_something').run()

Caution

If you use this technique you must ensure that the patching is “undone” by calling stop. This can be fiddlier
than you might think, because if an exception is raised in the setUp then tearDown is not called. unittest.
TestCase.addCleanup() makes this easier:

>>> class MyTest(unittest.TestCase):

... def setUp(self):

... patcher = patch('package.module.Class')

... self.MockClass = patcher.start()

... self.addCleanup(patcher.stop)

...

... def test_something(self):

... assert package.module.Class is self.MockClass

...

As an added bonus you no longer need to keep a reference to the patcher object.

It is also possible to stop all patches which have been started by using patch.stopall().

patch.stopall()

Stop all active patches. Only stops patches started with start.

patch builtins

You can patch any builtins within a module. The following example patches builtin ord():

>>> @patch('__main__.ord')

... def test(mock_ord):

... mock_ord.return_value = 101

... print(ord('c'))

...

>>> test()

101

27.6. unittest.mock—mock object library 1783

The Python Library Reference, Release 3.13.1

TEST_PREFIX

All of the patchers can be used as class decorators. When used in this way they wrap every test method on the
class. The patchers recognise methods that start with 'test' as being test methods. This is the same way that the
unittest.TestLoader finds test methods by default.

It is possible that you want to use a different prefix for your tests. You can inform the patchers of the different prefix
by setting patch.TEST_PREFIX:

>>> patch.TEST_PREFIX = 'foo'

>>> value = 3

>>>

>>> @patch('__main__.value', 'not three')

... class Thing:

... def foo_one(self):

... print(value)

... def foo_two(self):

... print(value)

...

>>>

>>> Thing().foo_one()

not three

>>> Thing().foo_two()

not three

>>> value

3

Nesting Patch Decorators

If you want to perform multiple patches then you can simply stack up the decorators.

You can stack up multiple patch decorators using this pattern:

>>> @patch.object(SomeClass, 'class_method')

... @patch.object(SomeClass, 'static_method')

... def test(mock1, mock2):

... assert SomeClass.static_method is mock1

... assert SomeClass.class_method is mock2

... SomeClass.static_method('foo')

... SomeClass.class_method('bar')

... return mock1, mock2

...

>>> mock1, mock2 = test()

>>> mock1.assert_called_once_with('foo')

>>> mock2.assert_called_once_with('bar')

Note that the decorators are applied from the bottom upwards. This is the standardway that Python applies decorators.
The order of the created mocks passed into your test function matches this order.

Where to patch

patch() works by (temporarily) changing the object that a name points to with another one. There can be many
names pointing to any individual object, so for patching to work you must ensure that you patch the name used by
the system under test.

The basic principle is that you patch where an object is looked up, which is not necessarily the same place as where
it is defined. A couple of examples will help to clarify this.

Imagine we have a project that we want to test with the following structure:

1784 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

a.py

-> Defines SomeClass

b.py

-> from a import SomeClass

-> some_function instantiates SomeClass

Now we want to test some_function but we want to mock out SomeClass using patch(). The problem is that
when we import module b, which we will have to do then it imports SomeClass from module a. If we use patch()
to mock out a.SomeClass then it will have no effect on our test; module b already has a reference to the real
SomeClass and it looks like our patching had no effect.

The key is to patch out SomeClass where it is used (or where it is looked up). In this case some_function will
actually look up SomeClass in module b, where we have imported it. The patching should look like:

@patch('b.SomeClass')

However, consider the alternative scenario where instead of from a import SomeClass module b does import
a and some_function uses a.SomeClass. Both of these import forms are common. In this case the class we
want to patch is being looked up in the module and so we have to patch a.SomeClass instead:

@patch('a.SomeClass')

Patching Descriptors and Proxy Objects

Both patch and patch.object correctly patch and restore descriptors: class methods, static methods and properties.
You should patch these on the class rather than an instance. They also work with some objects that proxy attribute
access, like the django settings object.

27.6.4 MagicMock and magic method support

Mocking Magic Methods

Mock supports mocking the Python protocol methods, also known as “magic methods” . This allows mock objects to
replace containers or other objects that implement Python protocols.

Becausemagicmethods are looked up differently from normalmethods2, this support has been specially implemented.
This means that only specific magic methods are supported. The supported list includes almost all of them. If there
are any missing that you need please let us know.

You mock magic methods by setting the method you are interested in to a function or a mock instance. If you are
using a function then it must take self as the first argument3.

>>> def __str__(self):

... return 'fooble'

...

>>> mock = Mock()

>>> mock.__str__ = __str__

>>> str(mock)

'fooble'

>>> mock = Mock()

>>> mock.__str__ = Mock()

>>> mock.__str__.return_value = 'fooble'

>>> str(mock)

'fooble'

2 Magic methods should be looked up on the class rather than the instance. Different versions of Python are inconsistent about applying this
rule. The supported protocol methods should work with all supported versions of Python.

3 The function is basically hooked up to the class, but each Mock instance is kept isolated from the others.

27.6. unittest.mock—mock object library 1785

https://web.archive.org/web/20200603181648/http://www.voidspace.org.uk/python/weblog/arch_d7_2010_12_04.shtml#e1198

The Python Library Reference, Release 3.13.1

>>> mock = Mock()

>>> mock.__iter__ = Mock(return_value=iter([]))

>>> list(mock)

[]

One use case for this is for mocking objects used as context managers in a with statement:

>>> mock = Mock()

>>> mock.__enter__ = Mock(return_value='foo')

>>> mock.__exit__ = Mock(return_value=False)

>>> with mock as m:

... assert m == 'foo'

...

>>> mock.__enter__.assert_called_with()

>>> mock.__exit__.assert_called_with(None, None, None)

Calls to magic methods do not appear in method_calls, but they are recorded in mock_calls.

Note

If you use the spec keyword argument to create a mock then attempting to set a magic method that isn’t in the
spec will raise an AttributeError.

The full list of supported magic methods is:

• __hash__, __sizeof__, __repr__ and __str__

• __dir__, __format__ and __subclasses__

• __round__, __floor__, __trunc__ and __ceil__

• Comparisons: __lt__, __gt__, __le__, __ge__, __eq__ and __ne__

• Container methods: __getitem__, __setitem__, __delitem__, __contains__, __len__, __iter__,
__reversed__ and __missing__

• Context manager: __enter__, __exit__, __aenter__ and __aexit__

• Unary numeric methods: __neg__, __pos__ and __invert__

• The numeric methods (including right hand and in-place variants): __add__, __sub__, __mul__,
__matmul__, __truediv__, __floordiv__, __mod__, __divmod__, __lshift__, __rshift__,
__and__, __xor__, __or__, and __pow__

• Numeric conversion methods: __complex__, __int__, __float__ and __index__

• Descriptor methods: __get__, __set__ and __delete__

• Pickling: __reduce__, __reduce_ex__, __getinitargs__, __getnewargs__, __getstate__ and
__setstate__

• File system path representation: __fspath__

• Asynchronous iteration methods: __aiter__ and __anext__

Changed in version 3.8: Added support for os.PathLike.__fspath__().

Changed in version 3.8: Added support for __aenter__, __aexit__, __aiter__ and __anext__.

The following methods exist but are not supported as they are either in use by mock, can’t be set dynamically, or can
cause problems:

• __getattr__, __setattr__, __init__ and __new__

• __prepare__, __instancecheck__, __subclasscheck__, __del__

1786 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

Magic Mock

There are two MagicMock variants: MagicMock and NonCallableMagicMock.

class unittest.mock.MagicMock(*args, **kw)
MagicMock is a subclass of Mock with default implementations of most of the magic methods. You can use
MagicMock without having to configure the magic methods yourself.

The constructor parameters have the same meaning as for Mock.

If you use the spec or spec_set arguments then only magic methods that exist in the spec will be created.

class unittest.mock.NonCallableMagicMock(*args, **kw)
A non-callable version of MagicMock.

The constructor parameters have the same meaning as for MagicMock, with the exception of return_value and
side_effect which have no meaning on a non-callable mock.

The magic methods are setup with MagicMock objects, so you can configure them and use them in the usual way:

>>> mock = MagicMock()

>>> mock[3] = 'fish'

>>> mock.__setitem__.assert_called_with(3, 'fish')

>>> mock.__getitem__.return_value = 'result'

>>> mock[2]

'result'

By default many of the protocol methods are required to return objects of a specific type. These methods are precon-
figured with a default return value, so that they can be used without you having to do anything if you aren’t interested
in the return value. You can still set the return value manually if you want to change the default.

Methods and their defaults:

• __lt__: NotImplemented

• __gt__: NotImplemented

• __le__: NotImplemented

• __ge__: NotImplemented

• __int__: 1

• __contains__: False

• __len__: 0

• __iter__: iter([])

• __exit__: False

• __aexit__: False

• __complex__: 1j

• __float__: 1.0

• __bool__: True

• __index__: 1

• __hash__: default hash for the mock

• __str__: default str for the mock

• __sizeof__: default sizeof for the mock

For example:

27.6. unittest.mock—mock object library 1787

The Python Library Reference, Release 3.13.1

>>> mock = MagicMock()

>>> int(mock)

1

>>> len(mock)

0

>>> list(mock)

[]

>>> object() in mock

False

The two equality methods, __eq__() and __ne__(), are special. They do the default equality comparison on
identity, using the side_effect attribute, unless you change their return value to return something else:

>>> MagicMock() == 3

False

>>> MagicMock() != 3

True

>>> mock = MagicMock()

>>> mock.__eq__.return_value = True

>>> mock == 3

True

The return value of MagicMock.__iter__() can be any iterable object and isn’t required to be an iterator:

>>> mock = MagicMock()

>>> mock.__iter__.return_value = ['a', 'b', 'c']

>>> list(mock)

['a', 'b', 'c']

>>> list(mock)

['a', 'b', 'c']

If the return value is an iterator, then iterating over it once will consume it and subsequent iterations will result in an
empty list:

>>> mock.__iter__.return_value = iter(['a', 'b', 'c'])

>>> list(mock)

['a', 'b', 'c']

>>> list(mock)

[]

MagicMock has all of the supported magic methods configured except for some of the obscure and obsolete ones.
You can still set these up if you want.

Magic methods that are supported but not setup by default in MagicMock are:

• __subclasses__

• __dir__

• __format__

• __get__, __set__ and __delete__

• __reversed__ and __missing__

• __reduce__, __reduce_ex__, __getinitargs__, __getnewargs__, __getstate__ and
__setstate__

• __getformat__

1788 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

27.6.5 Helpers

sentinel

unittest.mock.sentinel

The sentinel object provides a convenient way of providing unique objects for your tests.

Attributes are created on demand when you access them by name. Accessing the same attribute will always
return the same object. The objects returned have a sensible repr so that test failure messages are readable.

Changed in version 3.7: The sentinel attributes now preserve their identity when they are copied or
pickled.

Sometimes when testing you need to test that a specific object is passed as an argument to another method, or returned.
It can be common to create named sentinel objects to test this. sentinel provides a convenient way of creating and
testing the identity of objects like this.

In this example we monkey patch method to return sentinel.some_object:

>>> real = ProductionClass()

>>> real.method = Mock(name="method")

>>> real.method.return_value = sentinel.some_object

>>> result = real.method()

>>> assert result is sentinel.some_object

>>> result

sentinel.some_object

DEFAULT

unittest.mock.DEFAULT

The DEFAULT object is a pre-created sentinel (actually sentinel.DEFAULT). It can be used by
side_effect functions to indicate that the normal return value should be used.

call

unittest.mock.call(*args, **kwargs)
call() is a helper object for making simpler assertions, for comparing with call_args, call_args_list,
mock_calls and method_calls. call() can also be used with assert_has_calls().

>>> m = MagicMock(return_value=None)

>>> m(1, 2, a='foo', b='bar')

>>> m()

>>> m.call_args_list == [call(1, 2, a='foo', b='bar'), call()]

True

call.call_list()

For a call object that represents multiple calls, call_list() returns a list of all the intermediate calls as well
as the final call.

call_list is particularly useful for making assertions on “chained calls”. A chained call is multiple calls on a single
line of code. This results in multiple entries in mock_calls on a mock. Manually constructing the sequence of calls
can be tedious.

call_list() can construct the sequence of calls from the same chained call:

>>> m = MagicMock()

>>> m(1).method(arg='foo').other('bar')(2.0)

<MagicMock name='mock().method().other()()' id='...'>

>>> kall = call(1).method(arg='foo').other('bar')(2.0)

>>> kall.call_list()

[call(1),

(continues on next page)

27.6. unittest.mock—mock object library 1789

The Python Library Reference, Release 3.13.1

(continued from previous page)

call().method(arg='foo'),

call().method().other('bar'),

call().method().other()(2.0)]

>>> m.mock_calls == kall.call_list()

True

A call object is either a tuple of (positional args, keyword args) or (name, positional args, keyword args) depending
on how it was constructed. When you construct them yourself this isn’t particularly interesting, but the call objects
that are in the Mock.call_args, Mock.call_args_list and Mock.mock_calls attributes can be introspected
to get at the individual arguments they contain.

The call objects in Mock.call_args and Mock.call_args_list are two-tuples of (positional args, keyword
args) whereas the call objects in Mock.mock_calls, along with ones you construct yourself, are three-tuples of
(name, positional args, keyword args).

You can use their “tupleness” to pull out the individual arguments for more complex introspection and assertions. The
positional arguments are a tuple (an empty tuple if there are no positional arguments) and the keyword arguments
are a dictionary:

>>> m = MagicMock(return_value=None)

>>> m(1, 2, 3, arg='one', arg2='two')

>>> kall = m.call_args

>>> kall.args

(1, 2, 3)

>>> kall.kwargs

{'arg': 'one', 'arg2': 'two'}

>>> kall.args is kall[0]

True

>>> kall.kwargs is kall[1]

True

>>> m = MagicMock()

>>> m.foo(4, 5, 6, arg='two', arg2='three')

<MagicMock name='mock.foo()' id='...'>

>>> kall = m.mock_calls[0]

>>> name, args, kwargs = kall

>>> name

'foo'

>>> args

(4, 5, 6)

>>> kwargs

{'arg': 'two', 'arg2': 'three'}

>>> name is m.mock_calls[0][0]

True

create_autospec

unittest.mock.create_autospec(spec, spec_set=False, instance=False, **kwargs)

Create amock object using another object as a spec. Attributes on themockwill use the corresponding attribute
on the spec object as their spec.

Functions or methods being mocked will have their arguments checked to ensure that they are called with the
correct signature.

If spec_set is True then attempting to set attributes that don’t exist on the spec object will raise an
AttributeError.

If a class is used as a spec then the return value of the mock (the instance of the class) will have the same spec.
You can use a class as the spec for an instance object by passing instance=True. The returned mock will

1790 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

only be callable if instances of the mock are callable.

create_autospec() also takes arbitrary keyword arguments that are passed to the constructor of the created
mock.

See Autospeccing for examples of how to use auto-speccing with create_autospec() and the autospec argument
to patch().

Changed in version 3.8: create_autospec() now returns an AsyncMock if the target is an async function.

ANY

unittest.mock.ANY

Sometimes you may need to make assertions about some of the arguments in a call to mock, but either not care about
some of the arguments or want to pull them individually out of call_args and make more complex assertions on
them.

To ignore certain arguments you can pass in objects that compare equal to everything. Calls to
assert_called_with() and assert_called_once_with() will then succeed no matter what was passed in.

>>> mock = Mock(return_value=None)

>>> mock('foo', bar=object())

>>> mock.assert_called_once_with('foo', bar=ANY)

ANY can also be used in comparisons with call lists like mock_calls:

>>> m = MagicMock(return_value=None)

>>> m(1)

>>> m(1, 2)

>>> m(object())

>>> m.mock_calls == [call(1), call(1, 2), ANY]

True

ANY is not limited to comparisons with call objects and so can also be used in test assertions:

class TestStringMethods(unittest.TestCase):

def test_split(self):

s = 'hello world'

self.assertEqual(s.split(), ['hello', ANY])

FILTER_DIR

unittest.mock.FILTER_DIR

FILTER_DIR is a module level variable that controls the way mock objects respond to dir(). The default is True,
which uses the filtering described below, to only show useful members. If you dislike this filtering, or need to switch
it off for diagnostic purposes, then set mock.FILTER_DIR = False.

With filtering on, dir(some_mock) shows only useful attributes and will include any dynamically created attributes
that wouldn’t normally be shown. If the mock was created with a spec (or autospec of course) then all the attributes
from the original are shown, even if they haven’t been accessed yet:

>>> dir(Mock())

['assert_any_call',

'assert_called',

'assert_called_once',

'assert_called_once_with',

'assert_called_with',

'assert_has_calls',

(continues on next page)

27.6. unittest.mock—mock object library 1791

The Python Library Reference, Release 3.13.1

(continued from previous page)

'assert_not_called',

'attach_mock',

...

>>> from urllib import request

>>> dir(Mock(spec=request))

['AbstractBasicAuthHandler',

'AbstractDigestAuthHandler',

'AbstractHTTPHandler',

'BaseHandler',

...

Many of the not-very-useful (private to Mock rather than the thing being mocked) underscore and double underscore
prefixed attributes have been filtered from the result of calling dir() on a Mock. If you dislike this behaviour you
can switch it off by setting the module level switch FILTER_DIR:

>>> from unittest import mock

>>> mock.FILTER_DIR = False

>>> dir(mock.Mock())

['_NonCallableMock__get_return_value',

'_NonCallableMock__get_side_effect',

'_NonCallableMock__return_value_doc',

'_NonCallableMock__set_return_value',

'_NonCallableMock__set_side_effect',

'__call__',

'__class__',

...

Alternatively you can just use vars(my_mock) (instance members) and dir(type(my_mock)) (type members)
to bypass the filtering irrespective of FILTER_DIR.

mock_open

unittest.mock.mock_open(mock=None, read_data=None)
A helper function to create a mock to replace the use of open(). It works for open() called directly or used
as a context manager.

The mock argument is the mock object to configure. If None (the default) then a MagicMock will be created
for you, with the API limited to methods or attributes available on standard file handles.

read_data is a string for the read(), readline(), and readlines() methods of the file handle to return.
Calls to those methods will take data from read_data until it is depleted. The mock of these methods is pretty
simplistic: every time the mock is called, the read_data is rewound to the start. If you need more control over
the data that you are feeding to the tested code you will need to customize this mock for yourself. When that
is insufficient, one of the in-memory filesystem packages on PyPI can offer a realistic filesystem for testing.

Changed in version 3.4: Added readline() and readlines() support. The mock of read() changed to
consume read_data rather than returning it on each call.

Changed in version 3.5: read_data is now reset on each call to the mock.

Changed in version 3.8: Added __iter__() to implementation so that iteration (such as in for loops) correctly
consumes read_data.

Using open() as a context manager is a great way to ensure your file handles are closed properly and is becoming
common:

with open('/some/path', 'w') as f:

f.write('something')

1792 Chapter 27. Development Tools

https://pypi.org

The Python Library Reference, Release 3.13.1

The issue is that even if you mock out the call to open() it is the returned object that is used as a context manager
(and has __enter__() and __exit__() called).

Mocking context managers with a MagicMock is common enough and fiddly enough that a helper function is useful.

>>> m = mock_open()

>>> with patch('__main__.open', m):

... with open('foo', 'w') as h:

... h.write('some stuff')

...

>>> m.mock_calls

[call('foo', 'w'),

call().__enter__(),

call().write('some stuff'),

call().__exit__(None, None, None)]

>>> m.assert_called_once_with('foo', 'w')

>>> handle = m()

>>> handle.write.assert_called_once_with('some stuff')

And for reading files:

>>> with patch('__main__.open', mock_open(read_data='bibble')) as m:

... with open('foo') as h:

... result = h.read()

...

>>> m.assert_called_once_with('foo')

>>> assert result == 'bibble'

Autospeccing

Autospeccing is based on the existing spec feature of mock. It limits the api of mocks to the api of an original
object (the spec), but it is recursive (implemented lazily) so that attributes of mocks only have the same api as the
attributes of the spec. In addition mocked functions / methods have the same call signature as the original so they
raise a TypeError if they are called incorrectly.

Before I explain how auto-speccing works, here’s why it is needed.

Mock is a very powerful and flexible object, but it suffers from a flaw which is general to mocking. If you refactor
some of your code, rename members and so on, any tests for code that is still using the old api but uses mocks instead
of the real objects will still pass. This means your tests can all pass even though your code is broken.

Changed in version 3.5: Before 3.5, tests with a typo in the word assert would silently pass when they should raise an
error. You can still achieve this behavior by passing unsafe=True to Mock.

Note that this is another reason why you need integration tests as well as unit tests. Testing everything in isolation
is all fine and dandy, but if you don’t test how your units are “wired together” there is still lots of room for bugs that
tests might have caught.

unittest.mock already provides a feature to help with this, called speccing. If you use a class or instance as the
spec for a mock then you can only access attributes on the mock that exist on the real class:

>>> from urllib import request

>>> mock = Mock(spec=request.Request)

>>> mock.assret_called_with # Intentional typo!

Traceback (most recent call last):

...

AttributeError: Mock object has no attribute 'assret_called_with'

The spec only applies to the mock itself, so we still have the same issue with any methods on the mock:

27.6. unittest.mock—mock object library 1793

The Python Library Reference, Release 3.13.1

>>> mock.has_data()

<mock.Mock object at 0x...>

>>> mock.has_data.assret_called_with() # Intentional typo!

Auto-speccing solves this problem. You can either pass autospec=True to patch() / patch.object() or use
the create_autospec() function to create a mock with a spec. If you use the autospec=True argument to
patch() then the object that is being replaced will be used as the spec object. Because the speccing is done “lazily”
(the spec is created as attributes on the mock are accessed) you can use it with very complex or deeply nested objects
(like modules that import modules that import modules) without a big performance hit.

Here’s an example of it in use:

>>> from urllib import request

>>> patcher = patch('__main__.request', autospec=True)

>>> mock_request = patcher.start()

>>> request is mock_request

True

>>> mock_request.Request

<MagicMock name='request.Request' spec='Request' id='...'>

You can see that request.Request has a spec. request.Request takes two arguments in the constructor (one
of which is self). Here’s what happens if we try to call it incorrectly:

>>> req = request.Request()

Traceback (most recent call last):

...

TypeError: <lambda>() takes at least 2 arguments (1 given)

The spec also applies to instantiated classes (i.e. the return value of specced mocks):

>>> req = request.Request('foo')

>>> req

<NonCallableMagicMock name='request.Request()' spec='Request' id='...'>

Request objects are not callable, so the return value of instantiating our mocked out request.Request is a non-
callable mock. With the spec in place any typos in our asserts will raise the correct error:

>>> req.add_header('spam', 'eggs')

<MagicMock name='request.Request().add_header()' id='...'>

>>> req.add_header.assret_called_with # Intentional typo!

Traceback (most recent call last):

...

AttributeError: Mock object has no attribute 'assret_called_with'

>>> req.add_header.assert_called_with('spam', 'eggs')

In many cases you will just be able to add autospec=True to your existing patch() calls and then be protected
against bugs due to typos and api changes.

As well as using autospec through patch() there is a create_autospec() for creating autospecced mocks di-
rectly:

>>> from urllib import request

>>> mock_request = create_autospec(request)

>>> mock_request.Request('foo', 'bar')

<NonCallableMagicMock name='mock.Request()' spec='Request' id='...'>

This isn’t without caveats and limitations however, which is why it is not the default behaviour. In order to know
what attributes are available on the spec object, autospec has to introspect (access attributes) the spec. As you
traverse attributes on the mock a corresponding traversal of the original object is happening under the hood. If any

1794 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

of your specced objects have properties or descriptors that can trigger code execution then you may not be able to
use autospec. On the other hand it is much better to design your objects so that introspection is safe4.

A more serious problem is that it is common for instance attributes to be created in the __init__() method and
not to exist on the class at all. autospec can’t know about any dynamically created attributes and restricts the api to
visible attributes.

>>> class Something:

... def __init__(self):

... self.a = 33

...

>>> with patch('__main__.Something', autospec=True):

... thing = Something()

... thing.a

...

Traceback (most recent call last):

...

AttributeError: Mock object has no attribute 'a'

There are a few different ways of resolving this problem. The easiest, but not necessarily the least annoying, way
is to simply set the required attributes on the mock after creation. Just because autospec doesn’t allow you to fetch
attributes that don’t exist on the spec it doesn’t prevent you setting them:

>>> with patch('__main__.Something', autospec=True):

... thing = Something()

... thing.a = 33

...

There is a more aggressive version of both spec and autospec that does prevent you setting non-existent attributes.
This is useful if you want to ensure your code only sets valid attributes too, but obviously it prevents this particular
scenario:

>>> with patch('__main__.Something', autospec=True, spec_set=True):

... thing = Something()

... thing.a = 33

...

Traceback (most recent call last):

...

AttributeError: Mock object has no attribute 'a'

Probably the best way of solving the problem is to add class attributes as default values for instancemembers initialised
in __init__(). Note that if you are only setting default attributes in __init__() then providing them via class
attributes (shared between instances of course) is faster too. e.g.

class Something:

a = 33

This brings up another issue. It is relatively common to provide a default value of None for members that will later
be an object of a different type. None would be useless as a spec because it wouldn’t let you access any attributes or
methods on it. As None is never going to be useful as a spec, and probably indicates a member that will normally of
some other type, autospec doesn’t use a spec for members that are set to None. These will just be ordinary mocks
(well - MagicMocks):

>>> class Something:

... member = None

...

>>> mock = create_autospec(Something)

(continues on next page)

4 This only applies to classes or already instantiated objects. Calling a mocked class to create a mock instance does not create a real instance.
It is only attribute lookups - along with calls to dir() - that are done.

27.6. unittest.mock—mock object library 1795

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> mock.member.foo.bar.baz()

<MagicMock name='mock.member.foo.bar.baz()' id='...'>

If modifying your production classes to add defaults isn’t to your liking then there are more options. One of these is
simply to use an instance as the spec rather than the class. The other is to create a subclass of the production class and
add the defaults to the subclass without affecting the production class. Both of these require you to use an alternative
object as the spec. Thankfully patch() supports this - you can simply pass the alternative object as the autospec
argument:

>>> class Something:

... def __init__(self):

... self.a = 33

...

>>> class SomethingForTest(Something):

... a = 33

...

>>> p = patch('__main__.Something', autospec=SomethingForTest)

>>> mock = p.start()

>>> mock.a

<NonCallableMagicMock name='Something.a' spec='int' id='...'>

Sealing mocks

unittest.mock.seal(mock)
Seal will disable the automatic creation of mocks when accessing an attribute of the mock being sealed or any
of its attributes that are already mocks recursively.

If a mock instance with a name or a spec is assigned to an attribute it won’t be considered in the sealing chain.
This allows one to prevent seal from fixing part of the mock object.

>>> mock = Mock()

>>> mock.submock.attribute1 = 2

>>> mock.not_submock = mock.Mock(name="sample_name")

>>> seal(mock)

>>> mock.new_attribute # This will raise AttributeError.

>>> mock.submock.attribute2 # This will raise AttributeError.

>>> mock.not_submock.attribute2 # This won't raise.

Added in version 3.7.

27.6.6 Order of precedence of side_effect, return_value and wraps

The order of their precedence is:

1. side_effect

2. return_value

3. wraps

If all three are set, mock will return the value from side_effect, ignoring return_value and the wrapped object
altogether. If any two are set, the one with the higher precedence will return the value. Regardless of the order of
which was set first, the order of precedence remains unchanged.

>>> from unittest.mock import Mock

>>> class Order:

... @staticmethod

... def get_value():

... return "third"

(continues on next page)

1796 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

...

>>> order_mock = Mock(spec=Order, wraps=Order)

>>> order_mock.get_value.side_effect = ["first"]

>>> order_mock.get_value.return_value = "second"

>>> order_mock.get_value()

'first'

As None is the default value of side_effect, if you reassign its value back to None, the order of precedence will
be checked between return_value and the wrapped object, ignoring side_effect.

>>> order_mock.get_value.side_effect = None

>>> order_mock.get_value()

'second'

If the value being returned by side_effect is DEFAULT, it is ignored and the order of precedence moves to the
successor to obtain the value to return.

>>> from unittest.mock import DEFAULT

>>> order_mock.get_value.side_effect = [DEFAULT]

>>> order_mock.get_value()

'second'

When Mock wraps an object, the default value of return_value will be DEFAULT.

>>> order_mock = Mock(spec=Order, wraps=Order)

>>> order_mock.return_value

sentinel.DEFAULT

>>> order_mock.get_value.return_value

sentinel.DEFAULT

The order of precedence will ignore this value and it will move to the last successor which is the wrapped object.

As the real call is being made to the wrapped object, creating an instance of this mock will return the real instance
of the class. The positional arguments, if any, required by the wrapped object must be passed.

>>> order_mock_instance = order_mock()

>>> isinstance(order_mock_instance, Order)

True

>>> order_mock_instance.get_value()

'third'

>>> order_mock.get_value.return_value = DEFAULT

>>> order_mock.get_value()

'third'

>>> order_mock.get_value.return_value = "second"

>>> order_mock.get_value()

'second'

But if you assign None to it, this will not be ignored as it is an explicit assignment. So, the order of precedence will
not move to the wrapped object.

>>> order_mock.get_value.return_value = None

>>> order_mock.get_value() is None

True

Even if you set all three at once when initializing the mock, the order of precedence remains the same:

27.6. unittest.mock—mock object library 1797

The Python Library Reference, Release 3.13.1

>>> order_mock = Mock(spec=Order, wraps=Order,

... **{"get_value.side_effect": ["first"],

... "get_value.return_value": "second"}

...)

...

>>> order_mock.get_value()

'first'

>>> order_mock.get_value.side_effect = None

>>> order_mock.get_value()

'second'

>>> order_mock.get_value.return_value = DEFAULT

>>> order_mock.get_value()

'third'

If side_effect is exhausted, the order of precedence will not cause a value to be obtained from the successors.
Instead, StopIteration exception is raised.

>>> order_mock = Mock(spec=Order, wraps=Order)

>>> order_mock.get_value.side_effect = ["first side effect value",

... "another side effect value"]

>>> order_mock.get_value.return_value = "second"

>>> order_mock.get_value()

'first side effect value'

>>> order_mock.get_value()

'another side effect value'

>>> order_mock.get_value()

Traceback (most recent call last):

...

StopIteration

27.7 unittest.mock— getting started

Added in version 3.3.

27.7.1 Using Mock

Mock Patching Methods

Common uses for Mock objects include:

• Patching methods

• Recording method calls on objects

You might want to replace a method on an object to check that it is called with the correct arguments by another part
of the system:

>>> real = SomeClass()

>>> real.method = MagicMock(name='method')

>>> real.method(3, 4, 5, key='value')

<MagicMock name='method()' id='...'>

Once our mock has been used (real.method in this example) it has methods and attributes that allow you to make
assertions about how it has been used.

1798 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

Note

In most of these examples the Mock and MagicMock classes are interchangeable. As the MagicMock is the more
capable class it makes a sensible one to use by default.

Once the mock has been called its called attribute is set to True. More importantly we can use the
assert_called_with() or assert_called_once_with()method to check that it was called with the correct
arguments.

This example tests that calling ProductionClass().method results in a call to the something method:

>>> class ProductionClass:

... def method(self):

... self.something(1, 2, 3)

... def something(self, a, b, c):

... pass

...

>>> real = ProductionClass()

>>> real.something = MagicMock()

>>> real.method()

>>> real.something.assert_called_once_with(1, 2, 3)

Mock for Method Calls on an Object

In the last example we patched a method directly on an object to check that it was called correctly. Another common
use case is to pass an object into a method (or some part of the system under test) and then check that it is used in
the correct way.

The simple ProductionClass below has a closer method. If it is called with an object then it calls close on it.

>>> class ProductionClass:

... def closer(self, something):

... something.close()

...

So to test it we need to pass in an object with a close method and check that it was called correctly.

>>> real = ProductionClass()

>>> mock = Mock()

>>> real.closer(mock)

>>> mock.close.assert_called_with()

We don’t have to do any work to provide the ‘close’ method on our mock. Accessing close creates it. So, if ‘close’
hasn’t already been called then accessing it in the test will create it, but assert_called_with() will raise a failure
exception.

Mocking Classes

A common use case is to mock out classes instantiated by your code under test. When you patch a class, then that
class is replaced with a mock. Instances are created by calling the class. This means you access the “mock instance”
by looking at the return value of the mocked class.

In the example below we have a function some_function that instantiates Foo and calls a method on it. The call to
patch() replaces the class Foo with a mock. The Foo instance is the result of calling the mock, so it is configured
by modifying the mock return_value.

>>> def some_function():

... instance = module.Foo()

... return instance.method()

(continues on next page)

27.7. unittest.mock— getting started 1799

The Python Library Reference, Release 3.13.1

(continued from previous page)

...

>>> with patch('module.Foo') as mock:

... instance = mock.return_value

... instance.method.return_value = 'the result'

... result = some_function()

... assert result == 'the result'

Naming your mocks

It can be useful to give your mocks a name. The name is shown in the repr of the mock and can be helpful when the
mock appears in test failure messages. The name is also propagated to attributes or methods of the mock:

>>> mock = MagicMock(name='foo')

>>> mock

<MagicMock name='foo' id='...'>

>>> mock.method

<MagicMock name='foo.method' id='...'>

Tracking all Calls

Often you want to track more than a single call to a method. The mock_calls attribute records all calls to child
attributes of the mock - and also to their children.

>>> mock = MagicMock()

>>> mock.method()

<MagicMock name='mock.method()' id='...'>

>>> mock.attribute.method(10, x=53)

<MagicMock name='mock.attribute.method()' id='...'>

>>> mock.mock_calls

[call.method(), call.attribute.method(10, x=53)]

If you make an assertion about mock_calls and any unexpected methods have been called, then the assertion will
fail. This is useful because as well as asserting that the calls you expected have been made, you are also checking that
they were made in the right order and with no additional calls:

You use the call object to construct lists for comparing with mock_calls:

>>> expected = [call.method(), call.attribute.method(10, x=53)]

>>> mock.mock_calls == expected

True

However, parameters to calls that return mocks are not recorded, which means it is not possible to track nested calls
where the parameters used to create ancestors are important:

>>> m = Mock()

>>> m.factory(important=True).deliver()

<Mock name='mock.factory().deliver()' id='...'>

>>> m.mock_calls[-1] == call.factory(important=False).deliver()

True

Setting Return Values and Attributes

Setting the return values on a mock object is trivially easy:

>>> mock = Mock()

>>> mock.return_value = 3

(continues on next page)

1800 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> mock()

3

Of course you can do the same for methods on the mock:

>>> mock = Mock()

>>> mock.method.return_value = 3

>>> mock.method()

3

The return value can also be set in the constructor:

>>> mock = Mock(return_value=3)

>>> mock()

3

If you need an attribute setting on your mock, just do it:

>>> mock = Mock()

>>> mock.x = 3

>>> mock.x

3

Sometimes you want to mock up a more complex situation, like for example mock.connection.cursor().

execute("SELECT 1"). If we wanted this call to return a list, then we have to configure the result of the nested
call.

We can use call to construct the set of calls in a “chained call” like this for easy assertion afterwards:

>>> mock = Mock()

>>> cursor = mock.connection.cursor.return_value

>>> cursor.execute.return_value = ['foo']

>>> mock.connection.cursor().execute("SELECT 1")

['foo']

>>> expected = call.connection.cursor().execute("SELECT 1").call_list()

>>> mock.mock_calls

[call.connection.cursor(), call.connection.cursor().execute('SELECT 1')]

>>> mock.mock_calls == expected

True

It is the call to .call_list() that turns our call object into a list of calls representing the chained calls.

Raising exceptions with mocks

A useful attribute is side_effect. If you set this to an exception class or instance then the exception will be raised
when the mock is called.

>>> mock = Mock(side_effect=Exception('Boom!'))

>>> mock()

Traceback (most recent call last):

...

Exception: Boom!

Side effect functions and iterables

side_effect can also be set to a function or an iterable. The use case for side_effect as an iterable is where
your mock is going to be called several times, and you want each call to return a different value. When you set
side_effect to an iterable every call to the mock returns the next value from the iterable:

27.7. unittest.mock— getting started 1801

The Python Library Reference, Release 3.13.1

>>> mock = MagicMock(side_effect=[4, 5, 6])

>>> mock()

4

>>> mock()

5

>>> mock()

6

For more advanced use cases, like dynamically varying the return values depending on what the mock is called with,
side_effect can be a function. The function will be called with the same arguments as the mock. Whatever the
function returns is what the call returns:

>>> vals = {(1, 2): 1, (2, 3): 2}

>>> def side_effect(*args):

... return vals[args]

...

>>> mock = MagicMock(side_effect=side_effect)

>>> mock(1, 2)

1

>>> mock(2, 3)

2

Mocking asynchronous iterators

Since Python 3.8, AsyncMock and MagicMock have support to mock async-iterators through __aiter__. The
return_value attribute of __aiter__ can be used to set the return values to be used for iteration.

>>> mock = MagicMock() # AsyncMock also works here

>>> mock.__aiter__.return_value = [1, 2, 3]

>>> async def main():

... return [i async for i in mock]

...

>>> asyncio.run(main())

[1, 2, 3]

Mocking asynchronous context manager

Since Python 3.8, AsyncMock and MagicMock have support tomock async-context-managers through __aenter__
and __aexit__. By default, __aenter__ and __aexit__ are AsyncMock instances that return an async function.

>>> class AsyncContextManager:

... async def __aenter__(self):

... return self

... async def __aexit__(self, exc_type, exc, tb):

... pass

...

>>> mock_instance = MagicMock(AsyncContextManager()) # AsyncMock also works here

>>> async def main():

... async with mock_instance as result:

... pass

...

>>> asyncio.run(main())

>>> mock_instance.__aenter__.assert_awaited_once()

>>> mock_instance.__aexit__.assert_awaited_once()

1802 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

Creating a Mock from an Existing Object

One problem with over use of mocking is that it couples your tests to the implementation of your mocks rather than
your real code. Suppose you have a class that implements some_method. In a test for another class, you provide
a mock of this object that also provides some_method. If later you refactor the first class, so that it no longer has
some_method - then your tests will continue to pass even though your code is now broken!

Mock allows you to provide an object as a specification for the mock, using the spec keyword argument. Accessing
methods / attributes on the mock that don’t exist on your specification object will immediately raise an attribute error.
If you change the implementation of your specification, then tests that use that class will start failing immediately
without you having to instantiate the class in those tests.

>>> mock = Mock(spec=SomeClass)

>>> mock.old_method()

Traceback (most recent call last):

...

AttributeError: Mock object has no attribute 'old_method'. Did you mean: 'class_

↪→method'?

Using a specification also enables a smarter matching of calls made to the mock, regardless of whether some param-
eters were passed as positional or named arguments:

>>> def f(a, b, c): pass

...

>>> mock = Mock(spec=f)

>>> mock(1, 2, 3)

<Mock name='mock()' id='140161580456576'>

>>> mock.assert_called_with(a=1, b=2, c=3)

If you want this smarter matching to also work with method calls on the mock, you can use auto-speccing.

If you want a stronger form of specification that prevents the setting of arbitrary attributes as well as the getting of
them then you can use spec_set instead of spec.

Using side_effect to return per file content

mock_open() is used to patch open() method. side_effect can be used to return a new Mock object per call.
This can be used to return different contents per file stored in a dictionary:

DEFAULT = "default"

data_dict = {"file1": "data1",

"file2": "data2"}

def open_side_effect(name):

return mock_open(read_data=data_dict.get(name, DEFAULT))()

with patch("builtins.open", side_effect=open_side_effect):

with open("file1") as file1:

assert file1.read() == "data1"

with open("file2") as file2:

assert file2.read() == "data2"

with open("file3") as file2:

assert file2.read() == "default"

27.7. unittest.mock— getting started 1803

The Python Library Reference, Release 3.13.1

27.7.2 Patch Decorators

Note

With patch() it matters that you patch objects in the namespace where they are looked up. This is normally
straightforward, but for a quick guide read where to patch.

A common need in tests is to patch a class attribute or a module attribute, for example patching a builtin or patching
a class in a module to test that it is instantiated. Modules and classes are effectively global, so patching on them has
to be undone after the test or the patch will persist into other tests and cause hard to diagnose problems.

mock provides three convenient decorators for this: patch(), patch.object() and patch.dict(). patch

takes a single string, of the form package.module.Class.attribute to specify the attribute you are patching.
It also optionally takes a value that you want the attribute (or class or whatever) to be replaced with. ‘patch.object’
takes an object and the name of the attribute you would like patched, plus optionally the value to patch it with.

patch.object:

>>> original = SomeClass.attribute

>>> @patch.object(SomeClass, 'attribute', sentinel.attribute)

... def test():

... assert SomeClass.attribute == sentinel.attribute

...

>>> test()

>>> assert SomeClass.attribute == original

>>> @patch('package.module.attribute', sentinel.attribute)

... def test():

... from package.module import attribute

... assert attribute is sentinel.attribute

...

>>> test()

If you are patching a module (including builtins) then use patch() instead of patch.object():

>>> mock = MagicMock(return_value=sentinel.file_handle)

>>> with patch('builtins.open', mock):

... handle = open('filename', 'r')

...

>>> mock.assert_called_with('filename', 'r')

>>> assert handle == sentinel.file_handle, "incorrect file handle returned"

The module name can be ‘dotted’, in the form package.module if needed:

>>> @patch('package.module.ClassName.attribute', sentinel.attribute)

... def test():

... from package.module import ClassName

... assert ClassName.attribute == sentinel.attribute

...

>>> test()

A nice pattern is to actually decorate test methods themselves:

>>> class MyTest(unittest.TestCase):

... @patch.object(SomeClass, 'attribute', sentinel.attribute)

... def test_something(self):

... self.assertEqual(SomeClass.attribute, sentinel.attribute)

...

(continues on next page)

1804 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> original = SomeClass.attribute

>>> MyTest('test_something').test_something()

>>> assert SomeClass.attribute == original

If you want to patch with a Mock, you can use patch() with only one argument (or patch.object() with two
arguments). The mock will be created for you and passed into the test function / method:

>>> class MyTest(unittest.TestCase):

... @patch.object(SomeClass, 'static_method')

... def test_something(self, mock_method):

... SomeClass.static_method()

... mock_method.assert_called_with()

...

>>> MyTest('test_something').test_something()

You can stack up multiple patch decorators using this pattern:

>>> class MyTest(unittest.TestCase):

... @patch('package.module.ClassName1')

... @patch('package.module.ClassName2')

... def test_something(self, MockClass2, MockClass1):

... self.assertIs(package.module.ClassName1, MockClass1)

... self.assertIs(package.module.ClassName2, MockClass2)

...

>>> MyTest('test_something').test_something()

When you nest patch decorators the mocks are passed in to the decorated function in the same order they applied
(the normal Python order that decorators are applied). This means from the bottom up, so in the example above the
mock for test_module.ClassName2 is passed in first.

There is also patch.dict() for setting values in a dictionary just during a scope and restoring the dictionary to its
original state when the test ends:

>>> foo = {'key': 'value'}

>>> original = foo.copy()

>>> with patch.dict(foo, {'newkey': 'newvalue'}, clear=True):

... assert foo == {'newkey': 'newvalue'}

...

>>> assert foo == original

patch, patch.object and patch.dict can all be used as context managers.

Where you use patch() to create a mock for you, you can get a reference to the mock using the “as” form of the
with statement:

>>> class ProductionClass:

... def method(self):

... pass

...

>>> with patch.object(ProductionClass, 'method') as mock_method:

... mock_method.return_value = None

... real = ProductionClass()

... real.method(1, 2, 3)

...

>>> mock_method.assert_called_with(1, 2, 3)

As an alternative patch, patch.object and patch.dict can be used as class decorators. When used in this way
it is the same as applying the decorator individually to every method whose name starts with “test”.

27.7. unittest.mock— getting started 1805

The Python Library Reference, Release 3.13.1

27.7.3 Further Examples

Here are some more examples for some slightly more advanced scenarios.

Mocking chained calls

Mocking chained calls is actually straightforward with mock once you understand the return_value attribute.
When a mock is called for the first time, or you fetch its return_value before it has been called, a new Mock is
created.

This means that you can see how the object returned from a call to a mocked object has been used by interrogating
the return_value mock:

>>> mock = Mock()

>>> mock().foo(a=2, b=3)

<Mock name='mock().foo()' id='...'>

>>> mock.return_value.foo.assert_called_with(a=2, b=3)

From here it is a simple step to configure and then make assertions about chained calls. Of course another alternative
is writing your code in a more testable way in the first place…

So, suppose we have some code that looks a little bit like this:

>>> class Something:

... def __init__(self):

... self.backend = BackendProvider()

... def method(self):

... response = self.backend.get_endpoint('foobar').create_call('spam',

↪→'eggs').start_call()

... # more code

Assuming that BackendProvider is already well tested, how do we test method()? Specifically, we want to test
that the code section # more code uses the response object in the correct way.

As this chain of calls is made from an instance attribute we canmonkey patch the backend attribute on a Something
instance. In this particular case we are only interested in the return value from the final call to start_call so we
don’t have much configuration to do. Let’s assume the object it returns is ‘file-like’, so we’ll ensure that our response
object uses the builtin open() as its spec.

To do this we create a mock instance as our mock backend and create a mock response object for it. To set the
response as the return value for that final start_call we could do this:

mock_backend.get_endpoint.return_value.create_call.return_value.start_call.return_

↪→value = mock_response

We can do that in a slightly nicer way using the configure_mock() method to directly set the return value for us:

>>> something = Something()

>>> mock_response = Mock(spec=open)

>>> mock_backend = Mock()

>>> config = {'get_endpoint.return_value.create_call.return_value.start_call.

↪→return_value': mock_response}

>>> mock_backend.configure_mock(**config)

With these we monkey patch the “mock backend” in place and can make the real call:

>>> something.backend = mock_backend

>>> something.method()

Using mock_calls we can check the chained call with a single assert. A chained call is several calls in one line of
code, so there will be several entries in mock_calls. We can use call.call_list() to create this list of calls
for us:

1806 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

>>> chained = call.get_endpoint('foobar').create_call('spam', 'eggs').start_call()

>>> call_list = chained.call_list()

>>> assert mock_backend.mock_calls == call_list

Partial mocking

In some tests I wanted to mock out a call to datetime.date.today() to return a known date, but I didn’t want to
prevent the code under test from creating new date objects. Unfortunately datetime.date is written in C, and so
I couldn’t just monkey-patch out the static datetime.date.today() method.

I found a simple way of doing this that involved effectively wrapping the date class with a mock, but passing through
calls to the constructor to the real class (and returning real instances).

The patch decorator is used here to mock out the date class in the module under test. The side_effect
attribute on the mock date class is then set to a lambda function that returns a real date. When the mock date class
is called a real date will be constructed and returned by side_effect.

>>> from datetime import date

>>> with patch('mymodule.date') as mock_date:

... mock_date.today.return_value = date(2010, 10, 8)

... mock_date.side_effect = lambda *args, **kw: date(*args, **kw)

...

... assert mymodule.date.today() == date(2010, 10, 8)

... assert mymodule.date(2009, 6, 8) == date(2009, 6, 8)

Note that we don’t patch datetime.date globally, we patch date in the module that uses it. See where to patch.

When date.today() is called a known date is returned, but calls to the date(...) constructor still return normal
dates. Without this you can find yourself having to calculate an expected result using exactly the same algorithm as
the code under test, which is a classic testing anti-pattern.

Calls to the date constructor are recorded in the mock_date attributes (call_count and friends) which may also
be useful for your tests.

An alternative way of dealing with mocking dates, or other builtin classes, is discussed in this blog entry.

Mocking a Generator Method

A Python generator is a function or method that uses the yield statement to return a series of values when iterated
over1.

A generator method / function is called to return the generator object. It is the generator object that is then iterated
over. The protocol method for iteration is __iter__(), so we can mock this using a MagicMock.

Here’s an example class with an “iter” method implemented as a generator:

>>> class Foo:

... def iter(self):

... for i in [1, 2, 3]:

... yield i

...

>>> foo = Foo()

>>> list(foo.iter())

[1, 2, 3]

How would we mock this class, and in particular its “iter” method?

To configure the values returned from the iteration (implicit in the call to list), we need to configure the object
returned by the call to foo.iter().

1 There are also generator expressions and more advanced uses of generators, but we aren’t concerned about them here. A very good intro-
duction to generators and how powerful they are is: Generator Tricks for Systems Programmers.

27.7. unittest.mock— getting started 1807

https://williambert.online/2011/07/how-to-unit-testing-in-django-with-mocking-and-patching/
http://www.dabeaz.com/coroutines/index.html
http://www.dabeaz.com/generators/

The Python Library Reference, Release 3.13.1

>>> mock_foo = MagicMock()

>>> mock_foo.iter.return_value = iter([1, 2, 3])

>>> list(mock_foo.iter())

[1, 2, 3]

Applying the same patch to every test method

If you want several patches in place for multiple test methods the obvious way is to apply the patch decorators to
every method. This can feel like unnecessary repetition. Instead, you can use patch() (in all its various forms) as
a class decorator. This applies the patches to all test methods on the class. A test method is identified by methods
whose names start with test:

>>> @patch('mymodule.SomeClass')

... class MyTest(unittest.TestCase):

...

... def test_one(self, MockSomeClass):

... self.assertIs(mymodule.SomeClass, MockSomeClass)

...

... def test_two(self, MockSomeClass):

... self.assertIs(mymodule.SomeClass, MockSomeClass)

...

... def not_a_test(self):

... return 'something'

...

>>> MyTest('test_one').test_one()

>>> MyTest('test_two').test_two()

>>> MyTest('test_two').not_a_test()

'something'

An alternative way of managing patches is to use the patch methods: start and stop. These allow you to move the
patching into your setUp and tearDown methods.

>>> class MyTest(unittest.TestCase):

... def setUp(self):

... self.patcher = patch('mymodule.foo')

... self.mock_foo = self.patcher.start()

...

... def test_foo(self):

... self.assertIs(mymodule.foo, self.mock_foo)

...

... def tearDown(self):

... self.patcher.stop()

...

>>> MyTest('test_foo').run()

If you use this technique you must ensure that the patching is “undone” by calling stop. This can be fiddlier than
you might think, because if an exception is raised in the setUp then tearDown is not called. unittest.TestCase.
addCleanup() makes this easier:

>>> class MyTest(unittest.TestCase):

... def setUp(self):

... patcher = patch('mymodule.foo')

... self.addCleanup(patcher.stop)

... self.mock_foo = patcher.start()

...

... def test_foo(self):

... self.assertIs(mymodule.foo, self.mock_foo)

(continues on next page)

1808 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

...

>>> MyTest('test_foo').run()

Mocking Unbound Methods

Whilst writing tests today I needed to patch an unbound method (patching the method on the class rather than on
the instance). I needed self to be passed in as the first argument because I want to make asserts about which objects
were calling this particular method. The issue is that you can’t patch with a mock for this, because if you replace an
unbound method with a mock it doesn’t become a bound method when fetched from the instance, and so it doesn’t get
self passed in. The workaround is to patch the unbound method with a real function instead. The patch() decorator
makes it so simple to patch out methods with a mock that having to create a real function becomes a nuisance.

If you pass autospec=True to patch then it does the patching with a real function object. This function object
has the same signature as the one it is replacing, but delegates to a mock under the hood. You still get your mock
auto-created in exactly the same way as before. What it means though, is that if you use it to patch out an unbound
method on a class the mocked function will be turned into a bound method if it is fetched from an instance. It will
have self passed in as the first argument, which is exactly what I wanted:

>>> class Foo:

... def foo(self):

... pass

...

>>> with patch.object(Foo, 'foo', autospec=True) as mock_foo:

... mock_foo.return_value = 'foo'

... foo = Foo()

... foo.foo()

...

'foo'

>>> mock_foo.assert_called_once_with(foo)

If we don’t use autospec=True then the unbound method is patched out with a Mock instance instead, and isn’t
called with self.

Checking multiple calls with mock

mock has a nice API for making assertions about how your mock objects are used.

>>> mock = Mock()

>>> mock.foo_bar.return_value = None

>>> mock.foo_bar('baz', spam='eggs')

>>> mock.foo_bar.assert_called_with('baz', spam='eggs')

If your mock is only being called once you can use the assert_called_once_with() method that also asserts
that the call_count is one.

>>> mock.foo_bar.assert_called_once_with('baz', spam='eggs')

>>> mock.foo_bar()

>>> mock.foo_bar.assert_called_once_with('baz', spam='eggs')

Traceback (most recent call last):

...

AssertionError: Expected 'foo_bar' to be called once. Called 2 times.

Calls: [call('baz', spam='eggs'), call()].

Both assert_called_with and assert_called_once_with make assertions about the most recent call. If
your mock is going to be called several times, and you want to make assertions about all those calls you can use
call_args_list:

27.7. unittest.mock— getting started 1809

The Python Library Reference, Release 3.13.1

>>> mock = Mock(return_value=None)

>>> mock(1, 2, 3)

>>> mock(4, 5, 6)

>>> mock()

>>> mock.call_args_list

[call(1, 2, 3), call(4, 5, 6), call()]

The call helper makes it easy to make assertions about these calls. You can build up a list of expected calls and
compare it to call_args_list. This looks remarkably similar to the repr of the call_args_list:

>>> expected = [call(1, 2, 3), call(4, 5, 6), call()]

>>> mock.call_args_list == expected

True

Coping with mutable arguments

Another situation is rare, but can bite you, is when your mock is called with mutable arguments. call_args and
call_args_list store references to the arguments. If the arguments are mutated by the code under test then you
can no longer make assertions about what the values were when the mock was called.

Here’s some example code that shows the problem. Imagine the following functions defined in ‘mymodule’:

def frob(val):

pass

def grob(val):

"First frob and then clear val"

frob(val)

val.clear()

When we try to test that grob calls frob with the correct argument look what happens:

>>> with patch('mymodule.frob') as mock_frob:

... val = {6}

... mymodule.grob(val)

...

>>> val

set()

>>> mock_frob.assert_called_with({6})

Traceback (most recent call last):

...

AssertionError: Expected: (({6},), {})

Called with: ((set(),), {})

One possibility would be for mock to copy the arguments you pass in. This could then cause problems if you do
assertions that rely on object identity for equality.

Here’s one solution that uses the side_effect functionality. If you provide a side_effect function for a mock
then side_effectwill be called with the same args as the mock. This gives us an opportunity to copy the arguments
and store them for later assertions. In this example I’m using another mock to store the arguments so that I can use
the mock methods for doing the assertion. Again a helper function sets this up for me.

>>> from copy import deepcopy

>>> from unittest.mock import Mock, patch, DEFAULT

>>> def copy_call_args(mock):

... new_mock = Mock()

... def side_effect(*args, **kwargs):

... args = deepcopy(args)

(continues on next page)

1810 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

... kwargs = deepcopy(kwargs)

... new_mock(*args, **kwargs)

... return DEFAULT

... mock.side_effect = side_effect

... return new_mock

...

>>> with patch('mymodule.frob') as mock_frob:

... new_mock = copy_call_args(mock_frob)

... val = {6}

... mymodule.grob(val)

...

>>> new_mock.assert_called_with({6})

>>> new_mock.call_args

call({6})

copy_call_args is called with the mock that will be called. It returns a new mock that we do the assertion on.
The side_effect function makes a copy of the args and calls our new_mock with the copy.

Note

If your mock is only going to be used once there is an easier way of checking arguments at the point they are
called. You can simply do the checking inside a side_effect function.

>>> def side_effect(arg):

... assert arg == {6}

...

>>> mock = Mock(side_effect=side_effect)

>>> mock({6})

>>> mock(set())

Traceback (most recent call last):

...

AssertionError

An alternative approach is to create a subclass of Mock or MagicMock that copies (using copy.deepcopy()) the
arguments. Here’s an example implementation:

>>> from copy import deepcopy

>>> class CopyingMock(MagicMock):

... def __call__(self, /, *args, **kwargs):

... args = deepcopy(args)

... kwargs = deepcopy(kwargs)

... return super().__call__(*args, **kwargs)

...

>>> c = CopyingMock(return_value=None)

>>> arg = set()

>>> c(arg)

>>> arg.add(1)

>>> c.assert_called_with(set())

>>> c.assert_called_with(arg)

Traceback (most recent call last):

...

AssertionError: expected call not found.

Expected: mock({1})

Actual: mock(set())

>>> c.foo

<CopyingMock name='mock.foo' id='...'>

27.7. unittest.mock— getting started 1811

The Python Library Reference, Release 3.13.1

When you subclass Mock or MagicMock all dynamically created attributes, and the return_value will use your
subclass automatically. That means all children of a CopyingMock will also have the type CopyingMock.

Nesting Patches

Using patch as a context manager is nice, but if you do multiple patches you can end up with nested with statements
indenting further and further to the right:

>>> class MyTest(unittest.TestCase):

...

... def test_foo(self):

... with patch('mymodule.Foo') as mock_foo:

... with patch('mymodule.Bar') as mock_bar:

... with patch('mymodule.Spam') as mock_spam:

... assert mymodule.Foo is mock_foo

... assert mymodule.Bar is mock_bar

... assert mymodule.Spam is mock_spam

...

>>> original = mymodule.Foo

>>> MyTest('test_foo').test_foo()

>>> assert mymodule.Foo is original

With unittest cleanup functions and the patch methods: start and stop we can achieve the same effect without the
nested indentation. A simple helper method, create_patch, puts the patch in place and returns the created mock
for us:

>>> class MyTest(unittest.TestCase):

...

... def create_patch(self, name):

... patcher = patch(name)

... thing = patcher.start()

... self.addCleanup(patcher.stop)

... return thing

...

... def test_foo(self):

... mock_foo = self.create_patch('mymodule.Foo')

... mock_bar = self.create_patch('mymodule.Bar')

... mock_spam = self.create_patch('mymodule.Spam')

...

... assert mymodule.Foo is mock_foo

... assert mymodule.Bar is mock_bar

... assert mymodule.Spam is mock_spam

...

>>> original = mymodule.Foo

>>> MyTest('test_foo').run()

>>> assert mymodule.Foo is original

Mocking a dictionary with MagicMock

You may want to mock a dictionary, or other container object, recording all access to it whilst having it still behave
like a dictionary.

We can do this with MagicMock, which will behave like a dictionary, and using side_effect to delegate dictionary
access to a real underlying dictionary that is under our control.

When the __getitem__() and __setitem__()methods of our MagicMock are called (normal dictionary access)
then side_effect is called with the key (and in the case of __setitem__ the value too). We can also control
what is returned.

1812 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

After the MagicMock has been used we can use attributes like call_args_list to assert about how the dictionary
was used:

>>> my_dict = {'a': 1, 'b': 2, 'c': 3}

>>> def getitem(name):

... return my_dict[name]

...

>>> def setitem(name, val):

... my_dict[name] = val

...

>>> mock = MagicMock()

>>> mock.__getitem__.side_effect = getitem

>>> mock.__setitem__.side_effect = setitem

Note

An alternative to using MagicMock is to use Mock and only provide the magic methods you specifically want:

>>> mock = Mock()

>>> mock.__getitem__ = Mock(side_effect=getitem)

>>> mock.__setitem__ = Mock(side_effect=setitem)

A third option is to use MagicMock but passing in dict as the spec (or spec_set) argument so that the MagicMock
created only has dictionary magic methods available:

>>> mock = MagicMock(spec_set=dict)

>>> mock.__getitem__.side_effect = getitem

>>> mock.__setitem__.side_effect = setitem

With these side effect functions in place, the mock will behave like a normal dictionary but recording the access. It
even raises a KeyError if you try to access a key that doesn’t exist.

>>> mock['a']

1

>>> mock['c']

3

>>> mock['d']

Traceback (most recent call last):

...

KeyError: 'd'

>>> mock['b'] = 'fish'

>>> mock['d'] = 'eggs'

>>> mock['b']

'fish'

>>> mock['d']

'eggs'

After it has been used you can make assertions about the access using the normal mock methods and attributes:

>>> mock.__getitem__.call_args_list

[call('a'), call('c'), call('d'), call('b'), call('d')]

>>> mock.__setitem__.call_args_list

[call('b', 'fish'), call('d', 'eggs')]

>>> my_dict

{'a': 1, 'b': 'fish', 'c': 3, 'd': 'eggs'}

27.7. unittest.mock— getting started 1813

The Python Library Reference, Release 3.13.1

Mock subclasses and their attributes

There are various reasons why you might want to subclass Mock. One reason might be to add helper methods. Here’s
a silly example:

>>> class MyMock(MagicMock):

... def has_been_called(self):

... return self.called

...

>>> mymock = MyMock(return_value=None)

>>> mymock

<MyMock id='...'>

>>> mymock.has_been_called()

False

>>> mymock()

>>> mymock.has_been_called()

True

The standard behaviour for Mock instances is that attributes and the return value mocks are of the same type
as the mock they are accessed on. This ensures that Mock attributes are Mocks and MagicMock attributes are
MagicMocks2. So if you’re subclassing to add helper methods then they’ll also be available on the attributes and
return value mock of instances of your subclass.

>>> mymock.foo

<MyMock name='mock.foo' id='...'>

>>> mymock.foo.has_been_called()

False

>>> mymock.foo()

<MyMock name='mock.foo()' id='...'>

>>> mymock.foo.has_been_called()

True

Sometimes this is inconvenient. For example, one user is subclassing mock to created a Twisted adaptor. Having
this applied to attributes too actually causes errors.

Mock (in all its flavours) uses a method called _get_child_mock to create these “sub-mocks” for attributes and
return values. You can prevent your subclass being used for attributes by overriding this method. The signature is
that it takes arbitrary keyword arguments (**kwargs) which are then passed onto the mock constructor:

>>> class Subclass(MagicMock):

... def _get_child_mock(self, /, **kwargs):

... return MagicMock(**kwargs)

...

>>> mymock = Subclass()

>>> mymock.foo

<MagicMock name='mock.foo' id='...'>

>>> assert isinstance(mymock, Subclass)

>>> assert not isinstance(mymock.foo, Subclass)

>>> assert not isinstance(mymock(), Subclass)

Mocking imports with patch.dict

One situation where mocking can be hard is where you have a local import inside a function. These are harder to
mock because they aren’t using an object from the module namespace that we can patch out.

Generally local imports are to be avoided. They are sometimes done to prevent circular dependencies, for which
there is usually a much better way to solve the problem (refactor the code) or to prevent “up front costs” by delaying

2 An exception to this rule are the non-callable mocks. Attributes use the callable variant because otherwise non-callable mocks couldn’t have
callable methods.

1814 Chapter 27. Development Tools

https://code.google.com/archive/p/mock/issues/105
https://twisted.org/documents/11.0.0/api/twisted.python.components.html

The Python Library Reference, Release 3.13.1

the import. This can also be solved in better ways than an unconditional local import (store the module as a class or
module attribute and only do the import on first use).

That aside there is a way to use mock to affect the results of an import. Importing fetches an object from the sys.
modules dictionary. Note that it fetches an object, which need not be a module. Importing a module for the first
time results in a module object being put in sys.modules, so usually when you import something you get a module
back. This need not be the case however.

This means you can use patch.dict() to temporarily put a mock in place in sys.modules. Any imports whilst
this patch is active will fetch the mock. When the patch is complete (the decorated function exits, the with statement
body is complete or patcher.stop() is called) then whatever was there previously will be restored safely.

Here’s an example that mocks out the ‘fooble’ module.

>>> import sys

>>> mock = Mock()

>>> with patch.dict('sys.modules', {'fooble': mock}):

... import fooble

... fooble.blob()

...

<Mock name='mock.blob()' id='...'>

>>> assert 'fooble' not in sys.modules

>>> mock.blob.assert_called_once_with()

As you can see the import fooble succeeds, but on exit there is no ‘fooble’ left in sys.modules.

This also works for the from module import name form:

>>> mock = Mock()

>>> with patch.dict('sys.modules', {'fooble': mock}):

... from fooble import blob

... blob.blip()

...

<Mock name='mock.blob.blip()' id='...'>

>>> mock.blob.blip.assert_called_once_with()

With slightly more work you can also mock package imports:

>>> mock = Mock()

>>> modules = {'package': mock, 'package.module': mock.module}

>>> with patch.dict('sys.modules', modules):

... from package.module import fooble

... fooble()

...

<Mock name='mock.module.fooble()' id='...'>

>>> mock.module.fooble.assert_called_once_with()

Tracking order of calls and less verbose call assertions

The Mock class allows you to track the order of method calls on your mock objects through the method_calls
attribute. This doesn’t allow you to track the order of calls between separate mock objects, however we can use
mock_calls to achieve the same effect.

Because mocks track calls to child mocks in mock_calls, and accessing an arbitrary attribute of a mock creates a
child mock, we can create our separate mocks from a parent one. Calls to those child mock will then all be recorded,
in order, in the mock_calls of the parent:

>>> manager = Mock()

>>> mock_foo = manager.foo

>>> mock_bar = manager.bar

27.7. unittest.mock— getting started 1815

The Python Library Reference, Release 3.13.1

>>> mock_foo.something()

<Mock name='mock.foo.something()' id='...'>

>>> mock_bar.other.thing()

<Mock name='mock.bar.other.thing()' id='...'>

>>> manager.mock_calls

[call.foo.something(), call.bar.other.thing()]

We can then assert about the calls, including the order, by comparing with the mock_calls attribute on the manager
mock:

>>> expected_calls = [call.foo.something(), call.bar.other.thing()]

>>> manager.mock_calls == expected_calls

True

If patch is creating, and putting in place, your mocks then you can attach them to a manager mock using the
attach_mock() method. After attaching calls will be recorded in mock_calls of the manager.

>>> manager = MagicMock()

>>> with patch('mymodule.Class1') as MockClass1:

... with patch('mymodule.Class2') as MockClass2:

... manager.attach_mock(MockClass1, 'MockClass1')

... manager.attach_mock(MockClass2, 'MockClass2')

... MockClass1().foo()

... MockClass2().bar()

<MagicMock name='mock.MockClass1().foo()' id='...'>

<MagicMock name='mock.MockClass2().bar()' id='...'>

>>> manager.mock_calls

[call.MockClass1(),

call.MockClass1().foo(),

call.MockClass2(),

call.MockClass2().bar()]

If many calls have been made, but you’re only interested in a particular sequence of them then an alternative is to use
the assert_has_calls() method. This takes a list of calls (constructed with the call object). If that sequence
of calls are in mock_calls then the assert succeeds.

>>> m = MagicMock()

>>> m().foo().bar().baz()

<MagicMock name='mock().foo().bar().baz()' id='...'>

>>> m.one().two().three()

<MagicMock name='mock.one().two().three()' id='...'>

>>> calls = call.one().two().three().call_list()

>>> m.assert_has_calls(calls)

Even though the chained call m.one().two().three() aren’t the only calls that have been made to the mock, the
assert still succeeds.

Sometimes a mock may have several calls made to it, and you are only interested in asserting about some of those
calls. You may not even care about the order. In this case you can pass any_order=True to assert_has_calls:

>>> m = MagicMock()

>>> m(1), m.two(2, 3), m.seven(7), m.fifty('50')

(...)

>>> calls = [call.fifty('50'), call(1), call.seven(7)]

>>> m.assert_has_calls(calls, any_order=True)

1816 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

More complex argument matching

Using the same basic concept as ANY we can implement matchers to do more complex assertions on objects used as
arguments to mocks.

Suppose we expect some object to be passed to a mock that by default compares equal based on object identity (which
is the Python default for user defined classes). To use assert_called_with() we would need to pass in the exact
same object. If we are only interested in some of the attributes of this object then we can create a matcher that will
check these attributes for us.

You can see in this example how a ‘standard’ call to assert_called_with isn’t sufficient:

>>> class Foo:

... def __init__(self, a, b):

... self.a, self.b = a, b

...

>>> mock = Mock(return_value=None)

>>> mock(Foo(1, 2))

>>> mock.assert_called_with(Foo(1, 2))

Traceback (most recent call last):

...

AssertionError: expected call not found.

Expected: mock(<__main__.Foo object at 0x...>)

Actual: mock(<__main__.Foo object at 0x...>)

A comparison function for our Foo class might look something like this:

>>> def compare(self, other):

... if not type(self) == type(other):

... return False

... if self.a != other.a:

... return False

... if self.b != other.b:

... return False

... return True

...

And a matcher object that can use comparison functions like this for its equality operation would look something like
this:

>>> class Matcher:

... def __init__(self, compare, some_obj):

... self.compare = compare

... self.some_obj = some_obj

... def __eq__(self, other):

... return self.compare(self.some_obj, other)

...

Putting all this together:

>>> match_foo = Matcher(compare, Foo(1, 2))

>>> mock.assert_called_with(match_foo)

The Matcher is instantiated with our compare function and the Foo object we want to compare against. In
assert_called_with the Matcher equality method will be called, which compares the object the mock was
called with against the one we created our matcher with. If they match then assert_called_with passes, and if
they don’t an AssertionError is raised:

>>> match_wrong = Matcher(compare, Foo(3, 4))

>>> mock.assert_called_with(match_wrong)

(continues on next page)

27.7. unittest.mock— getting started 1817

The Python Library Reference, Release 3.13.1

(continued from previous page)

Traceback (most recent call last):

...

AssertionError: Expected: ((<Matcher object at 0x...>,), {})

Called with: ((<Foo object at 0x...>,), {})

With a bit of tweaking you could have the comparison function raise the AssertionError directly and provide a
more useful failure message.

As of version 1.5, the Python testing library PyHamcrest provides similar functionality, that may be useful here, in
the form of its equality matcher (hamcrest.library.integration.match_equality).

27.8 test— Regression tests package for Python

Note

The test package is meant for internal use by Python only. It is documented for the benefit of the core developers
of Python. Any use of this package outside of Python’s standard library is discouraged as code mentioned here
can change or be removed without notice between releases of Python.

The test package contains all regression tests for Python as well as the modules test.support and test.

regrtest. test.support is used to enhance your tests while test.regrtest drives the testing suite.

Each module in the test package whose name starts with test_ is a testing suite for a specific module or feature.
All new tests should be written using the unittest or doctest module. Some older tests are written using a
“traditional” testing style that compares output printed to sys.stdout; this style of test is considered deprecated.

See also

Module unittest
Writing PyUnit regression tests.

Module doctest
Tests embedded in documentation strings.

27.8.1 Writing Unit Tests for the test package

It is preferred that tests that use the unittest module follow a few guidelines. One is to name the test module by
starting it with test_ and end it with the name of the module being tested. The test methods in the test module
should start with test_ and end with a description of what the method is testing. This is needed so that the methods
are recognized by the test driver as test methods. Also, no documentation string for the method should be included.
A comment (such as # Tests function returns only True or False) should be used to provide docu-
mentation for test methods. This is done because documentation strings get printed out if they exist and thus what
test is being run is not stated.

A basic boilerplate is often used:

import unittest

from test import support

class MyTestCase1(unittest.TestCase):

Only use setUp() and tearDown() if necessary

def setUp(self):

(continues on next page)

1818 Chapter 27. Development Tools

https://pyhamcrest.readthedocs.io/
https://pyhamcrest.readthedocs.io/en/release-1.8/integration/#module-hamcrest.library.integration.match_equality

The Python Library Reference, Release 3.13.1

(continued from previous page)

... code to execute in preparation for tests ...

def tearDown(self):

... code to execute to clean up after tests ...

def test_feature_one(self):

Test feature one.

... testing code ...

def test_feature_two(self):

Test feature two.

... testing code ...

... more test methods ...

class MyTestCase2(unittest.TestCase):

... same structure as MyTestCase1 ...

... more test classes ...

if __name__ == '__main__':

unittest.main()

This code pattern allows the testing suite to be run by test.regrtest, on its own as a script that supports the
unittest CLI, or via the python -m unittest CLI.

The goal for regression testing is to try to break code. This leads to a few guidelines to be followed:

• The testing suite should exercise all classes, functions, and constants. This includes not just the external API
that is to be presented to the outside world but also “private” code.

• Whitebox testing (examining the code being tested when the tests are being written) is preferred. Blackbox
testing (testing only the published user interface) is not complete enough to make sure all boundary and edge
cases are tested.

• Make sure all possible values are tested including invalid ones. This makes sure that not only all valid values
are acceptable but also that improper values are handled correctly.

• Exhaust as many code paths as possible. Test where branching occurs and thus tailor input to make sure as
many different paths through the code are taken.

• Add an explicit test for any bugs discovered for the tested code. This will make sure that the error does not
crop up again if the code is changed in the future.

• Make sure to clean up after your tests (such as close and remove all temporary files).

• If a test is dependent on a specific condition of the operating system then verify the condition already exists
before attempting the test.

• Import as few modules as possible and do it as soon as possible. This minimizes external dependencies of tests
and also minimizes possible anomalous behavior from side-effects of importing a module.

• Try to maximize code reuse. On occasion, tests will vary by something as small as what type of input is used.
Minimize code duplication by subclassing a basic test class with a class that specifies the input:

class TestFuncAcceptsSequencesMixin:

func = mySuperWhammyFunction

def test_func(self):

self.func(self.arg)

(continues on next page)

27.8. test— Regression tests package for Python 1819

The Python Library Reference, Release 3.13.1

(continued from previous page)

class AcceptLists(TestFuncAcceptsSequencesMixin, unittest.TestCase):

arg = [1, 2, 3]

class AcceptStrings(TestFuncAcceptsSequencesMixin, unittest.TestCase):

arg = 'abc'

class AcceptTuples(TestFuncAcceptsSequencesMixin, unittest.TestCase):

arg = (1, 2, 3)

When using this pattern, remember that all classes that inherit from unittest.TestCase are run as tests.
The TestFuncAcceptsSequencesMixin class in the example above does not have any data and so can’t be
run by itself, thus it does not inherit from unittest.TestCase.

See also

Test Driven Development
A book by Kent Beck on writing tests before code.

27.8.2 Running tests using the command-line interface

The test package can be run as a script to drive Python’s regression test suite, thanks to the -m option: python -m

test. Under the hood, it uses test.regrtest; the call python -m test.regrtest used in previous Python
versions still works. Running the script by itself automatically starts running all regression tests in the test package.
It does this by finding all modules in the package whose name starts with test_, importing them, and executing the
function test_main() if present or loading the tests via unittest.TestLoader.loadTestsFromModule if test_main
does not exist. The names of tests to execute may also be passed to the script. Specifying a single regression test
(python -m test test_spam) will minimize output and only print whether the test passed or failed.

Running test directly allows what resources are available for tests to use to be set. You do this by using the -u
command-line option. Specifying all as the value for the -u option enables all possible resources: python -m

test -uall. If all but one resource is desired (a more common case), a comma-separated list of resources that
are not desired may be listed after all. The command python -m test -uall,-audio,-largefile will run
test with all resources except the audio and largefile resources. For a list of all resources and more command-
line options, run python -m test -h.

Some other ways to execute the regression tests depend on what platform the tests are being executed on. On Unix,
you can run make test at the top-level directory where Python was built. On Windows, executing rt.bat from
your PCbuild directory will run all regression tests.

27.9 test.support— Utilities for the Python test suite

The test.support module provides support for Python’s regression test suite.

Note

test.support is not a public module. It is documented here to help Python developers write tests. The API
of this module is subject to change without backwards compatibility concerns between releases.

This module defines the following exceptions:

exception test.support.TestFailed

Exception to be raised when a test fails. This is deprecated in favor of unittest-based tests and unittest.
TestCase’s assertion methods.

1820 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

exception test.support.ResourceDenied

Subclass of unittest.SkipTest. Raised when a resource (such as a network connection) is not available.
Raised by the requires() function.

The test.support module defines the following constants:

test.support.verbose

True when verbose output is enabled. Should be checked when more detailed information is desired about a
running test. verbose is set by test.regrtest.

test.support.is_jython

True if the running interpreter is Jython.

test.support.is_android

True if the system is Android.

test.support.unix_shell

Path for shell if not on Windows; otherwise None.

test.support.LOOPBACK_TIMEOUT

Timeout in seconds for tests using a network server listening on the network local loopback interface like
127.0.0.1.

The timeout is long enough to prevent test failure: it takes into account that the client and the server can run
in different threads or even different processes.

The timeout should be long enough for connect(), recv() and send() methods of socket.socket.

Its default value is 5 seconds.

See also INTERNET_TIMEOUT.

test.support.INTERNET_TIMEOUT

Timeout in seconds for network requests going to the internet.

The timeout is short enough to prevent a test to wait for too long if the internet request is blocked for whatever
reason.

Usually, a timeout using INTERNET_TIMEOUT should not mark a test as failed, but skip the test instead: see
transient_internet().

Its default value is 1 minute.

See also LOOPBACK_TIMEOUT.

test.support.SHORT_TIMEOUT

Timeout in seconds to mark a test as failed if the test takes “too long”.

The timeout value depends on the regrtest --timeout command line option.

If a test using SHORT_TIMEOUT starts to fail randomly on slow buildbots, use LONG_TIMEOUT instead.

Its default value is 30 seconds.

test.support.LONG_TIMEOUT

Timeout in seconds to detect when a test hangs.

It is long enough to reduce the risk of test failure on the slowest Python buildbots. It should not be used to mark
a test as failed if the test takes “too long”. The timeout value depends on the regrtest --timeout command
line option.

Its default value is 5 minutes.

See also LOOPBACK_TIMEOUT, INTERNET_TIMEOUT and SHORT_TIMEOUT.

test.support.PGO

Set when tests can be skipped when they are not useful for PGO.

27.9. test.support— Utilities for the Python test suite 1821

The Python Library Reference, Release 3.13.1

test.support.PIPE_MAX_SIZE

A constant that is likely larger than the underlying OS pipe buffer size, to make writes blocking.

test.support.Py_DEBUG

True if Python was built with the Py_DEBUG macro defined, that is, if Python was built in debug mode.

Added in version 3.12.

test.support.SOCK_MAX_SIZE

A constant that is likely larger than the underlying OS socket buffer size, to make writes blocking.

test.support.TEST_SUPPORT_DIR

Set to the top level directory that contains test.support.

test.support.TEST_HOME_DIR

Set to the top level directory for the test package.

test.support.TEST_DATA_DIR

Set to the data directory within the test package.

test.support.MAX_Py_ssize_t

Set to sys.maxsize for big memory tests.

test.support.max_memuse

Set by set_memlimit() as the memory limit for big memory tests. Limited by MAX_Py_ssize_t.

test.support.real_max_memuse

Set by set_memlimit() as the memory limit for big memory tests. Not limited by MAX_Py_ssize_t.

test.support.MISSING_C_DOCSTRINGS

Set to True if Python is built without docstrings (the WITH_DOC_STRINGS macro is not defined). See the
configure --without-doc-strings option.

See also the HAVE_DOCSTRINGS variable.

test.support.HAVE_DOCSTRINGS

Set to True if function docstrings are available. See the python -OO option, which strips docstrings of
functions implemented in Python.

See also the MISSING_C_DOCSTRINGS variable.

test.support.TEST_HTTP_URL

Define the URL of a dedicated HTTP server for the network tests.

test.support.ALWAYS_EQ

Object that is equal to anything. Used to test mixed type comparison.

test.support.NEVER_EQ

Object that is not equal to anything (even to ALWAYS_EQ). Used to test mixed type comparison.

test.support.LARGEST

Object that is greater than anything (except itself). Used to test mixed type comparison.

test.support.SMALLEST

Object that is less than anything (except itself). Used to test mixed type comparison.

The test.support module defines the following functions:

test.support.busy_retry(timeout, err_msg=None, / , *, error=True)
Run the loop body until break stops the loop.

After timeout seconds, raise an AssertionError if error is true, or just stop the loop if error is false.

Example:

1822 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

for _ in support.busy_retry(support.SHORT_TIMEOUT):

if check():

break

Example of error=False usage:

for _ in support.busy_retry(support.SHORT_TIMEOUT, error=False):

if check():

break

else:

raise RuntimeError('my custom error')

test.support.sleeping_retry(timeout, err_msg=None, / , *, init_delay=0.010, max_delay=1.0, error=True)
Wait strategy that applies exponential backoff.

Run the loop body until break stops the loop. Sleep at each loop iteration, but not at the first iteration. The
sleep delay is doubled at each iteration (up to max_delay seconds).

See busy_retry() documentation for the parameters usage.

Example raising an exception after SHORT_TIMEOUT seconds:

for _ in support.sleeping_retry(support.SHORT_TIMEOUT):

if check():

break

Example of error=False usage:

for _ in support.sleeping_retry(support.SHORT_TIMEOUT, error=False):

if check():

break

else:

raise RuntimeError('my custom error')

test.support.is_resource_enabled(resource)
Return True if resource is enabled and available. The list of available resources is only set when test.

regrtest is executing the tests.

test.support.python_is_optimized()

Return True if Python was not built with -O0 or -Og.

test.support.with_pymalloc()

Return _testcapi.WITH_PYMALLOC.

test.support.requires(resource, msg=None)
Raise ResourceDenied if resource is not available. msg is the argument to ResourceDenied if it is raised.
Always returns True if called by a function whose __name__ is '__main__'. Used when tests are executed
by test.regrtest.

test.support.sortdict(dict)
Return a repr of dict with keys sorted.

test.support.findfile(filename, subdir=None)
Return the path to the file named filename. If no match is found filename is returned. This does not equal a
failure since it could be the path to the file.

Setting subdir indicates a relative path to use to find the file rather than looking directly in the path directories.

test.support.get_pagesize()

Get size of a page in bytes.

Added in version 3.12.

27.9. test.support— Utilities for the Python test suite 1823

The Python Library Reference, Release 3.13.1

test.support.setswitchinterval(interval)
Set the sys.setswitchinterval() to the given interval. Defines a minimum interval for Android systems
to prevent the system from hanging.

test.support.check_impl_detail(**guards)
Use this check to guard CPython’s implementation-specific tests or to run them only on the implementations
guarded by the arguments. This function returns True or False depending on the host platform. Example
usage:

check_impl_detail() # Only on CPython (default).

check_impl_detail(jython=True) # Only on Jython.

check_impl_detail(cpython=False) # Everywhere except CPython.

test.support.set_memlimit(limit)

Set the values for max_memuse and real_max_memuse for big memory tests.

test.support.record_original_stdout(stdout)

Store the value from stdout. It is meant to hold the stdout at the time the regrtest began.

test.support.get_original_stdout()

Return the original stdout set by record_original_stdout() or sys.stdout if it’s not set.

test.support.args_from_interpreter_flags()

Return a list of command line arguments reproducing the current settings in sys.flags and sys.

warnoptions.

test.support.optim_args_from_interpreter_flags()

Return a list of command line arguments reproducing the current optimization settings in sys.flags.

test.support.captured_stdin()

test.support.captured_stdout()

test.support.captured_stderr()

A context managers that temporarily replaces the named stream with io.StringIO object.

Example use with output streams:

with captured_stdout() as stdout, captured_stderr() as stderr:

print("hello")

print("error", file=sys.stderr)

assert stdout.getvalue() == "hello\n"

assert stderr.getvalue() == "error\n"

Example use with input stream:

with captured_stdin() as stdin:

stdin.write('hello\n')

stdin.seek(0)

call test code that consumes from sys.stdin

captured = input()

self.assertEqual(captured, "hello")

test.support.disable_faulthandler()

A context manager that temporary disables faulthandler.

test.support.gc_collect()

Force as many objects as possible to be collected. This is needed because timely deallocation is not guaranteed
by the garbage collector. This means that __del__ methods may be called later than expected and weakrefs
may remain alive for longer than expected.

1824 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

test.support.disable_gc()

A context manager that disables the garbage collector on entry. On exit, the garbage collector is restored to its
prior state.

test.support.swap_attr(obj, attr, new_val)
Context manager to swap out an attribute with a new object.

Usage:

with swap_attr(obj, "attr", 5):

...

This will set obj.attr to 5 for the duration of the with block, restoring the old value at the end of the block.
If attr doesn’t exist on obj, it will be created and then deleted at the end of the block.

The old value (or None if it doesn’t exist) will be assigned to the target of the “as” clause, if there is one.

test.support.swap_item(obj, attr, new_val)

Context manager to swap out an item with a new object.

Usage:

with swap_item(obj, "item", 5):

...

This will set obj["item"] to 5 for the duration of the with block, restoring the old value at the end of the
block. If item doesn’t exist on obj, it will be created and then deleted at the end of the block.

The old value (or None if it doesn’t exist) will be assigned to the target of the “as” clause, if there is one.

test.support.flush_std_streams()

Call the flush() method on sys.stdout and then on sys.stderr. It can be used to make sure that the
logs order is consistent before writing into stderr.

Added in version 3.11.

test.support.print_warning(msg)
Print a warning into sys.__stderr__. Format the message as: f"Warning -- {msg}". If msg is made
of multiple lines, add "Warning -- " prefix to each line.

Added in version 3.9.

test.support.wait_process(pid, *, exitcode, timeout=None)

Wait until process pid completes and check that the process exit code is exitcode.

Raise an AssertionError if the process exit code is not equal to exitcode.

If the process runs longer than timeout seconds (SHORT_TIMEOUT by default), kill the process and raise an
AssertionError. The timeout feature is not available on Windows.

Added in version 3.9.

test.support.calcobjsize(fmt)
Return the size of the PyObject whose structure members are defined by fmt. The returned value includes
the size of the Python object header and alignment.

test.support.calcvobjsize(fmt)

Return the size of the PyVarObjectwhose structure members are defined by fmt. The returned value includes
the size of the Python object header and alignment.

test.support.checksizeof(test, o, size)
For testcase test, assert that the sys.getsizeof for o plus the GC header size equals size.

27.9. test.support— Utilities for the Python test suite 1825

The Python Library Reference, Release 3.13.1

@test.support.anticipate_failure(condition)
A decorator to conditionally mark tests with unittest.expectedFailure(). Any use of this decorator
should have an associated comment identifying the relevant tracker issue.

test.support.system_must_validate_cert(f)
A decorator that skips the decorated test on TLS certification validation failures.

@test.support.run_with_locale(catstr, *locales)
A decorator for running a function in a different locale, correctly resetting it after it has finished. catstr is the
locale category as a string (for example "LC_ALL"). The locales passed will be tried sequentially, and the first
valid locale will be used.

@test.support.run_with_tz(tz)
A decorator for running a function in a specific timezone, correctly resetting it after it has finished.

@test.support.requires_freebsd_version(*min_version)
Decorator for the minimum version when running test on FreeBSD. If the FreeBSD version is less than the
minimum, the test is skipped.

@test.support.requires_linux_version(*min_version)
Decorator for the minimum version when running test on Linux. If the Linux version is less than the minimum,
the test is skipped.

@test.support.requires_mac_version(*min_version)
Decorator for the minimum version when running test on macOS. If the macOS version is less than the mini-
mum, the test is skipped.

@test.support.requires_gil_enabled

Decorator for skipping tests on the free-threaded build. If the GIL is disabled, the test is skipped.

@test.support.requires_IEEE_754

Decorator for skipping tests on non-IEEE 754 platforms.

@test.support.requires_zlib

Decorator for skipping tests if zlib doesn’t exist.

@test.support.requires_gzip

Decorator for skipping tests if gzip doesn’t exist.

@test.support.requires_bz2

Decorator for skipping tests if bz2 doesn’t exist.

@test.support.requires_lzma

Decorator for skipping tests if lzma doesn’t exist.

@test.support.requires_resource(resource)
Decorator for skipping tests if resource is not available.

@test.support.requires_docstrings

Decorator for only running the test if HAVE_DOCSTRINGS.

@test.support.requires_limited_api

Decorator for only running the test if Limited C API is available.

@test.support.cpython_only

Decorator for tests only applicable to CPython.

@test.support.impl_detail(msg=None, **guards)
Decorator for invoking check_impl_detail() on guards. If that returns False, then usesmsg as the reason
for skipping the test.

1826 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

@test.support.no_tracing

Decorator to temporarily turn off tracing for the duration of the test.

@test.support.refcount_test

Decorator for tests which involve reference counting. The decorator does not run the test if it is not run by
CPython. Any trace function is unset for the duration of the test to prevent unexpected refcounts caused by
the trace function.

@test.support.bigmemtest(size, memuse, dry_run=True)
Decorator for bigmem tests.

size is a requested size for the test (in arbitrary, test-interpreted units.) memuse is the number of bytes per unit
for the test, or a good estimate of it. For example, a test that needs two byte buffers, of 4 GiB each, could be
decorated with @bigmemtest(size=_4G, memuse=2).

The size argument is normally passed to the decorated test method as an extra argument. If dry_run is True,
the value passed to the test method may be less than the requested value. If dry_run is False, it means the
test doesn’t support dummy runs when -M is not specified.

@test.support.bigaddrspacetest

Decorator for tests that fill the address space.

test.support.check_syntax_error(testcase, statement, errtext=” , *, lineno=None, offset=None)
Test for syntax errors in statement by attempting to compile statement. testcase is the unittest instance for the
test. errtext is the regular expression which should match the string representation of the raised SyntaxError.
If lineno is not None, compares to the line of the exception. If offset is not None, compares to the offset of the
exception.

test.support.open_urlresource(url, *args, **kw)
Open url. If open fails, raises TestFailed.

test.support.reap_children()

Use this at the end of test_main whenever sub-processes are started. This will help ensure that no extra
children (zombies) stick around to hog resources and create problems when looking for refleaks.

test.support.get_attribute(obj, name)
Get an attribute, raising unittest.SkipTest if AttributeError is raised.

test.support.catch_unraisable_exception()

Context manager catching unraisable exception using sys.unraisablehook().

Storing the exception value (cm.unraisable.exc_value) creates a reference cycle. The reference cycle is
broken explicitly when the context manager exits.

Storing the object (cm.unraisable.object) can resurrect it if it is set to an object which is being finalized.
Exiting the context manager clears the stored object.

Usage:

with support.catch_unraisable_exception() as cm:

code creating an "unraisable exception"

...

check the unraisable exception: use cm.unraisable

...

cm.unraisable attribute no longer exists at this point

(to break a reference cycle)

Added in version 3.8.

27.9. test.support— Utilities for the Python test suite 1827

The Python Library Reference, Release 3.13.1

test.support.load_package_tests(pkg_dir, loader, standard_tests, pattern)
Generic implementation of the unittest load_tests protocol for use in test packages. pkg_dir is the root
directory of the package; loader, standard_tests, and pattern are the arguments expected by load_tests. In
simple cases, the test package’s __init__.py can be the following:

import os

from test.support import load_package_tests

def load_tests(*args):

return load_package_tests(os.path.dirname(__file__), *args)

test.support.detect_api_mismatch(ref_api, other_api, *, ignore=())
Returns the set of attributes, functions or methods of ref_api not found on other_api, except for a defined list
of items to be ignored in this check specified in ignore.

By default this skips private attributes beginning with ‘_’ but includes all magic methods, i.e. those starting and
ending in ‘__’.

Added in version 3.5.

test.support.patch(test_instance, object_to_patch, attr_name, new_value)

Override object_to_patch.attr_name with new_value. Also add cleanup procedure to test_instance to restore
object_to_patch for attr_name. The attr_name should be a valid attribute for object_to_patch.

test.support.run_in_subinterp(code)
Run code in subinterpreter. Raise unittest.SkipTest if tracemalloc is enabled.

test.support.check_free_after_iterating(test, iter, cls, args=())
Assert instances of cls are deallocated after iterating.

test.support.missing_compiler_executable(cmd_names=[])
Check for the existence of the compiler executables whose names are listed in cmd_names or all the compiler
executables when cmd_names is empty and return the first missing executable or None when none is found
missing.

test.support.check__all__(test_case, module, name_of_module=None, extra=(), not_exported=())
Assert that the __all__ variable of module contains all public names.

The module’s public names (its API) are detected automatically based on whether they match the public name
convention and were defined in module.

The name_of_module argument can specify (as a string or tuple thereof) what module(s) an API could be
defined in order to be detected as a public API. One case for this is when module imports part of its public
API from other modules, possibly a C backend (like csv and its _csv).

The extra argument can be a set of names that wouldn’t otherwise be automatically detected as “public”, like
objects without a proper __module__ attribute. If provided, it will be added to the automatically detected
ones.

The not_exported argument can be a set of names that must not be treated as part of the public API even though
their names indicate otherwise.

Example use:

import bar

import foo

import unittest

from test import support

class MiscTestCase(unittest.TestCase):

def test__all__(self):

support.check__all__(self, foo)

(continues on next page)

1828 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

class OtherTestCase(unittest.TestCase):

def test__all__(self):

extra = {'BAR_CONST', 'FOO_CONST'}

not_exported = {'baz'} # Undocumented name.

bar imports part of its API from _bar.

support.check__all__(self, bar, ('bar', '_bar'),

extra=extra, not_exported=not_exported)

Added in version 3.6.

test.support.skip_if_broken_multiprocessing_synchronize()

Skip tests if the multiprocessing.synchronize module is missing, if there is no available semaphore
implementation, or if creating a lock raises an OSError.

Added in version 3.10.

test.support.check_disallow_instantiation(test_case, tp, *args, **kwds)
Assert that type tp cannot be instantiated using args and kwds.

Added in version 3.10.

test.support.adjust_int_max_str_digits(max_digits)
This function returns a context manager that will change the global sys.set_int_max_str_digits()
setting for the duration of the context to allow execution of test code that needs a different limit on the number
of digits when converting between an integer and string.

Added in version 3.11.

The test.support module defines the following classes:

class test.support.SuppressCrashReport

A context manager used to try to prevent crash dialog popups on tests that are expected to crash a subprocess.

On Windows, it disables Windows Error Reporting dialogs using SetErrorMode.

On UNIX, resource.setrlimit() is used to set resource.RLIMIT_CORE’s soft limit to 0 to prevent
coredump file creation.

On both platforms, the old value is restored by __exit__().

class test.support.SaveSignals

Class to save and restore signal handlers registered by the Python signal handler.

save(self)
Save the signal handlers to a dictionary mapping signal numbers to the current signal handler.

restore(self)
Set the signal numbers from the save() dictionary to the saved handler.

class test.support.Matcher

matches(self, d, **kwargs)
Try to match a single dict with the supplied arguments.

match_value(self, k, dv, v)
Try to match a single stored value (dv) with a supplied value (v).

27.10 test.support.socket_helper— Utilities for socket tests

The test.support.socket_helper module provides support for socket tests.

Added in version 3.9.

27.10. test.support.socket_helper— Utilities for socket tests 1829

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680621.aspx

The Python Library Reference, Release 3.13.1

test.support.socket_helper.IPV6_ENABLED

Set to True if IPv6 is enabled on this host, False otherwise.

test.support.socket_helper.find_unused_port(family=socket.AF_INET ,
socktype=socket.SOCK_STREAM)

Returns an unused port that should be suitable for binding. This is achieved by creating a temporary socket
with the same family and type as the sock parameter (default is AF_INET, SOCK_STREAM), and binding it
to the specified host address (defaults to 0.0.0.0) with the port set to 0, eliciting an unused ephemeral port
from the OS. The temporary socket is then closed and deleted, and the ephemeral port is returned.

Either this method or bind_port() should be used for any tests where a server socket needs to be bound
to a particular port for the duration of the test. Which one to use depends on whether the calling code is
creating a Python socket, or if an unused port needs to be provided in a constructor or passed to an exter-
nal program (i.e. the -accept argument to openssl’s s_server mode). Always prefer bind_port() over
find_unused_port() where possible. Using a hard coded port is discouraged since it can make multiple
instances of the test impossible to run simultaneously, which is a problem for buildbots.

test.support.socket_helper.bind_port(sock, host=HOST)

Bind the socket to a free port and return the port number. Relies on ephemeral ports in order to ensure we
are using an unbound port. This is important as many tests may be running simultaneously, especially in a
buildbot environment. This method raises an exception if the sock.family is AF_INET and sock.type is
SOCK_STREAM , and the socket has SO_REUSEADDR or SO_REUSEPORT set on it. Tests should never set these
socket options for TCP/IP sockets. The only case for setting these options is testing multicasting via multiple
UDP sockets.

Additionally, if the SO_EXCLUSIVEADDRUSE socket option is available (i.e. on Windows), it will be set on
the socket. This will prevent anyone else from binding to our host/port for the duration of the test.

test.support.socket_helper.bind_unix_socket(sock, addr)
Bind a Unix socket, raising unittest.SkipTest if PermissionError is raised.

@test.support.socket_helper.skip_unless_bind_unix_socket

A decorator for running tests that require a functional bind() for Unix sockets.

test.support.socket_helper.transient_internet(resource_name, *, timeout=30.0, errnos=())
A context manager that raises ResourceDenied when various issues with the internet connection manifest
themselves as exceptions.

27.11 test.support.script_helper — Utilities for the Python exe-
cution tests

The test.support.script_helper module provides support for Python’s script execution tests.

test.support.script_helper.interpreter_requires_environment()

Return True if sys.executable interpreter requires environment variables in order to be able to run
at all.

This is designed to be used with @unittest.skipIf() to annotate tests that need to use an
assert_python*() function to launch an isolated mode (-I) or no environment mode (-E) sub-interpreter
process.

A normal build & test does not run into this situation but it can happen when trying to run the standard library
test suite from an interpreter that doesn’t have an obvious home with Python’s current home finding logic.

Setting PYTHONHOME is one way to get most of the testsuite to run in that situation. PYTHONPATH or
PYTHONUSERSITE are other common environment variables that might impact whether or not the interpreter
can start.

test.support.script_helper.run_python_until_end(*args, **env_vars)
Set up the environment based on env_vars for running the interpreter in a subprocess. The values can include
__isolated, __cleanenv, __cwd, and TERM.

1830 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

Changed in version 3.9: The function no longer strips whitespaces from stderr.

test.support.script_helper.assert_python_ok(*args, **env_vars)
Assert that running the interpreter with args and optional environment variables env_vars succeeds (rc ==

0) and return a (return code, stdout, stderr) tuple.

If the __cleanenv keyword-only parameter is set, env_vars is used as a fresh environment.

Python is started in isolated mode (command line option -I), except if the __isolated keyword-only parameter
is set to False.

Changed in version 3.9: The function no longer strips whitespaces from stderr.

test.support.script_helper.assert_python_failure(*args, **env_vars)
Assert that running the interpreter with args and optional environment variables env_vars fails (rc != 0) and
return a (return code, stdout, stderr) tuple.

See assert_python_ok() for more options.

Changed in version 3.9: The function no longer strips whitespaces from stderr.

test.support.script_helper.spawn_python(*args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT ,
**kw)

Run a Python subprocess with the given arguments.

kw is extra keyword args to pass to subprocess.Popen(). Returns a subprocess.Popen object.

test.support.script_helper.kill_python(p)
Run the given subprocess.Popen process until completion and return stdout.

test.support.script_helper.make_script(script_dir, script_basename, source, omit_suffix=False)
Create script containing source in path script_dir and script_basename. If omit_suffix is False, append .py to
the name. Return the full script path.

test.support.script_helper.make_zip_script(zip_dir, zip_basename, script_name,
name_in_zip=None)

Create zip file at zip_dir and zip_basename with extension zip which contains the files in script_name.
name_in_zip is the archive name. Return a tuple containing (full path, full path of archive

name).

test.support.script_helper.make_pkg(pkg_dir, init_source=”)
Create a directory named pkg_dir containing an __init__ file with init_source as its contents.

test.support.script_helper.make_zip_pkg(zip_dir, zip_basename, pkg_name, script_basename, source,
depth=1, compiled=False)

Create a zip package directory with a path of zip_dir and zip_basename containing an empty __init__ file
and a file script_basename containing the source. If compiled is True, both source files will be compiled and
added to the zip package. Return a tuple of the full zip path and the archive name for the zip file.

27.12 test.support.bytecode_helper — Support tools for testing
correct bytecode generation

The test.support.bytecode_helper module provides support for testing and inspecting bytecode generation.

Added in version 3.9.

The module defines the following class:

class test.support.bytecode_helper.BytecodeTestCase(unittest.TestCase)
This class has custom assertion methods for inspecting bytecode.

BytecodeTestCase.get_disassembly_as_string(co)
Return the disassembly of co as string.

27.12. test.support.bytecode_helper— Support tools for testing correct bytecode generation1831

The Python Library Reference, Release 3.13.1

BytecodeTestCase.assertInBytecode(x, opname, argval=_UNSPECIFIED)
Return instr if opname is found, otherwise throws AssertionError.

BytecodeTestCase.assertNotInBytecode(x, opname, argval=_UNSPECIFIED)

Throws AssertionError if opname is found.

27.13 test.support.threading_helper — Utilities for threading
tests

The test.support.threading_helper module provides support for threading tests.

Added in version 3.10.

test.support.threading_helper.join_thread(thread, timeout=None)
Join a thread within timeout. Raise an AssertionError if thread is still alive after timeout seconds.

@test.support.threading_helper.reap_threads

Decorator to ensure the threads are cleaned up even if the test fails.

test.support.threading_helper.start_threads(threads, unlock=None)
Context manager to start threads, which is a sequence of threads. unlock is a function called after the threads are
started, even if an exception was raised; an example would be threading.Event.set(). start_threads
will attempt to join the started threads upon exit.

test.support.threading_helper.threading_cleanup(*original_values)
Cleanup up threads not specified in original_values. Designed to emit a warning if a test leaves running threads
in the background.

test.support.threading_helper.threading_setup()

Return current thread count and copy of dangling threads.

test.support.threading_helper.wait_threads_exit(timeout=None)
Context manager to wait until all threads created in the with statement exit.

test.support.threading_helper.catch_threading_exception()

Context manager catching threading.Thread exception using threading.excepthook().

Attributes set when an exception is caught:

• exc_type

• exc_value

• exc_traceback

• thread

See threading.excepthook() documentation.

These attributes are deleted at the context manager exit.

Usage:

with threading_helper.catch_threading_exception() as cm:

code spawning a thread which raises an exception

...

check the thread exception, use cm attributes:

exc_type, exc_value, exc_traceback, thread

...

exc_type, exc_value, exc_traceback, thread attributes of cm no longer

(continues on next page)

1832 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

(continued from previous page)

exists at this point

(to avoid reference cycles)

Added in version 3.8.

27.14 test.support.os_helper— Utilities for os tests

The test.support.os_helper module provides support for os tests.

Added in version 3.10.

test.support.os_helper.FS_NONASCII

A non-ASCII character encodable by os.fsencode().

test.support.os_helper.SAVEDCWD

Set to os.getcwd().

test.support.os_helper.TESTFN

Set to a name that is safe to use as the name of a temporary file. Any temporary file that is created should be
closed and unlinked (removed).

test.support.os_helper.TESTFN_NONASCII

Set to a filename containing the FS_NONASCII character, if it exists. This guarantees that if the filename
exists, it can be encoded and decoded with the default filesystem encoding. This allows tests that require a
non-ASCII filename to be easily skipped on platforms where they can’t work.

test.support.os_helper.TESTFN_UNENCODABLE

Set to a filename (str type) that should not be able to be encoded by file system encoding in strict mode. It may
be None if it’s not possible to generate such a filename.

test.support.os_helper.TESTFN_UNDECODABLE

Set to a filename (bytes type) that should not be able to be decoded by file system encoding in strict mode. It
may be None if it’s not possible to generate such a filename.

test.support.os_helper.TESTFN_UNICODE

Set to a non-ASCII name for a temporary file.

class test.support.os_helper.EnvironmentVarGuard

Class used to temporarily set or unset environment variables. Instances can be used as a context manager and
have a complete dictionary interface for querying/modifying the underlying os.environ. After exit from the
context manager all changes to environment variables done through this instance will be rolled back.

Changed in version 3.1: Added dictionary interface.

class test.support.os_helper.FakePath(path)

Simple path-like object. It implements the __fspath__() method which just returns the path argument. If
path is an exception, it will be raised in __fspath__().

EnvironmentVarGuard.set(envvar, value)
Temporarily set the environment variable envvar to the value of value.

EnvironmentVarGuard.unset(envvar)

Temporarily unset the environment variable envvar.

test.support.os_helper.can_symlink()

Return True if the OS supports symbolic links, False otherwise.

test.support.os_helper.can_xattr()

Return True if the OS supports xattr, False otherwise.

27.14. test.support.os_helper— Utilities for os tests 1833

The Python Library Reference, Release 3.13.1

test.support.os_helper.change_cwd(path, quiet=False)
A context manager that temporarily changes the current working directory to path and yields the directory.

If quiet is False, the context manager raises an exception on error. Otherwise, it issues only a warning and
keeps the current working directory the same.

test.support.os_helper.create_empty_file(filename)

Create an empty file with filename. If it already exists, truncate it.

test.support.os_helper.fd_count()

Count the number of open file descriptors.

test.support.os_helper.fs_is_case_insensitive(directory)
Return True if the file system for directory is case-insensitive.

test.support.os_helper.make_bad_fd()

Create an invalid file descriptor by opening and closing a temporary file, and returning its descriptor.

test.support.os_helper.rmdir(filename)
Call os.rmdir() on filename. On Windows platforms, this is wrapped with a wait loop that checks for the
existence of the file, which is needed due to antivirus programs that can hold files open and prevent deletion.

test.support.os_helper.rmtree(path)

Call shutil.rmtree() on path or call os.lstat() and os.rmdir() to remove a path and its contents.
As with rmdir(), on Windows platforms this is wrapped with a wait loop that checks for the existence of the
files.

@test.support.os_helper.skip_unless_symlink

A decorator for running tests that require support for symbolic links.

@test.support.os_helper.skip_unless_xattr

A decorator for running tests that require support for xattr.

test.support.os_helper.temp_cwd(name=’tempcwd’, quiet=False)
A context manager that temporarily creates a new directory and changes the current working directory (CWD).

The context manager creates a temporary directory in the current directory with name name before temporarily
changing the current working directory. If name is None, the temporary directory is created using tempfile.
mkdtemp().

If quiet is False and it is not possible to create or change the CWD, an error is raised. Otherwise, only a
warning is raised and the original CWD is used.

test.support.os_helper.temp_dir(path=None, quiet=False)
A context manager that creates a temporary directory at path and yields the directory.

If path is None, the temporary directory is created using tempfile.mkdtemp(). If quiet is False, the
context manager raises an exception on error. Otherwise, if path is specified and cannot be created, only a
warning is issued.

test.support.os_helper.temp_umask(umask)
A context manager that temporarily sets the process umask.

test.support.os_helper.unlink(filename)

Call os.unlink() on filename. As with rmdir(), on Windows platforms, this is wrapped with a wait loop
that checks for the existence of the file.

27.15 test.support.import_helper— Utilities for import tests

The test.support.import_helper module provides support for import tests.

Added in version 3.10.

1834 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

test.support.import_helper.forget(module_name)
Remove the module namedmodule_name from sys.modules and delete any byte-compiled files of the mod-
ule.

test.support.import_helper.import_fresh_module(name, fresh=(), blocked=(), deprecated=False)
This function imports and returns a fresh copy of the named Python module by removing the named module
from sys.modules before doing the import. Note that unlike reload(), the original module is not affected
by this operation.

fresh is an iterable of additional module names that are also removed from the sys.modules cache before
doing the import.

blocked is an iterable of module names that are replaced with None in the module cache during the import to
ensure that attempts to import them raise ImportError.

The named module and any modules named in the fresh and blocked parameters are saved before starting the
import and then reinserted into sys.modules when the fresh import is complete.

Module and package deprecation messages are suppressed during this import if deprecated is True.

This function will raise ImportError if the named module cannot be imported.

Example use:

Get copies of the warnings module for testing without affecting the

version being used by the rest of the test suite. One copy uses the

C implementation, the other is forced to use the pure Python fallback

implementation

py_warnings = import_fresh_module('warnings', blocked=['_warnings'])

c_warnings = import_fresh_module('warnings', fresh=['_warnings'])

Added in version 3.1.

test.support.import_helper.import_module(name, deprecated=False, *, required_on=())
This function imports and returns the named module. Unlike a normal import, this function raises unittest.
SkipTest if the module cannot be imported.

Module and package deprecation messages are suppressed during this import if deprecated is True. If a
module is required on a platform but optional for others, set required_on to an iterable of platform prefixes
which will be compared against sys.platform.

Added in version 3.1.

test.support.import_helper.modules_setup()

Return a copy of sys.modules.

test.support.import_helper.modules_cleanup(oldmodules)

Remove modules except for oldmodules and encodings in order to preserve internal cache.

test.support.import_helper.unload(name)
Delete name from sys.modules.

test.support.import_helper.make_legacy_pyc(source)

Move a PEP 3147/PEP 488 pyc file to its legacy pyc location and return the file system path to the legacy
pyc file. The source value is the file system path to the source file. It does not need to exist, however the PEP
3147/488 pyc file must exist.

class test.support.import_helper.CleanImport(*module_names)
A context manager to force import to return a new module reference. This is useful for testing module-level
behaviors, such as the emission of a DeprecationWarning on import. Example usage:

with CleanImport('foo'):

importlib.import_module('foo') # New reference.

27.15. test.support.import_helper— Utilities for import tests 1835

https://peps.python.org/pep-3147/
https://peps.python.org/pep-0488/

The Python Library Reference, Release 3.13.1

class test.support.import_helper.DirsOnSysPath(*paths)
A context manager to temporarily add directories to sys.path.

This makes a copy of sys.path, appends any directories given as positional arguments, then reverts sys.
path to the copied settings when the context ends.

Note that all sys.pathmodifications in the body of the context manager, including replacement of the object,
will be reverted at the end of the block.

27.16 test.support.warnings_helper — Utilities for warnings
tests

The test.support.warnings_helper module provides support for warnings tests.

Added in version 3.10.

test.support.warnings_helper.ignore_warnings(*, category)
Suppress warnings that are instances of category, which must be Warning or a subclass. Roughly
equivalent to warnings.catch_warnings() with warnings.simplefilter('ignore',

category=category). For example:

@warning_helper.ignore_warnings(category=DeprecationWarning)

def test_suppress_warning():

do something

Added in version 3.8.

test.support.warnings_helper.check_no_resource_warning(testcase)
Context manager to check that no ResourceWarning was raised. You must remove the object which may
emit ResourceWarning before the end of the context manager.

test.support.warnings_helper.check_syntax_warning(testcase, statement, errtext=” , *, lineno=1,
offset=None)

Test for syntax warning in statement by attempting to compile statement. Test also that the SyntaxWarning
is emitted only once, and that it will be converted to a SyntaxError when turned into error. testcase is the
unittest instance for the test. errtext is the regular expression which should match the string representation
of the emitted SyntaxWarning and raised SyntaxError. If lineno is not None, compares to the line of the
warning and exception. If offset is not None, compares to the offset of the exception.

Added in version 3.8.

test.support.warnings_helper.check_warnings(*filters, quiet=True)
A convenience wrapper for warnings.catch_warnings() that makes it easier to test that a warning was
correctly raised. It is approximately equivalent to calling warnings.catch_warnings(record=True)
with warnings.simplefilter() set to always and with the option to automatically validate the results
that are recorded.

check_warnings accepts 2-tuples of the form ("message regexp", WarningCategory) as positional
arguments. If one or more filters are provided, or if the optional keyword argument quiet is False, it checks
to make sure the warnings are as expected: each specified filter must match at least one of the warnings raised
by the enclosed code or the test fails, and if any warnings are raised that do not match any of the specified
filters the test fails. To disable the first of these checks, set quiet to True.

If no arguments are specified, it defaults to:

check_warnings(("", Warning), quiet=True)

In this case all warnings are caught and no errors are raised.

On entry to the context manager, a WarningRecorder instance is returned. The underlying warnings list
from catch_warnings() is available via the recorder object’s warnings attribute. As a convenience, the

1836 Chapter 27. Development Tools

The Python Library Reference, Release 3.13.1

attributes of the object representing the most recent warning can also be accessed directly through the recorder
object (see example below). If no warning has been raised, then any of the attributes that would otherwise be
expected on an object representing a warning will return None.

The recorder object also has a reset() method, which clears the warnings list.

The context manager is designed to be used like this:

with check_warnings(("assertion is always true", SyntaxWarning),

("", UserWarning)):

exec('assert(False, "Hey!")')

warnings.warn(UserWarning("Hide me!"))

In this case if either warning was not raised, or some other warning was raised, check_warnings() would
raise an error.

When a test needs to look more deeply into the warnings, rather than just checking whether or not they oc-
curred, code like this can be used:

with check_warnings(quiet=True) as w:

warnings.warn("foo")

assert str(w.args[0]) == "foo"

warnings.warn("bar")

assert str(w.args[0]) == "bar"

assert str(w.warnings[0].args[0]) == "foo"

assert str(w.warnings[1].args[0]) == "bar"

w.reset()

assert len(w.warnings) == 0

Here all warnings will be caught, and the test code tests the captured warnings directly.

Changed in version 3.2: New optional arguments filters and quiet.

class test.support.warnings_helper.WarningsRecorder

Class used to record warnings for unit tests. See documentation of check_warnings() above for more
details.

27.16. test.support.warnings_helper— Utilities for warnings tests 1837

The Python Library Reference, Release 3.13.1

1838 Chapter 27. Development Tools

CHAPTER

TWENTYEIGHT

DEBUGGING AND PROFILING

These libraries help you with Python development: the debugger enables you to step through code, analyze stack
frames and set breakpoints etc., and the profilers run code and give you a detailed breakdown of execution times,
allowing you to identify bottlenecks in your programs. Auditing events provide visibility into runtime behaviors that
would otherwise require intrusive debugging or patching.

28.1 Audit events table

This table contains all events raised by sys.audit() or PySys_Audit() calls throughout the CPython runtime
and the standard library. These calls were added in 3.8 or later (see PEP 578).

See sys.addaudithook() and PySys_AddAuditHook() for information on handling these events.

CPython implementation detail: This table is generated from the CPython documentation, and may not represent
events raised by other implementations. See your runtime specific documentation for actual events raised.

Audit event Arguments References

_thread.start_new_thread function, args, kwargs [1]
array.__new__ typecode, initializer [1]
builtins.breakpoint breakpointhook [1]
builtins.id id [1]
builtins.input prompt [1]
builtins.input/result result [1]
code.__new__ code, filename, name, argcount, posonlyargcount, kwonlyargcount, nlocals, stacksize, flags [1]
compile source, filename [1]
cpython.PyInterpreterState_Clear
cpython.PyInterpreterState_New
cpython._PySys_ClearAuditHooks
cpython.run_command command

cpython.run_file filename

cpython.run_interactivehook hook [1]
cpython.run_module module-name

cpython.run_startup filename

cpython.run_stdin [1]
ctypes.addressof obj [1]
ctypes.call_function func_pointer, arguments [1]
ctypes.cdata address [1]
ctypes.cdata/buffer pointer, size, offset [1][2]
ctypes.create_string_buffer init, size [1]
ctypes.create_unicode_buffer init, size [1]
ctypes.dlopen name [1]
ctypes.dlsym library, name [1]
ctypes.dlsym/handle handle, name [1]
ctypes.get_errno [1]

continues on next page

1839

https://peps.python.org/pep-0578/

The Python Library Reference, Release 3.13.1

Table 1 – continued from previous page

Audit event Arguments References

ctypes.get_last_error [1]
ctypes.set_errno errno [1]
ctypes.set_exception code [1]
ctypes.set_last_error error [1]
ctypes.string_at ptr, size [1]
ctypes.wstring_at ptr, size [1]
ensurepip.bootstrap root [1]
exec code_object [1][2]
fcntl.fcntl fd, cmd, arg [1]
fcntl.flock fd, operation [1]
fcntl.ioctl fd, request, arg [1]
fcntl.lockf fd, cmd, len, start, whence [1]
ftplib.connect self, host, port [1]
ftplib.sendcmd self, cmd [1][2]
function.__new__ code [1]
gc.get_objects generation [1]
gc.get_referents objs [1]
gc.get_referrers objs [1]
glob.glob pathname, recursive [1][2]
glob.glob/2 pathname, recursive, root_dir, dir_fd [1][2]
http.client.connect self, host, port [1]
http.client.send self, data [1]
imaplib.open self, host, port [1]
imaplib.send self, data [1]
import module, filename, sys.path, sys.meta_path, sys.path_hooks
marshal.dumps value, version [1]
marshal.load [1]
marshal.loads bytes [1]
mmap.__new__ fileno, length, access, offset [1]
msvcrt.get_osfhandle fd [1]
msvcrt.locking fd, mode, nbytes [1]
msvcrt.open_osfhandle handle, flags [1]
object.__delattr__ obj, name
object.__getattr__ obj, name
object.__setattr__ obj, name, value
open path, mode, flags [1][2][3]
os.add_dll_directory path [1]
os.chdir path [1][2]
os.chflags path, flags [1][2]
os.chmod path, mode, dir_fd [1][2][3]
os.chown path, uid, gid, dir_fd [1][2][3]
os.exec path, args, env [1]
os.fork [1]
os.forkpty [1]
os.fwalk top, topdown, onerror, follow_symlinks, dir_fd [1]
os.getxattr path, attribute [1]
os.kill pid, sig [1]
os.killpg pgid, sig [1]
os.link src, dst, src_dir_fd, dst_dir_fd [1]
os.listdir path [1]
os.listdrives [1]
os.listmounts volume [1]
os.listvolumes [1]
os.listxattr path [1]
os.lockf fd, cmd, len [1]

continues on next page

1840 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

Table 1 – continued from previous page

Audit event Arguments References

os.mkdir path, mode, dir_fd [1][2]
os.posix_spawn path, argv, env [1][2]
os.putenv key, value [1]
os.remove path, dir_fd [1][2][3]
os.removexattr path, attribute [1]
os.rename src, dst, src_dir_fd, dst_dir_fd [1][2][3]
os.rmdir path, dir_fd [1]
os.scandir path [1]
os.setxattr path, attribute, value, flags [1]
os.spawn mode, path, args, env [1]
os.startfile path, operation [1]
os.startfile/2 path, operation, arguments, cwd, show_cmd [1]
os.symlink src, dst, dir_fd [1]
os.system command [1]
os.truncate fd, length [1][2]
os.unsetenv key [1]
os.utime path, times, ns, dir_fd [1]
os.walk top, topdown, onerror, followlinks [1]
pathlib.Path.glob self, pattern [1]
pathlib.Path.rglob self, pattern [1]
pdb.Pdb [1]
pickle.find_class module, name [1]
poplib.connect self, host, port [1][2]
poplib.putline self, line [1][2]
pty.spawn argv [1]
resource.prlimit pid, resource, limits [1]
resource.setrlimit resource, limits [1]
setopencodehook
shutil.chown path, user, group [1]
shutil.copyfile src, dst [1][2][3]
shutil.copymode src, dst [1][2]
shutil.copystat src, dst [1][2]
shutil.copytree src, dst [1]
shutil.make_archive base_name, format, root_dir, base_dir [1]
shutil.move src, dst [1]
shutil.rmtree path, dir_fd [1]
shutil.unpack_archive filename, extract_dir, format [1]
signal.pthread_kill thread_id, signalnum [1]
smtplib.connect self, host, port [1]
smtplib.send self, data [1]
socket.__new__ self, family, type, protocol [1]
socket.bind self, address [1]
socket.connect self, address [1][2]
socket.getaddrinfo host, port, family, type, protocol [1]
socket.gethostbyaddr ip_address [1]
socket.gethostbyname hostname [1][2]
socket.gethostname [1]
socket.getnameinfo sockaddr [1]
socket.getservbyname servicename, protocolname [1]
socket.getservbyport port, protocolname [1]
socket.sendmsg self, address [1]
socket.sendto self, address [1]
socket.sethostname name [1]
sqlite3.connect database [1]
sqlite3.connect/handle connection_handle [1]

continues on next page

28.1. Audit events table 1841

The Python Library Reference, Release 3.13.1

Table 1 – continued from previous page

Audit event Arguments References

sqlite3.enable_load_extension connection, enabled [1]
sqlite3.load_extension connection, path [1]
subprocess.Popen executable, args, cwd, env [1]
sys._current_exceptions [1]
sys._current_frames [1]
sys._getframe frame [1]
sys._getframemodulename depth [1]
sys.addaudithook [2]
sys.excepthook hook, type, value, traceback [1]
sys.set_asyncgen_hooks_finalizer [1]
sys.set_asyncgen_hooks_firstiter [1]
sys.setprofile [1]
sys.settrace [1]
sys.unraisablehook hook, unraisable [1]
syslog.closelog [1]
syslog.openlog ident, logoption, facility [1]
syslog.setlogmask maskpri [1]
syslog.syslog priority, message [1]
tempfile.mkdtemp fullpath [1][2]
tempfile.mkstemp fullpath [1][2][3]
time.sleep secs [1]
urllib.Request fullurl, data, headers, method [1]
webbrowser.open url [1]
winreg.ConnectRegistry computer_name, key [1]
winreg.CreateKey key, sub_key, access [1][2]
winreg.DeleteKey key, sub_key, access [1][2]
winreg.DeleteValue key, value [1]
winreg.DisableReflectionKey key [1]
winreg.EnableReflectionKey key [1]
winreg.EnumKey key, index [1]
winreg.EnumValue key, index [1]
winreg.ExpandEnvironmentStrings str [1]
winreg.LoadKey key, sub_key, file_name [1]
winreg.OpenKey key, sub_key, access [1]
winreg.OpenKey/result key [1][2][3]
winreg.PyHKEY.Detach key [1]
winreg.QueryInfoKey key [1]
winreg.QueryReflectionKey key [1]
winreg.QueryValue key, sub_key, value_name [1][2]
winreg.SaveKey key, file_name [1]
winreg.SetValue key, sub_key, type, value [1][2]

The following events are raised internally and do not correspond to any public API of CPython:

Audit event Arguments

_winapi.CreateFile file_name, desired_access, share_mode, creation_disposition,
flags_and_attributes

_winapi.CreateJunction src_path, dst_path
_winapi.CreateNamedPipename, open_mode, pipe_mode
_winapi.CreatePipe
_winapi.CreateProcess application_name, command_line, current_directory
_winapi.OpenProcess process_id, desired_access
_winapi.TerminateProcesshandle, exit_code
ctypes.PyObj_FromPtr obj

1842 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

28.2 bdb— Debugger framework

Source code: Lib/bdb.py

The bdb module handles basic debugger functions, like setting breakpoints or managing execution via the debugger.

The following exception is defined:

exception bdb.BdbQuit

Exception raised by the Bdb class for quitting the debugger.

The bdb module also defines two classes:

class bdb.Breakpoint(self, file, line, temporary=False, cond=None, funcname=None)
This class implements temporary breakpoints, ignore counts, disabling and (re-)enabling, and conditionals.

Breakpoints are indexed by number through a list called bpbynumber and by (file, line) pairs through
bplist. The former points to a single instance of class Breakpoint. The latter points to a list of such
instances since there may be more than one breakpoint per line.

When creating a breakpoint, its associated file name should be in canonical form. If a funcname is defined,
a breakpoint hit will be counted when the first line of that function is executed. A conditional breakpoint
always counts a hit.

Breakpoint instances have the following methods:

deleteMe()

Delete the breakpoint from the list associated to a file/line. If it is the last breakpoint in that position, it
also deletes the entry for the file/line.

enable()

Mark the breakpoint as enabled.

disable()

Mark the breakpoint as disabled.

bpformat()

Return a string with all the information about the breakpoint, nicely formatted:

• Breakpoint number.

• Temporary status (del or keep).

• File/line position.

• Break condition.

• Number of times to ignore.

• Number of times hit.

Added in version 3.2.

bpprint(out=None)
Print the output of bpformat() to the file out, or if it is None, to standard output.

Breakpoint instances have the following attributes:

file

File name of the Breakpoint.

line

Line number of the Breakpoint within file.

28.2. bdb— Debugger framework 1843

https://github.com/python/cpython/tree/3.13/Lib/bdb.py

The Python Library Reference, Release 3.13.1

temporary

True if a Breakpoint at (file, line) is temporary.

cond

Condition for evaluating a Breakpoint at (file, line).

funcname

Function name that defines whether a Breakpoint is hit upon entering the function.

enabled

True if Breakpoint is enabled.

bpbynumber

Numeric index for a single instance of a Breakpoint.

bplist

Dictionary of Breakpoint instances indexed by (file, line) tuples.

ignore

Number of times to ignore a Breakpoint.

hits

Count of the number of times a Breakpoint has been hit.

class bdb.Bdb(skip=None)
The Bdb class acts as a generic Python debugger base class.

This class takes care of the details of the trace facility; a derived class should implement user interaction. The
standard debugger class (pdb.Pdb) is an example.

The skip argument, if given, must be an iterable of glob-style module name patterns. The debugger will not
step into frames that originate in a module that matches one of these patterns. Whether a frame is considered
to originate in a certain module is determined by the __name__ in the frame globals.

Changed in version 3.1: Added the skip parameter.

The following methods of Bdb normally don’t need to be overridden.

canonic(filename)
Return canonical form of filename.

For real file names, the canonical form is an operating-system-dependent, case-normalized

absolute path. A filename with angle brackets, such as "<stdin>" generated in interactive mode,
is returned unchanged.

reset()

Set the botframe, stopframe, returnframe and quitting attributes with values ready to start
debugging.

trace_dispatch(frame, event, arg)
This function is installed as the trace function of debugged frames. Its return value is the new trace
function (in most cases, that is, itself).

The default implementation decides how to dispatch a frame, depending on the type of event (passed as
a string) that is about to be executed. event can be one of the following:

• "line": A new line of code is going to be executed.

• "call": A function is about to be called, or another code block entered.

• "return": A function or other code block is about to return.

• "exception": An exception has occurred.

• "c_call": A C function is about to be called.

• "c_return": A C function has returned.

1844 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

• "c_exception": A C function has raised an exception.

For the Python events, specialized functions (see below) are called. For the C events, no action is taken.

The arg parameter depends on the previous event.

See the documentation for sys.settrace() for more information on the trace function. For more
information on code and frame objects, refer to types.

dispatch_line(frame)

If the debugger should stop on the current line, invoke the user_line() method (which should be
overridden in subclasses). Raise a BdbQuit exception if the quitting flag is set (which can be set
from user_line()). Return a reference to the trace_dispatch()method for further tracing in that
scope.

dispatch_call(frame, arg)
If the debugger should stop on this function call, invoke the user_call() method (which should be
overridden in subclasses). Raise a BdbQuit exception if the quitting flag is set (which can be set
from user_call()). Return a reference to the trace_dispatch()method for further tracing in that
scope.

dispatch_return(frame, arg)
If the debugger should stop on this function return, invoke the user_return() method (which should
be overridden in subclasses). Raise a BdbQuit exception if the quitting flag is set (which can be set
from user_return()). Return a reference to the trace_dispatch() method for further tracing in
that scope.

dispatch_exception(frame, arg)
If the debugger should stop at this exception, invokes the user_exception() method (which should
be overridden in subclasses). Raise a BdbQuit exception if the quitting flag is set (which can be set
from user_exception()). Return a reference to the trace_dispatch()method for further tracing
in that scope.

Normally derived classes don’t override the following methods, but they may if they want to redefine the
definition of stopping and breakpoints.

is_skipped_line(module_name)
Return True if module_name matches any skip pattern.

stop_here(frame)
Return True if frame is below the starting frame in the stack.

break_here(frame)
Return True if there is an effective breakpoint for this line.

Check whether a line or function breakpoint exists and is in effect. Delete temporary breakpoints based
on information from effective().

break_anywhere(frame)

Return True if any breakpoint exists for frame’s filename.

Derived classes should override these methods to gain control over debugger operation.

user_call(frame, argument_list)
Called from dispatch_call() if a break might stop inside the called function.

argument_list is not used anymore and will always be None. The argument is kept for backwards com-
patibility.

user_line(frame)
Called from dispatch_line() when either stop_here() or break_here() returns True.

user_return(frame, return_value)
Called from dispatch_return() when stop_here() returns True.

28.2. bdb— Debugger framework 1845

The Python Library Reference, Release 3.13.1

user_exception(frame, exc_info)
Called from dispatch_exception() when stop_here() returns True.

do_clear(arg)

Handle how a breakpoint must be removed when it is a temporary one.

This method must be implemented by derived classes.

Derived classes and clients can call the following methods to affect the stepping state.

set_step()

Stop after one line of code.

set_next(frame)
Stop on the next line in or below the given frame.

set_return(frame)
Stop when returning from the given frame.

set_until(frame, lineno=None)
Stop when the line with the lineno greater than the current one is reached or when returning from current
frame.

set_trace([frame])
Start debugging from frame. If frame is not specified, debugging starts from caller’s frame.

Changed in version 3.13: set_trace() will enter the debugger immediately, rather than on the next
line of code to be executed.

set_continue()

Stop only at breakpoints or when finished. If there are no breakpoints, set the system trace function to
None.

set_quit()

Set the quitting attribute to True. This raises BdbQuit in the next call to one of the dispatch_*()
methods.

Derived classes and clients can call the following methods to manipulate breakpoints. These methods return a
string containing an error message if something went wrong, or None if all is well.

set_break(filename, lineno, temporary=False, cond=None, funcname=None)
Set a new breakpoint. If the lineno line doesn’t exist for the filename passed as argument, return an error
message. The filename should be in canonical form, as described in the canonic() method.

clear_break(filename, lineno)
Delete the breakpoints in filename and lineno. If none were set, return an error message.

clear_bpbynumber(arg)

Delete the breakpoint which has the index arg in the Breakpoint.bpbynumber. If arg is not numeric
or out of range, return an error message.

clear_all_file_breaks(filename)
Delete all breakpoints in filename. If none were set, return an error message.

clear_all_breaks()

Delete all existing breakpoints. If none were set, return an error message.

get_bpbynumber(arg)

Return a breakpoint specified by the given number. If arg is a string, it will be converted to a number. If
arg is a non-numeric string, if the given breakpoint never existed or has been deleted, a ValueError is
raised.

Added in version 3.2.

1846 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

get_break(filename, lineno)
Return True if there is a breakpoint for lineno in filename.

get_breaks(filename, lineno)
Return all breakpoints for lineno in filename, or an empty list if none are set.

get_file_breaks(filename)

Return all breakpoints in filename, or an empty list if none are set.

get_all_breaks()

Return all breakpoints that are set.

Derived classes and clients can call the following methods to get a data structure representing a stack trace.

get_stack(f, t)
Return a list of (frame, lineno) tuples in a stack trace, and a size.

The most recently called frame is last in the list. The size is the number of frames below the frame where
the debugger was invoked.

format_stack_entry(frame_lineno, lprefix=’: ’)
Return a string with information about a stack entry, which is a (frame, lineno) tuple. The return
string contains:

• The canonical filename which contains the frame.

• The function name or "<lambda>".

• The input arguments.

• The return value.

• The line of code (if it exists).

The following two methods can be called by clients to use a debugger to debug a statement, given as a string.

run(cmd, globals=None, locals=None)
Debug a statement executed via the exec() function. globals defaults to __main__.__dict__, locals
defaults to globals.

runeval(expr, globals=None, locals=None)
Debug an expression executed via the eval() function. globals and locals have the same meaning as in
run().

runctx(cmd, globals, locals)
For backwards compatibility. Calls the run() method.

runcall(func, / , *args, **kwds)

Debug a single function call, and return its result.

Finally, the module defines the following functions:

bdb.checkfuncname(b, frame)
Return True if we should break here, depending on the way the Breakpoint b was set.

If it was set via line number, it checks if b.line is the same as the one in frame. If the breakpoint was set
via function name, we have to check we are in the right frame (the right function) and if we are on its first
executable line.

bdb.effective(file, line, frame)

Return (active breakpoint, delete temporary flag) or (None, None) as the breakpoint to act
upon.

The active breakpoint is the first entry in bplist for the (file, line) (which must exist) that is enabled,
for which checkfuncname() is true, and that has neither a false condition nor positive ignore count.

28.2. bdb— Debugger framework 1847

The Python Library Reference, Release 3.13.1

The flag, meaning that a temporary breakpoint should be deleted, is False only when the cond cannot be
evaluated (in which case, ignore count is ignored).

If no such entry exists, then (None, None) is returned.

bdb.set_trace()

Start debugging with a Bdb instance from caller’s frame.

28.3 faulthandler— Dump the Python traceback

Added in version 3.3.

This module contains functions to dump Python tracebacks explicitly, on a fault, after a timeout, or on a user sig-
nal. Call faulthandler.enable() to install fault handlers for the SIGSEGV , SIGFPE, SIGABRT, SIGBUS, and
SIGILL signals. You can also enable them at startup by setting the PYTHONFAULTHANDLER environment variable
or by using the -X faulthandler command line option.

The fault handler is compatible with system fault handlers like Apport or the Windows fault handler. The module
uses an alternative stack for signal handlers if the sigaltstack() function is available. This allows it to dump the
traceback even on a stack overflow.

The fault handler is called on catastrophic cases and therefore can only use signal-safe functions (e.g. it cannot
allocate memory on the heap). Because of this limitation traceback dumping is minimal compared to normal Python
tracebacks:

• Only ASCII is supported. The backslashreplace error handler is used on encoding.

• Each string is limited to 500 characters.

• Only the filename, the function name and the line number are displayed. (no source code)

• It is limited to 100 frames and 100 threads.

• The order is reversed: the most recent call is shown first.

By default, the Python traceback is written to sys.stderr. To see tracebacks, applications must be run in the
terminal. A log file can alternatively be passed to faulthandler.enable().

The module is implemented in C, so tracebacks can be dumped on a crash or when Python is deadlocked.

The Python Development Mode calls faulthandler.enable() at Python startup.

See also

Module pdb
Interactive source code debugger for Python programs.

Module traceback
Standard interface to extract, format and print stack traces of Python programs.

28.3.1 Dumping the traceback

faulthandler.dump_traceback(file=sys.stderr, all_threads=True)
Dump the tracebacks of all threads into file. If all_threads is False, dump only the current thread.

See also

traceback.print_tb(), which can be used to print a traceback object.

Changed in version 3.5: Added support for passing file descriptor to this function.

1848 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

28.3.2 Fault handler state

faulthandler.enable(file=sys.stderr, all_threads=True)
Enable the fault handler: install handlers for the SIGSEGV , SIGFPE, SIGABRT, SIGBUS and SIGILL signals to
dump the Python traceback. If all_threads is True, produce tracebacks for every running thread. Otherwise,
dump only the current thread.

The file must be kept open until the fault handler is disabled: see issue with file descriptors.

Changed in version 3.5: Added support for passing file descriptor to this function.

Changed in version 3.6: On Windows, a handler for Windows exception is also installed.

Changed in version 3.10: The dump now mentions if a garbage collector collection is running if all_threads is
true.

faulthandler.disable()

Disable the fault handler: uninstall the signal handlers installed by enable().

faulthandler.is_enabled()

Check if the fault handler is enabled.

28.3.3 Dumping the tracebacks after a timeout

faulthandler.dump_traceback_later(timeout, repeat=False, file=sys.stderr, exit=False)
Dump the tracebacks of all threads, after a timeout of timeout seconds, or every timeout seconds if repeat is
True. If exit is True, call _exit() with status=1 after dumping the tracebacks. (Note _exit() exits the
process immediately, which means it doesn’t do any cleanup like flushing file buffers.) If the function is called
twice, the new call replaces previous parameters and resets the timeout. The timer has a sub-second resolution.

The filemust be kept open until the traceback is dumped or cancel_dump_traceback_later() is called:
see issue with file descriptors.

This function is implemented using a watchdog thread.

Changed in version 3.5: Added support for passing file descriptor to this function.

Changed in version 3.7: This function is now always available.

faulthandler.cancel_dump_traceback_later()

Cancel the last call to dump_traceback_later().

28.3.4 Dumping the traceback on a user signal

faulthandler.register(signum, file=sys.stderr, all_threads=True, chain=False)
Register a user signal: install a handler for the signum signal to dump the traceback of all threads, or of the
current thread if all_threads is False, into file. Call the previous handler if chain is True.

The file must be kept open until the signal is unregistered by unregister(): see issue with file descriptors.

Not available on Windows.

Changed in version 3.5: Added support for passing file descriptor to this function.

faulthandler.unregister(signum)
Unregister a user signal: uninstall the handler of the signum signal installed by register(). Return True if
the signal was registered, False otherwise.

Not available on Windows.

28.3.5 Issue with file descriptors

enable(), dump_traceback_later() and register() keep the file descriptor of their file argument. If the
file is closed and its file descriptor is reused by a new file, or if os.dup2() is used to replace the file descriptor, the
traceback will be written into a different file. Call these functions again each time that the file is replaced.

28.3. faulthandler— Dump the Python traceback 1849

The Python Library Reference, Release 3.13.1

28.3.6 Example

Example of a segmentation fault on Linux with and without enabling the fault handler:

$ python -c "import ctypes; ctypes.string_at(0)"

Segmentation fault

$ python -q -X faulthandler

>>> import ctypes

>>> ctypes.string_at(0)

Fatal Python error: Segmentation fault

Current thread 0x00007fb899f39700 (most recent call first):

File "/home/python/cpython/Lib/ctypes/__init__.py", line 486 in string_at

File "<stdin>", line 1 in <module>

Segmentation fault

28.4 pdb— The Python Debugger

Source code: Lib/pdb.py

The module pdb defines an interactive source code debugger for Python programs. It supports setting (conditional)
breakpoints and single stepping at the source line level, inspection of stack frames, source code listing, and evaluation
of arbitrary Python code in the context of any stack frame. It also supports post-mortem debugging and can be called
under program control.

The debugger is extensible – it is actually defined as the class Pdb. This is currently undocumented but easily under-
stood by reading the source. The extension interface uses the modules bdb and cmd.

See also

Module faulthandler
Used to dump Python tracebacks explicitly, on a fault, after a timeout, or on a user signal.

Module traceback
Standard interface to extract, format and print stack traces of Python programs.

The typical usage to break into the debugger is to insert:

import pdb; pdb.set_trace()

Or:

breakpoint()

at the location you want to break into the debugger, and then run the program. You can then step through the code
following this statement, and continue running without the debugger using the continue command.

Changed in version 3.7: The built-in breakpoint(), when called with defaults, can be used instead of import
pdb; pdb.set_trace().

def double(x):

breakpoint()

return x * 2

val = 3

print(f"{val} * 2 is {double(val)}")

1850 Chapter 28. Debugging and Profiling

https://github.com/python/cpython/tree/3.13/Lib/pdb.py

The Python Library Reference, Release 3.13.1

The debugger’s prompt is (Pdb), which is the indicator that you are in debug mode:

> ...(2)double()

-> breakpoint()

(Pdb) p x

3

(Pdb) continue

3 * 2 is 6

Changed in version 3.3: Tab-completion via the readline module is available for commands and command argu-
ments, e.g. the current global and local names are offered as arguments of the p command.

You can also invoke pdb from the command line to debug other scripts. For example:

python -m pdb myscript.py

When invoked as a module, pdb will automatically enter post-mortem debugging if the program being debugged
exits abnormally. After post-mortem debugging (or after normal exit of the program), pdb will restart the program.
Automatic restarting preserves pdb’s state (such as breakpoints) and in most cases is more useful than quitting the
debugger upon program’s exit.

Changed in version 3.2: Added the -c option to execute commands as if given in a .pdbrc file; see Debugger
Commands.

Changed in version 3.7: Added the -m option to execute modules similar to the way python -m does. As with a
script, the debugger will pause execution just before the first line of the module.

Typical usage to execute a statement under control of the debugger is:

>>> import pdb

>>> def f(x):

... print(1 / x)

>>> pdb.run("f(2)")

> <string>(1)<module>()

(Pdb) continue

0.5

>>>

The typical usage to inspect a crashed program is:

>>> import pdb

>>> def f(x):

... print(1 / x)

...

>>> f(0)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in f

ZeroDivisionError: division by zero

>>> pdb.pm()

> <stdin>(2)f()

(Pdb) p x

0

(Pdb)

Changed in version 3.13: The implementation of PEP 667 means that name assignments made via pdb will imme-
diately affect the active scope, even when running inside an optimized scope.

The module defines the following functions; each enters the debugger in a slightly different way:

pdb.run(statement, globals=None, locals=None)
Execute the statement (given as a string or a code object) under debugger control. The debugger prompt

28.4. pdb— The Python Debugger 1851

https://peps.python.org/pep-0667/

The Python Library Reference, Release 3.13.1

appears before any code is executed; you can set breakpoints and type continue, or you can step through
the statement using step or next (all these commands are explained below). The optional globals and locals
arguments specify the environment in which the code is executed; by default the dictionary of the module
__main__ is used. (See the explanation of the built-in exec() or eval() functions.)

pdb.runeval(expression, globals=None, locals=None)
Evaluate the expression (given as a string or a code object) under debugger control. When runeval() returns,
it returns the value of the expression. Otherwise this function is similar to run().

pdb.runcall(function, *args, **kwds)
Call the function (a function or method object, not a string) with the given arguments. When runcall()

returns, it returns whatever the function call returned. The debugger prompt appears as soon as the function is
entered.

pdb.set_trace(*, header=None)
Enter the debugger at the calling stack frame. This is useful to hard-code a breakpoint at a given point in a
program, even if the code is not otherwise being debugged (e.g. when an assertion fails). If given, header is
printed to the console just before debugging begins.

Changed in version 3.7: The keyword-only argument header.

Changed in version 3.13: set_trace() will enter the debugger immediately, rather than on the next line of
code to be executed.

pdb.post_mortem(traceback=None)
Enter post-mortem debugging of the given traceback object. If no traceback is given, it uses the one of the
exception that is currently being handled (an exception must be being handled if the default is to be used).

pdb.pm()

Enter post-mortem debugging of the exception found in sys.last_exc.

The run* functions and set_trace() are aliases for instantiating the Pdb class and calling the method of the same
name. If you want to access further features, you have to do this yourself:

class pdb.Pdb(completekey=’tab’, stdin=None, stdout=None, skip=None, nosigint=False, readrc=True)
Pdb is the debugger class.

The completekey, stdin and stdout arguments are passed to the underlying cmd.Cmd class; see the description
there.

The skip argument, if given, must be an iterable of glob-style module name patterns. The debugger will not
step into frames that originate in a module that matches one of these patterns.1

By default, Pdb sets a handler for the SIGINT signal (which is sent when the user presses Ctrl-C on the
console) when you give a continue command. This allows you to break into the debugger again by pressing
Ctrl-C. If you want Pdb not to touch the SIGINT handler, set nosigint to true.

The readrc argument defaults to true and controls whether Pdb will load .pdbrc files from the filesystem.

Example call to enable tracing with skip:

import pdb; pdb.Pdb(skip=['django.*']).set_trace()

Raises an auditing event pdb.Pdb with no arguments.

Changed in version 3.1: Added the skip parameter.

Changed in version 3.2: Added the nosigint parameter. Previously, a SIGINT handler was never set by Pdb.

Changed in version 3.6: The readrc argument.

run(statement, globals=None, locals=None)
runeval(expression, globals=None, locals=None)
runcall(function, *args, **kwds)

1 Whether a frame is considered to originate in a certain module is determined by the __name__ in the frame globals.

1852 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

set_trace()

See the documentation for the functions explained above.

28.4.1 Debugger Commands

The commands recognized by the debugger are listed below. Most commands can be abbreviated to one or two letters
as indicated; e.g. h(elp)means that either h or help can be used to enter the help command (but not he or hel, nor
H or Help or HELP). Arguments to commands must be separated by whitespace (spaces or tabs). Optional arguments
are enclosed in square brackets ([]) in the command syntax; the square brackets must not be typed. Alternatives in
the command syntax are separated by a vertical bar (|).

Entering a blank line repeats the last command entered. Exception: if the last command was a list command, the
next 11 lines are listed.

Commands that the debugger doesn’t recognize are assumed to be Python statements and are executed in the context
of the program being debugged. Python statements can also be prefixed with an exclamation point (!). This is a
powerful way to inspect the program being debugged; it is even possible to change a variable or call a function. When
an exception occurs in such a statement, the exception name is printed but the debugger’s state is not changed.

Changed in version 3.13: Expressions/Statements whose prefix is a pdb command are now correctly identified and
executed.

The debugger supports aliases. Aliases can have parameters which allows one a certain level of adaptability to the
context under examination.

Multiple commands may be entered on a single line, separated by ;;. (A single ; is not used as it is the separator
for multiple commands in a line that is passed to the Python parser.) No intelligence is applied to separating the
commands; the input is split at the first ;; pair, even if it is in the middle of a quoted string. A workaround for
strings with double semicolons is to use implicit string concatenation ';'';' or ";"";".

To set a temporary global variable, use a convenience variable. A convenience variable is a variable whose name
starts with $. For example, $foo = 1 sets a global variable $foo which you can use in the debugger session. The
convenience variables are cleared when the program resumes execution so it’s less likely to interfere with your program
compared to using normal variables like foo = 1.

There are three preset convenience variables:

• $_frame: the current frame you are debugging

• $_retval: the return value if the frame is returning

• $_exception: the exception if the frame is raising an exception

Added in version 3.12: Added the convenience variable feature.

If a file .pdbrc exists in the user’s home directory or in the current directory, it is read with 'utf-8' encoding and
executed as if it had been typed at the debugger prompt, with the exception that empty lines and lines starting with
are ignored. This is particularly useful for aliases. If both files exist, the one in the home directory is read first and
aliases defined there can be overridden by the local file.

Changed in version 3.2: .pdbrc can now contain commands that continue debugging, such as continue or next.
Previously, these commands had no effect.

Changed in version 3.11: .pdbrc is now read with 'utf-8' encoding. Previously, it was read with the system
locale encoding.

h(elp) [command]

Without argument, print the list of available commands. With a command as argument, print help about that
command. help pdb displays the full documentation (the docstring of the pdbmodule). Since the command
argument must be an identifier, help exec must be entered to get help on the ! command.

w(here)

Print a stack trace, with the most recent frame at the bottom. An arrow (>) indicates the current frame, which
determines the context of most commands.

28.4. pdb— The Python Debugger 1853

The Python Library Reference, Release 3.13.1

d(own) [count]

Move the current frame count (default one) levels down in the stack trace (to a newer frame).

u(p) [count]

Move the current frame count (default one) levels up in the stack trace (to an older frame).

b(reak) [([filename:]lineno | function) [, condition]]

With a lineno argument, set a break at line lineno in the current file. The line number may be prefixed with a
filename and a colon, to specify a breakpoint in another file (possibly one that hasn’t been loaded yet). The file is
searched on sys.path. Accepatable forms of filename are /abspath/to/file.py, relpath/file.py,
module and package.module.

With a function argument, set a break at the first executable statement within that function. function can be
any expression that evaluates to a function in the current namespace.

If a second argument is present, it is an expression whichmust evaluate to true before the breakpoint is honored.

Without argument, list all breaks, including for each breakpoint, the number of times that breakpoint has been
hit, the current ignore count, and the associated condition if any.

Each breakpoint is assigned a number to which all the other breakpoint commands refer.

tbreak [([filename:]lineno | function) [, condition]]

Temporary breakpoint, which is removed automatically when it is first hit. The arguments are the same as for
break.

cl(ear) [filename:lineno | bpnumber ...]

With a filename:lineno argument, clear all the breakpoints at this line. With a space separated list of breakpoint
numbers, clear those breakpoints. Without argument, clear all breaks (but first ask confirmation).

disable bpnumber [bpnumber ...]

Disable the breakpoints given as a space separated list of breakpoint numbers. Disabling a breakpoint means it
cannot cause the program to stop execution, but unlike clearing a breakpoint, it remains in the list of breakpoints
and can be (re-)enabled.

enable bpnumber [bpnumber ...]

Enable the breakpoints specified.

ignore bpnumber [count]

Set the ignore count for the given breakpoint number. If count is omitted, the ignore count is set to 0. A
breakpoint becomes active when the ignore count is zero. When non-zero, the count is decremented each time
the breakpoint is reached and the breakpoint is not disabled and any associated condition evaluates to true.

condition bpnumber [condition]

Set a new condition for the breakpoint, an expression which must evaluate to true before the breakpoint is
honored. If condition is absent, any existing condition is removed; i.e., the breakpoint is made unconditional.

commands [bpnumber]

Specify a list of commands for breakpoint number bpnumber. The commands themselves appear on the fol-
lowing lines. Type a line containing just end to terminate the commands. An example:

(Pdb) commands 1

(com) p some_variable

(com) end

(Pdb)

To remove all commands from a breakpoint, type commands and follow it immediately with end; that is, give
no commands.

With no bpnumber argument, commands refers to the last breakpoint set.

You can use breakpoint commands to start your program up again. Simply use the continue command, or
step, or any other command that resumes execution.

1854 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

Specifying any command resuming execution (currently continue, step, next, return, jump, quit and
their abbreviations) terminates the command list (as if that command was immediately followed by end).
This is because any time you resume execution (even with a simple next or step), you may encounter another
breakpoint—which could have its own command list, leading to ambiguities about which list to execute.

If you use the silent command in the command list, the usual message about stopping at a breakpoint is not
printed. This may be desirable for breakpoints that are to print a specific message and then continue. If none
of the other commands print anything, you see no sign that the breakpoint was reached.

s(tep)

Execute the current line, stop at the first possible occasion (either in a function that is called or on the next line
in the current function).

n(ext)

Continue execution until the next line in the current function is reached or it returns. (The difference between
next and step is that step stops inside a called function, while next executes called functions at (nearly)
full speed, only stopping at the next line in the current function.)

unt(il) [lineno]

Without argument, continue execution until the line with a number greater than the current one is reached.

With lineno, continue execution until a line with a number greater or equal to lineno is reached. In both cases,
also stop when the current frame returns.

Changed in version 3.2: Allow giving an explicit line number.

r(eturn)

Continue execution until the current function returns.

c(ont(inue))

Continue execution, only stop when a breakpoint is encountered.

j(ump) lineno

Set the next line that will be executed. Only available in the bottom-most frame. This lets you jump back and
execute code again, or jump forward to skip code that you don’t want to run.

It should be noted that not all jumps are allowed – for instance it is not possible to jump into the middle of a
for loop or out of a finally clause.

l(ist) [first[, last]]

List source code for the current file. Without arguments, list 11 lines around the current line or continue the
previous listing. With . as argument, list 11 lines around the current line. With one argument, list 11 lines
around at that line. With two arguments, list the given range; if the second argument is less than the first, it is
interpreted as a count.

The current line in the current frame is indicated by ->. If an exception is being debugged, the line where the
exception was originally raised or propagated is indicated by >>, if it differs from the current line.

Changed in version 3.2: Added the >> marker.

ll | longlist

List all source code for the current function or frame. Interesting lines are marked as for list.

Added in version 3.2.

a(rgs)

Print the arguments of the current function and their current values.

p expression

Evaluate expression in the current context and print its value.

Note

print() can also be used, but is not a debugger command— this executes the Python print() function.

28.4. pdb— The Python Debugger 1855

The Python Library Reference, Release 3.13.1

pp expression

Like the p command, except the value of expression is pretty-printed using the pprint module.

whatis expression

Print the type of expression.

source expression

Try to get source code of expression and display it.

Added in version 3.2.

display [expression]

Display the value of expression if it changed, each time execution stops in the current frame.

Without expression, list all display expressions for the current frame.

Note

Display evaluates expression and compares to the result of the previous evaluation of expression, so when
the result is mutable, display may not be able to pick up the changes.

Example:

lst = []

breakpoint()

pass

lst.append(1)

print(lst)

Display won’t realize lst has been changed because the result of evaluation is modified in place by lst.
append(1) before being compared:

> example.py(3)<module>()

-> pass

(Pdb) display lst

display lst: []

(Pdb) n

> example.py(4)<module>()

-> lst.append(1)

(Pdb) n

> example.py(5)<module>()

-> print(lst)

(Pdb)

You can do some tricks with copy mechanism to make it work:

> example.py(3)<module>()

-> pass

(Pdb) display lst[:]

display lst[:]: []

(Pdb) n

> example.py(4)<module>()

-> lst.append(1)

(Pdb) n

> example.py(5)<module>()

-> print(lst)

display lst[:]: [1] [old: []]

(Pdb)

1856 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

Added in version 3.2.

undisplay [expression]

Do not display expression anymore in the current frame. Without expression, clear all display expressions for
the current frame.

Added in version 3.2.

interact

Start an interactive interpreter (using the code module) in a new global namespace initialised from the local
and global namespaces for the current scope. Use exit() or quit() to exit the interpreter and return to the
debugger.

Note

As interact creates a new dedicated namespace for code execution, assignments to variables will not
affect the original namespaces. However, modifications to any referenced mutable objects will be reflected
in the original namespaces as usual.

Added in version 3.2.

Changed in version 3.13: exit() and quit() can be used to exit the interact command.

Changed in version 3.13: interact directs its output to the debugger’s output channel rather than sys.

stderr.

alias [name [command]]

Create an alias called name that executes command. The commandmust not be enclosed in quotes. Replaceable
parameters can be indicated by %1, %2, … and %9, while %* is replaced by all the parameters. If command is
omitted, the current alias for name is shown. If no arguments are given, all aliases are listed.

Aliases may be nested and can contain anything that can be legally typed at the pdb prompt. Note that internal
pdb commands can be overridden by aliases. Such a command is then hidden until the alias is removed.
Aliasing is recursively applied to the first word of the command line; all other words in the line are left alone.

As an example, here are two useful aliases (especially when placed in the .pdbrc file):

Print instance variables (usage "pi classInst")

alias pi for k in %1.__dict__.keys(): print(f"%1.{k} = {%1.__dict__[k]}")

Print instance variables in self

alias ps pi self

unalias name

Delete the specified alias name.

! statement

Execute the (one-line) statement in the context of the current stack frame. The exclamation point can be
omitted unless the first word of the statement resembles a debugger command, e.g.:

(Pdb) ! n=42

(Pdb)

To set a global variable, you can prefix the assignment command with a global statement on the same line,
e.g.:

(Pdb) global list_options; list_options = ['-l']

(Pdb)

run [args ...]

28.4. pdb— The Python Debugger 1857

The Python Library Reference, Release 3.13.1

restart [args ...]

Restart the debugged Python program. If args is supplied, it is split with shlex and the result is used as the
new sys.argv. History, breakpoints, actions and debugger options are preserved. restart is an alias for
run.

q(uit)

Quit from the debugger. The program being executed is aborted.

debug code

Enter a recursive debugger that steps through code (which is an arbitrary expression or statement to be executed
in the current environment).

retval

Print the return value for the last return of the current function.

exceptions [excnumber]

List or jump between chained exceptions.

When using pdb.pm() or Pdb.post_mortem(...) with a chained exception instead of a traceback, it
allows the user to move between the chained exceptions using exceptions command to list exceptions, and
exception <number> to switch to that exception.

Example:

def out():

try:

middle()

except Exception as e:

raise ValueError("reraise middle() error") from e

def middle():

try:

return inner(0)

except Exception as e:

raise ValueError("Middle fail")

def inner(x):

1 / x

out()

calling pdb.pm() will allow to move between exceptions:

> example.py(5)out()

-> raise ValueError("reraise middle() error") from e

(Pdb) exceptions

0 ZeroDivisionError('division by zero')

1 ValueError('Middle fail')

> 2 ValueError('reraise middle() error')

(Pdb) exceptions 0

> example.py(16)inner()

-> 1 / x

(Pdb) up

> example.py(10)middle()

-> return inner(0)

Added in version 3.13.

1858 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

28.5 The Python Profilers

Source code: Lib/profile.py and Lib/pstats.py

28.5.1 Introduction to the profilers

cProfile and profile provide deterministic profiling of Python programs. A profile is a set of statistics that
describes how often and for how long various parts of the program executed. These statistics can be formatted into
reports via the pstats module.

The Python standard library provides two different implementations of the same profiling interface:

1. cProfile is recommended for most users; it’s a C extension with reasonable overhead that makes it suitable
for profiling long-running programs. Based on lsprof, contributed by Brett Rosen and Ted Czotter.

2. profile, a pure Pythonmodule whose interface is imitated by cProfile, but which adds significant overhead
to profiled programs. If you’re trying to extend the profiler in some way, the task might be easier with this
module. Originally designed and written by Jim Roskind.

Note

The profiler modules are designed to provide an execution profile for a given program, not for benchmarking
purposes (for that, there is timeit for reasonably accurate results). This particularly applies to benchmarking
Python code against C code: the profilers introduce overhead for Python code, but not for C-level functions, and
so the C code would seem faster than any Python one.

28.5.2 Instant User’s Manual

This section is provided for users that “don’t want to read the manual.” It provides a very brief overview, and allows
a user to rapidly perform profiling on an existing application.

To profile a function that takes a single argument, you can do:

import cProfile

import re

cProfile.run('re.compile("foo|bar")')

(Use profile instead of cProfile if the latter is not available on your system.)

The above action would run re.compile() and print profile results like the following:

214 function calls (207 primitive calls) in 0.002 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.000 0.000 0.002 0.002 {built-in method builtins.exec}

1 0.000 0.000 0.001 0.001 <string>:1(<module>)

1 0.000 0.000 0.001 0.001 __init__.py:250(compile)

1 0.000 0.000 0.001 0.001 __init__.py:289(_compile)

1 0.000 0.000 0.000 0.000 _compiler.py:759(compile)

1 0.000 0.000 0.000 0.000 _parser.py:937(parse)

1 0.000 0.000 0.000 0.000 _compiler.py:598(_code)

1 0.000 0.000 0.000 0.000 _parser.py:435(_parse_sub)

The first line indicates that 214 calls were monitored. Of those calls, 207 were primitive, meaning that the call was
not induced via recursion. The next line: Ordered by: cumulative time indicates the output is sorted by the
cumtime values. The column headings include:

28.5. The Python Profilers 1859

https://github.com/python/cpython/tree/3.13/Lib/profile.py
https://github.com/python/cpython/tree/3.13/Lib/pstats.py

The Python Library Reference, Release 3.13.1

ncalls
for the number of calls.

tottime
for the total time spent in the given function (and excluding time made in calls to sub-functions)

percall
is the quotient of tottime divided by ncalls

cumtime
is the cumulative time spent in this and all subfunctions (from invocation till exit). This figure is accurate even
for recursive functions.

percall
is the quotient of cumtime divided by primitive calls

filename:lineno(function)
provides the respective data of each function

When there are two numbers in the first column (for example 3/1), it means that the function recursed. The second
value is the number of primitive calls and the former is the total number of calls. Note that when the function does
not recurse, these two values are the same, and only the single figure is printed.

Instead of printing the output at the end of the profile run, you can save the results to a file by specifying a filename
to the run() function:

import cProfile

import re

cProfile.run('re.compile("foo|bar")', 'restats')

The pstats.Stats class reads profile results from a file and formats them in various ways.

The files cProfile and profile can also be invoked as a script to profile another script. For example:

python -m cProfile [-o output_file] [-s sort_order] (-m module | myscript.py)

-o writes the profile results to a file instead of to stdout

-s specifies one of the sort_stats() sort values to sort the output by. This only applies when -o is not supplied.

-m specifies that a module is being profiled instead of a script.

Added in version 3.7: Added the -m option to cProfile.

Added in version 3.8: Added the -m option to profile.

The pstatsmodule’s Stats class has a variety of methods for manipulating and printing the data saved into a profile
results file:

import pstats

from pstats import SortKey

p = pstats.Stats('restats')

p.strip_dirs().sort_stats(-1).print_stats()

The strip_dirs()method removed the extraneous path from all the module names. The sort_stats()method
sorted all the entries according to the standardmodule/line/name string that is printed. The print_stats()method
printed out all the statistics. You might try the following sort calls:

p.sort_stats(SortKey.NAME)

p.print_stats()

The first call will actually sort the list by function name, and the second call will print out the statistics. The following
are some interesting calls to experiment with:

p.sort_stats(SortKey.CUMULATIVE).print_stats(10)

1860 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

This sorts the profile by cumulative time in a function, and then only prints the ten most significant lines. If you want
to understand what algorithms are taking time, the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of time, you would do:

p.sort_stats(SortKey.TIME).print_stats(10)

to sort according to time spent within each function, and then print the statistics for the top ten functions.

You might also try:

p.sort_stats(SortKey.FILENAME).print_stats('__init__')

This will sort all the statistics by file name, and then print out statistics for only the class init methods (since they are
spelled with __init__ in them). As one final example, you could try:

p.sort_stats(SortKey.TIME, SortKey.CUMULATIVE).print_stats(.5, 'init')

This line sorts statistics with a primary key of time, and a secondary key of cumulative time, and then prints out
some of the statistics. To be specific, the list is first culled down to 50% (re: .5) of its original size, then only lines
containing init are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could now (p is still sorted according to the last
criteria) do:

p.print_callers(.5, 'init')

and you would get a list of callers for each of the listed functions.

If you want more functionality, you’re going to have to read the manual, or guess what the following functions do:

p.print_callees()

p.add('restats')

Invoked as a script, the pstats module is a statistics browser for reading and examining profile dumps. It has a
simple line-oriented interface (implemented using cmd) and interactive help.

28.5.3 profile and cProfile Module Reference

Both the profile and cProfile modules provide the following functions:

profile.run(command, filename=None, sort=-1)
This function takes a single argument that can be passed to the exec() function, and an optional file name. In
all cases this routine executes:

exec(command, __main__.__dict__, __main__.__dict__)

and gathers profiling statistics from the execution. If no file name is present, then this function automatically
creates a Stats instance and prints a simple profiling report. If the sort value is specified, it is passed to this
Stats instance to control how the results are sorted.

profile.runctx(command, globals, locals, filename=None, sort=-1)
This function is similar to run(), with added arguments to supply the globals and locals mappings for the
command string. This routine executes:

exec(command, globals, locals)

and gathers profiling statistics as in the run() function above.

class profile.Profile(timer=None, timeunit=0.0, subcalls=True, builtins=True)
This class is normally only used if more precise control over profiling is needed than what the cProfile.
run() function provides.

28.5. The Python Profilers 1861

The Python Library Reference, Release 3.13.1

A custom timer can be supplied for measuring how long code takes to run via the timer argument. This must be
a function that returns a single number representing the current time. If the number is an integer, the timeunit
specifies a multiplier that specifies the duration of each unit of time. For example, if the timer returns times
measured in thousands of seconds, the time unit would be .001.

Directly using the Profile class allows formatting profile results without writing the profile data to a file:

import cProfile, pstats, io

from pstats import SortKey

pr = cProfile.Profile()

pr.enable()

... do something ...

pr.disable()

s = io.StringIO()

sortby = SortKey.CUMULATIVE

ps = pstats.Stats(pr, stream=s).sort_stats(sortby)

ps.print_stats()

print(s.getvalue())

The Profile class can also be used as a context manager (supported only in cProfile module. see Context
Manager Types):

import cProfile

with cProfile.Profile() as pr:

... do something ...

pr.print_stats()

Changed in version 3.8: Added context manager support.

enable()

Start collecting profiling data. Only in cProfile.

disable()

Stop collecting profiling data. Only in cProfile.

create_stats()

Stop collecting profiling data and record the results internally as the current profile.

print_stats(sort=-1)
Create a Stats object based on the current profile and print the results to stdout.

The sort parameter specifies the sorting order of the displayed statistics. It accepts a single key or a tuple
of keys to enable multi-level sorting, as in Stats.sort_stats.

Added in version 3.13: print_stats() now accepts a tuple of keys.

dump_stats(filename)
Write the results of the current profile to filename.

run(cmd)

Profile the cmd via exec().

runctx(cmd, globals, locals)
Profile the cmd via exec() with the specified global and local environment.

runcall(func, / , *args, **kwargs)
Profile func(*args, **kwargs)

Note that profiling will only work if the called command/function actually returns. If the interpreter is terminated
(e.g. via a sys.exit() call during the called command/function execution) no profiling results will be printed.

1862 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

28.5.4 The Stats Class

Analysis of the profiler data is done using the Stats class.

class pstats.Stats(*filenames or profile, stream=sys.stdout)
This class constructor creates an instance of a “statistics object” from a filename (or list of filenames) or from
a Profile instance. Output will be printed to the stream specified by stream.

The file selected by the above constructor must have been created by the corresponding version of profile
or cProfile. To be specific, there is no file compatibility guaranteed with future versions of this profiler, and
there is no compatibility with files produced by other profilers, or the same profiler run on a different operating
system. If several files are provided, all the statistics for identical functions will be coalesced, so that an overall
view of several processes can be considered in a single report. If additional files need to be combined with
data in an existing Stats object, the add() method can be used.

Instead of reading the profile data from a file, a cProfile.Profile or profile.Profile object can be
used as the profile data source.

Stats objects have the following methods:

strip_dirs()

This method for the Stats class removes all leading path information from file names. It is very useful
in reducing the size of the printout to fit within (close to) 80 columns. This method modifies the object,
and the stripped information is lost. After performing a strip operation, the object is considered to have
its entries in a “random” order, as it was just after object initialization and loading. If strip_dirs()
causes two function names to be indistinguishable (they are on the same line of the same filename, and
have the same function name), then the statistics for these two entries are accumulated into a single entry.

add(*filenames)
This method of the Stats class accumulates additional profiling information into the current profiling
object. Its arguments should refer to filenames created by the corresponding version of profile.run()
or cProfile.run(). Statistics for identically named (re: file, line, name) functions are automatically
accumulated into single function statistics.

dump_stats(filename)
Save the data loaded into the Stats object to a file named filename. The file is created if it does not
exist, and is overwritten if it already exists. This is equivalent to the method of the same name on the
profile.Profile and cProfile.Profile classes.

sort_stats(*keys)
This method modifies the Stats object by sorting it according to the supplied criteria. The argument
can be either a string or a SortKey enum identifying the basis of a sort (example: 'time', 'name',
SortKey.TIME or SortKey.NAME). The SortKey enums argument have advantage over the string ar-
gument in that it is more robust and less error prone.

When more than one key is provided, then additional keys are used as secondary criteria when there
is equality in all keys selected before them. For example, sort_stats(SortKey.NAME, SortKey.

FILE) will sort all the entries according to their function name, and resolve all ties (identical function
names) by sorting by file name.

For the string argument, abbreviations can be used for any key names, as long as the abbreviation is
unambiguous.

The following are the valid string and SortKey:

28.5. The Python Profilers 1863

The Python Library Reference, Release 3.13.1

Valid String Arg Valid enum Arg Meaning

'calls' SortKey.CALLS call count
'cumulative' SortKey.CUMULATIVE cumulative time
'cumtime' N/A cumulative time
'file' N/A file name
'filename' SortKey.FILENAME file name
'module' N/A file name
'ncalls' N/A call count
'pcalls' SortKey.PCALLS primitive call count
'line' SortKey.LINE line number
'name' SortKey.NAME function name
'nfl' SortKey.NFL name/file/line
'stdname' SortKey.STDNAME standard name
'time' SortKey.TIME internal time
'tottime' N/A internal time

Note that all sorts on statistics are in descending order (placing most time consuming items first), where as
name, file, and line number searches are in ascending order (alphabetical). The subtle distinction between
SortKey.NFL and SortKey.STDNAME is that the standard name is a sort of the name as printed, which
means that the embedded line numbers get compared in an odd way. For example, lines 3, 20, and 40
would (if the file names were the same) appear in the string order 20, 3 and 40. In contrast, SortKey.
NFL does a numeric compare of the line numbers. In fact, sort_stats(SortKey.NFL) is the same
as sort_stats(SortKey.NAME, SortKey.FILENAME, SortKey.LINE).

For backward-compatibility reasons, the numeric arguments -1, 0, 1, and 2 are permitted. They are
interpreted as 'stdname', 'calls', 'time', and 'cumulative' respectively. If this old style format
(numeric) is used, only one sort key (the numeric key) will be used, and additional arguments will be
silently ignored.

Added in version 3.7: Added the SortKey enum.

reverse_order()

This method for the Stats class reverses the ordering of the basic list within the object. Note that by
default ascending vs descending order is properly selected based on the sort key of choice.

print_stats(*restrictions)
This method for the Stats class prints out a report as described in the profile.run() definition.

The order of the printing is based on the last sort_stats() operation done on the object (subject to
caveats in add() and strip_dirs()).

The arguments provided (if any) can be used to limit the list down to the significant entries. Initially, the
list is taken to be the complete set of profiled functions. Each restriction is either an integer (to select a
count of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines), or a
string that will interpreted as a regular expression (to pattern match the standard name that is printed).
If several restrictions are provided, then they are applied sequentially. For example:

print_stats(.1, 'foo:')

would first limit the printing to first 10% of list, and then only print functions that were part of filename
.*foo:. In contrast, the command:

print_stats('foo:', .1)

would limit the list to all functions having file names .*foo:, and then proceed to only print the first
10% of them.

print_callers(*restrictions)

This method for the Stats class prints a list of all functions that called each function in the profiled

1864 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

database. The ordering is identical to that provided by print_stats(), and the definition of the re-
stricting argument is also identical. Each caller is reported on its own line. The format differs slightly
depending on the profiler that produced the stats:

• With profile, a number is shown in parentheses after each caller to show how many times this
specific call was made. For convenience, a second non-parenthesized number repeats the cumulative
time spent in the function at the right.

• With cProfile, each caller is preceded by three numbers: the number of times this specific call
was made, and the total and cumulative times spent in the current function while it was invoked by
this specific caller.

print_callees(*restrictions)

This method for the Stats class prints a list of all function that were called by the indicated function.
Aside from this reversal of direction of calls (re: called vs was called by), the arguments and ordering
are identical to the print_callers() method.

get_stats_profile()

This method returns an instance of StatsProfile, which contains a mapping of function names to instances
of FunctionProfile. Each FunctionProfile instance holds information related to the function’s profile such
as how long the function took to run, how many times it was called, etc…

Added in version 3.9: Added the following dataclasses: StatsProfile, FunctionProfile. Added the follow-
ing function: get_stats_profile.

28.5.5 What Is Deterministic Profiling?

Deterministic profiling is meant to reflect the fact that all function call, function return, and exception events are
monitored, and precise timings are made for the intervals between these events (during which time the user’s code
is executing). In contrast, statistical profiling (which is not done by this module) randomly samples the effective
instruction pointer, and deduces where time is being spent. The latter technique traditionally involves less overhead
(as the code does not need to be instrumented), but provides only relative indications of where time is being spent.

In Python, since there is an interpreter active during execution, the presence of instrumented code is not required
in order to do deterministic profiling. Python automatically provides a hook (optional callback) for each event. In
addition, the interpreted nature of Python tends to add so much overhead to execution, that deterministic profiling
tends to only add small processing overhead in typical applications. The result is that deterministic profiling is not
that expensive, yet provides extensive run time statistics about the execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts), and to identify possible inline-expansion
points (high call counts). Internal time statistics can be used to identify “hot loops” that should be carefully optimized.
Cumulative time statistics should be used to identify high level errors in the selection of algorithms. Note that the
unusual handling of cumulative times in this profiler allows statistics for recursive implementations of algorithms to
be directly compared to iterative implementations.

28.5.6 Limitations

One limitation has to do with accuracy of timing information. There is a fundamental problem with deterministic
profilers involving accuracy. The most obvious restriction is that the underlying “clock” is only ticking at a rate
(typically) of about .001 seconds. Hence no measurements will be more accurate than the underlying clock. If
enough measurements are taken, then the “error” will tend to average out. Unfortunately, removing this first error
induces a second source of error.

The second problem is that it “takes a while” from when an event is dispatched until the profiler’s call to get the time
actually gets the state of the clock. Similarly, there is a certain lag when exiting the profiler event handler from the
time that the clock’s value was obtained (and then squirreled away), until the user’s code is once again executing. As
a result, functions that are called many times, or call many functions, will typically accumulate this error. The error
that accumulates in this fashion is typically less than the accuracy of the clock (less than one clock tick), but it can
accumulate and become very significant.

The problem is more important with profile than with the lower-overhead cProfile. For this reason, profile
provides a means of calibrating itself for a given platform so that this error can be probabilistically (on the average)

28.5. The Python Profilers 1865

The Python Library Reference, Release 3.13.1

removed. After the profiler is calibrated, it will be more accurate (in a least square sense), but it will sometimes
produce negative numbers (when call counts are exceptionally low, and the gods of probability work against you :-).
) Do not be alarmed by negative numbers in the profile. They should only appear if you have calibrated your profiler,
and the results are actually better than without calibration.

28.5.7 Calibration

The profiler of the profile module subtracts a constant from each event handling time to compensate for the
overhead of calling the time function, and socking away the results. By default, the constant is 0. The following
procedure can be used to obtain a better constant for a given platform (see Limitations).

import profile

pr = profile.Profile()

for i in range(5):

print(pr.calibrate(10000))

The method executes the number of Python calls given by the argument, directly and again under the profiler, mea-
suring the time for both. It then computes the hidden overhead per profiler event, and returns that as a float. For
example, on a 1.8Ghz Intel Core i5 running macOS, and using Python’s time.process_time() as the timer, the magical
number is about 4.04e-6.

The object of this exercise is to get a fairly consistent result. If your computer is very fast, or your timer function has
poor resolution, you might have to pass 100000, or even 1000000, to get consistent results.

When you have a consistent answer, there are three ways you can use it:

import profile

1. Apply computed bias to all Profile instances created hereafter.

profile.Profile.bias = your_computed_bias

2. Apply computed bias to a specific Profile instance.

pr = profile.Profile()

pr.bias = your_computed_bias

3. Specify computed bias in instance constructor.

pr = profile.Profile(bias=your_computed_bias)

If you have a choice, you are better off choosing a smaller constant, and then your results will “less often” show up
as negative in profile statistics.

28.5.8 Using a custom timer

If you want to change how current time is determined (for example, to force use of wall-clock time or elapsed process
time), pass the timing function you want to the Profile class constructor:

pr = profile.Profile(your_time_func)

The resulting profiler will then call your_time_func. Depending on whether you are using profile.Profile
or cProfile.Profile, your_time_func’s return value will be interpreted differently:

profile.Profile

your_time_func should return a single number, or a list of numbers whose sum is the current time (like
what os.times() returns). If the function returns a single time number, or the list of returned numbers has
length 2, then you will get an especially fast version of the dispatch routine.

Be warned that you should calibrate the profiler class for the timer function that you choose (see Calibration).
For most machines, a timer that returns a lone integer value will provide the best results in terms of low
overhead during profiling. (os.times() is pretty bad, as it returns a tuple of floating-point values). If you
want to substitute a better timer in the cleanest fashion, derive a class and hardwire a replacement dispatch
method that best handles your timer call, along with the appropriate calibration constant.

1866 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

cProfile.Profile

your_time_func should return a single number. If it returns integers, you can also invoke the class
constructor with a second argument specifying the real duration of one unit of time. For example, if
your_integer_time_func returns times measured in thousands of seconds, you would construct the
Profile instance as follows:

pr = cProfile.Profile(your_integer_time_func, 0.001)

As the cProfile.Profile class cannot be calibrated, custom timer functions should be used with care and
should be as fast as possible. For the best results with a custom timer, it might be necessary to hard-code it in
the C source of the internal _lsprof module.

Python 3.3 adds several new functions in time that can be used to make precise measurements of process or wall-
clock time. For example, see time.perf_counter().

28.6 timeit—Measure execution time of small code snippets

Source code: Lib/timeit.py

This module provides a simple way to time small bits of Python code. It has both a Command-Line Interface as well as
a callable one. It avoids a number of common traps for measuring execution times. See also Tim Peters’ introduction
to the “Algorithms” chapter in the second edition of Python Cookbook, published by O’Reilly.

28.6.1 Basic Examples

The following example shows how the Command-Line Interface can be used to compare three different expressions:

$ python -m timeit "'-'.join(str(n) for n in range(100))"

10000 loops, best of 5: 30.2 usec per loop

$ python -m timeit "'-'.join([str(n) for n in range(100)])"

10000 loops, best of 5: 27.5 usec per loop

$ python -m timeit "'-'.join(map(str, range(100)))"

10000 loops, best of 5: 23.2 usec per loop

This can be achieved from the Python Interface with:

>>> import timeit

>>> timeit.timeit('"-".join(str(n) for n in range(100))', number=10000)

0.3018611848820001

>>> timeit.timeit('"-".join([str(n) for n in range(100)])', number=10000)

0.2727368790656328

>>> timeit.timeit('"-".join(map(str, range(100)))', number=10000)

0.23702679807320237

A callable can also be passed from the Python Interface:

>>> timeit.timeit(lambda: "-".join(map(str, range(100))), number=10000)

0.19665591977536678

Note however that timeit() will automatically determine the number of repetitions only when the command-line
interface is used. In the Examples section you can find more advanced examples.

28.6.2 Python Interface

The module defines three convenience functions and a public class:

28.6. timeit—Measure execution time of small code snippets 1867

https://github.com/python/cpython/tree/3.13/Lib/timeit.py

The Python Library Reference, Release 3.13.1

timeit.timeit(stmt=’pass’, setup=’pass’, timer=<default timer>, number=1000000, globals=None)
Create a Timer instance with the given statement, setup code and timer function and run its timeit()method
with number executions. The optional globals argument specifies a namespace in which to execute the code.

Changed in version 3.5: The optional globals parameter was added.

timeit.repeat(stmt=’pass’, setup=’pass’, timer=<default timer>, repeat=5, number=1000000, globals=None)
Create a Timer instance with the given statement, setup code and timer function and run its repeat()method
with the given repeat count and number executions. The optional globals argument specifies a namespace in
which to execute the code.

Changed in version 3.5: The optional globals parameter was added.

Changed in version 3.7: Default value of repeat changed from 3 to 5.

timeit.default_timer()

The default timer, which is always time.perf_counter(), returns float seconds. An alternative,
time.perf_counter_ns, returns integer nanoseconds.

Changed in version 3.3: time.perf_counter() is now the default timer.

class timeit.Timer(stmt=’pass’, setup=’pass’, timer=<timer function>, globals=None)
Class for timing execution speed of small code snippets.

The constructor takes a statement to be timed, an additional statement used for setup, and a timer function.
Both statements default to 'pass'; the timer function is platform-dependent (see the module doc string). stmt
and setupmay also contain multiple statements separated by ; or newlines, as long as they don’t contain multi-
line string literals. The statement will by default be executed within timeit’s namespace; this behavior can be
controlled by passing a namespace to globals.

To measure the execution time of the first statement, use the timeit() method. The repeat() and
autorange() methods are convenience methods to call timeit() multiple times.

The execution time of setup is excluded from the overall timed execution run.

The stmt and setup parameters can also take objects that are callable without arguments. This will embed calls
to them in a timer function that will then be executed by timeit(). Note that the timing overhead is a little
larger in this case because of the extra function calls.

Changed in version 3.5: The optional globals parameter was added.

timeit(number=1000000)
Time number executions of the main statement. This executes the setup statement once, and then returns
the time it takes to execute the main statement a number of times. The default timer returns seconds
as a float. The argument is the number of times through the loop, defaulting to one million. The main
statement, the setup statement and the timer function to be used are passed to the constructor.

Note

By default, timeit() temporarily turns off garbage collection during the timing. The advantage of
this approach is that it makes independent timings more comparable. The disadvantage is that GC
may be an important component of the performance of the function being measured. If so, GC can
be re-enabled as the first statement in the setup string. For example:

timeit.Timer('for i in range(10): oct(i)', 'gc.enable()').timeit()

autorange(callback=None)
Automatically determine how many times to call timeit().

This is a convenience function that calls timeit() repeatedly so that the total time >= 0.2 second,
returning the eventual (number of loops, time taken for that number of loops). It calls timeit() with
increasing numbers from the sequence 1, 2, 5, 10, 20, 50, … until the time taken is at least 0.2 seconds.

1868 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

If callback is given and is not None, it will be called after each trial with two arguments:
callback(number, time_taken).

Added in version 3.6.

repeat(repeat=5, number=1000000)
Call timeit() a few times.

This is a convenience function that calls the timeit() repeatedly, returning a list of results. The first
argument specifies how many times to call timeit(). The second argument specifies the number argu-
ment for timeit().

Note

It’s tempting to calculate mean and standard deviation from the result vector and report these. How-
ever, this is not very useful. In a typical case, the lowest value gives a lower bound for how fast your
machine can run the given code snippet; higher values in the result vector are typically not caused by
variability in Python’s speed, but by other processes interfering with your timing accuracy. So the
min() of the result is probably the only number you should be interested in. After that, you should
look at the entire vector and apply common sense rather than statistics.

Changed in version 3.7: Default value of repeat changed from 3 to 5.

print_exc(file=None)
Helper to print a traceback from the timed code.

Typical use:

t = Timer(...) # outside the try/except

try:

t.timeit(...) # or t.repeat(...)

except Exception:

t.print_exc()

The advantage over the standard traceback is that source lines in the compiled template will be displayed.
The optional file argument directs where the traceback is sent; it defaults to sys.stderr.

28.6.3 Command-Line Interface

When called as a program from the command line, the following form is used:

python -m timeit [-n N] [-r N] [-u U] [-s S] [-p] [-v] [-h] [statement ...]

Where the following options are understood:

-n N, --number=N

how many times to execute ‘statement’

-r N, --repeat=N

how many times to repeat the timer (default 5)

-s S, --setup=S

statement to be executed once initially (default pass)

-p, --process

measure process time, not wallclock time, using time.process_time() instead of time.

perf_counter(), which is the default

Added in version 3.3.

28.6. timeit—Measure execution time of small code snippets 1869

The Python Library Reference, Release 3.13.1

-u, --unit=U

specify a time unit for timer output; can select nsec, usec, msec, or sec

Added in version 3.5.

-v, --verbose

print raw timing results; repeat for more digits precision

-h, --help

print a short usage message and exit

A multi-line statement may be given by specifying each line as a separate statement argument; indented lines are
possible by enclosing an argument in quotes and using leading spaces. Multiple -s options are treated similarly.

If -n is not given, a suitable number of loops is calculated by trying increasing numbers from the sequence 1, 2, 5,
10, 20, 50, … until the total time is at least 0.2 seconds.

default_timer() measurements can be affected by other programs running on the same machine, so the best
thing to do when accurate timing is necessary is to repeat the timing a few times and use the best time. The -r option
is good for this; the default of 5 repetitions is probably enough in most cases. You can use time.process_time()
to measure CPU time.

Note

There is a certain baseline overhead associated with executing a pass statement. The code here doesn’t try to
hide it, but you should be aware of it. The baseline overhead can be measured by invoking the program without
arguments, and it might differ between Python versions.

28.6.4 Examples

It is possible to provide a setup statement that is executed only once at the beginning:

$ python -m timeit -s "text = 'sample string'; char = 'g'" "char in text"

5000000 loops, best of 5: 0.0877 usec per loop

$ python -m timeit -s "text = 'sample string'; char = 'g'" "text.find(char)"

1000000 loops, best of 5: 0.342 usec per loop

In the output, there are three fields. The loop count, which tells you how many times the statement body was run
per timing loop repetition. The repetition count (‘best of 5’) which tells you how many times the timing loop was
repeated, and finally the time the statement body took on average within the best repetition of the timing loop. That
is, the time the fastest repetition took divided by the loop count.

>>> import timeit

>>> timeit.timeit('char in text', setup='text = "sample string"; char = "g"')

0.41440500499993504

>>> timeit.timeit('text.find(char)', setup='text = "sample string"; char = "g"')

1.7246671520006203

The same can be done using the Timer class and its methods:

>>> import timeit

>>> t = timeit.Timer('char in text', setup='text = "sample string"; char = "g"')

>>> t.timeit()

0.3955516149999312

>>> t.repeat()

[0.40183617287970225, 0.37027556854118704, 0.38344867356679524, 0.3712595970846668,

↪→ 0.37866875250654886]

The following examples show how to time expressions that contain multiple lines. Here we compare the cost of using
hasattr() vs. try/except to test for missing and present object attributes:

1870 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

$ python -m timeit "try:" " str.__bool__" "except AttributeError:" " pass"

20000 loops, best of 5: 15.7 usec per loop

$ python -m timeit "if hasattr(str, '__bool__'): pass"

50000 loops, best of 5: 4.26 usec per loop

$ python -m timeit "try:" " int.__bool__" "except AttributeError:" " pass"

200000 loops, best of 5: 1.43 usec per loop

$ python -m timeit "if hasattr(int, '__bool__'): pass"

100000 loops, best of 5: 2.23 usec per loop

>>> import timeit

>>> # attribute is missing

>>> s = """\

... try:

... str.__bool__

... except AttributeError:

... pass

... """

>>> timeit.timeit(stmt=s, number=100000)

0.9138244460009446

>>> s = "if hasattr(str, '__bool__'): pass"

>>> timeit.timeit(stmt=s, number=100000)

0.5829014980008651

>>>

>>> # attribute is present

>>> s = """\

... try:

... int.__bool__

... except AttributeError:

... pass

... """

>>> timeit.timeit(stmt=s, number=100000)

0.04215312199994514

>>> s = "if hasattr(int, '__bool__'): pass"

>>> timeit.timeit(stmt=s, number=100000)

0.08588060699912603

To give the timeitmodule access to functions you define, you can pass a setup parameter which contains an import
statement:

def test():

"""Stupid test function"""

L = [i for i in range(100)]

if __name__ == '__main__':

import timeit

print(timeit.timeit("test()", setup="from __main__ import test"))

Another option is to pass globals() to the globals parameter, which will cause the code to be executed within your
current global namespace. This can be more convenient than individually specifying imports:

def f(x):

return x**2

def g(x):

return x**4

def h(x):

return x**8

(continues on next page)

28.6. timeit—Measure execution time of small code snippets 1871

The Python Library Reference, Release 3.13.1

(continued from previous page)

import timeit

print(timeit.timeit('[func(42) for func in (f,g,h)]', globals=globals()))

28.7 trace— Trace or track Python statement execution

Source code: Lib/trace.py

The trace module allows you to trace program execution, generate annotated statement coverage listings, print
caller/callee relationships and list functions executed during a program run. It can be used in another program or
from the command line.

See also

Coverage.py
A popular third-party coverage tool that provides HTML output along with advanced features such as
branch coverage.

28.7.1 Command-Line Usage

The trace module can be invoked from the command line. It can be as simple as

python -m trace --count -C . somefile.py ...

The above will execute somefile.py and generate annotated listings of all Python modules imported during the
execution into the current directory.

--help

Display usage and exit.

--version

Display the version of the module and exit.

Added in version 3.8: Added --module option that allows to run an executable module.

Main options

At least one of the following options must be specified when invoking trace. The --listfuncs option is mu-
tually exclusive with the --trace and --count options. When --listfuncs is provided, neither --count nor
--trace are accepted, and vice versa.

-c, --count

Produce a set of annotated listing files upon program completion that shows how many times each statement
was executed. See also --coverdir, --file and --no-report below.

-t, --trace

Display lines as they are executed.

-l, --listfuncs

Display the functions executed by running the program.

-r, --report

Produce an annotated list from an earlier program run that used the --count and --file option. This does
not execute any code.

-T, --trackcalls

Display the calling relationships exposed by running the program.

1872 Chapter 28. Debugging and Profiling

https://github.com/python/cpython/tree/3.13/Lib/trace.py
https://coverage.readthedocs.io/

The Python Library Reference, Release 3.13.1

Modifiers

-f, --file=<file>

Name of a file to accumulate counts over several tracing runs. Should be used with the --count option.

-C, --coverdir=<dir>

Directory where the report files go. The coverage report for package.module is written to file dir/

package/module.cover.

-m, --missing

When generating annotated listings, mark lines which were not executed with >>>>>>.

-s, --summary

When using --count or --report, write a brief summary to stdout for each file processed.

-R, --no-report

Do not generate annotated listings. This is useful if you intend to make several runs with --count, and then
produce a single set of annotated listings at the end.

-g, --timing

Prefix each line with the time since the program started. Only used while tracing.

Filters

These options may be repeated multiple times.

--ignore-module=<mod>

Ignore each of the given module names and its submodules (if it is a package). The argument can be a list of
names separated by a comma.

--ignore-dir=<dir>

Ignore all modules and packages in the named directory and subdirectories. The argument can be a list of
directories separated by os.pathsep.

28.7.2 Programmatic Interface

class trace.Trace(count=1, trace=1, countfuncs=0, countcallers=0, ignoremods=(), ignoredirs=(), infile=None,
outfile=None, timing=False)

Create an object to trace execution of a single statement or expression. All parameters are optional. count
enables counting of line numbers. trace enables line execution tracing. countfuncs enables listing of the func-
tions called during the run. countcallers enables call relationship tracking. ignoremods is a list of modules or
packages to ignore. ignoredirs is a list of directories whose modules or packages should be ignored. infile is the
name of the file from which to read stored count information. outfile is the name of the file in which to write
updated count information. timing enables a timestamp relative to when tracing was started to be displayed.

run(cmd)

Execute the command and gather statistics from the execution with the current tracing parameters. cmd
must be a string or code object, suitable for passing into exec().

runctx(cmd, globals=None, locals=None)
Execute the command and gather statistics from the execution with the current tracing parameters, in the
defined global and local environments. If not defined, globals and locals default to empty dictionaries.

runfunc(func, / , *args, **kwds)
Call funcwith the given arguments under control of the Trace object with the current tracing parameters.

results()

Return a CoverageResults object that contains the cumulative results of all previous calls to run,
runctx and runfunc for the given Trace instance. Does not reset the accumulated trace results.

28.7. trace— Trace or track Python statement execution 1873

The Python Library Reference, Release 3.13.1

class trace.CoverageResults

A container for coverage results, created by Trace.results(). Should not be created directly by the user.

update(other)

Merge in data from another CoverageResults object.

write_results(show_missing=True, summary=False, coverdir=None, *, ignore_missing_files=False)

Write coverage results. Set show_missing to show lines that had no hits. Set summary to include in the
output the coverage summary per module. coverdir specifies the directory into which the coverage result
files will be output. If None, the results for each source file are placed in its directory.

If ignore_missing_files is True, coverage counts for files that no longer exist are silently ignored. Other-
wise, a missing file will raise a FileNotFoundError.

Changed in version 3.13: Added ignore_missing_files parameter.

A simple example demonstrating the use of the programmatic interface:

import sys

import trace

create a Trace object, telling it what to ignore, and whether to

do tracing or line-counting or both.

tracer = trace.Trace(

ignoredirs=[sys.prefix, sys.exec_prefix],

trace=0,

count=1)

run the new command using the given tracer

tracer.run('main()')

make a report, placing output in the current directory

r = tracer.results()

r.write_results(show_missing=True, coverdir=".")

28.8 tracemalloc— Trace memory allocations

Added in version 3.4.

Source code: Lib/tracemalloc.py

The tracemalloc module is a debug tool to trace memory blocks allocated by Python. It provides the following
information:

• Traceback where an object was allocated

• Statistics on allocated memory blocks per filename and per line number: total size, number and average size
of allocated memory blocks

• Compute the differences between two snapshots to detect memory leaks

To trace most memory blocks allocated by Python, the module should be started as early as possible by setting
the PYTHONTRACEMALLOC environment variable to 1, or by using -X tracemalloc command line option. The
tracemalloc.start() function can be called at runtime to start tracing Python memory allocations.

By default, a trace of an allocated memory block only stores the most recent frame (1 frame). To store 25 frames at
startup: set the PYTHONTRACEMALLOC environment variable to 25, or use the -X tracemalloc=25 command line
option.

1874 Chapter 28. Debugging and Profiling

https://github.com/python/cpython/tree/3.13/Lib/tracemalloc.py

The Python Library Reference, Release 3.13.1

28.8.1 Examples

Display the top 10

Display the 10 files allocating the most memory:

import tracemalloc

tracemalloc.start()

... run your application ...

snapshot = tracemalloc.take_snapshot()

top_stats = snapshot.statistics('lineno')

print("[Top 10]")

for stat in top_stats[:10]:

print(stat)

Example of output of the Python test suite:

[Top 10]

<frozen importlib._bootstrap>:716: size=4855 KiB, count=39328, average=126 B

<frozen importlib._bootstrap>:284: size=521 KiB, count=3199, average=167 B

/usr/lib/python3.4/collections/__init__.py:368: size=244 KiB, count=2315,␣

↪→average=108 B

/usr/lib/python3.4/unittest/case.py:381: size=185 KiB, count=779, average=243 B

/usr/lib/python3.4/unittest/case.py:402: size=154 KiB, count=378, average=416 B

/usr/lib/python3.4/abc.py:133: size=88.7 KiB, count=347, average=262 B

<frozen importlib._bootstrap>:1446: size=70.4 KiB, count=911, average=79 B

<frozen importlib._bootstrap>:1454: size=52.0 KiB, count=25, average=2131 B

<string>:5: size=49.7 KiB, count=148, average=344 B

/usr/lib/python3.4/sysconfig.py:411: size=48.0 KiB, count=1, average=48.0 KiB

We can see that Python loaded 4855 KiB data (bytecode and constants) from modules and that the collections
module allocated 244 KiB to build namedtuple types.

See Snapshot.statistics() for more options.

Compute differences

Take two snapshots and display the differences:

import tracemalloc

tracemalloc.start()

... start your application ...

snapshot1 = tracemalloc.take_snapshot()

... call the function leaking memory ...

snapshot2 = tracemalloc.take_snapshot()

top_stats = snapshot2.compare_to(snapshot1, 'lineno')

print("[Top 10 differences]")

for stat in top_stats[:10]:

print(stat)

Example of output before/after running some tests of the Python test suite:

28.8. tracemalloc— Trace memory allocations 1875

The Python Library Reference, Release 3.13.1

[Top 10 differences]

<frozen importlib._bootstrap>:716: size=8173 KiB (+4428 KiB), count=71332 (+39369),

↪→ average=117 B

/usr/lib/python3.4/linecache.py:127: size=940 KiB (+940 KiB), count=8106 (+8106),␣

↪→average=119 B

/usr/lib/python3.4/unittest/case.py:571: size=298 KiB (+298 KiB), count=589 (+589),

↪→ average=519 B

<frozen importlib._bootstrap>:284: size=1005 KiB (+166 KiB), count=7423 (+1526),␣

↪→average=139 B

/usr/lib/python3.4/mimetypes.py:217: size=112 KiB (+112 KiB), count=1334 (+1334),␣

↪→average=86 B

/usr/lib/python3.4/http/server.py:848: size=96.0 KiB (+96.0 KiB), count=1 (+1),␣

↪→average=96.0 KiB

/usr/lib/python3.4/inspect.py:1465: size=83.5 KiB (+83.5 KiB), count=109 (+109),␣

↪→average=784 B

/usr/lib/python3.4/unittest/mock.py:491: size=77.7 KiB (+77.7 KiB), count=143␣

↪→(+143), average=557 B

/usr/lib/python3.4/urllib/parse.py:476: size=71.8 KiB (+71.8 KiB), count=969␣

↪→(+969), average=76 B

/usr/lib/python3.4/contextlib.py:38: size=67.2 KiB (+67.2 KiB), count=126 (+126),␣

↪→average=546 B

We can see that Python has loaded 8173 KiB of module data (bytecode and constants), and that this is 4428 KiB

more than had been loaded before the tests, when the previous snapshot was taken. Similarly, the linecachemodule
has cached 940 KiB of Python source code to format tracebacks, all of it since the previous snapshot.

If the system has little free memory, snapshots can be written on disk using the Snapshot.dump() method to
analyze the snapshot offline. Then use the Snapshot.load() method reload the snapshot.

Get the traceback of a memory block

Code to display the traceback of the biggest memory block:

import tracemalloc

Store 25 frames

tracemalloc.start(25)

... run your application ...

snapshot = tracemalloc.take_snapshot()

top_stats = snapshot.statistics('traceback')

pick the biggest memory block

stat = top_stats[0]

print("%s memory blocks: %.1f KiB" % (stat.count, stat.size / 1024))

for line in stat.traceback.format():

print(line)

Example of output of the Python test suite (traceback limited to 25 frames):

903 memory blocks: 870.1 KiB

File "<frozen importlib._bootstrap>", line 716

File "<frozen importlib._bootstrap>", line 1036

File "<frozen importlib._bootstrap>", line 934

File "<frozen importlib._bootstrap>", line 1068

File "<frozen importlib._bootstrap>", line 619

File "<frozen importlib._bootstrap>", line 1581

(continues on next page)

1876 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

(continued from previous page)

File "<frozen importlib._bootstrap>", line 1614

File "/usr/lib/python3.4/doctest.py", line 101

import pdb

File "<frozen importlib._bootstrap>", line 284

File "<frozen importlib._bootstrap>", line 938

File "<frozen importlib._bootstrap>", line 1068

File "<frozen importlib._bootstrap>", line 619

File "<frozen importlib._bootstrap>", line 1581

File "<frozen importlib._bootstrap>", line 1614

File "/usr/lib/python3.4/test/support/__init__.py", line 1728

import doctest

File "/usr/lib/python3.4/test/test_pickletools.py", line 21

support.run_doctest(pickletools)

File "/usr/lib/python3.4/test/regrtest.py", line 1276

test_runner()

File "/usr/lib/python3.4/test/regrtest.py", line 976

display_failure=not verbose)

File "/usr/lib/python3.4/test/regrtest.py", line 761

match_tests=ns.match_tests)

File "/usr/lib/python3.4/test/regrtest.py", line 1563

main()

File "/usr/lib/python3.4/test/__main__.py", line 3

regrtest.main_in_temp_cwd()

File "/usr/lib/python3.4/runpy.py", line 73

exec(code, run_globals)

File "/usr/lib/python3.4/runpy.py", line 160

"__main__", fname, loader, pkg_name)

We can see that the most memory was allocated in the importlib module to load data (bytecode and constants)
frommodules: 870.1 KiB. The traceback is where the importlib loaded data most recently: on the import pdb

line of the doctest module. The traceback may change if a new module is loaded.

Pretty top

Code to display the 10 lines allocating the most memory with a pretty output, ignoring <frozen importlib.

_bootstrap> and <unknown> files:

import linecache

import os

import tracemalloc

def display_top(snapshot, key_type='lineno', limit=10):

snapshot = snapshot.filter_traces((

tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),

tracemalloc.Filter(False, "<unknown>"),

))

top_stats = snapshot.statistics(key_type)

print("Top %s lines" % limit)

for index, stat in enumerate(top_stats[:limit], 1):

frame = stat.traceback[0]

print("#%s: %s:%s: %.1f KiB"

% (index, frame.filename, frame.lineno, stat.size / 1024))

line = linecache.getline(frame.filename, frame.lineno).strip()

if line:

print(' %s' % line)

(continues on next page)

28.8. tracemalloc— Trace memory allocations 1877

The Python Library Reference, Release 3.13.1

(continued from previous page)

other = top_stats[limit:]

if other:

size = sum(stat.size for stat in other)

print("%s other: %.1f KiB" % (len(other), size / 1024))

total = sum(stat.size for stat in top_stats)

print("Total allocated size: %.1f KiB" % (total / 1024))

tracemalloc.start()

... run your application ...

snapshot = tracemalloc.take_snapshot()

display_top(snapshot)

Example of output of the Python test suite:

Top 10 lines

#1: Lib/base64.py:414: 419.8 KiB

_b85chars2 = [(a + b) for a in _b85chars for b in _b85chars]

#2: Lib/base64.py:306: 419.8 KiB

_a85chars2 = [(a + b) for a in _a85chars for b in _a85chars]

#3: collections/__init__.py:368: 293.6 KiB

exec(class_definition, namespace)

#4: Lib/abc.py:133: 115.2 KiB

cls = super().__new__(mcls, name, bases, namespace)

#5: unittest/case.py:574: 103.1 KiB

testMethod()

#6: Lib/linecache.py:127: 95.4 KiB

lines = fp.readlines()

#7: urllib/parse.py:476: 71.8 KiB

for a in _hexdig for b in _hexdig}

#8: <string>:5: 62.0 KiB

#9: Lib/_weakrefset.py:37: 60.0 KiB

self.data = set()

#10: Lib/base64.py:142: 59.8 KiB

_b32tab2 = [a + b for a in _b32tab for b in _b32tab]

6220 other: 3602.8 KiB

Total allocated size: 5303.1 KiB

See Snapshot.statistics() for more options.

Record the current and peak size of all traced memory blocks

The following code computes two sums like 0 + 1 + 2 + ... inefficiently, by creating a list of those numbers.
This list consumes a lot of memory temporarily. We can use get_traced_memory() and reset_peak() to
observe the small memory usage after the sum is computed as well as the peakmemory usage during the computations:

import tracemalloc

tracemalloc.start()

Example code: compute a sum with a large temporary list

large_sum = sum(list(range(100000)))

first_size, first_peak = tracemalloc.get_traced_memory()

tracemalloc.reset_peak()
(continues on next page)

1878 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

(continued from previous page)

Example code: compute a sum with a small temporary list

small_sum = sum(list(range(1000)))

second_size, second_peak = tracemalloc.get_traced_memory()

print(f"{first_size=}, {first_peak=}")

print(f"{second_size=}, {second_peak=}")

Output:

first_size=664, first_peak=3592984

second_size=804, second_peak=29704

Using reset_peak() ensured we could accurately record the peak during the computation of small_sum, even
though it is much smaller than the overall peak size of memory blocks since the start() call. Without the call
to reset_peak(), second_peak would still be the peak from the computation large_sum (that is, equal to
first_peak). In this case, both peaks are much higher than the final memory usage, and which suggests we could
optimise (by removing the unnecessary call to list, and writing sum(range(...))).

28.8.2 API

Functions

tracemalloc.clear_traces()

Clear traces of memory blocks allocated by Python.

See also stop().

tracemalloc.get_object_traceback(obj)
Get the traceback where the Python object obj was allocated. Return a Traceback instance, or None if the
tracemalloc module is not tracing memory allocations or did not trace the allocation of the object.

See also gc.get_referrers() and sys.getsizeof() functions.

tracemalloc.get_traceback_limit()

Get the maximum number of frames stored in the traceback of a trace.

The tracemalloc module must be tracing memory allocations to get the limit, otherwise an exception is
raised.

The limit is set by the start() function.

tracemalloc.get_traced_memory()

Get the current size and peak size of memory blocks traced by the tracemalloc module as a tuple:
(current: int, peak: int).

tracemalloc.reset_peak()

Set the peak size of memory blocks traced by the tracemalloc module to the current size.

Do nothing if the tracemalloc module is not tracing memory allocations.

This function only modifies the recorded peak size, and does not modify or clear any traces, unlike
clear_traces(). Snapshots taken with take_snapshot() before a call to reset_peak() can be mean-
ingfully compared to snapshots taken after the call.

See also get_traced_memory().

Added in version 3.9.

tracemalloc.get_tracemalloc_memory()

Get the memory usage in bytes of the tracemalloc module used to store traces of memory blocks. Return
an int.

28.8. tracemalloc— Trace memory allocations 1879

The Python Library Reference, Release 3.13.1

tracemalloc.is_tracing()

True if the tracemalloc module is tracing Python memory allocations, False otherwise.

See also start() and stop() functions.

tracemalloc.start(nframe: int = 1)

Start tracing Python memory allocations: install hooks on Python memory allocators. Collected tracebacks
of traces will be limited to nframe frames. By default, a trace of a memory block only stores the most recent
frame: the limit is 1. nframe must be greater or equal to 1.

You can still read the original number of total frames that composed the traceback by looking at the
Traceback.total_nframe attribute.

Storing more than 1 frame is only useful to compute statistics grouped by 'traceback' or to compute cu-
mulative statistics: see the Snapshot.compare_to() and Snapshot.statistics() methods.

Storing more frames increases the memory and CPU overhead of the tracemalloc module. Use the
get_tracemalloc_memory() function to measure how much memory is used by the tracemalloc mod-
ule.

The PYTHONTRACEMALLOC environment variable (PYTHONTRACEMALLOC=NFRAME) and the -X

tracemalloc=NFRAME command line option can be used to start tracing at startup.

See also stop(), is_tracing() and get_traceback_limit() functions.

tracemalloc.stop()

Stop tracing Python memory allocations: uninstall hooks on Python memory allocators. Also clears all previ-
ously collected traces of memory blocks allocated by Python.

Call take_snapshot() function to take a snapshot of traces before clearing them.

See also start(), is_tracing() and clear_traces() functions.

tracemalloc.take_snapshot()

Take a snapshot of traces of memory blocks allocated by Python. Return a new Snapshot instance.

The snapshot does not include memory blocks allocated before the tracemalloc module started to trace
memory allocations.

Tracebacks of traces are limited to get_traceback_limit() frames. Use the nframe parameter of the
start() function to store more frames.

The tracemallocmodule must be tracing memory allocations to take a snapshot, see the start() function.

See also the get_object_traceback() function.

DomainFilter

class tracemalloc.DomainFilter(inclusive: bool, domain: int)
Filter traces of memory blocks by their address space (domain).

Added in version 3.6.

inclusive

If inclusive is True (include), match memory blocks allocated in the address space domain.

If inclusive is False (exclude), match memory blocks not allocated in the address space domain.

domain

Address space of a memory block (int). Read-only property.

Filter

1880 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

class tracemalloc.Filter(inclusive: bool, filename_pattern: str, lineno: int = None, all_frames: bool =
False, domain: int = None)

Filter on traces of memory blocks.

See the fnmatch.fnmatch() function for the syntax of filename_pattern. The '.pyc' file extension is
replaced with '.py'.

Examples:

• Filter(True, subprocess.__file__) only includes traces of the subprocess module

• Filter(False, tracemalloc.__file__) excludes traces of the tracemalloc module

• Filter(False, "<unknown>") excludes empty tracebacks

Changed in version 3.5: The '.pyo' file extension is no longer replaced with '.py'.

Changed in version 3.6: Added the domain attribute.

domain

Address space of a memory block (int or None).

tracemalloc uses the domain 0 to trace memory allocations made by Python. C extensions can use other
domains to trace other resources.

inclusive

If inclusive is True (include), only match memory blocks allocated in a file with a name matching
filename_pattern at line number lineno.

If inclusive is False (exclude), ignore memory blocks allocated in a file with a name matching
filename_pattern at line number lineno.

lineno

Line number (int) of the filter. If lineno is None, the filter matches any line number.

filename_pattern

Filename pattern of the filter (str). Read-only property.

all_frames

If all_frames is True, all frames of the traceback are checked. If all_frames is False, only the most
recent frame is checked.

This attribute has no effect if the traceback limit is 1. See the get_traceback_limit() function and
Snapshot.traceback_limit attribute.

Frame

class tracemalloc.Frame

Frame of a traceback.

The Traceback class is a sequence of Frame instances.

filename

Filename (str).

lineno

Line number (int).

Snapshot

class tracemalloc.Snapshot

Snapshot of traces of memory blocks allocated by Python.

The take_snapshot() function creates a snapshot instance.

28.8. tracemalloc— Trace memory allocations 1881

The Python Library Reference, Release 3.13.1

compare_to(old_snapshot: Snapshot, key_type: str, cumulative: bool = False)
Compute the differences with an old snapshot. Get statistics as a sorted list of StatisticDiff instances
grouped by key_type.

See the Snapshot.statistics() method for key_type and cumulative parameters.

The result is sorted from the biggest to the smallest by: absolute value of StatisticDiff.size_diff,
StatisticDiff.size, absolute value of StatisticDiff.count_diff, Statistic.count and
then by StatisticDiff.traceback.

dump(filename)

Write the snapshot into a file.

Use load() to reload the snapshot.

filter_traces(filters)
Create a new Snapshot instance with a filtered traces sequence, filters is a list of DomainFilter and
Filter instances. If filters is an empty list, return a new Snapshot instance with a copy of the traces.

All inclusive filters are applied at once, a trace is ignored if no inclusive filters match it. A trace is ignored
if at least one exclusive filter matches it.

Changed in version 3.6: DomainFilter instances are now also accepted in filters.

classmethod load(filename)
Load a snapshot from a file.

See also dump().

statistics(key_type: str, cumulative: bool = False)
Get statistics as a sorted list of Statistic instances grouped by key_type:

key_type description

'filename' filename
'lineno' filename and line number
'traceback' traceback

If cumulative is True, cumulate size and count of memory blocks of all frames of the traceback of a
trace, not only the most recent frame. The cumulative mode can only be used with key_type equals to
'filename' and 'lineno'.

The result is sorted from the biggest to the smallest by: Statistic.size, Statistic.count and
then by Statistic.traceback.

traceback_limit

Maximum number of frames stored in the traceback of traces: result of the
get_traceback_limit() when the snapshot was taken.

traces

Traces of all memory blocks allocated by Python: sequence of Trace instances.

The sequence has an undefined order. Use the Snapshot.statistics() method to get a sorted list
of statistics.

Statistic

class tracemalloc.Statistic

Statistic on memory allocations.

Snapshot.statistics() returns a list of Statistic instances.

See also the StatisticDiff class.

1882 Chapter 28. Debugging and Profiling

The Python Library Reference, Release 3.13.1

count

Number of memory blocks (int).

size

Total size of memory blocks in bytes (int).

traceback

Traceback where the memory block was allocated, Traceback instance.

StatisticDiff

class tracemalloc.StatisticDiff

Statistic difference on memory allocations between an old and a new Snapshot instance.

Snapshot.compare_to() returns a list of StatisticDiff instances. See also the Statistic class.

count

Number of memory blocks in the new snapshot (int): 0 if the memory blocks have been released in the
new snapshot.

count_diff

Difference of number of memory blocks between the old and the new snapshots (int): 0 if the memory
blocks have been allocated in the new snapshot.

size

Total size of memory blocks in bytes in the new snapshot (int): 0 if the memory blocks have been
released in the new snapshot.

size_diff

Difference of total size of memory blocks in bytes between the old and the new snapshots (int): 0 if the
memory blocks have been allocated in the new snapshot.

traceback

Traceback where the memory blocks were allocated, Traceback instance.

Trace

class tracemalloc.Trace

Trace of a memory block.

The Snapshot.traces attribute is a sequence of Trace instances.

Changed in version 3.6: Added the domain attribute.

domain

Address space of a memory block (int). Read-only property.

tracemalloc uses the domain 0 to trace memory allocations made by Python. C extensions can use other
domains to trace other resources.

size

Size of the memory block in bytes (int).

traceback

Traceback where the memory block was allocated, Traceback instance.

Traceback

28.8. tracemalloc— Trace memory allocations 1883

The Python Library Reference, Release 3.13.1

class tracemalloc.Traceback

Sequence of Frame instances sorted from the oldest frame to the most recent frame.

A traceback contains at least 1 frame. If the tracemalloc module failed to get a frame, the filename
"<unknown>" at line number 0 is used.

When a snapshot is taken, tracebacks of traces are limited to get_traceback_limit() frames. See the
take_snapshot() function. The original number of frames of the traceback is stored in the Traceback.
total_nframe attribute. That allows to know if a traceback has been truncated by the traceback limit.

The Trace.traceback attribute is an instance of Traceback instance.

Changed in version 3.7: Frames are now sorted from the oldest to the most recent, instead of most recent to
oldest.

total_nframe

Total number of frames that composed the traceback before truncation. This attribute can be set to None
if the information is not available.

Changed in version 3.9: The Traceback.total_nframe attribute was added.

format(limit=None, most_recent_first=False)
Format the traceback as a list of lines. Use the linecachemodule to retrieve lines from the source code.
If limit is set, format the limit most recent frames if limit is positive. Otherwise, format the abs(limit)
oldest frames. If most_recent_first is True, the order of the formatted frames is reversed, returning the
most recent frame first instead of last.

Similar to the traceback.format_tb() function, except that format() does not include newlines.

Example:

print("Traceback (most recent call first):")

for line in traceback:

print(line)

Output:

Traceback (most recent call first):

File "test.py", line 9

obj = Object()

File "test.py", line 12

tb = tracemalloc.get_object_traceback(f())

1884 Chapter 28. Debugging and Profiling

CHAPTER

TWENTYNINE

SOFTWARE PACKAGING AND DISTRIBUTION

These libraries help you with publishing and installing Python software. While these modules are designed to work
in conjunction with the Python Package Index, they can also be used with a local index server, or without any index
server at all.

29.1 ensurepip— Bootstrapping the pip installer

Added in version 3.4.

Source code: Lib/ensurepip

The ensurepip package provides support for bootstrapping the pip installer into an existing Python installation or
virtual environment. This bootstrapping approach reflects the fact that pip is an independent project with its own
release cycle, and the latest available stable version is bundled with maintenance and feature releases of the CPython
reference interpreter.

In most cases, end users of Python shouldn’t need to invoke this module directly (as pip should be bootstrapped
by default), but it may be needed if installing pip was skipped when installing Python (or when creating a virtual
environment) or after explicitly uninstalling pip.

Note

This module does not access the internet. All of the components needed to bootstrap pip are included as internal
parts of the package.

See also

installing-index
The end user guide for installing Python packages

PEP 453: Explicit bootstrapping of pip in Python installations
The original rationale and specification for this module.

Availability: not Android, not iOS, not WASI.

This module is not supported on mobile platforms orWebAssembly platforms.

29.1.1 Command line interface

The command line interface is invoked using the interpreter’s -m switch.

The simplest possible invocation is:

1885

https://pypi.org
https://github.com/python/cpython/tree/3.13/Lib/ensurepip
https://peps.python.org/pep-0453/

The Python Library Reference, Release 3.13.1

python -m ensurepip

This invocation will install pip if it is not already installed, but otherwise does nothing. To ensure the installed
version of pip is at least as recent as the one available in ensurepip, pass the --upgrade option:

python -m ensurepip --upgrade

By default, pip is installed into the current virtual environment (if one is active) or into the system site packages (if
there is no active virtual environment). The installation location can be controlled through two additional command
line options:

• --root dir: Installs pip relative to the given root directory rather than the root of the currently active virtual
environment (if any) or the default root for the current Python installation.

• --user: Installs pip into the user site packages directory rather than globally for the current Python installa-
tion (this option is not permitted inside an active virtual environment).

By default, the scripts pipX and pipX.Y will be installed (where X.Y stands for the version of Python used to invoke
ensurepip). The scripts installed can be controlled through two additional command line options:

• --altinstall: if an alternate installation is requested, the pipX script will not be installed.

• --default-pip: if a “default pip” installation is requested, the pip script will be installed in addition to the
two regular scripts.

Providing both of the script selection options will trigger an exception.

29.1.2 Module API

ensurepip exposes two functions for programmatic use:

ensurepip.version()

Returns a string specifying the available version of pip that will be installed when bootstrapping an environment.

ensurepip.bootstrap(root=None, upgrade=False, user=False, altinstall=False, default_pip=False, verbosity=0)
Bootstraps pip into the current or designated environment.

root specifies an alternative root directory to install relative to. If root is None, then installation uses the default
install location for the current environment.

upgrade indicates whether or not to upgrade an existing installation of an earlier version of pip to the available
version.

user indicates whether to use the user scheme rather than installing globally.

By default, the scripts pipX and pipX.Ywill be installed (where X.Y stands for the current version of Python).

If altinstall is set, then pipX will not be installed.

If default_pip is set, then pip will be installed in addition to the two regular scripts.

Setting both altinstall and default_pip will trigger ValueError.

verbosity controls the level of output to sys.stdout from the bootstrapping operation.

Raises an auditing event ensurepip.bootstrap with argument root.

Note

The bootstrapping process has side effects on both sys.path and os.environ. Invoking the command
line interface in a subprocess instead allows these side effects to be avoided.

1886 Chapter 29. Software Packaging and Distribution

The Python Library Reference, Release 3.13.1

Note

The bootstrapping process may install additional modules required by pip, but other software should not
assume those dependencies will always be present by default (as the dependencies may be removed in a
future version of pip).

29.2 venv— Creation of virtual environments

Added in version 3.3.

Source code: Lib/venv/

The venvmodule supports creating lightweight “virtual environments”, eachwith their own independent set of Python
packages installed in their site directories. A virtual environment is created on top of an existing Python installation,
known as the virtual environment’s “base” Python, and may optionally be isolated from the packages in the base
environment, so only those explicitly installed in the virtual environment are available.

When used from within a virtual environment, common installation tools such as pip will install Python packages
into a virtual environment without needing to be told to do so explicitly.

A virtual environment is (amongst other things):

• Used to contain a specific Python interpreter and software libraries and binaries which are needed to support a
project (library or application). These are by default isolated from software in other virtual environments and
Python interpreters and libraries installed in the operating system.

• Contained in a directory, conventionally named .venv or venv in the project directory, or under a container
directory for lots of virtual environments, such as ~/.virtualenvs.

• Not checked into source control systems such as Git.

• Considered as disposable – it should be simple to delete and recreate it from scratch. You don’t place any
project code in the environment.

• Not considered as movable or copyable – you just recreate the same environment in the target location.

See PEP 405 for more background on Python virtual environments.

See also

Python Packaging User Guide: Creating and using virtual environments

Availability: not Android, not iOS, not WASI.

This module is not supported on mobile platforms orWebAssembly platforms.

29.2.1 Creating virtual environments

Virtual environments are created by executing the venv module:

python -m venv /path/to/new/virtual/environment

This creates the target directory (including parent directories as needed) and places a pyvenv.cfg file in it with a
home key pointing to the Python installation from which the command was run. It also creates a bin (or Scripts
on Windows) subdirectory containing a copy or symlink of the Python executable (as appropriate for the platform
or arguments used at environment creation time). It also creates a lib/pythonX.Y/site-packages subdirectory
(on Windows, this is Libsite-packages). If an existing directory is specified, it will be re-used.

Changed in version 3.5: The use of venv is now recommended for creating virtual environments.

29.2. venv— Creation of virtual environments 1887

https://github.com/python/cpython/tree/3.13/Lib/venv/
https://pypi.org/project/pip/
https://peps.python.org/pep-0405/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#create-and-use-virtual-environments

The Python Library Reference, Release 3.13.1

Deprecated since version 3.6, removed in version 3.8: pyvenv was the recommended tool for creating virtual envi-
ronments for Python 3.3 and 3.4, and replaced in 3.5 by executing venv directly.

On Windows, invoke the venv command as follows:

PS> python -m venv C:\path\to\new\virtual\environment

The command, if run with -h, will show the available options:

usage: venv [-h] [--system-site-packages] [--symlinks | --copies] [--clear]

[--upgrade] [--without-pip] [--prompt PROMPT] [--upgrade-deps]

[--without-scm-ignore-files]

ENV_DIR [ENV_DIR ...]

Creates virtual Python environments in one or more target directories.

positional arguments:

ENV_DIR A directory to create the environment in.

options:

-h, --help show this help message and exit

--system-site-packages

Give the virtual environment access to the system

site-packages dir.

--symlinks Try to use symlinks rather than copies, when

symlinks are not the default for the platform.

--copies Try to use copies rather than symlinks, even when

symlinks are the default for the platform.

--clear Delete the contents of the environment directory

if it already exists, before environment creation.

--upgrade Upgrade the environment directory to use this

version of Python, assuming Python has been

upgraded in-place.

--without-pip Skips installing or upgrading pip in the virtual

environment (pip is bootstrapped by default)

--prompt PROMPT Provides an alternative prompt prefix for this

environment.

--upgrade-deps Upgrade core dependencies (pip) to the latest

version in PyPI

--without-scm-ignore-files

Skips adding SCM ignore files to the environment

directory (Git is supported by default).

Once an environment has been created, you may wish to activate it, e.g. by

sourcing an activate script in its bin directory.

Changed in version 3.4: Installs pip by default, added the --without-pip and --copies options.

Changed in version 3.4: In earlier versions, if the target directory already existed, an error was raised, unless the
--clear or --upgrade option was provided.

Changed in version 3.9: Add --upgrade-deps option to upgrade pip + setuptools to the latest on PyPI.

Changed in version 3.12: setuptools is no longer a core venv dependency.

Changed in version 3.13: Added the --without-scm-ignore-files option.

Changed in version 3.13: venv now creates a .gitignore file for Git by default.

1888 Chapter 29. Software Packaging and Distribution

The Python Library Reference, Release 3.13.1

Note

While symlinks are supported onWindows, they are not recommended. Of particular note is that double-clicking
python.exe in File Explorer will resolve the symlink eagerly and ignore the virtual environment.

Note

On Microsoft Windows, it may be required to enable the Activate.ps1 script by setting the execution policy
for the user. You can do this by issuing the following PowerShell command:

PS C:\> Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser

See About Execution Policies for more information.

The created pyvenv.cfg file also includes the include-system-site-packages key, set to true if venv is
run with the --system-site-packages option, false otherwise.

Unless the --without-pip option is given, ensurepip will be invoked to bootstrap pip into the virtual environ-
ment.

Multiple paths can be given to venv, in which case an identical virtual environment will be created, according to the
given options, at each provided path.

29.2.2 How venvs work

When a Python interpreter is running from a virtual environment, sys.prefix and sys.exec_prefix point to the
directories of the virtual environment, whereas sys.base_prefix and sys.base_exec_prefix point to those
of the base Python used to create the environment. It is sufficient to check sys.prefix != sys.base_prefix

to determine if the current interpreter is running from a virtual environment.

A virtual environment may be “activated” using a script in its binary directory (bin on POSIX; Scripts on Win-
dows). This will prepend that directory to your PATH, so that running python will invoke the environment’s Python
interpreter and you can run installed scripts without having to use their full path. The invocation of the activation
script is platform-specific (<venv>must be replaced by the path to the directory containing the virtual environment):

Platform Shell Command to activate virtual environment

POSIX bash/zsh $ source <venv>/bin/activate

fish $ source <venv>/bin/activate.fish

csh/tcsh $ source <venv>/bin/activate.csh

pwsh $ <venv>/bin/Activate.ps1

Windows cmd.exe C:\> <venv>\Scripts\activate.bat

PowerShell PS C:\> <venv>\Scripts\Activate.ps1

Added in version 3.4: fish and csh activation scripts.

Added in version 3.8: PowerShell activation scripts installed under POSIX for PowerShell Core support.

You don’t specifically need to activate a virtual environment, as you can just specify the full path to that environment’s
Python interpreter when invoking Python. Furthermore, all scripts installed in the environment should be runnable
without activating it.

In order to achieve this, scripts installed into virtual environments have a “shebang” line which points to the envi-
ronment’s Python interpreter, #!/<path-to-venv>/bin/python. This means that the script will run with that
interpreter regardless of the value of PATH. On Windows, “shebang” line processing is supported if you have the
launcher installed. Thus, double-clicking an installed script in a Windows Explorer window should run it with the
correct interpreter without the environment needing to be activated or on the PATH.

29.2. venv— Creation of virtual environments 1889

https://go.microsoft.com/fwlink/?LinkID=135170

The Python Library Reference, Release 3.13.1

When a virtual environment has been activated, the VIRTUAL_ENV environment variable is set to the path of the
environment. Since explicitly activating a virtual environment is not required to use it, VIRTUAL_ENV cannot be
relied upon to determine whether a virtual environment is being used.

Warning

Because scripts installed in environments should not expect the environment to be activated, their shebang lines
contain the absolute paths to their environment’s interpreters. Because of this, environments are inherently non-
portable, in the general case. You should always have a simple means of recreating an environment (for example,
if you have a requirements file requirements.txt, you can invoke pip install -r requirements.txt

using the environment’s pip to install all of the packages needed by the environment). If for any reason you need
to move the environment to a new location, you should recreate it at the desired location and delete the one at the
old location. If you move an environment because you moved a parent directory of it, you should recreate the
environment in its new location. Otherwise, software installed into the environment may not work as expected.

You can deactivate a virtual environment by typing deactivate in your shell. The exact mechanism is platform-
specific and is an internal implementation detail (typically, a script or shell function will be used).

29.2.3 API

The high-level method described above makes use of a simple API which provides mechanisms for third-party virtual
environment creators to customize environment creation according to their needs, the EnvBuilder class.

class venv.EnvBuilder(system_site_packages=False, clear=False, symlinks=False, upgrade=False,
with_pip=False, prompt=None, upgrade_deps=False, *, scm_ignore_files=frozenset())

The EnvBuilder class accepts the following keyword arguments on instantiation:

• system_site_packages – a boolean value indicating that the system Python site-packages should be avail-
able to the environment (defaults to False).

• clear – a boolean value which, if true, will delete the contents of any existing target directory, before
creating the environment.

• symlinks – a boolean value indicating whether to attempt to symlink the Python binary rather than copy-
ing.

• upgrade – a boolean value which, if true, will upgrade an existing environment with the running Python
- for use when that Python has been upgraded in-place (defaults to False).

• with_pip – a boolean value which, if true, ensures pip is installed in the virtual environment. This uses
ensurepip with the --default-pip option.

• prompt – a string to be used after virtual environment is activated (defaults to Nonewhichmeans directory
name of the environment would be used). If the special string "." is provided, the basename of the
current directory is used as the prompt.

• upgrade_deps – Update the base venv modules to the latest on PyPI

• scm_ignore_files – Create ignore files based for the specified source control managers (SCM) in the
iterable. Support is defined by having a method named create_{scm}_ignore_file. The only value
supported by default is "git" via create_git_ignore_file().

Changed in version 3.4: Added the with_pip parameter

Changed in version 3.6: Added the prompt parameter

Changed in version 3.9: Added the upgrade_deps parameter

Changed in version 3.13: Added the scm_ignore_files parameter

EnvBuilder may be used as a base class.

1890 Chapter 29. Software Packaging and Distribution

The Python Library Reference, Release 3.13.1

create(env_dir)
Create a virtual environment by specifying the target directory (absolute or relative to the current direc-
tory) which is to contain the virtual environment. The createmethod will either create the environment
in the specified directory, or raise an appropriate exception.

The createmethod of the EnvBuilder class illustrates the hooks available for subclass customization:

def create(self, env_dir):

"""

Create a virtualized Python environment in a directory.

env_dir is the target directory to create an environment in.

"""

env_dir = os.path.abspath(env_dir)

context = self.ensure_directories(env_dir)

self.create_configuration(context)

self.setup_python(context)

self.setup_scripts(context)

self.post_setup(context)

Each of the methods ensure_directories(), create_configuration(), setup_python(),
setup_scripts() and post_setup() can be overridden.

ensure_directories(env_dir)
Creates the environment directory and all necessary subdirectories that don’t already exist, and returns
a context object. This context object is just a holder for attributes (such as paths) for use by the other
methods. If the EnvBuilder is created with the arg clear=True, contents of the environment directory
will be cleared and then all necessary subdirectories will be recreated.

The returned context object is a types.SimpleNamespace with the following attributes:

• env_dir - The location of the virtual environment. Used for __VENV_DIR__ in activation scripts
(see install_scripts()).

• env_name - The name of the virtual environment. Used for __VENV_NAME__ in activation scripts
(see install_scripts()).

• prompt - The prompt to be used by the activation scripts. Used for __VENV_PROMPT__ in activation
scripts (see install_scripts()).

• executable - The underlying Python executable used by the virtual environment. This takes into
account the case where a virtual environment is created from another virtual environment.

• inc_path - The include path for the virtual environment.

• lib_path - The purelib path for the virtual environment.

• bin_path - The script path for the virtual environment.

• bin_name - The name of the script path relative to the virtual environment location. Used for
__VENV_BIN_NAME__ in activation scripts (see install_scripts()).

• env_exe - The name of the Python interpreter in the virtual environment. Used for
__VENV_PYTHON__ in activation scripts (see install_scripts()).

• env_exec_cmd - The name of the Python interpreter, taking into account filesystem redirections.
This can be used to run Python in the virtual environment.

Changed in version 3.11: The venv sysconfig installation scheme is used to construct the paths of the
created directories.

Changed in version 3.12: The attribute lib_path was added to the context, and the context object was
documented.

create_configuration(context)
Creates the pyvenv.cfg configuration file in the environment.

29.2. venv— Creation of virtual environments 1891

The Python Library Reference, Release 3.13.1

setup_python(context)
Creates a copy or symlink to the Python executable in the environment. On POSIX systems, if a specific
executable python3.x was used, symlinks to python and python3 will be created pointing to that
executable, unless files with those names already exist.

setup_scripts(context)
Installs activation scripts appropriate to the platform into the virtual environment.

upgrade_dependencies(context)

Upgrades the core venv dependency packages (currently pip) in the environment. This is done by shelling
out to the pip executable in the environment.

Added in version 3.9.

Changed in version 3.12: setuptools is no longer a core venv dependency.

post_setup(context)

A placeholder method which can be overridden in third party implementations to pre-install packages in
the virtual environment or perform other post-creation steps.

install_scripts(context, path)
This method can be called from setup_scripts() or post_setup() in subclasses to assist in in-
stalling custom scripts into the virtual environment.

path is the path to a directory that should contain subdirectories common, posix, nt; each containing
scripts destined for the bin directory in the environment. The contents of common and the directory
corresponding to os.name are copied after some text replacement of placeholders:

• __VENV_DIR__ is replaced with the absolute path of the environment directory.

• __VENV_NAME__ is replaced with the environment name (final path segment of environment direc-
tory).

• __VENV_PROMPT__ is replaced with the prompt (the environment name surrounded by parentheses
and with a following space)

• __VENV_BIN_NAME__ is replaced with the name of the bin directory (either bin or Scripts).

• __VENV_PYTHON__ is replaced with the absolute path of the environment’s executable.

The directories are allowed to exist (for when an existing environment is being upgraded).

create_git_ignore_file(context)
Creates a .gitignore file within the virtual environment that causes the entire directory to be ignored
by the Git source control manager.

Added in version 3.13.

Changed in version 3.7.2: Windows now uses redirector scripts for python[w].exe instead of copying the
actual binaries. In 3.7.2 only setup_python() does nothing unless running from a build in the source tree.

Changed in version 3.7.3: Windows copies the redirector scripts as part of setup_python() instead of
setup_scripts(). This was not the case in 3.7.2. When using symlinks, the original executables will be
linked.

There is also a module-level convenience function:

venv.create(env_dir, system_site_packages=False, clear=False, symlinks=False, with_pip=False, prompt=None,
upgrade_deps=False, *, scm_ignore_files=frozenset())

Create an EnvBuilder with the given keyword arguments, and call its create() method with the env_dir
argument.

Added in version 3.3.

Changed in version 3.4: Added the with_pip parameter

Changed in version 3.6: Added the prompt parameter

1892 Chapter 29. Software Packaging and Distribution

https://pypi.org/project/pip/
https://pypi.org/project/setuptools/

The Python Library Reference, Release 3.13.1

Changed in version 3.9: Added the upgrade_deps parameter

Changed in version 3.13: Added the scm_ignore_files parameter

29.2.4 An example of extending EnvBuilder

The following script shows how to extend EnvBuilder by implementing a subclass which installs setuptools and pip
into a created virtual environment:

import os

import os.path

from subprocess import Popen, PIPE

import sys

from threading import Thread

from urllib.parse import urlparse

from urllib.request import urlretrieve

import venv

class ExtendedEnvBuilder(venv.EnvBuilder):

"""

This builder installs setuptools and pip so that you can pip or

easy_install other packages into the created virtual environment.

:param nodist: If true, setuptools and pip are not installed into the

created virtual environment.

:param nopip: If true, pip is not installed into the created

virtual environment.

:param progress: If setuptools or pip are installed, the progress of the

installation can be monitored by passing a progress

callable. If specified, it is called with two

arguments: a string indicating some progress, and a

context indicating where the string is coming from.

The context argument can have one of three values:

'main', indicating that it is called from virtualize()

itself, and 'stdout' and 'stderr', which are obtained

by reading lines from the output streams of a subprocess

which is used to install the app.

If a callable is not specified, default progress

information is output to sys.stderr.

"""

def __init__(self, *args, **kwargs):

self.nodist = kwargs.pop('nodist', False)

self.nopip = kwargs.pop('nopip', False)

self.progress = kwargs.pop('progress', None)

self.verbose = kwargs.pop('verbose', False)

super().__init__(*args, **kwargs)

def post_setup(self, context):

"""

Set up any packages which need to be pre-installed into the

virtual environment being created.

:param context: The information for the virtual environment

creation request being processed.

"""

os.environ['VIRTUAL_ENV'] = context.env_dir

(continues on next page)

29.2. venv— Creation of virtual environments 1893

The Python Library Reference, Release 3.13.1

(continued from previous page)

if not self.nodist:

self.install_setuptools(context)

Can't install pip without setuptools

if not self.nopip and not self.nodist:

self.install_pip(context)

def reader(self, stream, context):

"""

Read lines from a subprocess' output stream and either pass to a progress

callable (if specified) or write progress information to sys.stderr.

"""

progress = self.progress

while True:

s = stream.readline()

if not s:

break

if progress is not None:

progress(s, context)

else:

if not self.verbose:

sys.stderr.write('.')

else:

sys.stderr.write(s.decode('utf-8'))

sys.stderr.flush()

stream.close()

def install_script(self, context, name, url):

_, _, path, _, _, _ = urlparse(url)

fn = os.path.split(path)[-1]

binpath = context.bin_path

distpath = os.path.join(binpath, fn)

Download script into the virtual environment's binaries folder

urlretrieve(url, distpath)

progress = self.progress

if self.verbose:

term = '\n'

else:

term = ''

if progress is not None:

progress('Installing %s ...%s' % (name, term), 'main')

else:

sys.stderr.write('Installing %s ...%s' % (name, term))

sys.stderr.flush()

Install in the virtual environment

args = [context.env_exe, fn]

p = Popen(args, stdout=PIPE, stderr=PIPE, cwd=binpath)

t1 = Thread(target=self.reader, args=(p.stdout, 'stdout'))

t1.start()

t2 = Thread(target=self.reader, args=(p.stderr, 'stderr'))

t2.start()

p.wait()

t1.join()

t2.join()

if progress is not None:

progress('done.', 'main')

else:

(continues on next page)

1894 Chapter 29. Software Packaging and Distribution

The Python Library Reference, Release 3.13.1

(continued from previous page)

sys.stderr.write('done.\n')

Clean up - no longer needed

os.unlink(distpath)

def install_setuptools(self, context):

"""

Install setuptools in the virtual environment.

:param context: The information for the virtual environment

creation request being processed.

"""

url = "https://bootstrap.pypa.io/ez_setup.py"

self.install_script(context, 'setuptools', url)

clear up the setuptools archive which gets downloaded

pred = lambda o: o.startswith('setuptools-') and o.endswith('.tar.gz')

files = filter(pred, os.listdir(context.bin_path))

for f in files:

f = os.path.join(context.bin_path, f)

os.unlink(f)

def install_pip(self, context):

"""

Install pip in the virtual environment.

:param context: The information for the virtual environment

creation request being processed.

"""

url = 'https://bootstrap.pypa.io/get-pip.py'

self.install_script(context, 'pip', url)

def main(args=None):

import argparse

parser = argparse.ArgumentParser(prog=__name__,

description='Creates virtual Python '

'environments in one or '

'more target '

'directories.')

parser.add_argument('dirs', metavar='ENV_DIR', nargs='+',

help='A directory in which to create the '

'virtual environment.')

parser.add_argument('--no-setuptools', default=False,

action='store_true', dest='nodist',

help="Don't install setuptools or pip in the "

"virtual environment.")

parser.add_argument('--no-pip', default=False,

action='store_true', dest='nopip',

help="Don't install pip in the virtual "

"environment.")

parser.add_argument('--system-site-packages', default=False,

action='store_true', dest='system_site',

help='Give the virtual environment access to the '

'system site-packages dir.')

if os.name == 'nt':

use_symlinks = False

(continues on next page)

29.2. venv— Creation of virtual environments 1895

The Python Library Reference, Release 3.13.1

(continued from previous page)

else:

use_symlinks = True

parser.add_argument('--symlinks', default=use_symlinks,

action='store_true', dest='symlinks',

help='Try to use symlinks rather than copies, '

'when symlinks are not the default for '

'the platform.')

parser.add_argument('--clear', default=False, action='store_true',

dest='clear', help='Delete the contents of the '

'virtual environment '

'directory if it already '

'exists, before virtual '

'environment creation.')

parser.add_argument('--upgrade', default=False, action='store_true',

dest='upgrade', help='Upgrade the virtual '

'environment directory to '

'use this version of '

'Python, assuming Python '

'has been upgraded '

'in-place.')

parser.add_argument('--verbose', default=False, action='store_true',

dest='verbose', help='Display the output '

'from the scripts which '

'install setuptools and pip.')

options = parser.parse_args(args)

if options.upgrade and options.clear:

raise ValueError('you cannot supply --upgrade and --clear together.')

builder = ExtendedEnvBuilder(system_site_packages=options.system_site,

clear=options.clear,

symlinks=options.symlinks,

upgrade=options.upgrade,

nodist=options.nodist,

nopip=options.nopip,

verbose=options.verbose)

for d in options.dirs:

builder.create(d)

if __name__ == '__main__':

rc = 1

try:

main()

rc = 0

except Exception as e:

print('Error: %s' % e, file=sys.stderr)

sys.exit(rc)

This script is also available for download online.

29.3 zipapp—Manage executable Python zip archives

Added in version 3.5.

Source code: Lib/zipapp.py

This module provides tools to manage the creation of zip files containing Python code, which can be executed directly
by the Python interpreter. The module provides both a Command-Line Interface and a Python API.

1896 Chapter 29. Software Packaging and Distribution

https://gist.github.com/vsajip/4673395
https://github.com/python/cpython/tree/3.13/Lib/zipapp.py

The Python Library Reference, Release 3.13.1

29.3.1 Basic Example

The following example shows how the Command-Line Interface can be used to create an executable archive from a
directory containing Python code. When run, the archive will execute the main function from the module myapp in
the archive.

$ python -m zipapp myapp -m "myapp:main"

$ python myapp.pyz

<output from myapp>

29.3.2 Command-Line Interface

When called as a program from the command line, the following form is used:

$ python -m zipapp source [options]

If source is a directory, this will create an archive from the contents of source. If source is a file, it should be an
archive, and it will be copied to the target archive (or the contents of its shebang line will be displayed if the –info
option is specified).

The following options are understood:

-o <output>, --output=<output>

Write the output to a file named output. If this option is not specified, the output filename will be the same as
the input source, with the extension .pyz added. If an explicit filename is given, it is used as is (so a .pyz
extension should be included if required).

An output filename must be specified if the source is an archive (and in that case, output must not be the same
as source).

-p <interpreter>, --python=<interpreter>

Add a #! line to the archive specifying interpreter as the command to run. Also, on POSIX, make the archive
executable. The default is to write no #! line, and not make the file executable.

-m <mainfn>, --main=<mainfn>

Write a __main__.py file to the archive that executes mainfn. The mainfn argument should have the form
“pkg.mod:fn”, where “pkg.mod” is a package/module in the archive, and “fn” is a callable in the given module.
The __main__.py file will execute that callable.

--main cannot be specified when copying an archive.

-c, --compress

Compress files with the deflate method, reducing the size of the output file. By default, files are stored uncom-
pressed in the archive.

--compress has no effect when copying an archive.

Added in version 3.7.

--info

Display the interpreter embedded in the archive, for diagnostic purposes. In this case, any other options are
ignored and SOURCE must be an archive, not a directory.

-h, --help

Print a short usage message and exit.

29.3.3 Python API

The module defines two convenience functions:

zipapp.create_archive(source, target=None, interpreter=None, main=None, filter=None, compressed=False)
Create an application archive from source. The source can be any of the following:

29.3. zipapp—Manage executable Python zip archives 1897

The Python Library Reference, Release 3.13.1

• The name of a directory, or a path-like object referring to a directory, in which case a new application
archive will be created from the content of that directory.

• The name of an existing application archive file, or a path-like object referring to such a file, in which
case the file is copied to the target (modifying it to reflect the value given for the interpreter argument).
The file name should include the .pyz extension, if required.

• A file object open for reading in bytes mode. The content of the file should be an application archive,
and the file object is assumed to be positioned at the start of the archive.

The target argument determines where the resulting archive will be written:

• If it is the name of a file, or a path-like object, the archive will be written to that file.

• If it is an open file object, the archive will be written to that file object, which must be open for writing
in bytes mode.

• If the target is omitted (or None), the source must be a directory and the target will be a file with the
same name as the source, with a .pyz extension added.

The interpreter argument specifies the name of the Python interpreter with which the archive will be executed.
It is written as a “shebang” line at the start of the archive. On POSIX, this will be interpreted by the OS, and on
Windows it will be handled by the Python launcher. Omitting the interpreter results in no shebang line being
written. If an interpreter is specified, and the target is a filename, the executable bit of the target file will be
set.

The main argument specifies the name of a callable which will be used as the main program for the archive.
It can only be specified if the source is a directory, and the source does not already contain a __main__.py
file. The main argument should take the form “pkg.module:callable” and the archive will be run by importing
“pkg.module” and executing the given callable with no arguments. It is an error to omit main if the source is a
directory and does not contain a __main__.py file, as otherwise the resulting archive would not be executable.

The optional filter argument specifies a callback function that is passed a Path object representing the path to
the file being added (relative to the source directory). It should return True if the file is to be added.

The optional compressed argument determines whether files are compressed. If set to True, files in the archive
are compressed with the deflate method; otherwise, files are stored uncompressed. This argument has no effect
when copying an existing archive.

If a file object is specified for source or target, it is the caller’s responsibility to close it after calling cre-
ate_archive.

When copying an existing archive, file objects supplied only need read and readline, or write methods.
When creating an archive from a directory, if the target is a file object it will be passed to the zipfile.
ZipFile class, and must supply the methods needed by that class.

Changed in version 3.7: Added the filter and compressed parameters.

zipapp.get_interpreter(archive)
Return the interpreter specified in the #! line at the start of the archive. If there is no #! line, return None.
The archive argument can be a filename or a file-like object open for reading in bytes mode. It is assumed to
be at the start of the archive.

29.3.4 Examples

Pack up a directory into an archive, and run it.

$ python -m zipapp myapp

$ python myapp.pyz

<output from myapp>

The same can be done using the create_archive() function:

>>> import zipapp

>>> zipapp.create_archive('myapp', 'myapp.pyz')

1898 Chapter 29. Software Packaging and Distribution

The Python Library Reference, Release 3.13.1

To make the application directly executable on POSIX, specify an interpreter to use.

$ python -m zipapp myapp -p "/usr/bin/env python"

$./myapp.pyz

<output from myapp>

To replace the shebang line on an existing archive, create a modified archive using the create_archive() function:

>>> import zipapp

>>> zipapp.create_archive('old_archive.pyz', 'new_archive.pyz', '/usr/bin/python3')

To update the file in place, do the replacement in memory using a BytesIO object, and then overwrite the source
afterwards. Note that there is a risk when overwriting a file in place that an error will result in the loss of the original
file. This code does not protect against such errors, but production code should do so. Also, this method will only
work if the archive fits in memory:

>>> import zipapp

>>> import io

>>> temp = io.BytesIO()

>>> zipapp.create_archive('myapp.pyz', temp, '/usr/bin/python2')

>>> with open('myapp.pyz', 'wb') as f:

>>> f.write(temp.getvalue())

29.3.5 Specifying the Interpreter

Note that if you specify an interpreter and then distribute your application archive, you need to ensure that the
interpreter used is portable. The Python launcher for Windows supports most common forms of POSIX #! line, but
there are other issues to consider:

• If you use “/usr/bin/env python” (or other forms of the “python” command, such as “/usr/bin/python”), you
need to consider that your users may have either Python 2 or Python 3 as their default, and write your code to
work under both versions.

• If you use an explicit version, for example “/usr/bin/env python3” your application will not work for users who
do not have that version. (This may be what you want if you have not made your code Python 2 compatible).

• There is no way to say “python X.Y or later”, so be careful of using an exact version like “/usr/bin/env
python3.4” as you will need to change your shebang line for users of Python 3.5, for example.

Typically, you should use an “/usr/bin/env python2” or “/usr/bin/env python3”, depending on whether your code is
written for Python 2 or 3.

29.3.6 Creating Standalone Applications with zipapp

Using the zipapp module, it is possible to create self-contained Python programs, which can be distributed to end
users who only need to have a suitable version of Python installed on their system. The key to doing this is to bundle
all of the application’s dependencies into the archive, along with the application code.

The steps to create a standalone archive are as follows:

1. Create your application in a directory as normal, so you have a myapp directory containing a __main__.py
file, and any supporting application code.

2. Install all of your application’s dependencies into the myapp directory, using pip:

$ python -m pip install -r requirements.txt --target myapp

(this assumes you have your project requirements in a requirements.txt file - if not, you can just list the
dependencies manually on the pip command line).

3. Package the application using:

29.3. zipapp—Manage executable Python zip archives 1899

The Python Library Reference, Release 3.13.1

$ python -m zipapp -p "interpreter" myapp

This will produce a standalone executable, which can be run on anymachine with the appropriate interpreter available.
See Specifying the Interpreter for details. It can be shipped to users as a single file.

On Unix, the myapp.pyz file is executable as it stands. You can rename the file to remove the .pyz extension if
you prefer a “plain” command name. On Windows, the myapp.pyz[w] file is executable by virtue of the fact that
the Python interpreter registers the .pyz and .pyzw file extensions when installed.

Caveats

If your application depends on a package that includes a C extension, that package cannot be run from a zip file
(this is an OS limitation, as executable code must be present in the filesystem for the OS loader to load it). In this
case, you can exclude that dependency from the zipfile, and either require your users to have it installed, or ship it
alongside your zipfile and add code to your __main__.py to include the directory containing the unzipped module
in sys.path. In this case, you will need to make sure to ship appropriate binaries for your target architecture(s)
(and potentially pick the correct version to add to sys.path at runtime, based on the user’s machine).

29.3.7 The Python Zip Application Archive Format

Python has been able to execute zip files which contain a __main__.py file since version 2.6. In order to be executed
by Python, an application archive simply has to be a standard zip file containing a __main__.py file which will be
run as the entry point for the application. As usual for any Python script, the parent of the script (in this case the zip
file) will be placed on sys.path and thus further modules can be imported from the zip file.

The zip file format allows arbitrary data to be prepended to a zip file. The zip application format uses this ability to
prepend a standard POSIX “shebang” line to the file (#!/path/to/interpreter).

Formally, the Python zip application format is therefore:

1. An optional shebang line, containing the characters b'#!' followed by an interpreter name, and then a newline
(b'\n') character. The interpreter name can be anything acceptable to the OS “shebang” processing, or
the Python launcher on Windows. The interpreter should be encoded in UTF-8 on Windows, and in sys.
getfilesystemencoding() on POSIX.

2. Standard zipfile data, as generated by the zipfile module. The zipfile content must include a file called
__main__.py (which must be in the “root” of the zipfile - i.e., it cannot be in a subdirectory). The zipfile
data can be compressed or uncompressed.

If an application archive has a shebang line, it may have the executable bit set on POSIX systems, to allow it to be
executed directly.

There is no requirement that the tools in this module are used to create application archives - the module is a conve-
nience, but archives in the above format created by any means are acceptable to Python.

1900 Chapter 29. Software Packaging and Distribution

CHAPTER

THIRTY

PYTHON RUNTIME SERVICES

The modules described in this chapter provide a wide range of services related to the Python interpreter and its
interaction with its environment. Here’s an overview:

30.1 sys— System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

sys.abiflags

On POSIX systems where Python was built with the standard configure script, this contains the ABI flags
as specified by PEP 3149.

Added in version 3.2.

Changed in version 3.8: Default flags became an empty string (m flag for pymalloc has been removed).

Availability: Unix.

sys.addaudithook(hook)
Append the callable hook to the list of active auditing hooks for the current (sub)interpreter.

When an auditing event is raised through the sys.audit() function, each hook will be called in the order it
was added with the event name and the tuple of arguments. Native hooks added by PySys_AddAuditHook()
are called first, followed by hooks added in the current (sub)interpreter. Hooks can then log the event, raise an
exception to abort the operation, or terminate the process entirely.

Note that audit hooks are primarily for collecting information about internal or otherwise unobservable actions,
whether by Python or libraries written in Python. They are not suitable for implementing a “sandbox”. In
particular, malicious code can trivially disable or bypass hooks added using this function. At a minimum,
any security-sensitive hooks must be added using the C API PySys_AddAuditHook() before initialising the
runtime, and any modules allowing arbitrary memory modification (such as ctypes) should be completely
removed or closely monitored.

Calling sys.addaudithook() will itself raise an auditing event named sys.addaudithook with no argu-
ments. If any existing hooks raise an exception derived from RuntimeError, the new hook will not be added
and the exception suppressed. As a result, callers cannot assume that their hook has been added unless they
control all existing hooks.

See the audit events table for all events raised by CPython, and PEP 578 for the original design discussion.

Added in version 3.8.

Changed in version 3.8.1: Exceptions derived from Exception but not RuntimeError are no longer sup-
pressed.

1901

https://peps.python.org/pep-3149/
https://peps.python.org/pep-0578/

The Python Library Reference, Release 3.13.1

CPython implementation detail: When tracing is enabled (see settrace()), Python hooks are only traced
if the callable has a __cantrace__ member that is set to a true value. Otherwise, trace functions will skip
the hook.

sys.argv

The list of command line arguments passed to a Python script. argv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed using the -c command
line option to the interpreter, argv[0] is set to the string '-c'. If no script name was passed to the Python
interpreter, argv[0] is the empty string.

To loop over the standard input, or the list of files given on the command line, see the fileinput module.

See also sys.orig_argv.

Note

On Unix, command line arguments are passed by bytes from OS. Python decodes them with filesystem
encoding and “surrogateescape” error handler. When you need original bytes, you can get it by [os.

fsencode(arg) for arg in sys.argv].

sys.audit(event, *args)
Raise an auditing event and trigger any active auditing hooks. event is a string identifying the event, and args
may contain optional arguments with more information about the event. The number and types of arguments
for a given event are considered a public and stable API and should not be modified between releases.

For example, one auditing event is named os.chdir. This event has one argument called path that will contain
the requested new working directory.

sys.audit() will call the existing auditing hooks, passing the event name and arguments, and will re-raise
the first exception from any hook. In general, if an exception is raised, it should not be handled and the process
should be terminated as quickly as possible. This allows hook implementations to decide how to respond to
particular events: they can merely log the event or abort the operation by raising an exception.

Hooks are added using the sys.addaudithook() or PySys_AddAuditHook() functions.

The native equivalent of this function is PySys_Audit(). Using the native function is preferredwhen possible.

See the audit events table for all events raised by CPython.

Added in version 3.8.

sys.base_exec_prefix

Set during Python startup, before site.py is run, to the same value as exec_prefix. If not running in a vir-
tual environment, the values will stay the same; if site.py finds that a virtual environment is in use, the values
of prefix and exec_prefix will be changed to point to the virtual environment, whereas base_prefix
and base_exec_prefix will remain pointing to the base Python installation (the one which the virtual en-
vironment was created from).

Added in version 3.3.

sys.base_prefix

Set during Python startup, before site.py is run, to the same value as prefix. If not running in a virtual
environment, the values will stay the same; if site.py finds that a virtual environment is in use, the values of
prefix and exec_prefix will be changed to point to the virtual environment, whereas base_prefix and
base_exec_prefix will remain pointing to the base Python installation (the one which the virtual environ-
ment was created from).

Added in version 3.3.

sys.byteorder

An indicator of the native byte order. This will have the value 'big' on big-endian (most-significant byte
first) platforms, and 'little' on little-endian (least-significant byte first) platforms.

1902 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

sys.builtin_module_names

A tuple of strings containing the names of all modules that are compiled into this Python interpreter. (This
information is not available in any other way — modules.keys() only lists the imported modules.)

See also the sys.stdlib_module_names list.

sys.call_tracing(func, args)
Call func(*args), while tracing is enabled. The tracing state is saved, and restored afterwards. This is
intended to be called from a debugger from a checkpoint, to recursively debug or profile some other code.

Tracing is suspended while calling a tracing function set by settrace() or setprofile() to avoid infinite
recursion. call_tracing() enables explicit recursion of the tracing function.

sys.copyright

A string containing the copyright pertaining to the Python interpreter.

sys._clear_type_cache()

Clear the internal type cache. The type cache is used to speed up attribute and method lookups. Use the
function only to drop unnecessary references during reference leak debugging.

This function should be used for internal and specialized purposes only.

Deprecated since version 3.13: Use the more general _clear_internal_caches() function instead.

sys._clear_internal_caches()

Clear all internal performance-related caches. Use this function only to release unnecessary references and
memory blocks when hunting for leaks.

Added in version 3.13.

sys._current_frames()

Return a dictionary mapping each thread’s identifier to the topmost stack frame currently active in that thread
at the time the function is called. Note that functions in the traceback module can build the call stack given
such a frame.

This is most useful for debugging deadlock: this function does not require the deadlocked threads’ cooperation,
and such threads’ call stacks are frozen for as long as they remain deadlocked. The frame returned for a non-
deadlocked thread may bear no relationship to that thread’s current activity by the time calling code examines
the frame.

This function should be used for internal and specialized purposes only.

Raises an auditing event sys._current_frames with no arguments.

sys._current_exceptions()

Return a dictionary mapping each thread’s identifier to the topmost exception currently active in that thread at
the time the function is called. If a thread is not currently handling an exception, it is not included in the result
dictionary.

This is most useful for statistical profiling.

This function should be used for internal and specialized purposes only.

Raises an auditing event sys._current_exceptions with no arguments.

Changed in version 3.12: Each value in the dictionary is now a single exception instance, rather than a 3-tuple
as returned from sys.exc_info().

sys.breakpointhook()

This hook function is called by built-in breakpoint(). By default, it drops you into the pdb debugger, but
it can be set to any other function so that you can choose which debugger gets used.

The signature of this function is dependent on what it calls. For example, the default binding (e.g. pdb.

set_trace()) expects no arguments, but you might bind it to a function that expects additional arguments
(positional and/or keyword). The built-in breakpoint() function passes its *args and **kws straight
through. Whatever breakpointhooks() returns is returned from breakpoint().

30.1. sys— System-specific parameters and functions 1903

The Python Library Reference, Release 3.13.1

The default implementation first consults the environment variable PYTHONBREAKPOINT. If that is set to
"0" then this function returns immediately; i.e. it is a no-op. If the environment variable is not set, or is
set to the empty string, pdb.set_trace() is called. Otherwise this variable should name a function to
run, using Python’s dotted-import nomenclature, e.g. package.subpackage.module.function. In this
case, package.subpackage.module would be imported and the resulting module must have a callable
named function(). This is run, passing in *args and **kws, and whatever function() returns, sys.
breakpointhook() returns to the built-in breakpoint() function.

Note that if anything goes wrong while importing the callable named by PYTHONBREAKPOINT, a
RuntimeWarning is reported and the breakpoint is ignored.

Also note that if sys.breakpointhook() is overridden programmatically, PYTHONBREAKPOINT is not con-
sulted.

Added in version 3.7.

sys._debugmallocstats()

Print low-level information to stderr about the state of CPython’s memory allocator.

If Python is built in debug mode (configure --with-pydebug option), it also performs some expensive
internal consistency checks.

Added in version 3.3.

CPython implementation detail: This function is specific to CPython. The exact output format is not defined
here, and may change.

sys.dllhandle

Integer specifying the handle of the Python DLL.

Availability: Windows.

sys.displayhook(value)
If value is not None, this function prints repr(value) to sys.stdout, and saves value in builtins._.
If repr(value) is not encodable to sys.stdout.encoding with sys.stdout.errors error handler
(which is probably 'strict'), encode it to sys.stdout.encoding with 'backslashreplace' error
handler.

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python ses-
sion. The display of these values can be customized by assigning another one-argument function to sys.

displayhook.

Pseudo-code:

def displayhook(value):

if value is None:

return

Set '_' to None to avoid recursion

builtins._ = None

text = repr(value)

try:

sys.stdout.write(text)

except UnicodeEncodeError:

bytes = text.encode(sys.stdout.encoding, 'backslashreplace')

if hasattr(sys.stdout, 'buffer'):

sys.stdout.buffer.write(bytes)

else:

text = bytes.decode(sys.stdout.encoding, 'strict')

sys.stdout.write(text)

sys.stdout.write("\n")

builtins._ = value

Changed in version 3.2: Use 'backslashreplace' error handler on UnicodeEncodeError.

1904 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

sys.dont_write_bytecode

If this is true, Python won’t try to write .pyc files on the import of source modules. This value is initially
set to True or False depending on the -B command line option and the PYTHONDONTWRITEBYTECODE
environment variable, but you can set it yourself to control bytecode file generation.

sys._emscripten_info

A named tuple holding information about the environment on the wasm32-emscripten platform. The named
tuple is provisional and may change in the future.

_emscripten_info.emscripten_version

Emscripten version as tuple of ints (major, minor, micro), e.g. (3, 1, 8).

_emscripten_info.runtime

Runtime string, e.g. browser user agent, 'Node.js v14.18.2', or 'UNKNOWN'.

_emscripten_info.pthreads

True if Python is compiled with Emscripten pthreads support.

_emscripten_info.shared_memory

True if Python is compiled with shared memory support.

Availability: Emscripten.

Added in version 3.11.

sys.pycache_prefix

If this is set (not None), Python will write bytecode-cache .pyc files to (and read them from) a parallel
directory tree rooted at this directory, rather than from __pycache__ directories in the source code tree.
Any __pycache__ directories in the source code tree will be ignored and new .pyc files written within the
pycache prefix. Thus if you use compileall as a pre-build step, you must ensure you run it with the same
pycache prefix (if any) that you will use at runtime.

A relative path is interpreted relative to the current working directory.

This value is initially set based on the value of the -X pycache_prefix=PATH command-line option or
the PYTHONPYCACHEPREFIX environment variable (command-line takes precedence). If neither are set, it is
None.

Added in version 3.8.

sys.excepthook(type, value, traceback)
This function prints out a given traceback and exception to sys.stderr.

When an exception other than SystemExit is raised and uncaught, the interpreter calls sys.excepthook
with three arguments, the exception class, exception instance, and a traceback object. In an interactive session
this happens just before control is returned to the prompt; in a Python program this happens just before the pro-
gram exits. The handling of such top-level exceptions can be customized by assigning another three-argument
function to sys.excepthook.

Raise an auditing event sys.excepthook with arguments hook, type, value, traceback when an un-
caught exception occurs. If no hook has been set, hookmay be None. If any hook raises an exception derived
from RuntimeError the call to the hook will be suppressed. Otherwise, the audit hook exception will be
reported as unraisable and sys.excepthook will be called.

See also

The sys.unraisablehook() function handles unraisable exceptions and the threading.

excepthook() function handles exception raised by threading.Thread.run().

sys.__breakpointhook__

sys.__displayhook__

30.1. sys— System-specific parameters and functions 1905

The Python Library Reference, Release 3.13.1

sys.__excepthook__

sys.__unraisablehook__

These objects contain the original values of breakpointhook, displayhook, excepthook, and
unraisablehook at the start of the program. They are saved so that breakpointhook, displayhook
and excepthook, unraisablehook can be restored in case they happen to get replaced with broken or
alternative objects.

Added in version 3.7: __breakpointhook__

Added in version 3.8: __unraisablehook__

sys.exception()

This function, when called while an exception handler is executing (such as an except or except* clause),
returns the exception instance that was caught by this handler. When exception handlers are nested within one
another, only the exception handled by the innermost handler is accessible.

If no exception handler is executing, this function returns None.

Added in version 3.11.

sys.exc_info()

This function returns the old-style representation of the handled exception. If an exception e is cur-
rently handled (so exception() would return e), exc_info() returns the tuple (type(e), e, e.

__traceback__). That is, a tuple containing the type of the exception (a subclass of BaseException),
the exception itself, and a traceback object which typically encapsulates the call stack at the point where the
exception last occurred.

If no exception is being handled anywhere on the stack, this function return a tuple containing three None
values.

Changed in version 3.11: The type and traceback fields are now derived from the value (the exception
instance), so when an exception is modified while it is being handled, the changes are reflected in the results
of subsequent calls to exc_info().

sys.exec_prefix

A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is also '/usr/local'. This can be set at build time with the --exec-prefix argument
to the configure script. Specifically, all configuration files (e.g. the pyconfig.h header file) are in-
stalled in the directory exec_prefix/lib/pythonX.Y/config, and shared librarymodules are installed in
exec_prefix/lib/pythonX.Y/lib-dynload, where X.Y is the version number of Python, for example
3.2.

Note

If a virtual environment is in effect, this value will be changed in site.py to point to the virtual environ-
ment. The value for the Python installation will still be available, via base_exec_prefix.

sys.executable

A string giving the absolute path of the executable binary for the Python interpreter, on systems where this
makes sense. If Python is unable to retrieve the real path to its executable, sys.executablewill be an empty
string or None.

sys.exit([arg])
Raise a SystemExit exception, signaling an intention to exit the interpreter.

The optional argument arg can be an integer giving the exit status (defaulting to zero), or another type of object.
If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal
termination” by shells and the like. Most systems require it to be in the range 0–127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1 for all
other kind of errors. If another type of object is passed, None is equivalent to passing zero, and any other object

1906 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

is printed to stderr and results in an exit code of 1. In particular, sys.exit("some error message")

is a quick way to exit a program when an error occurs.

Since exit() ultimately “only” raises an exception, it will only exit the process when called from the main
thread, and the exception is not intercepted. Cleanup actions specified by finally clauses of try statements are
honored, and it is possible to intercept the exit attempt at an outer level.

Changed in version 3.6: If an error occurs in the cleanup after the Python interpreter has caught SystemExit
(such as an error flushing buffered data in the standard streams), the exit status is changed to 120.

sys.flags

The named tuple flags exposes the status of command line flags. The attributes are read only.

30.1. sys— System-specific parameters and functions 1907

The Python Library Reference, Release 3.13.1

flags.debug
-d

flags.inspect
-i

flags.interactive
-i

flags.isolated
-I

flags.optimize
-O or -OO

flags.dont_write_bytecode
-B

flags.no_user_site
-s

flags.no_site
-S

flags.ignore_environment
-E

flags.verbose
-v

flags.bytes_warning
-b

flags.quiet
-q

flags.hash_randomization
-R

flags.dev_mode
-X dev (Python Development Mode)

flags.utf8_mode
-X utf8

flags.safe_path
-P

flags.int_max_str_digits
-X int_max_str_digits (integer string conver-
sion length limitation)

flags.warn_default_encoding
-X warn_default_encoding

Changed in version 3.2: Added quiet attribute for the new -q flag.

Added in version 3.2.3: The hash_randomization attribute.

1908 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

Changed in version 3.3: Removed obsolete division_warning attribute.

Changed in version 3.4: Added isolated attribute for -I isolated flag.

Changed in version 3.7: Added the dev_mode attribute for the new Python Development Mode and the
utf8_mode attribute for the new -X utf8 flag.

Changed in version 3.10: Added warn_default_encoding attribute for -X warn_default_encoding

flag.

Changed in version 3.11: Added the safe_path attribute for -P option.

Changed in version 3.11: Added the int_max_str_digits attribute.

sys.float_info

A named tuple holding information about the float type. It contains low level information about the precision and
internal representation. The values correspond to the various floating-point constants defined in the standard
header file float.h for the ‘C’ programming language; see section 5.2.4.2.2 of the 1999 ISO/IEC C standard
[C99], ‘Characteristics of floating types’, for details.

30.1. sys— System-specific parameters and functions 1909

The Python Library Reference, Release 3.13.1

Table 1: Attributes of the float_info named tuple

attribute float.h macro explanation

float_info.epsilon
DBL_EPSILON difference between 1.0 and the

least value greater than 1.0 that is
representable as a float.
See also math.ulp().

float_info.dig
DBL_DIG The maximum number of deci-

mal digits that can be faithfully
represented in a float; see below.

float_info.mant_dig
DBL_MANT_DIG Float precision: the number of

base-radix digits in the signifi-
cand of a float.

float_info.max
DBL_MAX The maximum representable pos-

itive finite float.

float_info.max_exp
DBL_MAX_EXP The maximum integer e such

that radix**(e-1) is a repre-
sentable finite float.

float_info.max_10_exp
DBL_MAX_10_EXP The maximum integer e such that

10**e is in the range of repre-
sentable finite floats.

float_info.min
DBL_MIN The minimum representable pos-

itive normalized float.
Use math.ulp(0.0) to get the
smallest positive denormalized
representable float.

float_info.min_exp
DBL_MIN_EXP The minimum integer e such that

radix**(e-1) is a normalized
float.

float_info.min_10_exp
DBL_MIN_10_EXP The minimum integer e such that

10**e is a normalized float.

float_info.radix
FLT_RADIX The radix of exponent represen-

tation.

float_info.rounds
FLT_ROUNDS An integer representing the

rounding mode for floating-point
arithmetic. This reflects the
value of the system FLT_ROUNDS

macro at interpreter startup time:
• -1: indeterminable
• 0: toward zero
• 1: to nearest
• 2: toward positive infinity
• 3: toward negative infinity

All other values for FLT_ROUNDS
characterize implementation-
defined rounding behavior.

The attribute sys.float_info.dig needs further explanation. If s is any string representing a decimal
number with at most sys.float_info.dig significant digits, then converting s to a float and back again
will recover a string representing the same decimal value:

>>> import sys

>>> sys.float_info.dig

15
(continues on next page)

1910 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> s = '3.14159265358979' # decimal string with 15 significant digits

>>> format(float(s), '.15g') # convert to float and back -> same value

'3.14159265358979'

But for strings with more than sys.float_info.dig significant digits, this isn’t always true:

>>> s = '9876543211234567' # 16 significant digits is too many!

>>> format(float(s), '.16g') # conversion changes value

'9876543211234568'

sys.float_repr_style

A string indicating how the repr() function behaves for floats. If the string has value 'short' then for a
finite float x, repr(x) aims to produce a short string with the property that float(repr(x)) == x. This
is the usual behaviour in Python 3.1 and later. Otherwise, float_repr_style has value 'legacy' and
repr(x) behaves in the same way as it did in versions of Python prior to 3.1.

Added in version 3.1.

sys.getallocatedblocks()

Return the number of memory blocks currently allocated by the interpreter, regardless of their size. This
function is mainly useful for tracking and debuggingmemory leaks. Because of the interpreter’s internal caches,
the result can vary from call to call; youmay have to call _clear_internal_caches() and gc.collect()
to get more predictable results.

If a Python build or implementation cannot reasonably compute this information, getallocatedblocks()
is allowed to return 0 instead.

Added in version 3.4.

sys.getunicodeinternedsize()

Return the number of unicode objects that have been interned.

Added in version 3.12.

sys.getandroidapilevel()

Return the build-time API level of Android as an integer. This represents the minimum version of Android
this build of Python can run on. For runtime version information, see platform.android_ver().

Availability: Android.

Added in version 3.7.

sys.getdefaultencoding()

Return the name of the current default string encoding used by the Unicode implementation.

sys.getdlopenflags()

Return the current value of the flags that are used for dlopen() calls. Symbolic names for the flag values can
be found in the os module (RTLD_xxx constants, e.g. os.RTLD_LAZY).

Availability: Unix.

sys.getfilesystemencoding()

Get the filesystem encoding: the encoding used with the filesystem error handler to convert be-
tween Unicode filenames and bytes filenames. The filesystem error handler is returned from
getfilesystemencodeerrors().

For best compatibility, str should be used for filenames in all cases, although representing filenames as bytes
is also supported. Functions accepting or returning filenames should support either str or bytes and internally
convert to the system’s preferred representation.

os.fsencode() and os.fsdecode() should be used to ensure that the correct encoding and errors mode
are used.

30.1. sys— System-specific parameters and functions 1911

The Python Library Reference, Release 3.13.1

The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read() func-
tion: see filesystem_encoding and filesystem_errors members of PyConfig.

Changed in version 3.2: getfilesystemencoding() result cannot be None anymore.

Changed in version 3.6: Windows is no longer guaranteed to return 'mbcs'. See PEP 529 and
_enablelegacywindowsfsencoding() for more information.

Changed in version 3.7: Return 'utf-8' if the Python UTF-8 Mode is enabled.

sys.getfilesystemencodeerrors()

Get the filesystem error handler: the error handler used with the filesystem encoding to convert betweenUnicode
filenames and bytes filenames. The filesystem encoding is returned from getfilesystemencoding().

os.fsencode() and os.fsdecode() should be used to ensure that the correct encoding and errors mode
are used.

The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read() func-
tion: see filesystem_encoding and filesystem_errors members of PyConfig.

Added in version 3.6.

sys.get_int_max_str_digits()

Returns the current value for the integer string conversion length limitation. See also
set_int_max_str_digits().

Added in version 3.11.

sys.getrefcount(object)
Return the reference count of the object. The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argument to getrefcount().

Note that the returned value may not actually reflect how many references to the object are actually held. For
example, some objects are immortal and have a very high refcount that does not reflect the actual number of
references. Consequently, do not rely on the returned value to be accurate, other than a value of 0 or 1.

Changed in version 3.12: Immortal objects have very large refcounts that do not match the actual number of
references to the object.

sys.getrecursionlimit()

Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This
limit prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set by
setrecursionlimit().

sys.getsizeof(object[, default])
Return the size of an object in bytes. The object can be any type of object. All built-in objects will return
correct results, but this does not have to hold true for third-party extensions as it is implementation specific.

Only the memory consumption directly attributed to the object is accounted for, not the memory consumption
of objects it refers to.

If given, default will be returned if the object does not provide means to retrieve the size. Otherwise a
TypeError will be raised.

getsizeof() calls the object’s __sizeof__ method and adds an additional garbage collector overhead if
the object is managed by the garbage collector.

See recursive sizeof recipe for an example of using getsizeof() recursively to find the size of containers
and all their contents.

sys.getswitchinterval()

Return the interpreter’s “thread switch interval”; see setswitchinterval().

Added in version 3.2.

1912 Chapter 30. Python Runtime Services

https://peps.python.org/pep-0529/
https://code.activestate.com/recipes/577504-compute-memory-footprint-of-an-object-and-its-cont/

The Python Library Reference, Release 3.13.1

sys._getframe([depth])
Return a frame object from the call stack. If optional integer depth is given, return the frame object that many
calls below the top of the stack. If that is deeper than the call stack, ValueError is raised. The default for
depth is zero, returning the frame at the top of the call stack.

Raises an auditing event sys._getframe with argument frame.

CPython implementation detail: This function should be used for internal and specialized purposes only. It
is not guaranteed to exist in all implementations of Python.

sys._getframemodulename([depth])
Return the name of a module from the call stack. If optional integer depth is given, return the module that
many calls below the top of the stack. If that is deeper than the call stack, or if the module is unidentifiable,
None is returned. The default for depth is zero, returning the module at the top of the call stack.

Raises an auditing event sys._getframemodulename with argument depth.

CPython implementation detail: This function should be used for internal and specialized purposes only. It
is not guaranteed to exist in all implementations of Python.

sys.getobjects(limit[, type])
This function only exists if CPython was built using the specialized configure option --with-trace-refs.
It is intended only for debugging garbage-collection issues.

Return a list of up to limit dynamically allocated Python objects. If type is given, only objects of that exact
type (not subtypes) are included.

Objects from the list are not safe to use. Specifically, the result will include objects from all interpreters that
share their object allocator state (that is, ones created with PyInterpreterConfig.use_main_obmalloc
set to 1 or using Py_NewInterpreter(), and the main interpreter). Mixing objects from different inter-
preters may lead to crashes or other unexpected behavior.

CPython implementation detail: This function should be used for specialized purposes only. It is not guar-
anteed to exist in all implementations of Python.

Changed in version 3.13.1: The result may include objects from other interpreters.

sys.getprofile()

Get the profiler function as set by setprofile().

sys.gettrace()

Get the trace function as set by settrace().

CPython implementation detail: The gettrace() function is intended only for implementing debuggers,
profilers, coverage tools and the like. Its behavior is part of the implementation platform, rather than part of
the language definition, and thus may not be available in all Python implementations.

sys.getwindowsversion()

Return a named tuple describing the Windows version currently running. The named elements are major,
minor, build, platform, service_pack, service_pack_minor, service_pack_major, suite_mask, product_type and
platform_version. service_pack contains a string, platform_version a 3-tuple and all other values are inte-
gers. The components can also be accessed by name, so sys.getwindowsversion()[0] is equivalent to
sys.getwindowsversion().major. For compatibility with prior versions, only the first 5 elements are
retrievable by indexing.

platform will be 2 (VER_PLATFORM_WIN32_NT).

product_type may be one of the following values:

Constant Meaning

1 (VER_NT_WORKSTATION) The system is a workstation.
2 (VER_NT_DOMAIN_CONTROLLER) The system is a domain controller.
3 (VER_NT_SERVER) The system is a server, but not a domain controller.

30.1. sys— System-specific parameters and functions 1913

The Python Library Reference, Release 3.13.1

This function wraps the Win32 GetVersionEx() function; see the Microsoft documentation on
OSVERSIONINFOEX() for more information about these fields.

platform_version returns the major version, minor version and build number of the current operating system,
rather than the version that is being emulated for the process. It is intended for use in logging rather than for
feature detection.

Note

platform_version derives the version from kernel32.dll which can be of a different version than the OS
version. Please use platform module for achieving accurate OS version.

Availability: Windows.

Changed in version 3.2: Changed to a named tuple and added service_pack_minor, service_pack_major,
suite_mask, and product_type.

Changed in version 3.6: Added platform_version

sys.get_asyncgen_hooks()

Returns an asyncgen_hooks object, which is similar to a namedtuple of the form (firstiter,

finalizer), where firstiter and finalizer are expected to be either None or functions which take an asyn-
chronous generator iterator as an argument, and are used to schedule finalization of an asynchronous generator
by an event loop.

Added in version 3.6: See PEP 525 for more details.

Note

This function has been added on a provisional basis (see PEP 411 for details.)

sys.get_coroutine_origin_tracking_depth()

Get the current coroutine origin tracking depth, as set by set_coroutine_origin_tracking_depth().

Added in version 3.7.

Note

This function has been added on a provisional basis (see PEP 411 for details.) Use it only for debugging
purposes.

sys.hash_info

A named tuple giving parameters of the numeric hash implementation. For more details about hashing of
numeric types, see Hashing of numeric types.

hash_info.width

The width in bits used for hash values

hash_info.modulus

The prime modulus P used for numeric hash scheme

hash_info.inf

The hash value returned for a positive infinity

hash_info.nan

(This attribute is no longer used)

1914 Chapter 30. Python Runtime Services

https://peps.python.org/pep-0525/
https://peps.python.org/pep-0411/
https://peps.python.org/pep-0411/

The Python Library Reference, Release 3.13.1

hash_info.imag

The multiplier used for the imaginary part of a complex number

hash_info.algorithm

The name of the algorithm for hashing of str, bytes, and memoryview

hash_info.hash_bits

The internal output size of the hash algorithm

hash_info.seed_bits

The size of the seed key of the hash algorithm

Added in version 3.2.

Changed in version 3.4: Added algorithm, hash_bits and seed_bits

sys.hexversion

The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502F0:

use some advanced feature

...

else:

use an alternative implementation or warn the user

...

This is called hexversion since it only really looks meaningful when viewed as the result of passing it to
the built-in hex() function. The named tuple sys.version_info may be used for a more human-friendly
encoding of the same information.

More details of hexversion can be found at apiabiversion.

sys.implementation

An object containing information about the implementation of the currently running Python interpreter. The
following attributes are required to exist in all Python implementations.

name is the implementation’s identifier, e.g. 'cpython'. The actual string is defined by the Python imple-
mentation, but it is guaranteed to be lower case.

version is a named tuple, in the same format as sys.version_info. It represents the version of the Python
implementation. This has a distinct meaning from the specific version of the Python language to which
the currently running interpreter conforms, which sys.version_info represents. For example, for PyPy
1.8 sys.implementation.versionmight be sys.version_info(1, 8, 0, 'final', 0), whereas
sys.version_infowould be sys.version_info(2, 7, 2, 'final', 0). For CPython they are the
same value, since it is the reference implementation.

hexversion is the implementation version in hexadecimal format, like sys.hexversion.

cache_tag is the tag used by the import machinery in the filenames of cached modules. By convention, it
would be a composite of the implementation’s name and version, like 'cpython-33'. However, a Python
implementationmay use some other value if appropriate. If cache_tag is set to None, it indicates that module
caching should be disabled.

sys.implementation may contain additional attributes specific to the Python implementation. These non-
standard attributes must start with an underscore, and are not described here. Regardless of its contents,
sys.implementation will not change during a run of the interpreter, nor between implementation versions.
(It may change between Python language versions, however.) See PEP 421 for more information.

Added in version 3.3.

30.1. sys— System-specific parameters and functions 1915

https://peps.python.org/pep-0421/

The Python Library Reference, Release 3.13.1

Note

The addition of new required attributes must go through the normal PEP process. See PEP 421 for more
information.

sys.int_info

A named tuple that holds information about Python’s internal representation of integers. The attributes are read
only.

int_info.bits_per_digit

The number of bits held in each digit. Python integers are stored internally in base 2**int_info.
bits_per_digit.

int_info.sizeof_digit

The size in bytes of the C type used to represent a digit.

int_info.default_max_str_digits

The default value for sys.get_int_max_str_digits() when it is not otherwise explicitly config-
ured.

int_info.str_digits_check_threshold

The minimum non-zero value for sys.set_int_max_str_digits(), PYTHONINTMAXSTRDIGITS,
or -X int_max_str_digits.

Added in version 3.1.

Changed in version 3.11: Added default_max_str_digits and str_digits_check_threshold.

sys.__interactivehook__

When this attribute exists, its value is automatically called (with no arguments) when the interpreter is launched
in interactive mode. This is done after the PYTHONSTARTUP file is read, so that you can set this hook there.
The site module sets this.

Raises an auditing event cpython.run_interactivehook with the hook object as the argument when the
hook is called on startup.

Added in version 3.4.

sys.intern(string)
Enter string in the table of “interned” strings and return the interned string – which is string itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup – if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys.

Interned strings are not immortal; you must keep a reference to the return value of intern() around to benefit
from it.

sys._is_gil_enabled()

Return True if the GIL is enabled and False if it is disabled.

Added in version 3.13.

sys.is_finalizing()

Return True if the main Python interpreter is shutting down. Return False otherwise.

See also the PythonFinalizationError exception.

Added in version 3.5.

1916 Chapter 30. Python Runtime Services

https://peps.python.org/pep-0421/

The Python Library Reference, Release 3.13.1

sys.last_exc

This variable is not always defined; it is set to the exception instance when an exception is not handled and the
interpreter prints an error message and a stack traceback. Its intended use is to allow an interactive user to
import a debugger module and engage in post-mortem debugging without having to re-execute the command
that caused the error. (Typical use is import pdb; pdb.pm() to enter the post-mortem debugger; see pdb
module for more information.)

Added in version 3.12.

sys._is_interned(string)
Return True if the given string is “interned”, False otherwise.

Added in version 3.13.

CPython implementation detail: It is not guaranteed to exist in all implementations of Python.

sys.last_type

sys.last_value

sys.last_traceback

These three variables are deprecated; use sys.last_exc instead. They hold the legacy representation of
sys.last_exc, as returned from exc_info() above.

sys.maxsize

An integer giving the maximum value a variable of type Py_ssize_t can take. It’s usually 2**31 - 1 on a
32-bit platform and 2**63 - 1 on a 64-bit platform.

sys.maxunicode

An integer giving the value of the largest Unicode code point, i.e. 1114111 (0x10FFFF in hexadecimal).

Changed in version 3.3: Before PEP 393, sys.maxunicode used to be either 0xFFFF or 0x10FFFF, de-
pending on the configuration option that specified whether Unicode characters were stored as UCS-2 or UCS-4.

sys.meta_path

A list of meta path finder objects that have their find_spec()methods called to see if one of the objects can
find the module to be imported. By default, it holds entries that implement Python’s default import semantics.
The find_spec() method is called with at least the absolute name of the module being imported. If the
module to be imported is contained in a package, then the parent package’s __path__ attribute is passed in
as a second argument. The method returns a module spec, or None if the module cannot be found.

See also

importlib.abc.MetaPathFinder

The abstract base class defining the interface of finder objects on meta_path.

importlib.machinery.ModuleSpec

The concrete class which find_spec() should return instances of.

Changed in version 3.4: Module specs were introduced in Python 3.4, by PEP 451.

Changed in version 3.12: Removed the fallback that looked for a find_module() method if a meta_path
entry didn’t have a find_spec() method.

sys.modules

This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. However, replacing the dictionary will not necessarily
work as expected and deleting essential items from the dictionary may cause Python to fail. If you want to
iterate over this global dictionary always use sys.modules.copy() or tuple(sys.modules) to avoid
exceptions as its size may change during iteration as a side effect of code or activity in other threads.

30.1. sys— System-specific parameters and functions 1917

https://peps.python.org/pep-0393/
https://peps.python.org/pep-0451/

The Python Library Reference, Release 3.13.1

sys.orig_argv

The list of the original command line arguments passed to the Python executable.

The elements of sys.orig_argv are the arguments to the Python interpreter, while the elements of sys.
argv are the arguments to the user’s program. Arguments consumed by the interpreter itself will be present
in sys.orig_argv and missing from sys.argv.

Added in version 3.10.

sys.path

A list of strings that specifies the search path for modules. Initialized from the environment variable
PYTHONPATH, plus an installation-dependent default.

By default, as initialized upon program startup, a potentially unsafe path is prepended to sys.path (before
the entries inserted as a result of PYTHONPATH):

• python -m module command line: prepend the current working directory.

• python script.py command line: prepend the script’s directory. If it’s a symbolic link, resolve sym-
bolic links.

• python -c code and python (REPL) command lines: prepend an empty string, which means the
current working directory.

To not prepend this potentially unsafe path, use the -P command line option or the PYTHONSAFEPATH envi-
ronment variable.

A program is free to modify this list for its own purposes. Only strings should be added to sys.path; all other
data types are ignored during import.

See also

• Module site This describes how to use .pth files to extend sys.path.

sys.path_hooks

A list of callables that take a path argument to try to create a finder for the path. If a finder can be created, it
is to be returned by the callable, else raise ImportError.

Originally specified in PEP 302.

sys.path_importer_cache

Adictionary acting as a cache forfinder objects. The keys are paths that have been passed to sys.path_hooks
and the values are the finders that are found. If a path is a valid file system path but no finder is found on sys.
path_hooks then None is stored.

Originally specified in PEP 302.

sys.platform

A string containing a platform identifier. Known values are:

System platform value

AIX 'aix'

Android 'android'

Emscripten 'emscripten'

iOS 'ios'

Linux 'linux'

macOS 'darwin'

Windows 'win32'

Windows/Cygwin 'cygwin'

WASI 'wasi'

1918 Chapter 30. Python Runtime Services

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0302/

The Python Library Reference, Release 3.13.1

On Unix systems not listed in the table, the value is the lowercased OS name as returned by uname -s, with
the first part of the version as returned by uname -r appended, e.g. 'sunos5' or 'freebsd8', at the time
when Python was built. Unless you want to test for a specific system version, it is therefore recommended to
use the following idiom:

if sys.platform.startswith('freebsd'):

FreeBSD-specific code here...

Changed in version 3.3: On Linux, sys.platform doesn’t contain the major version anymore. It is always
'linux', instead of 'linux2' or 'linux3'.

Changed in version 3.8: On AIX, sys.platform doesn’t contain the major version anymore. It is always
'aix', instead of 'aix5' or 'aix7'.

Changed in version 3.13: On Android, sys.platform now returns 'android' rather than 'linux'.

See also

os.name has a coarser granularity. os.uname() gives system-dependent version information.

The platform module provides detailed checks for the system’s identity.

sys.platlibdir

Name of the platform-specific library directory. It is used to build the path of standard library and the paths
of installed extension modules.

It is equal to "lib" on most platforms. On Fedora and SuSE, it is equal to "lib64" on 64-bit platforms which
gives the following sys.path paths (where X.Y is the Python major.minor version):

• /usr/lib64/pythonX.Y/: Standard library (like os.py of the os module)

• /usr/lib64/pythonX.Y/lib-dynload/: C extension modules of the standard library (like the
errno module, the exact filename is platform specific)

• /usr/lib/pythonX.Y/site-packages/ (always use lib, not sys.platlibdir): Third-party
modules

• /usr/lib64/pythonX.Y/site-packages/: C extension modules of third-party packages

Added in version 3.9.

sys.prefix

A string giving the site-specific directory prefix where the platform independent Python files are installed;
on Unix, the default is /usr/local. This can be set at build time with the --prefix argument to the
configure script. See Installation paths for derived paths.

Note

If a virtual environment is in effect, this value will be changed in site.py to point to the virtual environ-
ment. The value for the Python installation will still be available, via base_prefix.

sys.ps1

sys.ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case are '>>> ' and '... '. If a non-string object is
assigned to either variable, its str() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

sys.setdlopenflags(n)
Set the flags used by the interpreter for dlopen() calls, such as when the interpreter loads extension modules.

30.1. sys— System-specific parameters and functions 1919

The Python Library Reference, Release 3.13.1

Among other things, this will enable a lazy resolving of symbols when importing a module, if called as sys.
setdlopenflags(0). To share symbols across extension modules, call as sys.setdlopenflags(os.
RTLD_GLOBAL). Symbolic names for the flag values can be found in the os module (RTLD_xxx constants,
e.g. os.RTLD_LAZY).

Availability: Unix.

sys.set_int_max_str_digits(maxdigits)

Set the integer string conversion length limitation used by this interpreter. See also
get_int_max_str_digits().

Added in version 3.11.

sys.setprofile(profilefunc)
Set the system’s profile function, which allows you to implement a Python source code profiler in Python. See
chapter The Python Profilers for more information on the Python profiler. The system’s profile function is called
similarly to the system’s trace function (see settrace()), but it is called with different events, for example it
isn’t called for each executed line of code (only on call and return, but the return event is reported even when
an exception has been set). The function is thread-specific, but there is no way for the profiler to know about
context switches between threads, so it does not make sense to use this in the presence of multiple threads.
Also, its return value is not used, so it can simply return None. Error in the profile function will cause itself
unset.

Note

The same tracing mechanism is used for setprofile() as settrace(). To trace calls with
setprofile() inside a tracing function (e.g. in a debugger breakpoint), see call_tracing().

Profile functions should have three arguments: frame, event, and arg. frame is the current stack frame. event
is a string: 'call', 'return', 'c_call', 'c_return', or 'c_exception'. arg depends on the event
type.

The events have the following meaning:

'call'

A function is called (or some other code block entered). The profile function is called; arg is None.

'return'

A function (or other code block) is about to return. The profile function is called; arg is the value that
will be returned, or None if the event is caused by an exception being raised.

'c_call'

A C function is about to be called. This may be an extension function or a built-in. arg is the C function
object.

'c_return'

A C function has returned. arg is the C function object.

'c_exception'

A C function has raised an exception. arg is the C function object.

Raises an auditing event sys.setprofile with no arguments.

sys.setrecursionlimit(limit)
Set the maximum depth of the Python interpreter stack to limit. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when they have a
program that requires deep recursion and a platform that supports a higher limit. This should be done with
care, because a too-high limit can lead to a crash.

If the new limit is too low at the current recursion depth, a RecursionError exception is raised.

1920 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

Changed in version 3.5.1: A RecursionError exception is now raised if the new limit is too low at the
current recursion depth.

sys.setswitchinterval(interval)
Set the interpreter’s thread switch interval (in seconds). This floating-point value determines the ideal duration
of the “timeslices” allocated to concurrently running Python threads. Please note that the actual value can
be higher, especially if long-running internal functions or methods are used. Also, which thread becomes
scheduled at the end of the interval is the operating system’s decision. The interpreter doesn’t have its own
scheduler.

Added in version 3.2.

sys.settrace(tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in Python. The
function is thread-specific; for a debugger to support multiple threads, it must register a trace function using
settrace() for each thread being debugged or use threading.settrace().

Trace functions should have three arguments: frame, event, and arg. frame is the current stack frame. event is
a string: 'call', 'line', 'return', 'exception' or 'opcode'. arg depends on the event type.

The trace function is invoked (with event set to 'call') whenever a new local scope is entered; it should return
a reference to a local trace function to be used for the new scope, or None if the scope shouldn’t be traced.

The local trace function should return a reference to itself, or to another function which would then be used as
the local trace function for the scope.

If there is any error occurred in the trace function, it will be unset, just like settrace(None) is called.

Note

Tracing is disabled while calling the trace function (e.g. a function set by settrace()). For recursive
tracing see call_tracing().

The events have the following meaning:

'call'

A function is called (or some other code block entered). The global trace function is called; arg is None;
the return value specifies the local trace function.

'line'

The interpreter is about to execute a new line of code or re-execute the condition of a loop. The local trace
function is called; arg is None; the return value specifies the new local trace function. See Objects/
lnotab_notes.txt for a detailed explanation of how this works. Per-line events may be disabled for
a frame by setting f_trace_lines to False on that frame.

'return'

A function (or other code block) is about to return. The local trace function is called; arg is the value
that will be returned, or None if the event is caused by an exception being raised. The trace function’s
return value is ignored.

'exception'

An exception has occurred. The local trace function is called; arg is a tuple (exception, value,

traceback); the return value specifies the new local trace function.

'opcode'

The interpreter is about to execute a new opcode (see dis for opcode details). The local trace function
is called; arg is None; the return value specifies the new local trace function. Per-opcode events are
not emitted by default: they must be explicitly requested by setting f_trace_opcodes to True on the
frame.

Note that as an exception is propagated down the chain of callers, an 'exception' event is generated at each
level.

30.1. sys— System-specific parameters and functions 1921

The Python Library Reference, Release 3.13.1

For more fine-grained usage, it’s possible to set a trace function by assigning frame.f_trace = tracefunc

explicitly, rather than relying on it being set indirectly via the return value from an already installed trace func-
tion. This is also required for activating the trace function on the current frame, which settrace() doesn’t
do. Note that in order for this to work, a global tracing function must have been installed with settrace() in
order to enable the runtime tracing machinery, but it doesn’t need to be the same tracing function (e.g. it could
be a low overhead tracing function that simply returns None to disable itself immediately on each frame).

For more information on code and frame objects, refer to types.

Raises an auditing event sys.settrace with no arguments.

CPython implementation detail: The settrace() function is intended only for implementing debuggers,
profilers, coverage tools and the like. Its behavior is part of the implementation platform, rather than part of
the language definition, and thus may not be available in all Python implementations.

Changed in version 3.7: 'opcode' event type added; f_trace_lines and f_trace_opcodes attributes
added to frames

sys.set_asyncgen_hooks([firstiter] [, finalizer])

Accepts two optional keyword arguments which are callables that accept an asynchronous generator iterator as
an argument. The firstiter callable will be called when an asynchronous generator is iterated for the first time.
The finalizer will be called when an asynchronous generator is about to be garbage collected.

Raises an auditing event sys.set_asyncgen_hooks_firstiter with no arguments.

Raises an auditing event sys.set_asyncgen_hooks_finalizer with no arguments.

Two auditing events are raised because the underlying API consists of two calls, each of which must raise its
own event.

Added in version 3.6: See PEP 525 for more details, and for a reference example of a finalizer method see
the implementation of asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py

Note

This function has been added on a provisional basis (see PEP 411 for details.)

sys.set_coroutine_origin_tracking_depth(depth)
Allows enabling or disabling coroutine origin tracking. When enabled, the cr_origin attribute on coroutine
objects will contain a tuple of (filename, line number, function name) tuples describing the traceback where
the coroutine object was created, with the most recent call first. When disabled, cr_origin will be None.

To enable, pass a depth value greater than zero; this sets the number of frames whose information will be
captured. To disable, pass set depth to zero.

This setting is thread-specific.

Added in version 3.7.

Note

This function has been added on a provisional basis (see PEP 411 for details.) Use it only for debugging
purposes.

sys.activate_stack_trampoline(backend, /)
Activate the stack profiler trampoline backend. The only supported backend is "perf".

Availability: Linux.

Added in version 3.12.

1922 Chapter 30. Python Runtime Services

https://peps.python.org/pep-0525/
https://github.com/python/cpython/tree/3.13/Lib/asyncio/base_events.py
https://peps.python.org/pep-0411/
https://peps.python.org/pep-0411/

The Python Library Reference, Release 3.13.1

See also

• perf_profiling

• https://perf.wiki.kernel.org

sys.deactivate_stack_trampoline()

Deactivate the current stack profiler trampoline backend.

If no stack profiler is activated, this function has no effect.

Availability: Linux.

Added in version 3.12.

sys.is_stack_trampoline_active()

Return True if a stack profiler trampoline is active.

Availability: Linux.

Added in version 3.12.

sys._enablelegacywindowsfsencoding()

Changes the filesystem encoding and error handler to ‘mbcs’ and ‘replace’ respectively, for consistency with
versions of Python prior to 3.6.

This is equivalent to defining the PYTHONLEGACYWINDOWSFSENCODING environment variable before launch-
ing Python.

See also sys.getfilesystemencoding() and sys.getfilesystemencodeerrors().

Availability: Windows.

Note

Changing the filesystem encoding after Python startup is risky because the old fsencoding or paths encoded
by the old fsencoding may be cached somewhere. Use PYTHONLEGACYWINDOWSFSENCODING instead.

Added in version 3.6: See PEP 529 for more details.

Deprecated since version 3.13, will be removed in version 3.16: Use PYTHONLEGACYWINDOWSFSENCODING
instead.

sys.stdin

sys.stdout

sys.stderr

File objects used by the interpreter for standard input, output and errors:

• stdin is used for all interactive input (including calls to input());

• stdout is used for the output of print() and expression statements and for the prompts of input();

• The interpreter’s own prompts and its error messages go to stderr.

These streams are regular text files like those returned by the open() function. Their parameters are chosen
as follows:

• The encoding and error handling are is initialized from PyConfig.stdio_encoding and PyConfig.
stdio_errors.

On Windows, UTF-8 is used for the console device. Non-character devices such as disk files and pipes
use the system locale encoding (i.e. the ANSI codepage). Non-console character devices such as NUL
(i.e. where isatty() returns True) use the value of the console input and output codepages at startup,

30.1. sys— System-specific parameters and functions 1923

https://perf.wiki.kernel.org
https://peps.python.org/pep-0529/

The Python Library Reference, Release 3.13.1

respectively for stdin and stdout/stderr. This defaults to the system locale encoding if the process is not
initially attached to a console.

The special behaviour of the console can be overridden by setting the environment variable PYTHON-
LEGACYWINDOWSSTDIO before starting Python. In that case, the console codepages are used as for
any other character device.

Under all platforms, you can override the character encoding by setting the PYTHONIOENCODING en-
vironment variable before starting Python or by using the new -X utf8 command line option and
PYTHONUTF8 environment variable. However, for the Windows console, this only applies when
PYTHONLEGACYWINDOWSSTDIO is also set.

• When interactive, the stdout stream is line-buffered. Otherwise, it is block-buffered like regular text
files. The stderr stream is line-buffered in both cases. You can make both streams unbuffered by
passing the -u command-line option or setting the PYTHONUNBUFFERED environment variable.

Changed in version 3.9: Non-interactive stderr is now line-buffered instead of fully buffered.

Note

To write or read binary data from/to the standard streams, use the underlying binary buffer object. For
example, to write bytes to stdout, use sys.stdout.buffer.write(b'abc').

However, if you are writing a library (and do not control in which context its code will be executed), be
aware that the standard streams may be replaced with file-like objects like io.StringIO which do not
support the buffer attribute.

sys.__stdin__

sys.__stdout__

sys.__stderr__

These objects contain the original values of stdin, stderr and stdout at the start of the program. They are
used during finalization, and could be useful to print to the actual standard stream no matter if the sys.std*
object has been redirected.

It can also be used to restore the actual files to known working file objects in case they have been overwritten
with a broken object. However, the preferred way to do this is to explicitly save the previous stream before
replacing it, and restore the saved object.

Note

Under some conditions stdin, stdout and stderr as well as the original values __stdin__,
__stdout__ and __stderr__ can be None. It is usually the case for Windows GUI apps that aren’t
connected to a console and Python apps started with pythonw.

sys.stdlib_module_names

A frozenset of strings containing the names of standard library modules.

It is the same on all platforms. Modules which are not available on some platforms and modules disabled at
Python build are also listed. All module kinds are listed: pure Python, built-in, frozen and extension modules.
Test modules are excluded.

For packages, only the main package is listed: sub-packages and sub-modules are not listed. For example,
the email package is listed, but the email.mime sub-package and the email.message sub-module are not
listed.

See also the sys.builtin_module_names list.

Added in version 3.10.

1924 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

sys.thread_info

A named tuple holding information about the thread implementation.

thread_info.name

The name of the thread implementation:

• "nt": Windows threads

• "pthread": POSIX threads

• "pthread-stubs": stub POSIX threads (on WebAssembly platforms without threading support)

• "solaris": Solaris threads

thread_info.lock

The name of the lock implementation:

• "semaphore": a lock uses a semaphore

• "mutex+cond": a lock uses a mutex and a condition variable

• None if this information is unknown

thread_info.version

The name and version of the thread library. It is a string, or None if this information is unknown.

Added in version 3.3.

sys.tracebacklimit

When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The default is 1000. When set to 0 or less, all traceback
information is suppressed and only the exception type and value are printed.

sys.unraisablehook(unraisable, /)
Handle an unraisable exception.

Called when an exception has occurred but there is no way for Python to handle it. For example, when a
destructor raises an exception or during garbage collection (gc.collect()).

The unraisable argument has the following attributes:

• exc_type: Exception type.

• exc_value: Exception value, can be None.

• exc_traceback: Exception traceback, can be None.

• err_msg: Error message, can be None.

• object: Object causing the exception, can be None.

The default hook formats err_msg and object as: f'{err_msg}: {object!r}'; use “Exception ignored
in” error message if err_msg is None.

sys.unraisablehook() can be overridden to control how unraisable exceptions are handled.

See also

excepthook() which handles uncaught exceptions.

Warning

Storing exc_value using a custom hook can create a reference cycle. It should be cleared explicitly to
break the reference cycle when the exception is no longer needed.

30.1. sys— System-specific parameters and functions 1925

The Python Library Reference, Release 3.13.1

Storing object using a custom hook can resurrect it if it is set to an object which is being finalized. Avoid
storing object after the custom hook completes to avoid resurrecting objects.

Raise an auditing event sys.unraisablehook with arguments hook, unraisable when an exception that
cannot be handled occurs. The unraisable object is the same as what will be passed to the hook. If no hook
has been set, hook may be None.

Added in version 3.8.

sys.version

A string containing the version number of the Python interpreter plus additional information on the build
number and compiler used. This string is displayed when the interactive interpreter is started. Do not extract
version information out of it, rather, use version_info and the functions provided by the platformmodule.

sys.api_version

The C API version for this interpreter. Programmers may find this useful when debugging version conflicts
between Python and extension modules.

sys.version_info

A tuple containing the five components of the version number: major,minor,micro, releaselevel, and serial. All
values except releaselevel are integers; the release level is 'alpha', 'beta', 'candidate', or 'final'.
The version_info value corresponding to the Python version 2.0 is (2, 0, 0, 'final', 0). The com-
ponents can also be accessed by name, so sys.version_info[0] is equivalent to sys.version_info.
major and so on.

Changed in version 3.1: Added named component attributes.

sys.warnoptions

This is an implementation detail of the warnings framework; do not modify this value. Refer to the warnings
module for more information on the warnings framework.

sys.winver

The version number used to form registry keys on Windows platforms. This is stored as string resource 1000
in the Python DLL. The value is normally the major and minor versions of the running Python interpreter. It
is provided in the sys module for informational purposes; modifying this value has no effect on the registry
keys used by Python.

Availability: Windows.

sys.monitoring

Namespace containing functions and constants for register callbacks and controlling monitoring events. See
sys.monitoring for details.

sys._xoptions

A dictionary of the various implementation-specific flags passed through the -X command-line option. Option
names are either mapped to their values, if given explicitly, or to True. Example:

$./python -Xa=b -Xc

Python 3.2a3+ (py3k, Oct 16 2010, 20:14:50)

[GCC 4.4.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import sys

>>> sys._xoptions

{'a': 'b', 'c': True}

CPython implementation detail: This is a CPython-specific way of accessing options passed through -X.
Other implementations may export them through other means, or not at all.

Added in version 3.2.

1926 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

Citations

30.2 sys.monitoring— Execution event monitoring

Added in version 3.12.

Note

sys.monitoring is a namespace within the sys module, not an independent module, so there is no need to
import sys.monitoring, simply import sys and then use sys.monitoring.

This namespace provides access to the functions and constants necessary to activate and control event monitoring.

As programs execute, events occur that might be of interest to tools that monitor execution. The sys.monitoring
namespace provides means to receive callbacks when events of interest occur.

The monitoring API consists of three components:

• Tool identifiers

• Events

• Callbacks

30.2.1 Tool identifiers

A tool identifier is an integer and the associated name. Tool identifiers are used to discourage tools from interfering
with each other and to allow multiple tools to operate at the same time. Currently tools are completely independent
and cannot be used to monitor each other. This restriction may be lifted in the future.

Before registering or activating events, a tool should choose an identifier. Identifiers are integers in the range 0 to 5
inclusive.

Registering and using tools

sys.monitoring.use_tool_id(tool_id: int, name: str, /)→ None
Must be called before tool_id can be used. tool_id must be in the range 0 to 5 inclusive. Raises a ValueError
if tool_id is in use.

sys.monitoring.free_tool_id(tool_id: int, /)→ None
Should be called once a tool no longer requires tool_id.

Note

free_tool_id()will not disable global or local events associatedwith tool_id, nor will it unregister any callback
functions. This function is only intended to be used to notify the VM that the particular tool_id is no longer in
use.

sys.monitoring.get_tool(tool_id: int, /)→ str | None
Returns the name of the tool if tool_id is in use, otherwise it returns None. tool_id must be in the range 0 to 5
inclusive.

All IDs are treated the same by the VM with regard to events, but the following IDs are pre-defined to make co-
operation of tools easier:

sys.monitoring.DEBUGGER_ID = 0

sys.monitoring.COVERAGE_ID = 1

sys.monitoring.PROFILER_ID = 2

sys.monitoring.OPTIMIZER_ID = 5

30.2. sys.monitoring— Execution event monitoring 1927

The Python Library Reference, Release 3.13.1

30.2.2 Events

The following events are supported:

sys.monitoring.events.BRANCH

A conditional branch is taken (or not).

sys.monitoring.events.CALL

A call in Python code (event occurs before the call).

sys.monitoring.events.C_RAISE

An exception raised from any callable, except for Python functions (event occurs after the exit).

sys.monitoring.events.C_RETURN

Return from any callable, except for Python functions (event occurs after the return).

sys.monitoring.events.EXCEPTION_HANDLED

An exception is handled.

sys.monitoring.events.INSTRUCTION

A VM instruction is about to be executed.

sys.monitoring.events.JUMP

An unconditional jump in the control flow graph is made.

sys.monitoring.events.LINE

An instruction is about to be executed that has a different line number from the preceding instruction.

sys.monitoring.events.PY_RESUME

Resumption of a Python function (for generator and coroutine functions), except for throw() calls.

sys.monitoring.events.PY_RETURN

Return from a Python function (occurs immediately before the return, the callee’s frame will be on the stack).

sys.monitoring.events.PY_START

Start of a Python function (occurs immediately after the call, the callee’s frame will be on the stack)

sys.monitoring.events.PY_THROW

A Python function is resumed by a throw() call.

sys.monitoring.events.PY_UNWIND

Exit from a Python function during exception unwinding.

sys.monitoring.events.PY_YIELD

Yield from a Python function (occurs immediately before the yield, the callee’s frame will be on the stack).

sys.monitoring.events.RAISE

An exception is raised, except those that cause a STOP_ITERATION event.

sys.monitoring.events.RERAISE

An exception is re-raised, for example at the end of a finally block.

sys.monitoring.events.STOP_ITERATION

An artificial StopIteration is raised; see the STOP_ITERATION event.

More events may be added in the future.

These events are attributes of the sys.monitoring.events namespace. Each event is represented as a power-of-2
integer constant. To define a set of events, simply bitwise or the individual events together. For example, to specify
both PY_RETURN and PY_START events, use the expression PY_RETURN | PY_START.

sys.monitoring.events.NO_EVENTS

An alias for 0 so users can do explicit comparisons like:

1928 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

if get_events(DEBUGGER_ID) == NO_EVENTS:

...

Events are divided into three groups:

Local events

Local events are associated with normal execution of the program and happen at clearly defined locations. All local
events can be disabled. The local events are:

• PY_START

• PY_RESUME

• PY_RETURN

• PY_YIELD

• CALL

• LINE

• INSTRUCTION

• JUMP

• BRANCH

• STOP_ITERATION

Ancillary events

Ancillary events can be monitored like other events, but are controlled by another event:

• C_RAISE

• C_RETURN

The C_RETURN and C_RAISE events are controlled by the CALL event. C_RETURN and C_RAISE events will only
be seen if the corresponding CALL event is being monitored.

Other events

Other events are not necessarily tied to a specific location in the program and cannot be individually disabled.

The other events that can be monitored are:

• PY_THROW

• PY_UNWIND

• RAISE

• EXCEPTION_HANDLED

The STOP_ITERATION event

PEP 380 specifies that a StopIteration exception is raised when returning a value from a generator or coroutine.
However, this is a very inefficient way to return a value, so some Python implementations, notably CPython 3.12+,
do not raise an exception unless it would be visible to other code.

To allow tools to monitor for real exceptions without slowing down generators and coroutines, the STOP_ITERATION
event is provided. STOP_ITERATION can be locally disabled, unlike RAISE.

30.2. sys.monitoring— Execution event monitoring 1929

https://peps.python.org/pep-0380/#use-of-stopiteration-to-return-values

The Python Library Reference, Release 3.13.1

30.2.3 Turning events on and off

In order to monitor an event, it must be turned on and a corresponding callback must be registered. Events can be
turned on or off by setting the events either globally or for a particular code object.

Setting events globally

Events can be controlled globally by modifying the set of events being monitored.

sys.monitoring.get_events(tool_id: int, /)→ int
Returns the int representing all the active events.

sys.monitoring.set_events(tool_id: int, event_set: int, /)→ None
Activates all events which are set in event_set. Raises a ValueError if tool_id is not in use.

No events are active by default.

Per code object events

Events can also be controlled on a per code object basis. The functions defined below which accept a types.
CodeType should be prepared to accept a look-alike object from functions which are not defined in Python (see
c-api-monitoring).

sys.monitoring.get_local_events(tool_id: int, code: CodeType, /)→ int

Returns all the local events for code

sys.monitoring.set_local_events(tool_id: int, code: CodeType, event_set: int, /)→ None
Activates all the local events for code which are set in event_set. Raises a ValueError if tool_id is not in use.

Local events add to global events, but do not mask them. In other words, all global events will trigger for a code
object, regardless of the local events.

Disabling events

sys.monitoring.DISABLE

A special value that can be returned from a callback function to disable events for the current code location.

Local events can be disabled for a specific code location by returning sys.monitoring.DISABLE from a callback
function. This does not change which events are set, or any other code locations for the same event.

Disabling events for specific locations is very important for high performance monitoring. For example, a program
can be run under a debugger with no overhead if the debugger disables all monitoring except for a few breakpoints.

sys.monitoring.restart_events()→ None

Enable all the events that were disabled by sys.monitoring.DISABLE for all tools.

30.2.4 Registering callback functions

To register a callable for events call

sys.monitoring.register_callback(tool_id: int, event: int, func: Callable | None, /)→ Callable | None
Registers the callable func for the event with the given tool_id

If another callback was registered for the given tool_id and event, it is unregistered and returned. Otherwise
register_callback() returns None.

Functions can be unregistered by calling sys.monitoring.register_callback(tool_id, event, None).

Callback functions can be registered and unregistered at any time.

Registering or unregistering a callback function will generate a sys.audit() event.

1930 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

Callback function arguments

sys.monitoring.MISSING

A special value that is passed to a callback function to indicate that there are no arguments to the call.

When an active event occurs, the registered callback function is called. Different events will provide the callback
function with different arguments, as follows:

• PY_START and PY_RESUME:

func(code: CodeType, instruction_offset: int) -> DISABLE | Any

• PY_RETURN and PY_YIELD:

func(code: CodeType, instruction_offset: int, retval: object) -> DISABLE | Any

• CALL, C_RAISE and C_RETURN:

func(code: CodeType, instruction_offset: int, callable: object, arg0: object |␣

↪→MISSING) -> DISABLE | Any

If there are no arguments, arg0 is set to sys.monitoring.MISSING.

• RAISE, RERAISE, EXCEPTION_HANDLED, PY_UNWIND, PY_THROW and STOP_ITERATION:

func(code: CodeType, instruction_offset: int, exception: BaseException) ->␣

↪→DISABLE | Any

• LINE:

func(code: CodeType, line_number: int) -> DISABLE | Any

• BRANCH and JUMP:

func(code: CodeType, instruction_offset: int, destination_offset: int) ->␣

↪→DISABLE | Any

Note that the destination_offset is where the code will next execute. For an untaken branch this will be the
offset of the instruction following the branch.

• INSTRUCTION:

func(code: CodeType, instruction_offset: int) -> DISABLE | Any

30.3 sysconfig — Provide access to Python’s configuration infor-
mation

Added in version 3.2.

Source code: Lib/sysconfig

The sysconfig module provides access to Python’s configuration information like the list of installation paths and
the configuration variables relevant for the current platform.

30.3.1 Configuration variables

A Python distribution contains a Makefile and a pyconfig.h header file that are necessary to build both the
Python binary itself and third-party C extensions compiled using setuptools.

30.3. sysconfig— Provide access to Python’s configuration information 1931

https://github.com/python/cpython/tree/3.13/Lib/sysconfig

The Python Library Reference, Release 3.13.1

sysconfig puts all variables found in these files in a dictionary that can be accessed using get_config_vars()
or get_config_var().

Notice that on Windows, it’s a much smaller set.

sysconfig.get_config_vars(*args)
With no arguments, return a dictionary of all configuration variables relevant for the current platform.

With arguments, return a list of values that result from looking up each argument in the configuration variable
dictionary.

For each argument, if the value is not found, return None.

sysconfig.get_config_var(name)
Return the value of a single variable name. Equivalent to get_config_vars().get(name).

If name is not found, return None.

Example of usage:

>>> import sysconfig

>>> sysconfig.get_config_var('Py_ENABLE_SHARED')

0

>>> sysconfig.get_config_var('LIBDIR')

'/usr/local/lib'

>>> sysconfig.get_config_vars('AR', 'CXX')

['ar', 'g++']

30.3.2 Installation paths

Python uses an installation scheme that differs depending on the platform and on the installation options. These
schemes are stored in sysconfig under unique identifiers based on the value returned by os.name. The schemes
are used by package installers to determine where to copy files to.

Python currently supports nine schemes:

• posix_prefix: scheme for POSIX platforms like Linux or macOS. This is the default scheme used when Python
or a component is installed.

• posix_home: scheme for POSIX platforms, when the home option is used. This scheme defines paths located
under a specific home prefix.

• posix_user: scheme for POSIX platforms, when the user option is used. This scheme defines paths located
under the user’s home directory (site.USER_BASE).

• posix_venv: scheme for Python virtual environments on POSIX platforms; by default it is the same as
posix_prefix.

• nt: scheme for Windows. This is the default scheme used when Python or a component is installed.

• nt_user: scheme for Windows, when the user option is used.

• nt_venv: scheme for Python virtual environments on Windows; by default it is the same as nt.

• venv: a scheme with values from either posix_venv or nt_venv depending on the platform Python runs on.

• osx_framework_user: scheme for macOS, when the user option is used.

Each scheme is itself composed of a series of paths and each path has a unique identifier. Python currently uses eight
paths:

• stdlib: directory containing the standard Python library files that are not platform-specific.

• platstdlib: directory containing the standard Python library files that are platform-specific.

• platlib: directory for site-specific, platform-specific files.

• purelib: directory for site-specific, non-platform-specific files (‘pure’ Python).

1932 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

• include: directory for non-platform-specific header files for the Python C-API.

• platinclude: directory for platform-specific header files for the Python C-API.

• scripts: directory for script files.

• data: directory for data files.

30.3.3 User scheme

This scheme is designed to be the most convenient solution for users that don’t have write permission to the global
site-packages directory or don’t want to install into it.

Files will be installed into subdirectories of site.USER_BASE (written as userbase hereafter). This scheme installs
pure Python modules and extension modules in the same location (also known as site.USER_SITE).

posix_user

Path Installation directory

stdlib userbase/lib/pythonX.Y

platstdlib userbase/lib/pythonX.Y

platlib userbase/lib/pythonX.Y/site-packages

purelib userbase/lib/pythonX.Y/site-packages

include userbase/include/pythonX.Y

scripts userbase/bin

data userbase

nt_user

Path Installation directory

stdlib userbase\PythonXY

platstdlib userbase\PythonXY

platlib userbase\PythonXY\site-packages

purelib userbase\PythonXY\site-packages

include userbase\PythonXY\Include

scripts userbase\PythonXY\Scripts

data userbase

osx_framework_user

Path Installation directory

stdlib userbase/lib/python

platstdlib userbase/lib/python

platlib userbase/lib/python/site-packages

purelib userbase/lib/python/site-packages

include userbase/include/pythonX.Y

scripts userbase/bin

data userbase

30.3.4 Home scheme

The idea behind the “home scheme” is that you build and maintain a personal stash of Python modules. This scheme’s
name is derived from the idea of a “home” directory on Unix, since it’s not unusual for a Unix user to make their
home directory have a layout similar to /usr/ or /usr/local/. This scheme can be used by anyone, regardless of
the operating system they are installing for.

30.3. sysconfig— Provide access to Python’s configuration information 1933

The Python Library Reference, Release 3.13.1

posix_home

Path Installation directory

stdlib home/lib/python

platstdlib home/lib/python

platlib home/lib/python

purelib home/lib/python

include home/include/python

platinclude home/include/python

scripts home/bin

data home

30.3.5 Prefix scheme

The “prefix scheme” is useful when you wish to use one Python installation to perform the build/install (i.e., to
run the setup script), but install modules into the third-party module directory of a different Python installation (or
something that looks like a different Python installation). If this sounds a trifle unusual, it is—that’s why the user and
home schemes come before. However, there are at least two known cases where the prefix scheme will be useful.

First, consider that many Linux distributions put Python in /usr, rather than the more traditional /usr/local.
This is entirely appropriate, since in those cases Python is part of “the system” rather than a local add-on. However,
if you are installing Python modules from source, you probably want them to go in /usr/local/lib/python2.X
rather than /usr/lib/python2.X.

Another possibility is a network filesystem where the name used to write to a remote directory is different from the
name used to read it: for example, the Python interpreter accessed as /usr/local/bin/python might search for
modules in /usr/local/lib/python2.X, but those modules would have to be installed to, say, /mnt/@server/
export/lib/python2.X.

posix_prefix

Path Installation directory

stdlib prefix/lib/pythonX.Y

platstdlib prefix/lib/pythonX.Y

platlib prefix/lib/pythonX.Y/site-packages

purelib prefix/lib/pythonX.Y/site-packages

include prefix/include/pythonX.Y

platinclude prefix/include/pythonX.Y

scripts prefix/bin

data prefix

nt

Path Installation directory

stdlib prefix\Lib

platstdlib prefix\Lib

platlib prefix\Lib\site-packages

purelib prefix\Lib\site-packages

include prefix\Include

platinclude prefix\Include

scripts prefix\Scripts

data prefix

1934 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

30.3.6 Installation path functions

sysconfig provides some functions to determine these installation paths.

sysconfig.get_scheme_names()

Return a tuple containing all schemes currently supported in sysconfig.

sysconfig.get_default_scheme()

Return the default scheme name for the current platform.

Added in version 3.10: This function was previously named _get_default_scheme() and considered an
implementation detail.

Changed in version 3.11: When Python runs from a virtual environment, the venv scheme is returned.

sysconfig.get_preferred_scheme(key)

Return a preferred scheme name for an installation layout specified by key.

key must be either "prefix", "home", or "user".

The return value is a scheme name listed in get_scheme_names(). It can be passed to sysconfig functions
that take a scheme argument, such as get_paths().

Added in version 3.10.

Changed in version 3.11: When Python runs from a virtual environment and key="prefix", the venv scheme
is returned.

sysconfig._get_preferred_schemes()

Return a dict containing preferred scheme names on the current platform. Python implementers and redistrib-
utors may add their preferred schemes to the _INSTALL_SCHEMESmodule-level global value, and modify this
function to return those scheme names, to e.g. provide different schemes for system and language package
managers to use, so packages installed by either do not mix with those by the other.

End users should not use this function, but get_default_scheme() and get_preferred_scheme() in-
stead.

Added in version 3.10.

sysconfig.get_path_names()

Return a tuple containing all path names currently supported in sysconfig.

sysconfig.get_path(name[, scheme[, vars[, expand]]])
Return an installation path corresponding to the path name, from the install scheme named scheme.

name has to be a value from the list returned by get_path_names().

sysconfig stores installation paths corresponding to each path name, for each platform, with variables to be
expanded. For instance the stdlib path for the nt scheme is: {base}/Lib.

get_path() will use the variables returned by get_config_vars() to expand the path. All variables have
default values for each platform so one may call this function and get the default value.

If scheme is provided, it must be a value from the list returned by get_scheme_names(). Otherwise, the
default scheme for the current platform is used.

If vars is provided, it must be a dictionary of variables that will update the dictionary returned by
get_config_vars().

If expand is set to False, the path will not be expanded using the variables.

If name is not found, raise a KeyError.

sysconfig.get_paths([scheme[, vars[, expand]]])
Return a dictionary containing all installation paths corresponding to an installation scheme. See get_path()
for more information.

If scheme is not provided, will use the default scheme for the current platform.

30.3. sysconfig— Provide access to Python’s configuration information 1935

The Python Library Reference, Release 3.13.1

If vars is provided, it must be a dictionary of variables that will update the dictionary used to expand the paths.

If expand is set to false, the paths will not be expanded.

If scheme is not an existing scheme, get_paths() will raise a KeyError.

30.3.7 Other functions

sysconfig.get_python_version()

Return the MAJOR.MINOR Python version number as a string. Similar to '%d.%d' % sys.

version_info[:2].

sysconfig.get_platform()

Return a string that identifies the current platform.

This is used mainly to distinguish platform-specific build directories and platform-specific built distributions.
Typically includes the OS name and version and the architecture (as supplied by os.uname()), although the
exact information included depends on the OS; e.g., on Linux, the kernel version isn’t particularly important.

Examples of returned values:

• linux-i586

• linux-alpha (?)

• solaris-2.6-sun4u

Windows will return one of:

• win-amd64 (64bit Windows on AMD64, aka x86_64, Intel64, and EM64T)

• win32 (all others - specifically, sys.platform is returned)

macOS can return:

• macosx-10.6-ppc

• macosx-10.4-ppc64

• macosx-10.3-i386

• macosx-10.4-fat

For other non-POSIX platforms, currently just returns sys.platform.

sysconfig.is_python_build()

Return True if the running Python interpreter was built from source and is being run from its built location,
and not from a location resulting from e.g. running make install or installing via a binary installer.

sysconfig.parse_config_h(fp[, vars])
Parse a config.h-style file.

fp is a file-like object pointing to the config.h-like file.

A dictionary containing name/value pairs is returned. If an optional dictionary is passed in as the second
argument, it is used instead of a new dictionary, and updated with the values read in the file.

sysconfig.get_config_h_filename()

Return the path of pyconfig.h.

sysconfig.get_makefile_filename()

Return the path of Makefile.

30.3.8 Using sysconfig as a script

You can use sysconfig as a script with Python’s -m option:

1936 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

$ python -m sysconfig

Platform: "macosx-10.4-i386"

Python version: "3.2"

Current installation scheme: "posix_prefix"

Paths:

data = "/usr/local"

include = "/Users/tarek/Dev/svn.python.org/py3k/Include"

platinclude = "."

platlib = "/usr/local/lib/python3.2/site-packages"

platstdlib = "/usr/local/lib/python3.2"

purelib = "/usr/local/lib/python3.2/site-packages"

scripts = "/usr/local/bin"

stdlib = "/usr/local/lib/python3.2"

Variables:

AC_APPLE_UNIVERSAL_BUILD = "0"

AIX_GENUINE_CPLUSPLUS = "0"

AR = "ar"

ARFLAGS = "rc"

...

This call will print in the standard output the information returned by get_platform(),
get_python_version(), get_path() and get_config_vars().

30.4 builtins— Built-in objects

This module provides direct access to all ‘built-in’ identifiers of Python; for example, builtins.open is the full
name for the built-in function open().

This module is not normally accessed explicitly by most applications, but can be useful in modules that provide
objects with the same name as a built-in value, but in which the built-in of that name is also needed. For example,
in a module that wants to implement an open() function that wraps the built-in open(), this module can be used
directly:

import builtins

def open(path):

f = builtins.open(path, 'r')

return UpperCaser(f)

class UpperCaser:

'''Wrapper around a file that converts output to uppercase.'''

def __init__(self, f):

self._f = f

def read(self, count=-1):

return self._f.read(count).upper()

...

As an implementation detail, most modules have the name __builtins__ made available as part of their globals.
The value of __builtins__ is normally either this module or the value of this module’s __dict__ attribute. Since
this is an implementation detail, it may not be used by alternate implementations of Python.

30.4. builtins— Built-in objects 1937

The Python Library Reference, Release 3.13.1

See also

• Built-in Constants

• Built-in Exceptions

• Built-in Functions

• Built-in Types

30.5 __main__— Top-level code environment

In Python, the special name __main__ is used for two important constructs:

1. the name of the top-level environment of the program, which can be checked using the __name__ ==

'__main__' expression; and

2. the __main__.py file in Python packages.

Both of these mechanisms are related to Python modules; how users interact with them and how they interact with
each other. They are explained in detail below. If you’re new to Python modules, see the tutorial section tut-modules
for an introduction.

30.5.1 __name__ == '__main__'

When a Python module or package is imported, __name__ is set to the module’s name. Usually, this is the name of
the Python file itself without the .py extension:

>>> import configparser

>>> configparser.__name__

'configparser'

If the file is part of a package, __name__ will also include the parent package’s path:

>>> from concurrent.futures import process

>>> process.__name__

'concurrent.futures.process'

However, if the module is executed in the top-level code environment, its __name__ is set to the string '__main__'.

What is the “top-level code environment”?

__main__ is the name of the environment where top-level code is run. “Top-level code” is the first user-specified
Python module that starts running. It’s “top-level” because it imports all other modules that the program needs.
Sometimes “top-level code” is called an entry point to the application.

The top-level code environment can be:

• the scope of an interactive prompt:

>>> __name__

'__main__'

• the Python module passed to the Python interpreter as a file argument:

$ python helloworld.py

Hello, world!

• the Python module or package passed to the Python interpreter with the -m argument:

1938 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

$ python -m tarfile

usage: tarfile.py [-h] [-v] (...)

• Python code read by the Python interpreter from standard input:

$ echo "import this" | python

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

...

• Python code passed to the Python interpreter with the -c argument:

$ python -c "import this"

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

...

In each of these situations, the top-level module’s __name__ is set to '__main__'.

As a result, a module can discover whether or not it is running in the top-level environment by checking its own
__name__, which allows a common idiom for conditionally executing code when the module is not initialized from
an import statement:

if __name__ == '__main__':

Execute when the module is not initialized from an import statement.

...

See also

For a more detailed look at how __name__ is set in all situations, see the tutorial section tut-modules.

Idiomatic Usage

Some modules contain code that is intended for script use only, like parsing command-line arguments or fetching
data from standard input. If a module like this was imported from a different module, for example to unit test it, the
script code would unintentionally execute as well.

This is where using the if __name__ == '__main__' code block comes in handy. Code within this block won’t
run unless the module is executed in the top-level environment.

Putting as few statements as possible in the block below if __name__ == '__main__' can improve code clarity
and correctness. Most often, a function named main encapsulates the program’s primary behavior:

echo.py

import shlex

import sys

def echo(phrase: str) -> None:

"""A dummy wrapper around print."""

for demonstration purposes, you can imagine that there is some

valuable and reusable logic inside this function

print(phrase)

(continues on next page)

30.5. __main__— Top-level code environment 1939

The Python Library Reference, Release 3.13.1

(continued from previous page)

def main() -> int:

"""Echo the input arguments to standard output"""

phrase = shlex.join(sys.argv)

echo(phrase)

return 0

if __name__ == '__main__':

sys.exit(main()) # next section explains the use of sys.exit

Note that if the module didn’t encapsulate code inside the main function but instead put it directly within the if
__name__ == '__main__' block, the phrase variable would be global to the entire module. This is error-prone
as other functions within the module could be unintentionally using the global variable instead of a local name. A
main function solves this problem.

Using a main function has the added benefit of the echo function itself being isolated and importable elsewhere.
When echo.py is imported, the echo and main functions will be defined, but neither of themwill be called, because
__name__ != '__main__'.

Packaging Considerations

main functions are often used to create command-line tools by specifying them as entry points for console scripts.
When this is done, pip inserts the function call into a template script, where the return value of main is passed into
sys.exit(). For example:

sys.exit(main())

Since the call to main is wrapped in sys.exit(), the expectation is that your function will return some value
acceptable as an input to sys.exit(); typically, an integer or None (which is implicitly returned if your function
does not have a return statement).

By proactively following this convention ourselves, our module will have the same behavior when run directly (i.e.
python echo.py) as it will have if we later package it as a console script entry-point in a pip-installable package.

In particular, be careful about returning strings from your main function. sys.exit() will interpret a string argu-
ment as a failure message, so your programwill have an exit code of 1, indicating failure, and the string will be written
to sys.stderr. The echo.py example from earlier exemplifies using the sys.exit(main()) convention.

See also

Python Packaging User Guide contains a collection of tutorials and references on how to distribute and install
Python packages with modern tools.

30.5.2 __main__.py in Python Packages

If you are not familiar with Python packages, see section tut-packages of the tutorial. Most commonly, the
__main__.py file is used to provide a command-line interface for a package. Consider the following hypotheti-
cal package, “bandclass”:

bandclass

├── __init__.py

├── __main__.py

└── student.py

__main__.py will be executed when the package itself is invoked directly from the command line using the -m flag.
For example:

$ python -m bandclass

1940 Chapter 30. Python Runtime Services

https://pip.pypa.io/
https://packaging.python.org/

The Python Library Reference, Release 3.13.1

This command will cause __main__.py to run. How you utilize this mechanism will depend on the nature of the
package you are writing, but in this hypothetical case, it might make sense to allow the teacher to search for students:

bandclass/__main__.py

import sys

from .student import search_students

student_name = sys.argv[1] if len(sys.argv) >= 2 else ''

print(f'Found student: {search_students(student_name)}')

Note that from .student import search_students is an example of a relative import. This import style
can be used when referencing modules within a package. For more details, see intra-package-references in the tut-
modules section of the tutorial.

Idiomatic Usage

The content of __main__.py typically isn’t fenced with an if __name__ == '__main__' block. Instead, those
files are kept short and import functions to execute from other modules. Those other modules can then be easily
unit-tested and are properly reusable.

If used, an if __name__ == '__main__' block will still work as expected for a __main__.py file within a
package, because its __name__ attribute will include the package’s path if imported:

>>> import asyncio.__main__

>>> asyncio.__main__.__name__

'asyncio.__main__'

This won’t work for __main__.py files in the root directory of a .zip file though. Hence, for consistency, a minimal
__main__.py without a __name__ check is preferred.

See also

See venv for an example of a package with a minimal __main__.py in the standard library. It doesn’t contain
a if __name__ == '__main__' block. You can invoke it with python -m venv [directory].

See runpy for more details on the -m flag to the interpreter executable.

See zipapp for how to run applications packaged as .zip files. In this case Python looks for a __main__.py file
in the root directory of the archive.

30.5.3 import __main__

Regardless of which module a Python program was started with, other modules running within that same program
can import the top-level environment’s scope (namespace) by importing the __main__ module. This doesn’t import
a __main__.py file but rather whichever module that received the special name '__main__'.

Here is an example module that consumes the __main__ namespace:

namely.py

import __main__

def did_user_define_their_name():

return 'my_name' in dir(__main__)

def print_user_name():

if not did_user_define_their_name():

raise ValueError('Define the variable `my_name`!')

(continues on next page)

30.5. __main__— Top-level code environment 1941

The Python Library Reference, Release 3.13.1

(continued from previous page)

if '__file__' in dir(__main__):

print(__main__.my_name, "found in file", __main__.__file__)

else:

print(__main__.my_name)

Example usage of this module could be as follows:

start.py

import sys

from namely import print_user_name

my_name = "Dinsdale"

def main():

try:

print_user_name()

except ValueError as ve:

return str(ve)

if __name__ == "__main__":

sys.exit(main())

Now, if we started our program, the result would look like this:

$ python start.py

Define the variable `my_name`!

The exit code of the program would be 1, indicating an error. Uncommenting the line with my_name =

"Dinsdale" fixes the program and now it exits with status code 0, indicating success:

$ python start.py

Dinsdale found in file /path/to/start.py

Note that importing __main__ doesn’t cause any issues with unintentionally running top-level code meant for script
use which is put in the if __name__ == "__main__" block of the start module. Why does this work?

Python inserts an empty __main__module in sys.modules at interpreter startup, and populates it by running top-
level code. In our example this is the start module which runs line by line and imports namely. In turn, namely
imports __main__ (which is really start). That’s an import cycle! Fortunately, since the partially populated
__main__ module is present in sys.modules, Python passes that to namely. See Special considerations for
__main__ in the import system’s reference for details on how this works.

The Python REPL is another example of a “top-level environment”, so anything defined in the REPL becomes part
of the __main__ scope:

>>> import namely

>>> namely.did_user_define_their_name()

False

>>> namely.print_user_name()

Traceback (most recent call last):

...

ValueError: Define the variable `my_name`!

>>> my_name = 'Jabberwocky'

>>> namely.did_user_define_their_name()

True

(continues on next page)

1942 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> namely.print_user_name()

Jabberwocky

Note that in this case the __main__ scope doesn’t contain a __file__ attribute as it’s interactive.

The __main__ scope is used in the implementation of pdb and rlcompleter.

30.6 warnings—Warning control

Source code: Lib/warnings.py

Warning messages are typically issued in situations where it is useful to alert the user of some condition in a program,
where that condition (normally) doesn’t warrant raising an exception and terminating the program. For example, one
might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by calling the warn() function defined in this module. (C programmers use
PyErr_WarnEx(); see exceptionhandling for details).

Warning messages are normally written to sys.stderr, but their disposition can be changed flexibly, from ignoring
all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning category,
the text of the warning message, and the source location where it is issued. Repetitions of a particular warning for
the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence of
matching rules and actions. Rules can be added to the filter by calling filterwarnings() and reset to its default
state by calling resetwarnings().

The printing of warning messages is done by calling showwarning(), which may be overridden; the default im-
plementation of this function formats the message by calling formatwarning(), which is also available for use by
custom implementations.

See also

logging.captureWarnings() allows you to handle all warnings with the standard logging infrastructure.

30.6.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be able
to filter out groups of warnings.

While these are technically built-in exceptions, they are documented here, because conceptually they belong to the
warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A warning
category must always be a subclass of the Warning class.

The following warnings category classes are currently defined:

30.6. warnings—Warning control 1943

https://github.com/python/cpython/tree/3.13/Lib/warnings.py

The Python Library Reference, Release 3.13.1

Class Description

Warning This is the base class of all warning category classes. It is a subclass
of Exception.

UserWarning The default category for warn().
DeprecationWarning Base category for warnings about deprecated features when those

warnings are intended for other Python developers (ignored by default,
unless triggered by code in __main__).

SyntaxWarning Base category for warnings about dubious syntactic features.
RuntimeWarning Base category for warnings about dubious runtime features.
FutureWarning Base category for warnings about deprecated features when those

warnings are intended for end users of applications that are written
in Python.

PendingDeprecationWarning Base category for warnings about features that will be deprecated in
the future (ignored by default).

ImportWarning Base category for warnings triggered during the process of importing
a module (ignored by default).

UnicodeWarning Base category for warnings related to Unicode.
BytesWarning Base category for warnings related to bytes and bytearray.
ResourceWarning Base category for warnings related to resource usage (ignored by de-

fault).

Changed in version 3.7: Previously DeprecationWarning and FutureWarning were distinguished based on
whether a feature was being removed entirely or changing its behaviour. They are now distinguished based on their
intended audience and the way they’re handled by the default warnings filters.

30.6.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the filter determines the disposition of the
match. Each entry is a tuple of the form (action, message, category, module, lineno), where:

• action is one of the following strings:

Value Disposition

"default"print the first occurrence of matching warnings for each location (module + line number) where
the warning is issued

"error" turn matching warnings into exceptions
"ignore" never print matching warnings
"always" always print matching warnings
"module" print the first occurrence of matching warnings for each module where the warning is issued

(regardless of line number)
"once" print only the first occurrence of matching warnings, regardless of location

• message is a string containing a regular expression that the start of the warning message must match, case-
insensitively. In -W and PYTHONWARNINGS, message is a literal string that the start of the warning message
must contain (case-insensitively), ignoring any whitespace at the start or end of message.

• category is a class (a subclass of Warning) of which the warning category must be a subclass in order to match.

• module is a string containing a regular expression that the start of the fully qualified module name must match,
case-sensitively. In -W and PYTHONWARNINGS, module is a literal string that the fully qualified module name
must be equal to (case-sensitively), ignoring any whitespace at the start or end of module.

• lineno is an integer that the line number where the warning occurredmust match, or 0 to match all line numbers.

1944 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

Since the Warning class is derived from the built-in Exception class, to turn a warning into an error we simply
raise category(message).

If a warning is reported and doesn’t match any registered filter then the “default” action is applied (hence its name).

Repeated Warning Suppression Criteria

The filters that suppress repeated warnings apply the following criteria to determine if a warning is considered a
repeat:

• "default": A warning is considered a repeat only if the (message, category, module, lineno) are all the same.

• "module": A warning is considered a repeat if the (message, category, module) are the same, ignoring the line
number.

• "once": A warning is considered a repeat if the (message, category) are the same, ignoring the module and
line number.

Describing Warning Filters

The warnings filter is initialized by -W options passed to the Python interpreter command line and the
PYTHONWARNINGS environment variable. The interpreter saves the arguments for all supplied entries without in-
terpretation in sys.warnoptions; the warningsmodule parses these when it is first imported (invalid options are
ignored, after printing a message to sys.stderr).

Individual warnings filters are specified as a sequence of fields separated by colons:

action:message:category:module:line

Themeaning of each of these fields is as described in TheWarnings Filter. When listingmultiple filters on a single line
(as for PYTHONWARNINGS), the individual filters are separated by commas and the filters listed later take precedence
over those listed before them (as they’re applied left-to-right, and the most recently applied filters take precedence
over earlier ones).

Commonly used warning filters apply to either all warnings, warnings in a particular category, or warnings raised by
particular modules or packages. Some examples:

default # Show all warnings (even those ignored by default)

ignore # Ignore all warnings

error # Convert all warnings to errors

error::ResourceWarning # Treat ResourceWarning messages as errors

default::DeprecationWarning # Show DeprecationWarning messages

ignore,default:::mymodule # Only report warnings triggered by "mymodule"

error:::mymodule # Convert warnings to errors in "mymodule"

Default Warning Filter

By default, Python installs several warning filters, which can be overridden by the -W command-line option, the
PYTHONWARNINGS environment variable and calls to filterwarnings().

In regular release builds, the default warning filter has the following entries (in order of precedence):

default::DeprecationWarning:__main__

ignore::DeprecationWarning

ignore::PendingDeprecationWarning

ignore::ImportWarning

ignore::ResourceWarning

In a debug build, the list of default warning filters is empty.

Changed in version 3.2: DeprecationWarning is now ignored by default in addition to
PendingDeprecationWarning.

30.6. warnings—Warning control 1945

The Python Library Reference, Release 3.13.1

Changed in version 3.7: DeprecationWarning is once again shown by default when triggered directly by code in
__main__.

Changed in version 3.7: BytesWarning no longer appears in the default filter list and is instead configured via
sys.warnoptions when -b is specified twice.

Overriding the default filter

Developers of applications written in Python may wish to hide all Python level warnings from their users by default,
and only display them when running tests or otherwise working on the application. The sys.warnoptions attribute
used to pass filter configurations to the interpreter can be used as a marker to indicate whether or not warnings should
be disabled:

import sys

if not sys.warnoptions:

import warnings

warnings.simplefilter("ignore")

Developers of test runners for Python code are advised to instead ensure that all warnings are displayed by default
for the code under test, using code like:

import sys

if not sys.warnoptions:

import os, warnings

warnings.simplefilter("default") # Change the filter in this process

os.environ["PYTHONWARNINGS"] = "default" # Also affect subprocesses

Finally, developers of interactive shells that run user code in a namespace other than __main__ are advised to ensure
that DeprecationWarning messages are made visible by default, using code like the following (where user_ns
is the module used to execute code entered interactively):

import warnings

warnings.filterwarnings("default", category=DeprecationWarning,

module=user_ns.get("__name__"))

30.6.3 Temporarily Suppressing Warnings

If you are using code that you know will raise a warning, such as a deprecated function, but do not want to see the
warning (even when warnings have been explicitly configured via the command line), then it is possible to suppress
the warning using the catch_warnings context manager:

import warnings

def fxn():

warnings.warn("deprecated", DeprecationWarning)

with warnings.catch_warnings():

warnings.simplefilter("ignore")

fxn()

While within the context manager all warnings will simply be ignored. This allows you to use known-deprecated
code without having to see the warning while not suppressing the warning for other code that might not be aware of
its use of deprecated code. Note: this can only be guaranteed in a single-threaded application. If two or more threads
use the catch_warnings context manager at the same time, the behavior is undefined.

1946 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

30.6.4 Testing Warnings

To test warnings raised by code, use the catch_warnings context manager. With it you can temporarily mutate
the warnings filter to facilitate your testing. For instance, do the following to capture all raised warnings to check:

import warnings

def fxn():

warnings.warn("deprecated", DeprecationWarning)

with warnings.catch_warnings(record=True) as w:

Cause all warnings to always be triggered.

warnings.simplefilter("always")

Trigger a warning.

fxn()

Verify some things

assert len(w) == 1

assert issubclass(w[-1].category, DeprecationWarning)

assert "deprecated" in str(w[-1].message)

One can also cause all warnings to be exceptions by using error instead of always. One thing to be aware of is
that if a warning has already been raised because of a once/default rule, then no matter what filters are set the
warning will not be seen again unless the warnings registry related to the warning has been cleared.

Once the context manager exits, the warnings filter is restored to its state when the context was entered. This prevents
tests from changing the warnings filter in unexpected ways between tests and leading to indeterminate test results.
The showwarning() function in the module is also restored to its original value. Note: this can only be guaranteed
in a single-threaded application. If two or more threads use the catch_warnings context manager at the same
time, the behavior is undefined.

When testing multiple operations that raise the same kind of warning, it is important to test them in a manner that
confirms each operation is raising a newwarning (e.g. set warnings to be raised as exceptions and check the operations
raise exceptions, check that the length of the warning list continues to increase after each operation, or else delete
the previous entries from the warnings list before each new operation).

30.6.5 Updating Code For New Versions of Dependencies

Warning categories that are primarily of interest to Python developers (rather than end users of applications written
in Python) are ignored by default.

Notably, this “ignored by default” list includes DeprecationWarning (for every module except __main__), which
means developers should make sure to test their code with typically ignored warnings made visible in order to receive
timely notifications of future breaking API changes (whether in the standard library or third party packages).

In the ideal case, the code will have a suitable test suite, and the test runner will take care of implicitly enabling all
warnings when running tests (the test runner provided by the unittest module does this).

In less ideal cases, applications can be checked for use of deprecated interfaces by passing -Wd to the Python inter-
preter (this is shorthand for -W default) or setting PYTHONWARNINGS=default in the environment. This enables
default handling for all warnings, including those that are ignored by default. To change what action is taken for en-
countered warnings you can change what argument is passed to -W (e.g. -W error). See the -W flag for more details
on what is possible.

30.6.6 Available Functions

warnings.warn(message, category=None, stacklevel=1, source=None, *, skip_file_prefixes=())
Issue a warning, or maybe ignore it or raise an exception. The category argument, if given, must be a warning
category class; it defaults to UserWarning. Alternatively, message can be a Warning instance, in which
case category will be ignored and message.__class__ will be used. In this case, the message text will be
str(message). This function raises an exception if the particular warning issued is changed into an error by
the warnings filter. The stacklevel argument can be used by wrapper functions written in Python, like this:

30.6. warnings—Warning control 1947

The Python Library Reference, Release 3.13.1

def deprecated_api(message):

warnings.warn(message, DeprecationWarning, stacklevel=2)

This makes the warning refer to deprecated_api’s caller, rather than to the source of deprecated_api
itself (since the latter would defeat the purpose of the warning message).

The skip_file_prefixes keyword argument can be used to indicate which stack frames are ignored when counting
stack levels. This can be useful when you want the warning to always appear at call sites outside of a package
when a constant stacklevel does not fit all call paths or is otherwise challenging to maintain. If supplied,
it must be a tuple of strings. When prefixes are supplied, stacklevel is implicitly overridden to be max(2,
stacklevel). To cause a warning to be attributed to the caller from outside of the current package you
might write:

example/lower.py

_warn_skips = (os.path.dirname(__file__),)

def one_way(r_luxury_yacht=None, t_wobbler_mangrove=None):

if r_luxury_yacht:

warnings.warn("Please migrate to t_wobbler_mangrove=.",

skip_file_prefixes=_warn_skips)

example/higher.py

from . import lower

def another_way(**kw):

lower.one_way(**kw)

This makes the warning refer to both the example.lower.one_way() and package.higher.

another_way() call sites only from calling code living outside of example package.

source, if supplied, is the destroyed object which emitted a ResourceWarning.

Changed in version 3.6: Added source parameter.

Changed in version 3.12: Added skip_file_prefixes.

warnings.warn_explicit(message, category, filename, lineno, module=None, registry=None,
module_globals=None, source=None)

This is a low-level interface to the functionality of warn(), passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the
__warningregistry__ dictionary of the module). The module name defaults to the filename with .py

stripped; if no registry is passed, the warning is never suppressed. message must be a string and category a
subclass of Warning or message may be a Warning instance, in which case category will be ignored.

module_globals, if supplied, should be the global namespace in use by the code for which the warning is issued.
(This argument is used to support displaying source for modules found in zipfiles or other non-filesystem import
sources).

source, if supplied, is the destroyed object which emitted a ResourceWarning.

Changed in version 3.6: Add the source parameter.

warnings.showwarning(message, category, filename, lineno, file=None, line=None)
Write a warning to a file. The default implementation calls formatwarning(message, category,

filename, lineno, line) and writes the resulting string to file, which defaults to sys.stderr. You
may replace this function with any callable by assigning to warnings.showwarning. line is a line of source
code to be included in the warning message; if line is not supplied, showwarning() will try to read the line
specified by filename and lineno.

warnings.formatwarning(message, category, filename, lineno, line=None)
Format a warning the standard way. This returns a string which may contain embedded newlines and ends

1948 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

in a newline. line is a line of source code to be included in the warning message; if line is not supplied,
formatwarning() will try to read the line specified by filename and lineno.

warnings.filterwarnings(action, message=” , category=Warning, module=” , lineno=0, append=False)
Insert an entry into the list of warnings filter specifications. The entry is inserted at the front by default; if
append is true, it is inserted at the end. This checks the types of the arguments, compiles the message and
module regular expressions, and inserts them as a tuple in the list of warnings filters. Entries closer to the front
of the list override entries later in the list, if both match a particular warning. Omitted arguments default to a
value that matches everything.

warnings.simplefilter(action, category=Warning, lineno=0, append=False)
Insert a simple entry into the list of warnings filter specifications. The meaning of the function parameters is
as for filterwarnings(), but regular expressions are not needed as the filter inserted always matches any
message in any module as long as the category and line number match.

warnings.resetwarnings()

Reset the warnings filter. This discards the effect of all previous calls to filterwarnings(), including that
of the -W command line options and calls to simplefilter().

@warnings.deprecated(msg, *, category=DeprecationWarning, stacklevel=1)
Decorator to indicate that a class, function or overload is deprecated.

When this decorator is applied to an object, deprecation warnings may be emitted at runtime when the object
is used. static type checkers will also generate a diagnostic on usage of the deprecated object.

Usage:

from warnings import deprecated

from typing import overload

@deprecated("Use B instead")

class A:

pass

@deprecated("Use g instead")

def f():

pass

@overload

@deprecated("int support is deprecated")

def g(x: int) -> int: ...

@overload

def g(x: str) -> int: ...

The warning specified by category will be emitted at runtime on use of deprecated objects. For functions,
that happens on calls; for classes, on instantiation and on creation of subclasses. If the category is None, no
warning is emitted at runtime. The stacklevel determines where the warning is emitted. If it is 1 (the default),
the warning is emitted at the direct caller of the deprecated object; if it is higher, it is emitted further up the
stack. Static type checker behavior is not affected by the category and stacklevel arguments.

The deprecation message passed to the decorator is saved in the __deprecated__ attribute on the decorated
object. If applied to an overload, the decorator must be after the @overload decorator for the attribute to
exist on the overload as returned by typing.get_overloads().

Added in version 3.13: See PEP 702.

30.6.7 Available Context Managers

class warnings.catch_warnings(*, record=False, module=None, action=None, category=Warning,
lineno=0, append=False)

A context manager that copies and, upon exit, restores the warnings filter and the showwarning() function.

30.6. warnings—Warning control 1949

https://peps.python.org/pep-0702/

The Python Library Reference, Release 3.13.1

If the record argument is False (the default) the context manager returns None on entry. If record is True,
a list is returned that is progressively populated with objects as seen by a custom showwarning() function
(which also suppresses output to sys.stdout). Each object in the list has attributes with the same names as
the arguments to showwarning().

The module argument takes a module that will be used instead of the module returned when you import
warnings whose filter will be protected. This argument exists primarily for testing the warnings module
itself.

If the action argument is not None, the remaining arguments are passed to simplefilter() as if it were
called immediately on entering the context.

See The Warnings Filter for the meaning of the category and lineno parameters.

Note

The catch_warnings manager works by replacing and then later restoring the module’s
showwarning() function and internal list of filter specifications. This means the context manager
is modifying global state and therefore is not thread-safe.

Changed in version 3.11: Added the action, category, lineno, and append parameters.

30.7 dataclasses— Data Classes

Source code: Lib/dataclasses.py

This module provides a decorator and functions for automatically adding generated special methods such as
__init__() and __repr__() to user-defined classes. It was originally described in PEP 557.

The member variables to use in these generated methods are defined using PEP 526 type annotations. For example,
this code:

from dataclasses import dataclass

@dataclass

class InventoryItem:

"""Class for keeping track of an item in inventory."""

name: str

unit_price: float

quantity_on_hand: int = 0

def total_cost(self) -> float:

return self.unit_price * self.quantity_on_hand

will add, among other things, a __init__() that looks like:

def __init__(self, name: str, unit_price: float, quantity_on_hand: int = 0):

self.name = name

self.unit_price = unit_price

self.quantity_on_hand = quantity_on_hand

Note that this method is automatically added to the class: it is not directly specified in the InventoryItem definition
shown above.

Added in version 3.7.

1950 Chapter 30. Python Runtime Services

https://github.com/python/cpython/tree/3.13/Lib/dataclasses.py
https://peps.python.org/pep-0557/
https://peps.python.org/pep-0526/

The Python Library Reference, Release 3.13.1

30.7.1 Module contents

@dataclasses.dataclass(*, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False,
match_args=True, kw_only=False, slots=False, weakref_slot=False)

This function is a decorator that is used to add generated special methods to classes, as described below.

The @dataclass decorator examines the class to find fields. A field is defined as a class variable that has
a type annotation. With two exceptions described below, nothing in @dataclass examines the type specified
in the variable annotation.

The order of the fields in all of the generated methods is the order in which they appear in the class definition.

The @dataclass decorator will add various “dunder” methods to the class, described below. If any of the
added methods already exist in the class, the behavior depends on the parameter, as documented below. The
decorator returns the same class that it is called on; no new class is created.

If @dataclass is used just as a simple decorator with no parameters, it acts as if it has the default values
documented in this signature. That is, these three uses of @dataclass are equivalent:

@dataclass

class C:

...

@dataclass()

class C:

...

@dataclass(init=True, repr=True, eq=True, order=False, unsafe_hash=False,␣

↪→frozen=False,

match_args=True, kw_only=False, slots=False, weakref_slot=False)

class C:

...

The parameters to @dataclass are:

• init: If true (the default), a __init__() method will be generated.

If the class already defines __init__(), this parameter is ignored.

• repr: If true (the default), a __repr__() method will be generated. The generated repr string
will have the class name and the name and repr of each field, in the order they are defined in the
class. Fields that are marked as being excluded from the repr are not included. For example:
InventoryItem(name='widget', unit_price=3.0, quantity_on_hand=10).

If the class already defines __repr__(), this parameter is ignored.

• eq: If true (the default), an __eq__() method will be generated. This method compares the class as if
it were a tuple of its fields, in order. Both instances in the comparison must be of the identical type.

If the class already defines __eq__(), this parameter is ignored.

• order: If true (the default is False), __lt__(), __le__(), __gt__(), and __ge__() methods will
be generated. These compare the class as if it were a tuple of its fields, in order. Both instances in the
comparison must be of the identical type. If order is true and eq is false, a ValueError is raised.

If the class already defines any of __lt__(), __le__(), __gt__(), or __ge__(), then TypeError
is raised.

• unsafe_hash: If False (the default), a __hash__()method is generated according to how eq and frozen
are set.

__hash__() is used by built-in hash(), and when objects are added to hashed collections such as
dictionaries and sets. Having a __hash__() implies that instances of the class are immutable. Muta-
bility is a complicated property that depends on the programmer’s intent, the existence and behavior of
__eq__(), and the values of the eq and frozen flags in the @dataclass decorator.

30.7. dataclasses— Data Classes 1951

The Python Library Reference, Release 3.13.1

By default, @dataclasswill not implicitly add a __hash__()method unless it is safe to do so. Neither
will it add or change an existing explicitly defined __hash__() method. Setting the class attribute
__hash__ = None has a specific meaning to Python, as described in the __hash__() documentation.

If __hash__() is not explicitly defined, or if it is set to None, then @dataclass may add an im-
plicit __hash__() method. Although not recommended, you can force @dataclass to create a
__hash__() method with unsafe_hash=True. This might be the case if your class is logically im-
mutable but can still be mutated. This is a specialized use case and should be considered carefully.

Here are the rules governing implicit creation of a __hash__() method. Note that you cannot both
have an explicit __hash__() method in your dataclass and set unsafe_hash=True; this will result in
a TypeError.

If eq and frozen are both true, by default @dataclass will generate a __hash__() method for you. If
eq is true and frozen is false, __hash__() will be set to None, marking it unhashable (which it is, since
it is mutable). If eq is false, __hash__() will be left untouched meaning the __hash__() method of
the superclass will be used (if the superclass is object, this means it will fall back to id-based hashing).

• frozen: If true (the default is False), assigning to fields will generate an exception. This emulates read-
only frozen instances. If __setattr__() or __delattr__() is defined in the class, then TypeError
is raised. See the discussion below.

• match_args: If true (the default is True), the __match_args__ tuple will be created from the list of
parameters to the generated __init__() method (even if __init__() is not generated, see above).
If false, or if __match_args__ is already defined in the class, then __match_args__ will not be
generated.

Added in version 3.10.

• kw_only: If true (the default value is False), then all fields will be marked as keyword-only. If a field
is marked as keyword-only, then the only effect is that the __init__() parameter generated from a
keyword-only field must be specified with a keyword when __init__() is called. There is no effect
on any other aspect of dataclasses. See the parameter glossary entry for details. Also see the KW_ONLY
section.

Added in version 3.10.

• slots: If true (the default is False), __slots__ attribute will be generated and new class will be returned
instead of the original one. If __slots__ is already defined in the class, then TypeError is raised.

Warning

Calling no-arg super() in dataclasses using slots=True will result in the following excep-
tion being raised: TypeError: super(type, obj): obj must be an instance or

subtype of type. The two-arg super() is a valid workaround. See gh-90562 for full de-
tails.

Warning

Passing parameters to a base class __init_subclass__() when using slots=True will
result in a TypeError. Either use __init_subclass__ with no parameters or use default
values as a workaround. See gh-91126 for full details.

Added in version 3.10.

Changed in version 3.11: If a field name is already included in the __slots__ of a base class, it
will not be included in the generated __slots__ to prevent overriding them. Therefore, do not

1952 Chapter 30. Python Runtime Services

https://github.com/python/cpython/issues/90562
https://github.com/python/cpython/issues/91126

The Python Library Reference, Release 3.13.1

use __slots__ to retrieve the field names of a dataclass. Use fields() instead. To be able to
determine inherited slots, base class __slots__ may be any iterable, but not an iterator.

• weakref_slot: If true (the default is False), add a slot named “__weakref__”, which is required to make
an instance weakref-able. It is an error to specify weakref_slot=True without also specifying
slots=True.

Added in version 3.11.

fields may optionally specify a default value, using normal Python syntax:

@dataclass

class C:

a: int # 'a' has no default value

b: int = 0 # assign a default value for 'b'

In this example, both a and b will be included in the added __init__() method, which will be defined as:

def __init__(self, a: int, b: int = 0):

TypeError will be raised if a field without a default value follows a field with a default value. This is true
whether this occurs in a single class, or as a result of class inheritance.

dataclasses.field(*, default=MISSING, default_factory=MISSING, init=True, repr=True, hash=None,
compare=True, metadata=None, kw_only=MISSING)

For common and simple use cases, no other functionality is required. There are, however, some dataclass
features that require additional per-field information. To satisfy this need for additional information, you can
replace the default field value with a call to the provided field() function. For example:

@dataclass

class C:

mylist: list[int] = field(default_factory=list)

c = C()

c.mylist += [1, 2, 3]

As shown above, the MISSING value is a sentinel object used to detect if some parameters are provided by
the user. This sentinel is used because None is a valid value for some parameters with a distinct meaning. No
code should directly use the MISSING value.

The parameters to field() are:

• default: If provided, this will be the default value for this field. This is needed because the field() call
itself replaces the normal position of the default value.

• default_factory: If provided, it must be a zero-argument callable that will be called when a default value
is needed for this field. Among other purposes, this can be used to specify fields with mutable default
values, as discussed below. It is an error to specify both default and default_factory.

• init: If true (the default), this field is included as a parameter to the generated __init__() method.

• repr: If true (the default), this field is included in the string returned by the generated __repr__()

method.

• hash: This can be a bool or None. If true, this field is included in the generated __hash__() method.
If None (the default), use the value of compare: this would normally be the expected behavior. A field
should be considered in the hash if it’s used for comparisons. Setting this value to anything other than
None is discouraged.

One possible reason to set hash=False but compare=True would be if a field is expensive to compute
a hash value for, that field is needed for equality testing, and there are other fields that contribute to the
type’s hash value. Even if a field is excluded from the hash, it will still be used for comparisons.

30.7. dataclasses— Data Classes 1953

The Python Library Reference, Release 3.13.1

• compare: If true (the default), this field is included in the generated equality and comparison methods
(__eq__(), __gt__(), et al.).

• metadata: This can be a mapping or None. None is treated as an empty dict. This value is wrapped in
MappingProxyType() to make it read-only, and exposed on the Field object. It is not used at all by
Data Classes, and is provided as a third-party extension mechanism. Multiple third-parties can each have
their own key, to use as a namespace in the metadata.

• kw_only: If true, this field will bemarked as keyword-only. This is used when the generated __init__()
method’s parameters are computed.

Added in version 3.10.

If the default value of a field is specified by a call to field(), then the class attribute for this field will be
replaced by the specified default value. If default is not provided, then the class attribute will be deleted. The
intent is that after the @dataclass decorator runs, the class attributes will all contain the default values for
the fields, just as if the default value itself were specified. For example, after:

@dataclass

class C:

x: int

y: int = field(repr=False)

z: int = field(repr=False, default=10)

t: int = 20

The class attribute C.z will be 10, the class attribute C.t will be 20, and the class attributes C.x and C.y will
not be set.

class dataclasses.Field

Field objects describe each defined field. These objects are created internally, and are returned by the
fields() module-level method (see below). Users should never instantiate a Field object directly. Its
documented attributes are:

• name: The name of the field.

• type: The type of the field.

• default, default_factory, init, repr, hash, compare, metadata, and kw_only have the iden-
tical meaning and values as they do in the field() function.

Other attributes may exist, but they are private and must not be inspected or relied on.

dataclasses.fields(class_or_instance)
Returns a tuple of Field objects that define the fields for this dataclass. Accepts either a dataclass, or an
instance of a dataclass. Raises TypeError if not passed a dataclass or instance of one. Does not return
pseudo-fields which are ClassVar or InitVar.

dataclasses.asdict(obj, *, dict_factory=dict)
Converts the dataclass obj to a dict (by using the factory function dict_factory). Each dataclass is converted to
a dict of its fields, as name: value pairs. dataclasses, dicts, lists, and tuples are recursed into. Other objects
are copied with copy.deepcopy().

Example of using asdict() on nested dataclasses:

@dataclass

class Point:

x: int

y: int

@dataclass

class C:

mylist: list[Point]

(continues on next page)

1954 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

p = Point(10, 20)

assert asdict(p) == {'x': 10, 'y': 20}

c = C([Point(0, 0), Point(10, 4)])

assert asdict(c) == {'mylist': [{'x': 0, 'y': 0}, {'x': 10, 'y': 4}]}

To create a shallow copy, the following workaround may be used:

{field.name: getattr(obj, field.name) for field in fields(obj)}

asdict() raises TypeError if obj is not a dataclass instance.

dataclasses.astuple(obj, *, tuple_factory=tuple)
Converts the dataclass obj to a tuple (by using the factory function tuple_factory). Each dataclass is converted
to a tuple of its field values. dataclasses, dicts, lists, and tuples are recursed into. Other objects are copied with
copy.deepcopy().

Continuing from the previous example:

assert astuple(p) == (10, 20)

assert astuple(c) == ([(0, 0), (10, 4)],)

To create a shallow copy, the following workaround may be used:

tuple(getattr(obj, field.name) for field in dataclasses.fields(obj))

astuple() raises TypeError if obj is not a dataclass instance.

dataclasses.make_dataclass(cls_name, fields, *, bases=(), namespace=None, init=True, repr=True,
eq=True, order=False, unsafe_hash=False, frozen=False, match_args=True,
kw_only=False, slots=False, weakref_slot=False, module=None)

Creates a new dataclass with name cls_name, fields as defined in fields, base classes as given in bases, and
initialized with a namespace as given in namespace. fields is an iterable whose elements are each either name,
(name, type), or (name, type, Field). If just name is supplied, typing.Any is used for type. The
values of init, repr, eq, order, unsafe_hash, frozen, match_args, kw_only, slots, and weakref_slot have the same
meaning as they do in @dataclass.

If module is defined, the __module__ attribute of the dataclass is set to that value. By default, it is set to the
module name of the caller.

This function is not strictly required, because any Python mechanism for creating a new class with
__annotations__ can then apply the @dataclass function to convert that class to a dataclass. This func-
tion is provided as a convenience. For example:

C = make_dataclass('C',

[('x', int),

'y',

('z', int, field(default=5))],

namespace={'add_one': lambda self: self.x + 1})

Is equivalent to:

@dataclass

class C:

x: int

y: 'typing.Any'

z: int = 5

(continues on next page)

30.7. dataclasses— Data Classes 1955

The Python Library Reference, Release 3.13.1

(continued from previous page)

def add_one(self):

return self.x + 1

dataclasses.replace(obj, / , **changes)
Creates a new object of the same type as obj, replacing fields with values from changes. If obj is not a Data
Class, raises TypeError. If keys in changes are not field names of the given dataclass, raises TypeError.

The newly returned object is created by calling the __init__() method of the dataclass. This ensures that
__post_init__(), if present, is also called.

Init-only variables without default values, if any exist, must be specified on the call to replace() so that they
can be passed to __init__() and __post_init__().

It is an error for changes to contain any fields that are defined as having init=False. A ValueError will
be raised in this case.

Be forewarned about how init=False fields work during a call to replace(). They are not copied from the
source object, but rather are initialized in __post_init__(), if they’re initialized at all. It is expected that
init=False fields will be rarely and judiciously used. If they are used, it might be wise to have alternate class
constructors, or perhaps a custom replace() (or similarly named) method which handles instance copying.

Dataclass instances are also supported by generic function copy.replace().

dataclasses.is_dataclass(obj)
Return True if its parameter is a dataclass (including subclasses of a dataclass) or an instance of one, otherwise
return False.

If you need to know if a class is an instance of a dataclass (and not a dataclass itself), then add a further check
for not isinstance(obj, type):

def is_dataclass_instance(obj):

return is_dataclass(obj) and not isinstance(obj, type)

dataclasses.MISSING

A sentinel value signifying a missing default or default_factory.

dataclasses.KW_ONLY

A sentinel value used as a type annotation. Any fields after a pseudo-field with the type of KW_ONLY are
marked as keyword-only fields. Note that a pseudo-field of type KW_ONLY is otherwise completely ignored.
This includes the name of such a field. By convention, a name of _ is used for a KW_ONLY field. Keyword-only
fields signify __init__() parameters that must be specified as keywords when the class is instantiated.

In this example, the fields y and z will be marked as keyword-only fields:

@dataclass

class Point:

x: float

_: KW_ONLY

y: float

z: float

p = Point(0, y=1.5, z=2.0)

In a single dataclass, it is an error to specify more than one field whose type is KW_ONLY.

Added in version 3.10.

exception dataclasses.FrozenInstanceError

Raised when an implicitly defined __setattr__() or __delattr__() is called on a dataclass which was
defined with frozen=True. It is a subclass of AttributeError.

1956 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

30.7.2 Post-init processing

dataclasses.__post_init__()

When defined on the class, it will be called by the generated __init__(), normally as self.

__post_init__(). However, if any InitVar fields are defined, they will also be passed to
__post_init__() in the order they were defined in the class. If no __init__() method is generated,
then __post_init__() will not automatically be called.

Among other uses, this allows for initializing field values that depend on one or more other fields. For example:

@dataclass

class C:

a: float

b: float

c: float = field(init=False)

def __post_init__(self):

self.c = self.a + self.b

The __init__() method generated by @dataclass does not call base class __init__() methods. If the base
class has an __init__() method that has to be called, it is common to call this method in a __post_init__()
method:

class Rectangle:

def __init__(self, height, width):

self.height = height

self.width = width

@dataclass

class Square(Rectangle):

side: float

def __post_init__(self):

super().__init__(self.side, self.side)

Note, however, that in general the dataclass-generated __init__()methods don’t need to be called, since the derived
dataclass will take care of initializing all fields of any base class that is a dataclass itself.

See the section below on init-only variables for ways to pass parameters to __post_init__(). Also see the warning
about how replace() handles init=False fields.

30.7.3 Class variables

One of the few places where @dataclass actually inspects the type of a field is to determine if a field is a class
variable as defined in PEP 526. It does this by checking if the type of the field is typing.ClassVar. If a field is a
ClassVar, it is excluded from consideration as a field and is ignored by the dataclass mechanisms. Such ClassVar
pseudo-fields are not returned by the module-level fields() function.

30.7.4 Init-only variables

Another place where @dataclass inspects a type annotation is to determine if a field is an init-only variable. It does
this by seeing if the type of a field is of type dataclasses.InitVar. If a field is an InitVar, it is considered
a pseudo-field called an init-only field. As it is not a true field, it is not returned by the module-level fields()
function. Init-only fields are added as parameters to the generated __init__() method, and are passed to the
optional __post_init__() method. They are not otherwise used by dataclasses.

For example, suppose a field will be initialized from a database, if a value is not provided when creating the class:

@dataclass

class C:

(continues on next page)

30.7. dataclasses— Data Classes 1957

https://peps.python.org/pep-0526/

The Python Library Reference, Release 3.13.1

(continued from previous page)

i: int

j: int | None = None

database: InitVar[DatabaseType | None] = None

def __post_init__(self, database):

if self.j is None and database is not None:

self.j = database.lookup('j')

c = C(10, database=my_database)

In this case, fields() will return Field objects for i and j, but not for database.

30.7.5 Frozen instances

It is not possible to create truly immutable Python objects. However, by passing frozen=True to the @dataclass
decorator you can emulate immutability. In that case, dataclasses will add __setattr__() and __delattr__()
methods to the class. These methods will raise a FrozenInstanceError when invoked.

There is a tiny performance penalty when using frozen=True: __init__() cannot use simple assignment to
initialize fields, and must use object.__setattr__().

30.7.6 Inheritance

When the dataclass is being created by the @dataclass decorator, it looks through all of the class’s base classes in
reverse MRO (that is, starting at object) and, for each dataclass that it finds, adds the fields from that base class to
an ordered mapping of fields. After all of the base class fields are added, it adds its own fields to the ordered mapping.
All of the generated methods will use this combined, calculated ordered mapping of fields. Because the fields are in
insertion order, derived classes override base classes. An example:

@dataclass

class Base:

x: Any = 15.0

y: int = 0

@dataclass

class C(Base):

z: int = 10

x: int = 15

The final list of fields is, in order, x, y, z. The final type of x is int, as specified in class C.

The generated __init__() method for C will look like:

def __init__(self, x: int = 15, y: int = 0, z: int = 10):

30.7.7 Re-ordering of keyword-only parameters in __init__()

After the parameters needed for __init__() are computed, any keyword-only parameters are moved to come after
all regular (non-keyword-only) parameters. This is a requirement of how keyword-only parameters are implemented
in Python: they must come after non-keyword-only parameters.

In this example, Base.y, Base.w, and D.t are keyword-only fields, and Base.x and D.z are regular fields:

@dataclass

class Base:

x: Any = 15.0

_: KW_ONLY

y: int = 0

(continues on next page)

1958 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

w: int = 1

@dataclass

class D(Base):

z: int = 10

t: int = field(kw_only=True, default=0)

The generated __init__() method for D will look like:

def __init__(self, x: Any = 15.0, z: int = 10, *, y: int = 0, w: int = 1, t: int =␣

↪→0):

Note that the parameters have been re-ordered from how they appear in the list of fields: parameters derived from
regular fields are followed by parameters derived from keyword-only fields.

The relative ordering of keyword-only parameters is maintained in the re-ordered __init__() parameter list.

30.7.8 Default factory functions

If a field() specifies a default_factory, it is called with zero arguments when a default value for the field is needed.
For example, to create a new instance of a list, use:

mylist: list = field(default_factory=list)

If a field is excluded from __init__() (using init=False) and the field also specifies default_factory, then the
default factory function will always be called from the generated __init__() function. This happens because there
is no other way to give the field an initial value.

30.7.9 Mutable default values

Python stores default member variable values in class attributes. Consider this example, not using dataclasses:

class C:

x = []

def add(self, element):

self.x.append(element)

o1 = C()

o2 = C()

o1.add(1)

o2.add(2)

assert o1.x == [1, 2]

assert o1.x is o2.x

Note that the two instances of class C share the same class variable x, as expected.

Using dataclasses, if this code was valid:

@dataclass

class D:

x: list = [] # This code raises ValueError

def add(self, element):

self.x.append(element)

it would generate code similar to:

class D:

x = []

(continues on next page)

30.7. dataclasses— Data Classes 1959

The Python Library Reference, Release 3.13.1

(continued from previous page)

def __init__(self, x=x):

self.x = x

def add(self, element):

self.x.append(element)

assert D().x is D().x

This has the same issue as the original example using class C. That is, two instances of class D that do not specify a
value for x when creating a class instance will share the same copy of x. Because dataclasses just use normal Python
class creation they also share this behavior. There is no general way for Data Classes to detect this condition. Instead,
the @dataclass decorator will raise a ValueError if it detects an unhashable default parameter. The assumption
is that if a value is unhashable, it is mutable. This is a partial solution, but it does protect against many common
errors.

Using default factory functions is a way to create new instances of mutable types as default values for fields:

@dataclass

class D:

x: list = field(default_factory=list)

assert D().x is not D().x

Changed in version 3.11: Instead of looking for and disallowing objects of type list, dict, or set, unhashable
objects are now not allowed as default values. Unhashability is used to approximate mutability.

30.7.10 Descriptor-typed fields

Fields that are assigned descriptor objects as their default value have the following special behaviors:

• The value for the field passed to the dataclass’s __init__()method is passed to the descriptor’s __set__()
method rather than overwriting the descriptor object.

• Similarly, when getting or setting the field, the descriptor’s __get__() or __set__()method is called rather
than returning or overwriting the descriptor object.

• To determine whether a field contains a default value, @dataclass will call the descriptor’s __get__()
method using its class access form: descriptor.__get__(obj=None, type=cls). If the descriptor
returns a value in this case, it will be used as the field’s default. On the other hand, if the descriptor raises
AttributeError in this situation, no default value will be provided for the field.

class IntConversionDescriptor:

def __init__(self, *, default):

self._default = default

def __set_name__(self, owner, name):

self._name = "_" + name

def __get__(self, obj, type):

if obj is None:

return self._default

return getattr(obj, self._name, self._default)

def __set__(self, obj, value):

setattr(obj, self._name, int(value))

@dataclass

class InventoryItem:

quantity_on_hand: IntConversionDescriptor =␣
(continues on next page)

1960 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

↪→IntConversionDescriptor(default=100)

i = InventoryItem()

print(i.quantity_on_hand) # 100

i.quantity_on_hand = 2.5 # calls __set__ with 2.5

print(i.quantity_on_hand) # 2

Note that if a field is annotated with a descriptor type, but is not assigned a descriptor object as its default value, the
field will act like a normal field.

30.8 contextlib— Utilities for with-statement contexts

Source code: Lib/contextlib.py

This module provides utilities for common tasks involving the with statement. For more information see also Context
Manager Types and context-managers.

30.8.1 Utilities

Functions and classes provided:

class contextlib.AbstractContextManager

An abstract base class for classes that implement object.__enter__() and object.__exit__().
A default implementation for object.__enter__() is provided which returns self while object.

__exit__() is an abstract method which by default returns None. See also the definition of Context Manager
Types.

Added in version 3.6.

class contextlib.AbstractAsyncContextManager

An abstract base class for classes that implement object.__aenter__() and object.__aexit__().
A default implementation for object.__aenter__() is provided which returns self while object.

__aexit__() is an abstract method which by default returns None. See also the definition of async-context-
managers.

Added in version 3.7.

@contextlib.contextmanager

This function is a decorator that can be used to define a factory function for with statement context managers,
without needing to create a class or separate __enter__() and __exit__() methods.

While many objects natively support use in with statements, sometimes a resource needs to be managed that
isn’t a context manager in its own right, and doesn’t implement a close()method for use with contextlib.
closing

An abstract example would be the following to ensure correct resource management:

from contextlib import contextmanager

@contextmanager

def managed_resource(*args, **kwds):

Code to acquire resource, e.g.:

resource = acquire_resource(*args, **kwds)

try:

yield resource

finally:

Code to release resource, e.g.:

release_resource(resource)

30.8. contextlib— Utilities for with-statement contexts 1961

https://github.com/python/cpython/tree/3.13/Lib/contextlib.py

The Python Library Reference, Release 3.13.1

The function can then be used like this:

>>> with managed_resource(timeout=3600) as resource:

... # Resource is released at the end of this block,

... # even if code in the block raises an exception

The function being decorated must return a generator-iterator when called. This iterator must yield exactly
one value, which will be bound to the targets in the with statement’s as clause, if any.

At the point where the generator yields, the block nested in the with statement is executed. The generator is
then resumed after the block is exited. If an unhandled exception occurs in the block, it is reraised inside the
generator at the point where the yield occurred. Thus, you can use a try…except…finally statement to
trap the error (if any), or ensure that some cleanup takes place. If an exception is trapped merely in order to
log it or to perform some action (rather than to suppress it entirely), the generator must reraise that exception.
Otherwise the generator context manager will indicate to the with statement that the exception has been
handled, and execution will resume with the statement immediately following the with statement.

contextmanager() uses ContextDecorator so the context managers it creates can be used as decorators
as well as in with statements. When used as a decorator, a new generator instance is implicitly created on
each function call (this allows the otherwise “one-shot” context managers created by contextmanager() to
meet the requirement that context managers support multiple invocations in order to be used as decorators).

Changed in version 3.2: Use of ContextDecorator.

@contextlib.asynccontextmanager

Similar to contextmanager(), but creates an asynchronous context manager.

This function is a decorator that can be used to define a factory function for async with statement asyn-
chronous context managers, without needing to create a class or separate __aenter__() and __aexit__()
methods. It must be applied to an asynchronous generator function.

A simple example:

from contextlib import asynccontextmanager

@asynccontextmanager

async def get_connection():

conn = await acquire_db_connection()

try:

yield conn

finally:

await release_db_connection(conn)

async def get_all_users():

async with get_connection() as conn:

return conn.query('SELECT ...')

Added in version 3.7.

Context managers defined with asynccontextmanager() can be used either as decorators or with async
with statements:

import time

from contextlib import asynccontextmanager

@asynccontextmanager

async def timeit():

now = time.monotonic()

try:

yield

finally:

(continues on next page)

1962 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

print(f'it took {time.monotonic() - now}s to run')

@timeit()

async def main():

... async code ...

When used as a decorator, a new generator instance is implicitly created on each function call. This allows the
otherwise “one-shot” context managers created by asynccontextmanager() to meet the requirement that
context managers support multiple invocations in order to be used as decorators.

Changed in version 3.10: Async context managers created with asynccontextmanager() can be used as
decorators.

contextlib.closing(thing)
Return a context manager that closes thing upon completion of the block. This is basically equivalent to:

from contextlib import contextmanager

@contextmanager

def closing(thing):

try:

yield thing

finally:

thing.close()

And lets you write code like this:

from contextlib import closing

from urllib.request import urlopen

with closing(urlopen('https://www.python.org')) as page:

for line in page:

print(line)

without needing to explicitly close page. Even if an error occurs, page.close() will be called when the
with block is exited.

Note

Most types managing resources support the context manager protocol, which closes thing on leaving the
with statement. As such, closing() is most useful for third party types that don’t support context
managers. This example is purely for illustration purposes, as urlopen() would normally be used in a
context manager.

contextlib.aclosing(thing)

Return an async context manager that calls the aclose()method of thing upon completion of the block. This
is basically equivalent to:

from contextlib import asynccontextmanager

@asynccontextmanager

async def aclosing(thing):

try:

yield thing

finally:

await thing.aclose()

30.8. contextlib— Utilities for with-statement contexts 1963

The Python Library Reference, Release 3.13.1

Significantly, aclosing() supports deterministic cleanup of async generators when they happen to exit early
by break or an exception. For example:

from contextlib import aclosing

async with aclosing(my_generator()) as values:

async for value in values:

if value == 42:

break

This pattern ensures that the generator’s async exit code is executed in the same context as its iterations (so
that exceptions and context variables work as expected, and the exit code isn’t run after the lifetime of some
task it depends on).

Added in version 3.10.

contextlib.nullcontext(enter_result=None)
Return a context manager that returns enter_result from __enter__, but otherwise does nothing. It is intended
to be used as a stand-in for an optional context manager, for example:

def myfunction(arg, ignore_exceptions=False):

if ignore_exceptions:

Use suppress to ignore all exceptions.

cm = contextlib.suppress(Exception)

else:

Do not ignore any exceptions, cm has no effect.

cm = contextlib.nullcontext()

with cm:

Do something

An example using enter_result:

def process_file(file_or_path):

if isinstance(file_or_path, str):

If string, open file

cm = open(file_or_path)

else:

Caller is responsible for closing file

cm = nullcontext(file_or_path)

with cm as file:

Perform processing on the file

It can also be used as a stand-in for asynchronous context managers:

async def send_http(session=None):

if not session:

If no http session, create it with aiohttp

cm = aiohttp.ClientSession()

else:

Caller is responsible for closing the session

cm = nullcontext(session)

async with cm as session:

Send http requests with session

Added in version 3.7.

Changed in version 3.10: asynchronous context manager support was added.

1964 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

contextlib.suppress(*exceptions)
Return a context manager that suppresses any of the specified exceptions if they occur in the body of a with
statement and then resumes execution with the first statement following the end of the with statement.

As with any other mechanism that completely suppresses exceptions, this context manager should be used only
to cover very specific errors where silently continuing with program execution is known to be the right thing
to do.

For example:

from contextlib import suppress

with suppress(FileNotFoundError):

os.remove('somefile.tmp')

with suppress(FileNotFoundError):

os.remove('someotherfile.tmp')

This code is equivalent to:

try:

os.remove('somefile.tmp')

except FileNotFoundError:

pass

try:

os.remove('someotherfile.tmp')

except FileNotFoundError:

pass

This context manager is reentrant.

If the code within the with block raises a BaseExceptionGroup, suppressed exceptions are removed from
the group. Any exceptions of the group which are not suppressed are re-raised in a new group which is created
using the original group’s derive() method.

Added in version 3.4.

Changed in version 3.12: suppress now supports suppressing exceptions raised as part of a
BaseExceptionGroup.

contextlib.redirect_stdout(new_target)
Context manager for temporarily redirecting sys.stdout to another file or file-like object.

This tool adds flexibility to existing functions or classes whose output is hardwired to stdout.

For example, the output of help() normally is sent to sys.stdout. You can capture that output in a string by
redirecting the output to an io.StringIO object. The replacement stream is returned from the __enter__
method and so is available as the target of the with statement:

with redirect_stdout(io.StringIO()) as f:

help(pow)

s = f.getvalue()

To send the output of help() to a file on disk, redirect the output to a regular file:

with open('help.txt', 'w') as f:

with redirect_stdout(f):

help(pow)

To send the output of help() to sys.stderr:

30.8. contextlib— Utilities for with-statement contexts 1965

The Python Library Reference, Release 3.13.1

with redirect_stdout(sys.stderr):

help(pow)

Note that the global side effect on sys.stdout means that this context manager is not suitable for use in
library code and most threaded applications. It also has no effect on the output of subprocesses. However, it is
still a useful approach for many utility scripts.

This context manager is reentrant.

Added in version 3.4.

contextlib.redirect_stderr(new_target)
Similar to redirect_stdout() but redirecting sys.stderr to another file or file-like object.

This context manager is reentrant.

Added in version 3.5.

contextlib.chdir(path)
Non parallel-safe context manager to change the current working directory. As this changes a global state, the
working directory, it is not suitable for use in most threaded or async contexts. It is also not suitable for most
non-linear code execution, like generators, where the program execution is temporarily relinquished – unless
explicitly desired, you should not yield when this context manager is active.

This is a simple wrapper around chdir(), it changes the current working directory upon entering and restores
the old one on exit.

This context manager is reentrant.

Added in version 3.11.

class contextlib.ContextDecorator

A base class that enables a context manager to also be used as a decorator.

Context managers inheriting from ContextDecorator have to implement __enter__ and __exit__ as
normal. __exit__ retains its optional exception handling even when used as a decorator.

ContextDecorator is used by contextmanager(), so you get this functionality automatically.

Example of ContextDecorator:

from contextlib import ContextDecorator

class mycontext(ContextDecorator):

def __enter__(self):

print('Starting')

return self

def __exit__(self, *exc):

print('Finishing')

return False

The class can then be used like this:

>>> @mycontext()

... def function():

... print('The bit in the middle')

...

>>> function()

Starting

The bit in the middle

Finishing

(continues on next page)

1966 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> with mycontext():

... print('The bit in the middle')

...

Starting

The bit in the middle

Finishing

This change is just syntactic sugar for any construct of the following form:

def f():

with cm():

Do stuff

ContextDecorator lets you instead write:

@cm()

def f():

Do stuff

It makes it clear that the cm applies to the whole function, rather than just a piece of it (and saving an indentation
level is nice, too).

Existing context managers that already have a base class can be extended by using ContextDecorator as a
mixin class:

from contextlib import ContextDecorator

class mycontext(ContextBaseClass, ContextDecorator):

def __enter__(self):

return self

def __exit__(self, *exc):

return False

Note

As the decorated function must be able to be called multiple times, the underlying context manager must
support use in multiple with statements. If this is not the case, then the original construct with the explicit
with statement inside the function should be used.

Added in version 3.2.

class contextlib.AsyncContextDecorator

Similar to ContextDecorator but only for asynchronous functions.

Example of AsyncContextDecorator:

from asyncio import run

from contextlib import AsyncContextDecorator

class mycontext(AsyncContextDecorator):

async def __aenter__(self):

print('Starting')

return self

async def __aexit__(self, *exc):

(continues on next page)

30.8. contextlib— Utilities for with-statement contexts 1967

The Python Library Reference, Release 3.13.1

(continued from previous page)

print('Finishing')

return False

The class can then be used like this:

>>> @mycontext()

... async def function():

... print('The bit in the middle')

...

>>> run(function())

Starting

The bit in the middle

Finishing

>>> async def function():

... async with mycontext():

... print('The bit in the middle')

...

>>> run(function())

Starting

The bit in the middle

Finishing

Added in version 3.10.

class contextlib.ExitStack

A context manager that is designed to make it easy to programmatically combine other context managers and
cleanup functions, especially those that are optional or otherwise driven by input data.

For example, a set of files may easily be handled in a single with statement as follows:

with ExitStack() as stack:

files = [stack.enter_context(open(fname)) for fname in filenames]

All opened files will automatically be closed at the end of

the with statement, even if attempts to open files later

in the list raise an exception

The __enter__() method returns the ExitStack instance, and performs no additional operations.

Each instance maintains a stack of registered callbacks that are called in reverse order when the instance is
closed (either explicitly or implicitly at the end of a with statement). Note that callbacks are not invoked
implicitly when the context stack instance is garbage collected.

This stack model is used so that context managers that acquire their resources in their __init__method (such
as file objects) can be handled correctly.

Since registered callbacks are invoked in the reverse order of registration, this ends up behaving as if multiple
nested with statements had been used with the registered set of callbacks. This even extends to exception han-
dling - if an inner callback suppresses or replaces an exception, then outer callbacks will be passed arguments
based on that updated state.

This is a relatively low level API that takes care of the details of correctly unwinding the stack of exit callbacks.
It provides a suitable foundation for higher level context managers that manipulate the exit stack in application
specific ways.

Added in version 3.3.

enter_context(cm)

Enters a new context manager and adds its __exit__()method to the callback stack. The return value
is the result of the context manager’s own __enter__() method.

1968 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

These context managers may suppress exceptions just as they normally would if used directly as part of
a with statement.

Changed in version 3.11: Raises TypeError instead of AttributeError if cm is not a context man-
ager.

push(exit)
Adds a context manager’s __exit__() method to the callback stack.

As __enter__ is not invoked, this method can be used to cover part of an __enter__() implementa-
tion with a context manager’s own __exit__() method.

If passed an object that is not a context manager, this method assumes it is a callback with the same
signature as a context manager’s __exit__() method and adds it directly to the callback stack.

By returning true values, these callbacks can suppress exceptions the same way context manager
__exit__() methods can.

The passed in object is returned from the function, allowing thismethod to be used as a function decorator.

callback(callback, / , *args, **kwds)
Accepts an arbitrary callback function and arguments and adds it to the callback stack.

Unlike the other methods, callbacks added this way cannot suppress exceptions (as they are never passed
the exception details).

The passed in callback is returned from the function, allowing this method to be used as a function
decorator.

pop_all()

Transfers the callback stack to a fresh ExitStack instance and returns it. No callbacks are invoked
by this operation - instead, they will now be invoked when the new stack is closed (either explicitly or
implicitly at the end of a with statement).

For example, a group of files can be opened as an “all or nothing” operation as follows:

with ExitStack() as stack:

files = [stack.enter_context(open(fname)) for fname in filenames]

Hold onto the close method, but don't call it yet.

close_files = stack.pop_all().close

If opening any file fails, all previously opened files will be

closed automatically. If all files are opened successfully,

they will remain open even after the with statement ends.

close_files() can then be invoked explicitly to close them all.

close()

Immediately unwinds the callback stack, invoking callbacks in the reverse order of registration. For any
context managers and exit callbacks registered, the arguments passed in will indicate that no exception
occurred.

class contextlib.AsyncExitStack

An asynchronous context manager, similar to ExitStack, that supports combining both synchronous and
asynchronous context managers, as well as having coroutines for cleanup logic.

The close() method is not implemented; aclose() must be used instead.

coroutine enter_async_context(cm)
Similar to ExitStack.enter_context() but expects an asynchronous context manager.

Changed in version 3.11: Raises TypeError instead of AttributeError if cm is not an asynchronous
context manager.

push_async_exit(exit)
Similar to ExitStack.push() but expects either an asynchronous context manager or a coroutine
function.

30.8. contextlib— Utilities for with-statement contexts 1969

The Python Library Reference, Release 3.13.1

push_async_callback(callback, / , *args, **kwds)
Similar to ExitStack.callback() but expects a coroutine function.

coroutine aclose()

Similar to ExitStack.close() but properly handles awaitables.

Continuing the example for asynccontextmanager():

async with AsyncExitStack() as stack:

connections = [await stack.enter_async_context(get_connection())

for i in range(5)]

All opened connections will automatically be released at the end of

the async with statement, even if attempts to open a connection

later in the list raise an exception.

Added in version 3.7.

30.8.2 Examples and Recipes

This section describes some examples and recipes for making effective use of the tools provided by contextlib.

Supporting a variable number of context managers

The primary use case for ExitStack is the one given in the class documentation: supporting a variable number
of context managers and other cleanup operations in a single with statement. The variability may come from the
number of context managers needed being driven by user input (such as opening a user specified collection of files),
or from some of the context managers being optional:

with ExitStack() as stack:

for resource in resources:

stack.enter_context(resource)

if need_special_resource():

special = acquire_special_resource()

stack.callback(release_special_resource, special)

Perform operations that use the acquired resources

As shown, ExitStack also makes it quite easy to use with statements to manage arbitrary resources that don’t
natively support the context management protocol.

Catching exceptions from __enter__ methods

It is occasionally desirable to catch exceptions from an __enter__ method implementation, without inadver-
tently catching exceptions from the with statement body or the context manager’s __exit__ method. By using
ExitStack the steps in the context management protocol can be separated slightly in order to allow this:

stack = ExitStack()

try:

x = stack.enter_context(cm)

except Exception:

handle __enter__ exception

else:

with stack:

Handle normal case

Actually needing to do this is likely to indicate that the underlying API should be providing a direct resource man-
agement interface for use with try/except/finally statements, but not all APIs are well designed in that regard.
When a context manager is the only resource management API provided, then ExitStack can make it easier to
handle various situations that can’t be handled directly in a with statement.

1970 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

Cleaning up in an __enter__ implementation

As noted in the documentation of ExitStack.push(), this method can be useful in cleaning up an already allocated
resource if later steps in the __enter__() implementation fail.

Here’s an example of doing this for a context manager that accepts resource acquisition and release functions, along
with an optional validation function, and maps them to the context management protocol:

from contextlib import contextmanager, AbstractContextManager, ExitStack

class ResourceManager(AbstractContextManager):

def __init__(self, acquire_resource, release_resource, check_resource_ok=None):

self.acquire_resource = acquire_resource

self.release_resource = release_resource

if check_resource_ok is None:

def check_resource_ok(resource):

return True

self.check_resource_ok = check_resource_ok

@contextmanager

def _cleanup_on_error(self):

with ExitStack() as stack:

stack.push(self)

yield

The validation check passed and didn't raise an exception

Accordingly, we want to keep the resource, and pass it

back to our caller

stack.pop_all()

def __enter__(self):

resource = self.acquire_resource()

with self._cleanup_on_error():

if not self.check_resource_ok(resource):

msg = "Failed validation for {!r}"

raise RuntimeError(msg.format(resource))

return resource

def __exit__(self, *exc_details):

We don't need to duplicate any of our resource release logic

self.release_resource()

Replacing any use of try-finally and flag variables

A pattern you will sometimes see is a try-finally statement with a flag variable to indicate whether or not the
body of the finally clause should be executed. In its simplest form (that can’t already be handled just by using an
except clause instead), it looks something like this:

cleanup_needed = True

try:

result = perform_operation()

if result:

cleanup_needed = False

finally:

if cleanup_needed:

cleanup_resources()

As with any try statement based code, this can cause problems for development and review, because the setup code
and the cleanup code can end up being separated by arbitrarily long sections of code.

30.8. contextlib— Utilities for with-statement contexts 1971

The Python Library Reference, Release 3.13.1

ExitStack makes it possible to instead register a callback for execution at the end of a with statement, and then
later decide to skip executing that callback:

from contextlib import ExitStack

with ExitStack() as stack:

stack.callback(cleanup_resources)

result = perform_operation()

if result:

stack.pop_all()

This allows the intended cleanup behaviour to be made explicit up front, rather than requiring a separate flag variable.

If a particular application uses this pattern a lot, it can be simplified even further by means of a small helper class:

from contextlib import ExitStack

class Callback(ExitStack):

def __init__(self, callback, /, *args, **kwds):

super().__init__()

self.callback(callback, *args, **kwds)

def cancel(self):

self.pop_all()

with Callback(cleanup_resources) as cb:

result = perform_operation()

if result:

cb.cancel()

If the resource cleanup isn’t already neatly bundled into a standalone function, then it is still possible to use the
decorator form of ExitStack.callback() to declare the resource cleanup in advance:

from contextlib import ExitStack

with ExitStack() as stack:

@stack.callback

def cleanup_resources():

...

result = perform_operation()

if result:

stack.pop_all()

Due to the way the decorator protocol works, a callback function declared this way cannot take any parameters.
Instead, any resources to be released must be accessed as closure variables.

Using a context manager as a function decorator

ContextDecorator makes it possible to use a context manager in both an ordinary with statement and also as a
function decorator.

For example, it is sometimes useful to wrap functions or groups of statements with a logger that can track the time of
entry and time of exit. Rather than writing both a function decorator and a context manager for the task, inheriting
from ContextDecorator provides both capabilities in a single definition:

from contextlib import ContextDecorator

import logging

logging.basicConfig(level=logging.INFO)

(continues on next page)

1972 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

class track_entry_and_exit(ContextDecorator):

def __init__(self, name):

self.name = name

def __enter__(self):

logging.info('Entering: %s', self.name)

def __exit__(self, exc_type, exc, exc_tb):

logging.info('Exiting: %s', self.name)

Instances of this class can be used as both a context manager:

with track_entry_and_exit('widget loader'):

print('Some time consuming activity goes here')

load_widget()

And also as a function decorator:

@track_entry_and_exit('widget loader')

def activity():

print('Some time consuming activity goes here')

load_widget()

Note that there is one additional limitation when using context managers as function decorators: there’s no way to
access the return value of __enter__(). If that value is needed, then it is still necessary to use an explicit with
statement.

See also

PEP 343 - The “with” statement
The specification, background, and examples for the Python with statement.

30.8.3 Single use, reusable and reentrant context managers

Most context managers are written in a way that means they can only be used effectively in a with statement once.
These single use context managers must be created afresh each time they’re used - attempting to use them a second
time will trigger an exception or otherwise not work correctly.

This common limitation means that it is generally advisable to create context managers directly in the header of the
with statement where they are used (as shown in all of the usage examples above).

Files are an example of effectively single use context managers, since the first with statement will close the file,
preventing any further IO operations using that file object.

Context managers created using contextmanager() are also single use context managers, and will complain about
the underlying generator failing to yield if an attempt is made to use them a second time:

>>> from contextlib import contextmanager

>>> @contextmanager

... def singleuse():

... print("Before")

... yield

... print("After")

...

>>> cm = singleuse()

>>> with cm:

(continues on next page)

30.8. contextlib— Utilities for with-statement contexts 1973

https://peps.python.org/pep-0343/

The Python Library Reference, Release 3.13.1

(continued from previous page)

... pass

...

Before

After

>>> with cm:

... pass

...

Traceback (most recent call last):

...

RuntimeError: generator didn't yield

Reentrant context managers

More sophisticated context managers may be “reentrant”. These context managers can not only be used in multiple
with statements, but may also be used inside a with statement that is already using the same context manager.

threading.RLock is an example of a reentrant context manager, as are suppress(), redirect_stdout(),
and chdir(). Here’s a very simple example of reentrant use:

>>> from contextlib import redirect_stdout

>>> from io import StringIO

>>> stream = StringIO()

>>> write_to_stream = redirect_stdout(stream)

>>> with write_to_stream:

... print("This is written to the stream rather than stdout")

... with write_to_stream:

... print("This is also written to the stream")

...

>>> print("This is written directly to stdout")

This is written directly to stdout

>>> print(stream.getvalue())

This is written to the stream rather than stdout

This is also written to the stream

Real world examples of reentrancy are more likely to involve multiple functions calling each other and hence be far
more complicated than this example.

Note also that being reentrant is not the same thing as being thread safe. redirect_stdout(), for example, is
definitely not thread safe, as it makes a global modification to the system state by binding sys.stdout to a different
stream.

Reusable context managers

Distinct from both single use and reentrant context managers are “reusable” context managers (or, to be completely
explicit, “reusable, but not reentrant” context managers, since reentrant context managers are also reusable). These
context managers support being used multiple times, but will fail (or otherwise not work correctly) if the specific
context manager instance has already been used in a containing with statement.

threading.Lock is an example of a reusable, but not reentrant, context manager (for a reentrant lock, it is necessary
to use threading.RLock instead).

Another example of a reusable, but not reentrant, context manager is ExitStack, as it invokes all currently registered
callbacks when leaving any with statement, regardless of where those callbacks were added:

>>> from contextlib import ExitStack

>>> stack = ExitStack()

>>> with stack:

... stack.callback(print, "Callback: from first context")

(continues on next page)

1974 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

(continued from previous page)

... print("Leaving first context")

...

Leaving first context

Callback: from first context

>>> with stack:

... stack.callback(print, "Callback: from second context")

... print("Leaving second context")

...

Leaving second context

Callback: from second context

>>> with stack:

... stack.callback(print, "Callback: from outer context")

... with stack:

... stack.callback(print, "Callback: from inner context")

... print("Leaving inner context")

... print("Leaving outer context")

...

Leaving inner context

Callback: from inner context

Callback: from outer context

Leaving outer context

As the output from the example shows, reusing a single stack object across multiple with statements works correctly,
but attempting to nest them will cause the stack to be cleared at the end of the innermost with statement, which is
unlikely to be desirable behaviour.

Using separate ExitStack instances instead of reusing a single instance avoids that problem:

>>> from contextlib import ExitStack

>>> with ExitStack() as outer_stack:

... outer_stack.callback(print, "Callback: from outer context")

... with ExitStack() as inner_stack:

... inner_stack.callback(print, "Callback: from inner context")

... print("Leaving inner context")

... print("Leaving outer context")

...

Leaving inner context

Callback: from inner context

Leaving outer context

Callback: from outer context

30.9 abc— Abstract Base Classes

Source code: Lib/abc.py

This module provides the infrastructure for defining abstract base classes (ABCs) in Python, as outlined in PEP
3119; see the PEP for why this was added to Python. (See also PEP 3141 and the numbers module regarding a
type hierarchy for numbers based on ABCs.)

The collectionsmodule has some concrete classes that derive fromABCs; these can, of course, be further derived.
In addition, the collections.abc submodule has some ABCs that can be used to test whether a class or instance
provides a particular interface, for example, if it is hashable or if it is a mapping.

This module provides the metaclass ABCMeta for defining ABCs and a helper class ABC to alternatively define ABCs
through inheritance:

30.9. abc— Abstract Base Classes 1975

https://github.com/python/cpython/tree/3.13/Lib/abc.py
https://peps.python.org/pep-3119/
https://peps.python.org/pep-3119/
https://peps.python.org/pep-3141/

The Python Library Reference, Release 3.13.1

class abc.ABC

A helper class that has ABCMeta as its metaclass. With this class, an abstract base class can be created by
simply deriving from ABC avoiding sometimes confusing metaclass usage, for example:

from abc import ABC

class MyABC(ABC):

pass

Note that the type of ABC is still ABCMeta, therefore inheriting from ABC requires the usual precautions regard-
ing metaclass usage, as multiple inheritance may lead to metaclass conflicts. One may also define an abstract
base class by passing the metaclass keyword and using ABCMeta directly, for example:

from abc import ABCMeta

class MyABC(metaclass=ABCMeta):

pass

Added in version 3.4.

class abc.ABCMeta

Metaclass for defining Abstract Base Classes (ABCs).

Use this metaclass to create an ABC. An ABC can be subclassed directly, and then acts as a mix-in class.
You can also register unrelated concrete classes (even built-in classes) and unrelated ABCs as “virtual sub-
classes” – these and their descendants will be considered subclasses of the registering ABC by the built-in
issubclass() function, but the registering ABC won’t show up in their MRO (Method Resolution Order)
nor will method implementations defined by the registering ABC be callable (not even via super()).1

Classes created with a metaclass of ABCMeta have the following method:

register(subclass)
Register subclass as a “virtual subclass” of this ABC. For example:

from abc import ABC

class MyABC(ABC):

pass

MyABC.register(tuple)

assert issubclass(tuple, MyABC)

assert isinstance((), MyABC)

Changed in version 3.3: Returns the registered subclass, to allow usage as a class decorator.

Changed in version 3.4: To detect calls to register(), you can use the get_cache_token() func-
tion.

You can also override this method in an abstract base class:

__subclasshook__(subclass)

(Must be defined as a class method.)

Check whether subclass is considered a subclass of this ABC. This means that you can customize the
behavior of issubclass() further without the need to call register() on every class you want to
consider a subclass of the ABC. (This class method is called from the __subclasscheck__()method
of the ABC.)

This method should return True, False or NotImplemented. If it returns True, the subclass is con-
sidered a subclass of this ABC. If it returns False, the subclass is not considered a subclass of this ABC,

1 C++ programmers should note that Python’s virtual base class concept is not the same as C++’s.

1976 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

even if it would normally be one. If it returns NotImplemented, the subclass check is continued with
the usual mechanism.

For a demonstration of these concepts, look at this example ABC definition:

class Foo:

def __getitem__(self, index):

...

def __len__(self):

...

def get_iterator(self):

return iter(self)

class MyIterable(ABC):

@abstractmethod

def __iter__(self):

while False:

yield None

def get_iterator(self):

return self.__iter__()

@classmethod

def __subclasshook__(cls, C):

if cls is MyIterable:

if any("__iter__" in B.__dict__ for B in C.__mro__):

return True

return NotImplemented

MyIterable.register(Foo)

The ABC MyIterable defines the standard iterable method, __iter__(), as an abstract method. The
implementation given here can still be called from subclasses. The get_iterator() method is also part of
the MyIterable abstract base class, but it does not have to be overridden in non-abstract derived classes.

The __subclasshook__() class method defined here says that any class that has an __iter__()method in
its __dict__ (or in that of one of its base classes, accessed via the __mro__ list) is considered a MyIterable
too.

Finally, the last line makes Foo a virtual subclass of MyIterable, even though it does not define
an __iter__() method (it uses the old-style iterable protocol, defined in terms of __len__() and
__getitem__()). Note that this will not make get_iterator available as amethod of Foo, so it is provided
separately.

The abc module also provides the following decorator:

@abc.abstractmethod

A decorator indicating abstract methods.

Using this decorator requires that the class’s metaclass is ABCMeta or is derived from it. A class that has
a metaclass derived from ABCMeta cannot be instantiated unless all of its abstract methods and proper-
ties are overridden. The abstract methods can be called using any of the normal ‘super’ call mechanisms.
abstractmethod() may be used to declare abstract methods for properties and descriptors.

Dynamically adding abstract methods to a class, or attempting to modify the abstraction status of a method
or class once it is created, are only supported using the update_abstractmethods() function. The
abstractmethod() only affects subclasses derived using regular inheritance; “virtual subclasses” registered
with the ABC’s register() method are not affected.

When abstractmethod() is applied in combination with other method descriptors, it should be applied as
the innermost decorator, as shown in the following usage examples:

30.9. abc— Abstract Base Classes 1977

The Python Library Reference, Release 3.13.1

class C(ABC):

@abstractmethod

def my_abstract_method(self, arg1):

...

@classmethod

@abstractmethod

def my_abstract_classmethod(cls, arg2):

...

@staticmethod

@abstractmethod

def my_abstract_staticmethod(arg3):

...

@property

@abstractmethod

def my_abstract_property(self):

...

@my_abstract_property.setter

@abstractmethod

def my_abstract_property(self, val):

...

@abstractmethod

def _get_x(self):

...

@abstractmethod

def _set_x(self, val):

...

x = property(_get_x, _set_x)

In order to correctly interoperate with the abstract base class machinery, the descriptor must identify itself
as abstract using __isabstractmethod__. In general, this attribute should be True if any of the methods
used to compose the descriptor are abstract. For example, Python’s built-in property does the equivalent of:

class Descriptor:

...

@property

def __isabstractmethod__(self):

return any(getattr(f, '__isabstractmethod__', False) for

f in (self._fget, self._fset, self._fdel))

Note

Unlike Java abstract methods, these abstract methods may have an implementation. This implementation
can be called via the super() mechanism from the class that overrides it. This could be useful as an
end-point for a super-call in a framework that uses cooperative multiple-inheritance.

The abc module also supports the following legacy decorators:

@abc.abstractclassmethod

Added in version 3.2.

Deprecated since version 3.3: It is now possible to use classmethod with abstractmethod(), making
this decorator redundant.

A subclass of the built-in classmethod(), indicating an abstract classmethod. Otherwise it is similar to
abstractmethod().

1978 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

This special case is deprecated, as the classmethod() decorator is now correctly identified as abstract when
applied to an abstract method:

class C(ABC):

@classmethod

@abstractmethod

def my_abstract_classmethod(cls, arg):

...

@abc.abstractstaticmethod

Added in version 3.2.

Deprecated since version 3.3: It is now possible to use staticmethod with abstractmethod(), making
this decorator redundant.

A subclass of the built-in staticmethod(), indicating an abstract staticmethod. Otherwise it is similar to
abstractmethod().

This special case is deprecated, as the staticmethod() decorator is now correctly identified as abstract when
applied to an abstract method:

class C(ABC):

@staticmethod

@abstractmethod

def my_abstract_staticmethod(arg):

...

@abc.abstractproperty

Deprecated since version 3.3: It is now possible to use property, property.getter(), property.
setter() and property.deleter() with abstractmethod(), making this decorator redundant.

A subclass of the built-in property(), indicating an abstract property.

This special case is deprecated, as the property() decorator is now correctly identified as abstract when
applied to an abstract method:

class C(ABC):

@property

@abstractmethod

def my_abstract_property(self):

...

The above example defines a read-only property; you can also define a read-write abstract property by appro-
priately marking one or more of the underlying methods as abstract:

class C(ABC):

@property

def x(self):

...

@x.setter

@abstractmethod

def x(self, val):

...

If only some components are abstract, only those components need to be updated to create a concrete property
in a subclass:

class D(C):

@C.x.setter

(continues on next page)

30.9. abc— Abstract Base Classes 1979

The Python Library Reference, Release 3.13.1

(continued from previous page)

def x(self, val):

...

The abc module also provides the following functions:

abc.get_cache_token()

Returns the current abstract base class cache token.

The token is an opaque object (that supports equality testing) identifying the current version of the abstract
base class cache for virtual subclasses. The token changes with every call to ABCMeta.register() on any
ABC.

Added in version 3.4.

abc.update_abstractmethods(cls)

A function to recalculate an abstract class’s abstraction status. This function should be called if a class’s abstract
methods have been implemented or changed after it was created. Usually, this function should be called from
within a class decorator.

Returns cls, to allow usage as a class decorator.

If cls is not an instance of ABCMeta, does nothing.

Note

This function assumes that cls’s superclasses are already updated. It does not update any subclasses.

Added in version 3.10.

30.10 atexit— Exit handlers

The atexit module defines functions to register and unregister cleanup functions. Functions thus registered are
automatically executed upon normal interpreter termination. atexit runs these functions in the reverse order in
which they were registered; if you register A, B, and C, at interpreter termination time they will be run in the order C,
B, A.

Note: The functions registered via this module are not called when the program is killed by a signal not handled by
Python, when a Python fatal internal error is detected, or when os._exit() is called.

Note: The effect of registering or unregistering functions from within a cleanup function is undefined.

Changed in version 3.7: When used with C-API subinterpreters, registered functions are local to the interpreter they
were registered in.

atexit.register(func, *args, **kwargs)

Register func as a function to be executed at termination. Any optional arguments that are to be passed to func
must be passed as arguments to register(). It is possible to register the same function and arguments more
than once.

At normal program termination (for instance, if sys.exit() is called or the main module’s execution com-
pletes), all functions registered are called in last in, first out order. The assumption is that lower level modules
will normally be imported before higher level modules and thus must be cleaned up later.

If an exception is raised during execution of the exit handlers, a traceback is printed (unless SystemExit
is raised) and the exception information is saved. After all exit handlers have had a chance to run, the last
exception to be raised is re-raised.

This function returns func, which makes it possible to use it as a decorator.

1980 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

Warning

Starting new threads or calling os.fork() from a registered function can lead to race condition between
themain Python runtime thread freeing thread states while internal threading routines or the new process
try to use that state. This can lead to crashes rather than clean shutdown.

Changed in version 3.12: Attempts to start a new thread or os.fork() a new process in a registered function
now leads to RuntimeError.

atexit.unregister(func)
Remove func from the list of functions to be run at interpreter shutdown. unregister() silently does nothing
if func was not previously registered. If func has been registered more than once, every occurrence of that
function in the atexit call stack will be removed. Equality comparisons (==) are used internally during
unregistration, so function references do not need to have matching identities.

See also

Module readline
Useful example of atexit to read and write readline history files.

30.10.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:

with open('counterfile') as infile:

_count = int(infile.read())

except FileNotFoundError:

_count = 0

def incrcounter(n):

global _count

_count = _count + n

def savecounter():

with open('counterfile', 'w') as outfile:

outfile.write('%d' % _count)

import atexit

atexit.register(savecounter)

Positional and keyword arguments may also be passed to register() to be passed along to the registered function
when it is called:

def goodbye(name, adjective):

print('Goodbye %s, it was %s to meet you.' % (name, adjective))

import atexit

atexit.register(goodbye, 'Donny', 'nice')

or:

atexit.register(goodbye, adjective='nice', name='Donny')

Usage as a decorator:

30.10. atexit— Exit handlers 1981

The Python Library Reference, Release 3.13.1

import atexit

@atexit.register

def goodbye():

print('You are now leaving the Python sector.')

This only works with functions that can be called without arguments.

30.11 traceback— Print or retrieve a stack traceback

Source code: Lib/traceback.py

This module provides a standard interface to extract, format and print stack traces of Python programs. It is more
flexible than the interpreter’s default traceback display, and therefore makes it possible to configure certain aspects of
the output. Finally, it contains a utility for capturing enough information about an exception to print it later, without
the need to save a reference to the actual exception. Since exceptions can be the roots of large objects graph, this
utility can significantly improve memory management.

The module uses traceback objects — these are objects of type types.TracebackType, which are assigned to the
__traceback__ field of BaseException instances.

See also

Module faulthandler
Used to dump Python tracebacks explicitly, on a fault, after a timeout, or on a user signal.

Module pdb
Interactive source code debugger for Python programs.

The module’s API can be divided into two parts:

• Module-level functions offering basic functionality, which are useful for interactive inspection of exceptions
and tracebacks.

• TracebackException class and its helper classes StackSummary and FrameSummary. These offer both
more flexibility in the output generated and the ability to store the information necessary for later formatting
without holding references to actual exception and traceback objects.

30.11.1 Module-Level Functions

traceback.print_tb(tb, limit=None, file=None)
Print up to limit stack trace entries from traceback object tb (starting from the caller’s frame) if limit is positive.
Otherwise, print the last abs(limit) entries. If limit is omitted or None, all entries are printed. If file is
omitted or None, the output goes to sys.stderr; otherwise it should be an open file or file-like object to
receive the output.

Note

The meaning of the limit parameter is different than the meaning of sys.tracebacklimit. A negative
limit value corresponds to a positive value of sys.tracebacklimit, whereas the behaviour of a positive
limit value cannot be achieved with sys.tracebacklimit.

Changed in version 3.5: Added negative limit support.

1982 Chapter 30. Python Runtime Services

https://github.com/python/cpython/tree/3.13/Lib/traceback.py

The Python Library Reference, Release 3.13.1

traceback.print_exception(exc, / , [value, tb,]limit=None, file=None, chain=True)
Print exception information and stack trace entries from traceback object tb to file. This differs from
print_tb() in the following ways:

• if tb is not None, it prints a header Traceback (most recent call last):

• it prints the exception type and value after the stack trace

• if type(value) is SyntaxError and value has the appropriate format, it prints the line where the syntax
error occurred with a caret indicating the approximate position of the error.

Since Python 3.10, instead of passing value and tb, an exception object can be passed as the first argument. If
value and tb are provided, the first argument is ignored in order to provide backwards compatibility.

The optional limit argument has the same meaning as for print_tb(). If chain is true (the default), then
chained exceptions (the __cause__ or __context__ attributes of the exception) will be printed as well, like
the interpreter itself does when printing an unhandled exception.

Changed in version 3.5: The etype argument is ignored and inferred from the type of value.

Changed in version 3.10: The etype parameter has been renamed to exc and is now positional-only.

traceback.print_exc(limit=None, file=None, chain=True)
This is a shorthand for print_exception(sys.exception(), limit, file, chain).

traceback.print_last(limit=None, file=None, chain=True)
This is a shorthand for print_exception(sys.last_exc, limit, file, chain). In general it will
work only after an exception has reached an interactive prompt (see sys.last_exc).

traceback.print_stack(f=None, limit=None, file=None)
Print up to limit stack trace entries (starting from the invocation point) if limit is positive. Otherwise, print
the last abs(limit) entries. If limit is omitted or None, all entries are printed. The optional f argument can
be used to specify an alternate stack frame to start. The optional file argument has the same meaning as for
print_tb().

Changed in version 3.5: Added negative limit support.

traceback.extract_tb(tb, limit=None)
Return a StackSummary object representing a list of “pre-processed” stack trace entries extracted from the
traceback object tb. It is useful for alternate formatting of stack traces. The optional limit argument has the
samemeaning as for print_tb(). A “pre-processed” stack trace entry is a FrameSummary object containing
attributes filename, lineno, name, and line representing the information that is usually printed for a stack
trace.

traceback.extract_stack(f=None, limit=None)
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract_tb(). The optional f and limit arguments have the same meaning as for print_stack().

traceback.print_list(extracted_list, file=None)
Print the list of tuples as returned by extract_tb() or extract_stack() as a formatted stack trace to the
given file. If file is None, the output is written to sys.stderr.

traceback.format_list(extracted_list)

Given a list of tuples or FrameSummary objects as returned by extract_tb() or extract_stack(), return
a list of strings ready for printing. Each string in the resulting list corresponds to the item with the same index
in the argument list. Each string ends in a newline; the strings may contain internal newlines as well, for those
items whose source text line is not None.

traceback.format_exception_only(exc, / , [value,]*, show_group=False)

Format the exception part of a traceback using an exception value such as given by sys.last_value. The
return value is a list of strings, each ending in a newline. The list contains the exception’s message, which is
normally a single string; however, for SyntaxError exceptions, it contains several lines that (when printed)

30.11. traceback— Print or retrieve a stack traceback 1983

The Python Library Reference, Release 3.13.1

display detailed information about where the syntax error occurred. Following the message, the list contains
the exception’s notes.

Since Python 3.10, instead of passing value, an exception object can be passed as the first argument. If value
is provided, the first argument is ignored in order to provide backwards compatibility.

When show_group is True, and the exception is an instance of BaseExceptionGroup, the nested exceptions
are included as well, recursively, with indentation relative to their nesting depth.

Changed in version 3.10: The etype parameter has been renamed to exc and is now positional-only.

Changed in version 3.11: The returned list now includes any notes attached to the exception.

Changed in version 3.13: show_group parameter was added.

traceback.format_exception(exc, / , [value, tb,]limit=None, chain=True)
Format a stack trace and the exception information. The arguments have the same meaning as the correspond-
ing arguments to print_exception(). The return value is a list of strings, each ending in a newline and
some containing internal newlines. When these lines are concatenated and printed, exactly the same text is
printed as does print_exception().

Changed in version 3.5: The etype argument is ignored and inferred from the type of value.

Changed in version 3.10: This function’s behavior and signature were modified to match
print_exception().

traceback.format_exc(limit=None, chain=True)
This is like print_exc(limit) but returns a string instead of printing to a file.

traceback.format_tb(tb, limit=None)
A shorthand for format_list(extract_tb(tb, limit)).

traceback.format_stack(f=None, limit=None)
A shorthand for format_list(extract_stack(f, limit)).

traceback.clear_frames(tb)
Clears the local variables of all the stack frames in a traceback tb by calling the clear() method of each
frame object.

Added in version 3.4.

traceback.walk_stack(f)
Walk a stack following f.f_back from the given frame, yielding the frame and line number for each frame.
If f is None, the current stack is used. This helper is used with StackSummary.extract().

Added in version 3.5.

traceback.walk_tb(tb)

Walk a traceback following tb_next yielding the frame and line number for each frame. This helper is used
with StackSummary.extract().

Added in version 3.5.

30.11.2 TracebackException Objects

Added in version 3.5.

TracebackException objects are created from actual exceptions to capture data for later printing. They offer a
more lightweight method of storing this information by avoiding holding references to traceback and frame objects.
In addition, they expose more options to configure the output compared to the module-level functions described
above.

class traceback.TracebackException(exc_type, exc_value, exc_traceback, *, limit=None,
lookup_lines=True, capture_locals=False, compact=False,
max_group_width=15, max_group_depth=10)

1984 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

Capture an exception for later rendering. The meaning of limit, lookup_lines and capture_locals are as for the
StackSummary class.

If compact is true, only data that is required by TracebackException’s format() method is saved in
the class attributes. In particular, the __context__ field is calculated only if __cause__ is None and
__suppress_context__ is false.

Note that when locals are captured, they are also shown in the traceback.

max_group_width and max_group_depth control the formatting of exception groups (see
BaseExceptionGroup). The depth refers to the nesting level of the group, and the width refers to
the size of a single exception group’s exceptions array. The formatted output is truncated when either limit is
exceeded.

Changed in version 3.10: Added the compact parameter.

Changed in version 3.11: Added the max_group_width and max_group_depth parameters.

__cause__

A TracebackException of the original __cause__.

__context__

A TracebackException of the original __context__.

exceptions

If self represents an ExceptionGroup, this field holds a list of TracebackException instances
representing the nested exceptions. Otherwise it is None.

Added in version 3.11.

__suppress_context__

The __suppress_context__ value from the original exception.

__notes__

The __notes__ value from the original exception, or None if the exception does not have any notes. If
it is not None is it formatted in the traceback after the exception string.

Added in version 3.11.

stack

A StackSummary representing the traceback.

exc_type

The class of the original traceback.

Deprecated since version 3.13.

exc_type_str

String display of the class of the original exception.

Added in version 3.13.

filename

For syntax errors - the file name where the error occurred.

lineno

For syntax errors - the line number where the error occurred.

end_lineno

For syntax errors - the end line number where the error occurred. Can be None if not present.

Added in version 3.10.

text

For syntax errors - the text where the error occurred.

30.11. traceback— Print or retrieve a stack traceback 1985

The Python Library Reference, Release 3.13.1

offset

For syntax errors - the offset into the text where the error occurred.

end_offset

For syntax errors - the end offset into the text where the error occurred. Can be None if not present.

Added in version 3.10.

msg

For syntax errors - the compiler error message.

classmethod from_exception(exc, *, limit=None, lookup_lines=True, capture_locals=False)
Capture an exception for later rendering. limit, lookup_lines and capture_locals are as for the
StackSummary class.

Note that when locals are captured, they are also shown in the traceback.

print(*, file=None, chain=True)
Print to file (default sys.stderr) the exception information returned by format().

Added in version 3.11.

format(*, chain=True)
Format the exception.

If chain is not True, __cause__ and __context__ will not be formatted.

The return value is a generator of strings, each ending in a newline and some containing internal newlines.
print_exception() is a wrapper around this method which just prints the lines to a file.

format_exception_only(*, show_group=False)
Format the exception part of the traceback.

The return value is a generator of strings, each ending in a newline.

When show_group is False, the generator emits the exception’s message followed by its notes (if it
has any). The exception message is normally a single string; however, for SyntaxError exceptions, it
consists of several lines that (when printed) display detailed information about where the syntax error
occurred.

When show_group is True, and the exception is an instance of BaseExceptionGroup, the nested
exceptions are included as well, recursively, with indentation relative to their nesting depth.

Changed in version 3.11: The exception’s notes are now included in the output.

Changed in version 3.13: Added the show_group parameter.

30.11.3 StackSummary Objects

Added in version 3.5.

StackSummary objects represent a call stack ready for formatting.

class traceback.StackSummary

classmethod extract(frame_gen, *, limit=None, lookup_lines=True, capture_locals=False)
Construct a StackSummary object from a frame generator (such as is returned by walk_stack() or
walk_tb()).

If limit is supplied, only this many frames are taken from frame_gen. If lookup_lines is False, the
returned FrameSummary objects will not have read their lines in yet, making the cost of creating the
StackSummary cheaper (which may be valuable if it may not actually get formatted). If capture_locals
is True the local variables in each FrameSummary are captured as object representations.

Changed in version 3.12: Exceptions raised from repr() on a local variable (when capture_locals is
True) are no longer propagated to the caller.

1986 Chapter 30. Python Runtime Services

The Python Library Reference, Release 3.13.1

classmethod from_list(a_list)
Construct a StackSummary object from a supplied list of FrameSummary objects or old-style list of
tuples. Each tuple should be a 4-tuple with filename, lineno, name, line as the elements.

format()

Returns a list of strings ready for printing. Each string in the resulting list corresponds to a single frame
from the stack. Each string ends in a newline; the strings may contain internal newlines as well, for those
items with source text lines.

For long sequences of the same frame and line, the first few repetitions are shown, followed by a summary
line stating the exact number of further repetitions.

Changed in version 3.6: Long sequences of repeated frames are now abbreviated.

format_frame_summary(frame_summary)
Returns a string for printing one of the frames involved in the stack. This method is called for each
FrameSummary object to be printed by StackSummary.format(). If it returns None, the frame is
omitted from the output.

Added in version 3.11.

30.11.4 FrameSummary Objects

Added in version 3.5.

A FrameSummary object represents a single frame in a traceback.

class traceback.FrameSummary(filename, lineno, name, lookup_line=True, locals=None, line=None)
Represents a single frame in the traceback or stack that is being formatted or printed. It may optionally have
a stringified version of the frame’s locals included in it. If lookup_line is False, the source code is not looked
up until the FrameSummary has the line attribute accessed (which also happens when casting it to a tuple).
line may be directly provided, and will prevent line lookups happening at all. locals is an optional local
variable mapping, and if supplied the variable representations are stored in the summary for later display.

FrameSummary instances have the following attributes:

filename

The filename of the source code for this frame. Equivalent to accessing f.f_code.co_filename on
a frame object f.

lineno

The line number of the source code for this frame.

name

Equivalent to accessing f.f_code.co_name on a frame object f.

line

A string representing the source code for this frame, with leading and trailing whitespace stripped. If the
source is not available, it is None.

30.11.5 Examples of Using the Module-Level Functions

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refer to the code module.

import sys, traceback

def run_user_code(envdir):

source = input(">>> ")

try:

exec(source, envdir)

except Exception:

(continues on next page)

30.11. traceback— Print or retrieve a stack traceback 1987

The Python Library Reference, Release 3.13.1

(continued from previous page)

print("Exception in user code:")

print("-"*60)

traceback.print_exc(file=sys.stdout)

print("-"*60)

envdir = {}

while True:

run_user_code(envdir)

The following example demonstrates the different ways to print and format the exception and traceback:

import sys, traceback

def lumberjack():

bright_side_of_life()

def bright_side_of_life():

return tuple()[0]

try:

lumberjack()

except IndexError as exc:

print("*** print_tb:")

traceback.print_tb(exc.__traceback__, limit=1, file=sys.stdout)

print("*** print_exception:")

traceback.print_exception(exc, limit=2, file=sys.stdout)

print("*** print_exc:")

traceback.print_exc(limit=2, file=sys.stdout)

print("*** format_exc, first and last line:")

formatted_lines = traceback.format_exc().splitlines()

print(formatted_lines[0])

print(formatted_lines[-1])

print("*** format_exception:")

print(repr(traceback.format_exception(exc)))

print("*** extract_tb:")

print(repr(traceback.extract_tb(exc.__traceback__)))

print("*** format_tb:")

print(repr(traceback.format_tb(exc.__traceback__)))

print("*** tb_lineno:", exc.__traceback__.tb_lineno)

The output for the example would look similar to this:

*** print_tb:

File "<doctest...>", line 10, in <module>

lumberjack()

~~~~~~~~~~^^

*** print_exception:

Traceback (most recent call last):

File "<doctest...>", line 10, in <module>

lumberjack()

~~~~~~~~~~^^

File "<doctest...>", line 4, in lumberjack

bright_side_of_life()

~~~~~~~~~~~~~~~~~~~^^

IndexError: tuple index out of range

*** print_exc:

Traceback (most recent call last):
(continues on next page)

1988 Chapter 30. Python Runtime Services



The Python Library Reference, Release 3.13.1

(continued from previous page)

File "<doctest...>", line 10, in <module>

lumberjack()

~~~~~~~~~~^^

File "<doctest...>", line 4, in lumberjack

bright_side_of_life()

~~~~~~~~~~~~~~~~~~~^^

IndexError: tuple index out of range

*** format_exc, first and last line:

Traceback (most recent call last):

IndexError: tuple index out of range

*** format_exception:

['Traceback (most recent call last):\n',

' File "<doctest default[0]>", line 10, in <module>\n lumberjack()\n ~~~~~~

↪→~~~~^^\n',

' File "<doctest default[0]>", line 4, in lumberjack\n bright_side_of_life()\

↪→n ~~~~~~~~~~~~~~~~~~~^^\n',

' File "<doctest default[0]>", line 7, in bright_side_of_life\n return␣

↪→tuple()[0]\n ~~~~~~~^^^\n',

'IndexError: tuple index out of range\n']

*** extract_tb:

[<FrameSummary file <doctest...>, line 10 in <module>>,

<FrameSummary file <doctest...>, line 4 in lumberjack>,

<FrameSummary file <doctest...>, line 7 in bright_side_of_life>]

*** format_tb:

[' File "<doctest default[0]>", line 10, in <module>\n lumberjack()\n ~~~~~~

↪→~~~~^^\n',

' File "<doctest default[0]>", line 4, in lumberjack\n bright_side_of_life()\

↪→n ~~~~~~~~~~~~~~~~~~~^^\n',

' File "<doctest default[0]>", line 7, in bright_side_of_life\n return␣

↪→tuple()[0]\n ~~~~~~~^^^\n']

*** tb_lineno: 10

The following example shows the different ways to print and format the stack:

>>> import traceback

>>> def another_function():

... lumberstack()

...

>>> def lumberstack():

... traceback.print_stack()

... print(repr(traceback.extract_stack()))

... print(repr(traceback.format_stack()))

...

>>> another_function()

File "<doctest>", line 10, in <module>

another_function()

File "<doctest>", line 3, in another_function

lumberstack()

File "<doctest>", line 6, in lumberstack

traceback.print_stack()

[('<doctest>', 10, '<module>', 'another_function()'),

('<doctest>', 3, 'another_function', 'lumberstack()'),

('<doctest>', 7, 'lumberstack', 'print(repr(traceback.extract_stack()))')]

[' File "<doctest>", line 10, in <module>\n another_function()\n',

' File "<doctest>", line 3, in another_function\n lumberstack()\n',

' File "<doctest>", line 8, in lumberstack\n print(repr(traceback.format_

↪→stack()))\n']

30.11. traceback— Print or retrieve a stack traceback 1989



The Python Library Reference, Release 3.13.1

This last example demonstrates the final few formatting functions:

>>> import traceback

>>> traceback.format_list([('spam.py', 3, '<module>', 'spam.eggs()'),

... ('eggs.py', 42, 'eggs', 'return "bacon"')])

[' File "spam.py", line 3, in <module>\n spam.eggs()\n',

' File "eggs.py", line 42, in eggs\n return "bacon"\n']

>>> an_error = IndexError('tuple index out of range')

>>> traceback.format_exception_only(an_error)

['IndexError: tuple index out of range\n']

30.11.6 Examples of Using TracebackException

With the helper class, we have more options:

>>> import sys

>>> from traceback import TracebackException

>>>

>>> def lumberjack():

... bright_side_of_life()

...

>>> def bright_side_of_life():

... t = "bright", "side", "of", "life"

... return t[5]

...

>>> try:

... lumberjack()

... except IndexError as e:

... exc = e

...

>>> try:

... try:

... lumberjack()

... except:

... 1/0

... except Exception as e:

... chained_exc = e

...

>>> # limit works as with the module-level functions

>>> TracebackException.from_exception(exc, limit=-2).print()

Traceback (most recent call last):

File "<python-input-1>", line 6, in lumberjack

bright_side_of_life()

~~~~~~~~~~~~~~~~~~~^^

File "<python-input-1>", line 10, in bright_side_of_life

return t[5]

~^^^

IndexError: tuple index out of range

>>> # capture_locals adds local variables in frames

>>> TracebackException.from_exception(exc, limit=-2, capture_locals=True).print()

Traceback (most recent call last):

File "<python-input-1>", line 6, in lumberjack

bright_side_of_life()

~~~~~~~~~~~~~~~~~~~^^

File "<python-input-1>", line 10, in bright_side_of_life

return t[5]

(continues on next page)

1990 Chapter 30. Python Runtime Services



The Python Library Reference, Release 3.13.1

(continued from previous page)

~^^^

t = ("bright", "side", "of", "life")

IndexError: tuple index out of range

>>> # The *chain* kwarg to print() controls whether chained

>>> # exceptions are displayed

>>> TracebackException.from_exception(chained_exc).print()

Traceback (most recent call last):

File "<python-input-19>", line 4, in <module>

lumberjack()

~~~~~~~~~~^^

File "<python-input-8>", line 7, in lumberjack

bright_side_of_life()

~~~~~~~~~~~~~~~~~~~^^

File "<python-input-8>", line 11, in bright_side_of_life

return t[5]

~^^^

IndexError: tuple index out of range

During handling of the above exception, another exception occurred:

Traceback (most recent call last):

File "<python-input-19>", line 6, in <module>

1/0

~^~

ZeroDivisionError: division by zero

>>> TracebackException.from_exception(chained_exc).print(chain=False)

Traceback (most recent call last):

File "<python-input-19>", line 6, in <module>

1/0

~^~

ZeroDivisionError: division by zero

30.12 __future__— Future statement definitions

Source code: Lib/__future__.py

Imports of the form from __future__ import feature are called future statements. These are special-cased
by the Python compiler to allow the use of new Python features in modules containing the future statement before
the release in which the feature becomes standard.

While these future statements are given additional special meaning by the Python compiler, they are still executed
like any other import statement and the __future__ exists and is handled by the import system the same way any
other Python module would be. This design serves three purposes:

• To avoid confusing existing tools that analyze import statements and expect to find the modules they’re im-
porting.

• To document when incompatible changes were introduced, and when they will be — or were —made manda-
tory. This is a form of executable documentation, and can be inspected programmatically via importing
__future__ and examining its contents.

• To ensure that future statements run under releases prior to Python 2.1 at least yield runtime exceptions (the
import of __future__ will fail, because there was no module of that name prior to 2.1).

30.12. __future__— Future statement definitions 1991

https://github.com/python/cpython/tree/3.13/Lib/__future__.py


The Python Library Reference, Release 3.13.1

30.12.1 Module Contents

No feature description will ever be deleted from __future__. Since its introduction in Python 2.1 the following
features have found their way into the language using this mechanism:

feature optional in mandatory in effect

nested_scopes 2.1.0b1 2.2 PEP 227: Statically Nested Scopes
generators 2.2.0a1 2.3 PEP 255: Simple Generators
division 2.2.0a2 3.0 PEP 238: Changing the Division Operator
absolute_import 2.5.0a1 3.0 PEP 328: Imports: Multi-Line and Absolute/Relative
with_statement 2.5.0a1 2.6 PEP 343: The “with” Statement
print_function 2.6.0a2 3.0 PEP 3105: Make print a function
unicode_literals 2.6.0a2 3.0 PEP 3112: Bytes literals in Python 3000
generator_stop 3.5.0b1 3.7 PEP 479: StopIteration handling inside generators
annotations 3.7.0b1 TBD1 PEP 563: Postponed evaluation of annotations

class __future__._Feature

Each statement in __future__.py is of the form:

FeatureName = _Feature(OptionalRelease, MandatoryRelease,

CompilerFlag)

where, normally, OptionalRelease is less than MandatoryRelease, and both are 5-tuples of the same form as
sys.version_info:

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int

PY_MINOR_VERSION, # the 1; an int

PY_MICRO_VERSION, # the 0; an int

PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string

PY_RELEASE_SERIAL # the 3; an int

)

_Feature.getOptionalRelease()

OptionalRelease records the first release in which the feature was accepted.

_Feature.getMandatoryRelease()

In the case of a MandatoryRelease that has not yet occurred, MandatoryRelease predicts the release in which
the feature will become part of the language.

Else MandatoryRelease records when the feature became part of the language; in releases at or after that,
modules no longer need a future statement to use the feature in question, but may continue to use such imports.

MandatoryReleasemay also be None, meaning that a planned feature got dropped or that it is not yet decided.

_Feature.compiler_flag

CompilerFlag is the (bitfield) flag that should be passed in the fourth argument to the built-in function
compile() to enable the feature in dynamically compiled code. This flag is stored in the _Feature.

compiler_flag attribute on _Feature instances.

See also

future
How the compiler treats future imports.

1 from __future__ import annotations was previously scheduled to become mandatory in Python 3.10, but the Python Steering
Council twice decided to delay the change (announcement for Python 3.10; announcement for Python 3.11). No final decision has been made yet.
See also PEP 563 and PEP 649.

1992 Chapter 30. Python Runtime Services

https://peps.python.org/pep-0227/
https://peps.python.org/pep-0255/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0328/
https://peps.python.org/pep-0343/
https://peps.python.org/pep-3105/
https://peps.python.org/pep-3112/
https://peps.python.org/pep-0479/
https://peps.python.org/pep-0563/
https://mail.python.org/archives/list/python-dev@python.org/message/CLVXXPQ2T2LQ5MP2Y53VVQFCXYWQJHKZ/
https://mail.python.org/archives/list/python-dev@python.org/message/VIZEBX5EYMSYIJNDBF6DMUMZOCWHARSO/
https://peps.python.org/pep-0563/
https://peps.python.org/pep-0649/


The Python Library Reference, Release 3.13.1

PEP 236 - Back to the __future__
The original proposal for the __future__ mechanism.

30.13 gc— Garbage Collector interface

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector,
tune the collection frequency, and set debugging options. It also provides access to unreachable objects that the
collector found but cannot free. Since the collector supplements the reference counting already used in Python, you
can disable the collector if you are sure your program does not create reference cycles. Automatic collection can be
disabled by calling gc.disable(). To debug a leaking program call gc.set_debug(gc.DEBUG_LEAK). Notice
that this includes gc.DEBUG_SAVEALL, causing garbage-collected objects to be saved in gc.garbage for inspection.

The gc module provides the following functions:

gc.enable()

Enable automatic garbage collection.

gc.disable()

Disable automatic garbage collection.

gc.isenabled()

Return True if automatic collection is enabled.

gc.collect(generation=2)
With no arguments, run a full collection. The optional argument generationmay be an integer specifying which
generation to collect (from 0 to 2). A ValueError is raised if the generation number is invalid. The sum of
collected objects and uncollectable objects is returned.

The free lists maintained for a number of built-in types are cleared whenever a full collection or collection of the
highest generation (2) is run. Not all items in some free lists may be freed due to the particular implementation,
in particular float.

The effect of calling gc.collect() while the interpreter is already performing a collection is undefined.

gc.set_debug(flags)
Set the garbage collection debugging flags. Debugging information will be written to sys.stderr. See below
for a list of debugging flags which can be combined using bit operations to control debugging.

gc.get_debug()

Return the debugging flags currently set.

gc.get_objects(generation=None)
Returns a list of all objects tracked by the collector, excluding the list returned. If generation is not None,
return only the objects tracked by the collector that are in that generation.

Changed in version 3.8: New generation parameter.

Raises an auditing event gc.get_objects with argument generation.

gc.get_stats()

Return a list of three per-generation dictionaries containing collection statistics since interpreter start. The
number of keys may change in the future, but currently each dictionary will contain the following items:

• collections is the number of times this generation was collected;

• collected is the total number of objects collected inside this generation;

• uncollectable is the total number of objects which were found to be uncollectable (and were therefore
moved to the garbage list) inside this generation.

Added in version 3.4.

30.13. gc— Garbage Collector interface 1993

https://peps.python.org/pep-0236/


The Python Library Reference, Release 3.13.1

gc.set_threshold(threshold0[, threshold1[, threshold2]])
Set the garbage collection thresholds (the collection frequency). Setting threshold0 to zero disables collection.

The GC classifies objects into three generations depending on how many collection sweeps they have survived.
New objects are placed in the youngest generation (generation 0). If an object survives a collection it is
moved into the next older generation. Since generation 2 is the oldest generation, objects in that generation
remain there after a collection. In order to decide when to run, the collector keeps track of the number object
allocations and deallocations since the last collection. When the number of allocations minus the number of
deallocations exceeds threshold0, collection starts. Initially only generation 0 is examined. If generation 0

has been examined more than threshold1 times since generation 1 has been examined, then generation 1 is
examined as well. With the third generation, things are a bit more complicated, see Collecting the oldest
generation for more information.

gc.get_count()

Return the current collection counts as a tuple of (count0, count1, count2).

gc.get_threshold()

Return the current collection thresholds as a tuple of (threshold0, threshold1, threshold2).

gc.get_referrers(*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those containers
which support garbage collection; extension types which do refer to other objects but do not support garbage
collection will not be found.

Note that objects which have already been dereferenced, but which live in cycles and have not yet been collected
by the garbage collector can be listed among the resulting referrers. To get only currently live objects, call
collect() before calling get_referrers().

Warning

Care must be taken when using objects returned by get_referrers() because some of them could still
be under construction and hence in a temporarily invalid state. Avoid using get_referrers() for any
purpose other than debugging.

Raises an auditing event gc.get_referrers with argument objs.

gc.get_referents(*objs)
Return a list of objects directly referred to by any of the arguments. The referents returned are those objects
visited by the arguments’ C-level tp_traverse methods (if any), and may not be all objects actually directly
reachable. tp_traversemethods are supported only by objects that support garbage collection, and are only
required to visit objects that may be involved in a cycle. So, for example, if an integer is directly reachable
from an argument, that integer object may or may not appear in the result list.

Raises an auditing event gc.get_referents with argument objs.

gc.is_tracked(obj)

Returns True if the object is currently tracked by the garbage collector, False otherwise. As a general rule,
instances of atomic types aren’t tracked and instances of non-atomic types (containers, user-defined objects…)
are. However, some type-specific optimizations can be present in order to suppress the garbage collector
footprint of simple instances (e.g. dicts containing only atomic keys and values):

>>> gc.is_tracked(0)

False

>>> gc.is_tracked("a")

False

>>> gc.is_tracked([])

True

>>> gc.is_tracked({})

False

(continues on next page)

1994 Chapter 30. Python Runtime Services

https://devguide.python.org/garbage_collector/#collecting-the-oldest-generation
https://devguide.python.org/garbage_collector/#collecting-the-oldest-generation


The Python Library Reference, Release 3.13.1

(continued from previous page)

>>> gc.is_tracked({"a": 1})

False

>>> gc.is_tracked({"a": []})

True

Added in version 3.1.

gc.is_finalized(obj)

Returns True if the given object has been finalized by the garbage collector, False otherwise.

>>> x = None

>>> class Lazarus:

... def __del__(self):

... global x

... x = self

...

>>> lazarus = Lazarus()

>>> gc.is_finalized(lazarus)

False

>>> del lazarus

>>> gc.is_finalized(x)

True

Added in version 3.9.

gc.freeze()

Freeze all the objects tracked by the garbage collector; move them to a permanent generation and ignore them
in all the future collections.

If a process will fork() without exec(), avoiding unnecessary copy-on-write in child processes will maxi-
mize memory sharing and reduce overall memory usage. This requires both avoiding creation of freed “holes”
in memory pages in the parent process and ensuring that GC collections in child processes won’t touch the
gc_refs counter of long-lived objects originating in the parent process. To accomplish both, call gc.
disable() early in the parent process, gc.freeze() right before fork(), and gc.enable() early in
child processes.

Added in version 3.7.

gc.unfreeze()

Unfreeze the objects in the permanent generation, put them back into the oldest generation.

Added in version 3.7.

gc.get_freeze_count()

Return the number of objects in the permanent generation.

Added in version 3.7.

The following variables are provided for read-only access (you can mutate the values but should not rebind them):

gc.garbage

A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects).
Starting with Python 3.4, this list should be empty most of the time, except when using instances of C extension
types with a non-NULL tp_del slot.

If DEBUG_SAVEALL is set, then all unreachable objects will be added to this list rather than freed.

Changed in version 3.2: If this list is non-empty at interpreter shutdown, a ResourceWarning is emitted,
which is silent by default. If DEBUG_UNCOLLECTABLE is set, in addition all uncollectable objects are printed.

Changed in version 3.4: Following PEP 442, objects with a __del__()method don’t end up in gc.garbage
anymore.

30.13. gc— Garbage Collector interface 1995

https://peps.python.org/pep-0442/


The Python Library Reference, Release 3.13.1

gc.callbacks

A list of callbacks that will be invoked by the garbage collector before and after collection. The callbacks will
be called with two arguments, phase and info.

phase can be one of two values:

“start”: The garbage collection is about to start.

“stop”: The garbage collection has finished.

info is a dict providing more information for the callback. The following keys are currently defined:

“generation”: The oldest generation being collected.

“collected”: When phase is “stop”, the number of objects successfully collected.

“uncollectable”: When phase is “stop”, the number of objects that could not be collected and were
put in garbage.

Applications can add their own callbacks to this list. The primary use cases are:

Gathering statistics about garbage collection, such as how often various generations are collected,
and how long the collection takes.

Allowing applications to identify and clear their own uncollectable types when they appear in
garbage.

Added in version 3.3.

The following constants are provided for use with set_debug():

gc.DEBUG_STATS

Print statistics during collection. This information can be useful when tuning the collection frequency.

gc.DEBUG_COLLECTABLE

Print information on collectable objects found.

gc.DEBUG_UNCOLLECTABLE

Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to the garbage list.

Changed in version 3.2: Also print the contents of the garbage list at interpreter shutdown, if it isn’t empty.

gc.DEBUG_SAVEALL

When set, all unreachable objects found will be appended to garbage rather than being freed. This can be
useful for debugging a leaking program.

gc.DEBUG_LEAK

The debugging flags necessary for the collector to print information about a leaking program (equal to
DEBUG_COLLECTABLE | DEBUG_UNCOLLECTABLE | DEBUG_SAVEALL).

30.14 inspect— Inspect live objects

Source code: Lib/inspect.py

The inspect module provides several useful functions to help get information about live objects such as modules,
classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you examine the
contents of a class, retrieve the source code of a method, extract and format the argument list for a function, or get
all the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting classes
and functions, and examining the interpreter stack.

1996 Chapter 30. Python Runtime Services

https://github.com/python/cpython/tree/3.13/Lib/inspect.py


The Python Library Reference, Release 3.13.1

30.14.1 Types and members

The getmembers() function retrieves the members of an object such as a class or module. The functions whose
names begin with “is” are mainly provided as convenient choices for the second argument to getmembers(). They
also help you determine when you can expect to find the following special attributes (see import-mod-attrs for module
attributes):

Type Attribute Description

class __doc__ documentation string
__name__ name with which this class was defined
__qualname__ qualified name
__module__ name of module in which this class was defined
__type_params__ A tuple containing the type parameters of a generic class

method __doc__ documentation string
__name__ name with which this method was defined
__qualname__ qualified name
__func__ function object containing implementation of method
__self__ instance to which this method is bound, or None
__module__ name of module in which this method was defined

function __doc__ documentation string
__name__ name with which this function was defined
__qualname__ qualified name
__code__ code object containing compiled function bytecode
__defaults__ tuple of any default values for positional or keyword parameters
__kwdefaults__ mapping of any default values for keyword-only parameters
__globals__ global namespace in which this function was defined
__builtins__ builtins namespace
__annotations__ mapping of parameters names to annotations; "return" key is reserved for return annotations.
__type_params__ A tuple containing the type parameters of a generic function
__module__ name of module in which this function was defined

traceback tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)

frame f_back next outer frame object (this frame’s caller)
f_builtins builtins namespace seen by this frame
f_code code object being executed in this frame
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_trace tracing function for this frame, or None

code co_argcount number of arguments (not including keyword only arguments, * or ** args)
co_code string of raw compiled bytecode
co_cellvars tuple of names of cell variables (referenced by containing scopes)
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap of CO_* flags, read more here
co_lnotab encoded mapping of line numbers to bytecode indices
co_freevars tuple of names of free variables (referenced via a function’s closure)
co_posonlyargcount number of positional only arguments
co_kwonlyargcount number of keyword only arguments (not including ** arg)
co_name name with which this code object was defined
co_qualname fully qualified name with which this code object was defined
co_names tuple of names other than arguments and function locals
co_nlocals number of local variables

continues on next page

30.14. inspect— Inspect live objects 1997



The Python Library Reference, Release 3.13.1

Table 2 – continued from previous page

Type Attribute Description

co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables

generator __name__ name
__qualname__ qualified name
gi_frame frame
gi_running is the generator running?
gi_code code
gi_yieldfrom object being iterated by yield from, or None

async generator __name__ name
__qualname__ qualified name
ag_await object being awaited on, or None
ag_frame frame
ag_running is the generator running?
ag_code code

coroutine __name__ name
__qualname__ qualified name
cr_await object being awaited on, or None
cr_frame frame
cr_running is the coroutine running?
cr_code code
cr_origin where coroutine was created, or None. See sys.set_coroutine_origin_tracking_depth()

builtin __doc__ documentation string
__name__ original name of this function or method
__qualname__ qualified name
__self__ instance to which a method is bound, or None

Changed in version 3.5: Add __qualname__ and gi_yieldfrom attributes to generators.

The __name__ attribute of generators is now set from the function name, instead of the code name, and it can now
be modified.

Changed in version 3.7: Add cr_origin attribute to coroutines.

Changed in version 3.10: Add __builtins__ attribute to functions.

inspect.getmembers(object[, predicate])
Return all the members of an object in a list of (name, value) pairs sorted by name. If the optional predicate
argument—which will be called with the value object of each member—is supplied, only members for which
the predicate returns a true value are included.

Note

getmembers() will only return class attributes defined in the metaclass when the argument is a class and
those attributes have been listed in the metaclass’ custom __dir__().

inspect.getmembers_static(object[, predicate])
Return all the members of an object in a list of (name, value) pairs sorted by name without triggering
dynamic lookup via the descriptor protocol, __getattr__ or __getattribute__. Optionally, only return members
that satisfy a given predicate.

Note

getmembers_static() may not be able to retrieve all members that getmembers can fetch (like dy-
namically created attributes) and may find members that getmembers can’t (like descriptors that raise
AttributeError). It can also return descriptor objects instead of instance members in some cases.

1998 Chapter 30. Python Runtime Services



The Python Library Reference, Release 3.13.1

Added in version 3.11.

inspect.getmodulename(path)
Return the name of the module named by the file path, without including the names of enclosing packages.
The file extension is checked against all of the entries in importlib.machinery.all_suffixes(). If it
matches, the final path component is returned with the extension removed. Otherwise, None is returned.

Note that this function only returns a meaningful name for actual Python modules - paths that potentially refer
to Python packages will still return None.

Changed in version 3.3: The function is based directly on importlib.

inspect.ismodule(object)
Return True if the object is a module.

inspect.isclass(object)
Return True if the object is a class, whether built-in or created in Python code.

inspect.ismethod(object)
Return True if the object is a bound method written in Python.

inspect.isfunction(object)
Return True if the object is a Python function, which includes functions created by a lambda expression.

inspect.isgeneratorfunction(object)
Return True if the object is a Python generator function.

Changed in version 3.8: Functions wrapped in functools.partial() now return True if the wrapped
function is a Python generator function.

Changed in version 3.13: Functions wrapped in functools.partialmethod() now return True if the
wrapped function is a Python generator function.

inspect.isgenerator(object)
Return True if the object is a generator.

inspect.iscoroutinefunction(object)
Return True if the object is a coroutine function (a function defined with an async def syn-
tax), a functools.partial() wrapping a coroutine function, or a sync function marked with
markcoroutinefunction().

Added in version 3.5.

Changed in version 3.8: Functions wrapped in functools.partial() now return True if the wrapped
function is a coroutine function.

Changed in version 3.12: Sync functions marked with markcoroutinefunction() now return True.

Changed in version 3.13: Functions wrapped in functools.partialmethod() now return True if the
wrapped function is a coroutine function.

inspect.markcoroutinefunction(func)
Decorator to mark a callable as a coroutine function if it would not otherwise be detected by
iscoroutinefunction().

This may be of use for sync functions that return a coroutine, if the function is passed to an API that requires
iscoroutinefunction().

When possible, using an async def function is preferred. Also acceptable is calling the function and testing
the return with iscoroutine().

Added in version 3.12.

inspect.iscoroutine(object)
Return True if the object is a coroutine created by an async def function.

Added in version 3.5.

30.14. inspect— Inspect live objects 1999



The Python Library Reference, Release 3.13.1

inspect.isawaitable(object)
Return True if the object can be used in await expression.

Can also be used to distinguish generator-based coroutines from regular generators:

import types

def gen():

yield

@types.coroutine

def gen_coro():

yield

assert not isawaitable(gen())

assert isawaitable(gen_coro())

Added in version 3.5.

inspect.isasyncgenfunction(object)
Return True if the object is an asynchronous generator function, for example:

>>> async def agen():

... yield 1

...

>>> inspect.isasyncgenfunction(agen)

True

Added in version 3.6.

Changed in version 3.8: Functions wrapped in functools.partial() now return True if the wrapped
function is an asynchronous generator function.

Changed in version 3.13: Functions wrapped in functools.partialmethod() now return True if the
wrapped function is a coroutine function.

inspect.isasyncgen(object)
Return True if the object is an asynchronous generator iterator created by an asynchronous generator function.

Added in version 3.6.

inspect.istraceback(object)

Return True if the object is a traceback.

inspect.isframe(object)
Return True if the object is a frame.

inspect.iscode(object)

Return True if the object is a code.

inspect.isbuiltin(object)
Return True if the object is a built-in function or a bound built-in method.

inspect.ismethodwrapper(object)
Return True if the type of object is a MethodWrapperType.

These are instances of MethodWrapperType, such as __str__(), __eq__() and __repr__().

Added in version 3.11.

inspect.isroutine(object)
Return True if the object is a user-defined or built-in function or method.

2000 Chapter 30. Python Runtime Services



The Python Library Reference, Release 3.13.1

inspect.isabstract(object)
Return True if the object is an abstract base class.

inspect.ismethoddescriptor(object)

Return True if the object is a method descriptor, but not if ismethod(), isclass(), isfunction() or
isbuiltin() are true.

This, for example, is true of int.__add__. An object passing this test has a __get__() method, but not
a __set__() method or a __delete__() method. Beyond that, the set of attributes varies. A __name__

attribute is usually sensible, and __doc__ often is.

Methods implemented via descriptors that also pass one of the other tests return False from the
ismethoddescriptor() test, simply because the other tests promise more – you can, e.g., count on having
the __func__ attribute (etc) when an object passes ismethod().

Changed in version 3.13: This function no longer incorrectly reports objects with __get__() and
__delete__(), but not __set__(), as being method descriptors (such objects are data descriptors, not
method descriptors).

inspect.isdatadescriptor(object)
Return True if the object is a data descriptor.

Data descriptors have a __set__ or a __delete__ method. Examples are properties (defined in Python),
getsets, and members. The latter two are defined in C and there are more specific tests available for those
types, which is robust across Python implementations. Typically, data descriptors will also have __name__ and
__doc__ attributes (properties, getsets, and members have both of these attributes), but this is not guaranteed.

inspect.isgetsetdescriptor(object)
Return True if the object is a getset descriptor.

CPython implementation detail: getsets are attributes defined in extensionmodules via PyGetSetDef struc-
tures. For Python implementations without such types, this method will always return False.

inspect.ismemberdescriptor(object)
Return True if the object is a member descriptor.

CPython implementation detail: Member descriptors are attributes defined in extension modules via
PyMemberDef structures. For Python implementations without such types, this method will always return
False.

30.14.2 Retrieving source code

inspect.getdoc(object)
Get the documentation string for an object, cleaned up with cleandoc(). If the documentation string for an
object is not provided and the object is a class, a method, a property or a descriptor, retrieve the documentation
string from the inheritance hierarchy. Return None if the documentation string is invalid or missing.

Changed in version 3.5: Documentation strings are now inherited if not overridden.

inspect.getcomments(object)
Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module). If the object’s source
code is unavailable, return None. This could happen if the object has been defined in C or the interactive shell.

inspect.getfile(object)
Return the name of the (text or binary) file in which an object was defined. This will fail with a TypeError
if the object is a built-in module, class, or function.

inspect.getmodule(object)

Try to guess which module an object was defined in. Return None if the module cannot be determined.

30.14. inspect— Inspect live objects 2001



The Python Library Reference, Release 3.13.1

inspect.getsourcefile(object)
Return the name of the Python source file in which an object was defined or None if no way can be identified
to get the source. This will fail with a TypeError if the object is a built-in module, class, or function.

inspect.getsourcelines(object)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines corre-
sponding to the object and the line number indicates where in the original source file the first line of code was
found. An OSError is raised if the source code cannot be retrieved. A TypeError is raised if the object is
a built-in module, class, or function.

Changed in version 3.3: OSError is raised instead of IOError, now an alias of the former.

inspect.getsource(object)

Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single string. An OSError is raised if the
source code cannot be retrieved. A TypeError is raised if the object is a built-in module, class, or function.

Changed in version 3.3: OSError is raised instead of IOError, now an alias of the former.

inspect.cleandoc(doc)

Clean up indentation from docstrings that are indented to line up with blocks of code.

All leading whitespace is removed from the first line. Any leading whitespace that can be uniformly removed
from the second line onwards is removed. Empty lines at the beginning and end are subsequently removed.
Also, all tabs are expanded to spaces.

30.14.3 Introspecting callables with the Signature object

Added in version 3.3.

The Signature object represents the call signature of a callable object and its return annotation. To retrieve a
Signature object, use the signature() function.

inspect.signature(callable, *, follow_wrapped=True, globals=None, locals=None, eval_str=False)
Return a Signature object for the given callable:

>>> from inspect import signature

>>> def foo(a, *, b:int, **kwargs):

... pass

>>> sig = signature(foo)

>>> str(sig)

'(a, *, b: int, **kwargs)'

>>> str(sig.parameters['b'])

'b: int'

>>> sig.parameters['b'].annotation

<class 'int'>

Accepts a wide range of Python callables, from plain functions and classes to functools.partial() objects.

For objects defined in modules using stringized annotations (from __future__ import annotations),
signature() will attempt to automatically un-stringize the annotations using get_annotations(). The
globals, locals, and eval_str parameters are passed into get_annotations()when resolving the annotations;
see the documentation for get_annotations() for instructions on how to use these parameters.

Raises ValueError if no signature can be provided, and TypeError if that type of object is not supported.
Also, if the annotations are stringized, and eval_str is not false, the eval() call(s) to un-stringize the annota-
tions in get_annotations() could potentially raise any kind of exception.

2002 Chapter 30. Python Runtime Services



The Python Library Reference, Release 3.13.1

A slash(/) in the signature of a function denotes that the parameters prior to it are positional-only. For more
info, see the FAQ entry on positional-only parameters.

Changed in version 3.5: The follow_wrapped parameter was added. Pass False to get a signature of callable
specifically (callable.__wrapped__ will not be used to unwrap decorated callables.)

Changed in version 3.10: The globals, locals, and eval_str parameters were added.

Note

Some callables may not be introspectable in certain implementations of Python. For example, in CPython,
some built-in functions defined in C provide no metadata about their arguments.

CPython implementation detail: If the passed object has a __signature__ attribute, we may use it to
create the signature. The exact semantics are an implementation detail and are subject to unannounced changes.
Consult the source code for current semantics.

class inspect.Signature(parameters=None, *, return_annotation=Signature.empty)
A Signature object represents the call signature of a function and its return annotation. For each parameter
accepted by the function it stores a Parameter object in its parameters collection.

The optional parameters argument is a sequence of Parameter objects, which is validated to check that there
are no parameters with duplicate names, and that the parameters are in the right order, i.e. positional-only first,
then positional-or-keyword, and that parameters with defaults follow parameters without defaults.

The optional return_annotation argument can be an arbitrary Python object. It represents the “return” anno-
tation of the callable.

Signature objects are immutable. Use Signature.replace() or copy.replace() to make a modified
copy.

Changed in version 3.5: Signature objects are now picklable and hashable.

empty

A special class-level marker to specify absence of a return annotation.

parameters

An ordered mapping of parameters’ names to the corresponding Parameter objects. Parameters appear
in strict definition order, including keyword-only parameters.

Changed in version 3.7: Python only explicitly guaranteed that it preserved the declaration order of
keyword-only parameters as of version 3.7, although in practice this order had always been preserved in
Python 3.

return_annotation

The “return” annotation for the callable. If the callable has no “return” annotation, this attribute is set to
Signature.empty.

bind(*args, **kwargs)

Create a mapping from positional and keyword arguments to parameters. Returns BoundArguments if
*args and **kwargs match the signature, or raises a TypeError.

bind_partial(*args, **kwargs)
Works the same way as Signature.bind(), but allows the omission of some required arguments
(mimics functools.partial() behavior.) Returns BoundArguments, or raises a TypeError if
the passed arguments do not match the signature.

replace(*[, parameters][, return_annotation])
Create a new Signature instance based on the instance replace() was invoked on. It is possible to
pass different parameters and/or return_annotation to override the corresponding properties of the base
signature. To remove return_annotation from the copied Signature, pass in Signature.empty.

30.14. inspect— Inspect live objects 2003



The Python Library Reference, Release 3.13.1

>>> def test(a, b):

... pass

...

>>> sig = signature(test)

>>> new_sig = sig.replace(return_annotation="new return anno")

>>> str(new_sig)

"(a, b) -> 'new return anno'"

Signature objects are also supported by the generic function copy.replace().

format(*, max_width=None)
Create a string representation of the Signature object.

If max_width is passed, the method will attempt to fit the signature into lines of at most max_width
characters. If the signature is longer than max_width, all parameters will be on separate lines.

Added in version 3.13.

classmethod from_callable(obj, *, follow_wrapped=True, globals=None, locals=None,
eval_str=False)

Return a Signature (or its subclass) object for a given callable obj.

This method simplifies subclassing of Signature:

class MySignature(Signature):

pass

sig = MySignature.from_callable(sum)

assert isinstance(sig, MySignature)

Its behavior is otherwise identical to that of signature().

Added in version 3.5.

Changed in version 3.10: The globals, locals, and eval_str parameters were added.

class inspect.Parameter(name, kind, *, default=Parameter.empty, annotation=Parameter.empty)
Parameter objects are immutable. Instead of modifying a Parameter object, you can use Parameter.
replace() or copy.replace() to create a modified copy.

Changed in version 3.5: Parameter objects are now picklable and hashable.

empty

A special class-level marker to specify absence of default values and annotations.

name

The name of the parameter as a string. The name must be a valid Python identifier.

CPython implementation detail: CPython generates implicit parameter names of the form .0 on the
code objects used to implement comprehensions and generator expressions.

Changed in version 3.6: These parameter names are now exposed by this module as names like
implicit0.

default

The default value for the parameter. If the parameter has no default value, this attribute is set to
Parameter.empty.

annotation

The annotation for the parameter. If the parameter has no annotation, this attribute is set to Parameter.
empty.

2004 Chapter 30. Python Runtime Services



The Python Library Reference, Release 3.13.1

kind

Describes how argument values are bound to the parameter. The possible values are accessible via
Parameter (like Parameter.KEYWORD_ONLY), and support comparison and ordering, in the follow-
ing order:

Name Meaning

POSITIONAL_ONLY Value must be supplied as a positional argument. Positional only
parameters are those which appear before a / entry (if present) in
a Python function definition.

POSITIONAL_OR_KEYWORD Value may be supplied as either a keyword or positional argument
(this is the standard binding behaviour for functions implemented
in Python.)

VAR_POSITIONAL A tuple of positional arguments that aren’t bound to any other
parameter. This corresponds to a *args parameter in a Python
function definition.

KEYWORD_ONLY Value must be supplied as a keyword argument. Keyword only
parameters are those which appear after a * or *args entry in a
Python function definition.

VAR_KEYWORD A dict of keyword arguments that aren’t bound to any other
parameter. This corresponds to a **kwargs parameter in a
Python function definition.

Example: print all keyword-only arguments without default values:

>>> def foo(a, b, *, c, d=10):

... pass

>>> sig = signature(foo)

>>> for param in sig.parameters.values():

... if (param.kind == param.KEYWORD_ONLY and

... param.default is param.empty):

... print('Parameter:', param)

Parameter: c

kind.description

Describes an enum value of Parameter.kind.

Added in version 3.8.

Example: print all descriptions of arguments:

>>> def foo(a, b, *, c, d=10):

... pass

>>> sig = signature(foo)

>>> for param in sig.parameters.values():

... print(param.kind.description)

positional or keyword

positional or keyword

keyword-only

keyword-only

replace(*[, name][, kind][, default][, annotation])
Create a new Parameter instance based on the instance replaced was invoked on. To override a
Parameter attribute, pass the corresponding argument. To remove a default value or/and an annotation
from a Parameter, pass Parameter.empty.

30.14. inspect— Inspect live objects 2005



The Python Library Reference, Release 3.13.1

>>> from inspect import Parameter

>>> param = Parameter('foo', Parameter.KEYWORD_ONLY, default=42)

>>> str(param)

'foo=42'

>>> str(param.replace()) # Will create a shallow copy of 'param'

'foo=42'

>>> str(param.replace(default=Parameter.empty, annotation='spam'))

"foo: 'spam'"

Parameter objects are also supported by the generic function copy.replace().

Changed in version 3.4: In Python 3.3 Parameter objects were allowed to have name set to None if their
kind was set to POSITIONAL_ONLY. This is no longer permitted.

class inspect.BoundArguments

Result of a Signature.bind() or Signature.bind_partial() call. Holds the mapping of arguments
to the function’s parameters.

arguments

A mutable mapping of parameters’ names to arguments’ values. Contains only explicitly bound argu-
ments. Changes in arguments will reflect in args and kwargs.

Should be used in conjunction with Signature.parameters for any argument processing purposes.

Note

Arguments for which Signature.bind() or Signature.bind_partial() relied on a default
value are skipped. However, if needed, use BoundArguments.apply_defaults() to add them.

Changed in version 3.9: arguments is now of type dict. Formerly, it was of type collections.
OrderedDict.

args

A tuple of positional arguments values. Dynamically computed from the arguments attribute.

kwargs

A dict of keyword arguments values. Dynamically computed from the arguments attribute. Arguments
that can be passed positionally are included in args instead.

signature

A reference to the parent Signature object.

apply_defaults()

Set default values for missing arguments.

For variable-positional arguments (*args) the default is an empty tuple.

For variable-keyword arguments (**kwargs) the default is an empty dict.

>>> def foo(a, b='ham', *args): pass

>>> ba = inspect.signature(foo).bind('spam')

>>> ba.apply_defaults()

>>> ba.arguments

{'a': 'spam', 'b': 'ham', 'args': ()}

Added in version 3.5.

The args and kwargs properties can be used to invoke functions:

2006 Chapter 30. Python Runtime Services



The Python Library Reference, Release 3.13.1

def test(a, *, b):

...

sig = signature(test)

ba = sig.bind(10, b=20)

test(*ba.args, **ba.kwargs)

See also

PEP 362 - Function Signature Object.
The detailed specification, implementation details and examples.

30.14.4 Classes and functions

inspect.getclasstree(classes, unique=False)
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains classes
derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing a class and
a tuple of its base classes. If the unique argument is true, exactly one entry appears in the returned structure
for each class in the given list. Otherwise, classes using multiple inheritance and their descendants will appear
multiple times.

inspect.getfullargspec(func)
Get the names and default values of a Python function’s parameters. A named tuple is returned:

FullArgSpec(args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults,

annotations)

args is a list of the positional parameter names. varargs is the name of the * parameter or None if arbitrary
positional arguments are not accepted. varkw is the name of the ** parameter or None if arbitrary keyword
arguments are not accepted. defaults is an n-tuple of default argument values corresponding to the last n
positional parameters, or None if there are no such defaults defined. kwonlyargs is a list of keyword-only pa-
rameter names in declaration order. kwonlydefaults is a dictionary mapping parameter names from kwonlyargs
to the default values used if no argument is supplied. annotations is a dictionary mapping parameter names to
annotations. The special key "return" is used to report the function return value annotation (if any).

Note that signature() and Signature Object provide the recommended API for callable introspection, and
support additional behaviours (like positional-only arguments) that are sometimes encountered in extension
module APIs. This function is retained primarily for use in code that needs to maintain compatibility with the
Python 2 inspect module API.

Changed in version 3.4: This function is now based on signature(), but still ignores __wrapped__ at-
tributes and includes the already bound first parameter in the signature output for bound methods.

Changed in version 3.6: This method was previously documented as deprecated in favour of signature()
in Python 3.5, but that decision has been reversed in order to restore a clearly supported standard interface for
single-source Python 2/3 code migrating away from the legacy getargspec() API.

Changed in version 3.7: Python only explicitly guaranteed that it preserved the declaration order of keyword-
only parameters as of version 3.7, although in practice this order had always been preserved in Python 3.

inspect.getargvalues(frame)
Get information about arguments passed into a particular frame. A named tuple ArgInfo(args, varargs,

keywords, locals) is returned. args is a list of the argument names. varargs and keywords are the names
of the * and ** arguments or None. locals is the locals dictionary of the given frame.

Note

This function was inadvertently marked as deprecated in Python 3.5.

30.14. inspect— Inspect live objects 2007

https://peps.python.org/pep-0362/


The Python Library Reference, Release 3.13.1

inspect.formatargvalues(args[, varargs, varkw, locals, formatarg, formatvarargs, formatvarkw,
formatvalue])

Format a pretty argument spec from the four values returned by getargvalues(). The format* arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

Note

This function was inadvertently marked as deprecated in Python 3.5.

inspect.getmro(cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears more
than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a very peculiar
user-defined metatype is in use, cls will be the first element of the tuple.

inspect.getcallargs(func, / , *args, **kwds)

Bind the args and kwds to the argument names of the Python function or method func, as if it was called with
them. For bound methods, bind also the first argument (typically named self) to the associated instance.
A dict is returned, mapping the argument names (including the names of the * and ** arguments, if any) to
their values from args and kwds. In case of invoking func incorrectly, i.e. whenever func(*args, **kwds)

would raise an exception because of incompatible signature, an exception of the same type and the same or
similar message is raised. For example:

>>> from inspect import getcallargs

>>> def f(a, b=1, *pos, **named):

... pass

...

>>> getcallargs(f, 1, 2, 3) == {'a': 1, 'named': {}, 'b': 2, 'pos': (3,)}

True

>>> getcallargs(f, a=2, x=4) == {'a': 2, 'named': {'x': 4}, 'b': 1, 'pos': ()}

True

>>> getcallargs(f)

Traceback (most recent call last):

...

TypeError: f() missing 1 required positional argument: 'a'

Added in version 3.2.

Deprecated since version 3.5: Use Signature.bind() and Signature.bind_partial() instead.

inspect.getclosurevars(func)
Get the mapping of external name references in a Python function or method func to their current values. A
named tuple ClosureVars(nonlocals, globals, builtins, unbound) is returned. nonlocalsmaps
referenced names to lexical closure variables, globals to the function’s module globals and builtins to the builtins
visible from the function body. unbound is the set of names referenced in the function that could not be resolved
at all given the current module globals and builtins.

TypeError is raised if func is not a Python function or method.

Added in version 3.3.

inspect.unwrap(func, *, stop=None)
Get the object wrapped by func. It follows the chain of __wrapped__ attributes returning the last object in
the chain.

stop is an optional callback accepting an object in the wrapper chain as its sole argument that allows the
unwrapping to be terminated early if the callback returns a true value. If the callback never returns a true value,
the last object in the chain is returned as usual. For example, signature() uses this to stop unwrapping if
any object in the chain has a __signature__ attribute defined.

ValueError is raised if a cycle is encountered.

2008 Chapter 30. Python Runtime Services



The Python Library Reference, Release 3.13.1

Added in version 3.4.

inspect.get_annotations(obj, *, globals=None, locals=None, eval_str=False)
Compute the annotations dict for an object.

obj may be a callable, class, or module. Passing in an object of any other type raises TypeError.

Returns a dict. get_annotations() returns a new dict every time it’s called; calling it twice on the same
object will return two different but equivalent dicts.

This function handles several details for you:

• If eval_str is true, values of type str will be un-stringized using eval(). This is intended for use
with stringized annotations (from __future__ import annotations).

• If obj doesn’t have an annotations dict, returns an empty dict. (Functions and methods always have an
annotations dict; classes, modules, and other types of callables may not.)

• Ignores inherited annotations on classes. If a class doesn’t have its own annotations dict, returns an empty
dict.

• All accesses to object members and dict values are done using getattr() and dict.get() for safety.

• Always, always, always returns a freshly created dict.

eval_str controls whether or not values of type str are replaced with the result of calling eval() on those
values:

• If eval_str is true, eval() is called on values of type str. (Note that get_annotations doesn’t catch
exceptions; if eval() raises an exception, it will unwind the stack past the get_annotations call.)

• If eval_str is false (the default), values of type str are unchanged.

globals and locals are passed in to eval(); see the documentation for eval() for more information. If
globals or locals is None, this function may replace that value with a context-specific default, contingent
on type(obj):

• If obj is a module, globals defaults to obj.__dict__.

• If obj is a class, globals defaults to sys.modules[obj.__module__].__dict__ and locals

defaults to the obj class namespace.

• If obj is a callable, globals defaults to obj.__globals__, although if obj is a wrapped function
(using functools.update_wrapper()) it is first unwrapped.

Calling get_annotations is best practice for accessing the annotations dict of any object. See annotations-
howto for more information on annotations best practices.

Added in version 3.10.

30.14.5 The interpreter stack

Some of the following functions return FrameInfo objects. For backwards compatibility these objects allow tuple-
like operations on all attributes except positions. This behavior is considered deprecated and may be removed in
the future.

class inspect.FrameInfo

frame

The frame object that the record corresponds to.

filename

The file name associated with the code being executed by the frame this record corresponds to.

lineno

The line number of the current line associated with the code being executed by the frame this record
corresponds to.

30.14. inspect— Inspect live objects 2009



The Python Library Reference, Release 3.13.1

function

The function name that is being executed by the frame this record corresponds to.

code_context

A list of lines of context from the source code that’s being executed by the frame this record corresponds
to.

index

The index of the current line being executed in the code_context list.

positions

A dis.Positions object containing the start line number, end line number, start column offset, and
end column offset associated with the instruction being executed by the frame this record corresponds
to.

Changed in version 3.5: Return a named tuple instead of a tuple.

Changed in version 3.11: FrameInfo is now a class instance (that is backwards compatible with the previous
named tuple).

class inspect.Traceback

filename

The file name associated with the code being executed by the frame this traceback corresponds to.

lineno

The line number of the current line associated with the code being executed by the frame this traceback
corresponds to.

function

The function name that is being executed by the frame this traceback corresponds to.

code_context

A list of lines of context from the source code that’s being executed by the frame this traceback corre-
sponds to.

index

The index of the current line being executed in the code_context list.

positions

A dis.Positions object containing the start line number, end line number, start column offset, and
end column offset associated with the instruction being executed by the frame this traceback corresponds
to.

Changed in version 3.11: Traceback is now a class instance (that is backwards compatible with the previous
named tuple).

Note

Keeping references to frame objects, as found in the first element of the frame records these functions return, can
cause your program to create reference cycles. Once a reference cycle has been created, the lifespan of all objects
which can be accessed from the objects which form the cycle can become much longer even if Python’s optional
cycle detector is enabled. If such cycles must be created, it is important to ensure they are explicitly broken to
avoid the delayed destruction of objects and increased memory consumption which occurs.

Though the cycle detector will catch these, destruction of the frames (and local variables) can be made determin-
istic by removing the cycle in a finally clause. This is also important if the cycle detector was disabled when
Python was compiled or using gc.disable(). For example:

def handle_stackframe_without_leak():

frame = inspect.currentframe()

try:

# do something with the frame

finally:

del frame

2010 Chapter 30. Python Runtime Services



The Python Library Reference, Release 3.13.1

If you want to keep the frame around (for example to print a traceback later), you can also break reference cycles
by using the frame.clear() method.

The optional context argument supported by most of these functions specifies the number of lines of context to return,
which are centered around the current line.

inspect.getframeinfo(frame, context=1)
Get information about a frame or traceback object. A Traceback object is returned.

Changed in version 3.11: A Traceback object is returned instead of a named tuple.

inspect.getouterframes(frame, context=1)
Get a list of FrameInfo objects for a frame and all outer frames. These frames represent the calls that lead
to the creation of frame. The first entry in the returned list represents frame; the last entry represents the
outermost call on frame’s stack.

Changed in version 3.5: A list of named tuples FrameInfo(frame, filename, lineno, function,

code_context, index) is returned.

Changed in version 3.11: A list of FrameInfo objects is returned.

inspect.getinnerframes(traceback, context=1)
Get a list of FrameInfo objects for a traceback’s frame and all inner frames. These frames represent calls
made as a consequence of frame. The first entry in the list represents traceback; the last entry represents where
the exception was raised.

Changed in version 3.5: A list of named tuples FrameInfo(frame, filename, lineno, function,

code_context, index) is returned.

Changed in version 3.11: A list of FrameInfo objects is returned.

inspect.currentframe()

Return the frame object for the caller’s stack frame.

CPython implementation detail: This function relies on Python stack frame support in the interpreter, which
isn’t guaranteed to exist in all implementations of Python. If running in an implementation without Python
stack frame support this function returns None.

inspect.stack(context=1)
Return a list of FrameInfo objects for the caller’s stack. The first entry in the returned list represents the
caller; the last entry represents the outermost call on the stack.

Changed in version 3.5: A list of named tuples FrameInfo(frame, filename, lineno, function,

code_context, index) is returned.

Changed in version 3.11: A list of FrameInfo objects is returned.

inspect.trace(context=1)

Return a list of FrameInfo objects for the stack between the current frame and the frame in which an exception
currently being handled was raised in. The first entry in the list represents the caller; the last entry represents
where the exception was raised.

Changed in version 3.5: A list of named tuples FrameInfo(frame, filename, lineno, function,

code_context, index) is returned.

Changed in version 3.11: A list of FrameInfo objects is returned.

30.14.6 Fetching attributes statically

Both getattr() and hasattr() can trigger code execution when fetching or checking for the existence of at-
tributes. Descriptors, like properties, will be invoked and __getattr__() and __getattribute__() may be
called.

30.14. inspect— Inspect live objects 2011



The Python Library Reference, Release 3.13.1

For cases where you want passive introspection, like documentation tools, this can be inconvenient.
getattr_static() has the same signature as getattr() but avoids executing code when it fetches attributes.

inspect.getattr_static(obj, attr, default=None)
Retrieve attributes without triggering dynamic lookup via the descriptor protocol, __getattr__() or
__getattribute__().

Note: this function may not be able to retrieve all attributes that getattr can fetch (like dynamically created
attributes) andmay find attributes that getattr can’t (like descriptors that raise AttributeError). It can also return
descriptors objects instead of instance members.

If the instance __dict__ is shadowed by another member (for example a property) then this function will be
unable to find instance members.

Added in version 3.2.

getattr_static() does not resolve descriptors, for example slot descriptors or getset descriptors on objects im-
plemented in C. The descriptor object is returned instead of the underlying attribute.

You can handle these with code like the following. Note that for arbitrary getset descriptors invoking these may
trigger code execution:

# example code for resolving the builtin descriptor types

class _foo:

__slots__ = ['foo']

slot_descriptor = type(_foo.foo)

getset_descriptor = type(type(open(__file__)).name)

wrapper_descriptor = type(str.__dict__['__add__'])

descriptor_types = (slot_descriptor, getset_descriptor, wrapper_descriptor)

result = getattr_static(some_object, 'foo')

if type(result) in descriptor_types:

try:

result = result.__get__()

except AttributeError:

# descriptors can raise AttributeError to

# indicate there is no underlying value

# in which case the descriptor itself will

# have to do

pass

30.14.7 Current State of Generators, Coroutines, and Asynchronous Generators

When implementing coroutine schedulers and for other advanced uses of generators, it is useful to determine
whether a generator is currently executing, is waiting to start or resume or execution, or has already terminated.
getgeneratorstate() allows the current state of a generator to be determined easily.

inspect.getgeneratorstate(generator)
Get current state of a generator-iterator.

Possible states are:

• GEN_CREATED: Waiting to start execution.

• GEN_RUNNING: Currently being executed by the interpreter.

• GEN_SUSPENDED: Currently suspended at a yield expression.

• GEN_CLOSED: Execution has completed.

Added in version 3.2.

2012 Chapter 30. Python Runtime Services



The Python Library Reference, Release 3.13.1

inspect.getcoroutinestate(coroutine)
Get current state of a coroutine object. The function is intended to be used with coroutine objects created
by async def functions, but will accept any coroutine-like object that has cr_running and cr_frame

attributes.

Possible states are:

• CORO_CREATED: Waiting to start execution.

• CORO_RUNNING: Currently being executed by the interpreter.

• CORO_SUSPENDED: Currently suspended at an await expression.

• CORO_CLOSED: Execution has completed.

Added in version 3.5.

inspect.getasyncgenstate(agen)
Get current state of an asynchronous generator object. The function is intended to be used with asynchronous
iterator objects created by async def functions which use the yield statement, but will accept any asyn-
chronous generator-like object that has ag_running and ag_frame attributes.

Possible states are:

• AGEN_CREATED: Waiting to start execution.

• AGEN_RUNNING: Currently being executed by the interpreter.

• AGEN_SUSPENDED: Currently suspended at a yield expression.

• AGEN_CLOSED: Execution has completed.

Added in version 3.12.

The current internal state of the generator can also be queried. This is mostly useful for testing purposes, to ensure
that internal state is being updated as expected:

inspect.getgeneratorlocals(generator)
Get the mapping of live local variables in generator to their current values. A dictionary is returned that maps
from variable names to values. This is the equivalent of calling locals() in the body of the generator, and
all the same caveats apply.

If generator is a generator with no currently associated frame, then an empty dictionary is returned.
TypeError is raised if generator is not a Python generator object.

CPython implementation detail: This function relies on the generator exposing a Python stack frame for
introspection, which isn’t guaranteed to be the case in all implementations of Python. In such cases, this
function will always return an empty dictionary.

Added in version 3.3.

inspect.getcoroutinelocals(coroutine)

This function is analogous to getgeneratorlocals(), but works for coroutine objects created by async
def functions.

Added in version 3.5.

inspect.getasyncgenlocals(agen)
This function is analogous to getgeneratorlocals(), but works for asynchronous generator objects created
by async def functions which use the yield statement.

Added in version 3.12.

30.14.8 Code Objects Bit Flags

Python code objects have a co_flags attribute, which is a bitmap of the following flags:

30.14. inspect— Inspect live objects 2013



The Python Library Reference, Release 3.13.1

inspect.CO_OPTIMIZED

The code object is optimized, using fast locals.

inspect.CO_NEWLOCALS

If set, a new dict will be created for the frame’s f_locals when the code object is executed.

inspect.CO_VARARGS

The code object has a variable positional parameter (*args-like).

inspect.CO_VARKEYWORDS

The code object has a variable keyword parameter (**kwargs-like).

inspect.CO_NESTED

The flag is set when the code object is a nested function.

inspect.CO_GENERATOR

The flag is set when the code object is a generator function, i.e. a generator object is returned when the code
object is executed.

inspect.CO_COROUTINE

The flag is set when the code object is a coroutine function. When the code object is executed it returns a
coroutine object. See PEP 492 for more details.

Added in version 3.5.

inspect.CO_ITERABLE_COROUTINE

The flag is used to transform generators into generator-based coroutines. Generator objects with this flag can
be used in await expression, and can yield from coroutine objects. See PEP 492 for more details.

Added in version 3.5.

inspect.CO_ASYNC_GENERATOR

The flag is set when the code object is an asynchronous generator function. When the code object is executed
it returns an asynchronous generator object. See PEP 525 for more details.

Added in version 3.6.

Note

The flags are specific to CPython, and may not be defined in other Python implementations. Furthermore, the
flags are an implementation detail, and can be removed or deprecated in future Python releases. It’s recommended
to use public APIs from the inspect module for any introspection needs.

30.14.9 Buffer flags

class inspect.BufferFlags

This is an enum.IntFlag that represents the flags that can be passed to the __buffer__()method of objects
implementing the buffer protocol.

The meaning of the flags is explained at buffer-request-types.

SIMPLE

WRITABLE

FORMAT

ND

STRIDES

2014 Chapter 30. Python Runtime Services

https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/


The Python Library Reference, Release 3.13.1

C_CONTIGUOUS

F_CONTIGUOUS

ANY_CONTIGUOUS

INDIRECT

CONTIG

CONTIG_RO

STRIDED

STRIDED_RO

RECORDS

RECORDS_RO

FULL

FULL_RO

READ

WRITE

Added in version 3.12.

30.14.10 Command Line Interface

The inspect module also provides a basic introspection capability from the command line.

By default, accepts the name of a module and prints the source of that module. A class or function within the module
can be printed instead by appended a colon and the qualified name of the target object.

--details

Print information about the specified object rather than the source code

30.15 site— Site-specific configuration hook

Source code: Lib/site.py

This module is automatically imported during initialization. The automatic import can be suppressed using the
interpreter’s -S option.

Importing this module normally appends site-specific paths to the module search path and adds callables, including
help() to the built-in namespace. However, Python startup option -S blocks this and this module can be safely
imported with no automatic modifications to the module search path or additions to the builtins. To explicitly trigger
the usual site-specific additions, call the main() function.

Changed in version 3.3: Importing the module used to trigger paths manipulation even when using -S.

It starts by constructing up to four directories from a head and a tail part. For the head part, it uses sys.prefix
and sys.exec_prefix; empty heads are skipped. For the tail part, it uses the empty string and then lib/

site-packages (on Windows) or lib/pythonX.Y[t]/site-packages (on Unix and macOS). (The optional
suffix “t” indicates the free threading build, and is appended if "t" is present in the sys.abiflags constant.) For
each of the distinct head-tail combinations, it sees if it refers to an existing directory, and if so, adds it to sys.path
and also inspects the newly added path for configuration files.

Changed in version 3.5: Support for the “site-python” directory has been removed.

30.15. site— Site-specific configuration hook 2015

https://github.com/python/cpython/tree/3.13/Lib/site.py


The Python Library Reference, Release 3.13.1

Changed in version 3.13: On Unix, Free threading Python installations are identified by the “t” suffix in the version-
specific directory name, such as lib/python3.13t/.

If a file named “pyvenv.cfg” exists one directory above sys.executable, sys.prefix and sys.exec_prefix are set to that
directory and it is also checked for site-packages (sys.base_prefix and sys.base_exec_prefix will always be the “real”
prefixes of the Python installation). If “pyvenv.cfg” (a bootstrap configuration file) contains the key “include-system-
site-packages” set to anything other than “true” (case-insensitive), the system-level prefixes will not be searched for
site-packages; otherwise they will.

A path configuration file is a file whose name has the form name.pth and exists in one of the four directories
mentioned above; its contents are additional items (one per line) to be added to sys.path. Non-existing items are
never added to sys.path, and no check is made that the item refers to a directory rather than a file. No item is
added to sys.pathmore than once. Blank lines and lines beginning with # are skipped. Lines starting with import
(followed by space or tab) are executed.

Note

An executable line in a .pth file is run at every Python startup, regardless of whether a particular module is
actually going to be used. Its impact should thus be kept to a minimum. The primary intended purpose of
executable lines is to make the corresponding module(s) importable (load 3rd-party import hooks, adjust PATH
etc). Any other initialization is supposed to be done upon a module’s actual import, if and when it happens.
Limiting a code chunk to a single line is a deliberate measure to discourage putting anything more complex here.

Changed in version 3.13: The .pth files are now decoded by UTF-8 at first and then by the locale encoding if it fails.

For example, suppose sys.prefix and sys.exec_prefix are set to /usr/local. The Python X.Y library is
then installed in /usr/local/lib/pythonX.Y. Suppose this has a subdirectory /usr/local/lib/pythonX.
Y/site-packages with three subsubdirectories, foo, bar and spam, and two path configuration files, foo.pth
and bar.pth. Assume foo.pth contains the following:

# foo package configuration

foo

bar

bletch

and bar.pth contains:

# bar package configuration

bar

Then the following version-specific directories are added to sys.path, in this order:

/usr/local/lib/pythonX.Y/site-packages/bar

/usr/local/lib/pythonX.Y/site-packages/foo

Note that bletch is omitted because it doesn’t exist; the bar directory precedes the foo directory because bar.pth
comes alphabetically before foo.pth; and spam is omitted because it is not mentioned in either path configuration
file.

30.15.1 sitecustomize

After these path manipulations, an attempt is made to import a module named sitecustomize, which can perform
arbitrary site-specific customizations. It is typically created by a system administrator in the site-packages directory.
If this import fails with an ImportError or its subclass exception, and the exception’s name attribute equals to
'sitecustomize', it is silently ignored. If Python is started without output streams available, as with pythonw.
exe on Windows (which is used by default to start IDLE), attempted output from sitecustomize is ignored. Any
other exception causes a silent and perhaps mysterious failure of the process.

2016 Chapter 30. Python Runtime Services



The Python Library Reference, Release 3.13.1

30.15.2 usercustomize

After this, an attempt is made to import a module named usercustomize, which can perform arbitrary user-specific
customizations, if ENABLE_USER_SITE is true. This file is intended to be created in the user site-packages directory
(see below), which is part of sys.path unless disabled by -s. If this import fails with an ImportError or its
subclass exception, and the exception’s name attribute equals to 'usercustomize', it is silently ignored.

Note that for some non-Unix systems, sys.prefix and sys.exec_prefix are empty, and the path manipulations
are skipped; however the import of sitecustomize and usercustomize is still attempted.

30.15.3 Readline configuration

On systems that support readline, this module will also import and configure the rlcompletermodule, if Python
is started in interactive mode and without the -S option. The default behavior is enable tab-completion and to use
~/.python_history as the history save file. To disable it, delete (or override) the sys.__interactivehook__
attribute in your sitecustomize or usercustomize module or your PYTHONSTARTUP file.

Changed in version 3.4: Activation of rlcompleter and history was made automatic.

30.15.4 Module contents

site.PREFIXES

A list of prefixes for site-packages directories.

site.ENABLE_USER_SITE

Flag showing the status of the user site-packages directory. True means that it is enabled and was added to
sys.path. Falsemeans that it was disabled by user request (with -s or PYTHONNOUSERSITE). Nonemeans
it was disabled for security reasons (mismatch between user or group id and effective id) or by an administrator.

site.USER_SITE

Path to the user site-packages for the running Python. Can be None if getusersitepackages() hasn’t
been called yet. Default value is ~/.local/lib/pythonX.Y[t]/site-packages for UNIX and non-
framework macOS builds, ~/Library/Python/X.Y/lib/python/site-packages for macOS frame-
work builds, and %APPDATA%\Python\PythonXY\site-packages on Windows. The optional “t” indi-
cates the free-threaded build. This directory is a site directory, which means that .pth files in it will be
processed.

site.USER_BASE

Path to the base directory for the user site-packages. Can be None if getuserbase() hasn’t been called
yet. Default value is ~/.local for UNIX and macOS non-framework builds, ~/Library/Python/X.Y
for macOS framework builds, and %APPDATA%\Python for Windows. This value is used to compute the
installation directories for scripts, data files, Python modules, etc. for the user installation scheme. See also
PYTHONUSERBASE.

site.main()

Adds all the standard site-specific directories to the module search path. This function is called automatically
when this module is imported, unless the Python interpreter was started with the -S flag.

Changed in version 3.3: This function used to be called unconditionally.

site.addsitedir(sitedir, known_paths=None)
Add a directory to sys.path and process its .pth files. Typically used in sitecustomize or usercustomize
(see above).

site.getsitepackages()

Return a list containing all global site-packages directories.

Added in version 3.2.

site.getuserbase()

Return the path of the user base directory, USER_BASE. If it is not initialized yet, this function will also set it,
respecting PYTHONUSERBASE.

30.15. site— Site-specific configuration hook 2017



The Python Library Reference, Release 3.13.1

Added in version 3.2.

site.getusersitepackages()

Return the path of the user-specific site-packages directory, USER_SITE. If it is not initialized yet, this function
will also set it, respecting USER_BASE. To determine if the user-specific site-packages was added to sys.path
ENABLE_USER_SITE should be used.

Added in version 3.2.

30.15.5 Command Line Interface

The site module also provides a way to get the user directories from the command line:

$ python -m site --user-site

/home/user/.local/lib/python3.11/site-packages

If it is called without arguments, it will print the contents of sys.path on the standard output, followed by the
value of USER_BASE and whether the directory exists, then the same thing for USER_SITE, and finally the value of
ENABLE_USER_SITE.

--user-base

Print the path to the user base directory.

--user-site

Print the path to the user site-packages directory.

If both options are given, user base and user site will be printed (always in this order), separated by os.pathsep.

If any option is given, the script will exit with one of these values: 0 if the user site-packages directory is enabled, 1
if it was disabled by the user, 2 if it is disabled for security reasons or by an administrator, and a value greater than
2 if there is an error.

See also

• PEP 370 – Per user site-packages directory

• The initialization of the sys.path module search path – The initialization of sys.path.

2018 Chapter 30. Python Runtime Services

https://peps.python.org/pep-0370/


CHAPTER

THIRTYONE

CUSTOM PYTHON INTERPRETERS

The modules described in this chapter allow writing interfaces similar to Python’s interactive interpreter. If you want
a Python interpreter that supports some special feature in addition to the Python language, you should look at the
codemodule. (The codeopmodule is lower-level, used to support compiling a possibly incomplete chunk of Python
code.)

The full list of modules described in this chapter is:

31.1 code— Interpreter base classes

Source code: Lib/code.py

The code module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

class code.InteractiveInterpreter(locals=None)
This class deals with parsing and interpreter state (the user’s namespace); it does not deal with input buffering
or prompting or input file naming (the filename is always passed in explicitly). The optional locals argument
specifies a mapping to use as the namespace in which code will be executed; it defaults to a newly created
dictionary with key '__name__' set to '__console__' and key '__doc__' set to None.

class code.InteractiveConsole(locals=None, filename=’<console>’, local_exit=False)
Closely emulate the behavior of the interactive Python interpreter. This class builds on
InteractiveInterpreter and adds prompting using the familiar sys.ps1 and sys.ps2, and in-
put buffering. If local_exit is true, exit() and quit() in the console will not raise SystemExit, but instead
return to the calling code.

Changed in version 3.13: Added local_exit parameter.

code.interact(banner=None, readfunc=None, local=None, exitmsg=None, local_exit=False)
Convenience function to run a read-eval-print loop. This creates a new instance of InteractiveConsole
and sets readfunc to be used as the InteractiveConsole.raw_input() method, if provided. If local
is provided, it is passed to the InteractiveConsole constructor for use as the default namespace for
the interpreter loop. If local_exit is provided, it is passed to the InteractiveConsole constructor. The
interact() method of the instance is then run with banner and exitmsg passed as the banner and exit mes-
sage to use, if provided. The console object is discarded after use.

Changed in version 3.6: Added exitmsg parameter.

Changed in version 3.13: Added local_exit parameter.

code.compile_command(source, filename=’<input>’, symbol=’single’)
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This function almost
always makes the same decision as the real interpreter main loop.

2019

https://github.com/python/cpython/tree/3.13/Lib/code.py


The Python Library Reference, Release 3.13.1

source is the source string; filename is the optional filename from which source was read, defaulting to
'<input>'; and symbol is the optional grammar start symbol, which should be 'single' (the default),
'eval' or 'exec'.

Returns a code object (the same as compile(source, filename, symbol)) if the command is complete
and valid; None if the command is incomplete; raises SyntaxError if the command is complete and contains
a syntax error, or raises OverflowError or ValueError if the command contains an invalid literal.

31.1.1 Interactive Interpreter Objects

InteractiveInterpreter.runsource(source, filename=’<input>’, symbol=’single’)

Compile and run some source in the interpreter. Arguments are the same as for compile_command(); the
default for filename is '<input>', and for symbol is 'single'. One of several things can happen:

• The input is incorrect; compile_command() raised an exception (SyntaxError or
OverflowError). A syntax traceback will be printed by calling the showsyntaxerror()

method. runsource() returns False.

• The input is incomplete, and more input is required; compile_command() returned None.
runsource() returns True.

• The input is complete; compile_command() returned a code object. The code is executed by calling the
runcode() (which also handles run-time exceptions, except for SystemExit). runsource() returns
False.

The return value can be used to decide whether to use sys.ps1 or sys.ps2 to prompt the next line.

InteractiveInterpreter.runcode(code)
Execute a code object. When an exception occurs, showtraceback() is called to display a traceback. All
exceptions are caught except SystemExit, which is allowed to propagate.

A note about KeyboardInterrupt: this exception may occur elsewhere in this code, and may not always be
caught. The caller should be prepared to deal with it.

InteractiveInterpreter.showsyntaxerror(filename=None)
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for syntax
errors. If filename is given, it is stuffed into the exception instead of the default filename provided by Python’s
parser, because it always uses '<string>'when reading from a string. The output is written by the write()
method.

InteractiveInterpreter.showtraceback()

Display the exception that just occurred. We remove the first stack item because it is within the interpreter
object implementation. The output is written by the write() method.

Changed in version 3.5: The full chained traceback is displayed instead of just the primary traceback.

InteractiveInterpreter.write(data)

Write a string to the standard error stream (sys.stderr). Derived classes should override this to provide the
appropriate output handling as needed.

31.1.2 Interactive Console Objects

The InteractiveConsole class is a subclass of InteractiveInterpreter, and so offers all the methods of
the interpreter objects as well as the following additions.

InteractiveConsole.interact(banner=None, exitmsg=None)
Closely emulate the interactive Python console. The optional banner argument specify the banner to print
before the first interaction; by default it prints a banner similar to the one printed by the standard Python
interpreter, followed by the class name of the console object in parentheses (so as not to confuse this with the
real interpreter – since it’s so close!).

The optional exitmsg argument specifies an exit message printed when exiting. Pass the empty string to suppress
the exit message. If exitmsg is not given or None, a default message is printed.

2020 Chapter 31. Custom Python Interpreters



The Python Library Reference, Release 3.13.1

Changed in version 3.4: To suppress printing any banner, pass an empty string.

Changed in version 3.6: Print an exit message when exiting.

InteractiveConsole.push(line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpreter’s runsource() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid,
the buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was
appended. The return value is True if more input is required, False if the line was dealt with in some way
(this is the same as runsource()).

InteractiveConsole.resetbuffer()

Remove any unhandled source text from the input buffer.

InteractiveConsole.raw_input(prompt=”)

Write a prompt and read a line. The returned line does not include the trailing newline. When the user enters
the EOF key sequence, EOFError is raised. The base implementation reads from sys.stdin; a subclass
may replace this with a different implementation.

31.2 codeop— Compile Python code

Source code: Lib/codeop.py

The codeopmodule provides utilities upon which the Python read-eval-print loop can be emulated, as is done in the
code module. As a result, you probably don’t want to use the module directly; if you want to include such a loop in
your program you probably want to use the code module instead.

There are two parts to this job:

1. Being able to tell if a line of input completes a Python statement: in short, telling whether to print ‘>>>’ or
‘...’ next.

2. Remembering which future statements the user has entered, so subsequent input can be compiled with these
in effect.

The codeop module provides a way of doing each of these things, and a way of doing them both.

To do just the former:

codeop.compile_command(source, filename=’<input>’, symbol=’single’)

Tries to compile source, which should be a string of Python code and return a code object if source is valid
Python code. In that case, the filename attribute of the code object will be filename, which defaults to
'<input>'. Returns None if source is not valid Python code, but is a prefix of valid Python code.

If there is a problem with source, an exception will be raised. SyntaxError is raised if there is invalid Python
syntax, and OverflowError or ValueError if there is an invalid literal.

The symbol argument determines whether source is compiled as a statement ('single', the default), as a
sequence of statement ('exec') or as an expression ('eval'). Any other value will cause ValueError to
be raised.

Note

It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching the
end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example, a
backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the API
for the parser is better.

31.2. codeop— Compile Python code 2021

https://github.com/python/cpython/tree/3.13/Lib/codeop.py


The Python Library Reference, Release 3.13.1

class codeop.Compile

Instances of this class have __call__() methods identical in signature to the built-in function compile(),
but with the difference that if the instance compiles program text containing a __future__ statement, the
instance ‘remembers’ and compiles all subsequent program texts with the statement in force.

class codeop.CommandCompiler

Instances of this class have __call__()methods identical in signature to compile_command(); the differ-
ence is that if the instance compiles program text containing a __future__ statement, the instance ‘remem-
bers’ and compiles all subsequent program texts with the statement in force.

2022 Chapter 31. Custom Python Interpreters



CHAPTER

THIRTYTWO

IMPORTING MODULES

The modules described in this chapter provide new ways to import other Python modules and hooks for customizing
the import process.

The full list of modules described in this chapter is:

32.1 zipimport— Import modules from Zip archives

Source code: Lib/zipimport.py

This module adds the ability to import Python modules (*.py, *.pyc) and packages from ZIP-format archives.
It is usually not needed to use the zipimport module explicitly; it is automatically used by the built-in import
mechanism for sys.path items that are paths to ZIP archives.

Typically, sys.path is a list of directory names as strings. This module also allows an item of sys.path to be a
string naming a ZIP file archive. The ZIP archive can contain a subdirectory structure to support package imports,
and a path within the archive can be specified to only import from a subdirectory. For example, the path example.
zip/lib/ would only import from the lib/ subdirectory within the archive.

Any files may be present in the ZIP archive, but importers are only invoked for .py and .pyc files. ZIP import of
dynamic modules (.pyd, .so) is disallowed. Note that if an archive only contains .py files, Python will not attempt
to modify the archive by adding the corresponding .pyc file, meaning that if a ZIP archive doesn’t contain .pyc
files, importing may be rather slow.

Changed in version 3.13: ZIP64 is supported

Changed in version 3.8: Previously, ZIP archives with an archive comment were not supported.

See also

PKZIP Application Note
Documentation on the ZIP file format by Phil Katz, the creator of the format and algorithms used.

PEP 273 - Import Modules from Zip Archives
Written by James C. Ahlstrom, who also provided an implementation. Python 2.3 follows the specification
in PEP 273, but uses an implementation written by Just van Rossum that uses the import hooks described
in PEP 302.

importlib - The implementation of the import machinery
Package providing the relevant protocols for all importers to implement.

This module defines an exception:

exception zipimport.ZipImportError

Exception raised by zipimporter objects. It’s a subclass of ImportError, so it can be caught as
ImportError, too.

2023

https://github.com/python/cpython/tree/3.13/Lib/zipimport.py
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://peps.python.org/pep-0273/
https://peps.python.org/pep-0273/
https://peps.python.org/pep-0302/


The Python Library Reference, Release 3.13.1

32.1.1 zipimporter Objects

zipimporter is the class for importing ZIP files.

class zipimport.zipimporter(archivepath)
Create a new zipimporter instance. archivepath must be a path to a ZIP file, or to a specific path within a ZIP
file. For example, an archivepath of foo/bar.zip/lib will look for modules in the lib directory inside the
ZIP file foo/bar.zip (provided that it exists).

ZipImportError is raised if archivepath doesn’t point to a valid ZIP archive.

Changed in version 3.12: Methods find_loader() and find_module(), deprecated in 3.10 are now re-
moved. Use find_spec() instead.

create_module(spec)
Implementation of importlib.abc.Loader.create_module() that returns None to explicitly re-
quest the default semantics.

Added in version 3.10.

exec_module(module)
Implementation of importlib.abc.Loader.exec_module().

Added in version 3.10.

find_spec(fullname, target=None)
An implementation of importlib.abc.PathEntryFinder.find_spec().

Added in version 3.10.

get_code(fullname)
Return the code object for the specified module. Raise ZipImportError if the module couldn’t be
imported.

get_data(pathname)
Return the data associated with pathname. Raise OSError if the file wasn’t found.

Changed in version 3.3: IOError used to be raised, it is now an alias of OSError.

get_filename(fullname)
Return the value __file__ would be set to if the specified module was imported. Raise
ZipImportError if the module couldn’t be imported.

Added in version 3.1.

get_source(fullname)
Return the source code for the specified module. Raise ZipImportError if the module couldn’t be
found, return None if the archive does contain the module, but has no source for it.

is_package(fullname)
Return True if the module specified by fullname is a package. Raise ZipImportError if the module
couldn’t be found.

load_module(fullname)
Load the module specified by fullname. fullname must be the fully qualified (dotted) module name.
Returns the imported module on success, raises ZipImportError on failure.

Deprecated since version 3.10: Use exec_module() instead.

invalidate_caches()

Clear out the internal cache of information about files found within the ZIP archive.

Added in version 3.10.

archive

The file name of the importer’s associated ZIP file, without a possible subpath.

2024 Chapter 32. Importing Modules



The Python Library Reference, Release 3.13.1

prefix

The subpath within the ZIP file where modules are searched. This is the empty string for zipimporter
objects which point to the root of the ZIP file.

The archive and prefix attributes, when combined with a slash, equal the original archivepath argument
given to the zipimporter constructor.

32.1.2 Examples

Here is an example that imports a module from a ZIP archive - note that the zipimport module is not explicitly
used.

$ unzip -l example.zip

Archive: example.zip

Length Date Time Name

-------- ---- ---- ----

8467 11-26-02 22:30 jwzthreading.py

-------- -------

8467 1 file

$ ./python

Python 2.3 (#1, Aug 1 2003, 19:54:32)

>>> import sys

>>> sys.path.insert(0, 'example.zip') # Add .zip file to front of path

>>> import jwzthreading

>>> jwzthreading.__file__

'example.zip/jwzthreading.py'

32.2 pkgutil— Package extension utility

Source code: Lib/pkgutil.py

This module provides utilities for the import system, in particular package support.

class pkgutil.ModuleInfo(module_finder, name, ispkg)
A namedtuple that holds a brief summary of a module’s info.

Added in version 3.6.

pkgutil.extend_path(path, name)
Extend the search path for the modules which comprise a package. Intended use is to place the following code
in a package’s __init__.py:

from pkgutil import extend_path

__path__ = extend_path(__path__, __name__)

For each directory on sys.path that has a subdirectory that matches the package name, add the subdirectory
to the package’s __path__. This is useful if one wants to distribute different parts of a single logical package
as multiple directories.

It also looks for *.pkg files beginning where * matches the name argument. This feature is similar to *.pth
files (see the sitemodule for more information), except that it doesn’t special-case lines starting with import.
A *.pkg file is trusted at face value: apart from skipping blank lines and ignoring comments, all entries found
in a *.pkg file are added to the path, regardless of whether they exist on the filesystem (this is a feature).

If the input path is not a list (as is the case for frozen packages) it is returned unchanged. The input path is not
modified; an extended copy is returned. Items are only appended to the copy at the end.

It is assumed that sys.path is a sequence. Items of sys.path that are not strings referring to existing
directories are ignored. Unicode items on sys.path that cause errors when used as filenames may cause this
function to raise an exception (in line with os.path.isdir() behavior).

32.2. pkgutil— Package extension utility 2025

https://github.com/python/cpython/tree/3.13/Lib/pkgutil.py


The Python Library Reference, Release 3.13.1

pkgutil.find_loader(fullname)
Retrieve a module loader for the given fullname.

This is a backwards compatibility wrapper around importlib.util.find_spec() that converts most
failures to ImportError and only returns the loader rather than the full importlib.machinery.
ModuleSpec.

Changed in version 3.3: Updated to be based directly on importlib rather than relying on the package
internal PEP 302 import emulation.

Changed in version 3.4: Updated to be based on PEP 451

Deprecated since version 3.12, will be removed in version 3.14: Use importlib.util.find_spec() in-
stead.

pkgutil.get_importer(path_item)

Retrieve a finder for the given path_item.

The returned finder is cached in sys.path_importer_cache if it was newly created by a path hook.

The cache (or part of it) can be cleared manually if a rescan of sys.path_hooks is necessary.

Changed in version 3.3: Updated to be based directly on importlib rather than relying on the package
internal PEP 302 import emulation.

pkgutil.get_loader(module_or_name)
Get a loader object for module_or_name.

If the module or package is accessible via the normal import mechanism, a wrapper around the relevant part of
that machinery is returned. Returns None if the module cannot be found or imported. If the named module is
not already imported, its containing package (if any) is imported, in order to establish the package __path__.

Changed in version 3.3: Updated to be based directly on importlib rather than relying on the package
internal PEP 302 import emulation.

Changed in version 3.4: Updated to be based on PEP 451

Deprecated since version 3.12, will be removed in version 3.14: Use importlib.util.find_spec() in-
stead.

pkgutil.iter_importers(fullname=”)
Yield finder objects for the given module name.

If fullname contains a '.', the finders will be for the package containing fullname, otherwise they will be all
registered top level finders (i.e. those on both sys.meta_path and sys.path_hooks).

If the named module is in a package, that package is imported as a side effect of invoking this function.

If no module name is specified, all top level finders are produced.

Changed in version 3.3: Updated to be based directly on importlib rather than relying on the package
internal PEP 302 import emulation.

pkgutil.iter_modules(path=None, prefix=”)
Yields ModuleInfo for all submodules on path, or, if path is None, all top-level modules on sys.path.

path should be either None or a list of paths to look for modules in.

prefix is a string to output on the front of every module name on output.

Note

Only works for a finder which defines an iter_modules() method. This interface is non-standard, so
the module also provides implementations for importlib.machinery.FileFinder and zipimport.
zipimporter.

2026 Chapter 32. Importing Modules

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0302/
https://peps.python.org/pep-0302/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0302/


The Python Library Reference, Release 3.13.1

Changed in version 3.3: Updated to be based directly on importlib rather than relying on the package
internal PEP 302 import emulation.

pkgutil.walk_packages(path=None, prefix=” , onerror=None)
Yields ModuleInfo for all modules recursively on path, or, if path is None, all accessible modules.

path should be either None or a list of paths to look for modules in.

prefix is a string to output on the front of every module name on output.

Note that this function must import all packages (not all modules!) on the given path, in order to access the
__path__ attribute to find submodules.

onerror is a function which gets called with one argument (the name of the package which was being imported)
if any exception occurs while trying to import a package. If no onerror function is supplied, ImportErrors
are caught and ignored, while all other exceptions are propagated, terminating the search.

Examples:

# list all modules python can access

walk_packages()

# list all submodules of ctypes

walk_packages(ctypes.__path__, ctypes.__name__ + '.')

Note

Only works for a finder which defines an iter_modules() method. This interface is non-standard, so
the module also provides implementations for importlib.machinery.FileFinder and zipimport.
zipimporter.

Changed in version 3.3: Updated to be based directly on importlib rather than relying on the package
internal PEP 302 import emulation.

pkgutil.get_data(package, resource)
Get a resource from a package.

This is a wrapper for the loader get_data API. The package argument should be the name of a package, in
standard module format (foo.bar). The resource argument should be in the form of a relative filename, using
/ as the path separator. The parent directory name .. is not allowed, and nor is a rooted name (starting with
a /).

The function returns a binary string that is the contents of the specified resource.

For packages located in the filesystem, which have already been imported, this is the rough equivalent of:

d = os.path.dirname(sys.modules[package].__file__)

data = open(os.path.join(d, resource), 'rb').read()

If the package cannot be located or loaded, or it uses a loader which does not support get_data, then None
is returned. In particular, the loader for namespace packages does not support get_data.

pkgutil.resolve_name(name)
Resolve a name to an object.

This functionality is used in numerous places in the standard library (see bpo-12915) - and equivalent func-
tionality is also in widely used third-party packages such as setuptools, Django and Pyramid.

It is expected that name will be a string in one of the following formats, where W is shorthand for a valid
Python identifier and dot stands for a literal period in these pseudo-regexes:

• W(.W)*

• W(.W)*:(W(.W)*)?

32.2. pkgutil— Package extension utility 2027

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0302/
https://bugs.python.org/issue?@action=redirect&bpo=12915


The Python Library Reference, Release 3.13.1

The first form is intended for backward compatibility only. It assumes that some part of the dotted name
is a package, and the rest is an object somewhere within that package, possibly nested inside other objects.
Because the place where the package stops and the object hierarchy starts can’t be inferred by inspection,
repeated attempts to import must be done with this form.

In the second form, the caller makes the division point clear through the provision of a single colon: the dotted
name to the left of the colon is a package to be imported, and the dotted name to the right is the object hierarchy
within that package. Only one import is needed in this form. If it ends with the colon, then a module object is
returned.

The function will return an object (which might be a module), or raise one of the following exceptions:

ValueError – if name isn’t in a recognised format.

ImportError – if an import failed when it shouldn’t have.

AttributeError – If a failure occurred when traversing the object hierarchy within the imported package
to get to the desired object.

Added in version 3.9.

32.3 modulefinder— Find modules used by a script

Source code: Lib/modulefinder.py

This module provides a ModuleFinder class that can be used to determine the set of modules imported by a script.
modulefinder.py can also be run as a script, giving the filename of a Python script as its argument, after which a
report of the imported modules will be printed.

modulefinder.AddPackagePath(pkg_name, path)
Record that the package named pkg_name can be found in the specified path.

modulefinder.ReplacePackage(oldname, newname)
Allows specifying that the module named oldname is in fact the package named newname.

class modulefinder.ModuleFinder(path=None, debug=0, excludes=[], replace_paths=[])
This class provides run_script() and report() methods to determine the set of modules imported by a
script. path can be a list of directories to search for modules; if not specified, sys.path is used. debug sets
the debugging level; higher values make the class print debugging messages about what it’s doing. excludes is
a list of module names to exclude from the analysis. replace_paths is a list of (oldpath, newpath) tuples
that will be replaced in module paths.

report()

Print a report to standard output that lists the modules imported by the script and their paths, as well as
modules that are missing or seem to be missing.

run_script(pathname)

Analyze the contents of the pathname file, which must contain Python code.

modules

A dictionary mapping module names to modules. See Example usage of ModuleFinder.

32.3.1 Example usage of ModuleFinder

The script that is going to get analyzed later on (bacon.py):

import re, itertools

try:

import baconhameggs

(continues on next page)

2028 Chapter 32. Importing Modules

https://github.com/python/cpython/tree/3.13/Lib/modulefinder.py


The Python Library Reference, Release 3.13.1

(continued from previous page)

except ImportError:

pass

try:

import guido.python.ham

except ImportError:

pass

The script that will output the report of bacon.py:

from modulefinder import ModuleFinder

finder = ModuleFinder()

finder.run_script('bacon.py')

print('Loaded modules:')

for name, mod in finder.modules.items():

print('%s: ' % name, end='')

print(','.join(list(mod.globalnames.keys())[:3]))

print('-'*50)

print('Modules not imported:')

print('\n'.join(finder.badmodules.keys()))

Sample output (may vary depending on the architecture):

Loaded modules:

_types:

copyreg: _inverted_registry,_slotnames,__all__

re._compiler: isstring,_sre,_optimize_unicode

_sre:

re._constants: REPEAT_ONE,makedict,AT_END_LINE

sys:

re: __module__,finditer,_expand

itertools:

__main__: re,itertools,baconhameggs

re._parser: _PATTERNENDERS,SRE_FLAG_UNICODE

array:

types: __module__,IntType,TypeType

---------------------------------------------------

Modules not imported:

guido.python.ham

baconhameggs

32.4 runpy— Locating and executing Python modules

Source code: Lib/runpy.py

The runpy module is used to locate and run Python modules without importing them first. Its main use is to imple-
ment the -m command line switch that allows scripts to be located using the Python module namespace rather than
the filesystem.

Note that this is not a sandbox module - all code is executed in the current process, and any side effects (such as
cached imports of other modules) will remain in place after the functions have returned.

32.4. runpy— Locating and executing Python modules 2029

https://github.com/python/cpython/tree/3.13/Lib/runpy.py


The Python Library Reference, Release 3.13.1

Furthermore, any functions and classes defined by the executed code are not guaranteed to work correctly after a
runpy function has returned. If that limitation is not acceptable for a given use case, importlib is likely to be a
more suitable choice than this module.

The runpy module provides two functions:

runpy.run_module(mod_name, init_globals=None, run_name=None, alter_sys=False)
Execute the code of the specified module and return the resulting module’s globals dictionary. The module’s
code is first located using the standard import mechanism (refer to PEP 302 for details) and then executed in
a fresh module namespace.

The mod_name argument should be an absolute module name. If the module name refers to a package rather
than a normal module, then that package is imported and the __main__ submodule within that package is
then executed and the resulting module globals dictionary returned.

The optional dictionary argument init_globals may be used to pre-populate the module’s globals dictionary
before the code is executed. init_globals will not be modified. If any of the special global variables below are
defined in init_globals, those definitions are overridden by run_module().

The special global variables __name__, __spec__, __file__, __cached__, __loader__ and
__package__ are set in the globals dictionary before the module code is executed. (Note that this is a
minimal set of variables - other variables may be set implicitly as an interpreter implementation detail.)

__name__ is set to run_name if this optional argument is not None, to mod_name + '.__main__' if the
named module is a package and to the mod_name argument otherwise.

__spec__ will be set appropriately for the actually imported module (that is, __spec__.name will always
be mod_name or mod_name + '.__main__', never run_name).

__file__, __cached__, __loader__ and __package__ are set as normal based on the module spec.

If the argument alter_sys is supplied and evaluates to True, then sys.argv[0] is updated with the value of
__file__ and sys.modules[__name__] is updated with a temporary module object for the module being
executed. Both sys.argv[0] and sys.modules[__name__] are restored to their original values before
the function returns.

Note that this manipulation of sys is not thread-safe. Other threads may see the partially initialised module,
as well as the altered list of arguments. It is recommended that the sys module be left alone when invoking
this function from threaded code.

See also

The -m option offering equivalent functionality from the command line.

Changed in version 3.1: Added ability to execute packages by looking for a __main__ submodule.

Changed in version 3.2: Added __cached__ global variable (see PEP 3147).

Changed in version 3.4: Updated to take advantage of the module spec feature added by PEP 451. This allows
__cached__ to be set correctly for modules run this way, as well as ensuring the real module name is always
accessible as __spec__.name.

Changed in version 3.12: The setting of __cached__, __loader__, and __package__ are deprecated. See
ModuleSpec for alternatives.

runpy.run_path(path_name, init_globals=None, run_name=None)
Execute the code at the named filesystem location and return the resulting module’s globals dictionary. As with
a script name supplied to the CPython command line, file_path may refer to a Python source file, a compiled
bytecode file or a valid sys.path entry containing a __main__ module (e.g. a zipfile containing a top-level
__main__.py file).

For a simple script, the specified code is simply executed in a fresh module namespace. For a valid sys.path
entry (typically a zipfile or directory), the entry is first added to the beginning of sys.path. The function then
looks for and executes a __main__ module using the updated path. Note that there is no special protection

2030 Chapter 32. Importing Modules

https://peps.python.org/pep-0302/
https://peps.python.org/pep-3147/
https://peps.python.org/pep-0451/


The Python Library Reference, Release 3.13.1

against invoking an existing __main__ entry located elsewhere on sys.path if there is no such module at
the specified location.

The optional dictionary argument init_globals may be used to pre-populate the module’s globals dictionary
before the code is executed. init_globals will not be modified. If any of the special global variables below are
defined in init_globals, those definitions are overridden by run_path().

The special global variables __name__, __spec__, __file__, __cached__, __loader__ and
__package__ are set in the globals dictionary before the module code is executed. (Note that this is a
minimal set of variables - other variables may be set implicitly as an interpreter implementation detail.)

__name__ is set to run_name if this optional argument is not None and to '<run_path>' otherwise.

If file_path directly references a script file (whether as source or as precompiled byte code), then __file__
will be set to file_path, and __spec__, __cached__, __loader__ and __package__ will all be set to
None.

If file_path is a reference to a valid sys.path entry, then __spec__ will be set appropriately for the im-
ported __main__ module (that is, __spec__.name will always be __main__). __file__, __cached__,
__loader__ and __package__ will be set as normal based on the module spec.

A number of alterations are also made to the sys module. Firstly, sys.path may be altered as described
above. sys.argv[0] is updated with the value of file_path and sys.modules[__name__] is updated with
a temporary module object for the module being executed. All modifications to items in sys are reverted
before the function returns.

Note that, unlike run_module(), the alterations made to sys are not optional in this function as these ad-
justments are essential to allowing the execution of sys.path entries. As the thread-safety limitations still
apply, use of this function in threaded code should be either serialised with the import lock or delegated to a
separate process.

See also

using-on-interface-options for equivalent functionality on the command line (python path/to/

script).

Added in version 3.2.

Changed in version 3.4: Updated to take advantage of the module spec feature added by PEP 451. This allows
__cached__ to be set correctly in the case where __main__ is imported from a valid sys.path entry rather
than being executed directly.

Changed in version 3.12: The setting of __cached__, __loader__, and __package__ are deprecated.

See also

PEP 338 – Executing modules as scripts
PEP written and implemented by Nick Coghlan.

PEP 366 – Main module explicit relative imports
PEP written and implemented by Nick Coghlan.

PEP 451 – A ModuleSpec Type for the Import System
PEP written and implemented by Eric Snow

using-on-general - CPython command line details

The importlib.import_module() function

32.4. runpy— Locating and executing Python modules 2031

https://peps.python.org/pep-0451/
https://peps.python.org/pep-0338/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0451/


The Python Library Reference, Release 3.13.1

32.5 importlib— The implementation of import

Added in version 3.1.

Source code: Lib/importlib/__init__.py

32.5.1 Introduction

The purpose of the importlib package is three-fold.

One is to provide the implementation of the import statement (and thus, by extension, the __import__() function)
in Python source code. This provides an implementation of importwhich is portable to any Python interpreter. This
also provides an implementation which is easier to comprehend than one implemented in a programming language
other than Python.

Two, the components to implement import are exposed in this package, making it easier for users to create their
own custom objects (known generically as an importer) to participate in the import process.

Three, the package contains modules exposing additional functionality for managing aspects of Python packages:

• importlib.metadata presents access to metadata from third-party distributions.

• importlib.resources provides routines for accessing non-code “resources” from Python packages.

See also

import
The language reference for the import statement.

Packages specification
Original specification of packages. Some semantics have changed since the writing of this document (e.g.
redirecting based on None in sys.modules).

The __import__() function
The import statement is syntactic sugar for this function.

The initialization of the sys.path module search path
The initialization of sys.path.

PEP 235
Import on Case-Insensitive Platforms

PEP 263
Defining Python Source Code Encodings

PEP 302
New Import Hooks

PEP 328
Imports: Multi-Line and Absolute/Relative

PEP 366
Main module explicit relative imports

PEP 420
Implicit namespace packages

PEP 451
A ModuleSpec Type for the Import System

PEP 488
Elimination of PYO files

2032 Chapter 32. Importing Modules

https://github.com/python/cpython/tree/3.13/Lib/importlib/__init__.py
https://www.python.org/doc/essays/packages/
https://peps.python.org/pep-0235/
https://peps.python.org/pep-0263/
https://peps.python.org/pep-0302/
https://peps.python.org/pep-0328/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0488/


The Python Library Reference, Release 3.13.1

PEP 489
Multi-phase extension module initialization

PEP 552
Deterministic pycs

PEP 3120
Using UTF-8 as the Default Source Encoding

PEP 3147
PYC Repository Directories

32.5.2 Functions

importlib.__import__(name, globals=None, locals=None, fromlist=(), level=0)
An implementation of the built-in __import__() function.

Note

Programmatic importing of modules should use import_module() instead of this function.

importlib.import_module(name, package=None)
Import a module. The name argument specifies what module to import in absolute or relative terms (e.g. either
pkg.mod or ..mod). If the name is specified in relative terms, then the package argument must be set to the
name of the package which is to act as the anchor for resolving the package name (e.g. import_module('.
.mod', 'pkg.subpkg') will import pkg.mod).

The import_module() function acts as a simplifying wrapper around importlib.__import__(). This
means all semantics of the function are derived from importlib.__import__(). The most important
difference between these two functions is that import_module() returns the specified package or module
(e.g. pkg.mod), while __import__() returns the top-level package or module (e.g. pkg).

If you are dynamically importing a module that was created since the interpreter began execution (e.g., created
a Python source file), you may need to call invalidate_caches() in order for the newmodule to be noticed
by the import system.

Changed in version 3.3: Parent packages are automatically imported.

importlib.invalidate_caches()

Invalidate the internal caches of finders stored at sys.meta_path. If a finder implements
invalidate_caches() then it will be called to perform the invalidation. This function should be called
if any modules are created/installed while your program is running to guarantee all finders will notice the new
module’s existence.

Added in version 3.3.

Changed in version 3.10: Namespace packages created/installed in a different sys.path location after the
same namespace was already imported are noticed.

importlib.reload(module)

Reload a previously importedmodule. The argument must be amodule object, so it must have been successfully
imported before. This is useful if you have edited the module source file using an external editor and want to
try out the new version without leaving the Python interpreter. The return value is the module object (which
can be different if re-importing causes a different object to be placed in sys.modules).

When reload() is executed:

• Python module’s code is recompiled and the module-level code re-executed, defining a new set of objects
which are bound to names in the module’s dictionary by reusing the loader which originally loaded the
module. The init function of extension modules is not called a second time.

32.5. importlib— The implementation of import 2033

https://peps.python.org/pep-0489/
https://peps.python.org/pep-0552/
https://peps.python.org/pep-3120/
https://peps.python.org/pep-3147/


The Python Library Reference, Release 3.13.1

• As with all other objects in Python the old objects are only reclaimed after their reference counts drop
to zero.

• The names in the module namespace are updated to point to any new or changed objects.

• Other references to the old objects (such as names external to the module) are not rebound to refer to the
new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — with a try statement it can test
for the table’s presence and skip its initialization if desired:

try:

cache

except NameError:

cache = {}

It is generally not very useful to reload built-in or dynamically loaded modules. Reloading sys, __main__,
builtins and other key modules is not recommended. In many cases extension modules are not designed to
be initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from… import…, calling reload() for the other
module does not redefine the objects imported from it — one way around this is to re-execute the from
statement, another is to use import and qualified names (module.name) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for
derived classes.

Added in version 3.4.

Changed in version 3.7: ModuleNotFoundError is raised when the module being reloaded lacks a
ModuleSpec.

32.5.3 importlib.abc – Abstract base classes related to import

Source code: Lib/importlib/abc.py

The importlib.abcmodule contains all of the core abstract base classes used by import. Some subclasses of the
core abstract base classes are also provided to help in implementing the core ABCs.

ABC hierarchy:

object

+-- MetaPathFinder

+-- PathEntryFinder

+-- Loader

+-- ResourceLoader --------+

+-- InspectLoader |

+-- ExecutionLoader --+

+-- FileLoader

+-- SourceLoader

class importlib.abc.MetaPathFinder

An abstract base class representing a meta path finder.

Added in version 3.3.

Changed in version 3.10: No longer a subclass of Finder.

2034 Chapter 32. Importing Modules

https://github.com/python/cpython/tree/3.13/Lib/importlib/abc.py


The Python Library Reference, Release 3.13.1

find_spec(fullname, path, target=None)
An abstract method for finding a spec for the specified module. If this is a top-level import, path will be
None. Otherwise, this is a search for a subpackage or module and path will be the value of __path__
from the parent package. If a spec cannot be found, None is returned. When passed in, target is a mod-
ule object that the finder may use to make amore educated guess about what spec to return. importlib.
util.spec_from_loader() may be useful for implementing concrete MetaPathFinders.

Added in version 3.4.

invalidate_caches()

An optional method which, when called, should invalidate any internal cache used by the finder. Used by
importlib.invalidate_caches()when invalidating the caches of all finders on sys.meta_path.

Changed in version 3.4: Returns None when called instead of NotImplemented.

class importlib.abc.PathEntryFinder

An abstract base class representing a path entry finder. Though it bears some similarities to MetaPathFinder,
PathEntryFinder is meant for use only within the path-based import subsystem provided by importlib.
machinery.PathFinder.

Added in version 3.3.

Changed in version 3.10: No longer a subclass of Finder.

find_spec(fullname, target=None)
An abstract method for finding a spec for the specified module. The finder will search for the module
only within the path entry to which it is assigned. If a spec cannot be found, None is returned. When
passed in, target is a module object that the finder may use to make a more educated guess about what
spec to return. importlib.util.spec_from_loader() may be useful for implementing concrete
PathEntryFinders.

Added in version 3.4.

invalidate_caches()

An optional method which, when called, should invalidate any internal cache used by the finder. Used
by importlib.machinery.PathFinder.invalidate_caches() when invalidating the caches of
all cached finders.

class importlib.abc.Loader

An abstract base class for a loader. See PEP 302 for the exact definition for a loader.

Loaders that wish to support resource reading should implement a get_resource_reader() method as
specified by importlib.resources.abc.ResourceReader.

Changed in version 3.7: Introduced the optional get_resource_reader() method.

create_module(spec)
Amethod that returns the module object to use when importing a module. This methodmay return None,
indicating that default module creation semantics should take place.

Added in version 3.4.

Changed in version 3.6: This method is no longer optional when exec_module() is defined.

exec_module(module)
An abstract method that executes the module in its own namespace when a module is imported or
reloaded. The module should already be initialized when exec_module() is called. When this method
exists, create_module() must be defined.

Added in version 3.4.

Changed in version 3.6: create_module() must also be defined.

32.5. importlib— The implementation of import 2035

https://peps.python.org/pep-0302/


The Python Library Reference, Release 3.13.1

load_module(fullname)
A legacy method for loading a module. If the module cannot be loaded, ImportError is raised, other-
wise the loaded module is returned.

If the requested module already exists in sys.modules, that module should be used and reloaded.
Otherwise the loader should create a new module and insert it into sys.modules before any loading
begins, to prevent recursion from the import. If the loader inserted a module and the load fails, it must be
removed by the loader from sys.modules; modules already in sys.modules before the loader began
execution should be left alone.

The loader should set several attributes on the module (note that some of these attributes can change
when a module is reloaded):

• module.__name__

• module.__file__

• module.__cached__ (deprecated)

• module.__path__

• module.__package__ (deprecated)

• module.__loader__ (deprecated)

When exec_module() is available then backwards-compatible functionality is provided.

Changed in version 3.4: Raise ImportError when called instead of NotImplementedError. Func-
tionality provided when exec_module() is available.

Deprecated since version 3.4: The recommended API for loading a module is exec_module() (and
create_module()). Loaders should implement it instead of load_module(). The import machinery
takes care of all the other responsibilities of load_module() when exec_module() is implemented.

class importlib.abc.ResourceLoader

An abstract base class for a loader which implements the optional PEP 302 protocol for loading arbitrary
resources from the storage back-end.

Deprecated since version 3.7: This ABC is deprecated in favour of supporting resource loading through
importlib.resources.abc.ResourceReader.

abstractmethod get_data(path)
An abstract method to return the bytes for the data located at path. Loaders that have a file-like storage
back-end that allows storing arbitrary data can implement this abstract method to give direct access to the
data stored. OSError is to be raised if the path cannot be found. The path is expected to be constructed
using a module’s __file__ attribute or an item from a package’s __path__.

Changed in version 3.4: Raises OSError instead of NotImplementedError.

class importlib.abc.InspectLoader

An abstract base class for a loader which implements the optional PEP 302 protocol for loaders that inspect
modules.

get_code(fullname)

Return the code object for a module, or None if the module does not have a code object (as would be
the case, for example, for a built-in module). Raise an ImportError if loader cannot find the requested
module.

Note

While the method has a default implementation, it is suggested that it be overridden if possible for
performance.

Changed in version 3.4: No longer abstract and a concrete implementation is provided.

2036 Chapter 32. Importing Modules

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0302/


The Python Library Reference, Release 3.13.1

abstractmethod get_source(fullname)
An abstract method to return the source of amodule. It is returned as a text string using universal newlines,
translating all recognized line separators into '\n' characters. Returns None if no source is available
(e.g. a built-in module). Raises ImportError if the loader cannot find the module specified.

Changed in version 3.4: Raises ImportError instead of NotImplementedError.

is_package(fullname)
An optional method to return a true value if the module is a package, a false value otherwise.
ImportError is raised if the loader cannot find the module.

Changed in version 3.4: Raises ImportError instead of NotImplementedError.

static source_to_code(data, path=’<string>’)
Create a code object from Python source.

The data argument can be whatever the compile() function supports (i.e. string or bytes). The path
argument should be the “path” to where the source code originated from, which can be an abstract concept
(e.g. location in a zip file).

With the subsequent code object one can execute it in a module by running exec(code, module.

__dict__).

Added in version 3.4.

Changed in version 3.5: Made the method static.

exec_module(module)
Implementation of Loader.exec_module().

Added in version 3.4.

load_module(fullname)
Implementation of Loader.load_module().

Deprecated since version 3.4: use exec_module() instead.

class importlib.abc.ExecutionLoader

An abstract base class which inherits from InspectLoader that, when implemented, helps a module to be
executed as a script. The ABC represents an optional PEP 302 protocol.

abstractmethod get_filename(fullname)
An abstract method that is to return the value of __file__ for the specified module. If no path is
available, ImportError is raised.

If source code is available, then the method should return the path to the source file, regardless of whether
a bytecode was used to load the module.

Changed in version 3.4: Raises ImportError instead of NotImplementedError.

class importlib.abc.FileLoader(fullname, path)
An abstract base class which inherits from ResourceLoader and ExecutionLoader, providing concrete
implementations of ResourceLoader.get_data() and ExecutionLoader.get_filename().

The fullname argument is a fully resolved name of the module the loader is to handle. The path argument is
the path to the file for the module.

Added in version 3.3.

name

The name of the module the loader can handle.

path

Path to the file of the module.

32.5. importlib— The implementation of import 2037

https://peps.python.org/pep-0302/


The Python Library Reference, Release 3.13.1

load_module(fullname)
Calls super’s load_module().

Deprecated since version 3.4: Use Loader.exec_module() instead.

abstractmethod get_filename(fullname)
Returns path.

abstractmethod get_data(path)
Reads path as a binary file and returns the bytes from it.

class importlib.abc.SourceLoader

An abstract base class for implementing source (and optionally bytecode) file loading. The class inherits from
both ResourceLoader and ExecutionLoader, requiring the implementation of:

• ResourceLoader.get_data()

• ExecutionLoader.get_filename()

Should only return the path to the source file; sourceless loading is not supported.

The abstract methods defined by this class are to add optional bytecode file support. Not implementing these
optional methods (or causing them to raise NotImplementedError) causes the loader to only work with
source code. Implementing the methods allows the loader to work with source and bytecode files; it does not
allow for sourceless loading where only bytecode is provided. Bytecode files are an optimization to speed up
loading by removing the parsing step of Python’s compiler, and so no bytecode-specific API is exposed.

path_stats(path)
Optional abstract method which returns a dict containing metadata about the specified path. Supported
dictionary keys are:

• 'mtime' (mandatory): an integer or floating-point number representing the modification time of
the source code;

• 'size' (optional): the size in bytes of the source code.

Any other keys in the dictionary are ignored, to allow for future extensions. If the path cannot be handled,
OSError is raised.

Added in version 3.3.

Changed in version 3.4: Raise OSError instead of NotImplementedError.

path_mtime(path)
Optional abstract method which returns the modification time for the specified path.

Deprecated since version 3.3: This method is deprecated in favour of path_stats(). You don’t have
to implement it, but it is still available for compatibility purposes. Raise OSError if the path cannot be
handled.

Changed in version 3.4: Raise OSError instead of NotImplementedError.

set_data(path, data)
Optional abstract method which writes the specified bytes to a file path. Any intermediate directories
which do not exist are to be created automatically.

When writing to the path fails because the path is read-only (errno.EACCES/PermissionError), do
not propagate the exception.

Changed in version 3.4: No longer raises NotImplementedError when called.

get_code(fullname)
Concrete implementation of InspectLoader.get_code().

exec_module(module)
Concrete implementation of Loader.exec_module().

Added in version 3.4.

2038 Chapter 32. Importing Modules



The Python Library Reference, Release 3.13.1

load_module(fullname)
Concrete implementation of Loader.load_module().

Deprecated since version 3.4: Use exec_module() instead.

get_source(fullname)

Concrete implementation of InspectLoader.get_source().

is_package(fullname)

Concrete implementation of InspectLoader.is_package(). A module is determined to be a pack-
age if its file path (as provided by ExecutionLoader.get_filename()) is a file named __init__
when the file extension is removed and the module name itself does not end in __init__.

class importlib.abc.ResourceReader

Superseded by TraversableResources

An abstract base class to provide the ability to read resources.

From the perspective of this ABC, a resource is a binary artifact that is shipped within a package. Typically
this is something like a data file that lives next to the __init__.py file of the package. The purpose of this
class is to help abstract out the accessing of such data files so that it does not matter if the package and its data
file(s) are stored e.g. in a zip file versus on the file system.

For any of methods of this class, a resource argument is expected to be a path-like object which represents con-
ceptually just a file name. This means that no subdirectory paths should be included in the resource argument.
This is because the location of the package the reader is for, acts as the “directory”. Hence the metaphor for
directories and file names is packages and resources, respectively. This is also why instances of this class are
expected to directly correlate to a specific package (instead of potentially representing multiple packages or a
module).

Loaders that wish to support resource reading are expected to provide a method called
get_resource_reader(fullname) which returns an object implementing this ABC’s interface. If
the module specified by fullname is not a package, this method should return None. An object compatible
with this ABC should only be returned when the specified module is a package.

Added in version 3.7.

Deprecated since version 3.12, will be removed in version 3.14: Use importlib.resources.abc.

TraversableResources instead.

abstractmethod open_resource(resource)
Returns an opened, file-like object for binary reading of the resource.

If the resource cannot be found, FileNotFoundError is raised.

abstractmethod resource_path(resource)
Returns the file system path to the resource.

If the resource does not concretely exist on the file system, raise FileNotFoundError.

abstractmethod is_resource(name)

Returns True if the named name is considered a resource. FileNotFoundError is raised if name does
not exist.

abstractmethod contents()

Returns an iterable of strings over the contents of the package. Do note that it is not required that
all names returned by the iterator be actual resources, e.g. it is acceptable to return names for which
is_resource() would be false.

Allowing non-resource names to be returned is to allow for situations where how a package and its re-
sources are stored are known a priori and the non-resource names would be useful. For instance, returning
subdirectory names is allowed so that when it is known that the package and resources are stored on the
file system then those subdirectory names can be used directly.

The abstract method returns an iterable of no items.

32.5. importlib— The implementation of import 2039



The Python Library Reference, Release 3.13.1

class importlib.abc.Traversable

An object with a subset of pathlib.Path methods suitable for traversing directories and opening files.

For a representation of the object on the file-system, use importlib.resources.as_file().

Added in version 3.9.

Deprecated since version 3.12, will be removed in version 3.14: Use importlib.resources.abc.

Traversable instead.

name

Abstract. The base name of this object without any parent references.

abstractmethod iterdir()

Yield Traversable objects in self.

abstractmethod is_dir()

Return True if self is a directory.

abstractmethod is_file()

Return True if self is a file.

abstractmethod joinpath(child)

Return Traversable child in self.

abstractmethod __truediv__(child)
Return Traversable child in self.

abstractmethod open(mode=’r’, *args, **kwargs)
modemay be ‘r’ or ‘rb’ to open as text or binary. Return a handle suitable for reading (same as pathlib.
Path.open).

When opening as text, accepts encoding parameters such as those accepted by io.TextIOWrapper.

read_bytes()

Read contents of self as bytes.

read_text(encoding=None)
Read contents of self as text.

class importlib.abc.TraversableResources

An abstract base class for resource readers capable of serving the importlib.resources.files() inter-
face. Subclasses importlib.resources.abc.ResourceReader and provides concrete implementations
of the importlib.resources.abc.ResourceReader’s abstract methods. Therefore, any loader supply-
ing importlib.abc.TraversableResources also supplies ResourceReader.

Loaders that wish to support resource reading are expected to implement this interface.

Added in version 3.9.

Deprecated since version 3.12, will be removed in version 3.14: Use importlib.resources.abc.

TraversableResources instead.

abstractmethod files()

Returns a importlib.resources.abc.Traversable object for the loaded package.

32.5.4 importlib.machinery – Importers and path hooks

Source code: Lib/importlib/machinery.py

This module contains the various objects that help import find and load modules.

2040 Chapter 32. Importing Modules

https://github.com/python/cpython/tree/3.13/Lib/importlib/machinery.py


The Python Library Reference, Release 3.13.1

importlib.machinery.SOURCE_SUFFIXES

A list of strings representing the recognized file suffixes for source modules.

Added in version 3.3.

importlib.machinery.DEBUG_BYTECODE_SUFFIXES

A list of strings representing the file suffixes for non-optimized bytecode modules.

Added in version 3.3.

Deprecated since version 3.5: Use BYTECODE_SUFFIXES instead.

importlib.machinery.OPTIMIZED_BYTECODE_SUFFIXES

A list of strings representing the file suffixes for optimized bytecode modules.

Added in version 3.3.

Deprecated since version 3.5: Use BYTECODE_SUFFIXES instead.

importlib.machinery.BYTECODE_SUFFIXES

A list of strings representing the recognized file suffixes for bytecode modules (including the leading dot).

Added in version 3.3.

Changed in version 3.5: The value is no longer dependent on __debug__.

importlib.machinery.EXTENSION_SUFFIXES

A list of strings representing the recognized file suffixes for extension modules.

Added in version 3.3.

importlib.machinery.all_suffixes()

Returns a combined list of strings representing all file suffixes for modules recognized by the standard import
machinery. This is a helper for code which simply needs to know if a filesystem path potentially refers to a
module without needing any details on the kind of module (for example, inspect.getmodulename()).

Added in version 3.3.

class importlib.machinery.BuiltinImporter

An importer for built-in modules. All known built-in modules are listed in sys.builtin_module_names.
This class implements the importlib.abc.MetaPathFinder and importlib.abc.InspectLoader

ABCs.

Only class methods are defined by this class to alleviate the need for instantiation.

Changed in version 3.5: As part of PEP 489, the builtin importer now implements Loader.

create_module() and Loader.exec_module()

class importlib.machinery.FrozenImporter

An importer for frozen modules. This class implements the importlib.abc.MetaPathFinder and
importlib.abc.InspectLoader ABCs.

Only class methods are defined by this class to alleviate the need for instantiation.

Changed in version 3.4: Gained create_module() and exec_module() methods.

class importlib.machinery.WindowsRegistryFinder

Finder for modules declared in the Windows registry. This class implements the importlib.abc.

MetaPathFinder ABC.

Only class methods are defined by this class to alleviate the need for instantiation.

Added in version 3.3.

Deprecated since version 3.6: Use site configuration instead. Future versions of Python may not enable this
finder by default.

32.5. importlib— The implementation of import 2041

https://peps.python.org/pep-0489/


The Python Library Reference, Release 3.13.1

class importlib.machinery.PathFinder

A Finder for sys.path and package __path__ attributes. This class implements the importlib.abc.
MetaPathFinder ABC.

Only class methods are defined by this class to alleviate the need for instantiation.

classmethod find_spec(fullname, path=None, target=None)
Class method that attempts to find a spec for the module specified by fullname on sys.path or, if
defined, on path. For each path entry that is searched, sys.path_importer_cache is checked. If a
non-false object is found then it is used as the path entry finder to look for the module being searched for.
If no entry is found in sys.path_importer_cache, then sys.path_hooks is searched for a finder
for the path entry and, if found, is stored in sys.path_importer_cache along with being queried
about the module. If no finder is ever found then None is both stored in the cache and returned.

Added in version 3.4.

Changed in version 3.5: If the current working directory – represented by an empty string – is no longer
valid then None is returned but no value is cached in sys.path_importer_cache.

classmethod invalidate_caches()

Calls importlib.abc.PathEntryFinder.invalidate_caches() on all finders stored in sys.
path_importer_cache that define the method. Otherwise entries in sys.path_importer_cache
set to None are deleted.

Changed in version 3.7: Entries of None in sys.path_importer_cache are deleted.

Changed in version 3.4: Calls objects in sys.path_hooks with the current working directory for '' (i.e. the
empty string).

class importlib.machinery.FileFinder(path, *loader_details)
A concrete implementation of importlib.abc.PathEntryFinder which caches results from the file sys-
tem.

The path argument is the directory for which the finder is in charge of searching.

The loader_details argument is a variable number of 2-item tuples each containing a loader and a sequence of
file suffixes the loader recognizes. The loaders are expected to be callables which accept two arguments of the
module’s name and the path to the file found.

The finder will cache the directory contents as necessary, making stat calls for each module search to verify
the cache is not outdated. Because cache staleness relies upon the granularity of the operating system’s state
information of the file system, there is a potential race condition of searching for a module, creating a new file,
and then searching for the module the new file represents. If the operations happen fast enough to fit within
the granularity of stat calls, then the module search will fail. To prevent this from happening, when you create
a module dynamically, make sure to call importlib.invalidate_caches().

Added in version 3.3.

path

The path the finder will search in.

find_spec(fullname, target=None)
Attempt to find the spec to handle fullname within path.

Added in version 3.4.

invalidate_caches()

Clear out the internal cache.

classmethod path_hook(*loader_details)

A class method which returns a closure for use on sys.path_hooks. An instance of FileFinder is
returned by the closure using the path argument given to the closure directly and loader_details indirectly.

If the argument to the closure is not an existing directory, ImportError is raised.

2042 Chapter 32. Importing Modules



The Python Library Reference, Release 3.13.1

class importlib.machinery.SourceFileLoader(fullname, path)
A concrete implementation of importlib.abc.SourceLoader by subclassing importlib.abc.

FileLoader and providing some concrete implementations of other methods.

Added in version 3.3.

name

The name of the module that this loader will handle.

path

The path to the source file.

is_package(fullname)
Return True if path appears to be for a package.

path_stats(path)
Concrete implementation of importlib.abc.SourceLoader.path_stats().

set_data(path, data)
Concrete implementation of importlib.abc.SourceLoader.set_data().

load_module(name=None)
Concrete implementation of importlib.abc.Loader.load_module() where specifying the name
of the module to load is optional.

Deprecated since version 3.6: Use importlib.abc.Loader.exec_module() instead.

class importlib.machinery.SourcelessFileLoader(fullname, path)
Aconcrete implementation of importlib.abc.FileLoaderwhich can import bytecode files (i.e. no source
code files exist).

Please note that direct use of bytecode files (and thus not source code files) inhibits your modules from being
usable by all Python implementations or new versions of Python which change the bytecode format.

Added in version 3.3.

name

The name of the module the loader will handle.

path

The path to the bytecode file.

is_package(fullname)
Determines if the module is a package based on path.

get_code(fullname)
Returns the code object for name created from path.

get_source(fullname)
Returns None as bytecode files have no source when this loader is used.

load_module(name=None)

Concrete implementation of importlib.abc.Loader.load_module() where specifying the name of the
module to load is optional.

Deprecated since version 3.6: Use importlib.abc.Loader.exec_module() instead.

class importlib.machinery.ExtensionFileLoader(fullname, path)
A concrete implementation of importlib.abc.ExecutionLoader for extension modules.

The fullname argument specifies the name of the module the loader is to support. The path argument is the
path to the extension module’s file.

Note that, by default, importing an extension module will fail in subinterpreters if it doesn’t implement multi-
phase init (see PEP 489), even if it would otherwise import successfully.

32.5. importlib— The implementation of import 2043

https://peps.python.org/pep-0489/


The Python Library Reference, Release 3.13.1

Added in version 3.3.

Changed in version 3.12: Multi-phase init is now required for use in subinterpreters.

name

Name of the module the loader supports.

path

Path to the extension module.

create_module(spec)
Creates the module object from the given specification in accordance with PEP 489.

Added in version 3.5.

exec_module(module)

Initializes the given module object in accordance with PEP 489.

Added in version 3.5.

is_package(fullname)
Returns True if the file path points to a package’s __init__module based on EXTENSION_SUFFIXES.

get_code(fullname)
Returns None as extension modules lack a code object.

get_source(fullname)
Returns None as extension modules do not have source code.

get_filename(fullname)
Returns path.

Added in version 3.4.

class importlib.machinery.NamespaceLoader(name, path, path_finder)
A concrete implementation of importlib.abc.InspectLoader for namespace packages. This is an alias
for a private class and is only made public for introspecting the __loader__ attribute on namespace packages:

>>> from importlib.machinery import NamespaceLoader

>>> import my_namespace

>>> isinstance(my_namespace.__loader__, NamespaceLoader)

True

>>> import importlib.abc

>>> isinstance(my_namespace.__loader__, importlib.abc.Loader)

True

Added in version 3.11.

class importlib.machinery.ModuleSpec(name, loader, *, origin=None, loader_state=None,
is_package=None)

A specification for a module’s import-system-related state. This is typically exposed as the module’s __spec__
attribute. Many of these attributes are also available directly on a module: for example, module.__spec__.
origin == module.__file__. Note, however, that while the values are usually equivalent, they can differ
since there is no synchronization between the two objects. For example, it is possible to update the module’s
__file__ at runtime and this will not be automatically reflected in the module’s __spec__.origin, and
vice versa.

Added in version 3.4.

name

The module’s fully qualified name (see module.__name__). The finder should always set this attribute
to a non-empty string.

2044 Chapter 32. Importing Modules

https://peps.python.org/pep-0489/
https://peps.python.org/pep-0489/


The Python Library Reference, Release 3.13.1

loader

The loader used to load the module (see module.__loader__). The finder should always set this
attribute.

origin

The location the loader should use to load the module (see module.__file__). For example, for
modules loaded from a .py file this is the filename. The finder should always set this attribute to a
meaningful value for the loader to use. In the uncommon case that there is not one (like for namespace
packages), it should be set to None.

submodule_search_locations

A (possibly empty) sequence of strings enumerating the locations in which a package’s submodules will
be found (see module.__path__). Most of the time there will only be a single directory in this list.

The finder should set this attribute to a sequence, even an empty one, to indicate to the import system
that the module is a package. It should be set to None for non-package modules. It is set automatically
later to a special object for namespace packages.

loader_state

The finder may set this attribute to an object containing additional, module-specific data to use when
loading the module. Otherwise it should be set to None.

cached

The filename of a compiled version of the module’s code (see module.__cached__). The finder should
always set this attribute but it may be None for modules that do not need compiled code stored.

parent

(Read-only) The fully qualified name of the package the module is in (or the empty string for a top-level
module). See module.__package__. If the module is a package then this is the same as name.

has_location

True if the spec’s origin refers to a loadable location, False otherwise. This value impacts how
origin is interpreted and how the module’s __file__ is populated.

class importlib.machinery.AppleFrameworkLoader(name, path)
A specialization of importlib.machinery.ExtensionFileLoader that is able to load extensionmodules
in Framework format.

For compatibility with the iOS App Store, all binary modules in an iOS app must be dynamic libraries, con-
tained in a framework with appropriate metadata, stored in the Frameworks folder of the packaged app.
There can be only a single binary per framework, and there can be no executable binary material outside the
Frameworks folder.

To accommodate this requirement, when running on iOS, extension module binaries are not packaged as .so
files on sys.path, but as individual standalone frameworks. To discover those frameworks, this loader is be
registered against the .fwork file extension, with a .fwork file acting as a placeholder in the original location
of the binary on sys.path. The .fwork file contains the path of the actual binary in the Frameworks folder,
relative to the app bundle. To allow for resolving a framework-packaged binary back to the original location,
the framework is expected to contain a .origin file that contains the location of the .fwork file, relative to
the app bundle.

For example, consider the case of an import from foo.bar import _whiz, where _whiz is implemented
with the binary module sources/foo/bar/_whiz.abi3.so, with sources being the location registered
on sys.path, relative to the application bundle. This modulemust be distributed as Frameworks/foo.bar.
_whiz.framework/foo.bar._whiz (creating the framework name from the full import path of the mod-
ule), with an Info.plist file in the .framework directory identifying the binary as a framework. The foo.
bar._whizmodule would be represented in the original location with a sources/foo/bar/_whiz.abi3.
fwork marker file, containing the path Frameworks/foo.bar._whiz/foo.bar._whiz. The frame-
work would also contain Frameworks/foo.bar._whiz.framework/foo.bar._whiz.origin, con-
taining the path to the .fwork file.

32.5. importlib— The implementation of import 2045



The Python Library Reference, Release 3.13.1

When a module is loaded with this loader, the __file__ for the module will report as the location of the .
fwork file. This allows code to use the __file__ of a module as an anchor for file system traveral. However,
the spec origin will reference the location of the actual binary in the .framework folder.

The Xcode project building the app is responsible for converting any .so files from wherever they exist in
the PYTHONPATH into frameworks in the Frameworks folder (including stripping extensions from the module
file, the addition of framework metadata, and signing the resulting framework), and creating the .fwork and
.origin files. This will usually be done with a build step in the Xcode project; see the iOS documentation
for details on how to construct this build step.

Added in version 3.13.

Availability: iOS.

name

Name of the module the loader supports.

path

Path to the .fwork file for the extension module.

32.5.5 importlib.util – Utility code for importers

Source code: Lib/importlib/util.py

This module contains the various objects that help in the construction of an importer.

importlib.util.MAGIC_NUMBER

The bytes which represent the bytecode version number. If you need help with loading/writing bytecode then
consider importlib.abc.SourceLoader.

Added in version 3.4.

importlib.util.cache_from_source(path, debug_override=None, *, optimization=None)
Return the PEP 3147/PEP 488 path to the byte-compiled file associated with the source path. For example,
if path is /foo/bar/baz.py the return value would be /foo/bar/__pycache__/baz.cpython-32.
pyc for Python 3.2. The cpython-32 string comes from the current magic tag (see get_tag(); if sys.
implementation.cache_tag is not defined then NotImplementedError will be raised).

The optimization parameter is used to specify the optimization level of the bytecode file. An empty string
represents no optimization, so /foo/bar/baz.py with an optimization of '' will result in a bytecode path
of /foo/bar/__pycache__/baz.cpython-32.pyc. None causes the interpreter’s optimization level to
be used. Any other value’s string representation is used, so /foo/bar/baz.py with an optimization of 2
will lead to the bytecode path of /foo/bar/__pycache__/baz.cpython-32.opt-2.pyc. The string
representation of optimization can only be alphanumeric, else ValueError is raised.

The debug_override parameter is deprecated and can be used to override the system’s value for __debug__. A
True value is the equivalent of setting optimization to the empty string. A False value is the same as setting
optimization to 1. If both debug_override an optimization are not None then TypeError is raised.

Added in version 3.4.

Changed in version 3.5: The optimization parameter was added and the debug_override parameter was depre-
cated.

Changed in version 3.6: Accepts a path-like object.

importlib.util.source_from_cache(path)

Given the path to a PEP 3147 file name, return the associated source code file path. For example, if path is
/foo/bar/__pycache__/baz.cpython-32.pyc the returned path would be /foo/bar/baz.py. path
need not exist, however if it does not conform to PEP 3147 or PEP 488 format, a ValueError is raised. If
sys.implementation.cache_tag is not defined, NotImplementedError is raised.

Added in version 3.4.

2046 Chapter 32. Importing Modules

https://github.com/python/cpython/tree/3.13/Lib/importlib/util.py
https://peps.python.org/pep-3147/
https://peps.python.org/pep-0488/
https://peps.python.org/pep-3147/
https://peps.python.org/pep-3147/
https://peps.python.org/pep-0488/


The Python Library Reference, Release 3.13.1

Changed in version 3.6: Accepts a path-like object.

importlib.util.decode_source(source_bytes)
Decode the given bytes representing source code and return it as a string with universal newlines (as required
by importlib.abc.InspectLoader.get_source()).

Added in version 3.4.

importlib.util.resolve_name(name, package)
Resolve a relative module name to an absolute one.

If name has no leading dots, then name is simply returned. This allows for usage such as importlib.util.
resolve_name('sys', __spec__.parent) without doing a check to see if the package argument is
needed.

ImportError is raised if name is a relative module name but package is a false value (e.g. None or the empty
string). ImportError is also raised if a relative name would escape its containing package (e.g. requesting
..bacon from within the spam package).

Added in version 3.3.

Changed in version 3.9: To improve consistency with import statements, raise ImportError instead of
ValueError for invalid relative import attempts.

importlib.util.find_spec(name, package=None)
Find the spec for a module, optionally relative to the specified package name. If the module is in sys.

modules, then sys.modules[name].__spec__ is returned (unless the spec would be None or is not set,
in which case ValueError is raised). Otherwise a search using sys.meta_path is done. None is returned
if no spec is found.

If name is for a submodule (contains a dot), the parent module is automatically imported.

name and package work the same as for import_module().

Added in version 3.4.

Changed in version 3.7: Raises ModuleNotFoundError instead of AttributeError if package is in fact
not a package (i.e. lacks a __path__ attribute).

importlib.util.module_from_spec(spec)
Create a new module based on spec and spec.loader.create_module.

If spec.loader.create_module does not return None, then any pre-existing attributes will not be reset.
Also, no AttributeError will be raised if triggered while accessing spec or setting an attribute on the
module.

This function is preferred over using types.ModuleType to create a new module as spec is used to set as
many import-controlled attributes on the module as possible.

Added in version 3.5.

importlib.util.spec_from_loader(name, loader, *, origin=None, is_package=None)
A factory function for creating a ModuleSpec instance based on a loader. The parameters have the same
meaning as they do for ModuleSpec. The function uses available loader APIs, such as InspectLoader.
is_package(), to fill in any missing information on the spec.

Added in version 3.4.

importlib.util.spec_from_file_location(name, location, *, loader=None,
submodule_search_locations=None)

A factory function for creating a ModuleSpec instance based on the path to a file. Missing information will
be filled in on the spec by making use of loader APIs and by the implication that the module will be file-based.

Added in version 3.4.

Changed in version 3.6: Accepts a path-like object.

32.5. importlib— The implementation of import 2047



The Python Library Reference, Release 3.13.1

importlib.util.source_hash(source_bytes)
Return the hash of source_bytes as bytes. A hash-based .pyc file embeds the source_hash() of the corre-
sponding source file’s contents in its header.

Added in version 3.7.

importlib.util._incompatible_extension_module_restrictions(*, disable_check)
A context manager that can temporarily skip the compatibility check for extension modules. By default the
check is enabled and will fail when a single-phase init module is imported in a subinterpreter. It will also
fail for a multi-phase init module that doesn’t explicitly support a per-interpreter GIL, when imported in an
interpreter with its own GIL.

Note that this function is meant to accommodate an unusual case; one which is likely to eventually go away.
There’s is a pretty good chance this is not what you were looking for.

You can get the same effect as this function by implementing the basic interface of multi-phase init (PEP 489)
and lying about support for multiple interpreters (or per-interpreter GIL).

Warning

Using this function to disable the check can lead to unexpected behavior and even crashes. It should only
be used during extension module development.

Added in version 3.12.

class importlib.util.LazyLoader(loader)
A class which postpones the execution of the loader of a module until the module has an attribute accessed.

This class only works with loaders that define exec_module() as control over what module type is used for
the module is required. For those same reasons, the loader’s create_module() method must return None
or a type for which its __class__ attribute can be mutated along with not using slots. Finally, modules which
substitute the object placed into sys.moduleswill not work as there is no way to properly replace the module
references throughout the interpreter safely; ValueError is raised if such a substitution is detected.

Note

For projects where startup time is critical, this class allows for potentially minimizing the cost of loading
a module if it is never used. For projects where startup time is not essential then use of this class is
heavily discouraged due to error messages created during loading being postponed and thus occurring out
of context.

Added in version 3.5.

Changed in version 3.6: Began calling create_module(), removing the compatibility warning for
importlib.machinery.BuiltinImporter and importlib.machinery.ExtensionFileLoader.

classmethod factory(loader)

A class method which returns a callable that creates a lazy loader. This is meant to be used in situations
where the loader is passed by class instead of by instance.

suffixes = importlib.machinery.SOURCE_SUFFIXES

loader = importlib.machinery.SourceFileLoader

lazy_loader = importlib.util.LazyLoader.factory(loader)

finder = importlib.machinery.FileFinder(path, (lazy_loader, suffixes))

2048 Chapter 32. Importing Modules

https://peps.python.org/pep-0489/


The Python Library Reference, Release 3.13.1

32.5.6 Examples

Importing programmatically

To programmatically import a module, use importlib.import_module().

import importlib

itertools = importlib.import_module('itertools')

Checking if a module can be imported

If you need to find out if a module can be imported without actually doing the import, then you should use
importlib.util.find_spec().

Note that if name is a submodule (contains a dot), importlib.util.find_spec()will import the parent module.

import importlib.util

import sys

# For illustrative purposes.

name = 'itertools'

if name in sys.modules:

print(f"{name!r} already in sys.modules")

elif (spec := importlib.util.find_spec(name)) is not None:

# If you chose to perform the actual import ...

module = importlib.util.module_from_spec(spec)

sys.modules[name] = module

spec.loader.exec_module(module)

print(f"{name!r} has been imported")

else:

print(f"can't find the {name!r} module")

Importing a source file directly

This recipe should be used with caution: it is an approximation of an import statement where the file path is specified
directly, rather than sys.path being searched. Alternatives should first be considered first, such as modifying sys.
path when a proper module is required, or using runpy.run_path() when the global namespace resulting from
running a Python file is appropriate.

To import a Python source file directly from a path, use the following recipe:

import importlib.util

import sys

def import_from_path(module_name, file_path):

spec = importlib.util.spec_from_file_location(module_name, file_path)

module = importlib.util.module_from_spec(spec)

sys.modules[module_name] = module

spec.loader.exec_module(module)

return module

# For illustrative purposes only (use of `json` is arbitrary).

import json

file_path = json.__file__

module_name = json.__name__

(continues on next page)

32.5. importlib— The implementation of import 2049



The Python Library Reference, Release 3.13.1

(continued from previous page)

# Similar outcome as `import json`.

json = import_from_path(module_name, file_path)

Implementing lazy imports

The example below shows how to implement lazy imports:

>>> import importlib.util

>>> import sys

>>> def lazy_import(name):

... spec = importlib.util.find_spec(name)

... loader = importlib.util.LazyLoader(spec.loader)

... spec.loader = loader

... module = importlib.util.module_from_spec(spec)

... sys.modules[name] = module

... loader.exec_module(module)

... return module

...

>>> lazy_typing = lazy_import("typing")

>>> #lazy_typing is a real module object,

>>> #but it is not loaded in memory yet.

>>> lazy_typing.TYPE_CHECKING

False

Setting up an importer

For deep customizations of import, you typically want to implement an importer. This means managing both the
finder and loader side of things. For finders there are two flavours to choose from depending on your needs: a meta
path finder or a path entry finder. The former is what you would put on sys.meta_path while the latter is what
you create using a path entry hook on sys.path_hooks which works with sys.path entries to potentially create
a finder. This example will show you how to register your own importers so that import will use them (for creating
an importer for yourself, read the documentation for the appropriate classes defined within this package):

import importlib.machinery

import sys

# For illustrative purposes only.

SpamMetaPathFinder = importlib.machinery.PathFinder

SpamPathEntryFinder = importlib.machinery.FileFinder

loader_details = (importlib.machinery.SourceFileLoader,

importlib.machinery.SOURCE_SUFFIXES)

# Setting up a meta path finder.

# Make sure to put the finder in the proper location in the list in terms of

# priority.

sys.meta_path.append(SpamMetaPathFinder)

# Setting up a path entry finder.

# Make sure to put the path hook in the proper location in the list in terms

# of priority.

sys.path_hooks.append(SpamPathEntryFinder.path_hook(loader_details))

2050 Chapter 32. Importing Modules



The Python Library Reference, Release 3.13.1

Approximating importlib.import_module()

Import itself is implemented in Python code, making it possible to expose most of the import machinery through
importlib. The following helps illustrate the various APIs that importlib exposes by providing an approximate im-
plementation of importlib.import_module():

import importlib.util

import sys

def import_module(name, package=None):

"""An approximate implementation of import."""

absolute_name = importlib.util.resolve_name(name, package)

try:

return sys.modules[absolute_name]

except KeyError:

pass

path = None

if '.' in absolute_name:

parent_name, _, child_name = absolute_name.rpartition('.')

parent_module = import_module(parent_name)

path = parent_module.__spec__.submodule_search_locations

for finder in sys.meta_path:

spec = finder.find_spec(absolute_name, path)

if spec is not None:

break

else:

msg = f'No module named {absolute_name!r}'

raise ModuleNotFoundError(msg, name=absolute_name)

module = importlib.util.module_from_spec(spec)

sys.modules[absolute_name] = module

spec.loader.exec_module(module)

if path is not None:

setattr(parent_module, child_name, module)

return module

32.6 importlib.resources – Package resource reading, opening
and access

Source code: Lib/importlib/resources/__init__.py

Added in version 3.7.

This module leverages Python’s import system to provide access to resources within packages.

“Resources” are file-like resources associated with a module or package in Python. The resources may be contained
directly in a package, within a subdirectory contained in that package, or adjacent to modules outside a package.
Resources may be text or binary. As a result, Python module sources (.py) of a package and compilation artifacts
(pycache) are technically de-facto resources of that package. In practice, however, resources are primarily those
non-Python artifacts exposed specifically by the package author.

Resources can be opened or read in either binary or text mode.

Resources are roughly akin to files inside directories, though it’s important to keep in mind that this is just a metaphor.
Resources and packages do not have to exist as physical files and directories on the file system: for example, a package
and its resources can be imported from a zip file using zipimport.

32.6. importlib.resources – Package resource reading, opening and access 2051

https://github.com/python/cpython/tree/3.13/Lib/importlib/resources/__init__.py


The Python Library Reference, Release 3.13.1

Note

This module provides functionality similar to pkg_resources Basic Resource Access without the performance
overhead of that package. This makes reading resources included in packages easier, with more stable and con-
sistent semantics.

The standalone backport of this module provides more information on using importlib.resources and migrating
from pkg_resources to importlib.resources.

Loaders that wish to support resource reading should implement a get_resource_reader(fullname)method
as specified by importlib.resources.abc.ResourceReader.

class importlib.resources.Anchor

Represents an anchor for resources, either a module object or a module name as a string. Defined as
Union[str, ModuleType].

importlib.resources.files(anchor: Anchor | None = None)

Returns a Traversable object representing the resource container (think directory) and its resources (think
files). A Traversable may contain other containers (think subdirectories).

anchor is an optional Anchor. If the anchor is a package, resources are resolved from that package. If a
module, resources are resolved adjacent to that module (in the same package or the package root). If the
anchor is omitted, the caller’s module is used.

Added in version 3.9.

Changed in version 3.12: package parameter was renamed to anchor. anchor can now be a non-package
module and if omitted will default to the caller’s module. package is still accepted for compatibility but will
raise a DeprecationWarning. Consider passing the anchor positionally or using importlib_resources
>= 5.10 for a compatible interface on older Pythons.

importlib.resources.as_file(traversable)
Given a Traversable object representing a file or directory, typically from importlib.resources.

files(), return a context manager for use in a with statement. The context manager provides a pathlib.
Path object.

Exiting the context manager cleans up any temporary file or directory created when the resource was extracted
from e.g. a zip file.

Use as_file when the Traversable methods (read_text, etc) are insufficient and an actual file or directory
on the file system is required.

Added in version 3.9.

Changed in version 3.12: Added support for traversable representing a directory.

32.6.1 Functional API

A set of simplified, backwards-compatible helpers is available. These allow common operations in a single function
call.

For all the following functions:

• anchor is an Anchor, as in files(). Unlike in files, it may not be omitted.

• path_names are components of a resource’s path name, relative to the anchor. For example, to get the text of
resource named info.txt, use:

importlib.resources.read_text(my_module, "info.txt")

Like Traversable.joinpath, The individual components should use forward slashes (/) as path separators.
For example, the following are equivalent:

2052 Chapter 32. Importing Modules

https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html#basic-resource-access
https://importlib-resources.readthedocs.io/en/latest/using.html
https://importlib-resources.readthedocs.io/en/latest/migration.html
https://importlib-resources.readthedocs.io/en/latest/migration.html


The Python Library Reference, Release 3.13.1

importlib.resources.read_binary(my_module, "pics/painting.png")

importlib.resources.read_binary(my_module, "pics", "painting.png")

For backward compatibility reasons, functions that read text require an explicit encoding argument if multiple
path_names are given. For example, to get the text of info/chapter1.txt, use:

importlib.resources.read_text(my_module, "info", "chapter1.txt",

encoding='utf-8')

importlib.resources.open_binary(anchor, *path_names)

Open the named resource for binary reading.

See the introduction for details on anchor and path_names.

This function returns a BinaryIO object, that is, a binary stream open for reading.

This function is roughly equivalent to:

files(anchor).joinpath(*path_names).open('rb')

Changed in version 3.13: Multiple path_names are accepted.

importlib.resources.open_text(anchor, *path_names, encoding=’utf-8’, errors=’strict’)
Open the named resource for text reading. By default, the contents are read as strict UTF-8.

See the introduction for details on anchor and path_names. encoding and errors have the same meaning as in
built-in open().

For backward compatibility reasons, the encoding argument must be given explicitly if there are multiple
path_names. This limitation is scheduled to be removed in Python 3.15.

This function returns a TextIO object, that is, a text stream open for reading.

This function is roughly equivalent to:

files(anchor).joinpath(*path_names).open('r', encoding=encoding)

Changed in version 3.13: Multiple path_names are accepted. encoding and errors must be given as keyword
arguments.

importlib.resources.read_binary(anchor, *path_names)

Read and return the contents of the named resource as bytes.

See the introduction for details on anchor and path_names.

This function is roughly equivalent to:

files(anchor).joinpath(*path_names).read_bytes()

Changed in version 3.13: Multiple path_names are accepted.

importlib.resources.read_text(anchor, *path_names, encoding=’utf-8’, errors=’strict’)
Read and return the contents of the named resource as str. By default, the contents are read as strict UTF-8.

See the introduction for details on anchor and path_names. encoding and errors have the same meaning as in
built-in open().

For backward compatibility reasons, the encoding argument must be given explicitly if there are multiple
path_names. This limitation is scheduled to be removed in Python 3.15.

This function is roughly equivalent to:

files(anchor).joinpath(*path_names).read_text(encoding=encoding)

32.6. importlib.resources – Package resource reading, opening and access 2053



The Python Library Reference, Release 3.13.1

Changed in version 3.13: Multiple path_names are accepted. encoding and errors must be given as keyword
arguments.

importlib.resources.path(anchor, *path_names)
Provides the path to the resource as an actual file system path. This function returns a context manager for use
in a with statement. The context manager provides a pathlib.Path object.

Exiting the context manager cleans up any temporary files created, e.g. when the resource needs to be extracted
from a zip file.

For example, the stat() method requires an actual file system path; it can be used like this:

with importlib.resources.path(anchor, "resource.txt") as fspath:

result = fspath.stat()

See the introduction for details on anchor and path_names.

This function is roughly equivalent to:

as_file(files(anchor).joinpath(*path_names))

Changed in version 3.13: Multiple path_names are accepted. encoding and errors must be given as keyword
arguments.

importlib.resources.is_resource(anchor, *path_names)
Return True if the named resource exists, otherwise False. This function does not consider directories to be
resources.

See the introduction for details on anchor and path_names.

This function is roughly equivalent to:

files(anchor).joinpath(*path_names).is_file()

Changed in version 3.13: Multiple path_names are accepted.

importlib.resources.contents(anchor, *path_names)
Return an iterable over the named items within the package or path. The iterable returns names of resources
(e.g. files) and non-resources (e.g. directories) as str. The iterable does not recurse into subdirectories.

See the introduction for details on anchor and path_names.

This function is roughly equivalent to:

for resource in files(anchor).joinpath(*path_names).iterdir():

yield resource.name

Deprecated since version 3.11: Prefer iterdir() as above, which offers more control over the results and
richer functionality.

32.7 importlib.resources.abc – Abstract base classes for re-
sources

Source code: Lib/importlib/resources/abc.py

Added in version 3.11.

class importlib.resources.abc.ResourceReader

Superseded by TraversableResources

An abstract base class to provide the ability to read resources.

2054 Chapter 32. Importing Modules

https://github.com/python/cpython/tree/3.13/Lib/importlib/resources/abc.py


The Python Library Reference, Release 3.13.1

From the perspective of this ABC, a resource is a binary artifact that is shipped within a package. Typically
this is something like a data file that lives next to the __init__.py file of the package. The purpose of this
class is to help abstract out the accessing of such data files so that it does not matter if the package and its data
file(s) are stored e.g. in a zip file versus on the file system.

For any of methods of this class, a resource argument is expected to be a path-like object which represents con-
ceptually just a file name. This means that no subdirectory paths should be included in the resource argument.
This is because the location of the package the reader is for, acts as the “directory”. Hence the metaphor for
directories and file names is packages and resources, respectively. This is also why instances of this class are
expected to directly correlate to a specific package (instead of potentially representing multiple packages or a
module).

Loaders that wish to support resource reading are expected to provide a method called
get_resource_reader(fullname) which returns an object implementing this ABC’s interface. If
the module specified by fullname is not a package, this method should return None. An object compatible
with this ABC should only be returned when the specified module is a package.

Deprecated since version 3.12, will be removed in version 3.14: Use importlib.resources.abc.

TraversableResources instead.

abstractmethod open_resource(resource)
Returns an opened, file-like object for binary reading of the resource.

If the resource cannot be found, FileNotFoundError is raised.

abstractmethod resource_path(resource)
Returns the file system path to the resource.

If the resource does not concretely exist on the file system, raise FileNotFoundError.

abstractmethod is_resource(name)
Returns True if the named name is considered a resource. FileNotFoundError is raised if name does
not exist.

abstractmethod contents()

Returns an iterable of strings over the contents of the package. Do note that it is not required that
all names returned by the iterator be actual resources, e.g. it is acceptable to return names for which
is_resource() would be false.

Allowing non-resource names to be returned is to allow for situations where how a package and its re-
sources are stored are known a priori and the non-resource names would be useful. For instance, returning
subdirectory names is allowed so that when it is known that the package and resources are stored on the
file system then those subdirectory names can be used directly.

The abstract method returns an iterable of no items.

class importlib.resources.abc.Traversable

An object with a subset of pathlib.Path methods suitable for traversing directories and opening files.

For a representation of the object on the file-system, use importlib.resources.as_file().

name

Abstract. The base name of this object without any parent references.

abstractmethod iterdir()

Yield Traversable objects in self.

abstractmethod is_dir()

Return True if self is a directory.

abstractmethod is_file()

Return True if self is a file.

32.7. importlib.resources.abc – Abstract base classes for resources 2055



The Python Library Reference, Release 3.13.1

abstractmethod joinpath(*pathsegments)
Traverse directories according to pathsegments and return the result as Traversable.

Each pathsegments argument may contain multiple names separated by forward slashes (/, posixpath.
sep ). For example, the following are equivalent:

files.joinpath('subdir', 'subsuddir', 'file.txt')

files.joinpath('subdir/subsuddir/file.txt')

Note that some Traversable implementationsmight not be updated to the latest version of the protocol.
For compatibility with such implementations, provide a single argument without path separators to each
call to joinpath. For example:

files.joinpath('subdir').joinpath('subsubdir').joinpath('file.txt')

Changed in version 3.11: joinpath accepts multiple pathsegments, and these segments may contain
forward slashes as path separators. Previously, only a single child argument was accepted.

abstractmethod __truediv__(child)
Return Traversable child in self. Equivalent to joinpath(child).

abstractmethod open(mode=’r’, *args, **kwargs)
modemay be ‘r’ or ‘rb’ to open as text or binary. Return a handle suitable for reading (same as pathlib.
Path.open).

When opening as text, accepts encoding parameters such as those accepted by io.TextIOWrapper.

read_bytes()

Read contents of self as bytes.

read_text(encoding=None)
Read contents of self as text.

class importlib.resources.abc.TraversableResources

An abstract base class for resource readers capable of serving the importlib.resources.files() inter-
face. Subclasses ResourceReader and provides concrete implementations of the ResourceReader’s ab-
stract methods. Therefore, any loader supplying TraversableResources also supplies ResourceReader.

Loaders that wish to support resource reading are expected to implement this interface.

abstractmethod files()

Returns a importlib.resources.abc.Traversable object for the loaded package.

32.8 importlib.metadata – Accessing package metadata

Added in version 3.8.

Changed in version 3.10: importlib.metadata is no longer provisional.

Source code: Lib/importlib/metadata/__init__.py

importlib.metadata is a library that provides access to the metadata of an installed Distribution Package, such
as its entry points or its top-level names (Import Packages, modules, if any). Built in part on Python’s import system,
this library intends to replace similar functionality in the entry point API and metadata API of pkg_resources.
Along with importlib.resources, this package can eliminate the need to use the older and less efficient
pkg_resources package.

importlib.metadata operates on third-party distribution packages installed into Python’s site-packages di-
rectory via tools such as pip. Specifically, it works with distributions with discoverable dist-info or egg-info
directories, and metadata defined by the Core metadata specifications.

2056 Chapter 32. Importing Modules

https://github.com/python/cpython/tree/3.13/Lib/importlib/metadata/__init__.py
https://packaging.python.org/en/latest/glossary/#term-Distribution-Package
https://packaging.python.org/en/latest/glossary/#term-Import-Package
https://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points
https://setuptools.readthedocs.io/en/latest/pkg_resources.html#metadata-api
https://pypi.org/project/pip/
https://packaging.python.org/en/latest/specifications/core-metadata/#core-metadata


The Python Library Reference, Release 3.13.1

Important

These are not necessarily equivalent to or correspond 1:1 with the top-level import package names that can be
imported inside Python code. One distribution package can containmultiple import packages (and singlemodules),
and one top-level import package may map to multiple distribution packages if it is a namespace package. You
can use packages_distributions() to get a mapping between them.

By default, distribution metadata can live on the file system or in zip archives on sys.path. Through an extension
mechanism, the metadata can live almost anywhere.

See also

https://importlib-metadata.readthedocs.io/
The documentation for importlib_metadata, which supplies a backport of importlib.metadata.
This includes an API reference for this module’s classes and functions, as well as a migration guide for
existing users of pkg_resources.

32.8.1 Overview

Let’s say you wanted to get the version string for a Distribution Package you’ve installed using pip. We start by
creating a virtual environment and installing something into it:

$ python -m venv example

$ source example/bin/activate

(example) $ python -m pip install wheel

You can get the version string for wheel by running the following:

(example) $ python

>>> from importlib.metadata import version

>>> version('wheel')

'0.32.3'

You can also get a collection of entry points selectable by properties of the EntryPoint (typically ‘group’ or ‘name’),
such as console_scripts, distutils.commands and others. Each group contains a collection of EntryPoint
objects.

You can get the metadata for a distribution:

>>> list(metadata('wheel'))

['Metadata-Version', 'Name', 'Version', 'Summary', 'Home-page', 'Author', 'Author-

↪→email', 'Maintainer', 'Maintainer-email', 'License', 'Project-URL', 'Project-URL

↪→', 'Project-URL', 'Keywords', 'Platform', 'Classifier', 'Classifier', 'Classifier

↪→', 'Classifier', 'Classifier', 'Classifier', 'Classifier', 'Classifier',

↪→'Classifier', 'Classifier', 'Classifier', 'Classifier', 'Requires-Python',

↪→'Provides-Extra', 'Requires-Dist', 'Requires-Dist']

You can also get a distribution’s version number, list its constituent files, and get a list of the distribution’s Distribution
requirements.

exception importlib.metadata.PackageNotFoundError

Subclass of ModuleNotFoundError raised by several functions in this module when queried for a distribution
package which is not installed in the current Python environment.

32.8. importlib.metadata – Accessing package metadata 2057

https://importlib-metadata.readthedocs.io/
https://importlib-metadata.readthedocs.io/en/latest/api.html
https://importlib-metadata.readthedocs.io/en/latest/migration.html
https://packaging.python.org/en/latest/glossary/#term-Distribution-Package


The Python Library Reference, Release 3.13.1

32.8.2 Functional API

This package provides the following functionality via its public API.

Entry points

importlib.metadata.entry_points(**select_params)
Returns a EntryPoints instance describing entry points for the current environment. Any given keyword
parameters are passed to the select() method for comparison to the attributes of the individual entry point
definitions.

Note: it is not currently possible to query for entry points based on their EntryPoint.dist attribute (as
different Distribution instances do not currently compare equal, even if they have the same attributes)

class importlib.metadata.EntryPoints

Details of a collection of installed entry points.

Also provides a .groups attribute that reports all identified entry point groups, and a .names attribute that
reports all identified entry point names.

class importlib.metadata.EntryPoint

Details of an installed entry point.

Each EntryPoint instance has .name, .group, and .value attributes and a .load() method to resolve
the value. There are also .module, .attr, and .extras attributes for getting the components of the .value
attribute, and .dist for obtaining information regarding the distribution package that provides the entry point.

Query all entry points:

>>> eps = entry_points()

The entry_points() function returns a EntryPoints object, a collection of all EntryPoint objects with names
and groups attributes for convenience:

>>> sorted(eps.groups)

['console_scripts', 'distutils.commands', 'distutils.setup_keywords', 'egg_info.

↪→writers', 'setuptools.installation']

EntryPoints has a select() method to select entry points matching specific properties. Select entry points in
the console_scripts group:

>>> scripts = eps.select(group='console_scripts')

Equivalently, since entry_points() passes keyword arguments through to select:

>>> scripts = entry_points(group='console_scripts')

Pick out a specific script named “wheel” (found in the wheel project):

>>> 'wheel' in scripts.names

True

>>> wheel = scripts['wheel']

Equivalently, query for that entry point during selection:

>>> (wheel,) = entry_points(group='console_scripts', name='wheel')

>>> (wheel,) = entry_points().select(group='console_scripts', name='wheel')

Inspect the resolved entry point:

2058 Chapter 32. Importing Modules



The Python Library Reference, Release 3.13.1

>>> wheel

EntryPoint(name='wheel', value='wheel.cli:main', group='console_scripts')

>>> wheel.module

'wheel.cli'

>>> wheel.attr

'main'

>>> wheel.extras

[]

>>> main = wheel.load()

>>> main

<function main at 0x103528488>

The group and name are arbitrary values defined by the package author and usually a client will wish to resolve all
entry points for a particular group. Read the setuptools docs for more information on entry points, their definition,
and usage.

Changed in version 3.12: The “selectable” entry points were introduced in importlib_metadata 3.6 and Python
3.10. Prior to those changes, entry_points accepted no parameters and always returned a dictionary of entry
points, keyed by group. With importlib_metadata 5.0 and Python 3.12, entry_points always returns an
EntryPoints object. See backports.entry_points_selectable for compatibility options.

Changed in version 3.13: EntryPoint objects no longer present a tuple-like interface (__getitem__()).

Distribution metadata

importlib.metadata.metadata(distribution_name)
Return the distribution metadata corresponding to the named distribution package as a PackageMetadata
instance.

Raises PackageNotFoundError if the named distribution package is not installed in the current Python
environment.

class importlib.metadata.PackageMetadata

A concrete implementation of the PackageMetadata protocol.

In addition to providing the defined protocol methods and attributes, subscripting the instance is equivalent to
calling the get() method.

Every Distribution Package includes some metadata, which you can extract using the metadata() function:

>>> wheel_metadata = metadata('wheel')

The keys of the returned data structure name the metadata keywords, and the values are returned unparsed from the
distribution metadata:

>>> wheel_metadata['Requires-Python']

'>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*'

PackageMetadata also presents a json attribute that returns all the metadata in a JSON-compatible form per PEP
566:

>>> wheel_metadata.json['requires_python']

'>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*'

The full set of available metadata is not described here. See the PyPA Core metadata specification for additional
details.

Changed in version 3.10: The Description is now included in the metadata when presented through the payload.
Line continuation characters have been removed.

The json attribute was added.

32.8. importlib.metadata – Accessing package metadata 2059

https://setuptools.pypa.io/en/latest/userguide/entry_point.html
https://pypi.org/project/backports.entry_points_selectable/
https://importlib-metadata.readthedocs.io/en/latest/api.html#importlib_metadata.PackageMetadata
https://packaging.python.org/en/latest/glossary/#term-Distribution-Package
https://peps.python.org/pep-0566/
https://peps.python.org/pep-0566/
https://packaging.python.org/en/latest/specifications/core-metadata/#core-metadata


The Python Library Reference, Release 3.13.1

Distribution versions

importlib.metadata.version(distribution_name)
Return the installed distribution package version for the named distribution package.

Raises PackageNotFoundError if the named distribution package is not installed in the current Python
environment.

The version() function is the quickest way to get a Distribution Package’s version number, as a string:

>>> version('wheel')

'0.32.3'

Distribution files

importlib.metadata.files(distribution_name)
Return the full set of files contained within the named distribution package.

Raises PackageNotFoundError if the named distribution package is not installed in the current Python
environment.

Returns None if the distribution is found but the installation database records reporting the files associated
with the distribuion package are missing.

class importlib.metadata.PackagePath

A pathlib.PurePath derived object with additional dist, size, and hash properties corresponding to
the distribution package’s installation metadata for that file.

The files() function takes a Distribution Package name and returns all of the files installed by this distribution.
Each file is reported as a PackagePath instance. For example:

>>> util = [p for p in files('wheel') if 'util.py' in str(p)][0]

>>> util

PackagePath('wheel/util.py')

>>> util.size

859

>>> util.dist

<importlib.metadata._hooks.PathDistribution object at 0x101e0cef0>

>>> util.hash

<FileHash mode: sha256 value: bYkw5oMccfazVCoYQwKkkemoVyMAFoR34mmKBx8R1NI>

Once you have the file, you can also read its contents:

>>> print(util.read_text())

import base64

import sys

...

def as_bytes(s):

if isinstance(s, text_type):

return s.encode('utf-8')

return s

You can also use the locate() method to get the absolute path to the file:

>>> util.locate()

PosixPath('/home/gustav/example/lib/site-packages/wheel/util.py')

In the case where the metadata file listing files (RECORD or SOURCES.txt) is missing, files() will return None.
The caller may wish to wrap calls to files() in always_iterable or otherwise guard against this condition if the
target distribution is not known to have the metadata present.

2060 Chapter 32. Importing Modules

https://packaging.python.org/en/latest/glossary/#term-Distribution-Package
https://packaging.python.org/en/latest/glossary/#term-Distribution-Package
https://more-itertools.readthedocs.io/en/stable/api.html#more_itertools.always_iterable


The Python Library Reference, Release 3.13.1

Distribution requirements

importlib.metadata.requires(distribution_name)
Return the declared dependency specifiers for the named distribution package.

Raises PackageNotFoundError if the named distribution package is not installed in the current Python
environment.

To get the full set of requirements for a Distribution Package, use the requires() function:

>>> requires('wheel')

["pytest (>=3.0.0) ; extra == 'test'", "pytest-cov ; extra == 'test'"]

Mapping import to distribution packages

importlib.metadata.packages_distributions()

Return a mapping from the top level module and import package names found via sys.meta_path to the
names of the distribution packages (if any) that provide the corresponding files.

To allow for namespace packages (which may have members provided by multiple distribution packages), each
top level import name maps to a list of distribution names rather than mapping directly to a single name.

A convenience method to resolve the Distribution Package name (or names, in the case of a namespace package) that
provide each importable top-level Python module or Import Package:

>>> packages_distributions()

{'importlib_metadata': ['importlib-metadata'], 'yaml': ['PyYAML'], 'jaraco': [

↪→'jaraco.classes', 'jaraco.functools'], ...}

Some editable installs, do not supply top-level names, and thus this function is not reliable with such installs.

Added in version 3.10.

32.8.3 Distributions

importlib.metadata.distribution(distribution_name)
Return a Distribution instance describing the named distribution package.

Raises PackageNotFoundError if the named distribution package is not installed in the current Python
environment.

class importlib.metadata.Distribution

Details of an installed distribution package.

Note: different Distribution instances do not currently compare equal, even if they relate to the same
installed distribution and accordingly have the same attributes.

While the module level API described above is the most common and convenient usage, you can get all of that in-
formation from the Distribution class. Distribution is an abstract object that represents the metadata for a
Python Distribution Package. You can get the concreate Distribution subclass instance for an installed distribu-
tion package by calling the distribution() function:

>>> from importlib.metadata import distribution

>>> dist = distribution('wheel')

>>> type(dist)

<class 'importlib.metadata.PathDistribution'>

Thus, an alternative way to get the version number is through the Distribution instance:

>>> dist.version

'0.32.3'

There are all kinds of additional metadata available on Distribution instances:

32.8. importlib.metadata – Accessing package metadata 2061

https://packaging.python.org/en/latest/glossary/#term-Distribution-Package
https://packaging.python.org/en/latest/glossary/#term-Distribution-Package
https://packaging.python.org/en/latest/glossary/#term-Import-Package
https://github.com/pypa/packaging-problems/issues/609
https://packaging.python.org/en/latest/glossary/#term-Distribution-Package


The Python Library Reference, Release 3.13.1

>>> dist.metadata['Requires-Python']

'>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*'

>>> dist.metadata['License']

'MIT'

For editable packages, an origin property may present PEP 610 metadata:

>>> dist.origin.url

'file:///path/to/wheel-0.32.3.editable-py3-none-any.whl'

The full set of available metadata is not described here. See the PyPA Core metadata specification for additional
details.

Added in version 3.13: The .origin property was added.

32.8.4 Distribution Discovery

By default, this package provides built-in support for discovery of metadata for file system and zip file Distribution
Packages. This metadata finder search defaults to sys.path, but varies slightly in how it interprets those values
from how other import machinery does. In particular:

• importlib.metadata does not honor bytes objects on sys.path.

• importlib.metadata will incidentally honor pathlib.Path objects on sys.path even though such val-
ues will be ignored for imports.

32.8.5 Extending the search algorithm

Because Distribution Package metadata is not available through sys.path searches, or package loaders directly,
the metadata for a distribution is found through import system finders. To find a distribution package’s metadata,
importlib.metadata queries the list of meta path finders on sys.meta_path.

By default importlib.metadata installs a finder for distribution packages found on the file system. This finder
doesn’t actually find any distributions, but it can find their metadata.

The abstract class importlib.abc.MetaPathFinder defines the interface expected of finders by Python’s import
system. importlib.metadata extends this protocol by looking for an optional find_distributions callable
on the finders from sys.meta_path and presents this extended interface as the DistributionFinder abstract
base class, which defines this abstract method:

@abc.abstractmethod

def find_distributions(context=DistributionFinder.Context()):

"""Return an iterable of all Distribution instances capable of

loading the metadata for packages for the indicated ``context``.

"""

The DistributionFinder.Context object provides .path and .name properties indicating the path to search
and name to match and may supply other relevant context.

What this means in practice is that to support finding distribution package metadata in locations other than the file
system, subclass Distribution and implement the abstract methods. Then from a custom finder, return instances
of this derived Distribution in the find_distributions() method.

Example

Consider for example a custom finder that loads Python modules from a database:

class DatabaseImporter(importlib.abc.MetaPathFinder):

def __init__(self, db):

self.db = db

(continues on next page)

2062 Chapter 32. Importing Modules

https://peps.python.org/pep-0610/
https://packaging.python.org/en/latest/specifications/core-metadata/#core-metadata
https://packaging.python.org/en/latest/glossary/#term-Distribution-Package
https://packaging.python.org/en/latest/glossary/#term-Distribution-Package
https://packaging.python.org/en/latest/glossary/#term-Distribution-Package


The Python Library Reference, Release 3.13.1

(continued from previous page)

def find_spec(self, fullname, target=None) -> ModuleSpec:

return self.db.spec_from_name(fullname)

sys.meta_path.append(DatabaseImporter(connect_db(...)))

That importer now presumably provides importable modules from a database, but it provides no metadata or entry
points. For this custom importer to provide metadata, it would also need to implement DistributionFinder:

from importlib.metadata import DistributionFinder

class DatabaseImporter(DistributionFinder):

...

def find_distributions(self, context=DistributionFinder.Context()):

query = dict(name=context.name) if context.name else {}

for dist_record in self.db.query_distributions(query):

yield DatabaseDistribution(dist_record)

In this way, query_distributions would return records for each distribution served by the database match-
ing the query. For example, if requests-1.0 is in the database, find_distributions would yield a
DatabaseDistribution for Context(name='requests') or Context(name=None).

For the sake of simplicity, this example ignores context.path. The path attribute defaults to sys.path and is
the set of import paths to be considered in the search. A DatabaseImporter could potentially function without
any concern for a search path. Assuming the importer does no partitioning, the “path” would be irrelevant. In order
to illustrate the purpose of path, the example would need to illustrate a more complex DatabaseImporter whose
behavior varied depending on sys.path/PYTHONPATH. In that case, the find_distributions should honor the
context.path and only yield Distributions pertinent to that path.

DatabaseDistribution, then, would look something like:

class DatabaseDistribution(importlib.metadata.Distribution):

def __init__(self, record):

self.record = record

def read_text(self, filename):

"""

Read a file like "METADATA" for the current distribution.

"""

if filename == "METADATA":

return f"""Name: {self.record.name}

Version: {self.record.version}

"""

if filename == "entry_points.txt":

return "\n".join(

f"""[{ep.group}]\n{ep.name}={ep.value}"""

for ep in self.record.entry_points)

def locate_file(self, path):

raise RuntimeError("This distribution has no file system")

This basic implementation should provide metadata and entry points for packages served by the
DatabaseImporter, assuming that the record supplies suitable .name, .version, and .entry_points

attributes.

The DatabaseDistribution may also provide other metadata files, like RECORD (required for Distribution.
files) or override the implementation of Distribution.files. See the source for more inspiration.

32.8. importlib.metadata – Accessing package metadata 2063



The Python Library Reference, Release 3.13.1

32.9 The initialization of the sys.path module search path

A module search path is initialized when Python starts. This module search path may be accessed at sys.path.

The first entry in the module search path is the directory that contains the input script, if there is one. Otherwise,
the first entry is the current directory, which is the case when executing the interactive shell, a -c command, or -m
module.

The PYTHONPATH environment variable is often used to add directories to the search path. If this environment
variable is found then the contents are added to the module search path.

Note

PYTHONPATH will affect all installed Python versions/environments. Be wary of setting this in your shell profile
or global environment variables. The site module offers more nuanced techniques as mentioned below.

The next items added are the directories containing standard Python modules as well as any extension modules that
these modules depend on. Extension modules are .pyd files on Windows and .so files on other platforms. The
directory with the platform-independent Pythonmodules is called prefix. The directory with the extension modules
is called exec_prefix.

The PYTHONHOME environment variable may be used to set the prefix and exec_prefix locations. Otherwise
these directories are found by using the Python executable as a starting point and then looking for various ‘landmark’
files and directories. Note that any symbolic links are followed so the real Python executable location is used as the
search starting point. The Python executable location is called home.

Once home is determined, the prefix directory is found by first looking for
pythonmajorversionminorversion.zip (python311.zip). On Windows the zip archive is searched
for in home and on Unix the archive is expected to be in lib. Note that the expected zip archive location is added to
the module search path even if the archive does not exist. If no archive was found, Python on Windows will continue
the search for prefix by looking for Lib\os.py. Python on Unix will look for lib/pythonmajorversion.
minorversion/os.py (lib/python3.11/os.py). On Windows prefix and exec_prefix are the same,
however on other platforms lib/pythonmajorversion.minorversion/lib-dynload (lib/python3.11/
lib-dynload) is searched for and used as an anchor for exec_prefix. On some platforms lib may be lib64
or another value, see sys.platlibdir and PYTHONPLATLIBDIR.

Once found, prefix and exec_prefix are available at sys.prefix and sys.exec_prefix respectively.

Finally, the site module is processed and site-packages directories are added to the module search path. A
common way to customize the search path is to create sitecustomize or usercustomize modules as described
in the site module documentation.

Note

Certain command line options may further affect path calculations. See -E, -I, -s and -S for further details.

32.9.1 Virtual environments

If Python is run in a virtual environment (as described at tut-venv) then prefix and exec_prefix are specific to
the virtual environment.

If a pyvenv.cfg file is found alongside the main executable, or in the directory one level above the executable, the
following variations apply:

• If home is an absolute path and PYTHONHOME is not set, this path is used instead of the path to the main
executable when deducing prefix and exec_prefix.

2064 Chapter 32. Importing Modules



The Python Library Reference, Release 3.13.1

32.9.2 _pth files

To completely override sys.path create a ._pth file with the same name as the shared library or executable
(python._pth or python311._pth). The shared library path is always known on Windows, however it may not
be available on other platforms. In the ._pth file specify one line for each path to add to sys.path. The file based
on the shared library name overrides the one based on the executable, which allows paths to be restricted for any
program loading the runtime if desired.

When the file exists, all registry and environment variables are ignored, isolated mode is enabled, and site is not
imported unless one line in the file specifies import site. Blank paths and lines starting with # are ignored. Each
path may be absolute or relative to the location of the file. Import statements other than to site are not permitted,
and arbitrary code cannot be specified.

Note that .pth files (without leading underscore) will be processed normally by the site module when import
site has been specified.

32.9.3 Embedded Python

If Python is embedded within another application Py_InitializeFromConfig() and the PyConfig structure
can be used to initialize Python. The path specific details are described at init-path-config.

See also

• windows_finding_modules for detailed Windows notes.

• using-on-unix for Unix details.

32.9. The initialization of the sys.path module search path 2065



The Python Library Reference, Release 3.13.1

2066 Chapter 32. Importing Modules



CHAPTER

THIRTYTHREE

PYTHON LANGUAGE SERVICES

Python provides a number of modules to assist in working with the Python language. These modules support tok-
enizing, parsing, syntax analysis, bytecode disassembly, and various other facilities.

These modules include:

33.1 ast— Abstract Syntax Trees

Source code: Lib/ast.py

The ast module helps Python applications to process trees of the Python abstract syntax grammar. The abstract
syntax itself might change with each Python release; this module helps to find out programmatically what the current
grammar looks like.

An abstract syntax tree can be generated by passing ast.PyCF_ONLY_AST as a flag to the compile() built-in
function, or using the parse() helper provided in this module. The result will be a tree of objects whose classes
all inherit from ast.AST. An abstract syntax tree can be compiled into a Python code object using the built-in
compile() function.

33.1.1 Abstract Grammar

The abstract grammar is currently defined as follows:

-- ASDL's 4 builtin types are:

-- identifier, int, string, constant

module Python

{

mod = Module(stmt* body, type_ignore* type_ignores)

| Interactive(stmt* body)

| Expression(expr body)

| FunctionType(expr* argtypes, expr returns)

stmt = FunctionDef(identifier name, arguments args,

stmt* body, expr* decorator_list, expr? returns,

string? type_comment, type_param* type_params)

| AsyncFunctionDef(identifier name, arguments args,

stmt* body, expr* decorator_list, expr? returns,

string? type_comment, type_param* type_params)

| ClassDef(identifier name,

expr* bases,

keyword* keywords,

stmt* body,

expr* decorator_list,

(continues on next page)

2067

https://github.com/python/cpython/tree/3.13/Lib/ast.py


The Python Library Reference, Release 3.13.1

(continued from previous page)

type_param* type_params)

| Return(expr? value)

| Delete(expr* targets)

| Assign(expr* targets, expr value, string? type_comment)

| TypeAlias(expr name, type_param* type_params, expr value)

| AugAssign(expr target, operator op, expr value)

-- 'simple' indicates that we annotate simple name without parens

| AnnAssign(expr target, expr annotation, expr? value, int simple)

-- use 'orelse' because else is a keyword in target languages

| For(expr target, expr iter, stmt* body, stmt* orelse, string? type_

↪→comment)

| AsyncFor(expr target, expr iter, stmt* body, stmt* orelse, string?␣

↪→type_comment)

| While(expr test, stmt* body, stmt* orelse)

| If(expr test, stmt* body, stmt* orelse)

| With(withitem* items, stmt* body, string? type_comment)

| AsyncWith(withitem* items, stmt* body, string? type_comment)

| Match(expr subject, match_case* cases)

| Raise(expr? exc, expr? cause)

| Try(stmt* body, excepthandler* handlers, stmt* orelse, stmt* finalbody)

| TryStar(stmt* body, excepthandler* handlers, stmt* orelse, stmt*␣

↪→finalbody)

| Assert(expr test, expr? msg)

| Import(alias* names)

| ImportFrom(identifier? module, alias* names, int? level)

| Global(identifier* names)

| Nonlocal(identifier* names)

| Expr(expr value)

| Pass | Break | Continue

-- col_offset is the byte offset in the utf8 string the parser uses

attributes (int lineno, int col_offset, int? end_lineno, int? end_col_

↪→offset)

-- BoolOp() can use left & right?

expr = BoolOp(boolop op, expr* values)

| NamedExpr(expr target, expr value)

| BinOp(expr left, operator op, expr right)

| UnaryOp(unaryop op, expr operand)

| Lambda(arguments args, expr body)

| IfExp(expr test, expr body, expr orelse)

| Dict(expr* keys, expr* values)

| Set(expr* elts)

| ListComp(expr elt, comprehension* generators)

| SetComp(expr elt, comprehension* generators)

| DictComp(expr key, expr value, comprehension* generators)

| GeneratorExp(expr elt, comprehension* generators)

-- the grammar constrains where yield expressions can occur

| Await(expr value)

| Yield(expr? value)

(continues on next page)

2068 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

(continued from previous page)

| YieldFrom(expr value)

-- need sequences for compare to distinguish between

-- x < 4 < 3 and (x < 4) < 3

| Compare(expr left, cmpop* ops, expr* comparators)

| Call(expr func, expr* args, keyword* keywords)

| FormattedValue(expr value, int conversion, expr? format_spec)

| JoinedStr(expr* values)

| Constant(constant value, string? kind)

-- the following expression can appear in assignment context

| Attribute(expr value, identifier attr, expr_context ctx)

| Subscript(expr value, expr slice, expr_context ctx)

| Starred(expr value, expr_context ctx)

| Name(identifier id, expr_context ctx)

| List(expr* elts, expr_context ctx)

| Tuple(expr* elts, expr_context ctx)

-- can appear only in Subscript

| Slice(expr? lower, expr? upper, expr? step)

-- col_offset is the byte offset in the utf8 string the parser uses

attributes (int lineno, int col_offset, int? end_lineno, int? end_col_

↪→offset)

expr_context = Load | Store | Del

boolop = And | Or

operator = Add | Sub | Mult | MatMult | Div | Mod | Pow | LShift

| RShift | BitOr | BitXor | BitAnd | FloorDiv

unaryop = Invert | Not | UAdd | USub

cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn

comprehension = (expr target, expr iter, expr* ifs, int is_async)

excepthandler = ExceptHandler(expr? type, identifier? name, stmt* body)

attributes (int lineno, int col_offset, int? end_lineno, int?␣

↪→end_col_offset)

arguments = (arg* posonlyargs, arg* args, arg? vararg, arg* kwonlyargs,

expr* kw_defaults, arg? kwarg, expr* defaults)

arg = (identifier arg, expr? annotation, string? type_comment)

attributes (int lineno, int col_offset, int? end_lineno, int? end_col_

↪→offset)

-- keyword arguments supplied to call (NULL identifier for **kwargs)

keyword = (identifier? arg, expr value)

attributes (int lineno, int col_offset, int? end_lineno, int? end_

↪→col_offset)

-- import name with optional 'as' alias.

alias = (identifier name, identifier? asname)

attributes (int lineno, int col_offset, int? end_lineno, int? end_col_

(continues on next page)

33.1. ast— Abstract Syntax Trees 2069



The Python Library Reference, Release 3.13.1

(continued from previous page)

↪→offset)

withitem = (expr context_expr, expr? optional_vars)

match_case = (pattern pattern, expr? guard, stmt* body)

pattern = MatchValue(expr value)

| MatchSingleton(constant value)

| MatchSequence(pattern* patterns)

| MatchMapping(expr* keys, pattern* patterns, identifier? rest)

| MatchClass(expr cls, pattern* patterns, identifier* kwd_attrs,␣

↪→pattern* kwd_patterns)

| MatchStar(identifier? name)

-- The optional "rest" MatchMapping parameter handles capturing extra␣

↪→mapping keys

| MatchAs(pattern? pattern, identifier? name)

| MatchOr(pattern* patterns)

attributes (int lineno, int col_offset, int end_lineno, int end_col_

↪→offset)

type_ignore = TypeIgnore(int lineno, string tag)

type_param = TypeVar(identifier name, expr? bound, expr? default_value)

| ParamSpec(identifier name, expr? default_value)

| TypeVarTuple(identifier name, expr? default_value)

attributes (int lineno, int col_offset, int end_lineno, int end_col_

↪→offset)

}

33.1.2 Node classes

class ast.AST

This is the base of all AST node classes. The actual node classes are derived from the Parser/Python.asdl
file, which is reproduced above. They are defined in the _ast C module and re-exported in ast.

There is one class defined for each left-hand side symbol in the abstract grammar (for example, ast.stmt or
ast.expr). In addition, there is one class defined for each constructor on the right-hand side; these classes
inherit from the classes for the left-hand side trees. For example, ast.BinOp inherits from ast.expr. For
production rules with alternatives (aka “sums”), the left-hand side class is abstract: only instances of specific
constructor nodes are ever created.

_fields

Each concrete class has an attribute _fields which gives the names of all child nodes.

Each instance of a concrete class has one attribute for each child node, of the type as defined in the
grammar. For example, ast.BinOp instances have an attribute left of type ast.expr.

If these attributes are marked as optional in the grammar (using a question mark), the value might be
None. If the attributes can have zero-or-more values (marked with an asterisk), the values are represented
as Python lists. All possible attributes must be present and have valid values when compiling an AST
with compile().

_field_types

The _field_types attribute on each concrete class is a dictionary mapping field names (as also listed
in _fields) to their types.

2070 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

>>> ast.TypeVar._field_types

{'name': <class 'str'>, 'bound': ast.expr | None, 'default_value': ast.

↪→expr | None}

Added in version 3.13.

lineno

col_offset

end_lineno

end_col_offset

Instances of ast.expr and ast.stmt subclasses have lineno, col_offset, end_lineno, and
end_col_offset attributes. The lineno and end_lineno are the first and last line numbers of
source text span (1-indexed so the first line is line 1) and the col_offset and end_col_offset are
the corresponding UTF-8 byte offsets of the first and last tokens that generated the node. The UTF-8
offset is recorded because the parser uses UTF-8 internally.

Note that the end positions are not required by the compiler and are therefore optional. The end offset
is after the last symbol, for example one can get the source segment of a one-line expression node using
source_line[node.col_offset : node.end_col_offset].

The constructor of a class ast.T parses its arguments as follows:

• If there are positional arguments, there must be as many as there are items in T._fields; they will be
assigned as attributes of these names.

• If there are keyword arguments, they will set the attributes of the same names to the given values.

For example, to create and populate an ast.UnaryOp node, you could use

node = ast.UnaryOp(ast.USub(), ast.Constant(5, lineno=0, col_offset=0),

lineno=0, col_offset=0)

If a field that is optional in the grammar is omitted from the constructor, it defaults to None. If a list field is
omitted, it defaults to the empty list. If a field of type ast.expr_context is omitted, it defaults to Load().
If any other field is omitted, a DeprecationWarning is raised and the AST node will not have this field. In
Python 3.15, this condition will raise an error.

Changed in version 3.8: Class ast.Constant is now used for all constants.

Changed in version 3.9: Simple indices are represented by their value, extended slices are represented as tuples.

Deprecated since version 3.8: Old classes ast.Num, ast.Str, ast.Bytes, ast.NameConstant and ast.

Ellipsis are still available, but they will be removed in future Python releases. In the meantime, instantiating
them will return an instance of a different class.

Deprecated since version 3.9: Old classes ast.Index and ast.ExtSlice are still available, but they will be re-
moved in future Python releases. In the meantime, instantiating them will return an instance of a different class.

Deprecated since version 3.13, will be removed in version 3.15: Previous versions of Python allowed the creation of
AST nodes that were missing required fields. Similarly, AST node constructors allowed arbitrary keyword arguments
that were set as attributes of the AST node, even if they did not match any of the fields of the AST node. This
behavior is deprecated and will be removed in Python 3.15.

Note

The descriptions of the specific node classes displayed here were initially adapted from the fantastic Green Tree
Snakes project and all its contributors.

33.1. ast— Abstract Syntax Trees 2071

https://greentreesnakes.readthedocs.io/en/latest/
https://greentreesnakes.readthedocs.io/en/latest/


The Python Library Reference, Release 3.13.1

Root nodes

class ast.Module(body, type_ignores)
A Python module, as with file input. Node type generated by ast.parse() in the default "exec" mode.

body is a list of the module’s Statements.

type_ignores is a list of the module’s type ignore comments; see ast.parse() for more details.

>>> print(ast.dump(ast.parse('x = 1'), indent=4))

Module(

body=[

Assign(

targets=[

Name(id='x', ctx=Store())],

value=Constant(value=1))])

class ast.Expression(body)
A single Python expression input. Node type generated by ast.parse() when mode is "eval".

body is a single node, one of the expression types.

>>> print(ast.dump(ast.parse('123', mode='eval'), indent=4))

Expression(

body=Constant(value=123))

class ast.Interactive(body)
A single interactive input, like in tut-interac. Node type generated by ast.parse()whenmode is "single".

body is a list of statement nodes.

>>> print(ast.dump(ast.parse('x = 1; y = 2', mode='single'), indent=4))

Interactive(

body=[

Assign(

targets=[

Name(id='x', ctx=Store())],

value=Constant(value=1)),

Assign(

targets=[

Name(id='y', ctx=Store())],

value=Constant(value=2))])

class ast.FunctionType(argtypes, returns)
A representation of an old-style type comments for functions, as Python versions prior to 3.5 didn’t support
PEP 484 annotations. Node type generated by ast.parse() when mode is "func_type".

Such type comments would look like this:

def sum_two_number(a, b):

# type: (int, int) -> int

return a + b

argtypes is a list of expression nodes.

returns is a single expression node.

>>> print(ast.dump(ast.parse('(int, str) -> List[int]', mode='func_type'),␣

↪→indent=4))

FunctionType(

argtypes=[

(continues on next page)

2072 Chapter 33. Python Language Services

https://peps.python.org/pep-0484/


The Python Library Reference, Release 3.13.1

(continued from previous page)

Name(id='int', ctx=Load()),

Name(id='str', ctx=Load())],

returns=Subscript(

value=Name(id='List', ctx=Load()),

slice=Name(id='int', ctx=Load()),

ctx=Load()))

Added in version 3.8.

Literals

class ast.Constant(value)
A constant value. The value attribute of the Constant literal contains the Python object it represents. The
values represented can be simple types such as a number, string or None, but also immutable container types
(tuples and frozensets) if all of their elements are constant.

>>> print(ast.dump(ast.parse('123', mode='eval'), indent=4))

Expression(

body=Constant(value=123))

class ast.FormattedValue(value, conversion, format_spec)
Node representing a single formatting field in an f-string. If the string contains a single formatting field and
nothing else the node can be isolated otherwise it appears in JoinedStr.

• value is any expression node (such as a literal, a variable, or a function call).

• conversion is an integer:

– -1: no formatting

– 115: !s string formatting

– 114: !r repr formatting

– 97: !a ascii formatting

• format_spec is a JoinedStr node representing the formatting of the value, or None if no format was
specified. Both conversion and format_spec can be set at the same time.

class ast.JoinedStr(values)
An f-string, comprising a series of FormattedValue and Constant nodes.

>>> print(ast.dump(ast.parse('f"sin({a}) is {sin(a):.3}"', mode='eval'),␣

↪→indent=4))

Expression(

body=JoinedStr(

values=[

Constant(value='sin('),

FormattedValue(

value=Name(id='a', ctx=Load()),

conversion=-1),

Constant(value=') is '),

FormattedValue(

value=Call(

func=Name(id='sin', ctx=Load()),

args=[

Name(id='a', ctx=Load())]),

conversion=-1,

format_spec=JoinedStr(

values=[

Constant(value='.3')]))]))

33.1. ast— Abstract Syntax Trees 2073



The Python Library Reference, Release 3.13.1

class ast.List(elts, ctx)
class ast.Tuple(elts, ctx)

A list or tuple. elts holds a list of nodes representing the elements. ctx is Store if the container is an
assignment target (i.e. (x,y)=something), and Load otherwise.

>>> print(ast.dump(ast.parse('[1, 2, 3]', mode='eval'), indent=4))

Expression(

body=List(

elts=[

Constant(value=1),

Constant(value=2),

Constant(value=3)],

ctx=Load()))

>>> print(ast.dump(ast.parse('(1, 2, 3)', mode='eval'), indent=4))

Expression(

body=Tuple(

elts=[

Constant(value=1),

Constant(value=2),

Constant(value=3)],

ctx=Load()))

class ast.Set(elts)
A set. elts holds a list of nodes representing the set’s elements.

>>> print(ast.dump(ast.parse('{1, 2, 3}', mode='eval'), indent=4))

Expression(

body=Set(

elts=[

Constant(value=1),

Constant(value=2),

Constant(value=3)]))

class ast.Dict(keys, values)
A dictionary. keys and values hold lists of nodes representing the keys and the values respectively, in
matching order (what would be returned when calling dictionary.keys() and dictionary.values()).

When doing dictionary unpacking using dictionary literals the expression to be expanded goes in the values
list, with a None at the corresponding position in keys.

>>> print(ast.dump(ast.parse('{"a":1, **d}', mode='eval'), indent=4))

Expression(

body=Dict(

keys=[

Constant(value='a'),

None],

values=[

Constant(value=1),

Name(id='d', ctx=Load())]))

Variables

class ast.Name(id, ctx)
A variable name. id holds the name as a string, and ctx is one of the following types.

class ast.Load

class ast.Store

2074 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

class ast.Del

Variable references can be used to load the value of a variable, to assign a new value to it, or to delete it.
Variable references are given a context to distinguish these cases.

>>> print(ast.dump(ast.parse('a'), indent=4))

Module(

body=[

Expr(

value=Name(id='a', ctx=Load()))])

>>> print(ast.dump(ast.parse('a = 1'), indent=4))

Module(

body=[

Assign(

targets=[

Name(id='a', ctx=Store())],

value=Constant(value=1))])

>>> print(ast.dump(ast.parse('del a'), indent=4))

Module(

body=[

Delete(

targets=[

Name(id='a', ctx=Del())])])

class ast.Starred(value, ctx)
A *var variable reference. value holds the variable, typically a Name node. This type must be used when
building a Call node with *args.

>>> print(ast.dump(ast.parse('a, *b = it'), indent=4))

Module(

body=[

Assign(

targets=[

Tuple(

elts=[

Name(id='a', ctx=Store()),

Starred(

value=Name(id='b', ctx=Store()),

ctx=Store())],

ctx=Store())],

value=Name(id='it', ctx=Load()))])

Expressions

class ast.Expr(value)

When an expression, such as a function call, appears as a statement by itself with its return value not used or
stored, it is wrapped in this container. value holds one of the other nodes in this section, a Constant, a
Name, a Lambda, a Yield or YieldFrom node.

>>> print(ast.dump(ast.parse('-a'), indent=4))

Module(

body=[

Expr(

value=UnaryOp(

op=USub(),

operand=Name(id='a', ctx=Load())))])

33.1. ast— Abstract Syntax Trees 2075



The Python Library Reference, Release 3.13.1

class ast.UnaryOp(op, operand)
A unary operation. op is the operator, and operand any expression node.

class ast.UAdd

class ast.USub

class ast.Not

class ast.Invert

Unary operator tokens. Not is the not keyword, Invert is the ~ operator.

>>> print(ast.dump(ast.parse('not x', mode='eval'), indent=4))

Expression(

body=UnaryOp(

op=Not(),

operand=Name(id='x', ctx=Load())))

class ast.BinOp(left, op, right)
A binary operation (like addition or division). op is the operator, and left and right are any expression
nodes.

>>> print(ast.dump(ast.parse('x + y', mode='eval'), indent=4))

Expression(

body=BinOp(

left=Name(id='x', ctx=Load()),

op=Add(),

right=Name(id='y', ctx=Load())))

class ast.Add

class ast.Sub

class ast.Mult

class ast.Div

class ast.FloorDiv

class ast.Mod

class ast.Pow

class ast.LShift

class ast.RShift

class ast.BitOr

class ast.BitXor

class ast.BitAnd

class ast.MatMult

Binary operator tokens.

class ast.BoolOp(op, values)
A boolean operation, ‘or’ or ‘and’. op is Or or And. values are the values involved. Consecutive operations
with the same operator, such as a or b or c, are collapsed into one node with several values.

This doesn’t include not, which is a UnaryOp.

>>> print(ast.dump(ast.parse('x or y', mode='eval'), indent=4))

Expression(

body=BoolOp(

op=Or(),

values=[

Name(id='x', ctx=Load()),

Name(id='y', ctx=Load())]))

class ast.And

2076 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

class ast.Or

Boolean operator tokens.

class ast.Compare(left, ops, comparators)
A comparison of two or more values. left is the first value in the comparison, ops the list of operators, and
comparators the list of values after the first element in the comparison.

>>> print(ast.dump(ast.parse('1 <= a < 10', mode='eval'), indent=4))

Expression(

body=Compare(

left=Constant(value=1),

ops=[

LtE(),

Lt()],

comparators=[

Name(id='a', ctx=Load()),

Constant(value=10)]))

class ast.Eq

class ast.NotEq

class ast.Lt

class ast.LtE

class ast.Gt

class ast.GtE

class ast.Is

class ast.IsNot

class ast.In

class ast.NotIn

Comparison operator tokens.

class ast.Call(func, args, keywords)
A function call. func is the function, which will often be a Name or Attribute object. Of the arguments:

• args holds a list of the arguments passed by position.

• keywords holds a list of keyword objects representing arguments passed by keyword.

The args and keywords arguments are optional and default to empty lists.

>>> print(ast.dump(ast.parse('func(a, b=c, *d, **e)', mode='eval'), indent=4))

Expression(

body=Call(

func=Name(id='func', ctx=Load()),

args=[

Name(id='a', ctx=Load()),

Starred(

value=Name(id='d', ctx=Load()),

ctx=Load())],

keywords=[

keyword(

arg='b',

value=Name(id='c', ctx=Load())),

keyword(

value=Name(id='e', ctx=Load()))]))

class ast.keyword(arg, value)
A keyword argument to a function call or class definition. arg is a raw string of the parameter name, value
is a node to pass in.

33.1. ast— Abstract Syntax Trees 2077



The Python Library Reference, Release 3.13.1

class ast.IfExp(test, body, orelse)
An expression such as a if b else c. Each field holds a single node, so in the following example, all three
are Name nodes.

>>> print(ast.dump(ast.parse('a if b else c', mode='eval'), indent=4))

Expression(

body=IfExp(

test=Name(id='b', ctx=Load()),

body=Name(id='a', ctx=Load()),

orelse=Name(id='c', ctx=Load())))

class ast.Attribute(value, attr, ctx)
Attribute access, e.g. d.keys. value is a node, typically a Name. attr is a bare string giving the name of
the attribute, and ctx is Load, Store or Del according to how the attribute is acted on.

>>> print(ast.dump(ast.parse('snake.colour', mode='eval'), indent=4))

Expression(

body=Attribute(

value=Name(id='snake', ctx=Load()),

attr='colour',

ctx=Load()))

class ast.NamedExpr(target, value)
A named expression. This AST node is produced by the assignment expressions operator (also known as the
walrus operator). As opposed to the Assign node in which the first argument can be multiple nodes, in this
case both target and value must be single nodes.

>>> print(ast.dump(ast.parse('(x := 4)', mode='eval'), indent=4))

Expression(

body=NamedExpr(

target=Name(id='x', ctx=Store()),

value=Constant(value=4)))

Added in version 3.8.

Subscripting

class ast.Subscript(value, slice, ctx)
A subscript, such as l[1]. value is the subscripted object (usually sequence or mapping). slice is an index,
slice or key. It can be a Tuple and contain a Slice. ctx is Load, Store or Del according to the action
performed with the subscript.

>>> print(ast.dump(ast.parse('l[1:2, 3]', mode='eval'), indent=4))

Expression(

body=Subscript(

value=Name(id='l', ctx=Load()),

slice=Tuple(

elts=[

Slice(

lower=Constant(value=1),

upper=Constant(value=2)),

Constant(value=3)],

ctx=Load()),

ctx=Load()))

class ast.Slice(lower, upper, step)
Regular slicing (on the form lower:upper or lower:upper:step). Can occur only inside the slice field of
Subscript, either directly or as an element of Tuple.

2078 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

>>> print(ast.dump(ast.parse('l[1:2]', mode='eval'), indent=4))

Expression(

body=Subscript(

value=Name(id='l', ctx=Load()),

slice=Slice(

lower=Constant(value=1),

upper=Constant(value=2)),

ctx=Load()))

Comprehensions

class ast.ListComp(elt, generators)
class ast.SetComp(elt, generators)
class ast.GeneratorExp(elt, generators)
class ast.DictComp(key, value, generators)

List and set comprehensions, generator expressions, and dictionary comprehensions. elt (or key and value)
is a single node representing the part that will be evaluated for each item.

generators is a list of comprehension nodes.

>>> print(ast.dump(

... ast.parse('[x for x in numbers]', mode='eval'),

... indent=4,

... ))

Expression(

body=ListComp(

elt=Name(id='x', ctx=Load()),

generators=[

comprehension(

target=Name(id='x', ctx=Store()),

iter=Name(id='numbers', ctx=Load()),

is_async=0)]))

>>> print(ast.dump(

... ast.parse('{x: x**2 for x in numbers}', mode='eval'),

... indent=4,

... ))

Expression(

body=DictComp(

key=Name(id='x', ctx=Load()),

value=BinOp(

left=Name(id='x', ctx=Load()),

op=Pow(),

right=Constant(value=2)),

generators=[

comprehension(

target=Name(id='x', ctx=Store()),

iter=Name(id='numbers', ctx=Load()),

is_async=0)]))

>>> print(ast.dump(

... ast.parse('{x for x in numbers}', mode='eval'),

... indent=4,

... ))

Expression(

body=SetComp(

elt=Name(id='x', ctx=Load()),

generators=[

(continues on next page)

33.1. ast— Abstract Syntax Trees 2079



The Python Library Reference, Release 3.13.1

(continued from previous page)

comprehension(

target=Name(id='x', ctx=Store()),

iter=Name(id='numbers', ctx=Load()),

is_async=0)]))

class ast.comprehension(target, iter, ifs, is_async)
One for clause in a comprehension. target is the reference to use for each element - typically a Name or
Tuple node. iter is the object to iterate over. ifs is a list of test expressions: each for clause can have
multiple ifs.

is_async indicates a comprehension is asynchronous (using an async for instead of for). The value is an
integer (0 or 1).

>>> print(ast.dump(ast.parse('[ord(c) for line in file for c in line]', mode=

↪→'eval'),

... indent=4)) # Multiple comprehensions in one.

Expression(

body=ListComp(

elt=Call(

func=Name(id='ord', ctx=Load()),

args=[

Name(id='c', ctx=Load())]),

generators=[

comprehension(

target=Name(id='line', ctx=Store()),

iter=Name(id='file', ctx=Load()),

is_async=0),

comprehension(

target=Name(id='c', ctx=Store()),

iter=Name(id='line', ctx=Load()),

is_async=0)]))

>>> print(ast.dump(ast.parse('(n**2 for n in it if n>5 if n<10)', mode='eval'),

... indent=4)) # generator comprehension

Expression(

body=GeneratorExp(

elt=BinOp(

left=Name(id='n', ctx=Load()),

op=Pow(),

right=Constant(value=2)),

generators=[

comprehension(

target=Name(id='n', ctx=Store()),

iter=Name(id='it', ctx=Load()),

ifs=[

Compare(

left=Name(id='n', ctx=Load()),

ops=[

Gt()],

comparators=[

Constant(value=5)]),

Compare(

left=Name(id='n', ctx=Load()),

ops=[

Lt()],

comparators=[

Constant(value=10)])],
(continues on next page)

2080 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

(continued from previous page)

is_async=0)]))

>>> print(ast.dump(ast.parse('[i async for i in soc]', mode='eval'),

... indent=4)) # Async comprehension

Expression(

body=ListComp(

elt=Name(id='i', ctx=Load()),

generators=[

comprehension(

target=Name(id='i', ctx=Store()),

iter=Name(id='soc', ctx=Load()),

is_async=1)]))

Statements

class ast.Assign(targets, value, type_comment)

An assignment. targets is a list of nodes, and value is a single node.

Multiple nodes in targets represents assigning the same value to each. Unpacking is represented by putting
a Tuple or List within targets.

type_comment

type_comment is an optional string with the type annotation as a comment.

>>> print(ast.dump(ast.parse('a = b = 1'), indent=4)) # Multiple assignment

Module(

body=[

Assign(

targets=[

Name(id='a', ctx=Store()),

Name(id='b', ctx=Store())],

value=Constant(value=1))])

>>> print(ast.dump(ast.parse('a,b = c'), indent=4)) # Unpacking

Module(

body=[

Assign(

targets=[

Tuple(

elts=[

Name(id='a', ctx=Store()),

Name(id='b', ctx=Store())],

ctx=Store())],

value=Name(id='c', ctx=Load()))])

class ast.AnnAssign(target, annotation, value, simple)
An assignment with a type annotation. target is a single node and can be a Name, an Attribute or a
Subscript. annotation is the annotation, such as a Constant or Name node. value is a single optional
node.

simple is always either 0 (indicating a “complex” target) or 1 (indicating a “simple” target). A “simple”
target consists solely of a Name node that does not appear between parentheses; all other targets are considered
complex. Only simple targets appear in the __annotations__ dictionary of modules and classes.

>>> print(ast.dump(ast.parse('c: int'), indent=4))

Module(

body=[

(continues on next page)

33.1. ast— Abstract Syntax Trees 2081



The Python Library Reference, Release 3.13.1

(continued from previous page)

AnnAssign(

target=Name(id='c', ctx=Store()),

annotation=Name(id='int', ctx=Load()),

simple=1)])

>>> print(ast.dump(ast.parse('(a): int = 1'), indent=4)) # Annotation with␣

↪→parenthesis

Module(

body=[

AnnAssign(

target=Name(id='a', ctx=Store()),

annotation=Name(id='int', ctx=Load()),

value=Constant(value=1),

simple=0)])

>>> print(ast.dump(ast.parse('a.b: int'), indent=4)) # Attribute annotation

Module(

body=[

AnnAssign(

target=Attribute(

value=Name(id='a', ctx=Load()),

attr='b',

ctx=Store()),

annotation=Name(id='int', ctx=Load()),

simple=0)])

>>> print(ast.dump(ast.parse('a[1]: int'), indent=4)) # Subscript annotation

Module(

body=[

AnnAssign(

target=Subscript(

value=Name(id='a', ctx=Load()),

slice=Constant(value=1),

ctx=Store()),

annotation=Name(id='int', ctx=Load()),

simple=0)])

class ast.AugAssign(target, op, value)
Augmented assignment, such as a += 1. In the following example, target is a Name node for x (with the
Store context), op is Add, and value is a Constant with value for 1.

The target attribute cannot be of class Tuple or List, unlike the targets of Assign.

>>> print(ast.dump(ast.parse('x += 2'), indent=4))

Module(

body=[

AugAssign(

target=Name(id='x', ctx=Store()),

op=Add(),

value=Constant(value=2))])

class ast.Raise(exc, cause)
A raise statement. exc is the exception object to be raised, normally a Call or Name, or None for a stan-
dalone raise. cause is the optional part for y in raise x from y.

>>> print(ast.dump(ast.parse('raise x from y'), indent=4))

Module(
(continues on next page)

2082 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

(continued from previous page)

body=[

Raise(

exc=Name(id='x', ctx=Load()),

cause=Name(id='y', ctx=Load()))])

class ast.Assert(test, msg)

An assertion. test holds the condition, such as a Compare node. msg holds the failure message.

>>> print(ast.dump(ast.parse('assert x,y'), indent=4))

Module(

body=[

Assert(

test=Name(id='x', ctx=Load()),

msg=Name(id='y', ctx=Load()))])

class ast.Delete(targets)

Represents a del statement. targets is a list of nodes, such as Name, Attribute or Subscript nodes.

>>> print(ast.dump(ast.parse('del x,y,z'), indent=4))

Module(

body=[

Delete(

targets=[

Name(id='x', ctx=Del()),

Name(id='y', ctx=Del()),

Name(id='z', ctx=Del())])])

class ast.Pass

A pass statement.

>>> print(ast.dump(ast.parse('pass'), indent=4))

Module(

body=[

Pass()])

class ast.TypeAlias(name, type_params, value)
A type alias created through the type statement. name is the name of the alias, type_params is a list of type
parameters, and value is the value of the type alias.

>>> print(ast.dump(ast.parse('type Alias = int'), indent=4))

Module(

body=[

TypeAlias(

name=Name(id='Alias', ctx=Store()),

value=Name(id='int', ctx=Load()))])

Added in version 3.12.

Other statements which are only applicable inside functions or loops are described in other sections.

Imports

class ast.Import(names)
An import statement. names is a list of alias nodes.

33.1. ast— Abstract Syntax Trees 2083



The Python Library Reference, Release 3.13.1

>>> print(ast.dump(ast.parse('import x,y,z'), indent=4))

Module(

body=[

Import(

names=[

alias(name='x'),

alias(name='y'),

alias(name='z')])])

class ast.ImportFrom(module, names, level)
Represents from x import y. module is a raw string of the ‘from’ name, without any leading dots, or None
for statements such as from . import foo. level is an integer holding the level of the relative import (0
means absolute import).

>>> print(ast.dump(ast.parse('from y import x,y,z'), indent=4))

Module(

body=[

ImportFrom(

module='y',

names=[

alias(name='x'),

alias(name='y'),

alias(name='z')],

level=0)])

class ast.alias(name, asname)
Both parameters are raw strings of the names. asname can be None if the regular name is to be used.

>>> print(ast.dump(ast.parse('from ..foo.bar import a as b, c'), indent=4))

Module(

body=[

ImportFrom(

module='foo.bar',

names=[

alias(name='a', asname='b'),

alias(name='c')],

level=2)])

Control flow

Note

Optional clauses such as else are stored as an empty list if they’re not present.

class ast.If(test, body, orelse)
An if statement. test holds a single node, such as a Compare node. body and orelse each hold a list of
nodes.

elif clauses don’t have a special representation in the AST, but rather appear as extra If nodes within the
orelse section of the previous one.

>>> print(ast.dump(ast.parse("""

... if x:

... ...

... elif y:

(continues on next page)

2084 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

(continued from previous page)

... ...

... else:

... ...

... """), indent=4))

Module(

body=[

If(

test=Name(id='x', ctx=Load()),

body=[

Expr(

value=Constant(value=Ellipsis))],

orelse=[

If(

test=Name(id='y', ctx=Load()),

body=[

Expr(

value=Constant(value=Ellipsis))],

orelse=[

Expr(

value=Constant(value=Ellipsis))])])])

class ast.For(target, iter, body, orelse, type_comment)
A for loop. target holds the variable(s) the loop assigns to, as a single Name, Tuple, List, Attribute or
Subscript node. iter holds the item to be looped over, again as a single node. body and orelse contain
lists of nodes to execute. Those in orelse are executed if the loop finishes normally, rather than via a break
statement.

type_comment

type_comment is an optional string with the type annotation as a comment.

>>> print(ast.dump(ast.parse("""

... for x in y:

... ...

... else:

... ...

... """), indent=4))

Module(

body=[

For(

target=Name(id='x', ctx=Store()),

iter=Name(id='y', ctx=Load()),

body=[

Expr(

value=Constant(value=Ellipsis))],

orelse=[

Expr(

value=Constant(value=Ellipsis))])])

class ast.While(test, body, orelse)
A while loop. test holds the condition, such as a Compare node.

>> print(ast.dump(ast.parse("""

... while x:

... ...

... else:

... ...

(continues on next page)

33.1. ast— Abstract Syntax Trees 2085



The Python Library Reference, Release 3.13.1

(continued from previous page)

... """), indent=4))

Module(

body=[

While(

test=Name(id='x', ctx=Load()),

body=[

Expr(

value=Constant(value=Ellipsis))],

orelse=[

Expr(

value=Constant(value=Ellipsis))])])

class ast.Break

class ast.Continue

The break and continue statements.

>>> print(ast.dump(ast.parse("""\

... for a in b:

... if a > 5:

... break

... else:

... continue

...

... """), indent=4))

Module(

body=[

For(

target=Name(id='a', ctx=Store()),

iter=Name(id='b', ctx=Load()),

body=[

If(

test=Compare(

left=Name(id='a', ctx=Load()),

ops=[

Gt()],

comparators=[

Constant(value=5)]),

body=[

Break()],

orelse=[

Continue()])])])

class ast.Try(body, handlers, orelse, finalbody)
try blocks. All attributes are list of nodes to execute, except for handlers, which is a list of ExceptHandler
nodes.

>>> print(ast.dump(ast.parse("""

... try:

... ...

... except Exception:

... ...

... except OtherException as e:

... ...

... else:

... ...

... finally:

(continues on next page)

2086 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

(continued from previous page)

... ...

... """), indent=4))

Module(

body=[

Try(

body=[

Expr(

value=Constant(value=Ellipsis))],

handlers=[

ExceptHandler(

type=Name(id='Exception', ctx=Load()),

body=[

Expr(

value=Constant(value=Ellipsis))]),

ExceptHandler(

type=Name(id='OtherException', ctx=Load()),

name='e',

body=[

Expr(

value=Constant(value=Ellipsis))])],

orelse=[

Expr(

value=Constant(value=Ellipsis))],

finalbody=[

Expr(

value=Constant(value=Ellipsis))])])

class ast.TryStar(body, handlers, orelse, finalbody)
try blocks which are followed by except* clauses. The attributes are the same as for Try but the
ExceptHandler nodes in handlers are interpreted as except* blocks rather then except.

>>> print(ast.dump(ast.parse("""

... try:

... ...

... except* Exception:

... ...

... """), indent=4))

Module(

body=[

TryStar(

body=[

Expr(

value=Constant(value=Ellipsis))],

handlers=[

ExceptHandler(

type=Name(id='Exception', ctx=Load()),

body=[

Expr(

value=Constant(value=Ellipsis))])])])

Added in version 3.11.

class ast.ExceptHandler(type, name, body)
A single except clause. type is the exception type it will match, typically a Name node (or None for a catch-
all except: clause). name is a raw string for the name to hold the exception, or None if the clause doesn’t
have as foo. body is a list of nodes.

33.1. ast— Abstract Syntax Trees 2087



The Python Library Reference, Release 3.13.1

>>> print(ast.dump(ast.parse("""\

... try:

... a + 1

... except TypeError:

... pass

... """), indent=4))

Module(

body=[

Try(

body=[

Expr(

value=BinOp(

left=Name(id='a', ctx=Load()),

op=Add(),

right=Constant(value=1)))],

handlers=[

ExceptHandler(

type=Name(id='TypeError', ctx=Load()),

body=[

Pass()])])])

class ast.With(items, body, type_comment)
A with block. items is a list of withitem nodes representing the context managers, and body is the indented
block inside the context.

type_comment

type_comment is an optional string with the type annotation as a comment.

class ast.withitem(context_expr, optional_vars)
A single context manager in a with block. context_expr is the context manager, often a Call node.
optional_vars is a Name, Tuple or List for the as foo part, or None if that isn’t used.

>>> print(ast.dump(ast.parse("""\

... with a as b, c as d:

... something(b, d)

... """), indent=4))

Module(

body=[

With(

items=[

withitem(

context_expr=Name(id='a', ctx=Load()),

optional_vars=Name(id='b', ctx=Store())),

withitem(

context_expr=Name(id='c', ctx=Load()),

optional_vars=Name(id='d', ctx=Store()))],

body=[

Expr(

value=Call(

func=Name(id='something', ctx=Load()),

args=[

Name(id='b', ctx=Load()),

Name(id='d', ctx=Load())]))])])

2088 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

Pattern matching

class ast.Match(subject, cases)
A match statement. subject holds the subject of the match (the object that is being matched against the
cases) and cases contains an iterable of match_case nodes with the different cases.

Added in version 3.10.

class ast.match_case(pattern, guard, body)
A single case pattern in a match statement. pattern contains the match pattern that the subject will be
matched against. Note that the AST nodes produced for patterns differ from those produced for expressions,
even when they share the same syntax.

The guard attribute contains an expression that will be evaluated if the pattern matches the subject.

body contains a list of nodes to execute if the pattern matches and the result of evaluating the guard expression
is true.

>>> print(ast.dump(ast.parse("""

... match x:

... case [x] if x>0:

... ...

... case tuple():

... ...

... """), indent=4))

Module(

body=[

Match(

subject=Name(id='x', ctx=Load()),

cases=[

match_case(

pattern=MatchSequence(

patterns=[

MatchAs(name='x')]),

guard=Compare(

left=Name(id='x', ctx=Load()),

ops=[

Gt()],

comparators=[

Constant(value=0)]),

body=[

Expr(

value=Constant(value=Ellipsis))]),

match_case(

pattern=MatchClass(

cls=Name(id='tuple', ctx=Load())),

body=[

Expr(

value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchValue(value)
A match literal or value pattern that compares by equality. value is an expression node. Permitted value
nodes are restricted as described in the match statement documentation. This pattern succeeds if the match
subject is equal to the evaluated value.

>>> print(ast.dump(ast.parse("""

... match x:

... case "Relevant":

(continues on next page)

33.1. ast— Abstract Syntax Trees 2089



The Python Library Reference, Release 3.13.1

(continued from previous page)

... ...

... """), indent=4))

Module(

body=[

Match(

subject=Name(id='x', ctx=Load()),

cases=[

match_case(

pattern=MatchValue(

value=Constant(value='Relevant')),

body=[

Expr(

value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchSingleton(value)

Amatch literal pattern that compares by identity. value is the singleton to be compared against: None, True,
or False. This pattern succeeds if the match subject is the given constant.

>>> print(ast.dump(ast.parse("""

... match x:

... case None:

... ...

... """), indent=4))

Module(

body=[

Match(

subject=Name(id='x', ctx=Load()),

cases=[

match_case(

pattern=MatchSingleton(value=None),

body=[

Expr(

value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchSequence(patterns)

A match sequence pattern. patterns contains the patterns to be matched against the subject elements if the
subject is a sequence. Matches a variable length sequence if one of the subpatterns is a MatchStar node,
otherwise matches a fixed length sequence.

>>> print(ast.dump(ast.parse("""

... match x:

... case [1, 2]:

... ...

... """), indent=4))

Module(

body=[

Match(

subject=Name(id='x', ctx=Load()),

cases=[

match_case(

pattern=MatchSequence(

patterns=[

MatchValue(

(continues on next page)

2090 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

(continued from previous page)

value=Constant(value=1)),

MatchValue(

value=Constant(value=2))]),

body=[

Expr(

value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchStar(name)
Matches the rest of the sequence in a variable length match sequence pattern. If name is not None, a list
containing the remaining sequence elements is bound to that name if the overall sequence pattern is successful.

>>> print(ast.dump(ast.parse("""

... match x:

... case [1, 2, *rest]:

... ...

... case [*_]:

... ...

... """), indent=4))

Module(

body=[

Match(

subject=Name(id='x', ctx=Load()),

cases=[

match_case(

pattern=MatchSequence(

patterns=[

MatchValue(

value=Constant(value=1)),

MatchValue(

value=Constant(value=2)),

MatchStar(name='rest')]),

body=[

Expr(

value=Constant(value=Ellipsis))]),

match_case(

pattern=MatchSequence(

patterns=[

MatchStar()]),

body=[

Expr(

value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchMapping(keys, patterns, rest)
A match mapping pattern. keys is a sequence of expression nodes. patterns is a corresponding sequence
of pattern nodes. rest is an optional name that can be specified to capture the remaining mapping elements.
Permitted key expressions are restricted as described in the match statement documentation.

This pattern succeeds if the subject is a mapping, all evaluated key expressions are present in the mapping,
and the value corresponding to each key matches the corresponding subpattern. If rest is not None, a dict
containing the remaining mapping elements is bound to that name if the overall mapping pattern is successful.

>>> print(ast.dump(ast.parse("""

... match x:

... case {1: _, 2: _}:
(continues on next page)

33.1. ast— Abstract Syntax Trees 2091



The Python Library Reference, Release 3.13.1

(continued from previous page)

... ...

... case {**rest}:

... ...

... """), indent=4))

Module(

body=[

Match(

subject=Name(id='x', ctx=Load()),

cases=[

match_case(

pattern=MatchMapping(

keys=[

Constant(value=1),

Constant(value=2)],

patterns=[

MatchAs(),

MatchAs()]),

body=[

Expr(

value=Constant(value=Ellipsis))]),

match_case(

pattern=MatchMapping(rest='rest'),

body=[

Expr(

value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchClass(cls, patterns, kwd_attrs, kwd_patterns)
A match class pattern. cls is an expression giving the nominal class to be matched. patterns is a sequence
of pattern nodes to be matched against the class defined sequence of pattern matching attributes. kwd_attrs
is a sequence of additional attributes to be matched (specified as keyword arguments in the class pattern),
kwd_patterns are the corresponding patterns (specified as keyword values in the class pattern).

This pattern succeeds if the subject is an instance of the nominated class, all positional patterns match the
corresponding class-defined attributes, and any specified keyword attributes match their corresponding pattern.

Note: classes may define a property that returns self in order to match a pattern node against the instance being
matched. Several builtin types are also matched that way, as described in the match statement documentation.

>>> print(ast.dump(ast.parse("""

... match x:

... case Point2D(0, 0):

... ...

... case Point3D(x=0, y=0, z=0):

... ...

... """), indent=4))

Module(

body=[

Match(

subject=Name(id='x', ctx=Load()),

cases=[

match_case(

pattern=MatchClass(

cls=Name(id='Point2D', ctx=Load()),

patterns=[

MatchValue(

value=Constant(value=0)),
(continues on next page)

2092 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

(continued from previous page)

MatchValue(

value=Constant(value=0))]),

body=[

Expr(

value=Constant(value=Ellipsis))]),

match_case(

pattern=MatchClass(

cls=Name(id='Point3D', ctx=Load()),

kwd_attrs=[

'x',

'y',

'z'],

kwd_patterns=[

MatchValue(

value=Constant(value=0)),

MatchValue(

value=Constant(value=0)),

MatchValue(

value=Constant(value=0))]),

body=[

Expr(

value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchAs(pattern, name)
Amatch “as-pattern”, capture pattern or wildcard pattern. pattern contains the match pattern that the subject
will be matched against. If the pattern is None, the node represents a capture pattern (i.e a bare name) and
will always succeed.

The name attribute contains the name that will be bound if the pattern is successful. If name is None, pattern
must also be None and the node represents the wildcard pattern.

>>> print(ast.dump(ast.parse("""

... match x:

... case [x] as y:

... ...

... case _:

... ...

... """), indent=4))

Module(

body=[

Match(

subject=Name(id='x', ctx=Load()),

cases=[

match_case(

pattern=MatchAs(

pattern=MatchSequence(

patterns=[

MatchAs(name='x')]),

name='y'),

body=[

Expr(

value=Constant(value=Ellipsis))]),

match_case(

pattern=MatchAs(),

body=[

(continues on next page)

33.1. ast— Abstract Syntax Trees 2093



The Python Library Reference, Release 3.13.1

(continued from previous page)

Expr(

value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchOr(patterns)
A match “or-pattern”. An or-pattern matches each of its subpatterns in turn to the subject, until one suc-
ceeds. The or-pattern is then deemed to succeed. If none of the subpatterns succeed the or-pattern fails. The
patterns attribute contains a list of match pattern nodes that will be matched against the subject.

>>> print(ast.dump(ast.parse("""

... match x:

... case [x] | (y):

... ...

... """), indent=4))

Module(

body=[

Match(

subject=Name(id='x', ctx=Load()),

cases=[

match_case(

pattern=MatchOr(

patterns=[

MatchSequence(

patterns=[

MatchAs(name='x')]),

MatchAs(name='y')]),

body=[

Expr(

value=Constant(value=Ellipsis))])])])

Added in version 3.10.

Type parameters

Type parameters can exist on classes, functions, and type aliases.

class ast.TypeVar(name, bound, default_value)
A typing.TypeVar. name is the name of the type variable. bound is the bound or constraints, if any. If
bound is a Tuple, it represents constraints; otherwise it represents the bound. default_value is the default
value; if the TypeVar has no default, this attribute will be set to None.

>>> print(ast.dump(ast.parse("type Alias[T: int = bool] = list[T]"), indent=4))

Module(

body=[

TypeAlias(

name=Name(id='Alias', ctx=Store()),

type_params=[

TypeVar(

name='T',

bound=Name(id='int', ctx=Load()),

default_value=Name(id='bool', ctx=Load()))],

value=Subscript(

value=Name(id='list', ctx=Load()),

slice=Name(id='T', ctx=Load()),

ctx=Load()))])

Added in version 3.12.

2094 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

Changed in version 3.13: Added the default_value parameter.

class ast.ParamSpec(name, default_value)
A typing.ParamSpec. name is the name of the parameter specification. default_value is the default
value; if the ParamSpec has no default, this attribute will be set to None.

>>> print(ast.dump(ast.parse("type Alias[**P = [int, str]] = Callable[P, int]

↪→"), indent=4))

Module(

body=[

TypeAlias(

name=Name(id='Alias', ctx=Store()),

type_params=[

ParamSpec(

name='P',

default_value=List(

elts=[

Name(id='int', ctx=Load()),

Name(id='str', ctx=Load())],

ctx=Load()))],

value=Subscript(

value=Name(id='Callable', ctx=Load()),

slice=Tuple(

elts=[

Name(id='P', ctx=Load()),

Name(id='int', ctx=Load())],

ctx=Load()),

ctx=Load()))])

Added in version 3.12.

Changed in version 3.13: Added the default_value parameter.

class ast.TypeVarTuple(name, default_value)
A typing.TypeVarTuple. name is the name of the type variable tuple. default_value is the default
value; if the TypeVarTuple has no default, this attribute will be set to None.

>>> print(ast.dump(ast.parse("type Alias[*Ts = ()] = tuple[*Ts]"), indent=4))

Module(

body=[

TypeAlias(

name=Name(id='Alias', ctx=Store()),

type_params=[

TypeVarTuple(

name='Ts',

default_value=Tuple(ctx=Load()))],

value=Subscript(

value=Name(id='tuple', ctx=Load()),

slice=Tuple(

elts=[

Starred(

value=Name(id='Ts', ctx=Load()),

ctx=Load())],

ctx=Load()),

ctx=Load()))])

Added in version 3.12.

Changed in version 3.13: Added the default_value parameter.

33.1. ast— Abstract Syntax Trees 2095



The Python Library Reference, Release 3.13.1

Function and class definitions

class ast.FunctionDef(name, args, body, decorator_list, returns, type_comment, type_params)
A function definition.

• name is a raw string of the function name.

• args is an arguments node.

• body is the list of nodes inside the function.

• decorator_list is the list of decorators to be applied, stored outermost first (i.e. the first in the list
will be applied last).

• returns is the return annotation.

• type_params is a list of type parameters.

type_comment

type_comment is an optional string with the type annotation as a comment.

Changed in version 3.12: Added type_params.

class ast.Lambda(args, body)
lambda is a minimal function definition that can be used inside an expression. Unlike FunctionDef, body
holds a single node.

>>> print(ast.dump(ast.parse('lambda x,y: ...'), indent=4))

Module(

body=[

Expr(

value=Lambda(

args=arguments(

args=[

arg(arg='x'),

arg(arg='y')]),

body=Constant(value=Ellipsis)))])

class ast.arguments(posonlyargs, args, vararg, kwonlyargs, kw_defaults, kwarg, defaults)
The arguments for a function.

• posonlyargs, args and kwonlyargs are lists of arg nodes.

• vararg and kwarg are single arg nodes, referring to the *args, **kwargs parameters.

• kw_defaults is a list of default values for keyword-only arguments. If one is None, the corresponding
argument is required.

• defaults is a list of default values for arguments that can be passed positionally. If there are fewer
defaults, they correspond to the last n arguments.

class ast.arg(arg, annotation, type_comment)
A single argument in a list. arg is a raw string of the argument name; annotation is its annotation, such as
a Name node.

type_comment

type_comment is an optional string with the type annotation as a comment

>>> print(ast.dump(ast.parse("""\

... @decorator1

... @decorator2

... def f(a: 'annotation', b=1, c=2, *d, e, f=3, **g) -> 'return annotation':

... pass

... """), indent=4))

(continues on next page)

2096 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

(continued from previous page)

Module(

body=[

FunctionDef(

name='f',

args=arguments(

args=[

arg(

arg='a',

annotation=Constant(value='annotation')),

arg(arg='b'),

arg(arg='c')],

vararg=arg(arg='d'),

kwonlyargs=[

arg(arg='e'),

arg(arg='f')],

kw_defaults=[

None,

Constant(value=3)],

kwarg=arg(arg='g'),

defaults=[

Constant(value=1),

Constant(value=2)]),

body=[

Pass()],

decorator_list=[

Name(id='decorator1', ctx=Load()),

Name(id='decorator2', ctx=Load())],

returns=Constant(value='return annotation'))])

class ast.Return(value)
A return statement.

>>> print(ast.dump(ast.parse('return 4'), indent=4))

Module(

body=[

Return(

value=Constant(value=4))])

class ast.Yield(value)
class ast.YieldFrom(value)

A yield or yield from expression. Because these are expressions, they must be wrapped in an Expr node
if the value sent back is not used.

>>> print(ast.dump(ast.parse('yield x'), indent=4))

Module(

body=[

Expr(

value=Yield(

value=Name(id='x', ctx=Load())))])

>>> print(ast.dump(ast.parse('yield from x'), indent=4))

Module(

body=[

Expr(

value=YieldFrom(

value=Name(id='x', ctx=Load())))])

33.1. ast— Abstract Syntax Trees 2097



The Python Library Reference, Release 3.13.1

class ast.Global(names)
class ast.Nonlocal(names)

global and nonlocal statements. names is a list of raw strings.

>>> print(ast.dump(ast.parse('global x,y,z'), indent=4))

Module(

body=[

Global(

names=[

'x',

'y',

'z'])])

>>> print(ast.dump(ast.parse('nonlocal x,y,z'), indent=4))

Module(

body=[

Nonlocal(

names=[

'x',

'y',

'z'])])

class ast.ClassDef(name, bases, keywords, body, decorator_list, type_params)
A class definition.

• name is a raw string for the class name

• bases is a list of nodes for explicitly specified base classes.

• keywords is a list of keyword nodes, principally for ‘metaclass’. Other keywords will be passed to the
metaclass, as per PEP 3115.

• body is a list of nodes representing the code within the class definition.

• decorator_list is a list of nodes, as in FunctionDef.

• type_params is a list of type parameters.

>>> print(ast.dump(ast.parse("""\

... @decorator1

... @decorator2

... class Foo(base1, base2, metaclass=meta):

... pass

... """), indent=4))

Module(

body=[

ClassDef(

name='Foo',

bases=[

Name(id='base1', ctx=Load()),

Name(id='base2', ctx=Load())],

keywords=[

keyword(

arg='metaclass',

value=Name(id='meta', ctx=Load()))],

body=[

Pass()],

decorator_list=[

Name(id='decorator1', ctx=Load()),

Name(id='decorator2', ctx=Load())])])

2098 Chapter 33. Python Language Services

https://peps.python.org/pep-3115/


The Python Library Reference, Release 3.13.1

Changed in version 3.12: Added type_params.

Async and await

class ast.AsyncFunctionDef(name, args, body, decorator_list, returns, type_comment, type_params)

An async def function definition. Has the same fields as FunctionDef.

Changed in version 3.12: Added type_params.

class ast.Await(value)
An await expression. value is what it waits for. Only valid in the body of an AsyncFunctionDef.

>>> print(ast.dump(ast.parse("""\

... async def f():

... await other_func()

... """), indent=4))

Module(

body=[

AsyncFunctionDef(

name='f',

args=arguments(),

body=[

Expr(

value=Await(

value=Call(

func=Name(id='other_func', ctx=Load()))))])])

class ast.AsyncFor(target, iter, body, orelse, type_comment)
class ast.AsyncWith(items, body, type_comment)

async for loops and async with context managers. They have the same fields as For and With, respec-
tively. Only valid in the body of an AsyncFunctionDef.

Note

When a string is parsed by ast.parse(), operator nodes (subclasses of ast.operator, ast.unaryop, ast.
cmpop, ast.boolop and ast.expr_context) on the returned tree will be singletons. Changes to one will be
reflected in all other occurrences of the same value (e.g. ast.Add).

33.1.3 ast Helpers

Apart from the node classes, the ast module defines these utility functions and classes for traversing abstract syntax
trees:

ast.parse(source, filename=’<unknown>’, mode=’exec’, *, type_comments=False, feature_version=None,
optimize=-1)

Parse the source into an AST node. Equivalent to compile(source, filename, mode,

flags=FLAGS_VALUE, optimize=optimize), where FLAGS_VALUE is ast.PyCF_ONLY_AST if
optimize <= 0 and ast.PyCF_OPTIMIZED_AST otherwise.

If type_comments=True is given, the parser is modified to check and return type comments as specified
by PEP 484 and PEP 526. This is equivalent to adding ast.PyCF_TYPE_COMMENTS to the flags passed
to compile(). This will report syntax errors for misplaced type comments. Without this flag, type com-
ments will be ignored, and the type_comment field on selected AST nodes will always be None. In addition,
the locations of # type: ignore comments will be returned as the type_ignores attribute of Module
(otherwise it is always an empty list).

In addition, if mode is 'func_type', the input syntax is modified to correspond to PEP 484 “signature type
comments”, e.g. (str, int) -> List[str].

33.1. ast— Abstract Syntax Trees 2099

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/
https://peps.python.org/pep-0484/


The Python Library Reference, Release 3.13.1

Setting feature_version to a tuple (major, minor) will result in a “best-effort” attempt to parse using
that Python version’s grammar. For example, setting feature_version=(3, 9) will attempt to disallow
parsing of match statements. Currently majormust equal to 3. The lowest supported version is (3, 7) (and
this may increase in future Python versions); the highest is sys.version_info[0:2]. “Best-effort” attempt
means there is no guarantee that the parse (or success of the parse) is the same as when run on the Python
version corresponding to feature_version.

If source contains a null character (\0), ValueError is raised.

Warning

Note that successfully parsing source code into an AST object doesn’t guarantee that the source code
provided is valid Python code that can be executed as the compilation step can raise further SyntaxError
exceptions. For instance, the source return 42 generates a valid AST node for a return statement, but it
cannot be compiled alone (it needs to be inside a function node).

In particular, ast.parse() won’t do any scoping checks, which the compilation step does.

Warning

It is possible to crash the Python interpreter with a sufficiently large/complex string due to stack depth
limitations in Python’s AST compiler.

Changed in version 3.8: Added type_comments, mode='func_type' and feature_version.

Changed in version 3.13: The minimum supported version for feature_version is now (3, 7). The
optimize argument was added.

ast.unparse(ast_obj)
Unparse an ast.AST object and generate a string with code that would produce an equivalent ast.AST object
if parsed back with ast.parse().

Warning

The produced code string will not necessarily be equal to the original code that generated the ast.AST
object (without any compiler optimizations, such as constant tuples/frozensets).

Warning

Trying to unparse a highly complex expression would result with RecursionError.

Added in version 3.9.

ast.literal_eval(node_or_string)

Evaluate an expression node or a string containing only a Python literal or container display. The string or
node provided may only consist of the following Python literal structures: strings, bytes, numbers, tuples, lists,
dicts, sets, booleans, None and Ellipsis.

This can be used for evaluating strings containing Python values without the need to parse the values oneself.
It is not capable of evaluating arbitrarily complex expressions, for example involving operators or indexing.

This function had been documented as “safe” in the past without defining what that meant. That was mislead-
ing. This is specifically designed not to execute Python code, unlike the more general eval(). There is no
namespace, no name lookups, or ability to call out. But it is not free from attack: A relatively small input
can lead to memory exhaustion or to C stack exhaustion, crashing the process. There is also the possibility

2100 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

for excessive CPU consumption denial of service on some inputs. Calling it on untrusted data is thus not
recommended.

Warning

It is possible to crash the Python interpreter due to stack depth limitations in Python’s AST compiler.

It can raise ValueError, TypeError, SyntaxError, MemoryError and RecursionError depend-
ing on the malformed input.

Changed in version 3.2: Now allows bytes and set literals.

Changed in version 3.9: Now supports creating empty sets with 'set()'.

Changed in version 3.10: For string inputs, leading spaces and tabs are now stripped.

ast.get_docstring(node, clean=True)
Return the docstring of the given node (which must be a FunctionDef, AsyncFunctionDef, ClassDef,
or Module node), or None if it has no docstring. If clean is true, clean up the docstring’s indentation with
inspect.cleandoc().

Changed in version 3.5: AsyncFunctionDef is now supported.

ast.get_source_segment(source, node, *, padded=False)
Get source code segment of the source that generated node. If some location information (lineno,
end_lineno, col_offset, or end_col_offset) is missing, return None.

If padded is True, the first line of a multi-line statement will be padded with spaces to match its original
position.

Added in version 3.8.

ast.fix_missing_locations(node)
When you compile a node tree with compile(), the compiler expects lineno and col_offset attributes
for every node that supports them. This is rather tedious to fill in for generated nodes, so this helper adds
these attributes recursively where not already set, by setting them to the values of the parent node. It works
recursively starting at node.

ast.increment_lineno(node, n=1)
Increment the line number and end line number of each node in the tree starting at node by n. This is useful
to “move code” to a different location in a file.

ast.copy_location(new_node, old_node)
Copy source location (lineno, col_offset, end_lineno, and end_col_offset) from old_node to
new_node if possible, and return new_node.

ast.iter_fields(node)
Yield a tuple of (fieldname, value) for each field in node._fields that is present on node.

ast.iter_child_nodes(node)
Yield all direct child nodes of node, that is, all fields that are nodes and all items of fields that are lists of nodes.

ast.walk(node)
Recursively yield all descendant nodes in the tree starting at node (including node itself), in no specified order.
This is useful if you only want to modify nodes in place and don’t care about the context.

class ast.NodeVisitor

A node visitor base class that walks the abstract syntax tree and calls a visitor function for every node found.
This function may return a value which is forwarded by the visit() method.

This class is meant to be subclassed, with the subclass adding visitor methods.

33.1. ast— Abstract Syntax Trees 2101



The Python Library Reference, Release 3.13.1

visit(node)
Visit a node. The default implementation calls the method called self.visit_classname where
classname is the name of the node class, or generic_visit() if that method doesn’t exist.

generic_visit(node)
This visitor calls visit() on all children of the node.

Note that child nodes of nodes that have a custom visitor method won’t be visited unless the visitor calls
generic_visit() or visits them itself.

visit_Constant(node)
Handles all constant nodes.

Don’t use the NodeVisitor if you want to apply changes to nodes during traversal. For this a special visitor
exists (NodeTransformer) that allows modifications.

Deprecated since version 3.8: Methods visit_Num(), visit_Str(), visit_Bytes(),
visit_NameConstant() and visit_Ellipsis() are deprecated now and will not be called in
future Python versions. Add the visit_Constant() method to handle all constant nodes.

class ast.NodeTransformer

A NodeVisitor subclass that walks the abstract syntax tree and allows modification of nodes.

The NodeTransformer will walk the AST and use the return value of the visitor methods to replace or
remove the old node. If the return value of the visitor method is None, the node will be removed from its
location, otherwise it is replaced with the return value. The return value may be the original node in which
case no replacement takes place.

Here is an example transformer that rewrites all occurrences of name lookups (foo) to data['foo']:

class RewriteName(NodeTransformer):

def visit_Name(self, node):

return Subscript(

value=Name(id='data', ctx=Load()),

slice=Constant(value=node.id),

ctx=node.ctx

)

Keep in mind that if the node you’re operating on has child nodes you must either transform the child nodes
yourself or call the generic_visit() method for the node first.

For nodes that were part of a collection of statements (that applies to all statement nodes), the visitor may also
return a list of nodes rather than just a single node.

If NodeTransformer introduces new nodes (that weren’t part of original tree) without giving them loca-
tion information (such as lineno), fix_missing_locations() should be called with the new sub-tree to
recalculate the location information:

tree = ast.parse('foo', mode='eval')

new_tree = fix_missing_locations(RewriteName().visit(tree))

Usually you use the transformer like this:

node = YourTransformer().visit(node)

ast.dump(node, annotate_fields=True, include_attributes=False, *, indent=None, show_empty=False)
Return a formatted dump of the tree in node. This is mainly useful for debugging purposes. If annotate_fields
is true (by default), the returned string will show the names and the values for fields. If annotate_fields is false,
the result string will be more compact by omitting unambiguous field names. Attributes such as line numbers
and column offsets are not dumped by default. If this is wanted, include_attributes can be set to true.

2102 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

If indent is a non-negative integer or string, then the tree will be pretty-printed with that indent level. An indent
level of 0, negative, or "" will only insert newlines. None (the default) selects the single line representation.
Using a positive integer indent indents that many spaces per level. If indent is a string (such as "\t"), that
string is used to indent each level.

If show_empty is False (the default), empty lists and fields that are None will be omitted from the output.

Changed in version 3.9: Added the indent option.

Changed in version 3.13: Added the show_empty option.

>>> print(ast.dump(ast.parse("""\

... async def f():

... await other_func()

... """), indent=4, show_empty=True))

Module(

body=[

AsyncFunctionDef(

name='f',

args=arguments(

posonlyargs=[],

args=[],

kwonlyargs=[],

kw_defaults=[],

defaults=[]),

body=[

Expr(

value=Await(

value=Call(

func=Name(id='other_func', ctx=Load()),

args=[],

keywords=[])))],

decorator_list=[],

type_params=[])],

type_ignores=[])

33.1.4 Compiler Flags

The following flags may be passed to compile() in order to change effects on the compilation of a program:

ast.PyCF_ALLOW_TOP_LEVEL_AWAIT

Enables support for top-level await, async for, async with and async comprehensions.

Added in version 3.8.

ast.PyCF_ONLY_AST

Generates and returns an abstract syntax tree instead of returning a compiled code object.

ast.PyCF_OPTIMIZED_AST

The returned AST is optimized according to the optimize argument in compile() or ast.parse().

Added in version 3.13.

ast.PyCF_TYPE_COMMENTS

Enables support for PEP 484 and PEP 526 style type comments (# type: <type>, # type: ignore

<stuff>).

Added in version 3.8.

33.1. ast— Abstract Syntax Trees 2103

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/


The Python Library Reference, Release 3.13.1

33.1.5 Command-Line Usage

Added in version 3.9.

The ast module can be executed as a script from the command line. It is as simple as:

python -m ast [-m <mode>] [-a] [infile]

The following options are accepted:

-h, --help

Show the help message and exit.

-m <mode>

--mode <mode>

Specify what kind of code must be compiled, like the mode argument in parse().

--no-type-comments

Don’t parse type comments.

-a, --include-attributes

Include attributes such as line numbers and column offsets.

-i <indent>

--indent <indent>

Indentation of nodes in AST (number of spaces).

If infile is specified its contents are parsed to AST and dumped to stdout. Otherwise, the content is read from
stdin.

See also

Green Tree Snakes, an external documentation resource, has good details on working with Python ASTs.

ASTTokens annotates Python ASTs with the positions of tokens and text in the source code that generated them.
This is helpful for tools that make source code transformations.

leoAst.py unifies the token-based and parse-tree-based views of python programs by inserting two-way links
between tokens and ast nodes.

LibCST parses code as a Concrete Syntax Tree that looks like an ast tree and keeps all formatting details. It’s
useful for building automated refactoring (codemod) applications and linters.

Parso is a Python parser that supports error recovery and round-trip parsing for different Python versions (in
multiple Python versions). Parso is also able to list multiple syntax errors in your Python file.

33.2 symtable— Access to the compiler’s symbol tables

Source code: Lib/symtable.py

Symbol tables are generated by the compiler from AST just before bytecode is generated. The symbol table is
responsible for calculating the scope of every identifier in the code. symtable provides an interface to examine
these tables.

33.2.1 Generating Symbol Tables

symtable.symtable(code, filename, compile_type)

Return the toplevel SymbolTable for the Python source code. filename is the name of the file containing the
code. compile_type is like the mode argument to compile().

2104 Chapter 33. Python Language Services

https://greentreesnakes.readthedocs.io/
https://asttokens.readthedocs.io/en/latest/user-guide.html
https://leo-editor.github.io/leo-editor/appendices.html#leoast-py
https://libcst.readthedocs.io/
https://parso.readthedocs.io
https://github.com/python/cpython/tree/3.13/Lib/symtable.py


The Python Library Reference, Release 3.13.1

33.2.2 Examining Symbol Tables

class symtable.SymbolTableType

An enumeration indicating the type of a SymbolTable object.

MODULE = "module"

Used for the symbol table of a module.

FUNCTION = "function"

Used for the symbol table of a function.

CLASS = "class"

Used for the symbol table of a class.

The following members refer to different flavors of annotation scopes.

ANNOTATION = "annotation"

Used for annotations if from __future__ import annotations is active.

TYPE_ALIAS = "type alias"

Used for the symbol table of type constructions.

TYPE_PARAMETERS = "type parameters"

Used for the symbol table of generic functions or generic classes.

TYPE_VARIABLE = "type variable"

Used for the symbol table of the bound, the constraint tuple or the default value of a single type variable
in the formal sense, i.e., a TypeVar, a TypeVarTuple or a ParamSpec object (the latter two do not support
a bound or a constraint tuple).

Added in version 3.13.

class symtable.SymbolTable

A namespace table for a block. The constructor is not public.

get_type()

Return the type of the symbol table. Possible values are members of the SymbolTableType enumera-
tion.

Changed in version 3.12: Added 'annotation', 'TypeVar bound', 'type alias', and 'type
parameter' as possible return values.

Changed in version 3.13: Return values are members of the SymbolTableType enumeration.

The exact values of the returned string may change in the future, and thus, it is recommended to use
SymbolTableType members instead of hard-coded strings.

get_id()

Return the table’s identifier.

get_name()

Return the table’s name. This is the name of the class if the table is for a class, the name of the function
if the table is for a function, or 'top' if the table is global (get_type() returns 'module'). For
type parameter scopes (which are used for generic classes, functions, and type aliases), it is the name of
the underlying class, function, or type alias. For type alias scopes, it is the name of the type alias. For
TypeVar bound scopes, it is the name of the TypeVar.

get_lineno()

Return the number of the first line in the block this table represents.

is_optimized()

Return True if the locals in this table can be optimized.

33.2. symtable— Access to the compiler’s symbol tables 2105



The Python Library Reference, Release 3.13.1

is_nested()

Return True if the block is a nested class or function.

has_children()

Return True if the block has nested namespaces within it. These can be obtained with
get_children().

get_identifiers()

Return a view object containing the names of symbols in the table. See the documentation of view objects.

lookup(name)

Lookup name in the table and return a Symbol instance.

get_symbols()

Return a list of Symbol instances for names in the table.

get_children()

Return a list of the nested symbol tables.

class symtable.Function

A namespace for a function or method. This class inherits from SymbolTable.

get_parameters()

Return a tuple containing names of parameters to this function.

get_locals()

Return a tuple containing names of locals in this function.

get_globals()

Return a tuple containing names of globals in this function.

get_nonlocals()

Return a tuple containing names of explicitly declared nonlocals in this function.

get_frees()

Return a tuple containing names of free (closure) variables in this function.

class symtable.Class

A namespace of a class. This class inherits from SymbolTable.

get_methods()

Return a tuple containing the names of method-like functions declared in the class.

Here, the term ‘method’ designates any function defined in the class body via def or async def.

Functions defined in a deeper scope (e.g., in an inner class) are not picked up by get_methods().

For example:

>>> import symtable

>>> st = symtable.symtable('''

... def outer(): pass

...

... class A:

... def f():

... def w(): pass

...

... def g(self): pass

...

... @classmethod

... async def h(cls): pass

...

(continues on next page)

2106 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

(continued from previous page)

... global outer

... def outer(self): pass

... ''', 'test', 'exec')

>>> class_A = st.get_children()[1]

>>> class_A.get_methods()

('f', 'g', 'h')

Although A().f() raises TypeError at runtime, A.f is still considered as a method-like function.

class symtable.Symbol

An entry in a SymbolTable corresponding to an identifier in the source. The constructor is not public.

get_name()

Return the symbol’s name.

is_referenced()

Return True if the symbol is used in its block.

is_imported()

Return True if the symbol is created from an import statement.

is_parameter()

Return True if the symbol is a parameter.

is_global()

Return True if the symbol is global.

is_nonlocal()

Return True if the symbol is nonlocal.

is_declared_global()

Return True if the symbol is declared global with a global statement.

is_local()

Return True if the symbol is local to its block.

is_annotated()

Return True if the symbol is annotated.

Added in version 3.6.

is_free()

Return True if the symbol is referenced in its block, but not assigned to.

is_assigned()

Return True if the symbol is assigned to in its block.

is_namespace()

Return True if name binding introduces new namespace.

If the name is used as the target of a function or class statement, this will be true.

For example:

>>> table = symtable.symtable("def some_func(): pass", "string", "exec")

>>> table.lookup("some_func").is_namespace()

True

Note that a single name can be bound to multiple objects. If the result is True, the name may also be
bound to other objects, like an int or list, that does not introduce a new namespace.

33.2. symtable— Access to the compiler’s symbol tables 2107



The Python Library Reference, Release 3.13.1

get_namespaces()

Return a list of namespaces bound to this name.

get_namespace()

Return the namespace bound to this name. If more than one or no namespace is bound to this name, a
ValueError is raised.

33.2.3 Command-Line Usage

Added in version 3.13.

The symtable module can be executed as a script from the command line.

python -m symtable [infile...]

Symbol tables are generated for the specified Python source files and dumped to stdout. If no input file is specified,
the content is read from stdin.

33.3 token— Constants used with Python parse trees

Source code: Lib/token.py

This module provides constants which represent the numeric values of leaf nodes of the parse tree (terminal tokens).
Refer to the file Grammar/Tokens in the Python distribution for the definitions of the names in the context of the
language grammar. The specific numeric values which the names map to may change between Python versions.

The module also provides a mapping from numeric codes to names and some functions. The functions mirror defi-
nitions in the Python C header files.

token.tok_name

Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

token.ISTERMINAL(x)
Return True for terminal token values.

token.ISNONTERMINAL(x)
Return True for non-terminal token values.

token.ISEOF(x)
Return True if x is the marker indicating the end of input.

The token constants are:

token.ENDMARKER

token.NAME

token.NUMBER

token.STRING

token.NEWLINE

token.INDENT

token.DEDENT

token.LPAR

Token value for "(".

2108 Chapter 33. Python Language Services

https://github.com/python/cpython/tree/3.13/Lib/token.py


The Python Library Reference, Release 3.13.1

token.RPAR

Token value for ")".

token.LSQB

Token value for "[".

token.RSQB

Token value for "]".

token.COLON

Token value for ":".

token.COMMA

Token value for ",".

token.SEMI

Token value for ";".

token.PLUS

Token value for "+".

token.MINUS

Token value for "-".

token.STAR

Token value for "*".

token.SLASH

Token value for "/".

token.VBAR

Token value for "|".

token.AMPER

Token value for "&".

token.LESS

Token value for "<".

token.GREATER

Token value for ">".

token.EQUAL

Token value for "=".

token.DOT

Token value for ".".

token.PERCENT

Token value for "%".

token.LBRACE

Token value for "{".

token.RBRACE

Token value for "}".

token.EQEQUAL

Token value for "==".

token.NOTEQUAL

Token value for "!=".

33.3. token— Constants used with Python parse trees 2109



The Python Library Reference, Release 3.13.1

token.LESSEQUAL

Token value for "<=".

token.GREATEREQUAL

Token value for ">=".

token.TILDE

Token value for "~".

token.CIRCUMFLEX

Token value for "^".

token.LEFTSHIFT

Token value for "<<".

token.RIGHTSHIFT

Token value for ">>".

token.DOUBLESTAR

Token value for "**".

token.PLUSEQUAL

Token value for "+=".

token.MINEQUAL

Token value for "-=".

token.STAREQUAL

Token value for "*=".

token.SLASHEQUAL

Token value for "/=".

token.PERCENTEQUAL

Token value for "%=".

token.AMPEREQUAL

Token value for "&=".

token.VBAREQUAL

Token value for "|=".

token.CIRCUMFLEXEQUAL

Token value for "^=".

token.LEFTSHIFTEQUAL

Token value for "<<=".

token.RIGHTSHIFTEQUAL

Token value for ">>=".

token.DOUBLESTAREQUAL

Token value for "**=".

token.DOUBLESLASH

Token value for "//".

token.DOUBLESLASHEQUAL

Token value for "//=".

token.AT

Token value for "@".

2110 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

token.ATEQUAL

Token value for "@=".

token.RARROW

Token value for "->".

token.ELLIPSIS

Token value for "...".

token.COLONEQUAL

Token value for ":=".

token.EXCLAMATION

Token value for "!".

token.OP

token.TYPE_IGNORE

token.TYPE_COMMENT

token.SOFT_KEYWORD

token.FSTRING_START

token.FSTRING_MIDDLE

token.FSTRING_END

token.COMMENT

token.NL

token.ERRORTOKEN

token.N_TOKENS

token.NT_OFFSET

The following token type values aren’t used by the C tokenizer but are needed for the tokenize module.

token.COMMENT

Token value used to indicate a comment.

token.NL

Token value used to indicate a non-terminating newline. The NEWLINE token indicates the end of a logical
line of Python code; NL tokens are generated when a logical line of code is continued over multiple physical
lines.

token.ENCODING

Token value that indicates the encoding used to decode the source bytes into text. The first token returned by
tokenize.tokenize() will always be an ENCODING token.

token.TYPE_COMMENT

Token value indicating that a type comment was recognized. Such tokens are only produced when ast.

parse() is invoked with type_comments=True.

token.EXACT_TOKEN_TYPES

A dictionary mapping the string representation of a token to its numeric code.

Added in version 3.8.

33.3. token— Constants used with Python parse trees 2111



The Python Library Reference, Release 3.13.1

Changed in version 3.5: Added AWAIT and ASYNC tokens.

Changed in version 3.7: Added COMMENT, NL and ENCODING tokens.

Changed in version 3.7: Removed AWAIT and ASYNC tokens. “async” and “await” are now tokenized as NAME tokens.

Changed in version 3.8: Added TYPE_COMMENT, TYPE_IGNORE, COLONEQUAL. Added AWAIT and ASYNC tokens
back (they’re needed to support parsing older Python versions for ast.parse() with feature_version set to 6
or lower).

Changed in version 3.13: Removed AWAIT and ASYNC tokens again.

33.4 keyword— Testing for Python keywords

Source code: Lib/keyword.py

This module allows a Python program to determine if a string is a keyword or soft keyword.

keyword.iskeyword(s)
Return True if s is a Python keyword.

keyword.kwlist

Sequence containing all the keywords defined for the interpreter. If any keywords are defined to only be active
when particular __future__ statements are in effect, these will be included as well.

keyword.issoftkeyword(s)
Return True if s is a Python soft keyword.

Added in version 3.9.

keyword.softkwlist

Sequence containing all the soft keywords defined for the interpreter. If any soft keywords are defined to only
be active when particular __future__ statements are in effect, these will be included as well.

Added in version 3.9.

33.5 tokenize— Tokenizer for Python source

Source code: Lib/tokenize.py

The tokenize module provides a lexical scanner for Python source code, implemented in Python. The scanner
in this module returns comments as tokens as well, making it useful for implementing “pretty-printers”, including
colorizers for on-screen displays.

To simplify token stream handling, all operator and delimiter tokens and Ellipsis are returned using the generic
OP token type. The exact type can be determined by checking the exact_type property on the named tuple returned
from tokenize.tokenize().

Warning

Note that the functions in this module are only designed to parse syntactically valid Python code (code that does
not raise when parsed using ast.parse()). The behavior of the functions in this module is undefined when
providing invalid Python code and it can change at any point.

2112 Chapter 33. Python Language Services

https://github.com/python/cpython/tree/3.13/Lib/keyword.py
https://github.com/python/cpython/tree/3.13/Lib/tokenize.py


The Python Library Reference, Release 3.13.1

33.5.1 Tokenizing Input

The primary entry point is a generator:

tokenize.tokenize(readline)
The tokenize() generator requires one argument, readline, which must be a callable object which provides
the same interface as the io.IOBase.readline() method of file objects. Each call to the function should
return one line of input as bytes.

The generator produces 5-tuples with these members: the token type; the token string; a 2-tuple (srow,
scol) of ints specifying the row and column where the token begins in the source; a 2-tuple (erow, ecol)

of ints specifying the row and column where the token ends in the source; and the line on which the token was
found. The line passed (the last tuple item) is the physical line. The 5 tuple is returned as a named tuple with
the field names: type string start end line.

The returned named tuple has an additional property named exact_type that contains the exact operator type
for OP tokens. For all other token types exact_type equals the named tuple type field.

Changed in version 3.1: Added support for named tuples.

Changed in version 3.3: Added support for exact_type.

tokenize() determines the source encoding of the file by looking for a UTF-8 BOM or encoding cookie,
according to PEP 263.

tokenize.generate_tokens(readline)
Tokenize a source reading unicode strings instead of bytes.

Like tokenize(), the readline argument is a callable returning a single line of input. However,
generate_tokens() expects readline to return a str object rather than bytes.

The result is an iterator yielding named tuples, exactly like tokenize(). It does not yield an ENCODING

token.

All constants from the token module are also exported from tokenize.

Another function is provided to reverse the tokenization process. This is useful for creating tools that tokenize a
script, modify the token stream, and write back the modified script.

tokenize.untokenize(iterable)
Converts tokens back into Python source code. The iterable must return sequences with at least two elements,
the token type and the token string. Any additional sequence elements are ignored.

The reconstructed script is returned as a single string. The result is guaranteed to tokenize back to match the
input so that the conversion is lossless and round-trips are assured. The guarantee applies only to the token
type and token string as the spacing between tokens (column positions) may change.

It returns bytes, encoded using the ENCODING token, which is the first token sequence output by tokenize().
If there is no encoding token in the input, it returns a str instead.

tokenize() needs to detect the encoding of source files it tokenizes. The function it uses to do this is available:

tokenize.detect_encoding(readline)
The detect_encoding() function is used to detect the encoding that should be used to decode a Python
source file. It requires one argument, readline, in the same way as the tokenize() generator.

It will call readline a maximum of twice, and return the encoding used (as a string) and a list of any lines (not
decoded from bytes) it has read in.

It detects the encoding from the presence of a UTF-8 BOM or an encoding cookie as specified in PEP 263.
If both a BOM and a cookie are present, but disagree, a SyntaxError will be raised. Note that if the BOM
is found, 'utf-8-sig' will be returned as an encoding.

If no encoding is specified, then the default of 'utf-8' will be returned.

Use open() to open Python source files: it uses detect_encoding() to detect the file encoding.

33.5. tokenize— Tokenizer for Python source 2113

https://peps.python.org/pep-0263/
https://peps.python.org/pep-0263/


The Python Library Reference, Release 3.13.1

tokenize.open(filename)
Open a file in read only mode using the encoding detected by detect_encoding().

Added in version 3.2.

exception tokenize.TokenError

Raised when either a docstring or expression that may be split over several lines is not completed anywhere in
the file, for example:

"""Beginning of

docstring

or:

[1,

2,

3

33.5.2 Command-Line Usage

Added in version 3.3.

The tokenize module can be executed as a script from the command line. It is as simple as:

python -m tokenize [-e] [filename.py]

The following options are accepted:

-h, --help

show this help message and exit

-e, --exact

display token names using the exact type

If filename.py is specified its contents are tokenized to stdout. Otherwise, tokenization is performed on stdin.

33.5.3 Examples

Example of a script rewriter that transforms float literals into Decimal objects:

from tokenize import tokenize, untokenize, NUMBER, STRING, NAME, OP

from io import BytesIO

def decistmt(s):

"""Substitute Decimals for floats in a string of statements.

>>> from decimal import Decimal

>>> s = 'print(+21.3e-5*-.1234/81.7)'

>>> decistmt(s)

"print (+Decimal ('21.3e-5')*-Decimal ('.1234')/Decimal ('81.7'))"

The format of the exponent is inherited from the platform C library.

Known cases are "e-007" (Windows) and "e-07" (not Windows). Since

we're only showing 12 digits, and the 13th isn't close to 5, the

rest of the output should be platform-independent.

>>> exec(s) #doctest: +ELLIPSIS

-3.21716034272e-0...7

Output from calculations with Decimal should be identical across all

(continues on next page)

2114 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

(continued from previous page)

platforms.

>>> exec(decistmt(s))

-3.217160342717258261933904529E-7

"""

result = []

g = tokenize(BytesIO(s.encode('utf-8')).readline) # tokenize the string

for toknum, tokval, _, _, _ in g:

if toknum == NUMBER and '.' in tokval: # replace NUMBER tokens

result.extend([

(NAME, 'Decimal'),

(OP, '('),

(STRING, repr(tokval)),

(OP, ')')

])

else:

result.append((toknum, tokval))

return untokenize(result).decode('utf-8')

Example of tokenizing from the command line. The script:

def say_hello():

print("Hello, World!")

say_hello()

will be tokenized to the following output where the first column is the range of the line/column coordinates where
the token is found, the second column is the name of the token, and the final column is the value of the token (if any)

$ python -m tokenize hello.py

0,0-0,0: ENCODING 'utf-8'

1,0-1,3: NAME 'def'

1,4-1,13: NAME 'say_hello'

1,13-1,14: OP '('

1,14-1,15: OP ')'

1,15-1,16: OP ':'

1,16-1,17: NEWLINE '\n'

2,0-2,4: INDENT ' '

2,4-2,9: NAME 'print'

2,9-2,10: OP '('

2,10-2,25: STRING '"Hello, World!"'

2,25-2,26: OP ')'

2,26-2,27: NEWLINE '\n'

3,0-3,1: NL '\n'

4,0-4,0: DEDENT ''

4,0-4,9: NAME 'say_hello'

4,9-4,10: OP '('

4,10-4,11: OP ')'

4,11-4,12: NEWLINE '\n'

5,0-5,0: ENDMARKER ''

The exact token type names can be displayed using the -e option:

$ python -m tokenize -e hello.py

0,0-0,0: ENCODING 'utf-8'

1,0-1,3: NAME 'def'

1,4-1,13: NAME 'say_hello'

(continues on next page)

33.5. tokenize— Tokenizer for Python source 2115



The Python Library Reference, Release 3.13.1

(continued from previous page)

1,13-1,14: LPAR '('

1,14-1,15: RPAR ')'

1,15-1,16: COLON ':'

1,16-1,17: NEWLINE '\n'

2,0-2,4: INDENT ' '

2,4-2,9: NAME 'print'

2,9-2,10: LPAR '('

2,10-2,25: STRING '"Hello, World!"'

2,25-2,26: RPAR ')'

2,26-2,27: NEWLINE '\n'

3,0-3,1: NL '\n'

4,0-4,0: DEDENT ''

4,0-4,9: NAME 'say_hello'

4,9-4,10: LPAR '('

4,10-4,11: RPAR ')'

4,11-4,12: NEWLINE '\n'

5,0-5,0: ENDMARKER ''

Example of tokenizing a file programmatically, reading unicode strings instead of bytes with generate_tokens():

import tokenize

with tokenize.open('hello.py') as f:

tokens = tokenize.generate_tokens(f.readline)

for token in tokens:

print(token)

Or reading bytes directly with tokenize():

import tokenize

with open('hello.py', 'rb') as f:

tokens = tokenize.tokenize(f.readline)

for token in tokens:

print(token)

33.6 tabnanny— Detection of ambiguous indentation

Source code: Lib/tabnanny.py

For the time being this module is intended to be called as a script. However it is possible to import it into an IDE
and use the function check() described below.

Note

The API provided by this module is likely to change in future releases; such changes may not be backward
compatible.

tabnanny.check(file_or_dir)
If file_or_dir is a directory and not a symbolic link, then recursively descend the directory tree named by
file_or_dir, checking all .py files along the way. If file_or_dir is an ordinary Python source file, it is checked
for whitespace related problems. The diagnostic messages are written to standard output using the print()
function.

2116 Chapter 33. Python Language Services

https://github.com/python/cpython/tree/3.13/Lib/tabnanny.py


The Python Library Reference, Release 3.13.1

tabnanny.verbose

Flag indicating whether to print verbose messages. This is incremented by the -v option if called as a script.

tabnanny.filename_only

Flag indicating whether to print only the filenames of files containing whitespace related problems. This is set
to true by the -q option if called as a script.

exception tabnanny.NannyNag

Raised by process_tokens() if detecting an ambiguous indent. Captured and handled in check().

tabnanny.process_tokens(tokens)

This function is used by check() to process tokens generated by the tokenize module.

See also

Module tokenize
Lexical scanner for Python source code.

33.7 pyclbr— Python module browser support

Source code: Lib/pyclbr.py

The pyclbr module provides limited information about the functions, classes, and methods defined in a Python-
coded module. The information is sufficient to implement a module browser. The information is extracted from the
Python source code rather than by importing the module, so this module is safe to use with untrusted code. This
restriction makes it impossible to use this module with modules not implemented in Python, including all standard
and optional extension modules.

pyclbr.readmodule(module, path=None)
Return a dictionarymappingmodule-level class names to class descriptors. If possible, descriptors for imported
base classes are included. Parameter module is a string with the name of the module to read; it may be the
name of a module within a package. If given, path is a sequence of directory paths prepended to sys.path,
which is used to locate the module source code.

This function is the original interface and is only kept for back compatibility. It returns a filtered version of
the following.

pyclbr.readmodule_ex(module, path=None)
Return a dictionary-based tree containing a function or class descriptors for each function and class defined
in the module with a def or class statement. The returned dictionary maps module-level function and class
names to their descriptors. Nested objects are entered into the children dictionary of their parent. As with
readmodule, module names the module to be read and path is prepended to sys.path. If the module being read
is a package, the returned dictionary has a key '__path__'whose value is a list containing the package search
path.

Added in version 3.7: Descriptors for nested definitions. They are accessed through the new children attribute. Each
has a new parent attribute.

The descriptors returned by these functions are instances of Function and Class classes. Users are not expected to
create instances of these classes.

33.7.1 Function Objects

class pyclbr.Function

Class Function instances describe functions defined by def statements. They have the following attributes:

33.7. pyclbr— Python module browser support 2117

https://github.com/python/cpython/tree/3.13/Lib/pyclbr.py


The Python Library Reference, Release 3.13.1

file

Name of the file in which the function is defined.

module

The name of the module defining the function described.

name

The name of the function.

lineno

The line number in the file where the definition starts.

parent

For top-level functions, None. For nested functions, the parent.

Added in version 3.7.

children

A dictionary mapping names to descriptors for nested functions and classes.

Added in version 3.7.

is_async

True for functions that are defined with the async prefix, False otherwise.

Added in version 3.10.

33.7.2 Class Objects

class pyclbr.Class

Class Class instances describe classes defined by class statements. They have the same attributes as
Functions and two more.

file

Name of the file in which the class is defined.

module

The name of the module defining the class described.

name

The name of the class.

lineno

The line number in the file where the definition starts.

parent

For top-level classes, None. For nested classes, the parent.

Added in version 3.7.

children

A dictionary mapping names to descriptors for nested functions and classes.

Added in version 3.7.

super

A list of Class objects which describe the immediate base classes of the class being described. Classes
which are named as superclasses but which are not discoverable by readmodule_ex() are listed as a
string with the class name instead of as Class objects.

methods

A dictionarymapping method names to line numbers. This can be derived from the newer children
dictionary, but remains for back-compatibility.

2118 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

33.8 py_compile— Compile Python source files

Source code: Lib/py_compile.py

The py_compile module provides a function to generate a byte-code file from a source file, and another function
used when the module source file is invoked as a script.

Though not often needed, this function can be useful when installing modules for shared use, especially if some of
the users may not have permission to write the byte-code cache files in the directory containing the source code.

exception py_compile.PyCompileError

Exception raised when an error occurs while attempting to compile the file.

py_compile.compile(file, cfile=None, dfile=None, doraise=False, optimize=-1,
invalidation_mode=PycInvalidationMode.TIMESTAMP, quiet=0)

Compile a source file to byte-code and write out the byte-code cache file. The source code is loaded from
the file named file. The byte-code is written to cfile, which defaults to the PEP 3147/PEP 488 path, end-
ing in .pyc. For example, if file is /foo/bar/baz.py cfile will default to /foo/bar/__pycache__/

baz.cpython-32.pyc for Python 3.2. If dfile is specified, it is used instead of file as the name of the
source file from which source lines are obtained for display in exception tracebacks. If doraise is true, a
PyCompileError is raised when an error is encountered while compiling file. If doraise is false (the de-
fault), an error string is written to sys.stderr, but no exception is raised. This function returns the path to
byte-compiled file, i.e. whatever cfile value was used.

The doraise and quiet arguments determine how errors are handled while compiling file. If quiet is 0 or 1, and
doraise is false, the default behaviour is enabled: an error string is written to sys.stderr, and the function
returns None instead of a path. If doraise is true, a PyCompileError is raised instead. However if quiet is
2, no message is written, and doraise has no effect.

If the path that cfile becomes (either explicitly specified or computed) is a symlink or non-regular file,
FileExistsError will be raised. This is to act as a warning that import will turn those paths into regu-
lar files if it is allowed to write byte-compiled files to those paths. This is a side-effect of import using file
renaming to place the final byte-compiled file into place to prevent concurrent file writing issues.

optimize controls the optimization level and is passed to the built-in compile() function. The default of -1
selects the optimization level of the current interpreter.

invalidation_mode should be a member of the PycInvalidationMode enum and controls how the gener-
ated bytecode cache is invalidated at runtime. The default is PycInvalidationMode.CHECKED_HASH if
the SOURCE_DATE_EPOCH environment variable is set, otherwise the default is PycInvalidationMode.
TIMESTAMP.

Changed in version 3.2: Changed default value of cfile to be PEP 3147-compliant. Previous default was file
+ 'c' ('o' if optimization was enabled). Also added the optimize parameter.

Changed in version 3.4: Changed code to use importlib for the byte-code cache file writing. This means file
creation/writing semantics now match what importlib does, e.g. permissions, write-and-move semantics,
etc. Also added the caveat that FileExistsError is raised if cfile is a symlink or non-regular file.

Changed in version 3.7: The invalidation_mode parameter was added as specified in PEP 552.
If the SOURCE_DATE_EPOCH environment variable is set, invalidation_mode will be forced to
PycInvalidationMode.CHECKED_HASH.

Changed in version 3.7.2: The SOURCE_DATE_EPOCH environment variable no longer overrides the value of
the invalidation_mode argument, and determines its default value instead.

Changed in version 3.8: The quiet parameter was added.

class py_compile.PycInvalidationMode

An enumeration of possible methods the interpreter can use to determine whether a bytecode file is up to date
with a source file. The .pyc file indicates the desired invalidation mode in its header. See pyc-invalidation for
more information on how Python invalidates .pyc files at runtime.

33.8. py_compile— Compile Python source files 2119

https://github.com/python/cpython/tree/3.13/Lib/py_compile.py
https://peps.python.org/pep-3147/
https://peps.python.org/pep-0488/
https://peps.python.org/pep-3147/
https://peps.python.org/pep-0552/


The Python Library Reference, Release 3.13.1

Added in version 3.7.

TIMESTAMP

The .pyc file includes the timestamp and size of the source file, which Python will compare against the
metadata of the source file at runtime to determine if the .pyc file needs to be regenerated.

CHECKED_HASH

The .pyc file includes a hash of the source file content, which Python will compare against the source
at runtime to determine if the .pyc file needs to be regenerated.

UNCHECKED_HASH

Like CHECKED_HASH, the .pyc file includes a hash of the source file content. However, Python will at
runtime assume the .pyc file is up to date and not validate the .pyc against the source file at all.

This option is useful when the .pycs are kept up to date by some system external to Python like a build
system.

33.8.1 Command-Line Interface

This module can be invoked as a script to compile several source files. The files named in filenames are compiled
and the resulting bytecode is cached in the normal manner. This program does not search a directory structure to
locate source files; it only compiles files named explicitly. The exit status is nonzero if one of the files could not be
compiled.

<file> ... <fileN>

-

Positional arguments are files to compile. If - is the only parameter, the list of files is taken from standard
input.

-q, --quiet

Suppress errors output.

Changed in version 3.2: Added support for -.

Changed in version 3.10: Added support for -q.

See also

Module compileall
Utilities to compile all Python source files in a directory tree.

33.9 compileall— Byte-compile Python libraries

Source code: Lib/compileall.py

This module provides some utility functions to support installing Python libraries. These functions compile Python
source files in a directory tree. This module can be used to create the cached byte-code files at library installation
time, which makes them available for use even by users who don’t have write permission to the library directories.

Availability: not WASI.

This module does not work or is not available on WebAssembly. SeeWebAssembly platforms for more information.

33.9.1 Command-line use

This module can work as a script (using python -m compileall) to compile Python sources.

directory ...

2120 Chapter 33. Python Language Services

https://github.com/python/cpython/tree/3.13/Lib/compileall.py


The Python Library Reference, Release 3.13.1

file ...

Positional arguments are files to compile or directories that contain source files, traversed recursively. If no
argument is given, behave as if the command line was -l <directories from sys.path>.

-l

Do not recurse into subdirectories, only compile source code files directly contained in the named or implied
directories.

-f

Force rebuild even if timestamps are up-to-date.

-q

Do not print the list of files compiled. If passed once, error messages will still be printed. If passed twice
(-qq), all output is suppressed.

-d destdir

Directory prepended to the path to each file being compiled. This will appear in compilation time tracebacks,
and is also compiled in to the byte-code file, where it will be used in tracebacks and other messages in cases
where the source file does not exist at the time the byte-code file is executed.

-s strip_prefix

-p prepend_prefix

Remove (-s) or append (-p) the given prefix of paths recorded in the .pyc files. Cannot be combined with
-d.

-x regex

regex is used to search the full path to each file considered for compilation, and if the regex produces a match,
the file is skipped.

-i list

Read the file list and add each line that it contains to the list of files and directories to compile. If list is
-, read lines from stdin.

-b

Write the byte-code files to their legacy locations and names, which may overwrite byte-code files created by
another version of Python. The default is to write files to their PEP 3147 locations and names, which allows
byte-code files from multiple versions of Python to coexist.

-r

Control the maximum recursion level for subdirectories. If this is given, then -l option will not be taken
into account. python -m compileall <directory> -r 0 is equivalent to python -m compileall

<directory> -l.

-j N

Use N workers to compile the files within the given directory. If 0 is used, then the result of os.

process_cpu_count() will be used.

--invalidation-mode [timestamp|checked-hash|unchecked-hash]

Control how the generated byte-code files are invalidated at runtime. The timestamp value, means that
.pyc files with the source timestamp and size embedded will be generated. The checked-hash and
unchecked-hash values cause hash-based pycs to be generated. Hash-based pycs embed a hash of the
source file contents rather than a timestamp. See pyc-invalidation for more information on how Python vali-
dates bytecode cache files at runtime. The default is timestamp if the SOURCE_DATE_EPOCH environment
variable is not set, and checked-hash if the SOURCE_DATE_EPOCH environment variable is set.

-o level

Compile with the given optimization level. May be used multiple times to compile for multiple levels at a time
(for example, compileall -o 1 -o 2).

33.9. compileall— Byte-compile Python libraries 2121

https://peps.python.org/pep-3147/


The Python Library Reference, Release 3.13.1

-e dir

Ignore symlinks pointing outside the given directory.

--hardlink-dupes

If two .pyc files with different optimization level have the same content, use hard links to consolidate duplicate
files.

Changed in version 3.2: Added the -i, -b and -h options.

Changed in version 3.5: Added the -j, -r, and -qq options. -q option was changed to a multilevel value. -b will
always produce a byte-code file ending in .pyc, never .pyo.

Changed in version 3.7: Added the --invalidation-mode option.

Changed in version 3.9: Added the -s, -p, -e and --hardlink-dupes options. Raised the default recursion limit
from 10 to sys.getrecursionlimit(). Added the possibility to specify the -o option multiple times.

There is no command-line option to control the optimization level used by the compile() function, because the
Python interpreter itself already provides the option: python -O -m compileall.

Similarly, the compile() function respects the sys.pycache_prefix setting. The generated bytecode cache will
only be useful if compile() is run with the same sys.pycache_prefix (if any) that will be used at runtime.

33.9.2 Public functions

compileall.compile_dir(dir, maxlevels=sys.getrecursionlimit(), ddir=None, force=False, rx=None, quiet=0,
legacy=False, optimize=-1, workers=1, invalidation_mode=None, *, stripdir=None,
prependdir=None, limit_sl_dest=None, hardlink_dupes=False)

Recursively descend the directory tree named by dir, compiling all .py files along the way. Return a true value
if all the files compiled successfully, and a false value otherwise.

The maxlevels parameter is used to limit the depth of the recursion; it defaults to sys.

getrecursionlimit().

If ddir is given, it is prepended to the path to each file being compiled for use in compilation time tracebacks,
and is also compiled in to the byte-code file, where it will be used in tracebacks and other messages in cases
where the source file does not exist at the time the byte-code file is executed.

If force is true, modules are re-compiled even if the timestamps are up to date.

If rx is given, its search method is called on the complete path to each file considered for compilation, and
if it returns a true value, the file is skipped. This can be used to exclude files matching a regular expression,
given as a re.Pattern object.

If quiet is False or 0 (the default), the filenames and other information are printed to standard out. Set to 1,
only errors are printed. Set to 2, all output is suppressed.

If legacy is true, byte-code files are written to their legacy locations and names, which may overwrite byte-code
files created by another version of Python. The default is to write files to their PEP 3147 locations and names,
which allows byte-code files from multiple versions of Python to coexist.

optimize specifies the optimization level for the compiler. It is passed to the built-in compile() function.
Accepts also a sequence of optimization levels which lead to multiple compilations of one .py file in one call.

The argument workers specifies how many workers are used to compile files in parallel. The default is to not
use multiple workers. If the platform can’t use multiple workers andworkers argument is given, then sequential
compilation will be used as a fallback. If workers is 0, the number of cores in the system is used. If workers
is lower than 0, a ValueError will be raised.

invalidation_mode should be a member of the py_compile.PycInvalidationMode enum and controls
how the generated pycs are invalidated at runtime.

The stripdir, prependdir and limit_sl_dest arguments correspond to the -s, -p and -e options described above.
They may be specified as str or os.PathLike.

2122 Chapter 33. Python Language Services

https://peps.python.org/pep-3147/


The Python Library Reference, Release 3.13.1

If hardlink_dupes is true and two .pyc files with different optimization level have the same content, use hard
links to consolidate duplicate files.

Changed in version 3.2: Added the legacy and optimize parameter.

Changed in version 3.5: Added the workers parameter.

Changed in version 3.5: quiet parameter was changed to a multilevel value.

Changed in version 3.5: The legacy parameter only writes out .pyc files, not .pyo files no matter what the
value of optimize is.

Changed in version 3.6: Accepts a path-like object.

Changed in version 3.7: The invalidation_mode parameter was added.

Changed in version 3.7.2: The invalidation_mode parameter’s default value is updated to None.

Changed in version 3.8: Setting workers to 0 now chooses the optimal number of cores.

Changed in version 3.9: Added stripdir, prependdir, limit_sl_dest and hardlink_dupes arguments. Default value
of maxlevels was changed from 10 to sys.getrecursionlimit()

compileall.compile_file(fullname, ddir=None, force=False, rx=None, quiet=0, legacy=False, optimize=-1,
invalidation_mode=None, *, stripdir=None, prependdir=None, limit_sl_dest=None,
hardlink_dupes=False)

Compile the file with path fullname. Return a true value if the file compiled successfully, and a false value
otherwise.

If ddir is given, it is prepended to the path to the file being compiled for use in compilation time tracebacks,
and is also compiled in to the byte-code file, where it will be used in tracebacks and other messages in cases
where the source file does not exist at the time the byte-code file is executed.

If rx is given, its search method is passed the full path name to the file being compiled, and if it returns a
true value, the file is not compiled and True is returned. This can be used to exclude files matching a regular
expression, given as a re.Pattern object.

If quiet is False or 0 (the default), the filenames and other information are printed to standard out. Set to 1,
only errors are printed. Set to 2, all output is suppressed.

If legacy is true, byte-code files are written to their legacy locations and names, which may overwrite byte-code
files created by another version of Python. The default is to write files to their PEP 3147 locations and names,
which allows byte-code files from multiple versions of Python to coexist.

optimize specifies the optimization level for the compiler. It is passed to the built-in compile() function.
Accepts also a sequence of optimization levels which lead to multiple compilations of one .py file in one call.

invalidation_mode should be a member of the py_compile.PycInvalidationMode enum and controls
how the generated pycs are invalidated at runtime.

The stripdir, prependdir and limit_sl_dest arguments correspond to the -s, -p and -e options described above.
They may be specified as str or os.PathLike.

If hardlink_dupes is true and two .pyc files with different optimization level have the same content, use hard
links to consolidate duplicate files.

Added in version 3.2.

Changed in version 3.5: quiet parameter was changed to a multilevel value.

Changed in version 3.5: The legacy parameter only writes out .pyc files, not .pyo files no matter what the
value of optimize is.

Changed in version 3.7: The invalidation_mode parameter was added.

Changed in version 3.7.2: The invalidation_mode parameter’s default value is updated to None.

Changed in version 3.9: Added stripdir, prependdir, limit_sl_dest and hardlink_dupes arguments.

33.9. compileall— Byte-compile Python libraries 2123

https://peps.python.org/pep-3147/


The Python Library Reference, Release 3.13.1

compileall.compile_path(skip_curdir=True, maxlevels=0, force=False, quiet=0, legacy=False, optimize=-1,
invalidation_mode=None)

Byte-compile all the .py files found along sys.path. Return a true value if all the files compiled successfully,
and a false value otherwise.

If skip_curdir is true (the default), the current directory is not included in the search. All other parameters are
passed to the compile_dir() function. Note that unlike the other compile functions, maxlevels defaults
to 0.

Changed in version 3.2: Added the legacy and optimize parameter.

Changed in version 3.5: quiet parameter was changed to a multilevel value.

Changed in version 3.5: The legacy parameter only writes out .pyc files, not .pyo files no matter what the
value of optimize is.

Changed in version 3.7: The invalidation_mode parameter was added.

Changed in version 3.7.2: The invalidation_mode parameter’s default value is updated to None.

To force a recompile of all the .py files in the Lib/ subdirectory and all its subdirectories:

import compileall

compileall.compile_dir('Lib/', force=True)

# Perform same compilation, excluding files in .svn directories.

import re

compileall.compile_dir('Lib/', rx=re.compile(r'[/\\][.]svn'), force=True)

# pathlib.Path objects can also be used.

import pathlib

compileall.compile_dir(pathlib.Path('Lib/'), force=True)

See also

Module py_compile
Byte-compile a single source file.

33.10 dis— Disassembler for Python bytecode

Source code: Lib/dis.py

The dis module supports the analysis of CPython bytecode by disassembling it. The CPython bytecode which this
module takes as an input is defined in the file Include/opcode.h and used by the compiler and the interpreter.

CPython implementation detail: Bytecode is an implementation detail of the CPython interpreter. No guarantees
are made that bytecode will not be added, removed, or changed between versions of Python. Use of this module
should not be considered to work across Python VMs or Python releases.

Changed in version 3.6: Use 2 bytes for each instruction. Previously the number of bytes varied by instruction.

Changed in version 3.10: The argument of jump, exception handling and loop instructions is now the instruction
offset rather than the byte offset.

Changed in version 3.11: Some instructions are accompanied by one or more inline cache entries, which take the form
of CACHE instructions. These instructions are hidden by default, but can be shown by passing show_caches=True to
any dis utility. Furthermore, the interpreter now adapts the bytecode to specialize it for different runtime conditions.
The adaptive bytecode can be shown by passing adaptive=True.

2124 Chapter 33. Python Language Services

https://github.com/python/cpython/tree/3.13/Lib/dis.py


The Python Library Reference, Release 3.13.1

Changed in version 3.12: The argument of a jump is the offset of the target instruction relative to the instruction that
appears immediately after the jump instruction’s CACHE entries.

As a consequence, the presence of the CACHE instructions is transparent for forward jumps but needs to be taken into
account when reasoning about backward jumps.

Changed in version 3.13: The output shows logical labels rather than instruction offsets for jump targets and exception
handlers. The -O command line option and the show_offsets argument were added.

Example: Given the function myfunc():

def myfunc(alist):

return len(alist)

the following command can be used to display the disassembly of myfunc():

>>> dis.dis(myfunc)

2 RESUME 0

3 LOAD_GLOBAL 1 (len + NULL)

LOAD_FAST 0 (alist)

CALL 1

RETURN_VALUE

(The “2” is a line number).

33.10.1 Command-line interface

The dis module can be invoked as a script from the command line:

python -m dis [-h] [-C] [-O] [infile]

The following options are accepted:

-h, --help

Display usage and exit.

-C, --show-caches

Show inline caches.

-O, --show-offsets

Show offsets of instructions.

If infile is specified, its disassembled code will be written to stdout. Otherwise, disassembly is performed on
compiled source code received from stdin.

33.10.2 Bytecode analysis

Added in version 3.4.

The bytecode analysis API allows pieces of Python code to be wrapped in a Bytecode object that provides easy
access to details of the compiled code.

class dis.Bytecode(x, *, first_line=None, current_offset=None, show_caches=False, adaptive=False,
show_offsets=False)

Analyse the bytecode corresponding to a function, generator, asynchronous generator, coroutine, method, string
of source code, or a code object (as returned by compile()).

This is a convenience wrapper around many of the functions listed below, most notably
get_instructions(), as iterating over a Bytecode instance yields the bytecode operations as
Instruction instances.

33.10. dis— Disassembler for Python bytecode 2125



The Python Library Reference, Release 3.13.1

If first_line is not None, it indicates the line number that should be reported for the first source line in the
disassembled code. Otherwise, the source line information (if any) is taken directly from the disassembled
code object.

If current_offset is not None, it refers to an instruction offset in the disassembled code. Setting this means
dis() will display a “current instruction” marker against the specified opcode.

If show_caches is True, dis() will display inline cache entries used by the interpreter to specialize the byte-
code.

If adaptive is True, dis() will display specialized bytecode that may be different from the original bytecode.

If show_offsets is True, dis() will include instruction offsets in the output.

classmethod from_traceback(tb, *, show_caches=False)
Construct a Bytecode instance from the given traceback, setting current_offset to the instruction re-
sponsible for the exception.

codeobj

The compiled code object.

first_line

The first source line of the code object (if available)

dis()

Return a formatted view of the bytecode operations (the same as printed by dis.dis(), but returned
as a multi-line string).

info()

Return a formatted multi-line string with detailed information about the code object, like code_info().

Changed in version 3.7: This can now handle coroutine and asynchronous generator objects.

Changed in version 3.11: Added the show_caches and adaptive parameters.

Example:

>>> bytecode = dis.Bytecode(myfunc)

>>> for instr in bytecode:

... print(instr.opname)

...

RESUME

LOAD_GLOBAL

LOAD_FAST

CALL

RETURN_VALUE

33.10.3 Analysis functions

The dis module also defines the following analysis functions that convert the input directly to the desired output.
They can be useful if only a single operation is being performed, so the intermediate analysis object isn’t useful:

dis.code_info(x)
Return a formatted multi-line string with detailed code object information for the supplied function, generator,
asynchronous generator, coroutine, method, source code string or code object.

Note that the exact contents of code info strings are highly implementation dependent and they may change
arbitrarily across Python VMs or Python releases.

Added in version 3.2.

Changed in version 3.7: This can now handle coroutine and asynchronous generator objects.

2126 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

dis.show_code(x, *, file=None)
Print detailed code object information for the supplied function, method, source code string or code object to
file (or sys.stdout if file is not specified).

This is a convenient shorthand for print(code_info(x), file=file), intended for interactive explo-
ration at the interpreter prompt.

Added in version 3.2.

Changed in version 3.4: Added file parameter.

dis.dis(x=None, *, file=None, depth=None, show_caches=False, adaptive=False)
Disassemble the x object. x can denote either a module, a class, a method, a function, a generator, an asyn-
chronous generator, a coroutine, a code object, a string of source code or a byte sequence of raw bytecode.
For a module, it disassembles all functions. For a class, it disassembles all methods (including class and static
methods). For a code object or sequence of raw bytecode, it prints one line per bytecode instruction. It also
recursively disassembles nested code objects. These can include generator expressions, nested functions, the
bodies of nested classes, and the code objects used for annotation scopes. Strings are first compiled to code ob-
jects with the compile() built-in function before being disassembled. If no object is provided, this function
disassembles the last traceback.

The disassembly is written as text to the supplied file argument if provided and to sys.stdout otherwise.

The maximal depth of recursion is limited by depth unless it is None. depth=0 means no recursion.

If show_caches is True, this function will display inline cache entries used by the interpreter to specialize the
bytecode.

If adaptive is True, this function will display specialized bytecode that may be different from the original
bytecode.

Changed in version 3.4: Added file parameter.

Changed in version 3.7: Implemented recursive disassembling and added depth parameter.

Changed in version 3.7: This can now handle coroutine and asynchronous generator objects.

Changed in version 3.11: Added the show_caches and adaptive parameters.

distb(tb=None, *, file=None, show_caches=False, adaptive=False,

show_offset=False)

Disassemble the top-of-stack function of a traceback, using the last traceback if none was passed. The in-
struction causing the exception is indicated.

The disassembly is written as text to the supplied file argument if provided and to sys.stdout otherwise.

Changed in version 3.4: Added file parameter.

Changed in version 3.11: Added the show_caches and adaptive parameters.

Changed in version 3.13: Added the show_offsets parameter.

dis.disassemble(code, lasti=-1, *, file=None, show_caches=False, adaptive=False)
disco(code, lasti=-1, *, file=None, show_caches=False, adaptive=False,

show_offsets=False)

Disassemble a code object, indicating the last instruction if lasti was provided. The output is divided in the
following columns:

1. the line number, for the first instruction of each line

2. the current instruction, indicated as -->,

3. a labelled instruction, indicated with >>,

4. the address of the instruction,

5. the operation code name,

33.10. dis— Disassembler for Python bytecode 2127



The Python Library Reference, Release 3.13.1

6. operation parameters, and

7. interpretation of the parameters in parentheses.

The parameter interpretation recognizes local and global variable names, constant values, branch targets, and
compare operators.

The disassembly is written as text to the supplied file argument if provided and to sys.stdout otherwise.

Changed in version 3.4: Added file parameter.

Changed in version 3.11: Added the show_caches and adaptive parameters.

Changed in version 3.13: Added the show_offsets parameter.

dis.get_instructions(x, *, first_line=None, show_caches=False, adaptive=False)
Return an iterator over the instructions in the supplied function, method, source code string or code object.

The iterator generates a series of Instruction named tuples giving the details of each operation in the
supplied code.

If first_line is not None, it indicates the line number that should be reported for the first source line in the
disassembled code. Otherwise, the source line information (if any) is taken directly from the disassembled
code object.

The adaptive parameter works as it does in dis().

Added in version 3.4.

Changed in version 3.11: Added the show_caches and adaptive parameters.

Changed in version 3.13: The show_caches parameter is deprecated and has no effect. The iterator generates
the Instruction instances with the cache_info field populated (regardless of the value of show_caches) and
it no longer generates separate items for the cache entries.

dis.findlinestarts(code)
This generator function uses the co_lines() method of the code object code to find the offsets which are
starts of lines in the source code. They are generated as (offset, lineno) pairs.

Changed in version 3.6: Line numbers can be decreasing. Before, they were always increasing.

Changed in version 3.10: The PEP 626 co_lines() method is used instead of the co_firstlineno and
co_lnotab attributes of the code object.

Changed in version 3.13: Line numbers can be None for bytecode that does not map to source lines.

dis.findlabels(code)
Detect all offsets in the raw compiled bytecode string code which are jump targets, and return a list of these
offsets.

dis.stack_effect(opcode, oparg=None, *, jump=None)
Compute the stack effect of opcode with argument oparg.

If the code has a jump target and jump is True, stack_effect() will return the stack effect of jumping. If
jump is False, it will return the stack effect of not jumping. And if jump is None (default), it will return the
maximal stack effect of both cases.

Added in version 3.4.

Changed in version 3.8: Added jump parameter.

Changed in version 3.13: If oparg is omitted (or None), the stack effect is now returned for oparg=0. Pre-
viously this was an error for opcodes that use their arg. It is also no longer an error to pass an integer oparg
when the opcode does not use it; the oparg in this case is ignored.

2128 Chapter 33. Python Language Services

https://peps.python.org/pep-0626/


The Python Library Reference, Release 3.13.1

33.10.4 Python Bytecode Instructions

The get_instructions() function and Bytecode class provide details of bytecode instructions as Instruction
instances:

class dis.Instruction

Details for a bytecode operation

opcode

numeric code for operation, corresponding to the opcode values listed below and the bytecode values in
the Opcode collections.

opname

human readable name for operation

baseopcode

numeric code for the base operation if operation is specialized; otherwise equal to opcode

baseopname

human readable name for the base operation if operation is specialized; otherwise equal to opname

arg

numeric argument to operation (if any), otherwise None

oparg

alias for arg

argval

resolved arg value (if any), otherwise None

argrepr

human readable description of operation argument (if any), otherwise an empty string.

offset

start index of operation within bytecode sequence

start_offset

start index of operation within bytecode sequence, including prefixed EXTENDED_ARG operations if
present; otherwise equal to offset

cache_offset

start index of the cache entries following the operation

end_offset

end index of the cache entries following the operation

starts_line

True if this opcode starts a source line, otherwise False

line_number

source line number associated with this opcode (if any), otherwise None

is_jump_target

True if other code jumps to here, otherwise False

jump_target

bytecode index of the jump target if this is a jump operation, otherwise None

positions

dis.Positions object holding the start and end locations that are covered by this instruction.

33.10. dis— Disassembler for Python bytecode 2129



The Python Library Reference, Release 3.13.1

Added in version 3.4.

Changed in version 3.11: Field positions is added.

Changed in version 3.13: Changed field starts_line.

Added fields start_offset, cache_offset, end_offset, baseopname, baseopcode, jump_target,
oparg, line_number and cache_info.

class dis.Positions

In case the information is not available, some fields might be None.

lineno

end_lineno

col_offset

end_col_offset

Added in version 3.11.

The Python compiler currently generates the following bytecode instructions.

General instructions

In the following, We will refer to the interpreter stack as STACK and describe operations on it as if it was a Python
list. The top of the stack corresponds to STACK[-1] in this language.

NOP

Do nothing code. Used as a placeholder by the bytecode optimizer, and to generate line tracing events.

POP_TOP

Removes the top-of-stack item:

STACK.pop()

END_FOR

Removes the top-of-stack item. Equivalent to POP_TOP. Used to clean up at the end of loops, hence the name.

Added in version 3.12.

END_SEND

Implements del STACK[-2]. Used to clean up when a generator exits.

Added in version 3.12.

COPY(i)

Push the i-th item to the top of the stack without removing it from its original location:

assert i > 0

STACK.append(STACK[-i])

Added in version 3.11.

SWAP(i)
Swap the top of the stack with the i-th element:

STACK[-i], STACK[-1] = STACK[-1], STACK[-i]

Added in version 3.11.

2130 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

CACHE

Rather than being an actual instruction, this opcode is used to mark extra space for the interpreter to cache
useful data directly in the bytecode itself. It is automatically hidden by all dis utilities, but can be viewed with
show_caches=True.

Logically, this space is part of the preceding instruction. Many opcodes expect to be followed by an exact
number of caches, and will instruct the interpreter to skip over them at runtime.

Populated caches can look like arbitrary instructions, so great care should be taken when reading or modifying
raw, adaptive bytecode containing quickened data.

Added in version 3.11.

Unary operations

Unary operations take the top of the stack, apply the operation, and push the result back on the stack.

UNARY_NEGATIVE

Implements STACK[-1] = -STACK[-1].

UNARY_NOT

Implements STACK[-1] = not STACK[-1].

Changed in version 3.13: This instruction now requires an exact bool operand.

UNARY_INVERT

Implements STACK[-1] = ~STACK[-1].

GET_ITER

Implements STACK[-1] = iter(STACK[-1]).

GET_YIELD_FROM_ITER

If STACK[-1] is a generator iterator or coroutine object it is left as is. Otherwise, implements STACK[-1] =

iter(STACK[-1]).

Added in version 3.5.

TO_BOOL

Implements STACK[-1] = bool(STACK[-1]).

Added in version 3.13.

Binary and in-place operations

Binary operations remove the top two items from the stack (STACK[-1] and STACK[-2]). They perform the oper-
ation, then put the result back on the stack.

In-place operations are like binary operations, but the operation is done in-place when STACK[-2] supports it, and
the resulting STACK[-1] may be (but does not have to be) the original STACK[-2].

BINARY_OP(op)
Implements the binary and in-place operators (depending on the value of op):

rhs = STACK.pop()

lhs = STACK.pop()

STACK.append(lhs op rhs)

Added in version 3.11.

BINARY_SUBSCR

Implements:

key = STACK.pop()

container = STACK.pop()

STACK.append(container[key])

33.10. dis— Disassembler for Python bytecode 2131



The Python Library Reference, Release 3.13.1

STORE_SUBSCR

Implements:

key = STACK.pop()

container = STACK.pop()

value = STACK.pop()

container[key] = value

DELETE_SUBSCR

Implements:

key = STACK.pop()

container = STACK.pop()

del container[key]

BINARY_SLICE

Implements:

end = STACK.pop()

start = STACK.pop()

container = STACK.pop()

STACK.append(container[start:end])

Added in version 3.12.

STORE_SLICE

Implements:

end = STACK.pop()

start = STACK.pop()

container = STACK.pop()

values = STACK.pop()

container[start:end] = value

Added in version 3.12.

Coroutine opcodes

GET_AWAITABLE(where)
Implements STACK[-1] = get_awaitable(STACK[-1]), where get_awaitable(o) returns o if o is a
coroutine object or a generator object with the CO_ITERABLE_COROUTINE flag, or resolves o.__await__.

If the where operand is nonzero, it indicates where the instruction occurs:

• 1: After a call to __aenter__

• 2: After a call to __aexit__

Added in version 3.5.

Changed in version 3.11: Previously, this instruction did not have an oparg.

GET_AITER

Implements STACK[-1] = STACK[-1].__aiter__().

Added in version 3.5.

Changed in version 3.7: Returning awaitable objects from __aiter__ is no longer supported.

GET_ANEXT

Implement STACK.append(get_awaitable(STACK[-1].__anext__())) to the stack. See
GET_AWAITABLE for details about get_awaitable.

Added in version 3.5.

2132 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

END_ASYNC_FOR

Terminates an async for loop. Handles an exception raised when awaiting a next item. The stack contains
the async iterable in STACK[-2] and the raised exception in STACK[-1]. Both are popped. If the exception
is not StopAsyncIteration, it is re-raised.

Added in version 3.8.

Changed in version 3.11: Exception representation on the stack now consist of one, not three, items.

CLEANUP_THROW

Handles an exception raised during a throw() or close() call through the current frame. If STACK[-1]
is an instance of StopIteration, pop three values from the stack and push its value member. Otherwise,
re-raise STACK[-1].

Added in version 3.12.

BEFORE_ASYNC_WITH

Resolves __aenter__ and __aexit__ from STACK[-1]. Pushes __aexit__ and result of __aenter__()
to the stack:

STACK.extend((__aexit__, __aenter__())

Added in version 3.5.

Miscellaneous opcodes

SET_ADD(i)
Implements:

item = STACK.pop()

set.add(STACK[-i], item)

Used to implement set comprehensions.

LIST_APPEND(i)
Implements:

item = STACK.pop()

list.append(STACK[-i], item)

Used to implement list comprehensions.

MAP_ADD(i)
Implements:

value = STACK.pop()

key = STACK.pop()

dict.__setitem__(STACK[-i], key, value)

Used to implement dict comprehensions.

Added in version 3.1.

Changed in version 3.8: Map value is STACK[-1] and map key is STACK[-2]. Before, those were reversed.

For all of the SET_ADD, LIST_APPEND and MAP_ADD instructions, while the added value or key/value pair is popped
off, the container object remains on the stack so that it is available for further iterations of the loop.

RETURN_VALUE

Returns with STACK[-1] to the caller of the function.

RETURN_CONST(consti)
Returns with co_consts[consti] to the caller of the function.

Added in version 3.12.

33.10. dis— Disassembler for Python bytecode 2133



The Python Library Reference, Release 3.13.1

YIELD_VALUE

Yields STACK.pop() from a generator.

Changed in version 3.11: oparg set to be the stack depth.

Changed in version 3.12: oparg set to be the exception block depth, for efficient closing of generators.

Changed in version 3.13: oparg is 1 if this instruction is part of a yield-from or await, and 0 otherwise.

SETUP_ANNOTATIONS

Checks whether __annotations__ is defined in locals(), if not it is set up to an empty dict. This opcode
is only emitted if a class or module body contains variable annotations statically.

Added in version 3.6.

POP_EXCEPT

Pops a value from the stack, which is used to restore the exception state.

Changed in version 3.11: Exception representation on the stack now consist of one, not three, items.

RERAISE

Re-raises the exception currently on top of the stack. If oparg is non-zero, pops an additional value from the
stack which is used to set f_lasti of the current frame.

Added in version 3.9.

Changed in version 3.11: Exception representation on the stack now consist of one, not three, items.

PUSH_EXC_INFO

Pops a value from the stack. Pushes the current exception to the top of the stack. Pushes the value originally
popped back to the stack. Used in exception handlers.

Added in version 3.11.

CHECK_EXC_MATCH

Performs exception matching for except. Tests whether the STACK[-2] is an exception matching
STACK[-1]. Pops STACK[-1] and pushes the boolean result of the test.

Added in version 3.11.

CHECK_EG_MATCH

Performs exception matching for except*. Applies split(STACK[-1]) on the exception group represent-
ing STACK[-2].

In case of a match, pops two items from the stack and pushes the non-matching subgroup (None in case of
full match) followed by the matching subgroup. When there is no match, pops one item (the match type) and
pushes None.

Added in version 3.11.

WITH_EXCEPT_START

Calls the function in position 4 on the stack with arguments (type, val, tb) representing the exception at the top
of the stack. Used to implement the call context_manager.__exit__(*exc_info())when an exception
has occurred in a with statement.

Added in version 3.9.

Changed in version 3.11: The __exit__ function is in position 4 of the stack rather than 7. Exception
representation on the stack now consist of one, not three, items.

LOAD_ASSERTION_ERROR

Pushes AssertionError onto the stack. Used by the assert statement.

Added in version 3.9.

LOAD_BUILD_CLASS

Pushes builtins.__build_class__() onto the stack. It is later called to construct a class.

2134 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

BEFORE_WITH

This opcode performs several operations before a with block starts. First, it loads __exit__() from the
context manager and pushes it onto the stack for later use by WITH_EXCEPT_START. Then, __enter__() is
called. Finally, the result of calling the __enter__() method is pushed onto the stack.

Added in version 3.11.

GET_LEN

Perform STACK.append(len(STACK[-1])). Used in match statements where comparison with structure
of pattern is needed.

Added in version 3.10.

MATCH_MAPPING

If STACK[-1] is an instance of collections.abc.Mapping (or, more technically: if it has the
Py_TPFLAGS_MAPPING flag set in its tp_flags), push True onto the stack. Otherwise, push False.

Added in version 3.10.

MATCH_SEQUENCE

If STACK[-1] is an instance of collections.abc.Sequence and is not an instance of
str/bytes/bytearray (or, more technically: if it has the Py_TPFLAGS_SEQUENCE flag set in its
tp_flags), push True onto the stack. Otherwise, push False.

Added in version 3.10.

MATCH_KEYS

STACK[-1] is a tuple of mapping keys, and STACK[-2] is the match subject. If STACK[-2] contains all of
the keys in STACK[-1], push a tuple containing the corresponding values. Otherwise, push None.

Added in version 3.10.

Changed in version 3.11: Previously, this instruction also pushed a boolean value indicating success (True) or
failure (False).

STORE_NAME(namei)
Implements name = STACK.pop(). namei is the index of name in the attribute co_names of the code
object. The compiler tries to use STORE_FAST or STORE_GLOBAL if possible.

DELETE_NAME(namei)
Implements del name, where namei is the index into co_names attribute of the code object.

UNPACK_SEQUENCE(count)

Unpacks STACK[-1] into count individual values, which are put onto the stack right-to-left. Require there to
be exactly count values.:

assert(len(STACK[-1]) == count)

STACK.extend(STACK.pop()[:-count-1:-1])

UNPACK_EX(counts)
Implements assignment with a starred target: Unpacks an iterable in STACK[-1] into individual values, where
the total number of values can be smaller than the number of items in the iterable: one of the new values will
be a list of all leftover items.

The number of values before and after the list value is limited to 255.

The number of values before the list value is encoded in the argument of the opcode. The number of values
after the list if any is encoded using an EXTENDED_ARG. As a consequence, the argument can be seen as a two
bytes values where the low byte of counts is the number of values before the list value, the high byte of counts
the number of values after it.

The extracted values are put onto the stack right-to-left, i.e. a, *b, c = d will be stored after execution as
STACK.extend((a, b, c)).

33.10. dis— Disassembler for Python bytecode 2135



The Python Library Reference, Release 3.13.1

STORE_ATTR(namei)
Implements:

obj = STACK.pop()

value = STACK.pop()

obj.name = value

where namei is the index of name in co_names of the code object.

DELETE_ATTR(namei)
Implements:

obj = STACK.pop()

del obj.name

where namei is the index of name into co_names of the code object.

STORE_GLOBAL(namei)

Works as STORE_NAME, but stores the name as a global.

DELETE_GLOBAL(namei)

Works as DELETE_NAME, but deletes a global name.

LOAD_CONST(consti)
Pushes co_consts[consti] onto the stack.

LOAD_NAME(namei)
Pushes the value associated with co_names[namei] onto the stack. The name is looked up within the locals,
then the globals, then the builtins.

LOAD_LOCALS

Pushes a reference to the locals dictionary onto the stack. This is used to prepare namespace dictionaries for
LOAD_FROM_DICT_OR_DEREF and LOAD_FROM_DICT_OR_GLOBALS.

Added in version 3.12.

LOAD_FROM_DICT_OR_GLOBALS(i)
Pops a mapping off the stack and looks up the value for co_names[namei]. If the name is not found there,
looks it up in the globals and then the builtins, similar to LOAD_GLOBAL. This is used for loading global variables
in annotation scopes within class bodies.

Added in version 3.12.

BUILD_TUPLE(count)
Creates a tuple consuming count items from the stack, and pushes the resulting tuple onto the stack:

if count == 0:

value = ()

else:

value = tuple(STACK[-count:])

STACK = STACK[:-count]

STACK.append(value)

BUILD_LIST(count)
Works as BUILD_TUPLE, but creates a list.

BUILD_SET(count)
Works as BUILD_TUPLE, but creates a set.

2136 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

BUILD_MAP(count)
Pushes a new dictionary object onto the stack. Pops 2 * count items so that the dictionary holds count
entries: {..., STACK[-4]: STACK[-3], STACK[-2]: STACK[-1]}.

Changed in version 3.5: The dictionary is created from stack items instead of creating an empty dictionary
pre-sized to hold count items.

BUILD_CONST_KEY_MAP(count)
The version of BUILD_MAP specialized for constant keys. Pops the top element on the stack which contains a
tuple of keys, then starting from STACK[-2], pops count values to form values in the built dictionary.

Added in version 3.6.

BUILD_STRING(count)
Concatenates count strings from the stack and pushes the resulting string onto the stack.

Added in version 3.6.

LIST_EXTEND(i)
Implements:

seq = STACK.pop()

list.extend(STACK[-i], seq)

Used to build lists.

Added in version 3.9.

SET_UPDATE(i)
Implements:

seq = STACK.pop()

set.update(STACK[-i], seq)

Used to build sets.

Added in version 3.9.

DICT_UPDATE(i)
Implements:

map = STACK.pop()

dict.update(STACK[-i], map)

Used to build dicts.

Added in version 3.9.

DICT_MERGE(i)
Like DICT_UPDATE but raises an exception for duplicate keys.

Added in version 3.9.

LOAD_ATTR(namei)
If the low bit of namei is not set, this replaces STACK[-1] with getattr(STACK[-1],

co_names[namei>>1]).

If the low bit of namei is set, this will attempt to load a method named co_names[namei>>1] from the
STACK[-1] object. STACK[-1] is popped. This bytecode distinguishes two cases: if STACK[-1] has a
method with the correct name, the bytecode pushes the unbound method and STACK[-1]. STACK[-1] will
be used as the first argument (self) by CALL or CALL_KW when calling the unbound method. Otherwise,
NULL and the object returned by the attribute lookup are pushed.

Changed in version 3.12: If the low bit of namei is set, then a NULL or self is pushed to the stack before the
attribute or unbound method respectively.

33.10. dis— Disassembler for Python bytecode 2137



The Python Library Reference, Release 3.13.1

LOAD_SUPER_ATTR(namei)
This opcode implements super(), both in its zero-argument and two-argument forms (e.g. super().

method(), super().attr and super(cls, self).method(), super(cls, self).attr).

It pops three values from the stack (from top of stack down):

• self: the first argument to the current method

• cls: the class within which the current method was defined

• the global super

With respect to its argument, it works similarly to LOAD_ATTR, except that namei is shifted left by 2 bits
instead of 1.

The low bit of namei signals to attempt a method load, as with LOAD_ATTR, which results in pushing NULL
and the loaded method. When it is unset a single value is pushed to the stack.

The second-low bit of namei, if set, means that this was a two-argument call to super() (unset means zero-
argument).

Added in version 3.12.

COMPARE_OP(opname)
Performs a Boolean operation. The operation name can be found in cmp_op[opname >> 5]. If the fifth-
lowest bit of opname is set (opname & 16), the result should be coerced to bool.

Changed in version 3.13: The fifth-lowest bit of the oparg now indicates a forced conversion to bool.

IS_OP(invert)
Performs is comparison, or is not if invert is 1.

Added in version 3.9.

CONTAINS_OP(invert)
Performs in comparison, or not in if invert is 1.

Added in version 3.9.

IMPORT_NAME(namei)
Imports the module co_names[namei]. STACK[-1] and STACK[-2] are popped and provide the fromlist
and level arguments of __import__(). The module object is pushed onto the stack. The current namespace
is not affected: for a proper import statement, a subsequent STORE_FAST instruction modifies the namespace.

IMPORT_FROM(namei)

Loads the attribute co_names[namei] from the module found in STACK[-1]. The resulting object is pushed
onto the stack, to be subsequently stored by a STORE_FAST instruction.

JUMP_FORWARD(delta)
Increments bytecode counter by delta.

JUMP_BACKWARD(delta)

Decrements bytecode counter by delta. Checks for interrupts.

Added in version 3.11.

JUMP_BACKWARD_NO_INTERRUPT(delta)

Decrements bytecode counter by delta. Does not check for interrupts.

Added in version 3.11.

POP_JUMP_IF_TRUE(delta)

If STACK[-1] is true, increments the bytecode counter by delta. STACK[-1] is popped.

Changed in version 3.11: The oparg is now a relative delta rather than an absolute target. This opcode is a
pseudo-instruction, replaced in final bytecode by the directed versions (forward/backward).

Changed in version 3.12: This is no longer a pseudo-instruction.

2138 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

Changed in version 3.13: This instruction now requires an exact bool operand.

POP_JUMP_IF_FALSE(delta)
If STACK[-1] is false, increments the bytecode counter by delta. STACK[-1] is popped.

Changed in version 3.11: The oparg is now a relative delta rather than an absolute target. This opcode is a
pseudo-instruction, replaced in final bytecode by the directed versions (forward/backward).

Changed in version 3.12: This is no longer a pseudo-instruction.

Changed in version 3.13: This instruction now requires an exact bool operand.

POP_JUMP_IF_NOT_NONE(delta)
If STACK[-1] is not None, increments the bytecode counter by delta. STACK[-1] is popped.

This opcode is a pseudo-instruction, replaced in final bytecode by the directed versions (forward/backward).

Added in version 3.11.

Changed in version 3.12: This is no longer a pseudo-instruction.

POP_JUMP_IF_NONE(delta)
If STACK[-1] is None, increments the bytecode counter by delta. STACK[-1] is popped.

This opcode is a pseudo-instruction, replaced in final bytecode by the directed versions (forward/backward).

Added in version 3.11.

Changed in version 3.12: This is no longer a pseudo-instruction.

FOR_ITER(delta)
STACK[-1] is an iterator. Call its __next__()method. If this yields a new value, push it on the stack (leaving
the iterator below it). If the iterator indicates it is exhausted then the byte code counter is incremented by delta.

Changed in version 3.12: Up until 3.11 the iterator was popped when it was exhausted.

LOAD_GLOBAL(namei)
Loads the global named co_names[namei>>1] onto the stack.

Changed in version 3.11: If the low bit of namei is set, then a NULL is pushed to the stack before the global
variable.

LOAD_FAST(var_num)
Pushes a reference to the local co_varnames[var_num] onto the stack.

Changed in version 3.12: This opcode is now only used in situations where the local variable is guaranteed to
be initialized. It cannot raise UnboundLocalError.

LOAD_FAST_LOAD_FAST(var_nums)
Pushes references to co_varnames[var_nums >> 4] and co_varnames[var_nums & 15] onto the
stack.

Added in version 3.13.

LOAD_FAST_CHECK(var_num)
Pushes a reference to the local co_varnames[var_num] onto the stack, raising an UnboundLocalError
if the local variable has not been initialized.

Added in version 3.12.

LOAD_FAST_AND_CLEAR(var_num)
Pushes a reference to the local co_varnames[var_num] onto the stack (or pushes NULL onto the stack if
the local variable has not been initialized) and sets co_varnames[var_num] to NULL.

Added in version 3.12.

STORE_FAST(var_num)
Stores STACK.pop() into the local co_varnames[var_num].

33.10. dis— Disassembler for Python bytecode 2139



The Python Library Reference, Release 3.13.1

STORE_FAST_STORE_FAST(var_nums)
Stores STACK[-1] into co_varnames[var_nums >> 4] and STACK[-2] into co_varnames[var_nums
& 15].

Added in version 3.13.

STORE_FAST_LOAD_FAST(var_nums)
Stores STACK.pop() into the local co_varnames[var_nums >> 4] and pushes a reference to the local
co_varnames[var_nums & 15] onto the stack.

Added in version 3.13.

DELETE_FAST(var_num)
Deletes local co_varnames[var_num].

MAKE_CELL(i)
Creates a new cell in slot i. If that slot is nonempty then that value is stored into the new cell.

Added in version 3.11.

LOAD_DEREF(i)
Loads the cell contained in slot i of the “fast locals” storage. Pushes a reference to the object the cell contains
on the stack.

Changed in version 3.11: i is no longer offset by the length of co_varnames.

LOAD_FROM_DICT_OR_DEREF(i)
Pops a mapping off the stack and looks up the name associated with slot i of the “fast locals” storage in this
mapping. If the name is not found there, loads it from the cell contained in slot i, similar to LOAD_DEREF.
This is used for loading closure variables in class bodies (which previously used LOAD_CLASSDEREF) and in
annotation scopes within class bodies.

Added in version 3.12.

STORE_DEREF(i)
Stores STACK.pop() into the cell contained in slot i of the “fast locals” storage.

Changed in version 3.11: i is no longer offset by the length of co_varnames.

DELETE_DEREF(i)
Empties the cell contained in slot i of the “fast locals” storage. Used by the del statement.

Added in version 3.2.

Changed in version 3.11: i is no longer offset by the length of co_varnames.

COPY_FREE_VARS(n)
Copies the n free (closure) variables from the closure into the frame. Removes the need for special code on
the caller’s side when calling closures.

Added in version 3.11.

RAISE_VARARGS(argc)
Raises an exception using one of the 3 forms of the raise statement, depending on the value of argc:

• 0: raise (re-raise previous exception)

• 1: raise STACK[-1] (raise exception instance or type at STACK[-1])

• 2: raise STACK[-2] from STACK[-1] (raise exception instance or type at STACK[-2] with
__cause__ set to STACK[-1])

CALL(argc)
Calls a callable object with the number of arguments specified by argc. On the stack are (in ascending order):

• The callable

• self or NULL

2140 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

• The remaining positional arguments

argc is the total of the positional arguments, excluding self.

CALL pops all arguments and the callable object off the stack, calls the callable object with those arguments,
and pushes the return value returned by the callable object.

Added in version 3.11.

Changed in version 3.13: The callable now always appears at the same position on the stack.

Changed in version 3.13: Calls with keyword arguments are now handled by CALL_KW .

CALL_KW(argc)
Calls a callable object with the number of arguments specified by argc, including one or more named argu-
ments. On the stack are (in ascending order):

• The callable

• self or NULL

• The remaining positional arguments

• The named arguments

• A tuple of keyword argument names

argc is the total of the positional and named arguments, excluding self. The length of the tuple of keyword
argument names is the number of named arguments.

CALL_KW pops all arguments, the keyword names, and the callable object off the stack, calls the callable object
with those arguments, and pushes the return value returned by the callable object.

Added in version 3.13.

CALL_FUNCTION_EX(flags)
Calls a callable object with variable set of positional and keyword arguments. If the lowest bit of flags is set,
the top of the stack contains a mapping object containing additional keyword arguments. Before the callable
is called, the mapping object and iterable object are each “unpacked” and their contents passed in as keyword
and positional arguments respectively. CALL_FUNCTION_EX pops all arguments and the callable object off
the stack, calls the callable object with those arguments, and pushes the return value returned by the callable
object.

Added in version 3.6.

PUSH_NULL

Pushes a NULL to the stack. Used in the call sequence to match the NULL pushed by LOAD_METHOD for non-
method calls.

Added in version 3.11.

MAKE_FUNCTION

Pushes a new function object on the stack built from the code object at STACK[-1].

Changed in version 3.10: Flag value 0x04 is a tuple of strings instead of dictionary

Changed in version 3.11: Qualified name at STACK[-1] was removed.

Changed in version 3.13: Extra function attributes on the stack, signaled by oparg flags, were removed. They
now use SET_FUNCTION_ATTRIBUTE.

SET_FUNCTION_ATTRIBUTE(flag)

Sets an attribute on a function object. Expects the function at STACK[-1] and the attribute value to set at
STACK[-2]; consumes both and leaves the function at STACK[-1]. The flag determines which attribute to
set:

• 0x01 a tuple of default values for positional-only and positional-or-keyword parameters in positional
order

33.10. dis— Disassembler for Python bytecode 2141



The Python Library Reference, Release 3.13.1

• 0x02 a dictionary of keyword-only parameters’ default values

• 0x04 a tuple of strings containing parameters’ annotations

• 0x08 a tuple containing cells for free variables, making a closure

Added in version 3.13.

BUILD_SLICE(argc)

Pushes a slice object on the stack. argc must be 2 or 3. If it is 2, implements:

end = STACK.pop()

start = STACK.pop()

STACK.append(slice(start, end))

if it is 3, implements:

step = STACK.pop()

end = STACK.pop()

start = STACK.pop()

STACK.append(slice(start, end, step))

See the slice() built-in function for more information.

EXTENDED_ARG(ext)
Prefixes any opcode which has an argument too big to fit into the default one byte. ext holds an additional byte
which act as higher bits in the argument. For each opcode, at most three prefixal EXTENDED_ARG are allowed,
forming an argument from two-byte to four-byte.

CONVERT_VALUE(oparg)
Convert value to a string, depending on oparg:

value = STACK.pop()

result = func(value)

STACK.append(result)

• oparg == 1: call str() on value

• oparg == 2: call repr() on value

• oparg == 3: call ascii() on value

Used for implementing formatted literal strings (f-strings).

Added in version 3.13.

FORMAT_SIMPLE

Formats the value on top of stack:

value = STACK.pop()

result = value.__format__("")

STACK.append(result)

Used for implementing formatted literal strings (f-strings).

Added in version 3.13.

FORMAT_WITH_SPEC

Formats the given value with the given format spec:

2142 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

spec = STACK.pop()

value = STACK.pop()

result = value.__format__(spec)

STACK.append(result)

Used for implementing formatted literal strings (f-strings).

Added in version 3.13.

MATCH_CLASS(count)
STACK[-1] is a tuple of keyword attribute names, STACK[-2] is the class being matched against, and
STACK[-3] is the match subject. count is the number of positional sub-patterns.

Pop STACK[-1], STACK[-2], and STACK[-3]. If STACK[-3] is an instance of STACK[-2] and has the
positional and keyword attributes required by count and STACK[-1], push a tuple of extracted attributes.
Otherwise, push None.

Added in version 3.10.

Changed in version 3.11: Previously, this instruction also pushed a boolean value indicating success (True) or
failure (False).

RESUME(context)
A no-op. Performs internal tracing, debugging and optimization checks.

The context oparand consists of two parts. The lowest two bits indicate where the RESUME occurs:

• 0 The start of a function, which is neither a generator, coroutine nor an async generator

• 1 After a yield expression

• 2 After a yield from expression

• 3 After an await expression

The next bit is 1 if the RESUME is at except-depth 1, and 0 otherwise.

Added in version 3.11.

Changed in version 3.13: The oparg value changed to include information about except-depth

RETURN_GENERATOR

Create a generator, coroutine, or async generator from the current frame. Used as first opcode of in code object
for the above mentioned callables. Clear the current frame and return the newly created generator.

Added in version 3.11.

SEND(delta)
Equivalent to STACK[-1] = STACK[-2].send(STACK[-1]). Used in yield from and await state-
ments.

If the call raises StopIteration, pop the top value from the stack, push the exception’s value attribute, and
increment the bytecode counter by delta.

Added in version 3.11.

HAVE_ARGUMENT

This is not really an opcode. It identifies the dividing line between opcodes in the range [0,255] which don’t
use their argument and those that do (< HAVE_ARGUMENT and >= HAVE_ARGUMENT, respectively).

If your application uses pseudo instructions or specialized instructions, use the hasarg collection instead.

Changed in version 3.6: Now every instruction has an argument, but opcodes < HAVE_ARGUMENT ignore it.
Before, only opcodes >= HAVE_ARGUMENT had an argument.

Changed in version 3.12: Pseudo instructions were added to the dis module, and for them it is not true that
comparison with HAVE_ARGUMENT indicates whether they use their arg.

Deprecated since version 3.13: Use hasarg instead.

33.10. dis— Disassembler for Python bytecode 2143



The Python Library Reference, Release 3.13.1

CALL_INTRINSIC_1

Calls an intrinsic function with one argument. Passes STACK[-1] as the argument and sets STACK[-1] to the
result. Used to implement functionality that is not performance critical.

The operand determines which intrinsic function is called:

Operand Description

INTRINSIC_1_INVALIDNot valid
INTRINSIC_PRINT Prints the argument to standard out. Used in the REPL.
INTRINSIC_IMPORT_STARPerforms import * for the named module.
INTRINSIC_STOPITERATION_ERRORExtracts the return value from a StopIteration exception.
INTRINSIC_ASYNC_GEN_WRAPWraps an async generator value
INTRINSIC_UNARY_POSITIVEPerforms the unary + operation
INTRINSIC_LIST_TO_TUPLEConverts a list to a tuple
INTRINSIC_TYPEVAR Creates a typing.TypeVar
INTRINSIC_PARAMSPECCreates a typing.ParamSpec
INTRINSIC_TYPEVARTUPLECreates a typing.TypeVarTuple
INTRINSIC_SUBSCRIPT_GENERICReturns typing.Generic subscripted with the argument
INTRINSIC_TYPEALIASCreates a typing.TypeAliasType; used in the type statement. The argument

is a tuple of the type alias’s name, type parameters, and value.

Added in version 3.12.

CALL_INTRINSIC_2

Calls an intrinsic function with two arguments. Used to implement functionality that is not performance critical:

arg2 = STACK.pop()

arg1 = STACK.pop()

result = intrinsic2(arg1, arg2)

STACK.append(result)

The operand determines which intrinsic function is called:

Operand Description

INTRINSIC_2_INVALID Not valid
INTRINSIC_PREP_RERAISE_STAR Calculates the ExceptionGroup to raise from a

try-except*.
INTRINSIC_TYPEVAR_WITH_BOUND Creates a typing.TypeVar with a bound.
INTRINSIC_TYPEVAR_WITH_CONSTRAINTSCreates a typing.TypeVar with constraints.
INTRINSIC_SET_FUNCTION_TYPE_PARAMSSets the __type_params__ attribute of a function.

Added in version 3.12.

Pseudo-instructions

These opcodes do not appear in Python bytecode. They are used by the compiler but are replaced by real opcodes
or removed before bytecode is generated.

SETUP_FINALLY(target)
Set up an exception handler for the following code block. If an exception occurs, the value stack level is
restored to its current state and control is transferred to the exception handler at target.

SETUP_CLEANUP(target)

Like SETUP_FINALLY, but in case of an exception also pushes the last instruction (lasti) to the stack so that
RERAISE can restore it. If an exception occurs, the value stack level and the last instruction on the frame are
restored to their current state, and control is transferred to the exception handler at target.

2144 Chapter 33. Python Language Services



The Python Library Reference, Release 3.13.1

SETUP_WITH(target)
Like SETUP_CLEANUP, but in case of an exception one more item is popped from the stack before control is
transferred to the exception handler at target.

This variant is used in with and async with constructs, which push the return value of the context manager’s
__enter__() or __aenter__() to the stack.

POP_BLOCK

Marks the end of the code block associated with the last SETUP_FINALLY, SETUP_CLEANUP or SETUP_WITH.

JUMP

JUMP_NO_INTERRUPT

Undirected relative jump instructions which are replaced by their directed (forward/backward) counterparts
by the assembler.

LOAD_CLOSURE(i)

Pushes a reference to the cell contained in slot i of the “fast locals” storage.

Note that LOAD_CLOSURE is replaced with LOAD_FAST in the assembler.

Changed in version 3.13: This opcode is now a pseudo-instruction.

LOAD_METHOD

Optimized unbound method lookup. Emitted as a LOAD_ATTR opcode with a flag set in the arg.

33.10.5 Opcode collections

These collections are provided for automatic introspection of bytecode instructions:

Changed in version 3.12: The collections now contain pseudo instructions and instrumented instructions as well.
These are opcodes with values >= MIN_PSEUDO_OPCODE and >= MIN_INSTRUMENTED_OPCODE.

dis.opname

Sequence of operation names, indexable using the bytecode.

dis.opmap

Dictionary mapping operation names to bytecodes.

dis.cmp_op

Sequence of all compare operation names.

dis.hasarg

Sequence of bytecodes that use their argument.

Added in version 3.12.

dis.hasconst

Sequence of bytecodes that access a constant.

dis.hasfree

Sequence of bytecodes that access a free (closure) variable. ‘free’ in this context refers to names in the current
scope that are referenced by inner scopes or names in outer scopes that are referenced from this scope. It does
not include references to global or builtin scopes.

dis.hasname

Sequence of bytecodes that access an attribute by name.

dis.hasjump

Sequence of bytecodes that have a jump target. All jumps are relative.

Added in version 3.13.

33.10. dis— Disassembler for Python bytecode 2145



The Python Library Reference, Release 3.13.1

dis.haslocal

Sequence of bytecodes that access a local variable.

dis.hascompare

Sequence of bytecodes of Boolean operations.

dis.hasexc

Sequence of bytecodes that set an exception handler.

Added in version 3.12.

dis.hasjrel

Sequence of bytecodes that have a relative jump target.

Deprecated since version 3.13: All jumps are now relative. Use hasjump.

dis.hasjabs

Sequence of bytecodes that have an absolute jump target.

Deprecated since version 3.13: All jumps are now relative. This list is empty.

33.11 pickletools— Tools for pickle developers

Source code: Lib/pickletools.py

Thismodule contains various constants relating to the intimate details of the picklemodule, some lengthy comments
about the implementation, and a few useful functions for analyzing pickled data. The contents of this module are
useful for Python core developers who are working on the pickle; ordinary users of the pickle module probably
won’t find the pickletools module relevant.

33.11.1 Command line usage

Added in version 3.2.

When invoked from the command line, python -m pickletools will disassemble the contents of one or more
pickle files. Note that if you want to see the Python object stored in the pickle rather than the details of pickle format,
you may want to use -m pickle instead. However, when the pickle file that you want to examine comes from an
untrusted source, -m pickletools is a safer option because it does not execute pickle bytecode.

For example, with a tuple (1, 2) pickled in file x.pickle:

$ python -m pickle x.pickle

(1, 2)

$ python -m pickletools x.pickle

0: \x80 PROTO 3

2: K BININT1 1

4: K BININT1 2

6: \x86 TUPLE2

7: q BINPUT 0

9: . STOP

highest protocol among opcodes = 2

Command line options

-a, --annotate

Annotate each line with a short opcode description.

2146 Chapter 33. Python Language Services

https://github.com/python/cpython/tree/3.13/Lib/pickletools.py


The Python Library Reference, Release 3.13.1

-o, --output=<file>

Name of a file where the output should be written.

-l, --indentlevel=<num>

The number of blanks by which to indent a new MARK level.

-m, --memo

When multiple objects are disassembled, preserve memo between disassemblies.

-p, --preamble=<preamble>

When more than one pickle file are specified, print given preamble before each disassembly.

33.11.2 Programmatic Interface

pickletools.dis(pickle, out=None, memo=None, indentlevel=4, annotate=0)
Outputs a symbolic disassembly of the pickle to the file-like object out, defaulting to sys.stdout. pickle can
be a string or a file-like object. memo can be a Python dictionary that will be used as the pickle’s memo; it
can be used to perform disassemblies across multiple pickles created by the same pickler. Successive levels,
indicated by MARK opcodes in the stream, are indented by indentlevel spaces. If a nonzero value is given to
annotate, each opcode in the output is annotated with a short description. The value of annotate is used as a
hint for the column where annotation should start.

Changed in version 3.2: Added the annotate parameter.

pickletools.genops(pickle)
Provides an iterator over all of the opcodes in a pickle, returning a sequence of (opcode, arg, pos) triples.
opcode is an instance of an OpcodeInfo class; arg is the decoded value, as a Python object, of the opcode’s
argument; pos is the position at which this opcode is located. pickle can be a string or a file-like object.

pickletools.optimize(picklestring)
Returns a new equivalent pickle string after eliminating unused PUT opcodes. The optimized pickle is shorter,
takes less transmission time, requires less storage space, and unpickles more efficiently.

33.11. pickletools— Tools for pickle developers 2147



The Python Library Reference, Release 3.13.1

2148 Chapter 33. Python Language Services



CHAPTER

THIRTYFOUR

MS WINDOWS SPECIFIC SERVICES

This chapter describes modules that are only available on MS Windows platforms.

34.1 msvcrt— Useful routines from the MS VC++ runtime

These functions provide access to some useful capabilities on Windows platforms. Some higher-level modules use
these functions to build the Windows implementations of their services. For example, the getpassmodule uses this
in the implementation of the getpass() function.

Further documentation on these functions can be found in the Platform API documentation.

The module implements both the normal and wide char variants of the console I/O api. The normal API deals only
with ASCII characters and is of limited use for internationalized applications. The wide char API should be used
where ever possible.

Changed in version 3.3: Operations in this module now raise OSError where IOError was raised.

34.1.1 File Operations

msvcrt.locking(fd, mode, nbytes)
Lock part of a file based on file descriptor fd from the C runtime. Raises OSError on failure. The locked
region of the file extends from the current file position for nbytes bytes, and may continue beyond the end of
the file. mode must be one of the LK_* constants listed below. Multiple regions in a file may be locked at the
same time, but may not overlap. Adjacent regions are not merged; they must be unlocked individually.

Raises an auditing event msvcrt.locking with arguments fd, mode, nbytes.

msvcrt.LK_LOCK

msvcrt.LK_RLCK

Locks the specified bytes. If the bytes cannot be locked, the program immediately tries again after 1 second.
If, after 10 attempts, the bytes cannot be locked, OSError is raised.

msvcrt.LK_NBLCK

msvcrt.LK_NBRLCK

Locks the specified bytes. If the bytes cannot be locked, OSError is raised.

msvcrt.LK_UNLCK

Unlocks the specified bytes, which must have been previously locked.

msvcrt.setmode(fd, flags)
Set the line-end translation mode for the file descriptor fd. To set it to text mode, flags should be os.O_TEXT;
for binary, it should be os.O_BINARY.

2149



The Python Library Reference, Release 3.13.1

msvcrt.open_osfhandle(handle, flags)
Create a C runtime file descriptor from the file handle handle. The flags parameter should be a bitwise OR
of os.O_APPEND, os.O_RDONLY, os.O_TEXT and os.O_NOINHERIT. The returned file descriptor may be
used as a parameter to os.fdopen() to create a file object.

The file descriptor is inheritable by default. Pass os.O_NOINHERIT flag to make it non inheritable.

Raises an auditing event msvcrt.open_osfhandle with arguments handle, flags.

msvcrt.get_osfhandle(fd)

Return the file handle for the file descriptor fd. Raises OSError if fd is not recognized.

Raises an auditing event msvcrt.get_osfhandle with argument fd.

34.1.2 Console I/O

msvcrt.kbhit()

Returns a nonzero value if a keypress is waiting to be read. Otherwise, return 0.

msvcrt.getch()

Read a keypress and return the resulting character as a byte string. Nothing is echoed to the console. This
call will block if a keypress is not already available, but will not wait for Enter to be pressed. If the pressed
key was a special function key, this will return '\000' or '\xe0'; the next call will return the keycode. The
Control-C keypress cannot be read with this function.

msvcrt.getwch()

Wide char variant of getch(), returning a Unicode value.

msvcrt.getche()

Similar to getch(), but the keypress will be echoed if it represents a printable character.

msvcrt.getwche()

Wide char variant of getche(), returning a Unicode value.

msvcrt.putch(char)
Print the byte string char to the console without buffering.

msvcrt.putwch(unicode_char)
Wide char variant of putch(), accepting a Unicode value.

msvcrt.ungetch(char)
Cause the byte string char to be “pushed back” into the console buffer; it will be the next character read by
getch() or getche().

msvcrt.ungetwch(unicode_char)
Wide char variant of ungetch(), accepting a Unicode value.

34.1.3 Other Functions

msvcrt.heapmin()

Force the malloc() heap to clean itself up and return unused blocks to the operating system. On failure, this
raises OSError.

msvcrt.set_error_mode(mode)

Changes the location where the C runtime writes an error message for an error that might end the program.
mode must be one of the OUT_* constants listed below or REPORT_ERRMODE. Returns the old setting or -1 if
an error occurs. Only available in debug build of Python.

msvcrt.OUT_TO_DEFAULT

Error sink is determined by the app’s type. Only available in debug build of Python.

2150 Chapter 34. MS Windows Specific Services



The Python Library Reference, Release 3.13.1

msvcrt.OUT_TO_STDERR

Error sink is a standard error. Only available in debug build of Python.

msvcrt.OUT_TO_MSGBOX

Error sink is a message box. Only available in debug build of Python.

msvcrt.REPORT_ERRMODE

Report the current error mode value. Only available in debug build of Python.

msvcrt.CrtSetReportMode(type, mode)
Specifies the destination or destinations for a specific report type generated by _CrtDbgReport() in the MS
VC++ runtime. type must be one of the CRT_* constants listed below. mode must be one of the CRTDBG_*
constants listed below. Only available in debug build of Python.

msvcrt.CrtSetReportFile(type, file)
After you use CrtSetReportMode() to specify CRTDBG_MODE_FILE, you can specify the file handle to
receive the message text. type must be one of the CRT_* constants listed below. file should be the file handle
your want specified. Only available in debug build of Python.

msvcrt.CRT_WARN

Warnings, messages, and information that doesn’t need immediate attention.

msvcrt.CRT_ERROR

Errors, unrecoverable problems, and issues that require immediate attention.

msvcrt.CRT_ASSERT

Assertion failures.

msvcrt.CRTDBG_MODE_DEBUG

Writes the message to the debugger’s output window.

msvcrt.CRTDBG_MODE_FILE

Writes the message to a user-supplied file handle. CrtSetReportFile() should be called to define the
specific file or stream to use as the destination.

msvcrt.CRTDBG_MODE_WNDW

Creates a message box to display the message along with the Abort, Retry, and Ignore buttons.

msvcrt.CRTDBG_REPORT_MODE

Returns current mode for the specified type.

msvcrt.CRT_ASSEMBLY_VERSION

The CRT Assembly version, from the crtassem.h header file.

msvcrt.VC_ASSEMBLY_PUBLICKEYTOKEN

The VC Assembly public key token, from the crtassem.h header file.

msvcrt.LIBRARIES_ASSEMBLY_NAME_PREFIX

The Libraries Assembly name prefix, from the crtassem.h header file.

34.2 winreg—Windows registry access

These functions expose the Windows registry API to Python. Instead of using an integer as the registry handle, a
handle object is used to ensure that the handles are closed correctly, even if the programmer neglects to explicitly
close them.

Changed in version 3.3: Several functions in this module used to raise a WindowsError, which is now an alias of
OSError.

34.2. winreg—Windows registry access 2151



The Python Library Reference, Release 3.13.1

34.2.1 Functions

This module offers the following functions:

winreg.CloseKey(hkey)
Closes a previously opened registry key. The hkey argument specifies a previously opened key.

Note

If hkey is not closed using this method (or via hkey.Close()), it is closed when the hkey object is
destroyed by Python.

winreg.ConnectRegistry(computer_name, key)
Establishes a connection to a predefined registry handle on another computer, and returns a handle object.

computer_name is the name of the remote computer, of the form r"\\computername". If None, the local
computer is used.

key is the predefined handle to connect to.

The return value is the handle of the opened key. If the function fails, an OSError exception is raised.

Raises an auditing event winreg.ConnectRegistry with arguments computer_name, key.

Changed in version 3.3: See above.

winreg.CreateKey(key, sub_key)
Creates or opens the specified key, returning a handle object.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that names the key this method opens or creates.

If key is one of the predefined keys, sub_key may be None. In that case, the handle returned is the same key
handle passed in to the function.

If the key already exists, this function opens the existing key.

The return value is the handle of the opened key. If the function fails, an OSError exception is raised.

Raises an auditing event winreg.CreateKey with arguments key, sub_key, access.

Raises an auditing event winreg.OpenKey/result with argument key.

Changed in version 3.3: See above.

winreg.CreateKeyEx(key, sub_key, reserved=0, access=KEY_WRITE)
Creates or opens the specified key, returning a handle object.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that names the key this method opens or creates.

reserved is a reserved integer, and must be zero. The default is zero.

access is an integer that specifies an access mask that describes the desired security access for the key. Default
is KEY_WRITE. See Access Rights for other allowed values.

If key is one of the predefined keys, sub_key may be None. In that case, the handle returned is the same key
handle passed in to the function.

If the key already exists, this function opens the existing key.

The return value is the handle of the opened key. If the function fails, an OSError exception is raised.

Raises an auditing event winreg.CreateKey with arguments key, sub_key, access.

Raises an auditing event winreg.OpenKey/result with argument key.

Added in version 3.2.

2152 Chapter 34. MS Windows Specific Services



The Python Library Reference, Release 3.13.1

Changed in version 3.3: See above.

winreg.DeleteKey(key, sub_key)
Deletes the specified key.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that must be a subkey of the key identified by the key parameter. This value must not be
None, and the key may not have subkeys.

This method can not delete keys with subkeys.

If the method succeeds, the entire key, including all of its values, is removed. If the method fails, an OSError
exception is raised.

Raises an auditing event winreg.DeleteKey with arguments key, sub_key, access.

Changed in version 3.3: See above.

winreg.DeleteKeyEx(key, sub_key, access=KEY_WOW64_64KEY, reserved=0)
Deletes the specified key.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that must be a subkey of the key identified by the key parameter. This value must not be
None, and the key may not have subkeys.

reserved is a reserved integer, and must be zero. The default is zero.

access is an integer that specifies an access mask that describes the desired security access for the key. Default
is KEY_WOW64_64KEY. On 32-bit Windows, the WOW64 constants are ignored. See Access Rights for other
allowed values.

This method can not delete keys with subkeys.

If the method succeeds, the entire key, including all of its values, is removed. If the method fails, an OSError
exception is raised.

On unsupported Windows versions, NotImplementedError is raised.

Raises an auditing event winreg.DeleteKey with arguments key, sub_key, access.

Added in version 3.2.

Changed in version 3.3: See above.

winreg.DeleteValue(key, value)
Removes a named value from a registry key.

key is an already open key, or one of the predefined HKEY_* constants.

value is a string that identifies the value to remove.

Raises an auditing event winreg.DeleteValue with arguments key, value.

winreg.EnumKey(key, index)
Enumerates subkeys of an open registry key, returning a string.

key is an already open key, or one of the predefined HKEY_* constants.

index is an integer that identifies the index of the key to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly until an
OSError exception is raised, indicating, no more values are available.

Raises an auditing event winreg.EnumKey with arguments key, index.

Changed in version 3.3: See above.

34.2. winreg—Windows registry access 2153



The Python Library Reference, Release 3.13.1

winreg.EnumValue(key, index)
Enumerates values of an open registry key, returning a tuple.

key is an already open key, or one of the predefined HKEY_* constants.

index is an integer that identifies the index of the value to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly, until an
OSError exception is raised, indicating no more values.

The result is a tuple of 3 items:

Index Meaning

0 A string that identifies the value name
1 An object that holds the value data, and whose type depends on the underlying registry type
2 An integer that identifies the type of the value data (see table in docs for SetValueEx())

Raises an auditing event winreg.EnumValue with arguments key, index.

Changed in version 3.3: See above.

winreg.ExpandEnvironmentStrings(str)
Expands environment variable placeholders %NAME% in strings like REG_EXPAND_SZ:

>>> ExpandEnvironmentStrings('%windir%')

'C:\\Windows'

Raises an auditing event winreg.ExpandEnvironmentStrings with argument str.

winreg.FlushKey(key)
Writes all the attributes of a key to the registry.

key is an already open key, or one of the predefined HKEY_* constants.

It is not necessary to call FlushKey() to change a key. Registry changes are flushed to disk by the registry
using its lazy flusher. Registry changes are also flushed to disk at system shutdown. Unlike CloseKey(), the
FlushKey() method returns only when all the data has been written to the registry. An application should
only call FlushKey() if it requires absolute certainty that registry changes are on disk.

Note

If you don’t know whether a FlushKey() call is required, it probably isn’t.

winreg.LoadKey(key, sub_key, file_name)
Creates a subkey under the specified key and stores registration information from a specified file into that
subkey.

key is a handle returned by ConnectRegistry() or one of the constants HKEY_USERS or
HKEY_LOCAL_MACHINE.

sub_key is a string that identifies the subkey to load.

file_name is the name of the file to load registry data from. This file must have been created with the
SaveKey() function. Under the file allocation table (FAT) file system, the filename may not have an ex-
tension.

A call to LoadKey() fails if the calling process does not have the SE_RESTORE_PRIVILEGE privilege. Note
that privileges are different from permissions – see the RegLoadKey documentation for more details.

If key is a handle returned by ConnectRegistry(), then the path specified in file_name is relative to the
remote computer.

Raises an auditing event winreg.LoadKey with arguments key, sub_key, file_name.

2154 Chapter 34. MS Windows Specific Services

https://msdn.microsoft.com/en-us/library/ms724889%28v=VS.85%29.aspx


The Python Library Reference, Release 3.13.1

winreg.OpenKey(key, sub_key, reserved=0, access=KEY_READ)
winreg.OpenKeyEx(key, sub_key, reserved=0, access=KEY_READ)

Opens the specified key, returning a handle object.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that identifies the sub_key to open.

reserved is a reserved integer, and must be zero. The default is zero.

access is an integer that specifies an access mask that describes the desired security access for the key. Default
is KEY_READ. See Access Rights for other allowed values.

The result is a new handle to the specified key.

If the function fails, OSError is raised.

Raises an auditing event winreg.OpenKey with arguments key, sub_key, access.

Raises an auditing event winreg.OpenKey/result with argument key.

Changed in version 3.2: Allow the use of named arguments.

Changed in version 3.3: See above.

winreg.QueryInfoKey(key)

Returns information about a key, as a tuple.

key is an already open key, or one of the predefined HKEY_* constants.

The result is a tuple of 3 items:

In-
dex

Meaning

0 An integer giving the number of sub keys this key has.
1 An integer giving the number of values this key has.
2 An integer giving when the key was last modified (if available) as 100’s of nanoseconds since Jan

1, 1601.

Raises an auditing event winreg.QueryInfoKey with argument key.

winreg.QueryValue(key, sub_key)
Retrieves the unnamed value for a key, as a string.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that holds the name of the subkey with which the value is associated. If this parameter is
None or empty, the function retrieves the value set by the SetValue() method for the key identified by key.

Values in the registry have name, type, and data components. This method retrieves the data for a key’s
first value that has a NULL name. But the underlying API call doesn’t return the type, so always use
QueryValueEx() if possible.

Raises an auditing event winreg.QueryValue with arguments key, sub_key, value_name.

winreg.QueryValueEx(key, value_name)

Retrieves the type and data for a specified value name associated with an open registry key.

key is an already open key, or one of the predefined HKEY_* constants.

value_name is a string indicating the value to query.

The result is a tuple of 2 items:

34.2. winreg—Windows registry access 2155



The Python Library Reference, Release 3.13.1

Index Meaning

0 The value of the registry item.
1 An integer giving the registry type for this value (see table in docs for SetValueEx())

Raises an auditing event winreg.QueryValue with arguments key, sub_key, value_name.

winreg.SaveKey(key, file_name)

Saves the specified key, and all its subkeys to the specified file.

key is an already open key, or one of the predefined HKEY_* constants.

file_name is the name of the file to save registry data to. This file cannot already exist. If this filename includes
an extension, it cannot be used on file allocation table (FAT) file systems by the LoadKey() method.

If key represents a key on a remote computer, the path described by file_name is relative to the remote com-
puter. The caller of this method must possess the SeBackupPrivilege security privilege. Note that privileges
are different than permissions – see the Conflicts Between User Rights and Permissions documentation for
more details.

This function passes NULL for security_attributes to the API.

Raises an auditing event winreg.SaveKey with arguments key, file_name.

winreg.SetValue(key, sub_key, type, value)
Associates a value with a specified key.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that names the subkey with which the value is associated.

type is an integer that specifies the type of the data. Currently this must be REG_SZ, meaning only strings are
supported. Use the SetValueEx() function for support for other data types.

value is a string that specifies the new value.

If the key specified by the sub_key parameter does not exist, the SetValue function creates it.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as files
with the filenames stored in the configuration registry. This helps the registry perform efficiently.

The key identified by the key parameter must have been opened with KEY_SET_VALUE access.

Raises an auditing event winreg.SetValue with arguments key, sub_key, type, value.

winreg.SetValueEx(key, value_name, reserved, type, value)
Stores data in the value field of an open registry key.

key is an already open key, or one of the predefined HKEY_* constants.

value_name is a string that names the subkey with which the value is associated.

reserved can be anything – zero is always passed to the API.

type is an integer that specifies the type of the data. See Value Types for the available types.

value is a string that specifies the new value.

This method can also set additional value and type information for the specified key. The key identified by the
key parameter must have been opened with KEY_SET_VALUE access.

To open the key, use the CreateKey() or OpenKey() methods.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as files
with the filenames stored in the configuration registry. This helps the registry perform efficiently.

Raises an auditing event winreg.SetValue with arguments key, sub_key, type, value.

2156 Chapter 34. MS Windows Specific Services

https://msdn.microsoft.com/en-us/library/ms724878%28v=VS.85%29.aspx


The Python Library Reference, Release 3.13.1

winreg.DisableReflectionKey(key)
Disables registry reflection for 32-bit processes running on a 64-bit operating system.

key is an already open key, or one of the predefined HKEY_* constants.

Will generally raise NotImplementedError if executed on a 32-bit operating system.

If the key is not on the reflection list, the function succeeds but has no effect. Disabling reflection for a key
does not affect reflection of any subkeys.

Raises an auditing event winreg.DisableReflectionKey with argument key.

winreg.EnableReflectionKey(key)
Restores registry reflection for the specified disabled key.

key is an already open key, or one of the predefined HKEY_* constants.

Will generally raise NotImplementedError if executed on a 32-bit operating system.

Restoring reflection for a key does not affect reflection of any subkeys.

Raises an auditing event winreg.EnableReflectionKey with argument key.

winreg.QueryReflectionKey(key)

Determines the reflection state for the specified key.

key is an already open key, or one of the predefined HKEY_* constants.

Returns True if reflection is disabled.

Will generally raise NotImplementedError if executed on a 32-bit operating system.

Raises an auditing event winreg.QueryReflectionKey with argument key.

34.2.2 Constants

The following constants are defined for use in many winreg functions.

HKEY_* Constants

winreg.HKEY_CLASSES_ROOT

Registry entries subordinate to this key define types (or classes) of documents and the properties associated
with those types. Shell and COM applications use the information stored under this key.

winreg.HKEY_CURRENT_USER

Registry entries subordinate to this key define the preferences of the current user. These preferences include
the settings of environment variables, data about program groups, colors, printers, network connections, and
application preferences.

winreg.HKEY_LOCAL_MACHINE

Registry entries subordinate to this key define the physical state of the computer, including data about the bus
type, system memory, and installed hardware and software.

winreg.HKEY_USERS

Registry entries subordinate to this key define the default user configuration for new users on the local computer
and the user configuration for the current user.

winreg.HKEY_PERFORMANCE_DATA

Registry entries subordinate to this key allow you to access performance data. The data is not actually stored
in the registry; the registry functions cause the system to collect the data from its source.

winreg.HKEY_CURRENT_CONFIG

Contains information about the current hardware profile of the local computer system.

winreg.HKEY_DYN_DATA

This key is not used in versions of Windows after 98.

34.2. winreg—Windows registry access 2157



The Python Library Reference, Release 3.13.1

Access Rights

For more information, see Registry Key Security and Access.

winreg.KEY_ALL_ACCESS

Combines the STANDARD_RIGHTS_REQUIRED, KEY_QUERY_VALUE, KEY_SET_VALUE,
KEY_CREATE_SUB_KEY, KEY_ENUMERATE_SUB_KEYS, KEY_NOTIFY, and KEY_CREATE_LINK access
rights.

winreg.KEY_WRITE

Combines the STANDARD_RIGHTS_WRITE, KEY_SET_VALUE, and KEY_CREATE_SUB_KEY access
rights.

winreg.KEY_READ

Combines the STANDARD_RIGHTS_READ, KEY_QUERY_VALUE, KEY_ENUMERATE_SUB_KEYS, and
KEY_NOTIFY values.

winreg.KEY_EXECUTE

Equivalent to KEY_READ.

winreg.KEY_QUERY_VALUE

Required to query the values of a registry key.

winreg.KEY_SET_VALUE

Required to create, delete, or set a registry value.

winreg.KEY_CREATE_SUB_KEY

Required to create a subkey of a registry key.

winreg.KEY_ENUMERATE_SUB_KEYS

Required to enumerate the subkeys of a registry key.

winreg.KEY_NOTIFY

Required to request change notifications for a registry key or for subkeys of a registry key.

winreg.KEY_CREATE_LINK

Reserved for system use.

64-bit Specific

For more information, see Accessing an Alternate Registry View.

winreg.KEY_WOW64_64KEY

Indicates that an application on 64-bitWindows should operate on the 64-bit registry view. On 32-bitWindows,
this constant is ignored.

winreg.KEY_WOW64_32KEY

Indicates that an application on 64-bitWindows should operate on the 32-bit registry view. On 32-bitWindows,
this constant is ignored.

Value Types

For more information, see Registry Value Types.

winreg.REG_BINARY

Binary data in any form.

winreg.REG_DWORD

32-bit number.

winreg.REG_DWORD_LITTLE_ENDIAN

A 32-bit number in little-endian format. Equivalent to REG_DWORD.

2158 Chapter 34. MS Windows Specific Services

https://msdn.microsoft.com/en-us/library/ms724878%28v=VS.85%29.aspx
https://msdn.microsoft.com/en-us/library/aa384129(v=VS.85).aspx
https://msdn.microsoft.com/en-us/library/ms724884%28v=VS.85%29.aspx


The Python Library Reference, Release 3.13.1

winreg.REG_DWORD_BIG_ENDIAN

A 32-bit number in big-endian format.

winreg.REG_EXPAND_SZ

Null-terminated string containing references to environment variables (%PATH%).

winreg.REG_LINK

A Unicode symbolic link.

winreg.REG_MULTI_SZ

A sequence of null-terminated strings, terminated by two null characters. (Python handles this termination
automatically.)

winreg.REG_NONE

No defined value type.

winreg.REG_QWORD

A 64-bit number.

Added in version 3.6.

winreg.REG_QWORD_LITTLE_ENDIAN

A 64-bit number in little-endian format. Equivalent to REG_QWORD.

Added in version 3.6.

winreg.REG_RESOURCE_LIST

A device-driver resource list.

winreg.REG_FULL_RESOURCE_DESCRIPTOR

A hardware setting.

winreg.REG_RESOURCE_REQUIREMENTS_LIST

A hardware resource list.

winreg.REG_SZ

A null-terminated string.

34.2.3 Registry Handle Objects

This object wraps a Windows HKEY object, automatically closing it when the object is destroyed. To guarantee
cleanup, you can call either the Close() method on the object, or the CloseKey() function.

All registry functions in this module return one of these objects.

All registry functions in this module which accept a handle object also accept an integer, however, use of the handle
object is encouraged.

Handle objects provide semantics for __bool__() – thus

if handle:

print("Yes")

will print Yes if the handle is currently valid (has not been closed or detached).

The object also support comparison semantics, so handle objects will compare true if they both reference the same
underlying Windows handle value.

Handle objects can be converted to an integer (e.g., using the built-in int() function), in which case the underlying
Windows handle value is returned. You can also use the Detach() method to return the integer handle, and also
disconnect the Windows handle from the handle object.

34.2. winreg—Windows registry access 2159



The Python Library Reference, Release 3.13.1

PyHKEY.Close()

Closes the underlying Windows handle.

If the handle is already closed, no error is raised.

PyHKEY.Detach()

Detaches the Windows handle from the handle object.

The result is an integer that holds the value of the handle before it is detached. If the handle is already detached
or closed, this will return zero.

After calling this function, the handle is effectively invalidated, but the handle is not closed. You would call
this function when you need the underlying Win32 handle to exist beyond the lifetime of the handle object.

Raises an auditing event winreg.PyHKEY.Detach with argument key.

PyHKEY.__enter__()

PyHKEY.__exit__(*exc_info)
The HKEY object implements __enter__() and __exit__() and thus supports the context protocol for
the with statement:

with OpenKey(HKEY_LOCAL_MACHINE, "foo") as key:

... # work with key

will automatically close key when control leaves the with block.

34.3 winsound— Sound-playing interface for Windows

The winsound module provides access to the basic sound-playing machinery provided by Windows platforms. It
includes functions and several constants.

winsound.Beep(frequency, duration)
Beep the PC’s speaker. The frequency parameter specifies frequency, in hertz, of the sound, and must be in
the range 37 through 32,767. The duration parameter specifies the number of milliseconds the sound should
last. If the system is not able to beep the speaker, RuntimeError is raised.

winsound.PlaySound(sound, flags)
Call the underlying PlaySound() function from the Platform API. The sound parameter may be a filename,
a system sound alias, audio data as a bytes-like object, or None. Its interpretation depends on the value of flags,
which can be a bitwise ORed combination of the constants described below. If the sound parameter is None,
any currently playing waveform sound is stopped. If the system indicates an error, RuntimeError is raised.

winsound.MessageBeep(type=MB_OK)
Call the underlying MessageBeep() function from the Platform API. This plays a sound as specified in
the registry. The type argument specifies which sound to play; possible values are -1, MB_ICONASTERISK,
MB_ICONEXCLAMATION, MB_ICONHAND, MB_ICONQUESTION, and MB_OK, all described below. The value
-1 produces a “simple beep”; this is the final fallback if a sound cannot be played otherwise. If the system
indicates an error, RuntimeError is raised.

winsound.SND_FILENAME

The sound parameter is the name of a WAV file. Do not use with SND_ALIAS.

winsound.SND_ALIAS

The sound parameter is a sound association name from the registry. If the registry contains no such name,
play the system default sound unless SND_NODEFAULT is also specified. If no default sound is registered, raise
RuntimeError. Do not use with SND_FILENAME.

All Win32 systems support at least the following; most systems support many more:

2160 Chapter 34. MS Windows Specific Services



The Python Library Reference, Release 3.13.1

PlaySound() name Corresponding Control Panel Sound name

'SystemAsterisk' Asterisk
'SystemExclamation' Exclamation
'SystemExit' Exit Windows
'SystemHand' Critical Stop
'SystemQuestion' Question

For example:

import winsound

# Play Windows exit sound.

winsound.PlaySound("SystemExit", winsound.SND_ALIAS)

# Probably play Windows default sound, if any is registered (because

# "*" probably isn't the registered name of any sound).

winsound.PlaySound("*", winsound.SND_ALIAS)

winsound.SND_LOOP

Play the sound repeatedly. The SND_ASYNC flag must also be used to avoid blocking. Cannot be used with
SND_MEMORY.

winsound.SND_MEMORY

The sound parameter to PlaySound() is a memory image of a WAV file, as a bytes-like object.

Note

This module does not support playing from a memory image asynchronously, so a combination of this flag
and SND_ASYNC will raise RuntimeError.

winsound.SND_PURGE

Stop playing all instances of the specified sound.

Note

This flag is not supported on modern Windows platforms.

winsound.SND_ASYNC

Return immediately, allowing sounds to play asynchronously.

winsound.SND_NODEFAULT

If the specified sound cannot be found, do not play the system default sound.

winsound.SND_NOSTOP

Do not interrupt sounds currently playing.

winsound.SND_NOWAIT

Return immediately if the sound driver is busy.

Note

This flag is not supported on modern Windows platforms.

34.3. winsound— Sound-playing interface for Windows 2161



The Python Library Reference, Release 3.13.1

winsound.MB_ICONASTERISK

Play the SystemDefault sound.

winsound.MB_ICONEXCLAMATION

Play the SystemExclamation sound.

winsound.MB_ICONHAND

Play the SystemHand sound.

winsound.MB_ICONQUESTION

Play the SystemQuestion sound.

winsound.MB_OK

Play the SystemDefault sound.

2162 Chapter 34. MS Windows Specific Services



CHAPTER

THIRTYFIVE

UNIX SPECIFIC SERVICES

The modules described in this chapter provide interfaces to features that are unique to the Unix operating system, or
in some cases to some or many variants of it. Here’s an overview:

35.1 posix— The most common POSIX system calls

This module provides access to operating system functionality that is standardized by the C Standard and the POSIX
standard (a thinly disguised Unix interface).

Availability: Unix.

Do not import this module directly. Instead, import the module os, which provides a portable version of this
interface. On Unix, the os module provides a superset of the posix interface. On non-Unix operating systems the
posix module is not available, but a subset is always available through the os interface. Once os is imported, there
is no performance penalty in using it instead of posix. In addition, os provides some additional functionality, such
as automatically calling putenv() when an entry in os.environ is changed.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors reported by the system
calls raise OSError.

35.1.1 Large File Support

Several operating systems (including AIX and Solaris) provide support for files that are larger than 2 GiB from a C
programming model where int and long are 32-bit values. This is typically accomplished by defining the relevant
size and offset types as 64-bit values. Such files are sometimes referred to as large files.

Large file support is enabled in Python when the size of an off_t is larger than a long and the long long is at
least as large as an off_t. It may be necessary to configure and compile Python with certain compiler flags to enable
this mode. For example, with Solaris 2.6 and 2.7 you need to do something like:

CFLAGS="`getconf LFS_CFLAGS`" OPT="-g -O2 $CFLAGS" \

./configure

On large-file-capable Linux systems, this might work:

CFLAGS='-D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64' OPT="-g -O2 $CFLAGS" \

./configure

35.1.2 Notable Module Contents

In addition to many functions described in the os module documentation, posix defines the following data item:

posix.environ

A dictionary representing the string environment at the time the interpreter was started. Keys and values are
bytes on Unix and str on Windows. For example, environ[b'HOME'] (environ['HOME'] on Windows)
is the pathname of your home directory, equivalent to getenv("HOME") in C.

2163



The Python Library Reference, Release 3.13.1

Modifying this dictionary does not affect the string environment passed on by execv(), popen() or
system(); if you need to change the environment, pass environ to execve() or add variable assignments
and export statements to the command string for system() or popen().

Changed in version 3.2: On Unix, keys and values are bytes.

Note

The os module provides an alternate implementation of environ which updates the environment on
modification. Note also that updating os.environ will render this dictionary obsolete. Use of the os
module version of this is recommended over direct access to the posix module.

35.2 pwd— The password database

This module provides access to the Unix user account and password database. It is available on all Unix versions.

Availability: Unix, not WASI, not iOS.

Password database entries are reported as a tuple-like object, whose attributes correspond to the members of the
passwd structure (Attribute field below, see <pwd.h>):

Index Attribute Meaning

0 pw_name Login name
1 pw_passwd Optional encrypted password
2 pw_uid Numerical user ID
3 pw_gid Numerical group ID
4 pw_gecos User name or comment field
5 pw_dir User home directory
6 pw_shell User command interpreter

The uid and gid items are integers, all others are strings. KeyError is raised if the entry asked for cannot be found.

Note

In traditional Unix the field pw_passwd usually contains a password encrypted with a DES derived algorithm.
However most modern unices use a so-called shadow password system. On those unices the pw_passwd field
only contains an asterisk ('*') or the letter 'x' where the encrypted password is stored in a file /etc/shadow
which is not world readable. Whether the pw_passwd field contains anything useful is system-dependent.

It defines the following items:

pwd.getpwuid(uid)
Return the password database entry for the given numeric user ID.

pwd.getpwnam(name)
Return the password database entry for the given user name.

pwd.getpwall()

Return a list of all available password database entries, in arbitrary order.

See also

Module grp
An interface to the group database, similar to this.

2164 Chapter 35. Unix Specific Services



The Python Library Reference, Release 3.13.1

35.3 grp— The group database

This module provides access to the Unix group database. It is available on all Unix versions.

Availability: Unix, not WASI, not Android, not iOS.

Group database entries are reported as a tuple-like object, whose attributes correspond to the members of the group
structure (Attribute field below, see <grp.h>):

Index Attribute Meaning

0 gr_name the name of the group
1 gr_passwd the (encrypted) group password; often empty
2 gr_gid the numerical group ID
3 gr_mem all the group member’s user names

The gid is an integer, name and password are strings, and the member list is a list of strings. (Note that most users are
not explicitly listed as members of the group they are in according to the password database. Check both databases
to get complete membership information. Also note that a gr_name that starts with a + or - is likely to be a YP/NIS
reference and may not be accessible via getgrnam() or getgrgid().)

It defines the following items:

grp.getgrgid(id)
Return the group database entry for the given numeric group ID. KeyError is raised if the entry asked for
cannot be found.

Changed in version 3.10: TypeError is raised for non-integer arguments like floats or strings.

grp.getgrnam(name)
Return the group database entry for the given group name. KeyError is raised if the entry asked for cannot
be found.

grp.getgrall()

Return a list of all available group entries, in arbitrary order.

See also

Module pwd
An interface to the user database, similar to this.

35.4 termios— POSIX style tty control

This module provides an interface to the POSIX calls for tty I/O control. For a complete description of these calls,
see termios(3) Unix manual page. It is only available for those Unix versions that support POSIX termios style tty
I/O control configured during installation.

Availability: Unix.

All functions in this module take a file descriptor fd as their first argument. This can be an integer file descriptor,
such as returned by sys.stdin.fileno(), or a file object, such as sys.stdin itself.

This module also defines all the constants needed to work with the functions provided here; these have the same name
as their counterparts in C. Please refer to your system documentation for more information on using these terminal
control interfaces.

The module defines the following functions:

35.3. grp— The group database 2165

https://manpages.debian.org/termios(3)


The Python Library Reference, Release 3.13.1

termios.tcgetattr(fd)
Return a list containing the tty attributes for file descriptor fd, as follows: [iflag, oflag, cflag,

lflag, ispeed, ospeed, cc] where cc is a list of the tty special characters (each a string of length
1, except the items with indices VMIN and VTIME, which are integers when these fields are defined). The in-
terpretation of the flags and the speeds as well as the indexing in the cc array must be done using the symbolic
constants defined in the termios module.

termios.tcsetattr(fd, when, attributes)
Set the tty attributes for file descriptor fd from the attributes, which is a list like the one returned by
tcgetattr(). The when argument determines when the attributes are changed:

termios.TCSANOW

Change attributes immediately.

termios.TCSADRAIN

Change attributes after transmitting all queued output.

termios.TCSAFLUSH

Change attributes after transmitting all queued output and discarding all queued input.

termios.tcsendbreak(fd, duration)
Send a break on file descriptor fd. A zero duration sends a break for 0.25–0.5 seconds; a nonzero duration has
a system dependent meaning.

termios.tcdrain(fd)
Wait until all output written to file descriptor fd has been transmitted.

termios.tcflush(fd, queue)
Discard queued data on file descriptor fd. The queue selector specifies which queue: TCIFLUSH for the input
queue, TCOFLUSH for the output queue, or TCIOFLUSH for both queues.

termios.tcflow(fd, action)
Suspend or resume input or output on file descriptor fd. The action argument can be TCOOFF to suspend output,
TCOON to restart output, TCIOFF to suspend input, or TCION to restart input.

termios.tcgetwinsize(fd)
Return a tuple (ws_row, ws_col) containing the tty window size for file descriptor fd. Requires termios.
TIOCGWINSZ or termios.TIOCGSIZE.

Added in version 3.11.

termios.tcsetwinsize(fd, winsize)
Set the tty window size for file descriptor fd from winsize, which is a two-item tuple (ws_row, ws_col)

like the one returned by tcgetwinsize(). Requires at least one of the pairs (termios.TIOCGWINSZ,
termios.TIOCSWINSZ); (termios.TIOCGSIZE, termios.TIOCSSIZE) to be defined.

Added in version 3.11.

See also

Module tty
Convenience functions for common terminal control operations.

35.4.1 Example

Here’s a function that prompts for a password with echoing turned off. Note the technique using a separate
tcgetattr() call and a try … finally statement to ensure that the old tty attributes are restored exactly no
matter what happens:

2166 Chapter 35. Unix Specific Services



The Python Library Reference, Release 3.13.1

def getpass(prompt="Password: "):

import termios, sys

fd = sys.stdin.fileno()

old = termios.tcgetattr(fd)

new = termios.tcgetattr(fd)

new[3] = new[3] & ~termios.ECHO # lflags

try:

termios.tcsetattr(fd, termios.TCSADRAIN, new)

passwd = input(prompt)

finally:

termios.tcsetattr(fd, termios.TCSADRAIN, old)

return passwd

35.5 tty— Terminal control functions

Source code: Lib/tty.py

The tty module defines functions for putting the tty into cbreak and raw modes.

Availability: Unix.

Because it requires the termios module, it will work only on Unix.

The tty module defines the following functions:

tty.cfmakeraw(mode)
Convert the tty attribute list mode, which is a list like the one returned by termios.tcgetattr(), to that
of a tty in raw mode.

Added in version 3.12.

tty.cfmakecbreak(mode)
Convert the tty attribute list mode, which is a list like the one returned by termios.tcgetattr(), to that
of a tty in cbreak mode.

This clears the ECHO and ICANON local mode flags inmode as well as setting the minimum input to 1 byte with
no delay.

Added in version 3.12.

Changed in version 3.12.2: The ICRNL flag is no longer cleared. This matches Linux and macOS stty

cbreak behavior and what setcbreak() historically did.

tty.setraw(fd, when=termios.TCSAFLUSH)
Change the mode of the file descriptor fd to raw. If when is omitted, it defaults to termios.TCSAFLUSH, and
is passed to termios.tcsetattr(). The return value of termios.tcgetattr() is saved before setting
fd to raw mode; this value is returned.

Changed in version 3.12: The return value is now the original tty attributes, instead of None.

tty.setcbreak(fd, when=termios.TCSAFLUSH)

Change the mode of file descriptor fd to cbreak. If when is omitted, it defaults to termios.TCSAFLUSH, and
is passed to termios.tcsetattr(). The return value of termios.tcgetattr() is saved before setting
fd to cbreak mode; this value is returned.

This clears the ECHO and ICANON local mode flags as well as setting the minimum input to 1 byte with no
delay.

Changed in version 3.12: The return value is now the original tty attributes, instead of None.

35.5. tty— Terminal control functions 2167

https://github.com/python/cpython/tree/3.13/Lib/tty.py


The Python Library Reference, Release 3.13.1

Changed in version 3.12.2: The ICRNL flag is no longer cleared. This restores the behavior of Python 3.11
and earlier as well as matching what Linux, macOS, & BSDs describe in their stty(1) man pages regarding
cbreak mode.

See also

Module termios
Low-level terminal control interface.

35.6 pty— Pseudo-terminal utilities

Source code: Lib/pty.py

The pty module defines operations for handling the pseudo-terminal concept: starting another process and being
able to write to and read from its controlling terminal programmatically.

Availability: Unix.

Pseudo-terminal handling is highly platform dependent. This code is mainly tested on Linux, FreeBSD, and macOS
(it is supposed to work on other POSIX platforms but it’s not been thoroughly tested).

The pty module defines the following functions:

pty.fork()

Fork. Connect the child’s controlling terminal to a pseudo-terminal. Return value is (pid, fd). Note that
the child gets pid 0, and the fd is invalid. The parent’s return value is the pid of the child, and fd is a file
descriptor connected to the child’s controlling terminal (and also to the child’s standard input and output).

Warning

On macOS the use of this function is unsafe when mixed with using higher-level system APIs, and that
includes using urllib.request.

pty.openpty()

Open a new pseudo-terminal pair, using os.openpty() if possible, or emulation code for generic Unix sys-
tems. Return a pair of file descriptors (master, slave), for the master and the slave end, respectively.

pty.spawn(argv[, master_read[, stdin_read ]])
Spawn a process, and connect its controlling terminal with the current process’s standard io. This is often
used to baffle programs which insist on reading from the controlling terminal. It is expected that the process
spawned behind the pty will eventually terminate, and when it does spawn will return.

A loop copies STDIN of the current process to the child and data received from the child to STDOUT of the
current process. It is not signaled to the child if STDIN of the current process closes down.

The functions master_read and stdin_read are passed a file descriptor which they should read from, and they
should always return a byte string. In order to force spawn to return before the child process exits an empty
byte array should be returned to signal end of file.

The default implementation for both functions will read and return up to 1024 bytes each time the function is
called. The master_read callback is passed the pseudoterminal’s master file descriptor to read output from the
child process, and stdin_read is passed file descriptor 0, to read from the parent process’s standard input.

Returning an empty byte string from either callback is interpreted as an end-of-file (EOF) condition, and
that callback will not be called after that. If stdin_read signals EOF the controlling terminal can no longer
communicate with the parent process OR the child process. Unless the child process will quit without any
input, spawn will then loop forever. If master_read signals EOF the same behavior results (on linux at least).

2168 Chapter 35. Unix Specific Services

https://github.com/python/cpython/tree/3.13/Lib/pty.py


The Python Library Reference, Release 3.13.1

Return the exit status value from os.waitpid() on the child process.

os.waitstatus_to_exitcode() can be used to convert the exit status into an exit code.

Raises an auditing event pty.spawn with argument argv.

Changed in version 3.4: spawn() now returns the status value from os.waitpid() on the child process.

35.6.1 Example

The following program acts like the Unix command script(1), using a pseudo-terminal to record all input and
output of a terminal session in a “typescript”.

import argparse

import os

import pty

import sys

import time

parser = argparse.ArgumentParser()

parser.add_argument('-a', dest='append', action='store_true')

parser.add_argument('-p', dest='use_python', action='store_true')

parser.add_argument('filename', nargs='?', default='typescript')

options = parser.parse_args()

shell = sys.executable if options.use_python else os.environ.get('SHELL', 'sh')

filename = options.filename

mode = 'ab' if options.append else 'wb'

with open(filename, mode) as script:

def read(fd):

data = os.read(fd, 1024)

script.write(data)

return data

print('Script started, file is', filename)

script.write(('Script started on %s\n' % time.asctime()).encode())

pty.spawn(shell, read)

script.write(('Script done on %s\n' % time.asctime()).encode())

print('Script done, file is', filename)

35.7 fcntl— The fcntl and ioctl system calls

This module performs file and I/O control on file descriptors. It is an interface to the fcntl() and ioctl() Unix
routines. See the fcntl(2) and ioctl(2) Unix manual pages for full details.

Availability: Unix, not WASI.

All functions in this module take a file descriptor fd as their first argument. This can be an integer file descriptor,
such as returned by sys.stdin.fileno(), or an io.IOBase object, such as sys.stdin itself, which provides a
fileno() that returns a genuine file descriptor.

Changed in version 3.3: Operations in this module used to raise an IOError where they now raise an OSError.

Changed in version 3.8: The fcntlmodule now contains F_ADD_SEALS, F_GET_SEALS, and F_SEAL_* constants
for sealing of os.memfd_create() file descriptors.

35.7. fcntl— The fcntl and ioctl system calls 2169

https://manpages.debian.org/script(1)
https://manpages.debian.org/fcntl(2)
https://manpages.debian.org/ioctl(2)


The Python Library Reference, Release 3.13.1

Changed in version 3.9: On macOS, the fcntlmodule exposes the F_GETPATH constant, which obtains the path of
a file from a file descriptor. On Linux(>=3.15), the fcntl module exposes the F_OFD_GETLK, F_OFD_SETLK and
F_OFD_SETLKW constants, which are used when working with open file description locks.

Changed in version 3.10: On Linux >= 2.6.11, the fcntlmodule exposes the F_GETPIPE_SZ and F_SETPIPE_SZ
constants, which allow to check and modify a pipe’s size respectively.

Changed in version 3.11: On FreeBSD, the fcntl module exposes the F_DUP2FD and F_DUP2FD_CLOEXEC con-
stants, which allow to duplicate a file descriptor, the latter setting FD_CLOEXEC flag in addition.

Changed in version 3.12: On Linux >= 4.5, the fcntlmodule exposes the FICLONE and FICLONERANGE constants,
which allow to share some data of one file with another file by reflinking on some filesystems (e.g., btrfs, OCFS2,
and XFS). This behavior is commonly referred to as “copy-on-write”.

Changed in version 3.13: On Linux >= 2.6.32, the fcntl module exposes the F_GETOWN_EX, F_SETOWN_EX,
F_OWNER_TID, F_OWNER_PID, F_OWNER_PGRP constants, which allow to direct I/O availability signals to a spe-
cific thread, process, or process group. On Linux >= 4.13, the fcntl module exposes the F_GET_RW_HINT,
F_SET_RW_HINT, F_GET_FILE_RW_HINT, F_SET_FILE_RW_HINT, and RWH_WRITE_LIFE_* constants, which
allow to inform the kernel about the relative expected lifetime of writes on a given inode or via a particular open file
description. On Linux >= 5.1 andNetBSD, the fcntlmodule exposes the F_SEAL_FUTURE_WRITE constant for use
with F_ADD_SEALS and F_GET_SEALS operations. On FreeBSD, the fcntl module exposes the F_READAHEAD,
F_ISUNIONSTACK, and F_KINFO constants. On macOS and FreeBSD, the fcntlmodule exposes the F_RDAHEAD
constant. On NetBSD and AIX, the fcntl module exposes the F_CLOSEM constant. On NetBSD, the fcntl mod-
ule exposes the F_MAXFD constant. On macOS and NetBSD, the fcntlmodule exposes the F_GETNOSIGPIPE and
F_SETNOSIGPIPE constant.

The module defines the following functions:

fcntl.fcntl(fd, cmd, arg=0)
Perform the operation cmd on file descriptor fd (file objects providing a fileno() method are accepted as
well). The values used for cmd are operating system dependent, and are available as constants in the fcntl
module, using the same names as used in the relevant C header files. The argument arg can either be an
integer value, or a bytes object. With an integer value, the return value of this function is the integer return
value of the C fcntl() call. When the argument is bytes it represents a binary structure, e.g. created by
struct.pack(). The binary data is copied to a buffer whose address is passed to the C fcntl() call. The
return value after a successful call is the contents of the buffer, converted to a bytes object. The length of
the returned object will be the same as the length of the arg argument. This is limited to 1024 bytes. If the
information returned in the buffer by the operating system is larger than 1024 bytes, this is most likely to result
in a segmentation violation or a more subtle data corruption.

If the fcntl() call fails, an OSError is raised.

Raises an auditing event fcntl.fcntl with arguments fd, cmd, arg.

fcntl.ioctl(fd, request, arg=0, mutate_flag=True)
This function is identical to the fcntl() function, except that the argument handling is evenmore complicated.

The request parameter is limited to values that can fit in 32-bits. Additional constants of interest for use as
the request argument can be found in the termios module, under the same names as used in the relevant C
header files.

The parameter arg can be one of an integer, an object supporting the read-only buffer interface (like bytes)
or an object supporting the read-write buffer interface (like bytearray).

In all but the last case, behaviour is as for the fcntl() function.

If a mutable buffer is passed, then the behaviour is determined by the value of the mutate_flag parameter.

If it is false, the buffer’s mutability is ignored and behaviour is as for a read-only buffer, except that the 1024
byte limit mentioned above is avoided – so long as the buffer you pass is at least as long as what the operating
system wants to put there, things should work.

If mutate_flag is true (the default), then the buffer is (in effect) passed to the underlying ioctl() system call,
the latter’s return code is passed back to the calling Python, and the buffer’s new contents reflect the action of
the ioctl(). This is a slight simplification, because if the supplied buffer is less than 1024 bytes long it is first

2170 Chapter 35. Unix Specific Services



The Python Library Reference, Release 3.13.1

copied into a static buffer 1024 bytes long which is then passed to ioctl() and copied back into the supplied
buffer.

If the ioctl() call fails, an OSError exception is raised.

An example:

>>> import array, fcntl, struct, termios, os

>>> os.getpgrp()

13341

>>> struct.unpack('h', fcntl.ioctl(0, termios.TIOCGPGRP, " "))[0]

13341

>>> buf = array.array('h', [0])

>>> fcntl.ioctl(0, termios.TIOCGPGRP, buf, 1)

0

>>> buf

array('h', [13341])

Raises an auditing event fcntl.ioctl with arguments fd, request, arg.

fcntl.flock(fd, operation)
Perform the lock operation operation on file descriptor fd (file objects providing a fileno() method are
accepted as well). See the Unix manual flock(2) for details. (On some systems, this function is emulated
using fcntl().)

If the flock() call fails, an OSError exception is raised.

Raises an auditing event fcntl.flock with arguments fd, operation.

fcntl.lockf(fd, cmd, len=0, start=0, whence=0)
This is essentially a wrapper around the fcntl() locking calls. fd is the file descriptor (file objects providing
a fileno()method are accepted as well) of the file to lock or unlock, and cmd is one of the following values:

fcntl.LOCK_UN

Release an existing lock.

fcntl.LOCK_SH

Acquire a shared lock.

fcntl.LOCK_EX

Acquire an exclusive lock.

fcntl.LOCK_NB

Bitwise OR with any of the other three LOCK_* constants to make the request non-blocking.

If LOCK_NB is used and the lock cannot be acquired, an OSError will be raised and the exception will have an
errno attribute set to EACCES or EAGAIN (depending on the operating system; for portability, check for both
values). On at least some systems, LOCK_EX can only be used if the file descriptor refers to a file opened for
writing.

len is the number of bytes to lock, start is the byte offset at which the lock starts, relative towhence, andwhence
is as with io.IOBase.seek(), specifically:

• 0 – relative to the start of the file (os.SEEK_SET)

• 1 – relative to the current buffer position (os.SEEK_CUR)

• 2 – relative to the end of the file (os.SEEK_END)

The default for start is 0, which means to start at the beginning of the file. The default for len is 0 which means
to lock to the end of the file. The default for whence is also 0.

Raises an auditing event fcntl.lockf with arguments fd, cmd, len, start, whence.

Examples (all on a SVR4 compliant system):

35.7. fcntl— The fcntl and ioctl system calls 2171

https://manpages.debian.org/flock(2)


The Python Library Reference, Release 3.13.1

import struct, fcntl, os

f = open(...)

rv = fcntl.fcntl(f, fcntl.F_SETFL, os.O_NDELAY)

lockdata = struct.pack('hhllhh', fcntl.F_WRLCK, 0, 0, 0, 0, 0)

rv = fcntl.fcntl(f, fcntl.F_SETLKW, lockdata)

Note that in the first example the return value variable rv will hold an integer value; in the second example it will hold
a bytes object. The structure lay-out for the lockdata variable is system dependent — therefore using the flock()
call may be better.

See also

Module os
If the locking flags O_SHLOCK and O_EXLOCK are present in the osmodule (on BSD only), the os.open()
function provides an alternative to the lockf() and flock() functions.

35.8 resource— Resource usage information

This module provides basic mechanisms for measuring and controlling system resources utilized by a program.

Availability: Unix, not WASI.

Symbolic constants are used to specify particular system resources and to request usage information about either the
current process or its children.

An OSError is raised on syscall failure.

exception resource.error

A deprecated alias of OSError.

Changed in version 3.3: Following PEP 3151, this class was made an alias of OSError.

35.8.1 Resource Limits

Resources usage can be limited using the setrlimit() function described below. Each resource is controlled by
a pair of limits: a soft limit and a hard limit. The soft limit is the current limit, and may be lowered or raised by a
process over time. The soft limit can never exceed the hard limit. The hard limit can be lowered to any value greater
than the soft limit, but not raised. (Only processes with the effective UID of the super-user can raise a hard limit.)

The specific resources that can be limited are system dependent. They are described in the getrlimit(2) man
page. The resources listed below are supported when the underlying operating system supports them; resources which
cannot be checked or controlled by the operating system are not defined in this module for those platforms.

resource.RLIM_INFINITY

Constant used to represent the limit for an unlimited resource.

resource.getrlimit(resource)

Returns a tuple (soft, hard) with the current soft and hard limits of resource. Raises ValueError if an
invalid resource is specified, or error if the underlying system call fails unexpectedly.

resource.setrlimit(resource, limits)
Sets new limits of consumption of resource. The limits argument must be a tuple (soft, hard) of two
integers describing the new limits. A value of RLIM_INFINITY can be used to request a limit that is unlimited.

Raises ValueError if an invalid resource is specified, if the new soft limit exceeds the hard limit, or if a
process tries to raise its hard limit. Specifying a limit of RLIM_INFINITY when the hard or system limit for

2172 Chapter 35. Unix Specific Services

https://peps.python.org/pep-3151/
https://manpages.debian.org/getrlimit(2)


The Python Library Reference, Release 3.13.1

that resource is not unlimited will result in a ValueError. A process with the effective UID of super-user can
request any valid limit value, including unlimited, but ValueError will still be raised if the requested limit
exceeds the system imposed limit.

setrlimit may also raise error if the underlying system call fails.

VxWorks only supports setting RLIMIT_NOFILE.

Raises an auditing event resource.setrlimit with arguments resource, limits.

resource.prlimit(pid, resource[, limits ])
Combines setrlimit() and getrlimit() in one function and supports to get and set the resources limits
of an arbitrary process. If pid is 0, then the call applies to the current process. resource and limits have the
same meaning as in setrlimit(), except that limits is optional.

When limits is not given the function returns the resource limit of the process pid. When limits is given the
resource limit of the process is set and the former resource limit is returned.

Raises ProcessLookupError when pid can’t be found and PermissionError when the user doesn’t have
CAP_SYS_RESOURCE for the process.

Raises an auditing event resource.prlimit with arguments pid, resource, limits.

Availability: Linux >= 2.6.36 with glibc >= 2.13.

Added in version 3.4.

These symbols define resources whose consumption can be controlled using the setrlimit() and getrlimit()
functions described below. The values of these symbols are exactly the constants used by C programs.

The Unix man page for getrlimit(2) lists the available resources. Note that not all systems use the same symbol
or same value to denote the same resource. This module does not attempt to mask platform differences — symbols
not defined for a platform will not be available from this module on that platform.

resource.RLIMIT_CORE

The maximum size (in bytes) of a core file that the current process can create. This may result in the creation
of a partial core file if a larger core would be required to contain the entire process image.

resource.RLIMIT_CPU

The maximum amount of processor time (in seconds) that a process can use. If this limit is exceeded, a
SIGXCPU signal is sent to the process. (See the signal module documentation for information about how to
catch this signal and do something useful, e.g. flush open files to disk.)

resource.RLIMIT_FSIZE

The maximum size of a file which the process may create.

resource.RLIMIT_DATA

The maximum size (in bytes) of the process’s heap.

resource.RLIMIT_STACK

The maximum size (in bytes) of the call stack for the current process. This only affects the stack of the main
thread in a multi-threaded process.

resource.RLIMIT_RSS

The maximum resident set size that should be made available to the process.

resource.RLIMIT_NPROC

The maximum number of processes the current process may create.

resource.RLIMIT_NOFILE

The maximum number of open file descriptors for the current process.

resource.RLIMIT_OFILE

The BSD name for RLIMIT_NOFILE.

35.8. resource— Resource usage information 2173

https://manpages.debian.org/getrlimit(2)


The Python Library Reference, Release 3.13.1

resource.RLIMIT_MEMLOCK

The maximum address space which may be locked in memory.

resource.RLIMIT_VMEM

The largest area of mapped memory which the process may occupy.

Availability: FreeBSD >= 11.

resource.RLIMIT_AS

The maximum area (in bytes) of address space which may be taken by the process.

resource.RLIMIT_MSGQUEUE

The number of bytes that can be allocated for POSIX message queues.

Availability: Linux >= 2.6.8.

Added in version 3.4.

resource.RLIMIT_NICE

The ceiling for the process’s nice level (calculated as 20 - rlim_cur).

Availability: Linux >= 2.6.12.

Added in version 3.4.

resource.RLIMIT_RTPRIO

The ceiling of the real-time priority.

Availability: Linux >= 2.6.12.

Added in version 3.4.

resource.RLIMIT_RTTIME

The time limit (in microseconds) on CPU time that a process can spend under real-time scheduling without
making a blocking syscall.

Availability: Linux >= 2.6.25.

Added in version 3.4.

resource.RLIMIT_SIGPENDING

The number of signals which the process may queue.

Availability: Linux >= 2.6.8.

Added in version 3.4.

resource.RLIMIT_SBSIZE

The maximum size (in bytes) of socket buffer usage for this user. This limits the amount of network memory,
and hence the amount of mbufs, that this user may hold at any time.

Availability: FreeBSD.

Added in version 3.4.

resource.RLIMIT_SWAP

The maximum size (in bytes) of the swap space that may be reserved or used by all of this user id’s processes.
This limit is enforced only if bit 1 of the vm.overcommit sysctl is set. Please see tuning(7) for a complete
description of this sysctl.

Availability: FreeBSD.

Added in version 3.4.

2174 Chapter 35. Unix Specific Services

https://man.freebsd.org/cgi/man.cgi?query=tuning&sektion=7


The Python Library Reference, Release 3.13.1

resource.RLIMIT_NPTS

The maximum number of pseudo-terminals created by this user id.

Availability: FreeBSD.

Added in version 3.4.

resource.RLIMIT_KQUEUES

The maximum number of kqueues this user id is allowed to create.

Availability: FreeBSD >= 11.

Added in version 3.10.

35.8.2 Resource Usage

These functions are used to retrieve resource usage information:

resource.getrusage(who)
This function returns an object that describes the resources consumed by either the current process or its
children, as specified by thewho parameter. Thewho parameter should be specified using one of the RUSAGE_*
constants described below.

A simple example:

from resource import *

import time

# a non CPU-bound task

time.sleep(3)

print(getrusage(RUSAGE_SELF))

# a CPU-bound task

for i in range(10 ** 8):

_ = 1 + 1

print(getrusage(RUSAGE_SELF))

The fields of the return value each describe how a particular system resource has been used, e.g. amount of
time spent running is user mode or number of times the process was swapped out of main memory. Some
values are dependent on the clock tick internal, e.g. the amount of memory the process is using.

For backward compatibility, the return value is also accessible as a tuple of 16 elements.

The fields ru_utime and ru_stime of the return value are floating-point values representing the amount of
time spent executing in user mode and the amount of time spent executing in system mode, respectively. The
remaining values are integers. Consult the getrusage(2) man page for detailed information about these
values. A brief summary is presented here:

35.8. resource— Resource usage information 2175

https://manpages.debian.org/getrusage(2)


The Python Library Reference, Release 3.13.1

Index Field Resource

0 ru_utime time in user mode (float seconds)
1 ru_stime time in system mode (float seconds)
2 ru_maxrss maximum resident set size
3 ru_ixrss shared memory size
4 ru_idrss unshared memory size
5 ru_isrss unshared stack size
6 ru_minflt page faults not requiring I/O
7 ru_majflt page faults requiring I/O
8 ru_nswap number of swap outs
9 ru_inblock block input operations
10 ru_oublock block output operations
11 ru_msgsnd messages sent
12 ru_msgrcv messages received
13 ru_nsignals signals received
14 ru_nvcsw voluntary context switches
15 ru_nivcsw involuntary context switches

This function will raise a ValueError if an invalid who parameter is specified. It may also raise error
exception in unusual circumstances.

resource.getpagesize()

Returns the number of bytes in a system page. (This need not be the same as the hardware page size.)

The following RUSAGE_* symbols are passed to the getrusage() function to specify which processes information
should be provided for.

resource.RUSAGE_SELF

Pass to getrusage() to request resources consumed by the calling process, which is the sum of resources
used by all threads in the process.

resource.RUSAGE_CHILDREN

Pass to getrusage() to request resources consumed by child processes of the calling process which have
been terminated and waited for.

resource.RUSAGE_BOTH

Pass to getrusage() to request resources consumed by both the current process and child processes. May
not be available on all systems.

resource.RUSAGE_THREAD

Pass to getrusage() to request resources consumed by the current thread. May not be available on all
systems.

Added in version 3.2.

35.9 syslog— Unix syslog library routines

This module provides an interface to the Unix syslog library routines. Refer to the Unix manual pages for a detailed
description of the syslog facility.

Availability: Unix, not WASI, not iOS.

This module wraps the system syslog family of routines. A pure Python library that can speak to a syslog server is
available in the logging.handlers module as SysLogHandler.

The module defines the following functions:

syslog.syslog(message)

2176 Chapter 35. Unix Specific Services



The Python Library Reference, Release 3.13.1

syslog.syslog(priority, message)
Send the string message to the system logger. A trailing newline is added if necessary. Each message is tagged
with a priority composed of a facility and a level. The optional priority argument, which defaults to LOG_INFO,
determines the message priority. If the facility is not encoded in priority using logical-or (LOG_INFO |

LOG_USER), the value given in the openlog() call is used.

If openlog() has not been called prior to the call to syslog(), openlog()will be called with no arguments.

Raises an auditing event syslog.syslog with arguments priority, message.

Changed in version 3.2: In previous versions, openlog() would not be called automatically if it wasn’t called
prior to the call to syslog(), deferring to the syslog implementation to call openlog().

Changed in version 3.12: This function is restricted in subinterpreters. (Only code that runs in multiple inter-
preters is affected and the restriction is not relevant for most users.) openlog() must be called in the main
interpreter before syslog() may be used in a subinterpreter. Otherwise it will raise RuntimeError.

syslog.openlog([ident[, logoption[, facility]]])
Logging options of subsequent syslog() calls can be set by calling openlog(). syslog() will call
openlog() with no arguments if the log is not currently open.

The optional ident keyword argument is a string which is prepended to every message, and defaults to sys.
argv[0] with leading path components stripped. The optional logoption keyword argument (default is 0)
is a bit field – see below for possible values to combine. The optional facility keyword argument (default is
LOG_USER) sets the default facility for messages which do not have a facility explicitly encoded.

Raises an auditing event syslog.openlog with arguments ident, logoption, facility.

Changed in version 3.2: In previous versions, keyword arguments were not allowed, and ident was required.

Changed in version 3.12: This function is restricted in subinterpreters. (Only code that runs in multiple in-
terpreters is affected and the restriction is not relevant for most users.) This may only be called in the main
interpreter. It will raise RuntimeError if called in a subinterpreter.

syslog.closelog()

Reset the syslog module values and call the system library closelog().

This causes themodule to behave as it does when initially imported. For example, openlog()will be called on
the first syslog() call (if openlog() hasn’t already been called), and ident and other openlog() parameters
are reset to defaults.

Raises an auditing event syslog.closelog with no arguments.

Changed in version 3.12: This function is restricted in subinterpreters. (Only code that runs in multiple in-
terpreters is affected and the restriction is not relevant for most users.) This may only be called in the main
interpreter. It will raise RuntimeError if called in a subinterpreter.

syslog.setlogmask(maskpri)
Set the priority mask to maskpri and return the previous mask value. Calls to syslog() with a priority level
not set in maskpri are ignored. The default is to log all priorities. The function LOG_MASK(pri) calculates
the mask for the individual priority pri. The function LOG_UPTO(pri) calculates the mask for all priorities
up to and including pri.

Raises an auditing event syslog.setlogmask with argument maskpri.

The module defines the following constants:

syslog.LOG_EMERG

syslog.LOG_ALERT

syslog.LOG_CRIT

syslog.LOG_ERR

syslog.LOG_WARNING

syslog.LOG_NOTICE

syslog.LOG_INFO

35.9. syslog— Unix syslog library routines 2177



The Python Library Reference, Release 3.13.1

syslog.LOG_DEBUG

Priority levels (high to low).

syslog.LOG_AUTH

syslog.LOG_AUTHPRIV

syslog.LOG_CRON

syslog.LOG_DAEMON

syslog.LOG_FTP

syslog.LOG_INSTALL

syslog.LOG_KERN

syslog.LOG_LAUNCHD

syslog.LOG_LPR

syslog.LOG_MAIL

syslog.LOG_NETINFO

syslog.LOG_NEWS

syslog.LOG_RAS

syslog.LOG_REMOTEAUTH

syslog.LOG_SYSLOG

syslog.LOG_USER

syslog.LOG_UUCP

syslog.LOG_LOCAL0

syslog.LOG_LOCAL1

syslog.LOG_LOCAL2

syslog.LOG_LOCAL3

syslog.LOG_LOCAL4

syslog.LOG_LOCAL5

syslog.LOG_LOCAL6

syslog.LOG_LOCAL7

Facilities, depending on availability in <syslog.h> for LOG_AUTHPRIV , LOG_FTP, LOG_NETINFO,
LOG_REMOTEAUTH, LOG_INSTALL and LOG_RAS.

Changed in version 3.13: Added LOG_FTP, LOG_NETINFO, LOG_REMOTEAUTH, LOG_INSTALL, LOG_RAS,
and LOG_LAUNCHD.

syslog.LOG_PID

syslog.LOG_CONS

syslog.LOG_NDELAY

syslog.LOG_ODELAY

syslog.LOG_NOWAIT

syslog.LOG_PERROR

Log options, depending on availability in <syslog.h> for LOG_ODELAY, LOG_NOWAIT and LOG_PERROR.

35.9.1 Examples

Simple example

A simple set of examples:

import syslog

syslog.syslog('Processing started')

if error:

syslog.syslog(syslog.LOG_ERR, 'Processing started')

2178 Chapter 35. Unix Specific Services



The Python Library Reference, Release 3.13.1

An example of setting some log options, these would include the process ID in logged messages, and write the
messages to the destination facility used for mail logging:

syslog.openlog(logoption=syslog.LOG_PID, facility=syslog.LOG_MAIL)

syslog.syslog('E-mail processing initiated...')

35.9. syslog— Unix syslog library routines 2179



The Python Library Reference, Release 3.13.1

2180 Chapter 35. Unix Specific Services



CHAPTER

THIRTYSIX

MODULES COMMAND-LINE INTERFACE (CLI)

The following modules have a command-line interface.

• ast

• asyncio

• base64

• calendar

• code

• compileall

• cProfile: see profile

• difflib

• dis

• doctest

• encodings.rot_13

• ensurepip

• filecmp

• fileinput

• ftplib

• gzip

• http.server

• idlelib

• inspect

• json.tool

• mimetypes

• pdb

• pickle

• pickletools

• platform

• poplib

• profile

• pstats

• py_compile

2181



The Python Library Reference, Release 3.13.1

• pyclbr

• pydoc

• quopri

• random

• runpy

• site

• sqlite3

• symtable

• sysconfig

• tabnanny

• tarfile

• this

• timeit

• tokenize

• trace

• turtledemo

• unittest

• uuid

• venv

• webbrowser

• zipapp

• zipfile

See also the Python command-line interface.

2182 Chapter 36. Modules command-line interface (CLI)



CHAPTER

THIRTYSEVEN

SUPERSEDED MODULES

The modules described in this chapter have been superseded by other modules for most use cases, and are retained
primarily to preserve backwards compatibility.

Modules may appear in this chapter because they only cover a limited subset of a problem space, and a more generally
applicable solution is available elsewhere in the standard library (for example, getopt covers the very specific task
of “mimic the C getopt() API in Python”, rather than the broader command line option parsing and argument
parsing capabilities offered by optparse and argparse).

Alternatively, modules may appear in this chapter because they are deprecated outright, and awaiting removal in a
future release, or they are soft deprecated and their use is actively discouraged in new projects. With the removal of
various obsolete modules through PEP 594, there are currently no modules in this latter category.

37.1 getopt— C-style parser for command line options

Source code: Lib/getopt.py

Note

This module is considered feature complete. A more declarative and extensible alternative to this API is provided
in the optparsemodule. Further functional enhancements for command line parameter processing are provided
either as third party modules on PyPI, or else as features in the argparse module.

This module helps scripts to parse the command line arguments in sys.argv. It supports the same conventions as
the Unix getopt() function (including the special meanings of arguments of the form ‘-’ and ‘--‘). Long options
similar to those supported by GNU software may be used as well via an optional third argument.

Users who are unfamiliar with the Unix getopt() function should consider using the argparse module instead.
Users who are familiar with the Unix getopt() function, but would like to get equivalent behavior while writing
less code and getting better help and error messages should consider using the optparse module. See Choosing an
argument parsing library for additional details.

This module provides two functions and an exception:

getopt.getopt(args, shortopts, longopts=[])
Parses command line options and parameter list. args is the argument list to be parsed, without the leading
reference to the running program. Typically, this means sys.argv[1:]. shortopts is the string of option
letters that the script wants to recognize, with options that require an argument followed by a colon (':'; i.e.,
the same format that Unix getopt() uses).

Note

Unlike GNU getopt(), after a non-option argument, all further arguments are considered also non-
options. This is similar to the way non-GNU Unix systems work.

2183

https://peps.python.org/pep-0594/
https://github.com/python/cpython/tree/3.13/Lib/getopt.py


The Python Library Reference, Release 3.13.1

longopts, if specified, must be a list of strings with the names of the long options which should be supported.
The leading '--' characters should not be included in the option name. Long options which require an
argument should be followed by an equal sign ('='). Optional arguments are not supported. To accept only
long options, shortopts should be an empty string. Long options on the command line can be recognized so
long as they provide a prefix of the option name that matches exactly one of the accepted options. For example,
if longopts is ['foo', 'frob'], the option --fo will match as --foo, but --f will not match uniquely, so
GetoptError will be raised.

The return value consists of two elements: the first is a list of (option, value) pairs; the second is the list
of program arguments left after the option list was stripped (this is a trailing slice of args). Each option-and-
value pair returned has the option as its first element, prefixed with a hyphen for short options (e.g., '-x') or
two hyphens for long options (e.g., '--long-option'), and the option argument as its second element, or
an empty string if the option has no argument. The options occur in the list in the same order in which they
were found, thus allowing multiple occurrences. Long and short options may be mixed.

getopt.gnu_getopt(args, shortopts, longopts=[])
This function works like getopt(), except that GNU style scanning mode is used by default. This means
that option and non-option arguments may be intermixed. The getopt() function stops processing options
as soon as a non-option argument is encountered.

If the first character of the option string is '+', or if the environment variable POSIXLY_CORRECT is set, then
option processing stops as soon as a non-option argument is encountered.

exception getopt.GetoptError

This is raised when an unrecognized option is found in the argument list or when an option requiring an
argument is given none. The argument to the exception is a string indicating the cause of the error. For long
options, an argument given to an option which does not require one will also cause this exception to be raised.
The attributes msg and opt give the error message and related option; if there is no specific option to which
the exception relates, opt is an empty string.

exception getopt.error

Alias for GetoptError; for backward compatibility.

An example using only Unix style options:

>>> import getopt

>>> args = '-a -b -cfoo -d bar a1 a2'.split()

>>> args

['-a', '-b', '-cfoo', '-d', 'bar', 'a1', 'a2']

>>> optlist, args = getopt.getopt(args, 'abc:d:')

>>> optlist

[('-a', ''), ('-b', ''), ('-c', 'foo'), ('-d', 'bar')]

>>> args

['a1', 'a2']

Using long option names is equally easy:

>>> s = '--condition=foo --testing --output-file abc.def -x a1 a2'

>>> args = s.split()

>>> args

['--condition=foo', '--testing', '--output-file', 'abc.def', '-x', 'a1', 'a2']

>>> optlist, args = getopt.getopt(args, 'x', [

... 'condition=', 'output-file=', 'testing'])

>>> optlist

[('--condition', 'foo'), ('--testing', ''), ('--output-file', 'abc.def'), ('-x', '

↪→')]

>>> args

['a1', 'a2']

In a script, typical usage is something like this:

2184 Chapter 37. Superseded Modules



The Python Library Reference, Release 3.13.1

import getopt, sys

def main():

try:

opts, args = getopt.getopt(sys.argv[1:], "ho:v", ["help", "output="])

except getopt.GetoptError as err:

# print help information and exit:

print(err) # will print something like "option -a not recognized"

usage()

sys.exit(2)

output = None

verbose = False

for o, a in opts:

if o == "-v":

verbose = True

elif o in ("-h", "--help"):

usage()

sys.exit()

elif o in ("-o", "--output"):

output = a

else:

assert False, "unhandled option"

process(args, output=output, verbose=verbose)

if __name__ == "__main__":

main()

Note that an equivalent command line interface could be produced with less code and more informative help and
error messages by using the optparse module:

import optparse

if __name__ == '__main__':

parser = optparse.OptionParser()

parser.add_option('-o', '--output')

parser.add_option('-v', dest='verbose', action='store_true')

opts, args = parser.parse_args()

process(args, output=opts.output, verbose=opts.verbose)

A roughly equivalent command line interface for this case can also be produced by using the argparse module:

import argparse

if __name__ == '__main__':

parser = argparse.ArgumentParser()

parser.add_argument('-o', '--output')

parser.add_argument('-v', dest='verbose', action='store_true')

parser.add_argument('rest', nargs='*')

args = parser.parse_args()

process(args.rest, output=args.output, verbose=args.verbose)

See Choosing an argument parsing library for details on how the argparse version of this code differs in behaviour
from the optparse (and getopt) version.

See also

Module optparse

37.1. getopt— C-style parser for command line options 2185



The Python Library Reference, Release 3.13.1

Declarative command line option parsing.

Module argparse
More opinionated command line option and argument parsing library.

2186 Chapter 37. Superseded Modules



CHAPTER

THIRTYEIGHT

REMOVED MODULES

The modules described in this chapter have been removed from the Python standard library. They are documented
here to help people find replacements.

38.1 aifc— Read and write AIFF and AIFC files

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

The last version of Python that provided the aifc module was Python 3.12.

38.2 asynchat — Asynchronous socket command/response han-
dler

Deprecated since version 3.6, removed in version 3.12.

This module is no longer part of the Python standard library. It was removed in Python 3.12 after being deprecated
in Python 3.6. The removal was decided in PEP 594.

Applications should use the asyncio module instead.

The last version of Python that provided the asynchat module was Python 3.11.

38.3 asyncore— Asynchronous socket handler

Deprecated since version 3.6, removed in version 3.12.

This module is no longer part of the Python standard library. It was removed in Python 3.12 after being deprecated
in Python 3.6. The removal was decided in PEP 594.

Applications should use the asyncio module instead.

The last version of Python that provided the asyncore module was Python 3.11.

38.4 audioop—Manipulate raw audio data

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

The last version of Python that provided the audioop module was Python 3.12.

2187

https://peps.python.org/pep-0594/
https://docs.python.org/3.12/library/aifc.html
https://peps.python.org/pep-0594/
https://docs.python.org/3.11/library/asynchat.html
https://peps.python.org/pep-0594/
https://docs.python.org/3.11/library/asyncore.html
https://peps.python.org/pep-0594/
https://docs.python.org/3.12/library/audioop.html


The Python Library Reference, Release 3.13.1

38.5 cgi— Common Gateway Interface support

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

A fork of the module on PyPI can be used instead: legacy-cgi. This is a copy of the cgi module, no longer maintained
or supported by the core Python team.

The last version of Python that provided the cgi module was Python 3.12.

38.6 cgitb— Traceback manager for CGI scripts

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

A fork of the module on PyPI can now be used instead: legacy-cgi. This is a copy of the cgi module, no longer
maintained or supported by the core Python team.

The last version of Python that provided the cgitb module was Python 3.12.

38.7 chunk— Read IFF chunked data

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

The last version of Python that provided the chunk module was Python 3.12.

38.8 crypt— Function to check Unix passwords

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

Applications can use the hashlib module from the standard library. Other possible replacements are third-party
libraries from PyPI: legacycrypt, bcrypt, argon2-cffi, or passlib. These are not supported or maintained by the Python
core team.

The last version of Python that provided the crypt module was Python 3.12.

38.9 distutils— Building and installing Python modules

Deprecated since version 3.10, removed in version 3.12.

This module is no longer part of the Python standard library. It was removed in Python 3.12 after being deprecated
in Python 3.10. The removal was decided in PEP 632, which has migration advice.

The last version of Python that provided the distutils module was Python 3.11.

38.10 imghdr— Determine the type of an image

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

2188 Chapter 38. Removed Modules

https://peps.python.org/pep-0594/
https://pypi.org/project/legacy-cgi/
https://docs.python.org/3.12/library/cgi.html
https://peps.python.org/pep-0594/
https://pypi.org/project/legacy-cgi/
https://docs.python.org/3.12/library/cgitb.html
https://peps.python.org/pep-0594/
https://docs.python.org/3.12/library/chunk.html
https://peps.python.org/pep-0594/
https://pypi.org/project/legacycrypt/
https://pypi.org/project/bcrypt/
https://pypi.org/project/argon2-cffi/
https://pypi.org/project/passlib/
https://docs.python.org/3.12/library/crypt.html
https://peps.python.org/pep-0632/
https://peps.python.org/pep-0632/#migration-advice
https://docs.python.org/3.11/library/distutils.html
https://peps.python.org/pep-0594/


The Python Library Reference, Release 3.13.1

Possible replacements are third-party libraries from PyPI: filetype, puremagic, or python-magic. These are not
supported or maintained by the Python core team.

The last version of Python that provided the imghdr module was Python 3.12.

38.11 imp— Access the import internals

Deprecated since version 3.4, removed in version 3.12.

This module is no longer part of the Python standard library. It was removed in Python 3.12 after being deprecated
in Python 3.4.

The removal notice includes guidance for migrating code from imp to importlib.

The last version of Python that provided the imp module was Python 3.11.

38.12 mailcap—Mailcap file handling

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

The last version of Python that provided the mailcap module was Python 3.12.

38.13 msilib— Read and write Microsoft Installer files

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

The last version of Python that provided the msilib module was Python 3.12.

38.14 nis— Interface to Sun’s NIS (Yellow Pages)

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

The last version of Python that provided the nis module was Python 3.12.

38.15 nntplib— NNTP protocol client

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

The last version of Python that provided the nntplib module was Python 3.12.

38.16 ossaudiodev— Access to OSS-compatible audio devices

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

The last version of Python that provided the ossaudiodev module was Python 3.12.

38.11. imp— Access the import internals 2189

https://pypi.org/project/filetype/
https://pypi.org/project/puremagic/
https://pypi.org/project/python-magic/
https://docs.python.org/3.12/library/imghdr.html
https://docs.python.org/3.11/library/imp.html
https://peps.python.org/pep-0594/
https://docs.python.org/3.12/library/mailcap.html
https://peps.python.org/pep-0594/
https://docs.python.org/3.12/library/msilib.html
https://peps.python.org/pep-0594/
https://docs.python.org/3.12/library/nis.html
https://peps.python.org/pep-0594/
https://docs.python.org/3.12/library/nntplib.html
https://peps.python.org/pep-0594/
https://docs.python.org/3.12/library/ossaudiodev.html


The Python Library Reference, Release 3.13.1

38.17 pipes— Interface to shell pipelines

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

Applications should use the subprocess module instead.

The last version of Python that provided the pipes module was Python 3.12.

38.18 smtpd— SMTP Server

Deprecated since version 3.6, removed in version 3.12.

This module is no longer part of the Python standard library. It was removed in Python 3.12 after being deprecated
in Python 3.6. The removal was decided in PEP 594.

A possible replacement is the third-party aiosmtpd library. This library is not maintained or supported by the Python
core team.

The last version of Python that provided the smtpd module was Python 3.11.

38.19 sndhdr— Determine type of sound file

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

Possible replacements are third-party modules from PyPI: filetype, puremagic, or python-magic. These are not
supported or maintained by the Python core team.

The last version of Python that provided the sndhdr module was Python 3.12.

38.20 spwd— The shadow password database

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

A possible replacement is the third-party library python-pam. This library is not supported or maintained by the
Python core team.

The last version of Python that provided the spwd module was Python 3.12.

38.21 sunau— Read and write Sun AU files

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

The last version of Python that provided the sunau module was Python 3.12.

38.22 telnetlib— Telnet client

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

2190 Chapter 38. Removed Modules

https://peps.python.org/pep-0594/
https://docs.python.org/3.12/library/pipes.html
https://peps.python.org/pep-0594/
https://pypi.org/project/aiosmtpd/
https://docs.python.org/3.11/library/smtpd.html
https://peps.python.org/pep-0594/
https://pypi.org/project/filetype/
https://pypi.org/project/puremagic/
https://pypi.org/project/python-magic/
https://docs.python.org/3.12/library/sndhdr.html
https://peps.python.org/pep-0594/
https://pypi.org/project/python-pam/
https://docs.python.org/3.12/library/spwd.html
https://peps.python.org/pep-0594/
https://docs.python.org/3.12/library/sunau.html
https://peps.python.org/pep-0594/


The Python Library Reference, Release 3.13.1

Possible replacements are third-party libraries from PyPI: telnetlib3 or Exscript. These are not supported or main-
tained by the Python core team.

The last version of Python that provided the telnetlib module was Python 3.12.

38.23 uu— Encode and decode uuencode files

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

The last version of Python that provided the uu module was Python 3.12.

38.24 xdrlib— Encode and decode XDR data

Deprecated since version 3.11, removed in version 3.13.

This module is no longer part of the Python standard library. It was removed in Python 3.13 after being deprecated
in Python 3.11. The removal was decided in PEP 594.

The last version of Python that provided the xdrlib module was Python 3.12.

38.23. uu— Encode and decode uuencode files 2191

https://pypi.org/project/telnetlib3/
https://pypi.org/project/Exscript/
https://docs.python.org/3.12/library/telnetlib.html
https://peps.python.org/pep-0594/
https://docs.python.org/3.12/library/uu.html
https://peps.python.org/pep-0594/
https://docs.python.org/3.12/library/xdrlib.html


The Python Library Reference, Release 3.13.1

2192 Chapter 38. Removed Modules



CHAPTER

THIRTYNINE

SECURITY CONSIDERATIONS

The following modules have specific security considerations:

• base64: base64 security considerations in RFC 4648

• hashlib: all constructors take a “usedforsecurity” keyword-only argument disabling known insecure and
blocked algorithms

• http.server is not suitable for production use, only implementing basic security checks. See the security
considerations.

• logging: Logging configuration uses eval()

• multiprocessing: Connection.recv() uses pickle

• pickle: Restricting globals in pickle

• random shouldn’t be used for security purposes, use secrets instead

• shelve: shelve is based on pickle and thus unsuitable for dealing with untrusted sources

• ssl: SSL/TLS security considerations

• subprocess: Subprocess security considerations

• tempfile: mktemp is deprecated due to vulnerability to race conditions

• xml: XML vulnerabilities

• zipfile: maliciously prepared .zip files can cause disk volume exhaustion

The -I command line option can be used to run Python in isolated mode. When it cannot be used, the -P option
or the PYTHONSAFEPATH environment variable can be used to not prepend a potentially unsafe path to sys.path
such as the current directory, the script’s directory or an empty string.

2193

https://datatracker.ietf.org/doc/html/rfc4648.html


The Python Library Reference, Release 3.13.1

2194 Chapter 39. Security Considerations



APPENDIX

A

GLOSSARY

>>>

The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

...

Can refer to:

• The default Python prompt of the interactive shell when entering the code for an indented code block,
when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or
triple quotes), or after specifying a decorator.

• The Ellipsis built-in constant.

abstract base class
Abstract base classes complement duck-typing by providing a way to define interfaces when other techniques
like hasattr() would be clumsy or subtly wrong (for example with magic methods). ABCs introduce virtual
subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance() and
issubclass(); see the abc module documentation. Python comes with many built-in ABCs for data struc-
tures (in the collections.abc module), numbers (in the numbers module), streams (in the io module),
import finders and loaders (in the importlib.abc module). You can create your own ABCs with the abc
module.

annotation
A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class at-
tributes, and functions are stored in the __annotations__ special attribute of modules, classes, and func-
tions, respectively.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality. Also
see annotations-howto for best practices on working with annotations.

argument
A value passed to a function (or method) when calling the function. There are two kinds of argument:

• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following
calls to complex():

complex(real=3, imag=5)

complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3
and 5 are both positional arguments in the following calls:

complex(3, 5)

complex(*(3, 5))

2195

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/


The Python Library Reference, Release 3.13.1

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

asynchronous context manager
An object which controls the environment seen in an async with statement by defining __aenter__() and
__aexit__() methods. Introduced by PEP 492.

asynchronous generator
A function which returns an asynchronous generator iterator. It looks like a coroutine function defined with
async def except that it contains yield expressions for producing a series of values usable in an async
for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in
some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain await expressions as well as async for, and async with

statements.

asynchronous generator iterator
An object created by a asynchronous generator function.

This is an asynchronous iteratorwhich when called using the __anext__()method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the asynchronous generator iterator effectively resumes with another
awaitable returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__() method. Introduced by PEP 492.

asynchronous iterator
An object that implements the __aiter__() and __anext__() methods. __anext__() must return an
awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s __anext__()
method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute
A value associated with an object which is usually referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.

It is possible to give an object an attribute whose name is not an identifier as defined by identifiers, for example
using setattr(), if the object allows it. Such an attribute will not be accessible using a dotted expression,
and would instead need to be retrieved with getattr().

awaitable
An object that can be used in an await expression. Can be a coroutine or an object with an __await__()
method. See also PEP 492.

BDFL
Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file
A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode
('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.BytesIO and
gzip.GzipFile.

See also text file for a file object able to read and write str objects.

borrowed reference
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection
can remove the last strong reference to the object and so destroy it.

2196 Appendix A. Glossary

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://gvanrossum.github.io/


The Python Library Reference, Release 3.13.1

Calling Py_INCREF() on the borrowed reference is recommended to convert it to a strong reference in-place,
except when the object cannot be destroyed before the last usage of the borrowed reference. The Py_NewRef()
function can be used to create a new strong reference.

bytes-like object
An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all bytes,
bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like objects
can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as “read-write
bytes-like objects”. Examplemutable buffer objects include bytearray and a memoryview of a bytearray.
Other operations require the binary data to be stored in immutable objects (“read-only bytes-like objects”);
examples of these include bytes and a memoryview of a bytes object.

bytecode
Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a
virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are
not expected to work between different Python virtual machines, nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

callable
A callable is an object that can be called, possibly with a set of arguments (see argument), with the following
syntax:

callable(argument1, argument2, argumentN)

A function, and by extension a method, is a callable. An instance of a class that implements the __call__()
method is also a callable.

callback
A subroutine function which is passed as an argument to be executed at some point in the future.

class
A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

class variable
A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the class).

closure variable
A free variable referenced from a nested scope that is defined in an outer scope rather than being resolved at
runtime from the globals or builtin namespaces. May be explicitly defined with the nonlocal keyword to
allow write access, or implicitly defined if the variable is only being read.

For example, in the inner function in the following code, both x and print are free variables, but only x is
a closure variable:

def outer():

x = 0

def inner():

nonlocal x

x += 1

print(x)

return inner

Due to the codeobject.co_freevars attribute (which, despite its name, only includes the names of closure
variables rather than listing all referenced free variables), the more general free variable term is sometimes used
even when the intended meaning is to refer specifically to closure variables.

2197



The Python Library Reference, Release 3.13.1

complex number
An extension of the familiar real number system in which all numbers are expressed as a sum of a real part and
an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1), often
written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to com-
plex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical
feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context
This term has different meanings depending on where and how it is used. Some common meanings:

• The temporary state or environment established by a context manager via a with statement.

• The collection of keyvalue bindings associated with a particular contextvars.Context object and
accessed via ContextVar objects. Also see context variable.

• A contextvars.Context object. Also see current context.

context management protocol
The __enter__() and __exit__() methods called by the with statement. See PEP 343.

context manager
An object which implements the context management protocol and controls the environment seen in a with
statement. See PEP 343.

context variable
A variable whose value depends on which context is the current context. Values are accessed via
contextvars.ContextVar objects. Context variables are primarily used to isolate state between concur-
rent asynchronous tasks.

contiguous
A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next
to each other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the
last index varies the fastest when visiting items in order of memory address. However, in Fortran contiguous
arrays, the first index varies the fastest.

coroutine
Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at
another point. Coroutines can be entered, exited, and resumed at many different points. They can be imple-
mented with the async def statement. See also PEP 492.

coroutine function
A function which returns a coroutine object. A coroutine function may be defined with the async def state-
ment, and may contain await, async for, and async with keywords. These were introduced by PEP
492.

CPython
The canonical implementation of the Python programming language, as distributed on python.org. The term
“CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

current context
The context (contextvars.Context object) that is currently used by ContextVar objects to access (get
or set) the values of context variables. Each thread has its own current context. Frameworks for executing
asynchronous tasks (see asyncio) associate each task with a context which becomes the current context
whenever the task starts or resumes execution.

decorator
A function returning another function, usually applied as a function transformation using the @wrapper syntax.
Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiv-
alent:

2198 Appendix A. Glossary

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org


The Python Library Reference, Release 3.13.1

def f(arg):

...

f = staticmethod(f)

@staticmethod

def f(arg):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

descriptor
Any object which defines the methods __get__(), __set__(), or __delete__(). When a class attribute
is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to get,
set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

For more information about descriptors’ methods, see descriptors or the Descriptor How To Guide.

dictionary
An associative array, where arbitrary keys are mapped to values. The keys can be any object with __hash__()
and __eq__() methods. Called a hash in Perl.

dictionary comprehension
A compact way to process all or part of the elements in an iterable and return a dictionary with the re-
sults. results = {n: n ** 2 for n in range(10)} generates a dictionary containing key n mapped
to value n ** 2. See comprehensions.

dictionary view
The objects returned from dict.keys(), dict.values(), and dict.items() are called dictionary views.
They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the
view reflects these changes. To force the dictionary view to become a full list use list(dictview). See
Dictionary view objects.

docstring
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing
A programming style which does not look at an object’s type to determine if it has the right interface; instead,
the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must be
a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility
by allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note,
however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests or EAFP programming.

EAFP
Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of
valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except statements. The technique contrasts with the LBYL
style common to many other languages such as C.

expression
A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation of
expression elements like literals, names, attribute access, operators or function calls which all return a value. In
contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

2199



The Python Library Reference, Release 3.13.1

extension module
A module written in C or C++, using Python’s C API to interact with the core and with user code.

f-string
String literals prefixed with 'f' or 'F' are commonly called “f-strings” which is short for formatted string
literals. See also PEP 498.

file object
An object exposing a file-oriented API (with methods such as read() or write()) to an underlying resource.
Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type of
storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes, etc.).
File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open()
function.

file-like object
A synonym for file object.

filesystem encoding and error handler
Encoding and error handler used by Python to decode bytes from the operating system and encode Unicode to
the operating system.

The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding
fails to provide this guarantee, API functions can raise UnicodeError.

The sys.getfilesystemencoding() and sys.getfilesystemencodeerrors() functions can be
used to get the filesystem encoding and error handler.

The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read() func-
tion: see filesystem_encoding and filesystem_errors members of PyConfig.

See also the locale encoding.

finder
An object that tries to find the loader for a module that is being imported.

There are two types of finder: meta path finders for use with sys.meta_path, and path entry finders for use
with sys.path_hooks.

See finders-and-loaders and importlib for much more detail.

floor division
Mathematical division that rounds down to nearest integer. The floor division operator is //. For example, the
expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11)
// 4 is -3 because that is -2.75 rounded downward. See PEP 238.

free threading
A threadingmodel wheremultiple threads can run Python bytecode simultaneously within the same interpreter.
This is in contrast to the global interpreter lock which allows only one thread to execute Python bytecode at a
time. See PEP 703.

free variable
Formally, as defined in the language execution model, a free variable is any variable used in a namespace
which is not a local variable in that namespace. See closure variable for an example. Pragmatically, due to the
name of the codeobject.co_freevars attribute, the term is also sometimes used as a synonym for closure
variable.

function
A series of statements which returns some value to a caller. It can also be passed zero or more argumentswhich
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation
An annotation of a function parameter or return value.

2200 Appendix A. Glossary

https://peps.python.org/pep-0498/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0703/


The Python Library Reference, Release 3.13.1

Function annotations are usually used for type hints: for example, this function is expected to take two int
arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:

return a + b

Function annotation syntax is explained in section function.

See variable annotation and PEP 484, which describe this functionality. Also see annotations-howto for best
practices on working with annotations.

__future__
A future statement, from __future__ import <feature>, directs the compiler to compile the current
module using syntax or semantics that will become standard in a future release of Python. The __future__
module documents the possible values of feature. By importing this module and evaluating its variables, you
can see when a new feature was first added to the language and when it will (or did) become the default:

>>> import __future__

>>> __future__.division

_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection
The process of freeing memory when it is not used anymore. Python performs garbage collection via reference
counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage collector
can be controlled using the gc module.

generator
A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next() function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where
the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator
An object created by a generator function.

Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast
to functions which start fresh on every invocation).

generator expression
An expression that returns an iterator. It looks like a normal expression followed by a for clause defining a
loop variable, range, and an optional if clause. The combined expression generates values for an enclosing
function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81

285

generic function
A function composed of multiple functions implementing the same operation for different types. Which im-
plementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP 443.

generic type
A type that can be parameterized; typically a container class such as list or dict. Used for type hints and
annotations.

For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the typing module.

GIL
See global interpreter lock.

2201

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/


The Python Library Reference, Release 3.13.1

global interpreter lock
The mechanism used by the CPython interpreter to assure that only one thread executes Python bytecode at
a time. This simplifies the CPython implementation by making the object model (including critical built-in
types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/O.

As of Python 3.13, the GIL can be disabled using the --disable-gil build configuration. After building
Python with this option, code must be run with -X gil=0 or after setting the PYTHON_GIL=0 environment
variable. This feature enables improved performance for multi-threaded applications and makes it easier to
use multi-core CPUs efficiently. For more details, see PEP 703.

hash-based pyc
A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source file to
determine its validity. See pyc-invalidation.

hashable
An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__() method). Hashable objects which
compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries)
are not; immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable.
Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except
with themselves), and their hash value is derived from their id().

IDLE
An Integrated Development and Learning Environment for Python. IDLE is a basic editor and interpreter
environment which ships with the standard distribution of Python.

immortal
Immortal objects are a CPython implementation detail introduced in PEP 683.

If an object is immortal, its reference count is never modified, and therefore it is never deallocated while the
interpreter is running. For example, True and None are immortal in CPython.

immutable
An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path
A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys.path, but for subpackages it may also come from the
parent package’s __path__ attribute.

importing
The process by which Python code in one module is made available to Python code in another module.

importer
An object that both finds and loads a module; both a finder and loader object.

interactive
Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly
by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect
modules and packages (remember help(x)). For more on interactive mode, see tut-interac.

2202 Appendix A. Glossary

https://peps.python.org/pep-0703/
https://peps.python.org/pep-0683/


The Python Library Reference, Release 3.13.1

interpreted
Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly
creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown
When asked to shut down, the Python interpreter enters a special phase where it gradually releases all allocated
resources, such as modules and various critical internal structures. It also makes several calls to the garbage
collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code exe-
cuted during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

iterable
An object capable of returning its members one at a time. Examples of iterables include all sequence types
(such as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any
classes you define with an __iter__()method or with a __getitem__()method that implements sequence
semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(),
…). When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter() or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator
An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or passing
it to the built-in function next()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
to its __next__() method just raise StopIteration again. Iterators are required to have an __iter__()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places
where other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A
container object (such as a list) produces a fresh new iterator each time you pass it to the iter() function
or use it in a for loop. Attempting this with an iterator will just return the same exhausted iterator object used
in the previous iteration pass, making it appear like an empty container.

More information can be found in Iterator Types.

CPython implementation detail: CPython does not consistently apply the requirement that an iterator define
__iter__(). And also please note that the free-threading CPython does not guarantee the thread-safety of
iterator operations.

key function
A key function or collation function is a callable that returns a value used for sorting or ordering. For example,
locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They
include min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.
nlargest(), and itertools.groupby().

There are several ways to create a key function. For example. the str.lower() method can serve as a
key function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression
such as lambda r: (r[0], r[2]). Also, operator.attrgetter(), operator.itemgetter(), and
operator.methodcaller() are three key function constructors. See the Sorting HOW TO for examples
of how to create and use key functions.

keyword argument
See argument.

2203



The Python Library Reference, Release 3.13.1

lambda
An anonymous inline function consisting of a single expression which is evaluated when the function is called.
The syntax to create a lambda function is lambda [parameters]: expression

LBYL
Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the
looking” and “the leaping”. For example, the code, if key in mapping: return mapping[key] can
fail if another thread removes key from mapping after the test, but before the lookup. This issue can be solved
with locks or by using the EAFP approach.

list
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension
A compact way to process all or part of the elements in a sequence and return a list with the results. result
= ['{:#04x}'.format(x) for x in range(256) if x % 2 == 0] generates a list of strings con-
taining even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all elements
in range(256) are processed.

loader
An object that loads a module. It must define a method named load_module(). A loader is typically returned
by a finder. See also:

• finders-and-loaders

• importlib.abc.Loader

• PEP 302

locale encoding
On Unix, it is the encoding of the LC_CTYPE locale. It can be set with locale.setlocale(locale.

LC_CTYPE, new_locale).

On Windows, it is the ANSI code page (ex: "cp1252").

On Android and VxWorks, Python uses "utf-8" as the locale encoding.

locale.getencoding() can be used to get the locale encoding.

See also the filesystem encoding and error handler.

magic method
An informal synonym for special method.

mapping
A container object that supports arbitrary key lookups and implements the methods specified in the
collections.abc.Mapping or collections.abc.MutableMapping abstract base classes. Exam-
ples include dict, collections.defaultdict, collections.OrderedDict and collections.

Counter.

meta path finder
A finder returned by a search of sys.meta_path. Meta path finders are related to, but different from path
entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass
The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented pro-
gramming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

2204 Appendix A. Glossary

https://peps.python.org/pep-0302/


The Python Library Reference, Release 3.13.1

More information can be found in metaclasses.

method
A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order
Method Resolution Order is the order in which base classes are searched for a member during lookup. See
python_2.3_mro for details of the algorithm used by the Python interpreter since the 2.3 release.

module
An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec
A namespace containing the import-related information used to load a module. An instance of importlib.
machinery.ModuleSpec.

See also module-specs.

MRO
See method resolution order.

mutable
Mutable objects can change their value but keep their id(). See also immutable.

named tuple
The term “named tuple” applies to any type or class that inherits from tuple and whose indexable elements are
also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime() and os.

stat(). Another example is sys.float_info:

>>> sys.float_info[1] # indexed access

1024

>>> sys.float_info.max_exp # named field access

1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be
created from a regular class definition that inherits from tuple and that defines named fields. Such a class
can be written by hand, or it can be created by inheriting typing.NamedTuple, or with the factory function
collections.namedtuple(). The latter techniques also add some extra methods that may not be found
in hand-written or built-in named tuples.

namespace
The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support
modularity by preventing naming conflicts. For instance, the functions builtins.open and os.open() are
distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random.seed() or itertools.islice()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

namespace package
A PEP 420 package which serves only as a container for subpackages. Namespace packages may have no
physical representation, and specifically are not like a regular package because they have no __init__.py
file.

See also module.

nested scope
The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another

2205

https://peps.python.org/pep-0420/


The Python Library Reference, Release 3.13.1

function can refer to variables in the outer function. Note that nested scopes by default work only for reference
and not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables
read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only
new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

object
Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

optimized scope
A scope where target local variable names are reliably known to the compiler when the code is compiled,
allowing optimization of read and write access to these names. The local namespaces for functions, generators,
coroutines, comprehensions, and generator expressions are optimized in this fashion. Note: most interpreter
optimizations are applied to all scopes, only those relying on a known set of local and nonlocal variable names
are restricted to optimized scopes.

package
A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module with a __path__ attribute.

See also regular package and namespace package.

parameter
A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argu-
ment. This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Positional-only parameters
can be defined by including a / character in the parameter list of the function definition after them, for
example posonly1 and posonly2 in the following:

def func(posonly1, posonly2, /, positional_or_keyword): ...

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters
can be defined by including a single var-positional parameter or bare * in the parameter list of the function
definition before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional
arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
the inspect.Parameter class, the function section, and PEP 362.

2206 Appendix A. Glossary

https://peps.python.org/pep-0362/


The Python Library Reference, Release 3.13.1

path entry
A single location on the import path which the path based finder consults to find modules for importing.

path entry finder
A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to locate
modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook
A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules on
a specific path entry.

path based finder
One of the default meta path finders which searches an import path for modules.

path-like object
An object representing a file system path. A path-like object is either a str or bytes object representing
a path, or an object implementing the os.PathLike protocol. An object that supports the os.PathLike
protocol can be converted to a str or bytes file system path by calling the os.fspath() function; os.
fsdecode() and os.fsencode() can be used to guarantee a str or bytes result instead, respectively.
Introduced by PEP 519.

PEP
Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community
input on an issue, and for documenting the design decisions that have gone into Python. The PEP author is
responsible for building consensus within the community and documenting dissenting opinions.

See PEP 1.

portion
A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as
defined in PEP 420.

positional argument
See argument.

provisional API
A provisional API is one which has been deliberately excluded from the standard library’s backwards com-
patibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if
deemed necessary by core developers. Such changes will not be made gratuitously – they will occur only if
serious fundamental flaws are uncovered that were missed prior to the inclusion of the API.

Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” - every
attempt will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package
See provisional API.

Python 3000
Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in the
distant future.) This is also abbreviated “Py3k”.

Pythonic
An idea or piece of code which closely follows the most common idioms of the Python language, rather than
implementing code using concepts common to other languages. For example, a common idiom in Python is
to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

2207

https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/


The Python Library Reference, Release 3.13.1

for i in range(len(food)):

print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:

print(piece)

qualified name
A dotted name showing the “path” from a module’s global scope to a class, function or method defined in that
module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

>>> class C:

... class D:

... def meth(self):

... pass

...

>>> C.__qualname__

'C'

>>> C.D.__qualname__

'C.D'

>>> C.D.meth.__qualname__

'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including
any parent packages, e.g. email.mime.text:

>>> import email.mime.text

>>> email.mime.text.__name__

'email.mime.text'

reference count
The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Some objects are immortal and have reference counts that are never modified, and therefore the objects are
never deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPython implementation. Programmers can call the sys.getrefcount() function to return the reference
count for a particular object.

regular package
A traditional package, such as a directory containing an __init__.py file.

See also namespace package.

REPL
An acronym for the “read–eval–print loop”, another name for the interactive interpreter shell.

__slots__
A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for
rare cases where there are large numbers of instances in a memory-critical application.

sequence
An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a __len__() method that returns the length of the sequence. Some built-in sequence
types are list, str, tuple, and bytes. Note that dict also supports __getitem__() and __len__(),
but is considered a mapping rather than a sequence because the lookups use arbitrary hashable keys rather
than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes beyond just
__getitem__() and __len__(), adding count(), index(), __contains__(), and __reversed__().

2208 Appendix A. Glossary

https://peps.python.org/pep-3155/


The Python Library Reference, Release 3.13.1

Types that implement this expanded interface can be registered explicitly using register(). For more
documentation on sequence methods generally, see Common Sequence Operations.

set comprehension
A compact way to process all or part of the elements in an iterable and return a set with the results. results
= {c for c in 'abracadabra' if c not in 'abc'} generates the set of strings {'r', 'd'}. See
comprehensions.

single dispatch
A form of generic function dispatch where the implementation is chosen based on the type of a single argument.

slice
An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (sub-
script) notation uses slice objects internally.

soft deprecated
A soft deprecated API should not be used in new code, but it is safe for already existing code to use it. The
API remains documented and tested, but will not be enhanced further.

Soft deprecation, unlike normal deprecation, does not plan on removing the API and will not emit warnings.

See PEP 387: Soft Deprecation.

special method
A method that is called implicitly by Python to execute a certain operation on a type, such as addition. Such
methods have names starting and ending with double underscores. Special methods are documented in spe-
cialnames.

statement
A statement is part of a suite (a “block” of code). A statement is either an expression or one of several constructs
with a keyword, such as if, while or for.

static type checker
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also
type hints and the typing module.

strong reference
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the
reference. The strong reference is taken by calling Py_INCREF() when the reference is created and released
with Py_DECREF() when the reference is deleted.

The Py_NewRef() function can be used to create a strong reference to an object. Usually, the Py_DECREF()
function must be called on the strong reference before exiting the scope of the strong reference, to avoid leaking
one reference.

See also borrowed reference.

text encoding
A string in Python is a sequence of Unicode code points (in range U+0000–U+10FFFF). To store or transfer
a string, it needs to be serialized as a sequence of bytes.

Serializing a string into a sequence of bytes is known as “encoding”, and recreating the string from the sequence
of bytes is known as “decoding”.

There are a variety of different text serialization codecs, which are collectively referred to as “text encodings”.

text file
A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented datastream
and handles the text encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of io.StringIO.

See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string
A string which is bound by three instances of either a quotation mark (”) or an apostrophe (‘). While they don’t
provide any functionality not available with single-quoted strings, they are useful for a number of reasons.

2209

https://peps.python.org/pep-0387/#soft-deprecation


The Python Library Reference, Release 3.13.1

They allow you to include unescaped single and double quotes within a string and they can span multiple lines
without the use of the continuation character, making them especially useful when writing docstrings.

type
The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

type alias
A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying type hints. For example:

def remove_gray_shades(

colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]:

pass

could be made more readable like this:

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) -> list[Color]:

pass

See typing and PEP 484, which describe this functionality.

type hint
An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return
value.

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can
also aid IDEs with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().

See typing and PEP 484, which describe this functionality.

universal newlines
A manner of interpreting text streams in which all of the following are recognized as ending a line: the Unix
end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention '\r'. See
PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.

variable annotation
An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:

field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.

See function annotation, PEP 484 andPEP 526, which describe this functionality. Also see annotations-howto
for best practices on working with annotations.

virtual environment
A cooperatively isolated runtime environment that allows Python users and applications to install and upgrade
Python distribution packages without interfering with the behaviour of other Python applications running on
the same system.

See also venv.

2210 Appendix A. Glossary

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/


The Python Library Reference, Release 3.13.1

virtual machine
A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by the byte-
code compiler.

Zen of Python
Listing of Python design principles and philosophies that are helpful in understanding and using the language.
The listing can be found by typing “import this” at the interactive prompt.

2211



The Python Library Reference, Release 3.13.1

2212 Appendix A. Glossary



APPENDIX

B

ABOUT THIS DOCUMENTATION

Python’s documentation is generated from reStructuredText sources using Sphinx, a documentation generator origi-
nally created for Python and now maintained as an independent project.

Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you
want to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers
are always welcome!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and author of much of the content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation.
See Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful documentation
– Thank You!

2213

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.13/Misc/ACKS


The Python Library Reference, Release 3.13.1

2214 Appendix B. About this documentation



APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https:
//www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
//www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see https://www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?

0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

Note

GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the GPL,
let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

2215

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/


The Python Library Reference, Release 3.13.1

C.2 Terms and conditions for accessing or otherwise using Python

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Some software incorporated into Python is under different licenses. The licenses are listed with code falling under
that license. See Licenses and Acknowledgements for Incorporated Software for an incomplete list of these licenses.

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.13.1

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise using Python

3.13.1 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,

analyze, test, perform and/or display publicly, prepare derivative works,

distribute, and otherwise use Python 3.13.1 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's notice of

copyright, i.e., "Copyright © 2001-2024 Python Software Foundation; All Rights

Reserved" are retained in Python 3.13.1 alone or in any derivative version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or

incorporates Python 3.13.1 or any part thereof, and wants to make the

derivative work available to others as provided herein, then Licensee hereby

agrees to include in any such work a brief summary of the changes made to Python

3.13.1.

4. PSF is making Python 3.13.1 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE

USE OF PYTHON 3.13.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.13.1

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.13.1, OR ANY DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship

of agency, partnership, or joint venture between PSF and Licensee. This License

Agreement does not grant permission to use PSF trademarks or trade name in a

trademark sense to endorse or promote products or services of Licensee, or any

third party.

8. By copying, installing or otherwise using Python 3.13.1, Licensee agrees

to be bound by the terms and conditions of this License Agreement.

2216 Appendix C. History and License



The Python Library Reference, Release 3.13.1

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at

160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization

("Licensee") accessing and otherwise using this software in source or binary

form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,

BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license

to reproduce, analyze, test, perform and/or display publicly, prepare derivative

works, distribute, and otherwise use the Software alone or in any derivative

version, provided, however, that the BeOpen Python License is retained in the

Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.

BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE

USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR

ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,

MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF

ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of

its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects

by the law of the State of California, excluding conflict of law provisions.

Nothing in this License Agreement shall be deemed to create any relationship of

agency, partnership, or joint venture between BeOpen and Licensee. This License

Agreement does not grant permission to use BeOpen trademarks or trade names in a

trademark sense to endorse or promote products or services of Licensee, or any

third party. As an exception, the "BeOpen Python" logos available at

http://www.pythonlabs.com/logos.html may be used according to the permissions

granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be

bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research

Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191

("CNRI"), and the Individual or Organization ("Licensee") accessing and

otherwise using Python 1.6.1 software in source or binary form and its

associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,

analyze, test, perform and/or display publicly, prepare derivative works,

distribute, and otherwise use Python 1.6.1 alone or in any derivative version,

provided, however, that CNRI's License Agreement and CNRI's notice of copyright,

i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All

(continues on next page)

C.2. Terms and conditions for accessing or otherwise using Python 2217



The Python Library Reference, Release 3.13.1

(continued from previous page)

Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version

prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,

Licensee may substitute the following text (omitting the quotes): "Python 1.6.1

is made available subject to the terms and conditions in CNRI's License

Agreement. This Agreement together with Python 1.6.1 may be located on the

internet using the following unique, persistent identifier (known as a handle):

1895.22/1013. This Agreement may also be obtained from a proxy server on the

internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or

incorporates Python 1.6.1 or any part thereof, and wants to make the derivative

work available to others as provided herein, then Licensee hereby agrees to

include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI

MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,

BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY

OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF

PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR

ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of

its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property

law of the United States, including without limitation the federal copyright

law, and, to the extent such U.S. federal law does not apply, by the law of the

Commonwealth of Virginia, excluding Virginia's conflict of law provisions.

Notwithstanding the foregoing, with regard to derivative works based on Python

1.6.1 that incorporate non-separable material that was previously distributed

under the GNU General Public License (GPL), the law of the Commonwealth of

Virginia shall govern this License Agreement only as to issues arising under or

with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in

this License Agreement shall be deemed to create any relationship of agency,

partnership, or joint venture between CNRI and Licensee. This License Agreement

does not grant permission to use CNRI trademarks or trade name in a trademark

sense to endorse or promote products or services of Licensee, or any third

party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing

or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and

conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The

Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its

documentation for any purpose and without fee is hereby granted, provided that

the above copyright notice appear in all copies and that both that copyright

(continues on next page)

2218 Appendix C. History and License



The Python Library Reference, Release 3.13.1

(continued from previous page)

notice and this permission notice appear in supporting documentation, and that

the name of Stichting Mathematisch Centrum or CWI not be used in advertising or

publicity pertaining to distribution of the software without specific, written

prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO

EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT

OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,

DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS

SOFTWARE.

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.13.1 DOCU-
MENTATION

Permission to use, copy, modify, and/or distribute this software for any

purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH

REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,

INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM

LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR

OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR

PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _randomC extension underlying the randommodule includes code based on a download from http://www.math.
sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html. The following are the verbatim comments from the
original code:

A C-program for MT19937, with initialization improved 2002/1/26.

Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)

or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 2219

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html


The Python Library Reference, Release 3.13.1

(continued from previous page)

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote

products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socketmodule uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate source
files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors

may be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

2220 Appendix C. History and License

https://www.wide.ad.jp/


The Python Library Reference, Release 3.13.1

C.3.3 Asynchronous socket services

The test.support.asynchat and test.support.asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of Sam

Rushing not be used in advertising or publicity pertaining to

distribution of the software without specific, written prior

permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,

INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN

NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR

CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS

OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of

Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written

prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR

ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR

PERFORMANCE OF THIS SOFTWARE.

C.3.5 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...

err... reserved and offered to the public under the terms of the

Python 2.2 license.
(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 2221



The Python Library Reference, Release 3.13.1

(continued from previous page)

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.

Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.

Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.

Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and

its associated documentation for any purpose without fee is hereby

granted, provided that the above copyright notice appears in all copies,

and that both that copyright notice and this permission notice appear in

supporting documentation, and that the name of neither Automatrix,

Bioreason or Mojam Media be used in advertising or publicity pertaining to

distribution of the software without specific, written prior permission.

C.3.6 UUencode and UUdecode functions

The uu codec contains the following notice:

Copyright 1994 by Lance Ellinghouse

Cathedral City, California Republic, United States of America.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its

documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that

both that copyright notice and this permission notice appear in

supporting documentation, and that the name of Lance Ellinghouse

not be used in advertising or publicity pertaining to distribution

of the software without specific, written prior permission.

LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE

FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT

OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C

version is still 5 times faster, though.

- Arguments more compliant with Python standard

2222 Appendix C. History and License



The Python Library Reference, Release 3.13.1

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB

Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its

associated documentation, you agree that you have read, understood,

and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and

its associated documentation for any purpose and without fee is

hereby granted, provided that the above copyright notice appears in

all copies, and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of

Secret Labs AB or the author not be used in advertising or publicity

pertaining to distribution of the software without specific, written

prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD

TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-

ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR

BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY

DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE

OF THIS SOFTWARE.

C.3.8 test_epoll

The test.test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE

LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 2223



The Python Library Reference, Release 3.13.1

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3.10 SipHash24

The file Python/pyhash.c contains Marek Majkowski’ implementation of Dan Bernstein’s SipHash24 algorithm.
It contains the following note:

<MIT License>

Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

</MIT License>

Original location:

https://github.com/majek/csiphash/

Solution inspired by code from:

Samuel Neves (supercop/crypto_auth/siphash24/little)

djb (supercop/crypto_auth/siphash24/little2)

Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

2224 Appendix C. History and License



The Python Library Reference, Release 3.13.1

C.3.11 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from https://web.archive.org/web/
20220517033456/http://www.netlib.org/fp/dtoa.c. The original file, as retrieved on March 16, 2009, contains the
following copyright and licensing notice:

/****************************************************************

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice

* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***************************************************************/

C.3.12 OpenSSL

The modules hashlib, posix and ssl use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived
from that, the Apache License v2 applies:

Apache License

Version 2.0, January 2004

https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,

and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by

the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all

other entities that control, are controlled by, or are under common

control with that entity. For the purposes of this definition,

"control" means (i) the power, direct or indirect, to cause the

direction or management of such entity, whether by contract or

otherwise, or (ii) ownership of fifty percent (50%) or more of the

outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity

exercising permissions granted by this License.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 2225

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c


The Python Library Reference, Release 3.13.1

(continued from previous page)

"Source" form shall mean the preferred form for making modifications,

including but not limited to software source code, documentation

source, and configuration files.

"Object" form shall mean any form resulting from mechanical

transformation or translation of a Source form, including but

not limited to compiled object code, generated documentation,

and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or

Object form, made available under the License, as indicated by a

copyright notice that is included in or attached to the work

(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object

form, that is based on (or derived from) the Work and for which the

editorial revisions, annotations, elaborations, or other modifications

represent, as a whole, an original work of authorship. For the purposes

of this License, Derivative Works shall not include works that remain

separable from, or merely link (or bind by name) to the interfaces of,

the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally

submitted to Licensor for inclusion in the Work by the copyright owner

or by an individual or Legal Entity authorized to submit on behalf of

the copyright owner. For the purposes of this definition, "submitted"

means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to

communication on electronic mailing lists, source code control systems,

and issue tracking systems that are managed by, or on behalf of, the

Licensor for the purpose of discussing and improving the Work, but

excluding communication that is conspicuously marked or otherwise

designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity

on behalf of whom a Contribution has been received by Licensor and

subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual,

worldwide, non-exclusive, no-charge, royalty-free, irrevocable

copyright license to reproduce, prepare Derivative Works of,

publicly display, publicly perform, sublicense, and distribute the

Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual,

worldwide, non-exclusive, no-charge, royalty-free, irrevocable

(except as stated in this section) patent license to make, have made,

use, offer to sell, sell, import, and otherwise transfer the Work,

where such license applies only to those patent claims licensable

by such Contributor that are necessarily infringed by their

Contribution(s) alone or by combination of their Contribution(s)

with the Work to which such Contribution(s) was submitted. If You

(continues on next page)

2226 Appendix C. History and License



The Python Library Reference, Release 3.13.1

(continued from previous page)

institute patent litigation against any entity (including a

cross-claim or counterclaim in a lawsuit) alleging that the Work

or a Contribution incorporated within the Work constitutes direct

or contributory patent infringement, then any patent licenses

granted to You under this License for that Work shall terminate

as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the

Work or Derivative Works thereof in any medium, with or without

modifications, and in Source or Object form, provided that You

meet the following conditions:

(a) You must give any other recipients of the Work or

Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices

stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works

that You distribute, all copyright, patent, trademark, and

attribution notices from the Source form of the Work,

excluding those notices that do not pertain to any part of

the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its

distribution, then any Derivative Works that You distribute must

include a readable copy of the attribution notices contained

within such NOTICE file, excluding those notices that do not

pertain to any part of the Derivative Works, in at least one

of the following places: within a NOTICE text file distributed

as part of the Derivative Works; within the Source form or

documentation, if provided along with the Derivative Works; or,

within a display generated by the Derivative Works, if and

wherever such third-party notices normally appear. The contents

of the NOTICE file are for informational purposes only and

do not modify the License. You may add Your own attribution

notices within Derivative Works that You distribute, alongside

or as an addendum to the NOTICE text from the Work, provided

that such additional attribution notices cannot be construed

as modifying the License.

You may add Your own copyright statement to Your modifications and

may provide additional or different license terms and conditions

for use, reproduction, or distribution of Your modifications, or

for any such Derivative Works as a whole, provided Your use,

reproduction, and distribution of the Work otherwise complies with

the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,

any Contribution intentionally submitted for inclusion in the Work

by You to the Licensor shall be under the terms and conditions of

this License, without any additional terms or conditions.

Notwithstanding the above, nothing herein shall supersede or modify

the terms of any separate license agreement you may have executed

with Licensor regarding such Contributions.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 2227



The Python Library Reference, Release 3.13.1

(continued from previous page)

6. Trademarks. This License does not grant permission to use the trade

names, trademarks, service marks, or product names of the Licensor,

except as required for reasonable and customary use in describing the

origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or

agreed to in writing, Licensor provides the Work (and each

Contributor provides its Contributions) on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied, including, without limitation, any warranties or conditions

of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A

PARTICULAR PURPOSE. You are solely responsible for determining the

appropriateness of using or redistributing the Work and assume any

risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,

whether in tort (including negligence), contract, or otherwise,

unless required by applicable law (such as deliberate and grossly

negligent acts) or agreed to in writing, shall any Contributor be

liable to You for damages, including any direct, indirect, special,

incidental, or consequential damages of any character arising as a

result of this License or out of the use or inability to use the

Work (including but not limited to damages for loss of goodwill,

work stoppage, computer failure or malfunction, or any and all

other commercial damages or losses), even if such Contributor

has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing

the Work or Derivative Works thereof, You may choose to offer,

and charge a fee for, acceptance of support, warranty, indemnity,

or other liability obligations and/or rights consistent with this

License. However, in accepting such obligations, You may act only

on Your own behalf and on Your sole responsibility, not on behalf

of any other Contributor, and only if You agree to indemnify,

defend, and hold each Contributor harmless for any liability

incurred by, or claims asserted against, such Contributor by reason

of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

(continues on next page)

2228 Appendix C. History and License



The Python Library Reference, Release 3.13.1

(continued from previous page)

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes C extension underlying the ctypes module is built using an included copy of the libffi sources unless
the build is configured --with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

``Software''), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

C.3.15 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too
old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied

warranty. In no event will the authors be held liable for any damages

arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,

including commercial applications, and to alter it and redistribute it

freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not

claim that you wrote the original software. If you use this software

in a product, an acknowledgment in the product documentation would be

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 2229



The Python Library Reference, Release 3.13.1

(continued from previous page)

appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be

misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler

jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens

All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided

with the distribution.

* Neither the name of the author nor the names of its

contributors may be used to endorse or promote products derived

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal C extension underlying the decimal module is built using an included copy of the libmpdec library
unless the build is configured --with-system-libmpdec:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without

(continues on next page)

2230 Appendix C. History and License



The Python Library Reference, Release 3.13.1

(continued from previous page)

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3.18 W3C C14N test suite

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/c14n-20/) was retrieved from the W3C
website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),

All Rights Reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

* Redistributions of works must retain the original copyright notice,

this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be

used to endorse or promote products derived from this work without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 2231

https://www.w3.org/TR/xml-c14n2-testcases/


The Python Library Reference, Release 3.13.1

C.3.19 mimalloc

MIT License:

Copyright (c) 2018-2021 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE

LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.21 Global Unbounded Sequences (GUS)

The file Python/qsbr.c is adapted from FreeBSD’s “Global Unbounded Sequences” safe memory reclamation
scheme in subr_smr.c. The file is distributed under the 2-Clause BSD License:

Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions
(continues on next page)

2232 Appendix C. History and License

https://github.com/MagicStack/uvloop/tree/v0.16.0
https://github.com/freebsd/freebsd-src/blob/main/sys/kern/subr_smr.c


The Python Library Reference, Release 3.13.1

(continued from previous page)

are met:

1. Redistributions of source code must retain the above copyright

notice unmodified, this list of conditions, and the following

disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 2233



The Python Library Reference, Release 3.13.1

2234 Appendix C. History and License



APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2024 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

2235



The Python Library Reference, Release 3.13.1

2236 Appendix D. Copyright



BIBLIOGRAPHY

[Frie09] Friedl, Jeffrey. Mastering Regular Expressions. 3rd ed., O’Reilly Media, 2009. The third edition of the
book no longer covers Python at all, but the first edition covered writing good regular expression patterns
in great detail.

[C99] ISO/IEC 9899:1999. “Programming languages – C.” A public draft of this standard is available at https:
//www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf.

2237

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf


The Python Library Reference, Release 3.13.1

2238 Bibliography



PYTHON MODULE INDEX

_
__future__, 1991
__main__, 1938
_thread, 1039
_tkinter, 1598

a
abc, 1975
aifc, 2187
argparse, 833
array, 283
ast, 2067
asynchat, 2187
asyncio, 1043
asyncore, 2187
atexit, 1980
audioop, 2187

b
base64, 1319
bdb, 1843
binascii, 1322
bisect, 279
builtins, 1937
bz2, 566

c
calendar, 245
cgi, 2188
cgitb, 2188
chunk, 2188
cmath, 341
cmd, 1583
code, 2019
codecs, 186
codeop, 2021
collections, 252
collections.abc, 270
colorsys, 1530
compileall, 2120
concurrent.futures, 1003
configparser, 612
contextlib, 1961
contextvars, 1035
copy, 300
copyreg, 515

cProfile, 1861
crypt, 2188
csv, 605
ctypes, 798
curses (Unix), 907
curses.ascii, 933
curses.panel, 937
curses.textpad, 932

d
dataclasses, 1950
datetime, 203
dbm, 520
dbm.dumb, 525
dbm.gnu (Unix), 522
dbm.ndbm (Unix), 524
dbm.sqlite3 (All), 522
decimal, 345
difflib, 153
dis, 2124
distutils, 2188
doctest, 1703

e
email, 1231
email.charset, 1281
email.contentmanager, 1259
email.encoders, 1283
email.errors, 1252
email.generator, 1243
email.header, 1279
email.headerregistry, 1254
email.iterators, 1286
email.message, 1232
email.mime, 1276
email.mime.application, 1277
email.mime.audio, 1277
email.mime.base, 1276
email.mime.image, 1278
email.mime.message, 1278
email.mime.multipart, 1277
email.mime.nonmultipart, 1277
email.mime.text, 1278
email.parser, 1240
email.policy, 1246
email.utils, 1284

2239



The Python Library Reference, Release 3.13.1

encodings.idna, 201
encodings.mbcs, 202
encodings.utf_8_sig, 202
ensurepip, 1885
enum, 310
errno, 792

f
faulthandler, 1848
fcntl (Unix), 2169
filecmp, 476
fileinput, 905
fnmatch, 486
fractions, 373
ftplib, 1446
functools, 420

g
gc, 1993
getopt, 2183
getpass, 904
gettext, 1531
glob, 484
graphlib, 325
grp (Unix), 2165
gzip, 562

h
hashlib, 637
heapq, 276
hmac, 648
html, 1327
html.entities, 1332
html.parser, 1327
http, 1435
http.client, 1438
http.cookiejar, 1491
http.cookies, 1488
http.server, 1481

i
idlelib, 1645
imaplib, 1455
imghdr, 2188
imp, 2189
importlib, 2032
importlib.abc, 2034
importlib.machinery, 2040
importlib.metadata, 2056
importlib.resources, 2051
importlib.resources.abc, 2054
importlib.util, 2046
inspect, 1996
io, 719
ipaddress, 1513
itertools, 403

j
json, 1287
json.tool, 1296

k
keyword, 2112

l
linecache, 487
locale, 1539
logging, 743
logging.config, 762
logging.handlers, 774
lzma, 570

m
mailbox, 1297
mailcap, 2189
marshal, 518
math, 332
mimetypes, 1316
mmap, 1225
modulefinder, 2028
msilib, 2189
msvcrt (Windows), 2149
multiprocessing, 953
multiprocessing.connection, 984
multiprocessing.dummy, 987
multiprocessing.managers, 974
multiprocessing.pool, 981
multiprocessing.shared_memory, 997
multiprocessing.sharedctypes, 972

n
netrc, 632
nis, 2189
nntplib, 2189
numbers, 329

o
operator, 430
optparse, 877
os, 653
os.path, 464
ossaudiodev, 2189

p
pathlib, 439
pdb, 1850
pickle, 499
pickletools, 2146
pipes, 2190
pkgutil, 2025
platform, 788
plistlib, 633
poplib, 1452
posix (Unix), 2163
pprint, 301

2240 Python Module Index



The Python Library Reference, Release 3.13.1

profile, 1861
pstats, 1863
pty (Unix), 2168
pwd (Unix), 2164
py_compile, 2119
pyclbr, 2117
pydoc, 1699

q
queue, 1032
quopri, 1324

r
random, 377
re, 130
readline (Unix), 172
reprlib, 307
resource (Unix), 2172
rlcompleter, 177
runpy, 2029

s
sched, 1030
secrets, 650
select, 1205
selectors, 1212
shelve, 516
shlex, 1588
shutil, 488
signal, 1215
site, 2015
sitecustomize, 2016
smtpd, 2190
smtplib, 1462
sndhdr, 2190
socket, 1142
socketserver, 1473
spwd, 2190
sqlite3, 526
ssl, 1170
stat, 470
statistics, 386
string, 119
stringprep, 171
struct, 179
subprocess, 1010
sunau, 2190
symtable, 2104
sys, 1901
sys.monitoring, 1927
sysconfig, 1931
syslog (Unix), 2176

t
tabnanny, 2116
tarfile, 587
telnetlib, 2190
tempfile, 478

termios (Unix), 2165
test, 1818
test.regrtest, 1820
test.support, 1820
test.support.bytecode_helper, 1831
test.support.import_helper, 1834
test.support.os_helper, 1833
test.support.script_helper, 1830
test.support.socket_helper, 1829
test.support.threading_helper, 1832
test.support.warnings_helper, 1836
textwrap, 165
threading, 939
time, 732
timeit, 1867
tkinter, 1595
tkinter.colorchooser (Tk), 1608
tkinter.commondialog (Tk), 1612
tkinter.dnd (Tk), 1615
tkinter.filedialog (Tk), 1610
tkinter.font (Tk), 1608
tkinter.messagebox (Tk), 1612
tkinter.scrolledtext (Tk), 1614
tkinter.simpledialog (Tk), 1609
tkinter.ttk, 1616
token, 2108
tokenize, 2112
tomllib, 630
trace, 1872
traceback, 1982
tracemalloc, 1874
tty (Unix), 2167
turtle, 1547
turtledemo, 1581
types, 293
typing, 1647

u
unicodedata, 169
unittest, 1726
unittest.mock, 1757
urllib, 1406
urllib.error, 1433
urllib.parse, 1424
urllib.request, 1406
urllib.response, 1424
urllib.robotparser, 1434
usercustomize, 2017
uu, 2191
uuid, 1469

v
venv, 1887

w
warnings, 1943
wave, 1527
weakref, 286

Python Module Index 2241



The Python Library Reference, Release 3.13.1

webbrowser, 1393
winreg (Windows), 2151
winsound (Windows), 2160
wsgiref, 1396
wsgiref.handlers, 1401
wsgiref.headers, 1398
wsgiref.simple_server, 1399
wsgiref.types, 1404
wsgiref.util, 1396
wsgiref.validate, 1400

x
xdrlib, 2191
xml, 1332
xml.dom, 1353
xml.dom.minidom, 1363
xml.dom.pulldom, 1367
xml.etree.ElementInclude, 1345
xml.etree.ElementTree, 1334
xml.parsers.expat, 1381
xml.parsers.expat.errors, 1388
xml.parsers.expat.model, 1388
xml.sax, 1369
xml.sax.handler, 1371
xml.sax.saxutils, 1376
xml.sax.xmlreader, 1377
xmlrpc, 1499
xmlrpc.client, 1500
xmlrpc.server, 1507

z
zipapp, 1896
zipfile, 576
zipimport, 2023
zlib, 559
zoneinfo, 240

2242 Python Module Index



INDEX

Non-alphabetical
??

in regular expressions, 131
..

in pathnames, 717
..., 2195

ellipsis literal, 35, 100
in doctests, 1711
interpreter prompt, 1708, 1919
placeholder, 169, 302, 307

{} (curly brackets)
in regular expressions, 132
in string formatting, 121

. (dot)
in glob-style wildcards, 484
in pathnames, 717
in printf-style formatting, 61, 76
in regular expressions, 131
in string formatting, 121

! (exclamation)
in a command interpreter, 1583
in curses module, 937
in glob-style wildcards, 484, 486
in string formatting, 121
in struct format strings, 180

- (minus)
binary operator, 38
in doctests, 1712
in glob-style wildcards, 484, 486
in printf-style formatting, 61, 77
in regular expressions, 132
in string formatting, 123
unary operator, 38

! (pdb command), 1857
? (question mark)

in a command interpreter, 1583
in argparse module, 844
in AST grammar, 2070
in glob-style wildcards, 484, 486
in regular expressions, 131
in SQL statements, 543
in struct format strings, 182, 183
replacement character, 189

# (hash)
comment, 2016
in doctests, 1712

in printf-style formatting, 61, 77
in regular expressions, 139
in string formatting, 123

$ (dollar)
environment variables expansion, 466
in regular expressions, 131
in template strings, 128
interpolation in configuration files,

617
% (percent)

datetime format, 236, 736, 738
environment variables expansion (Win-

dows), 466, 2154
interpolation in configuration files,

617
operator, 38
printf-style formatting, 61, 76

& (ampersand)
operator, 40

(?

in regular expressions, 133
(?!

in regular expressions, 135
(?#

in regular expressions, 135
(?(

in regular expressions, 135
() (parentheses)

in printf-style formatting, 61, 76
in regular expressions, 133

(?:

in regular expressions, 133
(?<!

in regular expressions, 135
(?<=

in regular expressions, 135
(?=

in regular expressions, 135
(?P<

in regular expressions, 134
(?P=

in regular expressions, 135
*?

in regular expressions, 131
* (asterisk)

in argparse module, 845

2243



The Python Library Reference, Release 3.13.1

in AST grammar, 2070
in glob-style wildcards, 484, 486
in printf-style formatting, 61, 76
in regular expressions, 131
operator, 38

**

in glob-style wildcards, 484
operator, 38

*+

in regular expressions, 132
+?

in regular expressions, 131
?+

in regular expressions, 132
+ (plus)

binary operator, 38
in argparse module, 845
in doctests, 1712
in printf-style formatting, 61, 77
in regular expressions, 131
in string formatting, 123
unary operator, 38

++

in regular expressions, 132
, (comma)

in string formatting, 123
-

python--m-py_compile command line

option, 2120
/ (slash)

in pathnames, 717
operator, 38

//

operator, 38
2-digit years, 732
: (colon)

in SQL statements, 543
in string formatting, 121
path separator (POSIX), 717

; (semicolon), 717
< (less)

in string formatting, 123
in struct format strings, 180
operator, 38

<<

operator, 40
<=

operator, 38
<BLANKLINE>, 1711
<file>

python--m-py_compile command line

option, 2120
!=

operator, 38
= (equals)

in string formatting, 123
in struct format strings, 180

==

operator, 38
> (greater)

in string formatting, 123
in struct format strings, 180
operator, 38

>=

operator, 38
>>

operator, 40
>>>, 2195

interpreter prompt, 1708, 1919
@ (at)

in struct format strings, 180
[] (square brackets)

in glob-style wildcards, 484, 486
in regular expressions, 132
in string formatting, 121

\ (backslash)
escape sequence, 189
in pathnames (Windows), 717
in regular expressions, 132, 135

\\

in regular expressions, 137
\A

in regular expressions, 135
\a

in regular expressions, 137
\B

in regular expressions, 136
\b

in regular expressions, 136, 137
\D

in regular expressions, 136
\d

in regular expressions, 136
\f

in regular expressions, 137
\g

in regular expressions, 142
\N

escape sequence, 190
in regular expressions, 137

\n

in regular expressions, 137
\r

in regular expressions, 137
\S

in regular expressions, 136
\s

in regular expressions, 136
\t

in regular expressions, 137
\U

escape sequence, 189
in regular expressions, 137

\u

escape sequence, 189
in regular expressions, 137

2244 Index



The Python Library Reference, Release 3.13.1

\v

in regular expressions, 137
\W

in regular expressions, 137
\w

in regular expressions, 136
\x

escape sequence, 189
in regular expressions, 137

\Z

in regular expressions, 137
^ (caret)

in curses module, 937
in regular expressions, 131, 133
in string formatting, 123
marker, 1710, 1983
operator, 40

_ (underscore)
gettext, 1531
in string formatting, 123

__abs__() (in module operator), 431
__add__() (in module operator), 431
__and__() (enum.Flag method), 319
__and__() (in module operator), 431
__args__ (genericalias attribute), 96
__bound__ (typing.TypeVar attribute), 1673
__breakpointhook__ (in module sys), 1905
__bytes__() (email.message.EmailMessage method),

1233
__bytes__() (email.message.Message method), 1270
__call__() (argparse.Action method), 851
__call__() (email.headerregistry.HeaderRegistry

method), 1258
__call__() (enum.EnumType method), 312
__call__() (in module operator), 433
__call__() (weakref.finalize method), 289
__callback__ (weakref.ref attribute), 287
__cause__ (BaseException attribute), 105
__cause__ (exception attribute), 105
__cause__ (traceback.TracebackException attribute),

1985
__ceil__() (fractions.Fraction method), 376
__class__ (unittest.mock.Mock attribute), 1766
__code__ (function object attribute), 100
__concat__() (in module operator), 432
__constraints__ (typing.TypeVar attribute), 1673
__contains__() (email.message.EmailMessage

method), 1234
__contains__() (email.message.Message method),

1271
__contains__() (enum.EnumType method), 312
__contains__() (enum.Flag method), 318
__contains__() (in module operator), 433
__contains__() (mailbox.Mailbox method), 1299
__context__ (BaseException attribute), 105
__context__ (exception attribute), 105
__context__ (traceback.TracebackException at-

tribute), 1985

__contravariant__ (typing.TypeVar attribute), 1673
__copy__() (copy protocol), 300
__covariant__ (typing.TypeVar attribute), 1673
__debug__ (built-in variable), 35
__deepcopy__() (copy protocol), 300
__default__ (typing.ParamSpec attribute), 1676
__default__ (typing.TypeVar attribute), 1673
__default__ (typing.TypeVarTuple attribute), 1675
__del__() (io.IOBase method), 724
__delitem__() (email.message.EmailMessage

method), 1234
__delitem__() (email.message.Message method),

1272
__delitem__() (in module operator), 433
__delitem__() (mailbox.Mailbox method), 1298
__delitem__() (mailbox.MH method), 1304
__dir__() (enum.Enum method), 314
__dir__() (enum.EnumType method), 313
__dir__() (unittest.mock.Mock method), 1763
__displayhook__ (in module sys), 1905
__doc__ (definition attribute), 101
__enter__() (contextmanager method), 92
__enter__() (winreg.PyHKEY method), 2160
__eq__() (email.charset.Charset method), 1282
__eq__() (email.header.Header method), 1280
__eq__() (in module operator), 430
__eq__() (instance method), 38
__eq__() (memoryview method), 79
__excepthook__ (in module sys), 1905
__excepthook__ (in module threading), 940
__exit__() (contextmanager method), 92
__exit__() (winreg.PyHKEY method), 2160
__floor__() (fractions.Fraction method), 375
__floordiv__() (in module operator), 431
__format__, 17
__format__() (datetime.date method), 212
__format__() (datetime.datetime method), 222
__format__() (datetime.time method), 227
__format__() (enum.Enum method), 316
__format__() (fractions.Fraction method), 376
__format__() (ipaddress.IPv4Address method), 1516
__format__() (ipaddress.IPv6Address method), 1517
__fspath__() (os.PathLike method), 656
__future__, 2201

module, 1991
__ge__() (in module operator), 430
__ge__() (instance method), 38
__getitem__() (email.headerregistry.HeaderRegistry

method), 1258
__getitem__() (email.message.EmailMessage

method), 1234
__getitem__() (email.message.Message method),

1271
__getitem__() (enum.EnumType method), 313
__getitem__() (in module operator), 433
__getitem__() (mailbox.Mailbox method), 1299
__getitem__() (re.Match method), 146
__getnewargs__() (object method), 505

Index 2245



The Python Library Reference, Release 3.13.1

__getnewargs_ex__() (object method), 505
__getstate__() (copy protocol), 510
__getstate__() (object method), 506
__gt__() (in module operator), 430
__gt__() (instance method), 38
__iadd__() (in module operator), 436
__iand__() (in module operator), 436
__iconcat__() (in module operator), 436
__ifloordiv__() (in module operator), 436
__ilshift__() (in module operator), 436
__imatmul__() (in module operator), 436
__imod__() (in module operator), 436
__import__()

built-in function, 32
__import__() (in module importlib), 2033
__imul__() (in module operator), 436
__index__() (in module operator), 431
__infer_variance__ (typing.TypeVar attribute),

1673
__init__() (asyncio.Future method), 1132
__init__() (asyncio.Task method), 1132
__init__() (difflib.HtmlDiff method), 154
__init__() (enum.Enum method), 315
__init__() (logging.Handler method), 750
__init_subclass__() (enum.Enum method), 315
__interactivehook__ (in module sys), 1916
__inv__() (in module operator), 431
__invert__() (in module operator), 431
__ior__() (in module operator), 437
__ipow__() (in module operator), 437
__irshift__() (in module operator), 437
__isub__() (in module operator), 437
__iter__() (container method), 45
__iter__() (enum.EnumType method), 313
__iter__() (iterator method), 45
__iter__() (mailbox.Mailbox method), 1298
__iter__() (unittest.TestSuite method), 1747
__itruediv__() (in module operator), 437
__ixor__() (in module operator), 437
__le__() (in module operator), 430
__le__() (instance method), 38
__len__() (email.message.EmailMessage method),

1233
__len__() (email.message.Message method), 1271
__len__() (enum.EnumType method), 313
__len__() (mailbox.Mailbox method), 1299
__lshift__() (in module operator), 432
__lt__() (in module operator), 430
__lt__() (instance method), 38
__main__

module, 1938, 2030
__matmul__() (in module operator), 432
__members__ (enum.EnumType attribute), 313
__missing__(), 88
__missing__() (collections.defaultdict method), 262
__mod__() (in module operator), 432
__module__ (definition attribute), 101
__module__ (typing.NewType attribute), 1679

__module__ (typing.TypeAliasType attribute), 1677
__mul__() (in module operator), 432
__mutable_keys__ (typing.TypedDict attribute), 1684
__name__ (definition attribute), 101
__name__ (property attribute), 27
__name__ (typing.NewType attribute), 1679
__name__ (typing.ParamSpec attribute), 1676
__name__ (typing.TypeAliasType attribute), 1677
__name__ (typing.TypeVar attribute), 1673
__name__ (typing.TypeVarTuple attribute), 1675
__ne__() (email.charset.Charset method), 1282
__ne__() (email.header.Header method), 1280
__ne__() (in module operator), 430
__ne__() (instance method), 38
__neg__() (in module operator), 432
__new__() (enum.Enum method), 316
__next__() (csv.csvreader method), 610
__next__() (iterator method), 45
__not__() (in module operator), 431
__notes__ (BaseException attribute), 106
__notes__ (traceback.TracebackException attribute),

1985
__optional_keys__ (typing.TypedDict attribute),

1683
__or__() (enum.Flag method), 319
__or__() (in module operator), 432
__origin__ (genericalias attribute), 96
__parameters__ (genericalias attribute), 96
__pos__() (in module operator), 432
__post_init__() (in module dataclasses), 1957
__pow__() (in module operator), 432
__qualname__ (definition attribute), 101
__readonly_keys__ (typing.TypedDict attribute),

1684
__reduce__() (object method), 506
__reduce_ex__() (object method), 507
__replace__() (replace protocol), 301
__repr__() (enum.Enum method), 316
__repr__() (multiprocessing.managers.BaseProxy

method), 980
__repr__() (netrc.netrc method), 633
__required_keys__ (typing.TypedDict attribute),

1683
__reversed__() (enum.EnumType method), 313
__round__() (fractions.Fraction method), 376
__rshift__() (in module operator), 432
__setitem__() (email.message.EmailMessage

method), 1234
__setitem__() (email.message.Message method),

1271
__setitem__() (in module operator), 433
__setitem__() (mailbox.Mailbox method), 1298
__setitem__() (mailbox.Maildir method), 1302
__setstate__() (copy protocol), 510
__setstate__() (object method), 506
__slots__, 2208
__stderr__ (in module sys), 1924
__stdin__ (in module sys), 1924

2246 Index



The Python Library Reference, Release 3.13.1

__stdout__ (in module sys), 1924
__str__() (datetime.date method), 212
__str__() (datetime.datetime method), 222
__str__() (datetime.time method), 227
__str__() (email.charset.Charset method), 1282
__str__() (email.header.Header method), 1280
__str__() (email.headerregistry.Address method),

1259
__str__() (email.headerregistry.Group method), 1259
__str__() (email.message.EmailMessage method),

1233
__str__() (email.message.Message method), 1269
__str__() (enum.Enum method), 316
__str__() (multiprocessing.managers.BaseProxy

method), 980
__sub__() (in module operator), 432
__subclasshook__() (abc.ABCMeta method), 1976
__supertype__ (typing.NewType attribute), 1680
__suppress_context__ (BaseException attribute),

105
__suppress_context__ (exception attribute), 105
__suppress_context__ (trace-

back.TracebackException attribute), 1985
__total__ (typing.TypedDict attribute), 1683
__traceback__ (BaseException attribute), 106
__truediv__() (importlib.abc.Traversable method),

2040
__truediv__() (importlib.resources.abc.Traversable

method), 2056
__truediv__() (in module operator), 432
__type_params__ (definition attribute), 101
__type_params__ (typing.TypeAliasType attribute),

1677
__unpacked__ (genericalias attribute), 97
__unraisablehook__ (in module sys), 1905
__value__ (typing.TypeAliasType attribute), 1678
__version__ (in module curses), 921
__xor__() (enum.Flag method), 319
__xor__() (in module operator), 432
_add_alias_() (enum.EnumType method), 313
_add_value_alias_() (enum.EnumType method),

313
_align_ (ctypes.Structure attribute), 830
_anonymous_ (ctypes.Structure attribute), 830
_asdict() (collections.somenamedtuple method), 265
_b_base_ (ctypes._CData attribute), 827
_b_needsfree_ (ctypes._CData attribute), 827
_callmethod() (multiprocessing.managers.BaseProxy

method), 980
_CData (class in ctypes), 826
_CFuncPtr (class in ctypes), 820
_clear_internal_caches() (in module sys), 1903
_clear_type_cache() (in module sys), 1903
_current_exceptions() (in module sys), 1903
_current_frames() (in module sys), 1903
_debugmallocstats() (in module sys), 1904
_emscripten_info (in module sys), 1905

_enablelegacywindowsfsencoding() (in module
sys), 1923

_enter_task() (in module asyncio), 1132
_exit() (in module os), 702
_Feature (class in __future__), 1992
_field_defaults (collections.somenamedtuple

attribute), 265
_field_types (ast.AST attribute), 2070
_fields (ast.AST attribute), 2070
_fields (collections.somenamedtuple attribute), 265
_fields_ (ctypes.Structure attribute), 830
_flush() (wsgiref.handlers.BaseHandler method),

1402
_generate_next_value_() (enum.Enum method),

315
_get_child_mock() (unittest.mock.Mock method),

1763
_get_preferred_schemes() (in module sysconfig),

1935
_getframe() (in module sys), 1912
_getframemodulename() (in module sys), 1913
_getvalue() (multiprocessing.managers.BaseProxy

method), 980
_handle (ctypes.PyDLL attribute), 819
_ignore_ (enum.Enum attribute), 314
_incompatible_extension_module_restrictions()

(in module importlib.util), 2048
_is_gil_enabled() (in module sys), 1916
_is_interned() (in module sys), 1917
_leave_task() (in module asyncio), 1133
_length_ (ctypes.Array attribute), 831
_locale

module, 1539
_log (logging.LoggerAdapter attribute), 757
_make() (collections.somenamedtuple class method),

265
_makeResult() (unittest.TextTestRunner method),

1752
_missing_() (enum.Enum method), 315
_name (ctypes.PyDLL attribute), 819
_name_ (enum.Enum attribute), 314
_numeric_repr_() (enum.Flag method), 319
_objects (ctypes._CData attribute), 827
_order_ (enum.Enum attribute), 314
_pack_ (ctypes.Structure attribute), 830
_parse() (gettext.NullTranslations method), 1533
_Pointer (class in ctypes), 831
_register_task() (in module asyncio), 1132
_replace() (collections.somenamedtuple method), 265
_setroot() (xml.etree.ElementTree.ElementTree

method), 1348
_SimpleCData (class in ctypes), 827
_structure() (in module email.iterators), 1287
_thread

module, 1039
_tkinter

module, 1598
_type_ (ctypes._Pointer attribute), 832

Index 2247



The Python Library Reference, Release 3.13.1

_type_ (ctypes.Array attribute), 831
_unregister_task() (in module asyncio), 1132
_value_ (enum.Enum attribute), 314
_write() (wsgiref.handlers.BaseHandler method),

1402
_xoptions (in module sys), 1926
| (vertical bar)

in regular expressions, 133
operator, 40

~ (tilde)
home directory expansion, 465
operator, 40

A
-a

ast command line option, 2104
pickletools command line option, 2146

A (in module re), 137
a2b_base64() (in module binascii), 1323
a2b_hex() (in module binascii), 1324
a2b_qp() (in module binascii), 1323
a2b_uu() (in module binascii), 1322
a85decode() (in module base64), 1321
a85encode() (in module base64), 1320
A_ALTCHARSET (in module curses), 922
A_ATTRIBUTES (in module curses), 923
A_BLINK (in module curses), 922
A_BOLD (in module curses), 922
A_CHARTEXT (in module curses), 923
A_COLOR (in module curses), 923
A_DIM (in module curses), 922
A_HORIZONTAL (in module curses), 922
A_INVIS (in module curses), 922
A_ITALIC (in module curses), 922
A_LEFT (in module curses), 922
A_LOW (in module curses), 922
A_NORMAL (in module curses), 922
A_PROTECT (in module curses), 922
A_REVERSE (in module curses), 922
A_RIGHT (in module curses), 922
A_STANDOUT (in module curses), 922
A_TOP (in module curses), 922
A_UNDERLINE (in module curses), 922
A_VERTICAL (in module curses), 922
abc

module, 1975
ABC (class in abc), 1975
ABCMeta (class in abc), 1976
ABDAY_1 (in module locale), 1541
ABDAY_2 (in module locale), 1541
ABDAY_3 (in module locale), 1541
ABDAY_4 (in module locale), 1541
ABDAY_5 (in module locale), 1541
ABDAY_6 (in module locale), 1541
ABDAY_7 (in module locale), 1541
abiflags (in module sys), 1901
ABMON_1 (in module locale), 1542
ABMON_2 (in module locale), 1542

ABMON_3 (in module locale), 1542
ABMON_4 (in module locale), 1542
ABMON_5 (in module locale), 1542
ABMON_6 (in module locale), 1542
ABMON_7 (in module locale), 1542
ABMON_8 (in module locale), 1542
ABMON_9 (in module locale), 1542
ABMON_10 (in module locale), 1542
ABMON_11 (in module locale), 1542
ABMON_12 (in module locale), 1542
ABORT (in module tkinter.messagebox), 1614
abort() (asyncio.Barrier method), 1078
abort() (asyncio.DatagramTransport method), 1117
abort() (asyncio.WriteTransport method), 1116
abort() (ftplib.FTP method), 1448
abort() (in module os), 701
abort() (threading.Barrier method), 952
abort_clients() (asyncio.Server method), 1106
ABORTRETRYIGNORE (in module tkinter.messagebox),

1614
above() (curses.panel.Panel method), 937
ABOVE_NORMAL_PRIORITY_CLASS (in module subpro-

cess), 1023
abs()

built-in function, 7
abs() (decimal.Context method), 359
abs() (in module operator), 431
absolute() (pathlib.Path method), 452
AbsoluteLinkError, 589
AbsolutePathError, 589
abspath() (in module os.path), 464
abstract base class, 2195
AbstractAsyncContextManager (class in con-

textlib), 1961
AbstractBasicAuthHandler (class in urllib.request),

1410
AbstractChildWatcher (class in asyncio), 1129
abstractclassmethod() (in module abc), 1978
AbstractContextManager (class in contextlib), 1961
AbstractDigestAuthHandler (class in url-

lib.request), 1410
AbstractEventLoop (class in asyncio), 1107
AbstractEventLoopPolicy (class in asyncio), 1127
abstractmethod() (in module abc), 1977
abstractproperty() (in module abc), 1979
AbstractSet (class in typing), 1696
abstractstaticmethod() (in module abc), 1979
accept() (multiprocessing.connection.Listener method),

984
accept() (socket.socket method), 1159
access() (in module os), 675
accumulate() (in module itertools), 405
ACK (in module curses.ascii), 934
aclose() (contextlib.AsyncExitStack method), 1970
aclosing() (in module contextlib), 1963
acos() (in module cmath), 343
acos() (in module math), 339
acosh() (in module cmath), 343

2248 Index



The Python Library Reference, Release 3.13.1

acosh() (in module math), 339
acquire() (_thread.lock method), 1041
acquire() (asyncio.Condition method), 1075
acquire() (asyncio.Lock method), 1073
acquire() (asyncio.Semaphore method), 1076
acquire() (logging.Handler method), 750
acquire() (multiprocessing.Lock method), 970
acquire() (multiprocessing.RLock method), 971
acquire() (threading.Condition method), 948
acquire() (threading.Lock method), 945
acquire() (threading.RLock method), 946
acquire() (threading.Semaphore method), 949
ACS_BBSS (in module curses), 929
ACS_BLOCK (in module curses), 929
ACS_BOARD (in module curses), 929
ACS_BSBS (in module curses), 929
ACS_BSSB (in module curses), 929
ACS_BSSS (in module curses), 929
ACS_BTEE (in module curses), 929
ACS_BULLET (in module curses), 929
ACS_CKBOARD (in module curses), 929
ACS_DARROW (in module curses), 929
ACS_DEGREE (in module curses), 929
ACS_DIAMOND (in module curses), 929
ACS_GEQUAL (in module curses), 929
ACS_HLINE (in module curses), 929
ACS_LANTERN (in module curses), 929
ACS_LARROW (in module curses), 929
ACS_LEQUAL (in module curses), 929
ACS_LLCORNER (in module curses), 929
ACS_LRCORNER (in module curses), 930
ACS_LTEE (in module curses), 930
ACS_NEQUAL (in module curses), 930
ACS_PI (in module curses), 930
ACS_PLMINUS (in module curses), 930
ACS_PLUS (in module curses), 930
ACS_RARROW (in module curses), 930
ACS_RTEE (in module curses), 930
ACS_S1 (in module curses), 930
ACS_S3 (in module curses), 930
ACS_S7 (in module curses), 930
ACS_S9 (in module curses), 930
ACS_SBBS (in module curses), 930
ACS_SBSB (in module curses), 930
ACS_SBSS (in module curses), 930
ACS_SSBB (in module curses), 930
ACS_SSBS (in module curses), 930
ACS_SSSB (in module curses), 930
ACS_SSSS (in module curses), 931
ACS_STERLING (in module curses), 931
ACS_TTEE (in module curses), 931
ACS_UARROW (in module curses), 931
ACS_ULCORNER (in module curses), 931
ACS_URCORNER (in module curses), 931
ACS_VLINE (in module curses), 931
Action (class in argparse), 850
action (optparse.Option attribute), 891
ACTIONS (optparse.Option attribute), 902

activate_stack_trampoline() (in module sys),
1922

active_children() (in module multiprocessing), 966
active_count() (in module threading), 939
actual() (tkinter.font.Font method), 1609
Add (class in ast), 2076
add() (decimal.Context method), 359
add() (frozenset method), 87
add() (graphlib.TopologicalSorter method), 326
add() (in module operator), 431
add() (mailbox.Mailbox method), 1298
add() (mailbox.Maildir method), 1302
add() (pstats.Stats method), 1863
add() (tarfile.TarFile method), 594
add() (tkinter.ttk.Notebook method), 1622
add_alias() (in module email.charset), 1283
add_alternative() (email.message.EmailMessage

method), 1239
add_argument() (argparse.ArgumentParser method),

841
add_argument_group() (argparse.ArgumentParser

method), 858
add_attachment() (email.message.EmailMessage

method), 1239
add_cgi_vars() (wsgiref.handlers.BaseHandler

method), 1402
add_charset() (in module email.charset), 1282
add_child_handler() (asyn-

cio.AbstractChildWatcher method), 1129
add_codec() (in module email.charset), 1283
add_cookie_header() (http.cookiejar.CookieJar

method), 1493
add_dll_directory() (in module os), 701
add_done_callback() (asyncio.Future method),

1112
add_done_callback() (asyncio.Task method), 1062
add_done_callback() (concurrent.futures.Future

method), 1008
add_fallback() (gettext.NullTranslations method),

1533
add_flag() (mailbox.Maildir method), 1301
add_flag() (mailbox.MaildirMessage method), 1307
add_flag() (mailbox.mboxMessage method), 1309
add_flag() (mailbox.MMDFMessage method), 1313
add_folder() (mailbox.Maildir method), 1301
add_folder() (mailbox.MH method), 1304
add_get_handler()

(email.contentmanager.ContentManager
method), 1260

add_handler() (urllib.request.OpenerDirector
method), 1413

add_header() (email.message.EmailMessage method),
1234

add_header() (email.message.Message method), 1272
add_header() (urllib.request.Request method), 1412
add_header() (wsgiref.headers.Headers method),

1398
add_history() (in module readline), 174

Index 2249



The Python Library Reference, Release 3.13.1

add_label() (mailbox.BabylMessage method), 1312
add_mutually_exclusive_group() (arg-

parse.ArgumentParser method), 859
add_note() (BaseException method), 106
add_option() (optparse.OptionParser method), 889
add_parent() (urllib.request.BaseHandler method),

1414
add_password() (urllib.request.HTTPPasswordMgr

method), 1416
add_password() (url-

lib.request.HTTPPasswordMgrWithPriorAuth
method), 1416

add_reader() (asyncio.loop method), 1097
add_related() (email.message.EmailMessage

method), 1238
add_section() (configparser.ConfigParser method),

626
add_section() (configparser.RawConfigParser

method), 629
add_sequence() (mailbox.MHMessage method), 1311
add_set_handler()

(email.contentmanager.ContentManager
method), 1260

add_signal_handler() (asyncio.loop method), 1100
add_subparsers() (argparse.ArgumentParser

method), 854
add_type() (in module mimetypes), 1317
add_type() (mimetypes.MimeTypes method), 1319
add_unredirected_header() (url-

lib.request.Request method), 1412
add_writer() (asyncio.loop method), 1097
addAsyncCleanup() (unittest.IsolatedAsyncioTestCase

method), 1745
addaudithook() (in module sys), 1901
addch() (curses.window method), 914
addClassCleanup() (unittest.TestCase class method),

1745
addCleanup() (unittest.TestCase method), 1744
addcomponent() (turtle.Shape method), 1578
addDuration() (unittest.TestResult method), 1752
addError() (unittest.TestResult method), 1751
addExpectedFailure() (unittest.TestResult method),

1752
addFailure() (unittest.TestResult method), 1751
addfile() (tarfile.TarFile method), 594
addFilter() (logging.Handler method), 750
addFilter() (logging.Logger method), 749
addHandler() (logging.Logger method), 749
addinfourl (class in urllib.response), 1424
addLevelName() (in module logging), 759
addModuleCleanup() (in module unittest), 1755
addnstr() (curses.window method), 915
AddPackagePath() (in module modulefinder), 2028
addr_spec (email.headerregistry.Address attribute),

1259
Address (class in email.headerregistry), 1258
address (email.headerregistry.SingleAddressHeader at-

tribute), 1256

address (multiprocessing.connection.Listener attribute),
984

address (multiprocessing.managers.BaseManager at-
tribute), 975

address_exclude() (ipaddress.IPv4Network
method), 1520

address_exclude() (ipaddress.IPv6Network
method), 1523

address_family (socketserver.BaseServer attribute),
1476

address_string() (http.server.BaseHTTPRequestHandler
method), 1485

addresses (email.headerregistry.AddressHeader
attribute), 1256

addresses (email.headerregistry.Group attribute), 1259
AddressHeader (class in email.headerregistry), 1256
addressof() (in module ctypes), 824
AddressValueError, 1526
addshape() (in module turtle), 1575
addsitedir() (in module site), 2017
addSkip() (unittest.TestResult method), 1751
addstr() (curses.window method), 915
addSubTest() (unittest.TestResult method), 1752
addSuccess() (unittest.TestResult method), 1751
addTest() (unittest.TestSuite method), 1747
addTests() (unittest.TestSuite method), 1747
addTypeEqualityFunc() (unittest.TestCase method),

1742
addUnexpectedSuccess() (unittest.TestResult

method), 1752
adjust_int_max_str_digits() (in module

test.support), 1829
adjusted() (decimal.Decimal method), 350
adler32() (in module zlib), 559
AF_ALG (in module socket), 1149
AF_CAN (in module socket), 1148
AF_DIVERT (in module socket), 1149
AF_HYPERV (in module socket), 1150
AF_INET (in module socket), 1146
AF_INET6 (in module socket), 1146
AF_LINK (in module socket), 1150
AF_PACKET (in module socket), 1149
AF_QIPCRTR (in module socket), 1150
AF_RDS (in module socket), 1149
AF_UNIX (in module socket), 1146
AF_UNSPEC (in module socket), 1147
AF_VSOCK (in module socket), 1150
aifc

module, 2187
aiter()

built-in function, 7
alarm() (in module signal), 1219
ALERT_DESCRIPTION_HANDSHAKE_FAILURE (in

module ssl), 1181
ALERT_DESCRIPTION_INTERNAL_ERROR (in module

ssl), 1181
AlertDescription (class in ssl), 1181
algorithm (sys.hash_info attribute), 1915

2250 Index



The Python Library Reference, Release 3.13.1

algorithms_available (in module hashlib), 639
algorithms_guaranteed (in module hashlib), 639
Alias

Generic, 93
alias (class in ast), 2084
alias (pdb command), 1857
alignment() (in module ctypes), 824
alive (weakref.finalize attribute), 289
all()

built-in function, 8
ALL_COMPLETED (in module asyncio), 1058
ALL_COMPLETED (in module concurrent.futures), 1009
all_errors (in module ftplib), 1452
all_features (in module xml.sax.handler), 1372
all_frames (tracemalloc.Filter attribute), 1881
all_properties (in module xml.sax.handler), 1373
all_suffixes() (in module importlib.machinery),

2041
all_tasks() (in module asyncio), 1061
allocate_lock() (in module _thread), 1040
allow_reuse_address (socketserver.BaseServer at-

tribute), 1476
allowed_domains()

(http.cookiejar.DefaultCookiePolicy method),
1496

alt() (in module curses.ascii), 937
ALT_DIGITS (in module locale), 1543
altsep (in module os), 717
altzone (in module time), 743
ALWAYS_EQ (in module test.support), 1822
ALWAYS_TYPED_ACTIONS (optparse.Option attribute),

903
AmbiguousOptionError, 904
AMPER (in module token), 2109
AMPEREQUAL (in module token), 2110
Anchor (class in importlib.resources), 2052
anchor (pathlib.PurePath attribute), 444
and

operator, 37
And (class in ast), 2076
and_() (in module operator), 431
android_ver() (in module platform), 792
anext()

built-in function, 8
AnnAssign (class in ast), 2081
--annotate

pickletools command line option, 2146
Annotated (in module typing), 1666
annotation, 2195

type annotation; type hint, 93
annotation (inspect.Parameter attribute), 2004
ANNOTATION (symtable.SymbolTableType attribute),

2105
answer_challenge() (in module multiprocess-

ing.connection), 984
anticipate_failure() (in module test.support),

1825
Any (in module typing), 1659

ANY (in module unittest.mock), 1791
any()

built-in function, 8
ANY_CONTIGUOUS (inspect.BufferFlags attribute), 2015
AnyStr (in module typing), 1659
api_version (in module sys), 1926
apilevel (in module sqlite3), 531
apop() (poplib.POP3 method), 1454
append() (array.array method), 284
append() (collections.deque method), 259
append() (email.header.Header method), 1280
append() (imaplib.IMAP4 method), 1457
append() (sequence method), 48
append() (xml.etree.ElementTree.Element method),

1347
append_history_file() (in module readline), 173
appendChild() (xml.dom.Node method), 1357
appendleft() (collections.deque method), 259
AppleFrameworkLoader (class in im-

portlib.machinery), 2045
application_uri() (in module wsgiref.util), 1396
apply() (multiprocessing.pool.Pool method), 981
apply_async() (multiprocessing.pool.Pool method),

981
apply_defaults() (inspect.BoundArguments

method), 2006
APRIL (in module calendar), 250
architecture() (in module platform), 788
archive (zipimport.zipimporter attribute), 2024
AREGTYPE (in module tarfile), 589
aRepr (in module reprlib), 307
arg (class in ast), 2096
argparse

module, 833
args (BaseException attribute), 106
args (functools.partial attribute), 430
args (inspect.BoundArguments attribute), 2006
args (pdb command), 1855
args (subprocess.CompletedProcess attribute), 1012
args (subprocess.Popen attribute), 1020
args (typing.ParamSpec attribute), 1676
args_from_interpreter_flags() (in module

test.support), 1824
argtypes (ctypes._CFuncPtr attribute), 821
argument, 2195
ArgumentDefaultsHelpFormatter (class in arg-

parse), 836
ArgumentError, 821, 863
ArgumentParser (class in argparse), 834
arguments (class in ast), 2096
arguments (inspect.BoundArguments attribute), 2006
ArgumentTypeError, 863
argv (in module sys), 1902
arithmetic, 38
ArithmeticError, 106
array

module, 63, 283
array (class in array), 283

Index 2251



The Python Library Reference, Release 3.13.1

Array (class in ctypes), 831
ARRAY() (in module ctypes), 831
Array() (in module multiprocessing), 972
Array() (in module multiprocessing.sharedctypes), 973
Array() (multiprocessing.managers.SyncManager

method), 976
arrays, 283
arraysize (sqlite3.Cursor attribute), 544
as_bytes() (email.message.EmailMessage method),

1233
as_bytes() (email.message.Message method), 1269
as_completed() (in module asyncio), 1059
as_completed() (in module concurrent.futures), 1009
as_file() (in module importlib.resources), 2052
as_integer_ratio() (decimal.Decimal method), 351
as_integer_ratio() (float method), 42
as_integer_ratio() (fractions.Fraction method),

375
as_integer_ratio() (int method), 42
as_posix() (pathlib.PurePath method), 446
as_string() (email.message.EmailMessage method),

1232
as_string() (email.message.Message method), 1269
as_tuple() (decimal.Decimal method), 351
as_uri() (pathlib.Path method), 452
ASCII (in module re), 137
ascii()

built-in function, 8
ascii() (in module curses.ascii), 936
ascii_letters (in module string), 119
ascii_lowercase (in module string), 119
ascii_uppercase (in module string), 119
asctime() (in module time), 733
asdict() (in module dataclasses), 1954
asin() (in module cmath), 343
asin() (in module math), 339
asinh() (in module cmath), 343
asinh() (in module math), 339
askcolor() (in module tkinter.colorchooser), 1608
askdirectory() (in module tkinter.filedialog), 1611
askfloat() (in module tkinter.simpledialog), 1609
askinteger() (in module tkinter.simpledialog), 1609
askokcancel() (in module tkinter.messagebox), 1613
askopenfile() (in module tkinter.filedialog), 1610
askopenfilename() (in module tkinter.filedialog),

1610
askopenfilenames() (in module tkinter.filedialog),

1610
askopenfiles() (in module tkinter.filedialog), 1610
askquestion() (in module tkinter.messagebox), 1613
askretrycancel() (in module tkinter.messagebox),

1613
asksaveasfile() (in module tkinter.filedialog), 1610
asksaveasfilename() (in module tkinter.filedialog),

1611
askstring() (in module tkinter.simpledialog), 1609
askyesno() (in module tkinter.messagebox), 1613

askyesnocancel() (in module tkinter.messagebox),
1614

assert

statement, 107
Assert (class in ast), 2083
assert_any_await() (unittest.mock.AsyncMock

method), 1771
assert_any_call() (unittest.mock.Mock method),

1761
assert_awaited() (unittest.mock.AsyncMock

method), 1769
assert_awaited_once() (unittest.mock.AsyncMock

method), 1770
assert_awaited_once_with()

(unittest.mock.AsyncMock method), 1770
assert_awaited_with() (unittest.mock.AsyncMock

method), 1770
assert_called() (unittest.mock.Mock method), 1760
assert_called_once() (unittest.mock.Mock

method), 1760
assert_called_once_with() (unittest.mock.Mock

method), 1761
assert_called_with() (unittest.mock.Mock

method), 1760
assert_has_awaits() (unittest.mock.AsyncMock

method), 1771
assert_has_calls() (unittest.mock.Mock method),

1761
assert_never() (in module typing), 1686
assert_not_awaited() (unittest.mock.AsyncMock

method), 1771
assert_not_called() (unittest.mock.Mock method),

1761
assert_python_failure() (in module

test.support.script_helper), 1831
assert_python_ok() (in module

test.support.script_helper), 1831
assert_type() (in module typing), 1685
assertAlmostEqual() (unittest.TestCase method),

1741
assertCountEqual() (unittest.TestCase method),

1742
assertDictEqual() (unittest.TestCase method), 1743
assertEqual() (unittest.TestCase method), 1737
assertFalse() (unittest.TestCase method), 1738
assertGreater() (unittest.TestCase method), 1742
assertGreaterEqual() (unittest.TestCase method),

1742
assertIn() (unittest.TestCase method), 1738
assertInBytecode()

(test.support.bytecode_helper.BytecodeTestCase
method), 1831

AssertionError, 107
assertIs() (unittest.TestCase method), 1738
assertIsInstance() (unittest.TestCase method),

1738
assertIsNone() (unittest.TestCase method), 1738
assertIsNot() (unittest.TestCase method), 1738

2252 Index



The Python Library Reference, Release 3.13.1

assertIsNotNone() (unittest.TestCase method), 1738
assertLess() (unittest.TestCase method), 1742
assertLessEqual() (unittest.TestCase method), 1742
assertListEqual() (unittest.TestCase method), 1743
assertLogs() (unittest.TestCase method), 1740
assertMultiLineEqual() (unittest.TestCase

method), 1743
assertNoLogs() (unittest.TestCase method), 1741
assertNotAlmostEqual() (unittest.TestCase

method), 1741
assertNotEqual() (unittest.TestCase method), 1738
assertNotIn() (unittest.TestCase method), 1738
assertNotInBytecode()

(test.support.bytecode_helper.BytecodeTestCase
method), 1832

assertNotIsInstance() (unittest.TestCase method),
1738

assertNotRegex() (unittest.TestCase method), 1742
assertRaises() (unittest.TestCase method), 1739
assertRaisesRegex() (unittest.TestCase method),

1739
assertRegex() (unittest.TestCase method), 1742
assertSequenceEqual() (unittest.TestCase method),

1743
assertSetEqual() (unittest.TestCase method), 1743
assertTrue() (unittest.TestCase method), 1738
assertTupleEqual() (unittest.TestCase method),

1743
assertWarns() (unittest.TestCase method), 1740
assertWarnsRegex() (unittest.TestCase method),

1740
Assign (class in ast), 2081
assignment

slice, 48
subscript, 48

ast

module, 2067
AST (class in ast), 2070
ast command line option

-a, 2104
-h, 2104
--help, 2104
-i, 2104
--include-attributes, 2104
--indent, 2104
-m, 2104
--mode, 2104
--no-type-comments, 2104

astimezone() (datetime.datetime method), 219
astuple() (in module dataclasses), 1955
AsyncContextDecorator (class in contextlib), 1967
AsyncContextManager (class in typing), 1699
asynccontextmanager() (in module contextlib),

1962
AsyncExitStack (class in contextlib), 1969
AsyncFor (class in ast), 2099
AsyncFunctionDef (class in ast), 2099
AsyncGenerator (class in collections.abc), 274

AsyncGenerator (class in typing), 1697
AsyncGeneratorType (in module types), 295
asynchat

module, 2187
asynchronous context manager, 2196
asynchronous generator, 2196
asynchronous generator iterator, 2196
asynchronous iterable, 2196
asynchronous iterator, 2196
asyncio

module, 1043
asyncio.subprocess.DEVNULL (built-in variable),

1080
asyncio.subprocess.PIPE (built-in variable), 1080
asyncio.subprocess.Process (built-in class), 1080
asyncio.subprocess.STDOUT (built-in variable),

1080
AsyncIterable (class in collections.abc), 274
AsyncIterable (class in typing), 1697
AsyncIterator (class in collections.abc), 274
AsyncIterator (class in typing), 1697
AsyncMock (class in unittest.mock), 1769
asyncore

module, 2187
AsyncResult (class in multiprocessing.pool), 983
asyncSetUp() (unittest.IsolatedAsyncioTestCase

method), 1745
asyncTearDown() (unittest.IsolatedAsyncioTestCase

method), 1745
AsyncWith (class in ast), 2099
AT (in module token), 2110
at_eof() (asyncio.StreamReader method), 1068
atan() (in module cmath), 343
atan() (in module math), 339
atan2() (in module math), 339
atanh() (in module cmath), 343
atanh() (in module math), 339
ATEQUAL (in module token), 2110
atexit

module, 1980
atexit (weakref.finalize attribute), 289
atof() (in module locale), 1544
atoi() (in module locale), 1545
attach() (email.message.Message method), 1270
attach_loop() (asyncio.AbstractChildWatcher

method), 1129
attach_mock() (unittest.mock.Mock method), 1762
attempted (doctest.TestResults attribute), 1720
AttlistDeclHandler() (xml.parsers.expat.xmlparser

method), 1385
attrgetter() (in module operator), 433
attrib (xml.etree.ElementTree.Element attribute), 1346
attribute, 2196
Attribute (class in ast), 2078
AttributeError, 107
attributes (xml.dom.Node attribute), 1356
AttributesImpl (class in xml.sax.xmlreader), 1378
AttributesNSImpl (class in xml.sax.xmlreader), 1378

Index 2253



The Python Library Reference, Release 3.13.1

attroff() (curses.window method), 915
attron() (curses.window method), 915
attrset() (curses.window method), 915
audioop

module, 2187
audit events, 1839
audit() (in module sys), 1902
auditing, 1902
AugAssign (class in ast), 2082
AUGUST (in module calendar), 250
auth() (ftplib.FTP_TLS method), 1451
auth() (smtplib.SMTP method), 1466
authenticate() (imaplib.IMAP4 method), 1457
AuthenticationError, 962
authenticators() (netrc.netrc method), 633
authkey (multiprocessing.Process attribute), 961
auto (class in enum), 323
autocommit (sqlite3.Connection attribute), 541
autorange() (timeit.Timer method), 1868
available_timezones() (in module zoneinfo), 244
avoids_symlink_attacks (shutil.rmtree attribute),

491
Await (class in ast), 2099
await_args (unittest.mock.AsyncMock attribute), 1772
await_args_list (unittest.mock.AsyncMock at-

tribute), 1772
await_count (unittest.mock.AsyncMock attribute),

1771
awaitable, 2196
Awaitable (class in collections.abc), 274
Awaitable (class in typing), 1697

B
-b

compileall command line option, 2121
unittest command line option, 1729

b2a_base64() (in module binascii), 1323
b2a_hex() (in module binascii), 1323
b2a_qp() (in module binascii), 1323
b2a_uu() (in module binascii), 1322
b16decode() (in module base64), 1320
b16encode() (in module base64), 1320
b32decode() (in module base64), 1320
b32encode() (in module base64), 1320
b32hexdecode() (in module base64), 1320
b32hexencode() (in module base64), 1320
b64decode() (in module base64), 1319
b64encode() (in module base64), 1319
b85decode() (in module base64), 1321
b85encode() (in module base64), 1321
Babyl (class in mailbox), 1305
BabylMessage (class in mailbox), 1311
back() (in module turtle), 1554
backend (in module readline), 173
backslashreplace

error handler's name, 189
backslashreplace_errors() (in module codecs),

191

backup() (sqlite3.Connection method), 539
backward() (in module turtle), 1554
BadGzipFile, 563
BadOptionError, 904
BadStatusLine, 1440
BadZipFile, 576
BadZipfile, 576
Barrier (class in asyncio), 1077
Barrier (class in multiprocessing), 969
Barrier (class in threading), 951
Barrier() (multiprocessing.managers.SyncManager

method), 976
base64

encoding, 1319
module, 1319, 1322

base_exec_prefix (in module sys), 1902
base_prefix (in module sys), 1902
BaseCGIHandler (class in wsgiref.handlers), 1401
BaseCookie (class in http.cookies), 1488
BaseException, 106
BaseExceptionGroup, 115
BaseHandler (class in urllib.request), 1409
BaseHandler (class in wsgiref.handlers), 1402
BaseHeader (class in email.headerregistry), 1254
BaseHTTPRequestHandler (class in http.server), 1482
BaseManager (class in multiprocessing.managers), 974
basename() (in module os.path), 464
BaseProtocol (class in asyncio), 1118
BaseProxy (class in multiprocessing.managers), 980
BaseRequestHandler (class in socketserver), 1477
BaseRotatingHandler (class in logging.handlers),

777
BaseSelector (class in selectors), 1213
BaseServer (class in socketserver), 1475
BaseTransport (class in asyncio), 1114
basicConfig() (in module logging), 760
BasicContext (class in decimal), 357
BasicInterpolation (class in configparser), 617
batched() (in module itertools), 405
baudrate() (in module curses), 908
bbox() (tkinter.ttk.Treeview method), 1626
BDADDR_ANY (in module socket), 1150
BDADDR_LOCAL (in module socket), 1150
bdb

module, 1843, 1850
Bdb (class in bdb), 1844
BdbQuit, 1843
BDFL, 2196
beep() (in module curses), 908
Beep() (in module winsound), 2160
BEFORE_ASYNC_WITH (opcode), 2133
BEFORE_WITH (opcode), 2134
begin_fill() (in module turtle), 1564
begin_poly() (in module turtle), 1569
BEL (in module curses.ascii), 934
below() (curses.panel.Panel method), 937
BELOW_NORMAL_PRIORITY_CLASS (in module subpro-

cess), 1023

2254 Index



The Python Library Reference, Release 3.13.1

Benchmarking, 1867
benchmarking, 735, 736, 740
--best

gzip command line option, 566
betavariate() (in module random), 380
bgcolor() (in module turtle), 1570
bgpic() (in module turtle), 1570
bidirectional() (in module unicodedata), 169
bigaddrspacetest() (in module test.support), 1827
BigEndianStructure (class in ctypes), 830
BigEndianUnion (class in ctypes), 829
bigmemtest() (in module test.support), 1827
bin()

built-in function, 8
binary

data, packing, 179
literals, 38

Binary (class in xmlrpc.client), 1503
binary file, 2196
binary mode, 24
binary semaphores, 1039
BINARY_OP (opcode), 2131
BINARY_SLICE (opcode), 2132
BINARY_SUBSCR (opcode), 2131
BinaryIO (class in typing), 1685
binascii

module, 1322
bind (widgets), 1606
bind() (inspect.Signature method), 2003
bind() (socket.socket method), 1159
bind_partial() (inspect.Signature method), 2003
bind_port() (in module test.support.socket_helper),

1830
bind_textdomain_codeset() (in module locale),

1546
bind_unix_socket() (in module

test.support.socket_helper), 1830
bindtextdomain() (in module gettext), 1531
bindtextdomain() (in module locale), 1546
binomialvariate() (in module random), 380
BinOp (class in ast), 2076
bisect

module, 279
bisect() (in module bisect), 280
bisect_left() (in module bisect), 280
bisect_right() (in module bisect), 280
bit_count() (int method), 40
bit_length() (int method), 40
BitAnd (class in ast), 2076
BitOr (class in ast), 2076
bits_per_digit (sys.int_info attribute), 1916
bitwise

operations, 40
BitXor (class in ast), 2076
bk() (in module turtle), 1554
bkgd() (curses.window method), 915
bkgdset() (curses.window method), 915
blake2b() (in module hashlib), 641

blake2b, blake2s, 641
blake2b.MAX_DIGEST_SIZE (in module hashlib), 643
blake2b.MAX_KEY_SIZE (in module hashlib), 642
blake2b.PERSON_SIZE (in module hashlib), 642
blake2b.SALT_SIZE (in module hashlib), 642
blake2s() (in module hashlib), 641
blake2s.MAX_DIGEST_SIZE (in module hashlib), 643
blake2s.MAX_KEY_SIZE (in module hashlib), 643
blake2s.PERSON_SIZE (in module hashlib), 642
blake2s.SALT_SIZE (in module hashlib), 642
BLKTYPE (in module tarfile), 590
Blob (class in sqlite3), 546
blobopen() (sqlite3.Connection method), 532
block_on_close (socketserver.ThreadingMixIn

attribute), 1474
block_size (hmac.HMAC attribute), 649
blocked_domains()

(http.cookiejar.DefaultCookiePolicy method),
1496

BlockingIOError, 112, 721
blocksize (http.client.HTTPConnection attribute),

1442
body() (tkinter.simpledialog.Dialog method), 1610
body_encode() (email.charset.Charset method), 1282
body_encoding (email.charset.Charset attribute), 1281
body_line_iterator() (in module email.iterators),

1286
BOLD (in module tkinter.font), 1608
BOM (in module codecs), 189
BOM_BE (in module codecs), 189
BOM_LE (in module codecs), 189
BOM_UTF8 (in module codecs), 189
BOM_UTF16 (in module codecs), 189
BOM_UTF16_BE (in module codecs), 189
BOM_UTF16_LE (in module codecs), 189
BOM_UTF32 (in module codecs), 189
BOM_UTF32_BE (in module codecs), 189
BOM_UTF32_LE (in module codecs), 189
bool (built-in class), 8
Boolean

object, 38
operations, 37
type, 9
values, 45

BOOLEAN_STATES (configparser.ConfigParser attribute),
622

BooleanOptionalAction (class in argparse), 843
BoolOp (class in ast), 2076
bootstrap() (in module ensurepip), 1886
border() (curses.window method), 915
borrowed reference, 2196
bottom() (curses.panel.Panel method), 937
bottom_panel() (in module curses.panel), 937
BoundArguments (class in inspect), 2006
BoundaryError, 1253
BoundedSemaphore (class in asyncio), 1077
BoundedSemaphore (class in multiprocessing), 969
BoundedSemaphore (class in threading), 949

Index 2255



The Python Library Reference, Release 3.13.1

BoundedSemaphore() (multiprocess-
ing.managers.SyncManager method), 976

box() (curses.window method), 916
bpbynumber (bdb.Breakpoint attribute), 1844
bpformat() (bdb.Breakpoint method), 1843
bplist (bdb.Breakpoint attribute), 1844
bpprint() (bdb.Breakpoint method), 1843
BRANCH (monitoring event), 1928
Break (class in ast), 2086
break (pdb command), 1854
break_anywhere() (bdb.Bdb method), 1845
break_here() (bdb.Bdb method), 1845
break_long_words (textwrap.TextWrapper attribute),

168
break_on_hyphens (textwrap.TextWrapper attribute),

168
Breakpoint (class in bdb), 1843
breakpoint()

built-in function, 9
breakpointhook() (in module sys), 1903
breakpoints, 1638
broadcast_address (ipaddress.IPv4Network at-

tribute), 1520
broadcast_address (ipaddress.IPv6Network at-

tribute), 1522
broken (asyncio.Barrier attribute), 1078
broken (threading.Barrier attribute), 952
BrokenBarrierError, 952, 1078
BrokenExecutor, 1010
BrokenPipeError, 112
BrokenProcessPool, 1010
BrokenThreadPool, 1010
BROWSER, 1393, 1394
BS (in module curses.ascii), 934
BsdDbShelf (class in shelve), 517
buf (multiprocessing.shared_memory.SharedMemory at-

tribute), 998
--buffer

unittest command line option, 1729
Buffer (class in collections.abc), 274
buffer (io.TextIOBase attribute), 728
buffer (unittest.TestResult attribute), 1750
buffer protocol

binary sequence types, 62
str (built-in class), 52

buffer size, I/O, 24
buffer_info() (array.array method), 284
buffer_size (xml.parsers.expat.xmlparser attribute),

1384
buffer_text (xml.parsers.expat.xmlparser attribute),

1384
buffer_updated() (asyncio.BufferedProtocol

method), 1120
buffer_used (xml.parsers.expat.xmlparser attribute),

1384
BufferedIOBase (class in io), 724
BufferedProtocol (class in asyncio), 1118
BufferedRandom (class in io), 728

BufferedReader (class in io), 727
BufferedRWPair (class in io), 728
BufferedWriter (class in io), 727
BufferError, 107
BufferFlags (class in inspect), 2014
BufferingFormatter (class in logging), 753
BufferingHandler (class in logging.handlers), 784
BufferTooShort, 962
BUILD_CONST_KEY_MAP (opcode), 2137
BUILD_LIST (opcode), 2136
BUILD_MAP (opcode), 2136
build_opener() (in module urllib.request), 1407
BUILD_SET (opcode), 2136
BUILD_SLICE (opcode), 2142
BUILD_STRING (opcode), 2137
BUILD_TUPLE (opcode), 2136
built-in

types, 37
built-in function

__import__(), 32
abs(), 7
aiter(), 7
all(), 8
anext(), 8
any(), 8
ascii(), 8
bin(), 8
breakpoint(), 9
callable(), 9
chr(), 10
classmethod(), 10
compile, 100, 296
compile(), 10
complex, 38
delattr(), 12
dir(), 12
divmod(), 13
enumerate(), 13
eval, 100, 302, 303
eval(), 13
exec, 14, 100
exec(), 14
filter(), 15
float, 38
format(), 17
getattr(), 17
globals(), 17
hasattr(), 17
hash, 48
hash(), 17
help(), 17
hex(), 18
id(), 18
input(), 18
int, 38
isinstance(), 19
issubclass(), 20
iter(), 20

2256 Index



The Python Library Reference, Release 3.13.1

len, 46, 87
len(), 20
locals(), 20
map(), 21
max, 46
max(), 21
min, 46
min(), 21
multiprocessing.Manager(), 974
next(), 22
oct(), 22
open(), 22
ord(), 25
pow(), 25
print(), 25
property.deleter(), 26
property.getter(), 26
property.setter(), 26
repr(), 27
reversed(), 27
round(), 27
setattr(), 28
slice, 2142
sorted(), 28
staticmethod(), 29
sum(), 29
type, 100
vars(), 31
zip(), 31

builtin_module_names (in module sys), 1902
BuiltinFunctionType (in module types), 296
BuiltinImporter (class in importlib.machinery), 2041
BuiltinMethodType (in module types), 296
builtins

module, 33, 1937
busy_retry() (in module test.support), 1822
BUTTON_ALT (in module curses), 931
BUTTON_CTRL (in module curses), 931
BUTTON_SHIFT (in module curses), 931
buttonbox() (tkinter.simpledialog.Dialog method),

1610
BUTTONn_CLICKED (in module curses), 931
BUTTONn_DOUBLE_CLICKED (in module curses), 931
BUTTONn_PRESSED (in module curses), 931
BUTTONn_RELEASED (in module curses), 931
BUTTONn_TRIPLE_CLICKED (in module curses), 931
bye() (in module turtle), 1576
byref() (in module ctypes), 824
bytearray

formatting, 76
interpolation, 76
methods, 65
object, 48, 63, 64

bytearray (built-in class), 64
bytecode, 2197
byte-code

file, 2119
Bytecode (class in dis), 2125

BYTECODE_SUFFIXES (in module importlib.machinery),
2041

Bytecode.codeobj (in module dis), 2126
Bytecode.first_line (in module dis), 2126
BytecodeTestCase (class in

test.support.bytecode_helper), 1831
byteorder (in module sys), 1902
bytes

formatting, 76
interpolation, 76
methods, 65
object, 63
str (built-in class), 52

bytes (built-in class), 63
bytes (uuid.UUID attribute), 1469
bytes-like object, 2197
bytes_le (uuid.UUID attribute), 1469
bytes_warning (sys.flags attribute), 1908
BytesFeedParser (class in email.parser), 1240
BytesGenerator (class in email.generator), 1243
BytesHeaderParser (class in email.parser), 1241
BytesIO (class in io), 726
BytesParser (class in email.parser), 1241
ByteString (class in collections.abc), 273
ByteString (class in typing), 1696
byteswap() (array.array method), 284
BytesWarning, 114
bz2

module, 566
BZ2Compressor (class in bz2), 568
BZ2Decompressor (class in bz2), 568
BZ2File (class in bz2), 566

C
C

language, 38
structures, 179

-C

dis command line option, 2125
trace command line option, 1873

-c

calendar command line option, 252
random command line option, 385
tarfile command line option, 600
trace command line option, 1872
unittest command line option, 1729
zipapp command line option, 1897
zipfile command line option, 586

C14NWriterTarget (class in xml.etree.ElementTree),
1351

c_bool (class in ctypes), 829
c_byte (class in ctypes), 827
c_char (class in ctypes), 827
c_char_p (class in ctypes), 828
C_CONTIGUOUS (inspect.BufferFlags attribute), 2014
c_contiguous (memoryview attribute), 85
c_double (class in ctypes), 828
c_float (class in ctypes), 828

Index 2257



The Python Library Reference, Release 3.13.1

c_int (class in ctypes), 828
c_int8 (class in ctypes), 828
c_int16 (class in ctypes), 828
c_int32 (class in ctypes), 828
c_int64 (class in ctypes), 828
c_long (class in ctypes), 828
c_longdouble (class in ctypes), 828
c_longlong (class in ctypes), 828
C_RAISE (monitoring event), 1928
C_RETURN (monitoring event), 1928
c_short (class in ctypes), 828
c_size_t (class in ctypes), 828
c_ssize_t (class in ctypes), 828
c_time_t (class in ctypes), 828
c_ubyte (class in ctypes), 828
c_uint (class in ctypes), 828
c_uint8 (class in ctypes), 829
c_uint16 (class in ctypes), 829
c_uint32 (class in ctypes), 829
c_uint64 (class in ctypes), 829
c_ulong (class in ctypes), 829
c_ulonglong (class in ctypes), 829
c_ushort (class in ctypes), 829
c_void_p (class in ctypes), 829
c_wchar (class in ctypes), 829
c_wchar_p (class in ctypes), 829
CACHE (opcode), 2130
cache() (in module functools), 420
cache_from_source() (in module importlib.util),

2046
cached (importlib.machinery.ModuleSpec attribute),

2045
cached_property() (in module functools), 421
CacheFTPHandler (class in urllib.request), 1411
calcobjsize() (in module test.support), 1825
calcsize() (in module struct), 180
calcvobjsize() (in module test.support), 1825
calendar

module, 245
Calendar (class in calendar), 245
calendar command line option

-c, 252
--css, 252
-e, 252
--encoding, 252
-f, 252
--first-weekday, 252
-h, 251
--help, 251
-L, 252
-l, 252
--lines, 252
--locale, 252
-m, 252
month, 252
--months, 252
-s, 252
--spacing, 252

-t, 252
--type, 252
-w, 252
--width, 252
year, 252

calendar() (in module calendar), 249
Call (class in ast), 2077
CALL (monitoring event), 1928
CALL (opcode), 2140
call() (in module operator), 433
call() (in module subprocess), 1024
call() (in module unittest.mock), 1789
call_args (unittest.mock.Mock attribute), 1765
call_args_list (unittest.mock.Mock attribute), 1765
call_at() (asyncio.loop method), 1090
call_count (unittest.mock.Mock attribute), 1763
call_exception_handler() (asyncio.loop method),

1102
CALL_FUNCTION_EX (opcode), 2141
CALL_INTRINSIC_1 (opcode), 2144
CALL_INTRINSIC_2 (opcode), 2144
CALL_KW (opcode), 2141
call_later() (asyncio.loop method), 1090
call_list() (unittest.mock.call method), 1789
call_soon() (asyncio.loop method), 1089
call_soon_threadsafe() (asyncio.loop method),

1089
call_tracing() (in module sys), 1903
callable, 2197
Callable (class in collections.abc), 273
Callable (in module typing), 1698
callable()

built-in function, 9
CallableProxyType (in module weakref), 290
callback, 2197
callback (optparse.Option attribute), 891
callback() (contextlib.ExitStack method), 1969
callback_args (optparse.Option attribute), 891
callback_kwargs (optparse.Option attribute), 891
callbacks (in module gc), 1995
called (unittest.mock.Mock attribute), 1763
CalledProcessError, 1013
CAN (in module curses.ascii), 935
CAN_BCM (in module socket), 1148
can_change_color() (in module curses), 908
can_fetch() (urllib.robotparser.RobotFileParser

method), 1434
CAN_ISOTP (in module socket), 1148
CAN_J1939 (in module socket), 1149
CAN_RAW_FD_FRAMES (in module socket), 1148
CAN_RAW_JOIN_FILTERS (in module socket), 1148
can_symlink() (in module test.support.os_helper),

1833
can_write_eof() (asyncio.StreamWriter method),

1069
can_write_eof() (asyncio.WriteTransport method),

1116
can_xattr() (in module test.support.os_helper), 1833

2258 Index



The Python Library Reference, Release 3.13.1

CANCEL (in module tkinter.messagebox), 1614
cancel() (asyncio.Future method), 1112
cancel() (asyncio.Handle method), 1105
cancel() (asyncio.Task method), 1063
cancel() (concurrent.futures.Future method), 1008
cancel() (sched.scheduler method), 1031
cancel() (threading.Timer method), 951
cancel() (tkinter.dnd.DndHandler method), 1615
cancel_command() (tkinter.filedialog.FileDialog

method), 1611
cancel_dump_traceback_later() (in module

faulthandler), 1849
cancel_join_thread() (multiprocessing.Queue

method), 965
cancelled() (asyncio.Future method), 1111
cancelled() (asyncio.Handle method), 1105
cancelled() (asyncio.Task method), 1064
cancelled() (concurrent.futures.Future method), 1008
CancelledError, 1010, 1086
cancelling() (asyncio.Task method), 1065
CannotSendHeader, 1440
CannotSendRequest, 1440
canonic() (bdb.Bdb method), 1844
canonical() (decimal.Context method), 360
canonical() (decimal.Decimal method), 351
canonicalize() (in module xml.etree.ElementTree),

1341
capa() (poplib.POP3 method), 1454
capitalize() (bytearray method), 71
capitalize() (bytes method), 71
capitalize() (str method), 52
CapsuleType (class in types), 298
captured_stderr() (in module test.support), 1824
captured_stdin() (in module test.support), 1824
captured_stdout() (in module test.support), 1824
captureWarnings() (in module logging), 762
capwords() (in module string), 130
casefold() (str method), 52
cast() (in module ctypes), 824
cast() (in module typing), 1685
cast() (memoryview method), 82
--catch

unittest command line option, 1729
catch_threading_exception() (in module

test.support.threading_helper), 1832
catch_unraisable_exception() (in module

test.support), 1827
catch_warnings (class in warnings), 1949
category() (in module unicodedata), 169
cbreak() (in module curses), 908
cbrt() (in module math), 337
ccc() (ftplib.FTP_TLS method), 1452
C-contiguous, 2198
cdf() (statistics.NormalDist method), 398
CDLL (class in ctypes), 817
ceil() (in module math), 39, 334
CellType (in module types), 296
center() (bytearray method), 68

center() (bytes method), 68
center() (str method), 53
CERT_NONE (in module ssl), 1175
CERT_OPTIONAL (in module ssl), 1176
CERT_REQUIRED (in module ssl), 1176
cert_store_stats() (ssl.SSLContext method), 1187
cert_time_to_seconds() (in module ssl), 1174
CertificateError, 1173
certificates, 1195
cfmakecbreak() (in module tty), 2167
cfmakeraw() (in module tty), 2167
CFUNCTYPE() (in module ctypes), 821
cget() (tkinter.font.Font method), 1609
cgi

module, 2188
cgi_directories (http.server.CGIHTTPRequestHandler

attribute), 1487
CGIHandler (class in wsgiref.handlers), 1401
CGIHTTPRequestHandler (class in http.server), 1486
cgitb

module, 2188
CGIXMLRPCRequestHandler (class in xmlrpc.server),

1508
chain() (in module itertools), 406
chaining

comparisons, 38
exception, 105

ChainMap (class in collections), 253
ChainMap (class in typing), 1695
change_cwd() (in module test.support.os_helper), 1833
CHANNEL_BINDING_TYPES (in module ssl), 1181
CHAR_MAX (in module locale), 1545
character, 169
CharacterDataHandler()

(xml.parsers.expat.xmlparser method), 1385
characters() (xml.sax.handler.ContentHandler

method), 1374
characters_written (BlockingIOError attribute),

112
Charset (class in email.charset), 1281
charset() (gettext.NullTranslations method), 1534
chdir() (in module contextlib), 1966
chdir() (in module os), 676
check (lzma.LZMADecompressor attribute), 573
check() (imaplib.IMAP4 method), 1458
check() (in module tabnanny), 2116
check__all__() (in module test.support), 1828
check_call() (in module subprocess), 1024
check_disallow_instantiation() (in module

test.support), 1829
CHECK_EG_MATCH (opcode), 2134
CHECK_EXC_MATCH (opcode), 2134
check_free_after_iterating() (in module

test.support), 1828
check_hostname (ssl.SSLContext attribute), 1192
check_impl_detail() (in module test.support), 1824
check_no_resource_warning() (in module

test.support.warnings_helper), 1836

Index 2259



The Python Library Reference, Release 3.13.1

check_output() (doctest.OutputChecker method),
1722

check_output() (in module subprocess), 1025
check_returncode() (subprocess.CompletedProcess

method), 1012
check_syntax_error() (in module test.support),

1827
check_syntax_warning() (in module

test.support.warnings_helper), 1836
check_unused_args() (string.Formatter method),

121
check_warnings() (in module

test.support.warnings_helper), 1836
checkcache() (in module linecache), 488
CHECKED_HASH (py_compile.PycInvalidationMode at-

tribute), 2120
checkfuncname() (in module bdb), 1847
checksizeof() (in module test.support), 1825
checksum

Cyclic Redundancy Check, 560
chflags() (in module os), 676
chgat() (curses.window method), 916
childNodes (xml.dom.Node attribute), 1356
ChildProcessError, 112
children (pyclbr.Class attribute), 2118
children (pyclbr.Function attribute), 2118
children (tkinter.Tk attribute), 1597
chksum (tarfile.TarInfo attribute), 596
chmod() (in module os), 677
chmod() (pathlib.Path method), 461
--choice

random command line option, 385
choice() (in module random), 378
choice() (in module secrets), 650
choices (optparse.Option attribute), 891
choices() (in module random), 378
Chooser (class in tkinter.colorchooser), 1608
chown() (in module os), 678
chown() (in module shutil), 492
chr()

built-in function, 10
chroot() (in module os), 678
CHRTYPE (in module tarfile), 590
chunk

module, 2188
cipher() (ssl.SSLSocket method), 1185
circle() (in module turtle), 1556
CIRCUMFLEX (in module token), 2110
CIRCUMFLEXEQUAL (in module token), 2110
Clamped (class in decimal), 364
class, 2197
Class (class in pyclbr), 2118
Class (class in symtable), 2106
CLASS (symtable.SymbolTableType attribute), 2105
class variable, 2197
ClassDef (class in ast), 2098
classmethod()

built-in function, 10

ClassMethodDescriptorType (in module types), 296
ClassVar (in module typing), 1664
CLD_CONTINUED (in module os), 713
CLD_DUMPED (in module os), 713
CLD_EXITED (in module os), 713
CLD_KILLED (in module os), 713
CLD_STOPPED (in module os), 713
CLD_TRAPPED (in module os), 713
clean() (mailbox.Maildir method), 1301
cleandoc() (in module inspect), 2002
CleanImport (class in test.support.import_helper),

1835
cleanup() (tempfile.TemporaryDirectory method), 480
CLEANUP_THROW (opcode), 2133
clear (pdb command), 1854
Clear Breakpoint, 1638
clear() (array.array method), 285
clear() (asyncio.Event method), 1074
clear() (collections.deque method), 259
clear() (curses.window method), 916
clear() (dbm.gnu.gdbm method), 523
clear() (dbm.ndbm.ndbm method), 524
clear() (dict method), 89
clear() (email.message.EmailMessage method), 1239
clear() (frozenset method), 87
clear() (http.cookiejar.CookieJar method), 1493
clear() (in module turtle), 1564
clear() (mailbox.Mailbox method), 1299
clear() (sequence method), 48
clear() (threading.Event method), 950
clear() (xml.etree.ElementTree.Element method), 1346
clear_all_breaks() (bdb.Bdb method), 1846
clear_all_file_breaks() (bdb.Bdb method), 1846
clear_bpbynumber() (bdb.Bdb method), 1846
clear_break() (bdb.Bdb method), 1846
clear_cache() (in module filecmp), 476
clear_cache() (zoneinfo.ZoneInfo class method), 242
clear_content() (email.message.EmailMessage

method), 1239
clear_flags() (decimal.Context method), 358
clear_frames() (in module traceback), 1984
clear_history() (in module readline), 174
clear_overloads() (in module typing), 1689
clear_session_cookies()

(http.cookiejar.CookieJar method), 1494
clear_traces() (in module tracemalloc), 1879
clear_traps() (decimal.Context method), 359
clearcache() (in module linecache), 487
clearok() (curses.window method), 916
clearscreen() (in module turtle), 1571
clearstamp() (in module turtle), 1557
clearstamps() (in module turtle), 1558
Client() (in module multiprocessing.connection), 984
client_address (http.server.BaseHTTPRequestHandler

attribute), 1482
client_address (socketserver.BaseRequestHandler

attribute), 1477
CLOCK_BOOTTIME (in module time), 741

2260 Index



The Python Library Reference, Release 3.13.1

clock_getres() (in module time), 733
clock_gettime() (in module time), 734
clock_gettime_ns() (in module time), 734
CLOCK_HIGHRES (in module time), 741
CLOCK_MONOTONIC (in module time), 741
CLOCK_MONOTONIC_RAW (in module time), 742
CLOCK_MONOTONIC_RAW_APPROX (in module time),

742
CLOCK_PROCESS_CPUTIME_ID (in module time), 742
CLOCK_PROF (in module time), 742
CLOCK_REALTIME (in module time), 743
clock_seq (uuid.UUID attribute), 1470
clock_seq_hi_variant (uuid.UUID attribute), 1470
clock_seq_low (uuid.UUID attribute), 1470
clock_settime() (in module time), 734
clock_settime_ns() (in module time), 734
CLOCK_TAI (in module time), 742
CLOCK_THREAD_CPUTIME_ID (in module time), 742
CLOCK_UPTIME (in module time), 742
CLOCK_UPTIME_RAW (in module time), 742
CLOCK_UPTIME_RAW_APPROX (in module time), 742
clone() (email.generator.BytesGenerator method),

1244
clone() (email.generator.Generator method), 1245
clone() (email.policy.Policy method), 1248
clone() (in module turtle), 1569
CLONE_FILES (in module os), 662
CLONE_FS (in module os), 662
CLONE_NEWCGROUP (in module os), 662
CLONE_NEWIPC (in module os), 662
CLONE_NEWNET (in module os), 662
CLONE_NEWNS (in module os), 662
CLONE_NEWPID (in module os), 662
CLONE_NEWTIME (in module os), 662
CLONE_NEWUSER (in module os), 662
CLONE_NEWUTS (in module os), 662
CLONE_SIGHAND (in module os), 662
CLONE_SYSVSEM (in module os), 662
CLONE_THREAD (in module os), 662
CLONE_VM (in module os), 662
cloneNode() (xml.dom.Node method), 1357
close() (asyncio.AbstractChildWatcher method), 1129
close() (asyncio.BaseTransport method), 1115
close() (asyncio.loop method), 1089
close() (asyncio.Runner method), 1045
close() (asyncio.Server method), 1105
close() (asyncio.StreamWriter method), 1069
close() (asyncio.SubprocessTransport method), 1118
close() (contextlib.ExitStack method), 1969
close() (dbm.dumb.dumbdbm method), 525
close() (dbm.gnu.gdbm method), 523
close() (dbm.ndbm.ndbm method), 524
close() (email.parser.BytesFeedParser method), 1241
close() (ftplib.FTP method), 1450
close() (html.parser.HTMLParser method), 1328
close() (http.client.HTTPConnection method), 1442
close() (imaplib.IMAP4 method), 1458
close() (in module fileinput), 906

close() (in module os), 662
close() (in module socket), 1153
close() (io.IOBase method), 723
close() (logging.FileHandler method), 775
close() (logging.Handler method), 751
close() (logging.handlers.MemoryHandler method),

785
close() (logging.handlers.NTEventLogHandler

method), 783
close() (logging.handlers.SocketHandler method), 780
close() (logging.handlers.SysLogHandler method), 782
close() (mailbox.Mailbox method), 1300
close() (mailbox.Maildir method), 1303
close() (mailbox.MH method), 1305
close() (mmap.mmap method), 1227
close() (multiprocessing.connection.Connection

method), 968
close() (multiprocessing.connection.Listener method),

984
close() (multiprocessing.pool.Pool method), 982
close() (multiprocessing.Process method), 962
close() (multiprocessing.Queue method), 964
close() (multiprocess-

ing.shared_memory.SharedMemory method),
998

close() (multiprocessing.SimpleQueue method), 965
close() (os.scandir method), 685
close() (select.devpoll method), 1207
close() (select.epoll method), 1208
close() (select.kqueue method), 1210
close() (selectors.BaseSelector method), 1214
close() (shelve.Shelf method), 517
close() (socket.socket method), 1159
close() (sqlite3.Blob method), 546
close() (sqlite3.Connection method), 533
close() (sqlite3.Cursor method), 544
close() (tarfile.TarFile method), 594
close() (urllib.request.BaseHandler method), 1414
close() (wave.Wave_read method), 1527
close() (wave.Wave_write method), 1529
Close() (winreg.PyHKEY method), 2159
close() (xml.etree.ElementTree.TreeBuilder method),

1350
close() (xml.etree.ElementTree.XMLParser method),

1351
close() (xml.etree.ElementTree.XMLPullParser

method), 1352
close() (xml.sax.xmlreader.IncrementalParser

method), 1379
close() (zipfile.ZipFile method), 578
close_clients() (asyncio.Server method), 1106
close_connection (http.server.BaseHTTPRequestHandler

attribute), 1482
closed (http.client.HTTPResponse attribute), 1444
closed (io.IOBase attribute), 723
closed (mmap.mmap attribute), 1227
closed (select.devpoll attribute), 1207
closed (select.epoll attribute), 1208

Index 2261



The Python Library Reference, Release 3.13.1

closed (select.kqueue attribute), 1210
CloseKey() (in module winreg), 2152
closelog() (in module syslog), 2177
closerange() (in module os), 663
closing() (in module contextlib), 1963
closure variable, 2197
clrtobot() (curses.window method), 916
clrtoeol() (curses.window method), 916
cmath

module, 341
cmd

module, 1583, 1850
Cmd (class in cmd), 1583
cmd (subprocess.CalledProcessError attribute), 1013
cmd (subprocess.TimeoutExpired attribute), 1012
cmdloop() (cmd.Cmd method), 1583
cmdqueue (cmd.Cmd attribute), 1585
cmp() (in module filecmp), 476
cmp_op (in module dis), 2145
cmp_to_key() (in module functools), 421
cmpfiles() (in module filecmp), 476
CMSG_LEN() (in module socket), 1157
CMSG_SPACE() (in module socket), 1157
CO_ASYNC_GENERATOR (in module inspect), 2014
CO_COROUTINE (in module inspect), 2014
CO_GENERATOR (in module inspect), 2014
CO_ITERABLE_COROUTINE (in module inspect), 2014
CO_NESTED (in module inspect), 2014
CO_NEWLOCALS (in module inspect), 2014
CO_OPTIMIZED (in module inspect), 2013
CO_VARARGS (in module inspect), 2014
CO_VARKEYWORDS (in module inspect), 2014
code

module, 2019
code (SystemExit attribute), 111
code (urllib.error.HTTPError attribute), 1433
code (urllib.response.addinfourl attribute), 1424
code (xml.etree.ElementTree.ParseError attribute), 1353
code (xml.parsers.expat.ExpatError attribute), 1387
code object, 100, 519
code_context (inspect.FrameInfo attribute), 2010
code_context (inspect.Traceback attribute), 2010
code_info() (in module dis), 2126
Codec (class in codecs), 191
CodecInfo (class in codecs), 187
Codecs, 186

decode, 186
encode, 186

codecs

module, 186
coded_value (http.cookies.Morsel attribute), 1489
codeop

module, 2021
codepoint2name (in module html.entities), 1332
codes (in module xml.parsers.expat.errors), 1388
CODESET (in module locale), 1541
CodeType (class in types), 296
col_offset (ast.AST attribute), 2071

collapse_addresses() (in module ipaddress), 1526
collapse_rfc2231_value() (in module email.utils),

1286
collect() (in module gc), 1993
collectedDurations (unittest.TestResult attribute),

1750
Collection (class in collections.abc), 273
Collection (class in typing), 1696
collections

module, 252
collections.abc

module, 270
colno (json.JSONDecodeError attribute), 1294
colno (re.PatternError attribute), 143
COLON (in module token), 2109
colon (mailbox.Maildir attribute), 1301
COLONEQUAL (in module token), 2111
color() (in module turtle), 1563
COLOR_BLACK (in module curses), 932
COLOR_BLUE (in module curses), 932
color_content() (in module curses), 908
COLOR_CYAN (in module curses), 932
COLOR_GREEN (in module curses), 932
COLOR_MAGENTA (in module curses), 932
color_pair() (in module curses), 908
COLOR_PAIRS (in module curses), 921
COLOR_RED (in module curses), 932
COLOR_WHITE (in module curses), 932
COLOR_YELLOW (in module curses), 932
colormode() (in module turtle), 1575
COLORS (in module curses), 921
colorsys

module, 1530
COLS (in module curses), 921
column() (tkinter.ttk.Treeview method), 1626
columnize() (cmd.Cmd method), 1584
COLUMNS, 914
columns (os.terminal_size attribute), 674
comb() (in module math), 333
combinations() (in module itertools), 406
combinations_with_replacement() (in module

itertools), 407
combine() (datetime.datetime class method), 215
combining() (in module unicodedata), 170
Combobox (class in tkinter.ttk), 1620
COMMA (in module token), 2109
command (http.server.BaseHTTPRequestHandler at-

tribute), 1482
CommandCompiler (class in codeop), 2022
commands (pdb command), 1854
comment (http.cookiejar.Cookie attribute), 1498
comment (http.cookies.Morsel attribute), 1489
COMMENT (in module token), 2111
comment (zipfile.ZipFile attribute), 582
comment (zipfile.ZipInfo attribute), 585
Comment() (in module xml.etree.ElementTree), 1342
comment() (xml.etree.ElementTree.TreeBuilder

method), 1350

2262 Index



The Python Library Reference, Release 3.13.1

comment() (xml.sax.handler.LexicalHandler method),
1376

comment_url (http.cookiejar.Cookie attribute), 1498
commenters (shlex.shlex attribute), 1590
CommentHandler() (xml.parsers.expat.xmlparser

method), 1386
commit() (sqlite3.Connection method), 533
common (filecmp.dircmp attribute), 477
Common Vulnerabilities and Exposures

CVE 2020-10735, 101
CVE 2023-52425, 1334

Common Weakness Enumeration

CWE 257, 652
common_dirs (filecmp.dircmp attribute), 477
common_files (filecmp.dircmp attribute), 477
common_funny (filecmp.dircmp attribute), 477
common_types (in module mimetypes), 1317
commonpath() (in module os.path), 465
commonprefix() (in module os.path), 465
communicate() (asyncio.subprocess.Process method),

1081
communicate() (subprocess.Popen method), 1020
--compact

json.tool command line option, 1297
Compare (class in ast), 2077
compare() (decimal.Context method), 360
compare() (decimal.Decimal method), 351
compare() (difflib.Differ method), 161
compare_digest() (in module hmac), 649
compare_digest() (in module secrets), 651
compare_networks() (ipaddress.IPv4Network

method), 1522
compare_networks() (ipaddress.IPv6Network

method), 1523
COMPARE_OP (opcode), 2138
compare_signal() (decimal.Context method), 360
compare_signal() (decimal.Decimal method), 351
compare_to() (tracemalloc.Snapshot method), 1881
compare_total() (decimal.Context method), 360
compare_total() (decimal.Decimal method), 351
compare_total_mag() (decimal.Context method),

360
compare_total_mag() (decimal.Decimal method),

351
comparing

objects, 38
comparison

operator, 38
COMPARISON_FLAGS (in module doctest), 1711
comparisons

chaining, 38
Compat32 (class in email.policy), 1252
compat32 (in module email.policy), 1252
compile

built-in function, 100, 296
Compile (class in codeop), 2021
compile()

built-in function, 10

compile() (in module py_compile), 2119
compile() (in module re), 139
compile_command() (in module code), 2019
compile_command() (in module codeop), 2021
compile_dir() (in module compileall), 2122
compile_file() (in module compileall), 2123
compile_path() (in module compileall), 2123
compileall

module, 2120
compileall command line option

-b, 2121
-d, 2121
directory, 2120
-e, 2121
-f, 2121
file, 2120
--hardlink-dupes, 2122
-i, 2121
--invalidation-mode, 2121
-j, 2121
-l, 2121
-o, 2121
-p, 2121
-q, 2121
-r, 2121
-s, 2121
-x, 2121

compiler_flag (__future__._Feature attribute), 1992
complete() (rlcompleter.Completer method), 177
complete_statement() (in module sqlite3), 529
completedefault() (cmd.Cmd method), 1584
CompletedProcess (class in subprocess), 1012
Completer (class in rlcompleter), 177
complex

built-in function, 38
complex (built-in class), 11
Complex (class in numbers), 329
complex number, 2198

literals, 38
object, 38

comprehension (class in ast), 2080
--compress

zipapp command line option, 1897
compress() (bz2.BZ2Compressor method), 568
compress() (in module bz2), 569
compress() (in module gzip), 564
compress() (in module itertools), 407
compress() (in module lzma), 574
compress() (in module zlib), 559
compress() (lzma.LZMACompressor method), 573
compress() (zlib.Compress method), 561
compress_size (zipfile.ZipInfo attribute), 585
compress_type (zipfile.ZipInfo attribute), 585
compressed (ipaddress.IPv4Address attribute), 1514
compressed (ipaddress.IPv4Network attribute), 1520
compressed (ipaddress.IPv6Address attribute), 1516
compressed (ipaddress.IPv6Network attribute), 1523
compression() (ssl.SSLSocket method), 1185

Index 2263



The Python Library Reference, Release 3.13.1

CompressionError, 589
compressobj() (in module zlib), 560
COMSPEC, 710, 1015
concat() (in module operator), 432
Concatenate (in module typing), 1663
concatenation

operation, 46
concurrent.futures

module, 1003
cond (bdb.Breakpoint attribute), 1844
Condition (class in asyncio), 1075
Condition (class in multiprocessing), 970
Condition (class in threading), 947
condition (pdb command), 1854
Condition() (multiprocessing.managers.SyncManager

method), 976
config() (tkinter.font.Font method), 1609
configparser

module, 612
ConfigParser (class in configparser), 625
configuration

file, 612
file, debugger, 1853
file, path, 2016

configuration information, 1931
configure() (tkinter.ttk.Style method), 1629
configure_mock() (unittest.mock.Mock method),

1762
CONFORM (enum.FlagBoundary attribute), 322
confstr() (in module os), 716
confstr_names (in module os), 716
conjugate() (complex number method), 39
conjugate() (decimal.Decimal method), 351
conjugate() (numbers.Complex method), 329
connect() (ftplib.FTP method), 1447
connect() (http.client.HTTPConnection method), 1442
connect() (in module sqlite3), 528
connect() (multiprocessing.managers.BaseManager

method), 975
connect() (smtplib.SMTP method), 1464
connect() (socket.socket method), 1159
connect_accepted_socket() (asyncio.loop

method), 1096
connect_ex() (socket.socket method), 1160
connect_read_pipe() (asyncio.loop method), 1100
connect_write_pipe() (asyncio.loop method), 1100
Connection (class in multiprocessing.connection), 968
Connection (class in sqlite3), 532
connection (sqlite3.Cursor attribute), 544
connection_lost() (asyncio.BaseProtocol method),

1119
connection_made() (asyncio.BaseProtocol method),

1119
ConnectionAbortedError, 112
ConnectionError, 112
ConnectionRefusedError, 113
ConnectionResetError, 113
ConnectRegistry() (in module winreg), 2152

const (optparse.Option attribute), 891
Constant (class in ast), 2073
constructor() (in module copyreg), 515
consumed (asyncio.LimitOverrunError attribute), 1086
container

iteration over, 45
Container (class in collections.abc), 273
Container (class in typing), 1696
contains() (in module operator), 433
CONTAINS_OP (opcode), 2138
content (urllib.error.ContentTooShortError attribute),

1434
content type

MIME, 1316
content_disposition

(email.headerregistry.ContentDispositionHeader
attribute), 1257

content_manager (email.policy.EmailPolicy attribute),
1250

content_type (email.headerregistry.ContentTypeHeader
attribute), 1257

ContentDispositionHeader (class in
email.headerregistry), 1257

ContentHandler (class in xml.sax.handler), 1371
ContentManager (class in email.contentmanager),

1259
contents (ctypes._Pointer attribute), 832
contents() (importlib.abc.ResourceReader method),

2039
contents() (importlib.resources.abc.ResourceReader

method), 2055
contents() (in module importlib.resources), 2054
ContentTooShortError, 1434
ContentTransferEncoding (class in

email.headerregistry), 1257
ContentTypeHeader (class in email.headerregistry),

1256
context, 2198
Context (class in contextvars), 1037
Context (class in decimal), 358
context (ssl.SSLSocket attribute), 1186
context management protocol, 92, 2198
context manager, 92, 2198
context variable, 2198
context_diff() (in module difflib), 154
ContextDecorator (class in contextlib), 1966
contextlib

module, 1961
ContextManager (class in typing), 1698
contextmanager() (in module contextlib), 1961
ContextVar (class in contextvars), 1035
contextvars

module, 1035
CONTIG (inspect.BufferFlags attribute), 2015
CONTIG_RO (inspect.BufferFlags attribute), 2015
contiguous, 2198
contiguous (memoryview attribute), 85
Continue (class in ast), 2086

2264 Index



The Python Library Reference, Release 3.13.1

continue (pdb command), 1855
CONTINUOUS (enum.EnumCheck attribute), 321
control() (select.kqueue method), 1210
controlnames (in module curses.ascii), 937
CONTTYPE (in module tarfile), 590
conversions

numeric, 39
convert_arg_line_to_args() (arg-

parse.ArgumentParser method), 861
convert_field() (string.Formatter method), 121
CONVERT_VALUE (opcode), 2142
Cookie (class in http.cookiejar), 1492
CookieError, 1488
CookieJar (class in http.cookiejar), 1491
cookiejar (urllib.request.HTTPCookieProcessor

attribute), 1416
CookiePolicy (class in http.cookiejar), 1492
Coordinated Universal Time, 732
Copy, 1638
copy

module, 300, 515
protocol, 506

COPY (opcode), 2130
copy() (collections.deque method), 259
copy() (contextvars.Context method), 1038
copy() (decimal.Context method), 359
copy() (dict method), 89
copy() (frozenset method), 86
copy() (hashlib.hash method), 639
copy() (hmac.HMAC method), 649
copy() (http.cookies.Morsel method), 1490
copy() (imaplib.IMAP4 method), 1458
copy() (in module copy), 300
copy() (in module multiprocessing.sharedctypes), 973
copy() (in module shutil), 489
copy() (sequence method), 48
copy() (tkinter.font.Font method), 1609
copy() (types.MappingProxyType method), 298
copy() (zlib.Compress method), 561
copy() (zlib.Decompress method), 562
copy2() (in module shutil), 490
copy_abs() (decimal.Context method), 360
copy_abs() (decimal.Decimal method), 351
copy_context() (in module contextvars), 1036
copy_decimal() (decimal.Context method), 359
copy_file_range() (in module os), 663
COPY_FREE_VARS (opcode), 2140
copy_location() (in module ast), 2101
copy_negate() (decimal.Context method), 360
copy_negate() (decimal.Decimal method), 352
copy_sign() (decimal.Context method), 360
copy_sign() (decimal.Decimal method), 352
copyfile() (in module shutil), 488
copyfileobj() (in module shutil), 488
copying files, 488
copymode() (in module shutil), 489
copyreg

module, 515

copyright (built-in variable), 36
copyright (in module sys), 1903
copysign() (in module math), 335
copystat() (in module shutil), 489
copytree() (in module shutil), 490
coroutine, 2198
Coroutine (class in collections.abc), 274
Coroutine (class in typing), 1697
coroutine function, 2198
coroutine() (in module types), 299
CoroutineType (in module types), 295
correlation() (in module statistics), 396
cos() (in module cmath), 343
cos() (in module math), 339
cosh() (in module cmath), 343
cosh() (in module math), 340
--count

trace command line option, 1872
count (tracemalloc.Statistic attribute), 1882
count (tracemalloc.StatisticDiff attribute), 1883
count() (array.array method), 284
count() (bytearray method), 65
count() (bytes method), 65
count() (collections.deque method), 259
count() (in module itertools), 408
count() (multiprocessing.shared_memory.ShareableList

method), 1001
count() (sequence method), 46
count() (str method), 53
count_diff (tracemalloc.StatisticDiff attribute), 1883
Counter (class in collections), 256
Counter (class in typing), 1695
countOf() (in module operator), 433
countTestCases() (unittest.TestCase method), 1744
countTestCases() (unittest.TestSuite method), 1747
covariance() (in module statistics), 395
CoverageResults (class in trace), 1873
--coverdir

trace command line option, 1873
cProfile

module, 1861
CPU time, 736, 740
cpu_count() (in module multiprocessing), 966
cpu_count() (in module os), 716
CPython, 2198
cpython_only() (in module test.support), 1826
CR (in module curses.ascii), 934
crawl_delay() (urllib.robotparser.RobotFileParser

method), 1434
CRC (zipfile.ZipInfo attribute), 585
crc32() (in module binascii), 1323
crc32() (in module zlib), 560
crc_hqx() (in module binascii), 1323
--create

tarfile command line option, 600
zipfile command line option, 586

create() (imaplib.IMAP4 method), 1458
create() (in module venv), 1892

Index 2265



The Python Library Reference, Release 3.13.1

create() (venv.EnvBuilder method), 1890
create_aggregate() (sqlite3.Connection method),

534
create_archive() (in module zipapp), 1897
create_autospec() (in module unittest.mock), 1790
CREATE_BREAKAWAY_FROM_JOB (in module subpro-

cess), 1024
create_collation() (sqlite3.Connection method),

536
create_configuration() (venv.EnvBuilder

method), 1891
create_connection() (asyncio.loop method), 1091
create_connection() (in module socket), 1152
create_datagram_endpoint() (asyncio.loop

method), 1093
create_decimal() (decimal.Context method), 359
create_decimal_from_float() (decimal.Context

method), 359
create_default_context() (in module ssl), 1171
CREATE_DEFAULT_ERROR_MODE (in module subpro-

cess), 1023
create_eager_task_factory() (in module asyn-

cio), 1055
create_empty_file() (in module

test.support.os_helper), 1834
create_function() (sqlite3.Connection method), 533
create_future() (asyncio.loop method), 1091
create_git_ignore_file() (venv.EnvBuilder

method), 1892
create_module() (importlib.abc.Loader method),

2035
create_module() (im-

portlib.machinery.ExtensionFileLoader
method), 2044

create_module() (zipimport.zipimporter method),
2024

CREATE_NEW_CONSOLE (in module subprocess), 1023
CREATE_NEW_PROCESS_GROUP (in module subprocess),

1023
CREATE_NO_WINDOW (in module subprocess), 1023
create_server() (asyncio.loop method), 1094
create_server() (in module socket), 1152
create_stats() (profile.Profile method), 1862
create_string_buffer() (in module ctypes), 824
create_subprocess_exec() (in module asyncio),

1079
create_subprocess_shell() (in module asyncio),

1079
create_system (zipfile.ZipInfo attribute), 585
create_task() (asyncio.loop method), 1091
create_task() (asyncio.TaskGroup method), 1051
create_task() (in module asyncio), 1050
create_unicode_buffer() (in module ctypes), 824
create_unix_connection() (asyncio.loop method),

1094
create_unix_server() (asyncio.loop method), 1095
create_version (zipfile.ZipInfo attribute), 585
create_window_function() (sqlite3.Connection

method), 534
createAttribute() (xml.dom.Document method),

1358
createAttributeNS() (xml.dom.Document method),

1359
createComment() (xml.dom.Document method), 1358
createDocument() (xml.dom.DOMImplementation

method), 1355
createDocumentType()

(xml.dom.DOMImplementation method),
1355

createElement() (xml.dom.Document method), 1358
createElementNS() (xml.dom.Document method),

1358
createfilehandler() (_tkinter.Widget.tk method),

1607
CreateKey() (in module winreg), 2152
CreateKeyEx() (in module winreg), 2152
createLock() (logging.Handler method), 750
createLock() (logging.NullHandler method), 776
createProcessingInstruction()

(xml.dom.Document method), 1358
createSocket() (logging.handlers.SocketHandler

method), 780
createSocket() (logging.handlers.SysLogHandler

method), 782
createTextNode() (xml.dom.Document method),

1358
credits (built-in variable), 36
CRITICAL (in module logging), 750
critical() (in module logging), 758
critical() (logging.Logger method), 748
CRNCYSTR (in module locale), 1542
CRT_ASSEMBLY_VERSION (in module msvcrt), 2151
CRT_ASSERT (in module msvcrt), 2151
CRT_ERROR (in module msvcrt), 2151
CRT_WARN (in module msvcrt), 2151
CRTDBG_MODE_DEBUG (in module msvcrt), 2151
CRTDBG_MODE_FILE (in module msvcrt), 2151
CRTDBG_MODE_WNDW (in module msvcrt), 2151
CRTDBG_REPORT_MODE (in module msvcrt), 2151
CrtSetReportFile() (in module msvcrt), 2151
CrtSetReportMode() (in module msvcrt), 2151
crypt

module, 2188
cryptography, 637
--css

calendar command line option, 252
cssclass_month (calendar.HTMLCalendar attribute),

247
cssclass_month_head (calendar.HTMLCalendar at-

tribute), 247
cssclass_noday (calendar.HTMLCalendar attribute),

247
cssclass_year (calendar.HTMLCalendar attribute),

247
cssclass_year_head (calendar.HTMLCalendar at-

tribute), 247

2266 Index



The Python Library Reference, Release 3.13.1

cssclasses (calendar.HTMLCalendar attribute), 247
cssclasses_weekday_head (calen-

dar.HTMLCalendar attribute), 247
csv, 605

module, 605
cte (email.headerregistry.ContentTransferEncoding at-

tribute), 1257
cte_type (email.policy.Policy attribute), 1247
ctermid() (in module os), 655
ctime() (datetime.date method), 212
ctime() (datetime.datetime method), 222
ctime() (in module time), 734
ctrl() (in module curses.ascii), 936
CTRL_BREAK_EVENT (in module signal), 1218
CTRL_C_EVENT (in module signal), 1218
ctypes

module, 798
curdir (in module os), 717
currency() (in module locale), 1544
current context, 2198
current() (tkinter.ttk.Combobox method), 1620
current_process() (in module multiprocessing), 966
current_task() (in module asyncio), 1061
current_thread() (in module threading), 939
CurrentByteIndex (xml.parsers.expat.xmlparser at-

tribute), 1384
CurrentColumnNumber (xml.parsers.expat.xmlparser

attribute), 1384
currentframe() (in module inspect), 2011
CurrentLineNumber (xml.parsers.expat.xmlparser at-

tribute), 1385
curs_set() (in module curses), 908
curses

module, 907
curses.ascii

module, 933
curses.panel

module, 937
curses.textpad

module, 932
Cursor (class in sqlite3), 543
cursor() (sqlite3.Connection method), 532
cursyncup() (curses.window method), 916
Cut, 1638
cwd() (ftplib.FTP method), 1450
cwd() (pathlib.Path class method), 452
cycle() (in module itertools), 408
CycleError, 327
Cyclic Redundancy Check, 560

D
-d

compileall command line option, 2121
gzip command line option, 566

D_FMT (in module locale), 1541
D_T_FMT (in module locale), 1541
daemon (multiprocessing.Process attribute), 961
daemon (threading.Thread attribute), 944

daemon_threads (socketserver.ThreadingMixIn
attribute), 1474

data

packing binary, 179
tabular, 605

data (collections.UserDict attribute), 269
data (collections.UserList attribute), 270
data (collections.UserString attribute), 270
data (select.kevent attribute), 1212
data (selectors.SelectorKey attribute), 1213
data (urllib.request.Request attribute), 1412
data (xml.dom.Comment attribute), 1360
data (xml.dom.ProcessingInstruction attribute), 1361
data (xml.dom.Text attribute), 1360
data (xmlrpc.client.Binary attribute), 1503
data() (xml.etree.ElementTree.TreeBuilder method),

1350
data_filter() (in module tarfile), 598
data_open() (urllib.request.DataHandler method),

1418
data_received() (asyncio.Protocol method), 1119
database

Unicode, 169
DatabaseError, 547
databases, 525
dataclass() (in module dataclasses), 1951
dataclass_transform() (in module typing), 1687
dataclasses

module, 1950
DataError, 547
datagram_received() (asyncio.DatagramProtocol

method), 1120
DatagramHandler (class in logging.handlers), 781
DatagramProtocol (class in asyncio), 1118
DatagramRequestHandler (class in socketserver),

1477
DatagramTransport (class in asyncio), 1115
DataHandler (class in urllib.request), 1411
date (class in datetime), 208
date() (datetime.datetime method), 219
date_time (zipfile.ZipInfo attribute), 584
date_time_string()

(http.server.BaseHTTPRequestHandler
method), 1485

DateHeader (class in email.headerregistry), 1255
datetime

module, 203
datetime (class in datetime), 213
DateTime (class in xmlrpc.client), 1502
datetime (email.headerregistry.DateHeader attribute),

1255
Day (class in calendar), 249
day (datetime.date attribute), 210
day (datetime.datetime attribute), 217
DAY_1 (in module locale), 1541
DAY_2 (in module locale), 1541
DAY_3 (in module locale), 1541
DAY_4 (in module locale), 1541

Index 2267



The Python Library Reference, Release 3.13.1

DAY_5 (in module locale), 1541
DAY_6 (in module locale), 1541
DAY_7 (in module locale), 1541
day_abbr (in module calendar), 249
day_name (in module calendar), 249
daylight (in module time), 743
Daylight Saving Time, 732
days (datetime.timedelta attribute), 206
DbfilenameShelf (class in shelve), 517
dbm

module, 520
dbm.dumb

module, 525
dbm.gnu

module, 517, 522
dbm.ndbm

module, 517, 524
dbm.sqlite3

module, 522
DC1 (in module curses.ascii), 935
DC2 (in module curses.ascii), 935
DC3 (in module curses.ascii), 935
DC4 (in module curses.ascii), 935
dcgettext() (in module locale), 1546
deactivate_stack_trampoline() (in module sys),

1923
debug (imaplib.IMAP4 attribute), 1461
DEBUG (in module logging), 750
DEBUG (in module re), 138
debug (pdb command), 1858
debug (shlex.shlex attribute), 1591
debug (sys.flags attribute), 1908
debug (zipfile.ZipFile attribute), 581
debug() (in module doctest), 1724
debug() (in module logging), 758
debug() (logging.Logger method), 747
debug() (unittest.TestCase method), 1737
debug() (unittest.TestSuite method), 1747
DEBUG_BYTECODE_SUFFIXES (in module im-

portlib.machinery), 2041
DEBUG_COLLECTABLE (in module gc), 1996
DEBUG_LEAK (in module gc), 1996
DEBUG_SAVEALL (in module gc), 1996
debug_src() (in module doctest), 1724
DEBUG_STATS (in module gc), 1996
DEBUG_UNCOLLECTABLE (in module gc), 1996
debugger, 941, 1637, 1913, 1921

configuration file, 1853
debugging, 1850
debuglevel (http.client.HTTPResponse attribute), 1444
DebugRunner (class in doctest), 1725
DECEMBER (in module calendar), 250
decimal

module, 345
Decimal (class in decimal), 349
decimal() (in module unicodedata), 169
DecimalException (class in decimal), 364
decode

Codecs, 186
decode (codecs.CodecInfo attribute), 187
decode() (bytearray method), 66
decode() (bytes method), 66
decode() (codecs.Codec method), 192
decode() (codecs.IncrementalDecoder method), 193
decode() (in module base64), 1321
decode() (in module codecs), 186
decode() (in module quopri), 1324
decode() (json.JSONDecoder method), 1292
decode() (xmlrpc.client.Binary method), 1503
decode() (xmlrpc.client.DateTime method), 1502
decode_header() (in module email.header), 1280
decode_params() (in module email.utils), 1286
decode_rfc2231() (in module email.utils), 1286
decode_source() (in module importlib.util), 2047
decodebytes() (in module base64), 1321
DecodedGenerator (class in email.generator), 1245
decodestring() (in module quopri), 1325
decomposition() (in module unicodedata), 170
--decompress

gzip command line option, 566
decompress() (bz2.BZ2Decompressor method), 568
decompress() (in module bz2), 569
decompress() (in module gzip), 565
decompress() (in module lzma), 574
decompress() (in module zlib), 560
decompress() (lzma.LZMADecompressor method),

573
decompress() (zlib.Decompress method), 562
decompressobj() (in module zlib), 561
decorator, 2198
DEDENT (in module token), 2108
dedent() (in module textwrap), 166
deepcopy() (in module copy), 300
def_prog_mode() (in module curses), 908
def_shell_mode() (in module curses), 908
default (in module email.policy), 1251
DEFAULT (in module unittest.mock), 1789
default (inspect.Parameter attribute), 2004
default (optparse.Option attribute), 891
default() (cmd.Cmd method), 1584
default() (json.JSONEncoder method), 1293
DEFAULT_BUFFER_SIZE (in module io), 720
default_bufsize (in module xml.dom.pulldom), 1369
default_exception_handler() (asyncio.loop

method), 1102
default_factory (collections.defaultdict attribute),

262
DEFAULT_FORMAT (in module tarfile), 590
DEFAULT_IGNORES (in module filecmp), 478
default_loader() (in module

xml.etree.ElementInclude), 1345
default_max_str_digits (sys.int_info attribute),

1916
default_open() (urllib.request.BaseHandler method),

1414
DEFAULT_PROTOCOL (in module pickle), 501

2268 Index



The Python Library Reference, Release 3.13.1

DEFAULT_TIMEOUT (unittest.mock.ThreadingMock at-
tribute), 1773

default_timer() (in module timeit), 1868
DefaultContext (class in decimal), 358
DefaultCookiePolicy (class in http.cookiejar), 1492
defaultdict (class in collections), 262
DefaultDict (class in typing), 1694
DefaultEventLoopPolicy (class in asyncio), 1128
DefaultHandler() (xml.parsers.expat.xmlparser

method), 1386
DefaultHandlerExpand()

(xml.parsers.expat.xmlparser method), 1386
defaults() (configparser.ConfigParser method), 626
DefaultSelector (class in selectors), 1214
defaultTestLoader (in module unittest), 1752
defaultTestResult() (unittest.TestCase method),

1744
defects (email.headerregistry.BaseHeader attribute),

1254
defects (email.message.EmailMessage attribute), 1239
defects (email.message.Message attribute), 1276
defpath (in module os), 717
DefragResult (class in urllib.parse), 1430
DefragResultBytes (class in urllib.parse), 1431
degrees() (in module math), 339
degrees() (in module turtle), 1560
del

statement, 48, 87
Del (class in ast), 2074
DEL (in module curses.ascii), 935
del_param() (email.message.EmailMessage method),

1236
del_param() (email.message.Message method), 1274
delattr()

built-in function, 12
delay() (in module turtle), 1572
delay_output() (in module curses), 908
delayload (http.cookiejar.FileCookieJar attribute),

1494
delch() (curses.window method), 916
dele() (poplib.POP3 method), 1454
Delete (class in ast), 2083
delete() (ftplib.FTP method), 1450
delete() (imaplib.IMAP4 method), 1458
delete() (tkinter.ttk.Treeview method), 1627
DELETE_ATTR (opcode), 2136
DELETE_DEREF (opcode), 2140
DELETE_FAST (opcode), 2140
DELETE_GLOBAL (opcode), 2136
DELETE_NAME (opcode), 2135
DELETE_SUBSCR (opcode), 2132
deleteacl() (imaplib.IMAP4 method), 1458
deletefilehandler() (_tkinter.Widget.tk method),

1607
DeleteKey() (in module winreg), 2153
DeleteKeyEx() (in module winreg), 2153
deleteln() (curses.window method), 916
deleteMe() (bdb.Breakpoint method), 1843

DeleteValue() (in module winreg), 2153
delimiter (csv.Dialect attribute), 609
delitem() (in module operator), 433
deliver_challenge() (in module multiprocess-

ing.connection), 984
delocalize() (in module locale), 1544
demo_app() (in module wsgiref.simple_server), 1399
denominator (fractions.Fraction attribute), 375
denominator (numbers.Rational attribute), 330
deprecated() (in module warnings), 1949
DeprecationWarning, 114
deque (class in collections), 259
Deque (class in typing), 1695
dequeue() (logging.handlers.QueueListener method),

787
DER_cert_to_PEM_cert() (in module ssl), 1174
derive() (BaseExceptionGroup method), 115
derwin() (curses.window method), 916
description (inspect.Parameter.kind attribute), 2005
description (sqlite3.Cursor attribute), 545
descriptor, 2199
deserialize() (sqlite3.Connection method), 541
dest (optparse.Option attribute), 891
detach() (io.BufferedIOBase method), 725
detach() (io.TextIOBase method), 728
detach() (socket.socket method), 1160
detach() (tkinter.ttk.Treeview method), 1627
detach() (weakref.finalize method), 289
Detach() (winreg.PyHKEY method), 2160
DETACHED_PROCESS (in module subprocess), 1023
--details

inspect command line option, 2015
detect_api_mismatch() (in module test.support),

1828
detect_encoding() (in module tokenize), 2113
deterministic profiling, 1859
dev_mode (sys.flags attribute), 1908
device_encoding() (in module os), 663
devmajor (tarfile.TarInfo attribute), 596
devminor (tarfile.TarInfo attribute), 596
devnull (in module os), 717
DEVNULL (in module subprocess), 1012
devpoll() (in module select), 1205
DevpollSelector (class in selectors), 1214
dgettext() (in module gettext), 1531
dgettext() (in module locale), 1546
Dialect (class in csv), 607
dialect (csv.csvreader attribute), 610
dialect (csv.csvwriter attribute), 611
Dialog (class in tkinter.commondialog), 1612
Dialog (class in tkinter.simpledialog), 1610
dict (built-in class), 87
Dict (class in ast), 2074
Dict (class in typing), 1694
dict() (multiprocessing.managers.SyncManager

method), 976
DICT_MERGE (opcode), 2137
DICT_UPDATE (opcode), 2137

Index 2269



The Python Library Reference, Release 3.13.1

DictComp (class in ast), 2079
dictConfig() (in module logging.config), 763
dictionary, 2199

object, 87
type, operations on, 87

dictionary comprehension, 2199
dictionary view, 2199
DictReader (class in csv), 606
DictWriter (class in csv), 607
diff_bytes() (in module difflib), 157
diff_files (filecmp.dircmp attribute), 477
Differ (class in difflib), 153
difference() (frozenset method), 86
difference_update() (frozenset method), 87
difflib

module, 153
dig (sys.float_info attribute), 1910
digest() (hashlib.hash method), 639
digest() (hashlib.shake method), 640
digest() (hmac.HMAC method), 649
digest() (in module hmac), 648
digest_size (hmac.HMAC attribute), 649
digit() (in module unicodedata), 169
digits (in module string), 119
dir()

built-in function, 12
dir() (ftplib.FTP method), 1450
dircmp (class in filecmp), 477
directory

changing, 676
compileall command line option, 2120
creating, 681
deleting, 491, 683
site-packages, 2015
traversal, 693, 694
walking, 693, 694

Directory (class in tkinter.filedialog), 1611
DirEntry (class in os), 685
dirname() (in module os.path), 465
dirs_double_event() (tkinter.filedialog.FileDialog

method), 1611
dirs_select_event() (tkinter.filedialog.FileDialog

method), 1611
DirsOnSysPath (class in test.support.import_helper),

1835
DIRTYPE (in module tarfile), 590
dis

module, 2124
dis command line option

-C, 2125
-h, 2125
--help, 2125
-O, 2125
--show-caches, 2125
--show-offsets, 2125

dis() (dis.Bytecode method), 2126
dis() (in module dis), 2127
dis() (in module pickletools), 2147

DISABLE (in module sys.monitoring), 1930
disable (pdb command), 1854
disable() (bdb.Breakpoint method), 1843
disable() (in module faulthandler), 1849
disable() (in module gc), 1993
disable() (in module logging), 758
disable() (profile.Profile method), 1862
disable_faulthandler() (in module test.support),

1824
disable_gc() (in module test.support), 1824
disable_interspersed_args() (opt-

parse.OptionParser method), 895
disabled (logging.Logger attribute), 746
DisableReflectionKey() (in module winreg), 2156
disassemble() (in module dis), 2127
discard (http.cookiejar.Cookie attribute), 1498
discard() (frozenset method), 87
discard() (mailbox.Mailbox method), 1298
discard() (mailbox.MH method), 1304
discover() (unittest.TestLoader method), 1749
disk_usage() (in module shutil), 492
dispatch_call() (bdb.Bdb method), 1845
dispatch_exception() (bdb.Bdb method), 1845
dispatch_line() (bdb.Bdb method), 1845
dispatch_return() (bdb.Bdb method), 1845
dispatch_table (pickle.Pickler attribute), 503
DISPLAY, 1597
display (pdb command), 1856
display_name (email.headerregistry.Address attribute),

1258
display_name (email.headerregistry.Group attribute),

1259
displayhook() (in module sys), 1904
dist() (in module math), 338
distance() (in module turtle), 1560
Distribution (class in importlib.metadata), 2061
distribution() (in module importlib.metadata), 2061
distutils

module, 2188
Div (class in ast), 2076
divide() (decimal.Context method), 360
divide_int() (decimal.Context method), 360
DivisionByZero (class in decimal), 364
divmod()

built-in function, 13
divmod() (decimal.Context method), 360
DLE (in module curses.ascii), 935
DllCanUnloadNow() (in module ctypes), 824
DllGetClassObject() (in module ctypes), 824
dllhandle (in module sys), 1904
dnd_start() (in module tkinter.dnd), 1615
DndHandler (class in tkinter.dnd), 1615
dngettext() (in module gettext), 1532
dnpgettext() (in module gettext), 1532
do_clear() (bdb.Bdb method), 1846
do_command() (curses.textpad.Textbox method), 933
do_GET() (http.server.SimpleHTTPRequestHandler

method), 1485

2270 Index



The Python Library Reference, Release 3.13.1

do_handshake() (ssl.SSLSocket method), 1183
do_HEAD() (http.server.SimpleHTTPRequestHandler

method), 1485
do_help() (cmd.Cmd method), 1584
do_POST() (http.server.CGIHTTPRequestHandler

method), 1487
doc (json.JSONDecodeError attribute), 1294
doc_header (cmd.Cmd attribute), 1585
DocCGIXMLRPCRequestHandler (class in xml-

rpc.server), 1512
DocFileSuite() (in module doctest), 1716
doClassCleanups() (unittest.TestCase class method),

1745
doCleanups() (unittest.TestCase method), 1744
docmd() (smtplib.SMTP method), 1464
docstring, 2199
docstring (doctest.DocTest attribute), 1719
doctest

module, 1703
DocTest (class in doctest), 1718
DocTestFailure, 1725
DocTestFinder (class in doctest), 1719
DocTestParser (class in doctest), 1720
DocTestRunner (class in doctest), 1721
DocTestSuite() (in module doctest), 1717
doctype() (xml.etree.ElementTree.TreeBuilder

method), 1350
documentation

generation, 1699
online, 1699

documentElement (xml.dom.Document attribute),
1358

DocXMLRPCRequestHandler (class in xmlrpc.server),
1512

DocXMLRPCServer (class in xmlrpc.server), 1512
domain (email.headerregistry.Address attribute), 1259
domain (http.cookiejar.Cookie attribute), 1498
domain (http.cookies.Morsel attribute), 1489
domain (tracemalloc.DomainFilter attribute), 1880
domain (tracemalloc.Filter attribute), 1881
domain (tracemalloc.Trace attribute), 1883
domain_initial_dot (http.cookiejar.Cookie at-

tribute), 1498
domain_return_ok() (http.cookiejar.CookiePolicy

method), 1495
domain_specified (http.cookiejar.Cookie attribute),

1498
DomainFilter (class in tracemalloc), 1880
DomainLiberal (http.cookiejar.DefaultCookiePolicy at-

tribute), 1497
DomainRFC2965Match

(http.cookiejar.DefaultCookiePolicy attribute),
1497

DomainStrict (http.cookiejar.DefaultCookiePolicy at-
tribute), 1498

DomainStrictNoDots

(http.cookiejar.DefaultCookiePolicy attribute),
1497

DomainStrictNonDomain

(http.cookiejar.DefaultCookiePolicy attribute),
1497

DOMEventStream (class in xml.dom.pulldom), 1369
DOMException, 1361
doModuleCleanups() (in module unittest), 1756
DomstringSizeErr, 1361
done() (asyncio.Future method), 1111
done() (asyncio.Task method), 1062
done() (concurrent.futures.Future method), 1008
done() (graphlib.TopologicalSorter method), 327
done() (in module turtle), 1574
DONT_ACCEPT_BLANKLINE (in module doctest), 1711
DONT_ACCEPT_TRUE_FOR_1 (in module doctest), 1710
dont_write_bytecode (in module sys), 1904
dont_write_bytecode (sys.flags attribute), 1908
doRollover() (logging.handlers.RotatingFileHandler

method), 778
doRollover() (logging.handlers.TimedRotatingFileHandler

method), 779
DOT (in module token), 2109
dot() (in module turtle), 1557
DOTALL (in module re), 139
doublequote (csv.Dialect attribute), 609
DOUBLESLASH (in module token), 2110
DOUBLESLASHEQUAL (in module token), 2110
DOUBLESTAR (in module token), 2110
DOUBLESTAREQUAL (in module token), 2110
doupdate() (in module curses), 908
down (pdb command), 1853
down() (in module turtle), 1561
dpgettext() (in module gettext), 1532
drain() (asyncio.StreamWriter method), 1069
drive (pathlib.PurePath attribute), 444
drop_whitespace (textwrap.TextWrapper attribute),

168
dropwhile() (in module itertools), 408
dst() (datetime.datetime method), 220
dst() (datetime.time method), 228
dst() (datetime.timezone method), 236
dst() (datetime.tzinfo method), 229
DTDHandler (class in xml.sax.handler), 1371
duck-typing, 2199
dump() (in module ast), 2102
dump() (in module json), 1290
dump() (in module marshal), 519
dump() (in module pickle), 501
dump() (in module plistlib), 634
dump() (in module xml.etree.ElementTree), 1342
dump() (pickle.Pickler method), 502
dump() (tracemalloc.Snapshot method), 1882
dump_stats() (profile.Profile method), 1862
dump_stats() (pstats.Stats method), 1863
dump_traceback() (in module faulthandler), 1848
dump_traceback_later() (in module faulthandler),

1849
dumps() (in module json), 1290
dumps() (in module marshal), 519

Index 2271



The Python Library Reference, Release 3.13.1

dumps() (in module pickle), 501
dumps() (in module plistlib), 634
dumps() (in module xmlrpc.client), 1506
dup() (in module os), 663
dup() (socket.socket method), 1160
dup2() (in module os), 664
DuplicateOptionError, 630
DuplicateSectionError, 630
--durations

unittest command line option, 1729
dwFlags (subprocess.STARTUPINFO attribute), 1021
DynamicClassAttribute() (in module types), 299

E
-e

calendar command line option, 252
compileall command line option, 2121
tarfile command line option, 600
tokenize command line option, 2114
zipfile command line option, 586

e (in module cmath), 344
e (in module math), 340
E2BIG (in module errno), 792
EACCES (in module errno), 793
EADDRINUSE (in module errno), 797
EADDRNOTAVAIL (in module errno), 797
EADV (in module errno), 795
EAFNOSUPPORT (in module errno), 797
EAFP, 2199
EAGAIN (in module errno), 793
eager_task_factory() (in module asyncio), 1054
EALREADY (in module errno), 798
east_asian_width() (in module unicodedata), 170
EBADE (in module errno), 794
EBADF (in module errno), 792
EBADFD (in module errno), 796
EBADMSG (in module errno), 796
EBADR (in module errno), 795
EBADRQC (in module errno), 795
EBADSLT (in module errno), 795
EBFONT (in module errno), 795
EBUSY (in module errno), 793
ECANCELED (in module errno), 798
ECHILD (in module errno), 792
echo() (in module curses), 909
echochar() (curses.window method), 916
ECHRNG (in module errno), 794
ECOMM (in module errno), 795
ECONNABORTED (in module errno), 797
ECONNREFUSED (in module errno), 797
ECONNRESET (in module errno), 797
EDEADLK (in module errno), 794
EDEADLOCK (in module errno), 795
EDESTADDRREQ (in module errno), 796
edit() (curses.textpad.Textbox method), 932
EDOM (in module errno), 794
EDOTDOT (in module errno), 795
EDQUOT (in module errno), 798

EEXIST (in module errno), 793
EFAULT (in module errno), 793
EFBIG (in module errno), 793
EFD_CLOEXEC (in module os), 697
EFD_NONBLOCK (in module os), 697
EFD_SEMAPHORE (in module os), 697
effective() (in module bdb), 1847
ehlo() (smtplib.SMTP method), 1465
ehlo_or_helo_if_needed() (smtplib.SMTP

method), 1465
EHOSTDOWN (in module errno), 797
EHOSTUNREACH (in module errno), 797
EIDRM (in module errno), 794
EILSEQ (in module errno), 796
EINPROGRESS (in module errno), 798
EINTR (in module errno), 792
EINVAL (in module errno), 793
EIO (in module errno), 792
EISCONN (in module errno), 797
EISDIR (in module errno), 793
EISNAM (in module errno), 798
EJECT (enum.FlagBoundary attribute), 322
EL2HLT (in module errno), 794
EL2NSYNC (in module errno), 794
EL3HLT (in module errno), 794
EL3RST (in module errno), 794
Element (class in xml.etree.ElementTree), 1346
element_create() (tkinter.ttk.Style method), 1631
element_names() (tkinter.ttk.Style method), 1632
element_options() (tkinter.ttk.Style method), 1632
ElementDeclHandler() (xml.parsers.expat.xmlparser

method), 1385
elements() (collections.Counter method), 256
ElementTree (class in xml.etree.ElementTree), 1348
ELIBACC (in module errno), 796
ELIBBAD (in module errno), 796
ELIBEXEC (in module errno), 796
ELIBMAX (in module errno), 796
ELIBSCN (in module errno), 796
Ellipsis (built-in variable), 35
ELLIPSIS (in module doctest), 1711
ELLIPSIS (in module token), 2111
EllipsisType (in module types), 297
ELNRNG (in module errno), 794
ELOOP (in module errno), 794
EM (in module curses.ascii), 935
email

module, 1231
email.charset

module, 1281
email.contentmanager

module, 1259
email.encoders

module, 1283
email.errors

module, 1252
email.generator

module, 1243

2272 Index



The Python Library Reference, Release 3.13.1

email.header

module, 1279
email.headerregistry

module, 1254
email.iterators

module, 1286
email.message

module, 1232
EmailMessage (class in email.message), 1232
email.mime

module, 1276
email.mime.application

module, 1277
email.mime.audio

module, 1277
email.mime.base

module, 1276
email.mime.image

module, 1278
email.mime.message

module, 1278
email.mime.multipart

module, 1277
email.mime.nonmultipart

module, 1277
email.mime.text

module, 1278
email.parser

module, 1240
email.policy

module, 1246
EmailPolicy (class in email.policy), 1250
email.utils

module, 1284
EMFILE (in module errno), 793
emit() (logging.FileHandler method), 775
emit() (logging.Handler method), 751
emit() (logging.handlers.BufferingHandler method),

784
emit() (logging.handlers.DatagramHandler method),

781
emit() (logging.handlers.HTTPHandler method), 785
emit() (logging.handlers.NTEventLogHandler method),

783
emit() (logging.handlers.QueueHandler method), 786
emit() (logging.handlers.RotatingFileHandler method),

778
emit() (logging.handlers.SMTPHandler method), 784
emit() (logging.handlers.SocketHandler method), 780
emit() (logging.handlers.SysLogHandler method), 782
emit() (logging.handlers.TimedRotatingFileHandler

method), 779
emit() (logging.handlers.WatchedFileHandler method),

776
emit() (logging.NullHandler method), 776
emit() (logging.StreamHandler method), 775
EMLINK (in module errno), 793
Empty, 1032

empty (inspect.Parameter attribute), 2004
empty (inspect.Signature attribute), 2003
empty() (asyncio.Queue method), 1083
empty() (multiprocessing.Queue method), 964
empty() (multiprocessing.SimpleQueue method), 965
empty() (queue.Queue method), 1033
empty() (queue.SimpleQueue method), 1034
empty() (sched.scheduler method), 1031
EMPTY_NAMESPACE (in module xml.dom), 1354
emptyline() (cmd.Cmd method), 1584
emscripten_version (sys._emscripten_info attribute),

1905
EMSGSIZE (in module errno), 796
EMULTIHOP (in module errno), 795
enable (pdb command), 1854
enable() (bdb.Breakpoint method), 1843
enable() (imaplib.IMAP4 method), 1458
enable() (in module faulthandler), 1849
enable() (in module gc), 1993
enable() (profile.Profile method), 1862
enable_callback_tracebacks() (in module

sqlite3), 530
enable_interspersed_args() (opt-

parse.OptionParser method), 895
enable_load_extension() (sqlite3.Connection

method), 537
enable_traversal() (tkinter.ttk.Notebook method),

1622
ENABLE_USER_SITE (in module site), 2017
enabled (bdb.Breakpoint attribute), 1844
EnableReflectionKey() (in module winreg), 2157
ENAMETOOLONG (in module errno), 794
ENAVAIL (in module errno), 798
enclose() (curses.window method), 917
encode

Codecs, 186
encode (codecs.CodecInfo attribute), 187
encode() (codecs.Codec method), 191
encode() (codecs.IncrementalEncoder method), 192
encode() (email.header.Header method), 1280
encode() (in module base64), 1321
encode() (in module codecs), 186
encode() (in module quopri), 1324
encode() (json.JSONEncoder method), 1294
encode() (str method), 53
encode() (xmlrpc.client.Binary method), 1503
encode() (xmlrpc.client.DateTime method), 1502
encode_7or8bit() (in module email.encoders), 1284
encode_base64() (in module email.encoders), 1283
encode_noop() (in module email.encoders), 1284
encode_quopri() (in module email.encoders), 1283
encode_rfc2231() (in module email.utils), 1286
encodebytes() (in module base64), 1321
EncodedFile() (in module codecs), 188
encodePriority() (logging.handlers.SysLogHandler

method), 782
encodestring() (in module quopri), 1325
encoding

Index 2273



The Python Library Reference, Release 3.13.1

base64, 1319
quoted-printable, 1324

--encoding

calendar command line option, 252
encoding (curses.window attribute), 917
ENCODING (in module tarfile), 589
ENCODING (in module token), 2111
encoding (io.TextIOBase attribute), 728
encoding (UnicodeError attribute), 111
encodings_map (in module mimetypes), 1317
encodings_map (mimetypes.MimeTypes attribute),

1318
encodings.idna

module, 201
encodings.mbcs

module, 202
encodings.utf_8_sig

module, 202
EncodingWarning, 114
end (UnicodeError attribute), 112
end() (re.Match method), 147
end() (xml.etree.ElementTree.TreeBuilder method),

1350
END_ASYNC_FOR (opcode), 2132
end_col_offset (ast.AST attribute), 2071
end_fill() (in module turtle), 1564
END_FOR (opcode), 2130
end_headers() (http.server.BaseHTTPRequestHandler

method), 1484
end_lineno (ast.AST attribute), 2071
end_lineno (SyntaxError attribute), 110
end_lineno (traceback.TracebackException attribute),

1985
end_ns() (xml.etree.ElementTree.TreeBuilder method),

1351
end_offset (SyntaxError attribute), 110
end_offset (traceback.TracebackException attribute),

1986
end_poly() (in module turtle), 1569
END_SEND (opcode), 2130
endCDATA() (xml.sax.handler.LexicalHandler method),

1376
EndCdataSectionHandler()

(xml.parsers.expat.xmlparser method), 1386
EndDoctypeDeclHandler()

(xml.parsers.expat.xmlparser method), 1385
endDocument() (xml.sax.handler.ContentHandler

method), 1373
endDTD() (xml.sax.handler.LexicalHandler method),

1376
endElement() (xml.sax.handler.ContentHandler

method), 1374
EndElementHandler() (xml.parsers.expat.xmlparser

method), 1385
endElementNS() (xml.sax.handler.ContentHandler

method), 1374
endheaders() (http.client.HTTPConnection method),

1443

ENDMARKER (in module token), 2108
EndNamespaceDeclHandler()

(xml.parsers.expat.xmlparser method), 1386
endpos (re.Match attribute), 147
endPrefixMapping()

(xml.sax.handler.ContentHandler method),
1374

endswith() (bytearray method), 67
endswith() (bytes method), 67
endswith() (str method), 53
endwin() (in module curses), 909
ENETDOWN (in module errno), 797
ENETRESET (in module errno), 797
ENETUNREACH (in module errno), 797
ENFILE (in module errno), 793
ENOANO (in module errno), 795
ENOBUFS (in module errno), 797
ENOCSI (in module errno), 794
ENODATA (in module errno), 795
ENODEV (in module errno), 793
ENOENT (in module errno), 792
ENOEXEC (in module errno), 792
ENOLCK (in module errno), 794
ENOLINK (in module errno), 795
ENOMEM (in module errno), 793
ENOMSG (in module errno), 794
ENONET (in module errno), 795
ENOPKG (in module errno), 795
ENOPROTOOPT (in module errno), 796
ENOSPC (in module errno), 793
ENOSR (in module errno), 795
ENOSTR (in module errno), 795
ENOSYS (in module errno), 794
ENOTBLK (in module errno), 793
ENOTCAPABLE (in module errno), 798
ENOTCONN (in module errno), 797
ENOTDIR (in module errno), 793
ENOTEMPTY (in module errno), 794
ENOTNAM (in module errno), 798
ENOTRECOVERABLE (in module errno), 798
ENOTSOCK (in module errno), 796
ENOTSUP (in module errno), 797
ENOTTY (in module errno), 793
ENOTUNIQ (in module errno), 796
ENQ (in module curses.ascii), 934
enqueue() (logging.handlers.QueueHandler method),

786
enqueue_sentinel() (log-

ging.handlers.QueueListener method), 787
ensure_directories() (venv.EnvBuilder method),

1891
ensure_future() (in module asyncio), 1110
ensurepip

module, 1885
enter() (sched.scheduler method), 1031
enter_async_context() (contextlib.AsyncExitStack

method), 1969
enter_context() (contextlib.ExitStack method), 1968

2274 Index



The Python Library Reference, Release 3.13.1

enterabs() (sched.scheduler method), 1031
enterAsyncContext()

(unittest.IsolatedAsyncioTestCase method),
1746

enterClassContext() (unittest.TestCase class
method), 1745

enterContext() (unittest.TestCase method), 1744
enterModuleContext() (in module unittest), 1756
entities (xml.dom.DocumentType attribute), 1358
EntityDeclHandler() (xml.parsers.expat.xmlparser

method), 1385
entitydefs (in module html.entities), 1332
EntityResolver (class in xml.sax.handler), 1371
entry_points() (in module importlib.metadata), 2058
EntryPoint (class in importlib.metadata), 2058
EntryPoints (class in importlib.metadata), 2058
enum

module, 310
Enum (class in enum), 313
enum_certificates() (in module ssl), 1175
enum_crls() (in module ssl), 1175
EnumCheck (class in enum), 320
EnumDict (class in enum), 322
enumerate()

built-in function, 13
enumerate() (in module threading), 940
EnumKey() (in module winreg), 2153
EnumType (class in enum), 312
EnumValue() (in module winreg), 2153
EnvBuilder (class in venv), 1890
environ (in module os), 655
environ (in module posix), 2163
environb (in module os), 655
environment variable

BROWSER, 1393, 1394
COLUMNS, 914
COMSPEC, 710, 1015
DISPLAY, 1597
HOME, 465, 466, 1597
HOMEDRIVE, 465
HOMEPATH, 465
IDLESTARTUP, 1641
LANG, 1531, 1532, 1539, 1543
LANGUAGE, 1531, 1532
LC_ALL, 1531, 1532
LC_MESSAGES, 1531, 1532
LINES, 909, 914
LOGNAME, 657, 904
MANPAGER, 1700
no_proxy, 1410
PAGER, 1700
PATH, 463, 493, 701, 702, 707, 708, 717, 1014,

1393, 1889, 2016
PATHEXT, 493
PYTHON_CPU_COUNT, 716, 966
PYTHON_DOM, 1354
PYTHON_GIL, 2202
PYTHONASYNCIODEBUG, 1103, 1139, 1701

PYTHONBREAKPOINT, 9, 1904
PYTHONCASEOK, 33
PYTHONCOERCECLOCALE, 654
PYTHONDEVMODE, 1700
PYTHONDONTWRITEBYTECODE, 1905
PYTHONFAULTHANDLER, 1701, 1848
PYTHONHOME, 1830, 2064
PYTHONINTMAXSTRDIGITS, 102, 1916
PYTHONIOENCODING, 654, 1924
PYTHONLEGACYWINDOWSFSENCODING, 1923
PYTHONLEGACYWINDOWSSTDIO, 1924
PYTHONMALLOC, 1701
PYTHONNOUSERSITE, 2017
PYTHONPATH, 1830, 1918, 2064
PYTHONPLATLIBDIR, 2064
PYTHONPYCACHEPREFIX, 1905
PYTHONSAFEPATH, 1918, 2193
PYTHONSTARTUP, 175, 1044, 1641, 1916, 2017
PYTHONTRACEMALLOC, 1874, 1880
PYTHONTZPATH, 241, 245
PYTHONUNBUFFERED, 1924
PYTHONUSERBASE, 2017
PYTHONUSERSITE, 1830
PYTHONUTF8, 654, 1924
PYTHONWARNDEFAULTENCODING, 720
PYTHONWARNINGS, 1701, 1944, 1945
SOURCE_DATE_EPOCH, 2119, 2121
SSLKEYLOGFILE, 1172
SystemRoot, 1018
TEMP, 481
TERM, 913
TMP, 481
TMPDIR, 481
TZ, 740, 741
USER, 904
USERNAME, 465, 657, 904
USERPROFILE, 465

environment variables

deleting, 661
setting, 659

EnvironmentError, 112
Environments

virtual, 1887
EnvironmentVarGuard (class in

test.support.os_helper), 1833
ENXIO (in module errno), 792
eof (bz2.BZ2Decompressor attribute), 569
eof (lzma.LZMADecompressor attribute), 573
eof (shlex.shlex attribute), 1591
eof (ssl.MemoryBIO attribute), 1202
eof (zlib.Decompress attribute), 561
eof_received() (asyncio.BufferedProtocol method),

1120
eof_received() (asyncio.Protocol method), 1119
EOFError, 107
EOPNOTSUPP (in module errno), 797
EOT (in module curses.ascii), 934
EOVERFLOW (in module errno), 796

Index 2275



The Python Library Reference, Release 3.13.1

EOWNERDEAD (in module errno), 798
EPERM (in module errno), 792
EPFNOSUPPORT (in module errno), 797
epilogue (email.message.EmailMessage attribute),

1239
epilogue (email.message.Message attribute), 1276
EPIPE (in module errno), 794
epoch, 732
epoll() (in module select), 1205
EpollSelector (class in selectors), 1214
EPROTO (in module errno), 795
EPROTONOSUPPORT (in module errno), 796
EPROTOTYPE (in module errno), 796
epsilon (sys.float_info attribute), 1910
Eq (class in ast), 2077
eq() (in module operator), 430
EQEQUAL (in module token), 2109
EQFULL (in module errno), 798
EQUAL (in module token), 2109
ERA (in module locale), 1542
ERA_D_FMT (in module locale), 1543
ERA_D_T_FMT (in module locale), 1542
ERA_T_FMT (in module locale), 1543
ERANGE (in module errno), 794
erase() (curses.window method), 917
erasechar() (in module curses), 909
EREMCHG (in module errno), 796
EREMOTE (in module errno), 795
EREMOTEIO (in module errno), 798
ERESTART (in module errno), 796
erf() (in module math), 340
erfc() (in module math), 340
EROFS (in module errno), 793
ERR (in module curses), 921
errcheck (ctypes._CFuncPtr attribute), 821
errcode (xmlrpc.client.ProtocolError attribute), 1505
errmsg (xmlrpc.client.ProtocolError attribute), 1505
errno

module, 108, 792
errno (OSError attribute), 109
Error, 300, 493, 547, 609, 630, 1314, 1324, 1393,

1527, 1539
error, 179, 520, 522, 524, 525, 559, 653, 908, 1039,

1146, 1205, 1381, 2172, 2184
ERROR (in module logging), 750
ERROR (in module tkinter.messagebox), 1614
error handler's name

backslashreplace, 189
ignore, 189
namereplace, 190
replace, 189
strict, 189
surrogateescape, 189
surrogatepass, 190
xmlcharrefreplace, 190

error() (argparse.ArgumentParser method), 861
error() (in module logging), 758
error() (logging.Logger method), 748

error() (urllib.request.OpenerDirector method), 1413
error() (xml.sax.handler.ErrorHandler method), 1375
error_body (wsgiref.handlers.BaseHandler attribute),

1403
error_content_type

(http.server.BaseHTTPRequestHandler at-
tribute), 1483

error_headers (wsgiref.handlers.BaseHandler
attribute), 1403

error_leader() (shlex.shlex method), 1590
error_message_format

(http.server.BaseHTTPRequestHandler at-
tribute), 1483

error_output() (wsgiref.handlers.BaseHandler
method), 1403

error_perm, 1452
error_proto, 1452, 1453
error_received() (asyncio.DatagramProtocol

method), 1120
error_reply, 1452
error_status (wsgiref.handlers.BaseHandler at-

tribute), 1403
error_temp, 1452
ErrorByteIndex (xml.parsers.expat.xmlparser at-

tribute), 1384
errorcode (in module errno), 792
ErrorCode (xml.parsers.expat.xmlparser attribute),

1384
ErrorColumnNumber (xml.parsers.expat.xmlparser at-

tribute), 1384
ErrorHandler (class in xml.sax.handler), 1371
errorlevel (tarfile.TarFile attribute), 593
ErrorLineNumber (xml.parsers.expat.xmlparser

attribute), 1384
Errors

logging, 743
errors (io.TextIOBase attribute), 728
errors (unittest.TestLoader attribute), 1747
errors (unittest.TestResult attribute), 1750
ErrorStream (class in wsgiref.types), 1404
ErrorString() (in module xml.parsers.expat), 1382
ERRORTOKEN (in module token), 2111
ESC (in module curses.ascii), 935
escape (shlex.shlex attribute), 1590
escape() (in module glob), 485
escape() (in module html), 1327
escape() (in module re), 142
escape() (in module xml.sax.saxutils), 1376
escapechar (csv.Dialect attribute), 609
escapedquotes (shlex.shlex attribute), 1591
ESHUTDOWN (in module errno), 797
ESOCKTNOSUPPORT (in module errno), 796
ESPIPE (in module errno), 793
ESRCH (in module errno), 792
ESRMNT (in module errno), 795
ESTALE (in module errno), 798
ESTRPIPE (in module errno), 796
ETB (in module curses.ascii), 935

2276 Index



The Python Library Reference, Release 3.13.1

ETH_P_ALL (in module socket), 1149
ETHERTYPE_ARP (in module socket), 1151
ETHERTYPE_IP (in module socket), 1151
ETHERTYPE_IPV6 (in module socket), 1151
ETHERTYPE_VLAN (in module socket), 1151
ETIME (in module errno), 795
ETIMEDOUT (in module errno), 797
Etiny() (decimal.Context method), 359
ETOOMANYREFS (in module errno), 797
Etop() (decimal.Context method), 359
ETX (in module curses.ascii), 934
ETXTBSY (in module errno), 793
EUCLEAN (in module errno), 798
EUNATCH (in module errno), 794
EUSERS (in module errno), 796
eval

built-in function, 100, 302, 303
eval()

built-in function, 13
Event (class in asyncio), 1074
Event (class in multiprocessing), 970
Event (class in threading), 950
event scheduling, 1030
Event() (multiprocessing.managers.SyncManager

method), 976
EVENT_READ (in module selectors), 1213
EVENT_WRITE (in module selectors), 1213
eventfd() (in module os), 696
eventfd_read() (in module os), 696
eventfd_write() (in module os), 697
EventLoop (class in asyncio), 1107
events (selectors.SelectorKey attribute), 1213
events (widgets), 1606
EWOULDBLOCK (in module errno), 794
EX_CANTCREAT (in module os), 703
EX_CONFIG (in module os), 703
EX_DATAERR (in module os), 703
EX_IOERR (in module os), 703
EX_NOHOST (in module os), 703
EX_NOINPUT (in module os), 703
EX_NOPERM (in module os), 703
EX_NOTFOUND (in module os), 704
EX_NOUSER (in module os), 703
EX_OK (in module os), 702
EX_OSERR (in module os), 703
EX_OSFILE (in module os), 703
EX_PROTOCOL (in module os), 703
EX_SOFTWARE (in module os), 703
EX_TEMPFAIL (in module os), 703
EX_UNAVAILABLE (in module os), 703
EX_USAGE (in module os), 702
--exact

tokenize command line option, 2114
EXACT_TOKEN_TYPES (in module token), 2111
Example (class in doctest), 1719
example (doctest.DocTestFailure attribute), 1725
example (doctest.UnexpectedException attribute), 1725
examples (doctest.DocTest attribute), 1718

exc_info (doctest.UnexpectedException attribute), 1725
exc_info() (in module sys), 1906
exc_msg (doctest.Example attribute), 1719
exc_type (traceback.TracebackException attribute),

1985
exc_type_str (traceback.TracebackException at-

tribute), 1985
excel (class in csv), 608
excel_tab (class in csv), 608
except

statement, 105
ExceptHandler (class in ast), 2087
excepthook() (in module sys), 1905
excepthook() (in module threading), 940
Exception, 106
exception

chaining, 105
EXCEPTION (in module _tkinter), 1608
exception() (asyncio.Future method), 1112
exception() (asyncio.Task method), 1062
exception() (concurrent.futures.Future method), 1008
exception() (in module logging), 758
exception() (in module sys), 1906
exception() (logging.Logger method), 749
EXCEPTION_HANDLED (monitoring event), 1928
ExceptionGroup, 114
exceptions (BaseExceptionGroup attribute), 115
exceptions (pdb command), 1858
exceptions (traceback.TracebackException attribute),

1985
EXCLAMATION (in module token), 2111
EXDEV (in module errno), 793
exec

built-in function, 14, 100
exec()

built-in function, 14
exec_module() (importlib.abc.InspectLoader method),

2037
exec_module() (importlib.abc.Loader method), 2035
exec_module() (importlib.abc.SourceLoader method),

2038
exec_module() (im-

portlib.machinery.ExtensionFileLoader
method), 2044

exec_module() (zipimport.zipimporter method), 2024
exec_prefix (in module sys), 1906
execl() (in module os), 701
execle() (in module os), 701
execlp() (in module os), 701
execlpe() (in module os), 701
executable (in module sys), 1906
Executable Zip Files, 1896
execute() (sqlite3.Connection method), 533
execute() (sqlite3.Cursor method), 543
executemany() (sqlite3.Connection method), 533
executemany() (sqlite3.Cursor method), 543
executescript() (sqlite3.Connection method), 533
executescript() (sqlite3.Cursor method), 544

Index 2277



The Python Library Reference, Release 3.13.1

ExecutionLoader (class in importlib.abc), 2037
Executor (class in concurrent.futures), 1003
execv() (in module os), 701
execve() (in module os), 701
execvp() (in module os), 701
execvpe() (in module os), 701
EXFULL (in module errno), 795
exists() (in module os.path), 465
exists() (pathlib.Path method), 453
exists() (tkinter.ttk.Treeview method), 1627
exists() (zipfile.Path method), 582
exit (built-in variable), 36
exit() (argparse.ArgumentParser method), 861
exit() (in module _thread), 1040
exit() (in module sys), 1906
exitcode (multiprocessing.Process attribute), 961
exitonclick() (in module turtle), 1576
ExitStack (class in contextlib), 1968
exp() (decimal.Context method), 360
exp() (decimal.Decimal method), 352
exp() (in module cmath), 342
exp() (in module math), 337
exp2() (in module math), 337
expand() (re.Match method), 145
expand_tabs (textwrap.TextWrapper attribute), 167
ExpandEnvironmentStrings() (in module winreg),

2154
expandNode() (xml.dom.pulldom.DOMEventStream

method), 1369
expandtabs() (bytearray method), 71
expandtabs() (bytes method), 71
expandtabs() (str method), 53
expanduser() (in module os.path), 465
expanduser() (pathlib.Path method), 452
expandvars() (in module os.path), 466
Expat, 1381
ExpatError, 1381
expected (asyncio.IncompleteReadError attribute),

1086
expectedFailure() (in module unittest), 1734
expectedFailures (unittest.TestResult attribute), 1750
expired() (asyncio.Timeout method), 1057
expires (http.cookiejar.Cookie attribute), 1498
expires (http.cookies.Morsel attribute), 1489
exploded (ipaddress.IPv4Address attribute), 1514
exploded (ipaddress.IPv4Network attribute), 1520
exploded (ipaddress.IPv6Address attribute), 1516
exploded (ipaddress.IPv6Network attribute), 1523
expm1() (in module math), 337
expovariate() (in module random), 380
Expr (class in ast), 2075
expression, 2199
Expression (class in ast), 2072
expunge() (imaplib.IMAP4 method), 1458
extend() (array.array method), 284
extend() (collections.deque method), 259
extend() (sequence method), 48

extend() (xml.etree.ElementTree.Element method),
1347

extend_path() (in module pkgutil), 2025
EXTENDED_ARG (opcode), 2142
ExtendedContext (class in decimal), 357
ExtendedInterpolation (class in configparser), 617
extendleft() (collections.deque method), 259
extension module, 2200
EXTENSION_SUFFIXES (in module im-

portlib.machinery), 2041
ExtensionFileLoader (class in importlib.machinery),

2043
extensions_map (http.server.SimpleHTTPRequestHandler

attribute), 1485
External Data Representation, 500
external_attr (zipfile.ZipInfo attribute), 585
ExternalClashError, 1314
ExternalEntityParserCreate()

(xml.parsers.expat.xmlparser method), 1383
ExternalEntityRefHandler()

(xml.parsers.expat.xmlparser method), 1386
extra (zipfile.ZipInfo attribute), 585
--extract

tarfile command line option, 600
zipfile command line option, 586

extract() (tarfile.TarFile method), 592
extract() (traceback.StackSummary class method),

1986
extract() (zipfile.ZipFile method), 579
extract_cookies() (http.cookiejar.CookieJar

method), 1493
extract_stack() (in module traceback), 1983
extract_tb() (in module traceback), 1983
extract_version (zipfile.ZipInfo attribute), 585
extractall() (tarfile.TarFile method), 592
extractall() (zipfile.ZipFile method), 580
ExtractError, 589
extractfile() (tarfile.TarFile method), 593
extraction_filter (tarfile.TarFile attribute), 593
extsep (in module os), 717

F
-f

calendar command line option, 252
compileall command line option, 2121
random command line option, 385
trace command line option, 1873
unittest command line option, 1729

f-string, 2200
F_CONTIGUOUS (inspect.BufferFlags attribute), 2015
f_contiguous (memoryview attribute), 85
F_LOCK (in module os), 665
F_OK (in module os), 676
F_TEST (in module os), 665
F_TLOCK (in module os), 665
F_ULOCK (in module os), 665
fabs() (in module math), 334
factorial() (in module math), 334

2278 Index



The Python Library Reference, Release 3.13.1

factory() (importlib.util.LazyLoader class method),
2048

fail() (unittest.TestCase method), 1743
FAIL_FAST (in module doctest), 1712
failed (doctest.TestResults attribute), 1720
--failfast

unittest command line option, 1729
failfast (unittest.TestResult attribute), 1750
failureException, 1717
failureException (unittest.TestCase attribute), 1743
failures (doctest.DocTestRunner attribute), 1722
failures (unittest.TestResult attribute), 1750
FakePath (class in test.support.os_helper), 1833
False, 37, 45
false, 37
False (Built-in object), 37
False (built-in variable), 35
families() (in module tkinter.font), 1609
family (socket.socket attribute), 1166
FancyURLopener (class in urllib.request), 1422
--fast

gzip command line option, 566
fast (pickle.Pickler attribute), 503
FastChildWatcher (class in asyncio), 1130
fatalError() (xml.sax.handler.ErrorHandler

method), 1376
Fault (class in xmlrpc.client), 1504
faultCode (xmlrpc.client.Fault attribute), 1504
faulthandler

module, 1848
faultString (xmlrpc.client.Fault attribute), 1504
fchdir() (in module os), 678
fchmod() (in module os), 664
fchown() (in module os), 664
fcntl

module, 2169
fcntl() (in module fcntl), 2170
fd (selectors.SelectorKey attribute), 1213
fd() (in module turtle), 1553
fd_count() (in module test.support.os_helper), 1834
fdatasync() (in module os), 664
fdopen() (in module os), 662
feature_external_ges (in module xml.sax.handler),

1372
feature_external_pes (in module xml.sax.handler),

1372
feature_namespace_prefixes (in module

xml.sax.handler), 1372
feature_namespaces (in module xml.sax.handler),

1372
feature_string_interning (in module

xml.sax.handler), 1372
feature_validation (in module xml.sax.handler),

1372
FEBRUARY (in module calendar), 250
feed() (email.parser.BytesFeedParser method), 1240
feed() (html.parser.HTMLParser method), 1328

feed() (xml.etree.ElementTree.XMLParser method),
1351

feed() (xml.etree.ElementTree.XMLPullParser
method), 1352

feed() (xml.sax.xmlreader.IncrementalParser method),
1379

feed_eof() (asyncio.StreamReader method), 1068
FeedParser (class in email.parser), 1241
fetch() (imaplib.IMAP4 method), 1458
fetchall() (sqlite3.Cursor method), 544
fetchmany() (sqlite3.Cursor method), 544
fetchone() (sqlite3.Cursor method), 544
FF (in module curses.ascii), 934
fflags (select.kevent attribute), 1211
Field (class in dataclasses), 1954
field() (in module dataclasses), 1953
field_size_limit() (in module csv), 606
fieldnames (csv.DictReader attribute), 610
fields (uuid.UUID attribute), 1470
fields() (in module dataclasses), 1954
FIFOTYPE (in module tarfile), 590
file

byte-code, 2119
compileall command line option, 2120
configuration, 612
copying, 488
debugger configuration, 1853
gzip command line option, 566
.ini, 612
large files, 2163
mime.types, 1317
modes, 22
path configuration, 2016
.pdbrc, 1853
plist, 633
temporary, 478

--file

trace command line option, 1873
file (bdb.Breakpoint attribute), 1843
file (pyclbr.Class attribute), 2118
file (pyclbr.Function attribute), 2117
file control

UNIX, 2169
file name

temporary, 478
file object, 2200

io module, 719
open() built-in function, 22

file-like object, 2200
FILE_ATTRIBUTE_ARCHIVE (in module stat), 475
FILE_ATTRIBUTE_COMPRESSED (in module stat), 475
FILE_ATTRIBUTE_DEVICE (in module stat), 475
FILE_ATTRIBUTE_DIRECTORY (in module stat), 475
FILE_ATTRIBUTE_ENCRYPTED (in module stat), 475
FILE_ATTRIBUTE_HIDDEN (in module stat), 475
FILE_ATTRIBUTE_INTEGRITY_STREAM (in module

stat), 475

Index 2279



The Python Library Reference, Release 3.13.1

FILE_ATTRIBUTE_NO_SCRUB_DATA (in module stat),
475

FILE_ATTRIBUTE_NORMAL (in module stat), 475
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED (in mod-

ule stat), 475
FILE_ATTRIBUTE_OFFLINE (in module stat), 475
FILE_ATTRIBUTE_READONLY (in module stat), 475
FILE_ATTRIBUTE_REPARSE_POINT (in module stat),

475
FILE_ATTRIBUTE_SPARSE_FILE (in module stat), 475
FILE_ATTRIBUTE_SYSTEM (in module stat), 475
FILE_ATTRIBUTE_TEMPORARY (in module stat), 475
FILE_ATTRIBUTE_VIRTUAL (in module stat), 475
file_digest() (in module hashlib), 640
file_open() (urllib.request.FileHandler method),

1417
file_size (zipfile.ZipInfo attribute), 585
filecmp

module, 476
fileConfig() (in module logging.config), 763
FileCookieJar (class in http.cookiejar), 1492
FileDialog (class in tkinter.filedialog), 1611
FileExistsError, 113
FileFinder (class in importlib.machinery), 2042
FileHandler (class in logging), 775
FileHandler (class in urllib.request), 1411
fileinput

module, 905
FileInput (class in fileinput), 906
FileIO (class in io), 726
filelineno() (in module fileinput), 906
FileLoader (class in importlib.abc), 2037
filemode() (in module stat), 471
filename (doctest.DocTest attribute), 1718
filename (http.cookiejar.FileCookieJar attribute), 1494
filename (inspect.FrameInfo attribute), 2009
filename (inspect.Traceback attribute), 2010
filename (netrc.NetrcParseError attribute), 632
filename (OSError attribute), 109
filename (SyntaxError attribute), 110
filename (traceback.FrameSummary attribute), 1987
filename (traceback.TracebackException attribute),

1985
filename (tracemalloc.Frame attribute), 1881
filename (zipfile.ZipFile attribute), 581
filename (zipfile.ZipInfo attribute), 584
filename() (in module fileinput), 905
filename2 (OSError attribute), 109
filename_only (in module tabnanny), 2117
filename_pattern (tracemalloc.Filter attribute), 1881
filenames

pathname expansion, 484
wildcard expansion, 486

fileno() (bz2.BZ2File method), 567
fileno() (http.client.HTTPResponse method), 1444
fileno() (in module fileinput), 905
fileno() (io.IOBase method), 723

fileno() (multiprocessing.connection.Connection
method), 968

fileno() (select.devpoll method), 1207
fileno() (select.epoll method), 1208
fileno() (select.kqueue method), 1210
fileno() (selectors.DevpollSelector method), 1214
fileno() (selectors.EpollSelector method), 1214
fileno() (selectors.KqueueSelector method), 1215
fileno() (socketserver.BaseServer method), 1475
fileno() (socket.socket method), 1160
FileNotFoundError, 113
fileobj (selectors.SelectorKey attribute), 1213
files() (importlib.abc.TraversableResources method),

2040
files() (importlib.resources.abc.TraversableResources

method), 2056
files() (in module importlib.metadata), 2060
files() (in module importlib.resources), 2052
files_double_event() (tkinter.filedialog.FileDialog

method), 1611
files_select_event() (tkinter.filedialog.FileDialog

method), 1611
filesystem encoding and error handler,

2200
FileType (class in argparse), 857
FileWrapper (class in wsgiref.types), 1404
FileWrapper (class in wsgiref.util), 1397
fill() (in module textwrap), 166
fill() (textwrap.TextWrapper method), 169
fillcolor() (in module turtle), 1563
filling() (in module turtle), 1564
fillvalue (reprlib.Repr attribute), 308
--filter

tarfile command line option, 600
Filter (class in logging), 753
Filter (class in tracemalloc), 1880
filter (select.kevent attribute), 1210
filter()

built-in function, 15
filter() (in module curses), 909
filter() (in module fnmatch), 487
filter() (logging.Filter method), 753
filter() (logging.Handler method), 751
filter() (logging.Logger method), 749
filter_command() (tkinter.filedialog.FileDialog

method), 1611
FILTER_DIR (in module unittest.mock), 1791
filter_traces() (tracemalloc.Snapshot method),

1882
FilterError, 589
filterfalse() (in module itertools), 408
filterwarnings() (in module warnings), 1949
Final (in module typing), 1665
final() (in module typing), 1689
finalize (class in weakref), 289
find() (bytearray method), 67
find() (bytes method), 67
find() (doctest.DocTestFinder method), 1720

2280 Index



The Python Library Reference, Release 3.13.1

find() (in module gettext), 1532
find() (mmap.mmap method), 1227
find() (str method), 53
find() (xml.etree.ElementTree.Element method), 1347
find() (xml.etree.ElementTree.ElementTree method),

1348
find_class() (pickle protocol), 513
find_class() (pickle.Unpickler method), 504
find_library() (in module ctypes.util), 824
find_loader() (in module pkgutil), 2026
find_longest_match() (difflib.SequenceMatcher

method), 158
find_msvcrt() (in module ctypes.util), 825
find_spec() (importlib.abc.MetaPathFinder method),

2034
find_spec() (importlib.abc.PathEntryFinder method),

2035
find_spec() (importlib.machinery.FileFinder

method), 2042
find_spec() (importlib.machinery.PathFinder class

method), 2042
find_spec() (in module importlib.util), 2047
find_spec() (zipimport.zipimporter method), 2024
find_unused_port() (in module

test.support.socket_helper), 1830
find_user_password() (url-

lib.request.HTTPPasswordMgr method),
1416

find_user_password() (url-
lib.request.HTTPPasswordMgrWithPriorAuth
method), 1416

findall() (in module re), 141
findall() (re.Pattern method), 144
findall() (xml.etree.ElementTree.Element method),

1347
findall() (xml.etree.ElementTree.ElementTree

method), 1348
findCaller() (logging.Logger method), 749
finder, 2200
findfile() (in module test.support), 1823
finditer() (in module re), 141
finditer() (re.Pattern method), 144
findlabels() (in module dis), 2128
findlinestarts() (in module dis), 2128
findtext() (xml.etree.ElementTree.Element method),

1347
findtext() (xml.etree.ElementTree.ElementTree

method), 1348
finish() (socketserver.BaseRequestHandler method),

1477
finish() (tkinter.dnd.DndHandler method), 1615
finish_request() (socketserver.BaseServer method),

1476
FIRST_COMPLETED (in module asyncio), 1058
FIRST_COMPLETED (in module concurrent.futures),

1009
FIRST_EXCEPTION (in module asyncio), 1058
FIRST_EXCEPTION (in module concurrent.futures),

1009
firstChild (xml.dom.Node attribute), 1356
firstkey() (dbm.gnu.gdbm method), 523
--first-weekday

calendar command line option, 252
firstweekday() (in module calendar), 248
fix_missing_locations() (in module ast), 2101
fix_sentence_endings (textwrap.TextWrapper at-

tribute), 168
Flag (class in enum), 318
flag_bits (zipfile.ZipInfo attribute), 585
FlagBoundary (class in enum), 321
flags (in module sys), 1907
flags (re.Pattern attribute), 144
flags (select.kevent attribute), 1211
flash() (in module curses), 909
flatten() (email.generator.BytesGenerator method),

1244
flatten() (email.generator.Generator method), 1245
flattening

objects, 499
float

built-in function, 38
--float

random command line option, 385
float (built-in class), 16
float_info (in module sys), 1909
float_repr_style (in module sys), 1911
floating-point

literals, 38
object, 38

FloatingPointError, 107
FloatOperation (class in decimal), 365
flock() (in module fcntl), 2171
floor division, 2200
floor() (in module math), 39, 334
FloorDiv (class in ast), 2076
floordiv() (in module operator), 431
flush() (bz2.BZ2Compressor method), 568
flush() (io.BufferedWriter method), 728
flush() (io.IOBase method), 723
flush() (logging.Handler method), 751
flush() (logging.handlers.BufferingHandler method),

784
flush() (logging.handlers.MemoryHandler method),

785
flush() (logging.StreamHandler method), 775
flush() (lzma.LZMACompressor method), 573
flush() (mailbox.Mailbox method), 1300
flush() (mailbox.Maildir method), 1302
flush() (mailbox.MH method), 1305
flush() (mmap.mmap method), 1227
flush() (xml.etree.ElementTree.XMLParser method),

1351
flush() (xml.etree.ElementTree.XMLPullParser

method), 1352
flush() (zlib.Compress method), 561
flush() (zlib.Decompress method), 562

Index 2281



The Python Library Reference, Release 3.13.1

flush_headers() (http.server.BaseHTTPRequestHandler
method), 1484

flush_std_streams() (in module test.support), 1825
flushinp() (in module curses), 909
FlushKey() (in module winreg), 2154
fma() (decimal.Context method), 360
fma() (decimal.Decimal method), 352
fma() (in module math), 334
fmean() (in module statistics), 388
fmod() (in module math), 335
FMT_BINARY (in module plistlib), 635
FMT_XML (in module plistlib), 634
fnmatch

module, 486
fnmatch() (in module fnmatch), 486
fnmatchcase() (in module fnmatch), 487
focus() (tkinter.ttk.Treeview method), 1627
fold (datetime.datetime attribute), 217
fold (datetime.time attribute), 225
fold() (email.headerregistry.BaseHeader method),

1254
fold() (email.policy.Compat32 method), 1252
fold() (email.policy.EmailPolicy method), 1251
fold() (email.policy.Policy method), 1249
fold_binary() (email.policy.Compat32 method),

1252
fold_binary() (email.policy.EmailPolicy method),

1251
fold_binary() (email.policy.Policy method), 1249
Font (class in tkinter.font), 1608
For (class in ast), 2085
FOR_ITER (opcode), 2139
forget() (in module test.support.import_helper), 1834
forget() (tkinter.ttk.Notebook method), 1622
fork() (in module os), 704
fork() (in module pty), 2168
ForkingMixIn (class in socketserver), 1474
ForkingTCPServer (class in socketserver), 1474
ForkingUDPServer (class in socketserver), 1474
ForkingUnixDatagramServer (class in socket-

server), 1474
ForkingUnixStreamServer (class in socketserver),

1474
forkpty() (in module os), 704
FORMAT (inspect.BufferFlags attribute), 2014
format (memoryview attribute), 84
format (multiprocessing.shared_memory.ShareableList

attribute), 1001
format (struct.Struct attribute), 186
format()

built-in function, 17
format() (inspect.Signature method), 2004
format() (logging.BufferingFormatter method), 753
format() (logging.Formatter method), 752
format() (logging.Handler method), 751
format() (pprint.PrettyPrinter method), 303
format() (str method), 54
format() (string.Formatter method), 120

format() (traceback.StackSummary method), 1987
format() (traceback.TracebackException method),

1986
format() (tracemalloc.Traceback method), 1884
format_datetime() (in module email.utils), 1286
format_exc() (in module traceback), 1984
format_exception() (in module traceback), 1984
format_exception_only() (in module traceback),

1983
format_exception_only() (trace-

back.TracebackException method), 1986
format_field() (string.Formatter method), 121
format_frame_summary() (traceback.StackSummary

method), 1987
format_help() (argparse.ArgumentParser method),

861
format_list() (in module traceback), 1983
format_map() (str method), 54
FORMAT_SIMPLE (opcode), 2142
format_stack() (in module traceback), 1984
format_stack_entry() (bdb.Bdb method), 1847
format_string() (in module locale), 1544
format_tb() (in module traceback), 1984
format_usage() (argparse.Action method), 851
format_usage() (argparse.ArgumentParser method),

860
FORMAT_WITH_SPEC (opcode), 2142
formataddr() (in module email.utils), 1284
formatargvalues() (in module inspect), 2008
formatdate() (in module email.utils), 1285
FormatError, 1314
FormatError() (in module ctypes), 825
formatException() (logging.Formatter method), 753
formatFooter() (logging.BufferingFormatter method),

753
formatHeader() (logging.BufferingFormatter method),

753
formatmonth() (calendar.HTMLCalendar method),

247
formatmonth() (calendar.TextCalendar method), 246
formatmonthname() (calendar.HTMLCalendar

method), 247
formatStack() (logging.Formatter method), 753
FormattedValue (class in ast), 2073
Formatter (class in logging), 752
Formatter (class in string), 120
formatTime() (logging.Formatter method), 752
formatting

bytearray (%), 76
bytes (%), 76

formatting, string (%), 61
formatwarning() (in module warnings), 1948
formatweek() (calendar.TextCalendar method), 246
formatyear() (calendar.HTMLCalendarmethod), 247
formatyear() (calendar.TextCalendar method), 246
formatyearpage() (calendar.HTMLCalendar

method), 247
Fortran contiguous, 2198

2282 Index



The Python Library Reference, Release 3.13.1

forward() (in module turtle), 1553
ForwardRef (class in typing), 1692
fp (urllib.error.HTTPError attribute), 1433
fpathconf() (in module os), 664
Fraction (class in fractions), 373
fractions

module, 373
Frame (class in tracemalloc), 1881
frame (inspect.FrameInfo attribute), 2009
frame (tkinter.scrolledtext.ScrolledText attribute), 1615
FrameInfo (class in inspect), 2009
FrameSummary (class in traceback), 1987
FrameType (in module types), 297
free threading, 2200
free variable, 2200
free_tool_id() (in module sys.monitoring), 1927
freedesktop_os_release() (in module platform),

791
freeze() (in module gc), 1995
freeze_support() (in module multiprocessing), 966
frexp() (in module math), 335
FRIDAY (in module calendar), 249
from_address() (ctypes._CData method), 826
from_buffer() (ctypes._CData method), 826
from_buffer_copy() (ctypes._CData method), 826
from_bytes() (int class method), 41
from_callable() (inspect.Signature class method),

2004
from_decimal() (fractions.Fraction class method),

375
from_exception() (traceback.TracebackException

class method), 1986
from_file() (zipfile.ZipInfo class method), 584
from_file() (zoneinfo.ZoneInfo class method), 242
from_float() (decimal.Decimal class method), 352
from_float() (fractions.Fraction class method), 375
from_iterable() (itertools.chain class method), 406
from_list() (traceback.StackSummary class method),

1986
from_param() (ctypes._CData method), 826
from_samples() (statistics.NormalDist class method),

398
from_traceback() (dis.Bytecode class method), 2126
from_uri() (pathlib.Path class method), 451
frombuf() (tarfile.TarInfo class method), 594
frombytes() (array.array method), 284
fromfd() (in module socket), 1153
fromfd() (select.epoll method), 1208
fromfd() (select.kqueue method), 1210
fromfile() (array.array method), 284
fromhex() (bytearray class method), 64
fromhex() (bytes class method), 63
fromhex() (float class method), 43
fromisocalendar() (datetime.date class method),

209
fromisocalendar() (datetime.datetime class method),

216
fromisoformat() (datetime.date class method), 209

fromisoformat() (datetime.datetime class method),
215

fromisoformat() (datetime.time class method), 226
fromkeys() (collections.Counter method), 257
fromkeys() (dict class method), 89
fromlist() (array.array method), 284
fromordinal() (datetime.date class method), 209
fromordinal() (datetime.datetime class method), 215
fromshare() (in module socket), 1153
fromstring() (in module xml.etree.ElementTree),

1342
fromstringlist() (in module

xml.etree.ElementTree), 1342
fromtarfile() (tarfile.TarInfo class method), 595
fromtimestamp() (datetime.date class method), 209
fromtimestamp() (datetime.datetime class method),

214
fromunicode() (array.array method), 285
fromutc() (datetime.timezone method), 236
fromutc() (datetime.tzinfo method), 230
FrozenImporter (class in importlib.machinery), 2041
FrozenInstanceError, 1956
frozenset (built-in class), 85
FrozenSet (class in typing), 1694
FS (in module curses.ascii), 935
fs_is_case_insensitive() (in module

test.support.os_helper), 1834
FS_NONASCII (in module test.support.os_helper), 1833
fsdecode() (in module os), 656
fsencode() (in module os), 656
fspath() (in module os), 656
fstat() (in module os), 664
fstatvfs() (in module os), 665
FSTRING_END (in module token), 2111
FSTRING_MIDDLE (in module token), 2111
FSTRING_START (in module token), 2111
fsum() (in module math), 338
fsync() (in module os), 665
FTP, 1423

ftplib (standard module), 1446
protocol, 1423, 1446

FTP (class in ftplib), 1446
ftp_open() (urllib.request.FTPHandler method), 1418
FTP_TLS (class in ftplib), 1450
FTPHandler (class in urllib.request), 1411
ftplib

module, 1446
ftruncate() (in module os), 665
Full, 1033
FULL (inspect.BufferFlags attribute), 2015
full() (asyncio.Queue method), 1083
full() (multiprocessing.Queue method), 964
full() (queue.Queue method), 1033
full_match() (pathlib.PurePath method), 447
FULL_RO (inspect.BufferFlags attribute), 2015
full_url (urllib.request.Request attribute), 1411
fullmatch() (in module re), 140
fullmatch() (re.Pattern method), 144

Index 2283



The Python Library Reference, Release 3.13.1

fully_trusted_filter() (in module tarfile), 597
func (functools.partial attribute), 430
funcname (bdb.Breakpoint attribute), 1844
function, 2200
Function (class in pyclbr), 2117
Function (class in symtable), 2106
function (inspect.FrameInfo attribute), 2009
function (inspect.Traceback attribute), 2010
FUNCTION (symtable.SymbolTableType attribute), 2105
function annotation, 2200
FunctionDef (class in ast), 2096
FunctionTestCase (class in unittest), 1746
FunctionType (class in ast), 2072
FunctionType (in module types), 295
functools

module, 420
funny_files (filecmp.dircmp attribute), 478
Future (class in asyncio), 1111
Future (class in concurrent.futures), 1008
FutureWarning, 114
fwalk() (in module os), 694

G
-g

trace command line option, 1873
gaierror, 1146
gamma() (in module math), 340
gammavariate() (in module random), 380
garbage (in module gc), 1995
garbage collection, 2201
gather() (curses.textpad.Textbox method), 933
gather() (in module asyncio), 1053
gauss() (in module random), 380
gc

module, 1993
gc_collect() (in module test.support), 1824
gcd() (in module math), 334
ge() (in module operator), 430
generate_tokens() (in module tokenize), 2113
generator, 2201
Generator (class in collections.abc), 273
Generator (class in email.generator), 1244
Generator (class in typing), 1698
generator expression, 2201
generator iterator, 2201
GeneratorExit, 107
GeneratorExp (class in ast), 2079
GeneratorType (in module types), 295
Generic

Alias, 93
Generic (class in typing), 1671
generic function, 2201
generic type, 2201
generic_visit() (ast.NodeVisitor method), 2102
GenericAlias

object, 93
GenericAlias (class in types), 297
genops() (in module pickletools), 2147

geometric_mean() (in module statistics), 389
get() (asyncio.Queue method), 1083
get() (configparser.ConfigParser method), 627
get() (contextvars.Context method), 1038
get() (contextvars.ContextVar method), 1036
get() (dict method), 89
get() (email.message.EmailMessage method), 1234
get() (email.message.Message method), 1272
get() (in module webbrowser), 1394
get() (mailbox.Mailbox method), 1299
get() (multiprocessing.pool.AsyncResult method), 983
get() (multiprocessing.Queue method), 964
get() (multiprocessing.SimpleQueue method), 965
get() (queue.Queue method), 1033
get() (queue.SimpleQueue method), 1035
get() (tkinter.ttk.Combobox method), 1620
get() (tkinter.ttk.Spinbox method), 1620
get() (types.MappingProxyType method), 298
get() (xml.etree.ElementTree.Element method), 1346
GET_AITER (opcode), 2132
get_all() (email.message.EmailMessage method),

1234
get_all() (email.message.Message method), 1272
get_all() (wsgiref.headers.Headers method), 1398
get_all_breaks() (bdb.Bdb method), 1847
get_all_start_methods() (in module multiprocess-

ing), 966
GET_ANEXT (opcode), 2132
get_annotations() (in module inspect), 2009
get_app() (wsgiref.simple_server.WSGIServer

method), 1399
get_archive_formats() (in module shutil), 495
get_args() (in module typing), 1691
get_asyncgen_hooks() (in module sys), 1914
get_attribute() (in module test.support), 1827
GET_AWAITABLE (opcode), 2132
get_begidx() (in module readline), 175
get_blocking() (in module os), 665
get_body() (email.message.EmailMessage method),

1237
get_body_encoding() (email.charset.Charset

method), 1282
get_boundary() (email.message.EmailMessage

method), 1236
get_boundary() (email.message.Message method),

1274
get_bpbynumber() (bdb.Bdb method), 1846
get_break() (bdb.Bdb method), 1846
get_breaks() (bdb.Bdb method), 1847
get_buffer() (asyncio.BufferedProtocol method),

1120
get_bytes() (mailbox.Mailbox method), 1299
get_ca_certs() (ssl.SSLContext method), 1188
get_cache_token() (in module abc), 1980
get_channel_binding() (ssl.SSLSocket method),

1185
get_charset() (email.message.Message method),

1271

2284 Index



The Python Library Reference, Release 3.13.1

get_charsets() (email.message.EmailMessage
method), 1236

get_charsets() (email.message.Message method),
1275

get_child_watcher() (asyn-
cio.AbstractEventLoopPolicy method), 1127

get_child_watcher() (in module asyncio), 1128
get_children() (symtable.SymbolTable method),

2106
get_children() (tkinter.ttk.Treeview method), 1626
get_ciphers() (ssl.SSLContext method), 1188
get_clock_info() (in module time), 734
get_close_matches() (in module difflib), 155
get_code() (importlib.abc.InspectLoader method),

2036
get_code() (importlib.abc.SourceLoader method),

2038
get_code() (importlib.machinery.ExtensionFileLoader

method), 2044
get_code() (importlib.machinery.SourcelessFileLoader

method), 2043
get_code() (zipimport.zipimporter method), 2024
get_completer() (in module readline), 175
get_completer_delims() (in module readline), 175
get_completion_type() (in module readline), 175
get_config_h_filename() (in module sysconfig),

1936
get_config_var() (in module sysconfig), 1932
get_config_vars() (in module sysconfig), 1932
get_content() (email.contentmanager.ContentManager

method), 1259
get_content() (email.message.EmailMessage

method), 1238
get_content() (in module email.contentmanager),

1260
get_content_charset()

(email.message.EmailMessage method),
1236

get_content_charset() (email.message.Message
method), 1275

get_content_disposition()

(email.message.EmailMessage method),
1237

get_content_disposition()

(email.message.Message method), 1275
get_content_maintype()

(email.message.EmailMessage method),
1235

get_content_maintype() (email.message.Message
method), 1273

get_content_subtype()

(email.message.EmailMessage method),
1235

get_content_subtype() (email.message.Message
method), 1273

get_content_type() (email.message.EmailMessage
method), 1235

get_content_type() (email.message.Message

method), 1273
get_context() (asyncio.Handle method), 1105
get_context() (asyncio.Task method), 1063
get_context() (in module multiprocessing), 967
get_coro() (asyncio.Task method), 1063
get_coroutine_origin_tracking_depth() (in

module sys), 1914
get_count() (in module gc), 1994
get_current_history_length() (in module read-

line), 174
get_data() (importlib.abc.FileLoader method), 2038
get_data() (importlib.abc.ResourceLoader method),

2036
get_data() (in module pkgutil), 2027
get_data() (zipimport.zipimporter method), 2024
get_date() (mailbox.MaildirMessage method), 1308
get_debug() (asyncio.loop method), 1103
get_debug() (in module gc), 1993
get_default() (argparse.ArgumentParser method),

860
get_default_scheme() (in module sysconfig), 1935
get_default_type() (email.message.EmailMessage

method), 1235
get_default_type() (email.message.Message

method), 1273
get_default_verify_paths() (in module ssl),

1175
get_dialect() (in module csv), 606
get_disassembly_as_string()

(test.support.bytecode_helper.BytecodeTestCase
method), 1831

get_docstring() (in module ast), 2101
get_doctest() (doctest.DocTestParser method), 1720
get_endidx() (in module readline), 175
get_environ() (ws-

giref.simple_server.WSGIRequestHandler
method), 1400

get_errno() (in module ctypes), 825
get_escdelay() (in module curses), 912
get_event_loop() (asyncio.AbstractEventLoopPolicy

method), 1127
get_event_loop() (in module asyncio), 1087
get_event_loop_policy() (in module asyncio),

1127
get_events() (in module sys.monitoring), 1930
get_examples() (doctest.DocTestParser method),

1720
get_exception_handler() (asyncio.loop method),

1102
get_exec_path() (in module os), 656
get_extra_info() (asyncio.BaseTransport method),

1115
get_extra_info() (asyncio.StreamWriter method),

1069
get_field() (string.Formatter method), 120
get_file() (mailbox.Babyl method), 1305
get_file() (mailbox.Mailbox method), 1299
get_file() (mailbox.Maildir method), 1303

Index 2285



The Python Library Reference, Release 3.13.1

get_file() (mailbox.mbox method), 1303
get_file() (mailbox.MH method), 1305
get_file() (mailbox.MMDF method), 1306
get_file_breaks() (bdb.Bdb method), 1847
get_filename() (email.message.EmailMessage

method), 1236
get_filename() (email.message.Message method),

1274
get_filename() (importlib.abc.ExecutionLoader

method), 2037
get_filename() (importlib.abc.FileLoader method),

2038
get_filename() (im-

portlib.machinery.ExtensionFileLoader
method), 2044

get_filename() (zipimport.zipimporter method), 2024
get_filter() (tkinter.filedialog.FileDialog method),

1611
get_flags() (mailbox.Maildir method), 1301
get_flags() (mailbox.MaildirMessage method), 1307
get_flags() (mailbox.mboxMessage method), 1309
get_flags() (mailbox.MMDFMessage method), 1313
get_folder() (mailbox.Maildir method), 1301
get_folder() (mailbox.MH method), 1304
get_frees() (symtable.Function method), 2106
get_freeze_count() (in module gc), 1995
get_from() (mailbox.mboxMessage method), 1309
get_from() (mailbox.MMDFMessage method), 1313
get_full_url() (urllib.request.Request method), 1412
get_globals() (symtable.Function method), 2106
get_grouped_opcodes() (difflib.SequenceMatcher

method), 159
get_handle_inheritable() (in module os), 674
get_header() (urllib.request.Request method), 1413
get_history_item() (in module readline), 174
get_history_length() (in module readline), 173
get_id() (symtable.SymbolTable method), 2105
get_ident() (in module _thread), 1040
get_ident() (in module threading), 940
get_identifiers() (string.Template method), 129
get_identifiers() (symtable.SymbolTable method),

2106
get_importer() (in module pkgutil), 2026
get_info() (mailbox.Maildir method), 1302
get_info() (mailbox.MaildirMessage method), 1308
get_inheritable() (in module os), 674
get_inheritable() (socket.socket method), 1160
get_instructions() (in module dis), 2128
get_int_max_str_digits() (in module sys), 1912
get_interpreter() (in module zipapp), 1898
GET_ITER (opcode), 2131
get_key() (selectors.BaseSelector method), 1214
get_labels() (mailbox.Babyl method), 1305
get_labels() (mailbox.BabylMessage method), 1312
get_last_error() (in module ctypes), 825
GET_LEN (opcode), 2135
get_line_buffer() (in module readline), 173
get_lineno() (symtable.SymbolTable method), 2105

get_loader() (in module pkgutil), 2026
get_local_events() (in module sys.monitoring),

1930
get_locals() (symtable.Function method), 2106
get_logger() (in module multiprocessing), 987
get_loop() (asyncio.Future method), 1112
get_loop() (asyncio.Runner method), 1045
get_loop() (asyncio.Server method), 1106
get_makefile_filename() (in module sysconfig),

1936
get_map() (selectors.BaseSelector method), 1214
get_matching_blocks() (difflib.SequenceMatcher

method), 158
get_message() (mailbox.Mailbox method), 1299
get_method() (urllib.request.Request method), 1412
get_methods() (symtable.Class method), 2106
get_mixed_type_key() (in module ipaddress), 1526
get_name() (asyncio.Task method), 1063
get_name() (symtable.Symbol method), 2107
get_name() (symtable.SymbolTable method), 2105
get_namespace() (symtable.Symbol method), 2108
get_namespaces() (symtable.Symbol method), 2107
get_native_id() (in module _thread), 1040
get_native_id() (in module threading), 940
get_nonlocals() (symtable.Function method), 2106
get_nonstandard_attr() (http.cookiejar.Cookie

method), 1499
get_nowait() (asyncio.Queue method), 1084
get_nowait() (multiprocessing.Queue method), 964
get_nowait() (queue.Queue method), 1033
get_nowait() (queue.SimpleQueue method), 1035
get_object_traceback() (in module tracemalloc),

1879
get_objects() (in module gc), 1993
get_opcodes() (difflib.SequenceMatcher method), 158
get_option() (optparse.OptionParser method), 895
get_option_group() (optparse.OptionParser

method), 886
get_origin() (in module typing), 1691
get_original_bases() (in module types), 294
get_original_stdout() (in module test.support),

1824
get_osfhandle() (in module msvcrt), 2150
get_output_charset() (email.charset.Charset

method), 1282
get_overloads() (in module typing), 1689
get_pagesize() (in module test.support), 1823
get_param() (email.message.Message method), 1273
get_parameters() (symtable.Function method), 2106
get_params() (email.message.Message method), 1273
get_path() (in module sysconfig), 1935
get_path_names() (in module sysconfig), 1935
get_paths() (in module sysconfig), 1935
get_payload() (email.message.Message method),

1270
get_pid() (asyncio.SubprocessTransport method),

1117

2286 Index



The Python Library Reference, Release 3.13.1

get_pipe_transport() (asyn-
cio.SubprocessTransport method), 1117

get_platform() (in module sysconfig), 1936
get_poly() (in module turtle), 1569
get_preferred_scheme() (in module sysconfig),

1935
get_protocol() (asyncio.BaseTransport method),

1116
get_protocol_members() (in module typing), 1692
get_proxy_response_headers()

(http.client.HTTPConnection method), 1442
get_python_version() (in module sysconfig), 1936
get_ready() (graphlib.TopologicalSorter method), 327
get_referents() (in module gc), 1994
get_referrers() (in module gc), 1994
get_request() (socketserver.BaseServer method),

1476
get_returncode() (asyncio.SubprocessTransport

method), 1118
get_running_loop() (in module asyncio), 1087
get_scheme() (wsgiref.handlers.BaseHandler

method), 1403
get_scheme_names() (in module sysconfig), 1935
get_selection() (tkinter.filedialog.FileDialog

method), 1611
get_sequences() (mailbox.MH method), 1304
get_sequences() (mailbox.MHMessage method),

1310
get_server() (multiprocess-

ing.managers.BaseManager method), 975
get_server_certificate() (in module ssl), 1174
get_shapepoly() (in module turtle), 1567
get_source() (importlib.abc.InspectLoader method),

2036
get_source() (importlib.abc.SourceLoader method),

2039
get_source() (importlib.machinery.ExtensionFileLoader

method), 2044
get_source() (importlib.machinery.SourcelessFileLoader

method), 2043
get_source() (zipimport.zipimporter method), 2024
get_source_segment() (in module ast), 2101
get_stack() (asyncio.Task method), 1063
get_stack() (bdb.Bdb method), 1847
get_start_method() (in module multiprocessing),

967
get_starttag_text() (html.parser.HTMLParser

method), 1329
get_stats() (in module gc), 1993
get_stats_profile() (pstats.Stats method), 1865
get_stderr() (wsgiref.handlers.BaseHandler

method), 1402
get_stderr() (wsgiref.simple_server.WSGIRequestHandler

method), 1400
get_stdin() (wsgiref.handlers.BaseHandler method),

1402
get_string() (mailbox.Mailbox method), 1299
get_subdir() (mailbox.MaildirMessage method),

1307
get_symbols() (symtable.SymbolTable method), 2106
get_tabsize() (in module curses), 912
get_task_factory() (asyncio.loop method), 1091
get_terminal_size() (in module os), 674
get_terminal_size() (in module shutil), 497
get_threshold() (in module gc), 1994
get_token() (shlex.shlex method), 1589
get_tool() (in module sys.monitoring), 1927
get_traceback_limit() (in module tracemalloc),

1879
get_traced_memory() (in module tracemalloc), 1879
get_tracemalloc_memory() (in module tracemal-

loc), 1879
get_type() (symtable.SymbolTable method), 2105
get_type_hints() (in module typing), 1691
get_unixfrom() (email.message.EmailMessage

method), 1233
get_unixfrom() (email.message.Message method),

1270
get_unpack_formats() (in module shutil), 496
get_unverified_chain() (ssl.SSLSocket method),

1185
get_usage() (optparse.OptionParser method), 897
get_value() (string.Formatter method), 120
get_verified_chain() (ssl.SSLSocket method),

1184
get_version() (optparse.OptionParser method), 887
get_visible() (mailbox.BabylMessagemethod), 1312
get_wch() (curses.window method), 917
get_write_buffer_limits() (asyn-

cio.WriteTransport method), 1116
get_write_buffer_size() (asyncio.WriteTransport

method), 1116
GET_YIELD_FROM_ITER (opcode), 2131
getacl() (imaplib.IMAP4 method), 1458
getaddresses() (in module email.utils), 1285
getaddrinfo() (asyncio.loop method), 1099
getaddrinfo() (in module socket), 1153
getallocatedblocks() (in module sys), 1911
getandroidapilevel() (in module sys), 1911
getannotation() (imaplib.IMAP4 method), 1458
getargvalues() (in module inspect), 2007
getasyncgenlocals() (in module inspect), 2013
getasyncgenstate() (in module inspect), 2013
getatime() (in module os.path), 466
getattr()

built-in function, 17
getattr_static() (in module inspect), 2012
getAttribute() (xml.dom.Element method), 1359
getAttributeNode() (xml.dom.Element method),

1359
getAttributeNodeNS() (xml.dom.Element method),

1359
getAttributeNS() (xml.dom.Element method), 1359
GetBase() (xml.parsers.expat.xmlparser method), 1383
getbegyx() (curses.window method), 917
getbkgd() (curses.window method), 917

Index 2287



The Python Library Reference, Release 3.13.1

getblocking() (socket.socket method), 1160
getboolean() (configparser.ConfigParser method),

628
getbuffer() (io.BytesIO method), 726
getByteStream() (xml.sax.xmlreader.InputSource

method), 1380
getcallargs() (in module inspect), 2008
getcanvas() (in module turtle), 1575
getch() (curses.window method), 917
getch() (in module msvcrt), 2150
getCharacterStream()

(xml.sax.xmlreader.InputSource method),
1380

getche() (in module msvcrt), 2150
getChild() (logging.Logger method), 747
getChildren() (logging.Logger method), 747
getclasstree() (in module inspect), 2007
getclosurevars() (in module inspect), 2008
getcode() (http.client.HTTPResponse method), 1444
getcode() (urllib.response.addinfourl method), 1424
getColumnNumber() (xml.sax.xmlreader.Locator

method), 1380
getcomments() (in module inspect), 2001
getcompname() (wave.Wave_read method), 1528
getcomptype() (wave.Wave_read method), 1528
getconfig() (sqlite3.Connection method), 540
getContentHandler()

(xml.sax.xmlreader.XMLReader method),
1378

getcontext() (in module decimal), 357
getcoroutinelocals() (in module inspect), 2013
getcoroutinestate() (in module inspect), 2012
getctime() (in module os.path), 466
getcwd() (in module os), 678
getcwdb() (in module os), 678
getdecoder() (in module codecs), 187
getdefaultencoding() (in module sys), 1911
getdefaultlocale() (in module locale), 1543
getdefaulttimeout() (in module socket), 1157
getdlopenflags() (in module sys), 1911
getdoc() (in module inspect), 2001
getDOMImplementation() (in module xml.dom),

1354
getDTDHandler() (xml.sax.xmlreader.XMLReader

method), 1379
getEffectiveLevel() (logging.Logger method), 747
getegid() (in module os), 657
getElementsByTagName() (xml.dom.Document

method), 1359
getElementsByTagName() (xml.dom.Element

method), 1359
getElementsByTagNameNS() (xml.dom.Document

method), 1359
getElementsByTagNameNS() (xml.dom.Element

method), 1359
getencoder() (in module codecs), 187
getencoding() (in module locale), 1543

getEncoding() (xml.sax.xmlreader.InputSource
method), 1380

getEntityResolver()

(xml.sax.xmlreader.XMLReader method),
1379

getenv() (in module os), 656
getenvb() (in module os), 656
getErrorHandler() (xml.sax.xmlreader.XMLReader

method), 1379
geteuid() (in module os), 657
getEvent() (xml.dom.pulldom.DOMEventStream

method), 1369
getEventCategory() (log-

ging.handlers.NTEventLogHandler method),
783

getEventType() (log-
ging.handlers.NTEventLogHandler method),
783

getException() (xml.sax.SAXException method),
1371

getFeature() (xml.sax.xmlreader.XMLReader
method), 1379

getfile() (in module inspect), 2001
getFilesToDelete() (log-

ging.handlers.TimedRotatingFileHandler
method), 779

getfilesystemencodeerrors() (in module sys),
1912

getfilesystemencoding() (in module sys), 1911
getfloat() (configparser.ConfigParser method), 628
getfqdn() (in module socket), 1154
getframeinfo() (in module inspect), 2011
getframerate() (wave.Wave_read method), 1528
getfullargspec() (in module inspect), 2007
getgeneratorlocals() (in module inspect), 2013
getgeneratorstate() (in module inspect), 2012
getgid() (in module os), 657
getgrall() (in module grp), 2165
getgrgid() (in module grp), 2165
getgrnam() (in module grp), 2165
getgrouplist() (in module os), 657
getgroups() (in module os), 657
getHandlerByName() (in module logging), 759
getHandlerNames() (in module logging), 759
getheader() (http.client.HTTPResponse method), 1443
getheaders() (http.client.HTTPResponse method),

1444
gethostbyaddr() (in module socket), 661, 1155
gethostbyname() (in module socket), 1154
gethostbyname_ex() (in module socket), 1155
gethostname() (in module socket), 661, 1155
getincrementaldecoder() (in module codecs), 187
getincrementalencoder() (in module codecs), 187
getinfo() (zipfile.ZipFile method), 578
getinnerframes() (in module inspect), 2011
GetInputContext() (xml.parsers.expat.xmlparser

method), 1383
getint() (configparser.ConfigParser method), 628

2288 Index



The Python Library Reference, Release 3.13.1

getitem() (in module operator), 433
getitimer() (in module signal), 1221
getkey() (curses.window method), 917
GetLastError() (in module ctypes), 825
getLength() (xml.sax.xmlreader.Attributes method),

1381
getLevelName() (in module logging), 759
getLevelNamesMapping() (in module logging), 759
getlimit() (sqlite3.Connection method), 540
getline() (in module linecache), 487
getLineNumber() (xml.sax.xmlreader.Locator

method), 1380
getloadavg() (in module os), 716
getlocale() (in module locale), 1543
getLogger() (in module logging), 757
getLoggerClass() (in module logging), 757
getlogin() (in module os), 657
getLogRecordFactory() (in module logging), 758
getMandatoryRelease() (__future__._Feature

method), 1992
getmark() (wave.Wave_read method), 1528
getmarkers() (wave.Wave_read method), 1528
getmaxyx() (curses.window method), 917
getmember() (tarfile.TarFile method), 592
getmembers() (in module inspect), 1998
getmembers() (tarfile.TarFile method), 592
getmembers_static() (in module inspect), 1998
getMessage() (logging.LogRecord method), 754
getMessage() (xml.sax.SAXException method), 1371
getMessageID() (log-

ging.handlers.NTEventLogHandler method),
784

getmodule() (in module inspect), 2001
getmodulename() (in module inspect), 1999
getmouse() (in module curses), 909
getmro() (in module inspect), 2008
getmtime() (in module os.path), 466
getName() (threading.Thread method), 944
getNameByQName() (xml.sax.xmlreader.AttributesNS

method), 1381
getnameinfo() (asyncio.loop method), 1099
getnameinfo() (in module socket), 1155
getnames() (tarfile.TarFile method), 592
getNames() (xml.sax.xmlreader.Attributes method),

1381
getnchannels() (wave.Wave_read method), 1528
getnframes() (wave.Wave_read method), 1528
getnode, 1471
getnode() (in module uuid), 1470
getobjects() (in module sys), 1913
getopt

module, 2183
getopt() (in module getopt), 2183
GetoptError, 2184
getOptionalRelease() (__future__._Feature

method), 1992
getouterframes() (in module inspect), 2011
getoutput() (in module subprocess), 1029

getpagesize() (in module resource), 2176
getparams() (wave.Wave_read method), 1528
getparyx() (curses.window method), 917
getpass

module, 904
getpass() (in module getpass), 904
GetPassWarning, 904
getpeercert() (ssl.SSLSocket method), 1184
getpeername() (socket.socket method), 1160
getpen() (in module turtle), 1569
getpgid() (in module os), 657
getpgrp() (in module os), 657
getpid() (in module os), 658
getpos() (html.parser.HTMLParser method), 1329
getppid() (in module os), 658
getpreferredencoding() (in module locale), 1543
getpriority() (in module os), 658
getprofile() (in module sys), 1913
getprofile() (in module threading), 941
getProperty() (xml.sax.xmlreader.XMLReader

method), 1379
getprotobyname() (in module socket), 1155
getproxies() (in module urllib.request), 1408
getPublicId() (xml.sax.xmlreader.InputSource

method), 1380
getPublicId() (xml.sax.xmlreader.Locator method),

1380
getpwall() (in module pwd), 2164
getpwnam() (in module pwd), 2164
getpwuid() (in module pwd), 2164
getQNameByName() (xml.sax.xmlreader.AttributesNS

method), 1381
getQNames() (xml.sax.xmlreader.AttributesNS

method), 1381
getquota() (imaplib.IMAP4 method), 1458
getquotaroot() (imaplib.IMAP4 method), 1458
getrandbits() (in module random), 378
getrandbits() (random.Random method), 381
getrandom() (in module os), 717
getreader() (in module codecs), 188
getrecursionlimit() (in module sys), 1912
getrefcount() (in module sys), 1912
GetReparseDeferralEnabled()

(xml.parsers.expat.xmlparser method), 1384
getresgid() (in module os), 658
getresponse() (http.client.HTTPConnection method),

1441
getresuid() (in module os), 658
getrlimit() (in module resource), 2172
getroot() (xml.etree.ElementTree.ElementTree

method), 1348
getrusage() (in module resource), 2175
getsampwidth() (wave.Wave_read method), 1528
getscreen() (in module turtle), 1569
getservbyname() (in module socket), 1155
getservbyport() (in module socket), 1155
GetSetDescriptorType (in module types), 297
getshapes() (in module turtle), 1575

Index 2289



The Python Library Reference, Release 3.13.1

getsid() (in module os), 661
getsignal() (in module signal), 1219
getsitepackages() (in module site), 2017
getsize() (in module os.path), 466
getsizeof() (in module sys), 1912
getsockname() (socket.socket method), 1160
getsockopt() (socket.socket method), 1160
getsource() (in module inspect), 2002
getsourcefile() (in module inspect), 2001
getsourcelines() (in module inspect), 2002
getstate() (codecs.IncrementalDecoder method), 193
getstate() (codecs.IncrementalEncoder method), 192
getstate() (in module random), 378
getstate() (random.Random method), 381
getstatusoutput() (in module subprocess), 1028
getstr() (curses.window method), 917
getSubject() (logging.handlers.SMTPHandler

method), 784
getswitchinterval() (in module sys), 1912
getSystemId() (xml.sax.xmlreader.InputSource

method), 1380
getSystemId() (xml.sax.xmlreader.Locator method),

1380
getsyx() (in module curses), 909
gettarinfo() (tarfile.TarFile method), 594
gettempdir() (in module tempfile), 481
gettempdirb() (in module tempfile), 482
gettempprefix() (in module tempfile), 482
gettempprefixb() (in module tempfile), 482
getTestCaseNames() (unittest.TestLoader method),

1748
gettext

module, 1531
gettext() (gettext.GNUTranslations method), 1535
gettext() (gettext.NullTranslations method), 1533
gettext() (in module gettext), 1531
gettext() (in module locale), 1546
gettimeout() (socket.socket method), 1160
gettrace() (in module sys), 1913
gettrace() (in module threading), 941
getturtle() (in module turtle), 1569
getType() (xml.sax.xmlreader.Attributes method),

1381
getuid() (in module os), 658
getunicodeinternedsize() (in module sys), 1911
geturl() (http.client.HTTPResponse method), 1444
geturl() (urllib.parse.urllib.parse.SplitResult method),

1430
geturl() (urllib.response.addinfourl method), 1424
getuser() (in module getpass), 904
getuserbase() (in module site), 2017
getusersitepackages() (in module site), 2018
getvalue() (io.BytesIO method), 727
getvalue() (io.StringIO method), 731
getValue() (xml.sax.xmlreader.Attributes method),

1381
getValueByQName() (xml.sax.xmlreader.AttributesNS

method), 1381

getwch() (in module msvcrt), 2150
getwche() (in module msvcrt), 2150
getweakrefcount() (in module weakref), 287
getweakrefs() (in module weakref), 287
getwelcome() (ftplib.FTP method), 1448
getwelcome() (poplib.POP3 method), 1454
getwin() (in module curses), 909
getwindowsversion() (in module sys), 1913
getwriter() (in module codecs), 188
getxattr() (in module os), 700
getyx() (curses.window method), 917
gid (tarfile.TarInfo attribute), 595
GIL, 2201
glob

module, 484, 486
glob() (in module glob), 484
glob() (pathlib.Path method), 456
Global (class in ast), 2097
global interpreter lock, 2202
global_enum() (in module enum), 324
globals()

built-in function, 17
globs (doctest.DocTest attribute), 1718
gmtime() (in module time), 735
gname (tarfile.TarInfo attribute), 595
GNOME, 1535
GNU_FORMAT (in module tarfile), 590
gnu_getopt() (in module getopt), 2184
GNUTranslations (class in gettext), 1534
GNUTYPE_LONGLINK (in module tarfile), 590
GNUTYPE_LONGNAME (in module tarfile), 590
GNUTYPE_SPARSE (in module tarfile), 590
go() (tkinter.filedialog.FileDialog method), 1611
got (doctest.DocTestFailure attribute), 1725
goto() (in module turtle), 1554
grantpt() (in module os), 665
Graphical User Interface, 1595
graphlib

module, 325
GREATER (in module token), 2109
GREATEREQUAL (in module token), 2110
Greenwich Mean Time, 732
GRND_NONBLOCK (in module os), 718
GRND_RANDOM (in module os), 718
Group (class in email.headerregistry), 1259
group() (pathlib.Path method), 461
group() (re.Match method), 145
groupby() (in module itertools), 409
groupdict() (re.Match method), 146
groupindex (re.Pattern attribute), 144
groups (email.headerregistry.AddressHeader attribute),

1256
groups (re.Pattern attribute), 144
groups() (re.Match method), 146
grp

module, 2165
GS (in module curses.ascii), 935
Gt (class in ast), 2077

2290 Index



The Python Library Reference, Release 3.13.1

gt() (in module operator), 430
GtE (class in ast), 2077
guess_all_extensions() (in module mimetypes),

1316
guess_all_extensions() (mimetypes.MimeTypes

method), 1318
guess_extension() (in module mimetypes), 1316
guess_extension() (mimetypes.MimeTypes method),

1318
guess_file_type() (in module mimetypes), 1316
guess_file_type() (mimetypes.MimeTypes method),

1318
guess_scheme() (in module wsgiref.util), 1396
guess_type() (in module mimetypes), 1316
guess_type() (mimetypes.MimeTypes method), 1318
GUI, 1595
gzip

module, 562
gzip command line option

--best, 566
-d, 566
--decompress, 566
--fast, 566
file, 566
-h, 566
--help, 566

GzipFile (class in gzip), 563

H
-h

ast command line option, 2104
calendar command line option, 251
dis command line option, 2125
gzip command line option, 566
json.tool command line option, 1297
python--m-sqlite3-[-h]-[-v]-[filename]-[sql]

command line option, 549
random command line option, 385
timeit command line option, 1870
tokenize command line option, 2114
uuid command line option, 1472
zipapp command line option, 1897

halfdelay() (in module curses), 910
Handle (class in asyncio), 1105
handle() (http.server.BaseHTTPRequestHandler

method), 1483
handle() (logging.Handler method), 751
handle() (logging.handlers.QueueListener method),

787
handle() (logging.Logger method), 749
handle() (logging.NullHandler method), 776
handle() (socketserver.BaseRequestHandler method),

1477
handle() (wsgiref.simple_server.WSGIRequestHandler

method), 1400
handle_charref() (html.parser.HTMLParser

method), 1329

handle_comment() (html.parser.HTMLParser
method), 1329

handle_data() (html.parser.HTMLParser method),
1329

handle_decl() (html.parser.HTMLParser method),
1329

handle_defect() (email.policy.Policy method), 1248
handle_endtag() (html.parser.HTMLParser method),

1329
handle_entityref() (html.parser.HTMLParser

method), 1329
handle_error() (socketserver.BaseServer method),

1476
handle_expect_100()

(http.server.BaseHTTPRequestHandler
method), 1483

handle_one_request()

(http.server.BaseHTTPRequestHandler
method), 1483

handle_pi() (html.parser.HTMLParser method), 1329
handle_request() (socketserver.BaseServer method),

1475
handle_request() (xml-

rpc.server.CGIXMLRPCRequestHandler
method), 1511

handle_startendtag() (html.parser.HTMLParser
method), 1329

handle_starttag() (html.parser.HTMLParser
method), 1329

handle_timeout() (socketserver.BaseServer method),
1477

handleError() (logging.Handler method), 751
handleError() (logging.handlers.SocketHandler

method), 780
Handler (class in logging), 750
Handlers (class in signal), 1216
handlers (logging.Logger attribute), 746
hardlink_to() (pathlib.Path method), 460
--hardlink-dupes

compileall command line option, 2122
harmonic_mean() (in module statistics), 389
HAS_ALPN (in module ssl), 1180
has_children() (symtable.SymbolTable method),

2106
has_colors() (in module curses), 909
has_default() (typing.ParamSpec method), 1676
has_default() (typing.TypeVar method), 1673
has_default() (typing.TypeVarTuple method), 1675
has_dualstack_ipv6() (in module socket), 1153
HAS_ECDH (in module ssl), 1180
has_extended_color_support() (in module

curses), 909
has_extn() (smtplib.SMTP method), 1465
has_header() (csv.Sniffer method), 608
has_header() (urllib.request.Request method), 1412
has_ic() (in module curses), 910
has_il() (in module curses), 910
has_ipv6 (in module socket), 1150

Index 2291



The Python Library Reference, Release 3.13.1

has_key() (in module curses), 910
has_location (importlib.machinery.ModuleSpec at-

tribute), 2045
HAS_NEVER_CHECK_COMMON_NAME (in module ssl),

1180
has_nonstandard_attr() (http.cookiejar.Cookie

method), 1499
HAS_NPN (in module ssl), 1180
has_option() (configparser.ConfigParser method),

626
has_option() (optparse.OptionParser method), 896
HAS_PSK (in module ssl), 1181
has_section() (configparser.ConfigParser method),

626
HAS_SNI (in module ssl), 1180
HAS_SSLv2 (in module ssl), 1180
HAS_SSLv3 (in module ssl), 1180
has_ticket (ssl.SSLSession attribute), 1203
HAS_TLSv1 (in module ssl), 1180
HAS_TLSv1_1 (in module ssl), 1180
HAS_TLSv1_2 (in module ssl), 1180
HAS_TLSv1_3 (in module ssl), 1180
hasarg (in module dis), 2145
hasattr()

built-in function, 17
hasAttribute() (xml.dom.Element method), 1359
hasAttributeNS() (xml.dom.Element method), 1359
hasAttributes() (xml.dom.Node method), 1356
hasChildNodes() (xml.dom.Node method), 1356
hascompare (in module dis), 2146
hasconst (in module dis), 2145
hasexc (in module dis), 2146
hasFeature() (xml.dom.DOMImplementation

method), 1355
hasfree (in module dis), 2145
hash

built-in function, 48
hash()

built-in function, 17
hash-based pyc, 2202
hash_bits (sys.hash_info attribute), 1915
hash_info (in module sys), 1914
hash_randomization (sys.flags attribute), 1908
hashable, 2202
Hashable (class in collections.abc), 273
Hashable (class in typing), 1698
hasHandlers() (logging.Logger method), 749
hash.block_size (in module hashlib), 639
hash.digest_size (in module hashlib), 639
hashlib

module, 637
hasjabs (in module dis), 2146
hasjrel (in module dis), 2146
hasjump (in module dis), 2145
haslocal (in module dis), 2145
hasname (in module dis), 2145
HAVE_ARGUMENT (opcode), 2143
HAVE_CONTEXTVAR (in module decimal), 363

HAVE_DOCSTRINGS (in module test.support), 1822
HAVE_THREADS (in module decimal), 363
HCI_DATA_DIR (in module socket), 1150
HCI_FILTER (in module socket), 1150
HCI_TIME_STAMP (in module socket), 1150
Header (class in email.header), 1279
header_encode() (email.charset.Charset method),

1282
header_encode_lines() (email.charset.Charset

method), 1282
header_encoding (email.charset.Charset attribute),

1281
header_factory (email.policy.EmailPolicy attribute),

1250
header_fetch_parse() (email.policy.Compat32

method), 1252
header_fetch_parse() (email.policy.EmailPolicy

method), 1251
header_fetch_parse() (email.policy.Policy method),

1249
header_items() (urllib.request.Request method), 1413
header_max_count() (email.policy.EmailPolicy

method), 1250
header_max_count() (email.policy.Policy method),

1248
header_offset (zipfile.ZipInfo attribute), 585
header_source_parse() (email.policy.Compat32

method), 1252
header_source_parse() (email.policy.EmailPolicy

method), 1250
header_source_parse() (email.policy.Policy

method), 1249
header_store_parse() (email.policy.Compat32

method), 1252
header_store_parse() (email.policy.EmailPolicy

method), 1250
header_store_parse() (email.policy.Policy method),

1249
HeaderDefect, 1253
HeaderError, 589
HeaderParseError, 1253
HeaderParser (class in email.parser), 1242
HeaderRegistry (class in email.headerregistry), 1257
headers

MIME, 1316
Headers (class in wsgiref.headers), 1398
headers (http.client.HTTPResponse attribute), 1444
headers (http.server.BaseHTTPRequestHandler at-

tribute), 1482
headers (urllib.error.HTTPError attribute), 1433
headers (urllib.response.addinfourl attribute), 1424
headers (xmlrpc.client.ProtocolError attribute), 1505
HeaderWriteError, 1253
heading() (in module turtle), 1559
heading() (tkinter.ttk.Treeview method), 1627
heapify() (in module heapq), 276
heapmin() (in module msvcrt), 2150
heappop() (in module heapq), 276

2292 Index



The Python Library Reference, Release 3.13.1

heappush() (in module heapq), 276
heappushpop() (in module heapq), 276
heapq

module, 276
heapreplace() (in module heapq), 276
helo() (smtplib.SMTP method), 1465
help

online, 1699
--help

ast command line option, 2104
calendar command line option, 251
dis command line option, 2125
gzip command line option, 566
json.tool command line option, 1297
python--m-sqlite3-[-h]-[-v]-[filename]-[sql]

command line option, 549
random command line option, 385
timeit command line option, 1870
tokenize command line option, 2114
trace command line option, 1872
uuid command line option, 1472
zipapp command line option, 1897

help (optparse.Option attribute), 891
help (pdb command), 1853
help()

built-in function, 17
herror, 1146
hex (uuid.UUID attribute), 1470
hex()

built-in function, 18
hex() (bytearray method), 64
hex() (bytes method), 63
hex() (float method), 43
hex() (memoryview method), 80
hexadecimal

literals, 38
hexdigest() (hashlib.hash method), 639
hexdigest() (hashlib.shake method), 640
hexdigest() (hmac.HMAC method), 649
hexdigits (in module string), 119
hexlify() (in module binascii), 1323
hexversion (in module sys), 1915
hidden() (curses.panel.Panel method), 938
hide() (curses.panel.Panel method), 938
hide() (tkinter.ttk.Notebook method), 1622
hide_cookie2 (http.cookiejar.CookiePolicy attribute),

1496
hideturtle() (in module turtle), 1565
HierarchyRequestErr, 1361
HIGH_PRIORITY_CLASS (in module subprocess), 1023
HIGHEST_PROTOCOL (in module pickle), 501
hits (bdb.Breakpoint attribute), 1844
HKEY_CLASSES_ROOT (in module winreg), 2157
HKEY_CURRENT_CONFIG (in module winreg), 2157
HKEY_CURRENT_USER (in module winreg), 2157
HKEY_DYN_DATA (in module winreg), 2157
HKEY_LOCAL_MACHINE (in module winreg), 2157
HKEY_PERFORMANCE_DATA (in module winreg), 2157

HKEY_USERS (in module winreg), 2157
hline() (curses.window method), 917
hls_to_rgb() (in module colorsys), 1530
hmac

module, 648
HOME, 465, 466, 1597
home() (in module turtle), 1556
home() (pathlib.Path class method), 452
HOMEDRIVE, 465
HOMEPATH, 465
hook_compressed() (in module fileinput), 906
hook_encoded() (in module fileinput), 907
host (urllib.request.Request attribute), 1412
hostmask (ipaddress.IPv4Network attribute), 1520
hostmask (ipaddress.IPv6Network attribute), 1522
hostname_checks_common_name (ssl.SSLContext at-

tribute), 1193
hosts (netrc.netrc attribute), 633
hosts() (ipaddress.IPv4Network method), 1520
hosts() (ipaddress.IPv6Network method), 1523
hour (datetime.datetime attribute), 217
hour (datetime.time attribute), 225
HRESULT (class in ctypes), 829
hStdError (subprocess.STARTUPINFO attribute), 1022
hStdInput (subprocess.STARTUPINFO attribute), 1021
hStdOutput (subprocess.STARTUPINFO attribute),

1022
hsv_to_rgb() (in module colorsys), 1530
HT (in module curses.ascii), 934
ht() (in module turtle), 1565
HTML, 1327, 1423
html

module, 1327
html5 (in module html.entities), 1332
HTMLCalendar (class in calendar), 246
HtmlDiff (class in difflib), 153
html.entities

module, 1332
html.parser

module, 1327
HTMLParser (class in html.parser), 1327
htonl() (in module socket), 1156
htons() (in module socket), 1156
HTTP

http (standard module), 1435
http.client (standard module), 1438
protocol, 1423, 1435, 1438, 1481

http

module, 1435
HTTP (in module email.policy), 1251
http_error_301() (url-

lib.request.HTTPRedirectHandler method),
1415

http_error_302() (url-
lib.request.HTTPRedirectHandler method),
1415

http_error_303() (url-
lib.request.HTTPRedirectHandler method),

Index 2293



The Python Library Reference, Release 3.13.1

1415
http_error_307() (url-

lib.request.HTTPRedirectHandler method),
1416

http_error_308() (url-
lib.request.HTTPRedirectHandler method),
1416

http_error_401() (url-
lib.request.HTTPBasicAuthHandler method),
1417

http_error_401() (url-
lib.request.HTTPDigestAuthHandler method),
1417

http_error_407() (url-
lib.request.ProxyBasicAuthHandler method),
1417

http_error_407() (url-
lib.request.ProxyDigestAuthHandler method),
1417

http_error_auth_reqed() (url-
lib.request.AbstractBasicAuthHandler method),
1417

http_error_auth_reqed() (url-
lib.request.AbstractDigestAuthHandler
method), 1417

http_error_default() (urllib.request.BaseHandler
method), 1414

http_open() (urllib.request.HTTPHandler method),
1417

HTTP_PORT (in module http.client), 1440
http_response() (urllib.request.HTTPErrorProcessor

method), 1418
http_version (wsgiref.handlers.BaseHandler at-

tribute), 1404
HTTPBasicAuthHandler (class in urllib.request), 1410
http.client

module, 1438
HTTPConnection (class in http.client), 1438
http.cookiejar

module, 1491
HTTPCookieProcessor (class in urllib.request), 1409
http.cookies

module, 1488
httpd, 1481
HTTPDefaultErrorHandler (class in urllib.request),

1409
HTTPDigestAuthHandler (class in urllib.request),

1411
HTTPError, 1433
HTTPErrorProcessor (class in urllib.request), 1411
HTTPException, 1440
HTTPHandler (class in logging.handlers), 785
HTTPHandler (class in urllib.request), 1411
HTTPMessage (class in http.client), 1446
HTTPMethod (class in http), 1437
httponly (http.cookies.Morsel attribute), 1489
HTTPPasswordMgr (class in urllib.request), 1410
HTTPPasswordMgrWithDefaultRealm (class in url-

lib.request), 1410
HTTPPasswordMgrWithPriorAuth (class in url-

lib.request), 1410
HTTPRedirectHandler (class in urllib.request), 1409
HTTPResponse (class in http.client), 1439
https_open() (urllib.request.HTTPSHandler method),

1417
HTTPS_PORT (in module http.client), 1440
https_response() (url-

lib.request.HTTPErrorProcessor method),
1418

HTTPSConnection (class in http.client), 1439
http.server

module, 1481
security, 1487

HTTPServer (class in http.server), 1482
HTTPSHandler (class in urllib.request), 1411
HTTPStatus (class in http), 1435
HV_GUID_BROADCAST (in module socket), 1150
HV_GUID_CHILDREN (in module socket), 1150
HV_GUID_LOOPBACK (in module socket), 1150
HV_GUID_PARENT (in module socket), 1150
HV_GUID_WILDCARD (in module socket), 1150
HV_GUID_ZERO (in module socket), 1150
HV_PROTOCOL_RAW (in module socket), 1150
HVSOCKET_ADDRESS_FLAG_PASSTHRU (in module

socket), 1150
HVSOCKET_CONNECT_TIMEOUT (in module socket),

1150
HVSOCKET_CONNECT_TIMEOUT_MAX (in module

socket), 1150
HVSOCKET_CONNECTED_SUSPEND (in module socket),

1150
hypot() (in module math), 338

I
-i

ast command line option, 2104
compileall command line option, 2121
random command line option, 385

I (in module re), 138
I/O control

buffering, 24, 1161
POSIX, 2165
tty, 2165
UNIX, 2169

iadd() (in module operator), 436
iand() (in module operator), 436
iconcat() (in module operator), 436
id (ssl.SSLSession attribute), 1203
id()

built-in function, 18
id() (unittest.TestCase method), 1744
idcok() (curses.window method), 917
ident (select.kevent attribute), 1210
ident (threading.Thread attribute), 944
identchars (cmd.Cmd attribute), 1584
identify() (tkinter.ttk.Notebook method), 1622

2294 Index



The Python Library Reference, Release 3.13.1

identify() (tkinter.ttk.Treeview method), 1627
identify() (tkinter.ttk.Widget method), 1619
identify_column() (tkinter.ttk.Treeview method),

1627
identify_element() (tkinter.ttk.Treeview method),

1628
identify_region() (tkinter.ttk.Treeview method),

1627
identify_row() (tkinter.ttk.Treeview method), 1627
IDLE, 1634, 2202
IDLE_PRIORITY_CLASS (in module subprocess), 1023
idlelib

module, 1645
IDLESTARTUP, 1641
idlok() (curses.window method), 918
if

statement, 37
If (class in ast), 2084
if_indextoname() (in module socket), 1158
if_nameindex() (in module socket), 1157
if_nametoindex() (in module socket), 1158
IfExp (class in ast), 2077
ifloordiv() (in module operator), 436
iglob() (in module glob), 484
ignorableWhitespace()

(xml.sax.handler.ContentHandler method),
1375

ignore

error handler's name, 189
ignore (bdb.Breakpoint attribute), 1844
IGNORE (in module tkinter.messagebox), 1614
ignore (pdb command), 1854
ignore_environment (sys.flags attribute), 1908
ignore_errors() (in module codecs), 191
IGNORE_EXCEPTION_DETAIL (in module doctest),

1711
ignore_patterns() (in module shutil), 490
ignore_warnings() (in module

test.support.warnings_helper), 1836
IGNORECASE (in module re), 138
--ignore-dir

trace command line option, 1873
--ignore-module

trace command line option, 1873
IISCGIHandler (class in wsgiref.handlers), 1401
IllegalMonthError, 250
IllegalWeekdayError, 250
ilshift() (in module operator), 436
imag (numbers.Complex attribute), 329
imag (sys.hash_info attribute), 1914
imap() (multiprocessing.pool.Pool method), 982
IMAP4

protocol, 1455
IMAP4 (class in imaplib), 1456
IMAP4_SSL

protocol, 1455
IMAP4_SSL (class in imaplib), 1456
IMAP4_stream

protocol, 1455
IMAP4_stream (class in imaplib), 1456
IMAP4.abort, 1456
IMAP4.error, 1456
IMAP4.readonly, 1456
imap_unordered() (multiprocessing.pool.Pool

method), 982
imaplib

module, 1455
imatmul() (in module operator), 436
imghdr

module, 2188
immedok() (curses.window method), 918
immortal, 2202
immutable, 2202

sequence types, 48
imod() (in module operator), 436
imp

module, 2189
impl_detail() (in module test.support), 1826
implementation (in module sys), 1915
import

statement, 33, 2016
Import (class in ast), 2083
import path, 2202
import_fresh_module() (in module

test.support.import_helper), 1835
IMPORT_FROM (opcode), 2138
import_module() (in module importlib), 2033
import_module() (in module

test.support.import_helper), 1835
IMPORT_NAME (opcode), 2138
importer, 2202
ImportError, 107
ImportFrom (class in ast), 2084
importing, 2202
importlib

module, 2032
importlib.abc

module, 2034
importlib.machinery

module, 2040
importlib.metadata

module, 2056
importlib.resources

module, 2051
importlib.resources.abc

module, 2054
importlib.util

module, 2046
ImportWarning, 114
ImproperConnectionState, 1440
imul() (in module operator), 436
in

operator, 38, 46
In (class in ast), 2077
in_dll() (ctypes._CData method), 827
in_table_a1() (in module stringprep), 171

Index 2295



The Python Library Reference, Release 3.13.1

in_table_b1() (in module stringprep), 171
in_table_c3() (in module stringprep), 172
in_table_c4() (in module stringprep), 172
in_table_c5() (in module stringprep), 172
in_table_c6() (in module stringprep), 172
in_table_c7() (in module stringprep), 172
in_table_c8() (in module stringprep), 172
in_table_c9() (in module stringprep), 172
in_table_c11() (in module stringprep), 171
in_table_c11_c12() (in module stringprep), 171
in_table_c12() (in module stringprep), 171
in_table_c21() (in module stringprep), 171
in_table_c21_c22() (in module stringprep), 172
in_table_c22() (in module stringprep), 172
in_table_d1() (in module stringprep), 172
in_table_d2() (in module stringprep), 172
in_transaction (sqlite3.Connection attribute), 542
inch() (curses.window method), 918
include() (in module xml.etree.ElementInclude), 1345
--include-attributes

ast command line option, 2104
inclusive (tracemalloc.DomainFilter attribute), 1880
inclusive (tracemalloc.Filter attribute), 1881
Incomplete, 1324
IncompleteRead, 1440
IncompleteReadError, 1086
increment_lineno() (in module ast), 2101
IncrementalDecoder (class in codecs), 193
incrementaldecoder (codecs.CodecInfo attribute),

187
IncrementalEncoder (class in codecs), 192
incrementalencoder (codecs.CodecInfo attribute),

187
IncrementalNewlineDecoder (class in io), 731
IncrementalParser (class in xml.sax.xmlreader),

1377
--indent

ast command line option, 2104
json.tool command line option, 1297

indent (doctest.Example attribute), 1719
INDENT (in module token), 2108
indent (reprlib.Repr attribute), 308
indent() (in module textwrap), 166
indent() (in module xml.etree.ElementTree), 1342
IndentationError, 111
--indentlevel

pickletools command line option, 2147
index (inspect.FrameInfo attribute), 2010
index (inspect.Traceback attribute), 2010
index() (array.array method), 285
index() (bytearray method), 67
index() (bytes method), 67
index() (collections.deque method), 259
index() (in module operator), 431
index() (multiprocessing.shared_memory.ShareableList

method), 1001
index() (sequence method), 46
index() (str method), 54

index() (tkinter.ttk.Notebook method), 1622
index() (tkinter.ttk.Treeview method), 1628
IndexError, 107
indexOf() (in module operator), 433
IndexSizeErr, 1361
INDIRECT (inspect.BufferFlags attribute), 2015
inet_aton() (in module socket), 1156
inet_ntoa() (in module socket), 1156
inet_ntop() (in module socket), 1157
inet_pton() (in module socket), 1156
Inexact (class in decimal), 364
inf (in module cmath), 344
inf (in module math), 340
inf (sys.hash_info attribute), 1914
infile

json.tool command line option, 1296
infile (shlex.shlex attribute), 1591
Infinity, 16
infj (in module cmath), 344
--info

zipapp command line option, 1897
INFO (in module logging), 750
INFO (in module tkinter.messagebox), 1614
info() (dis.Bytecode method), 2126
info() (gettext.NullTranslations method), 1534
info() (http.client.HTTPResponse method), 1444
info() (in module logging), 758
info() (logging.Logger method), 748
info() (urllib.response.addinfourl method), 1424
infolist() (zipfile.ZipFile method), 578
.ini

file, 612
ini file, 612
init() (in module mimetypes), 1317
init_color() (in module curses), 910
init_pair() (in module curses), 910
inited (in module mimetypes), 1317
initgroups() (in module os), 658
initial_indent (textwrap.TextWrapper attribute),

168
initscr() (in module curses), 910
inode() (os.DirEntry method), 686
input()

built-in function, 18
input() (in module fileinput), 905
input_charset (email.charset.Charset attribute), 1281
input_codec (email.charset.Charset attribute), 1282
InputSource (class in xml.sax.xmlreader), 1378
InputStream (class in wsgiref.types), 1404
insch() (curses.window method), 918
insdelln() (curses.window method), 918
insert() (array.array method), 285
insert() (collections.deque method), 259
insert() (sequence method), 48
insert() (tkinter.ttk.Notebook method), 1622
insert() (tkinter.ttk.Treeview method), 1628
insert() (xml.etree.ElementTree.Element method),

1347

2296 Index



The Python Library Reference, Release 3.13.1

insert_text() (in module readline), 173
insertBefore() (xml.dom.Node method), 1357
insertln() (curses.window method), 918
insnstr() (curses.window method), 918
insort() (in module bisect), 280
insort_left() (in module bisect), 280
insort_right() (in module bisect), 280
inspect

module, 1996
inspect (sys.flags attribute), 1908
inspect command line option

--details, 2015
InspectLoader (class in importlib.abc), 2036
insstr() (curses.window method), 918
install() (gettext.NullTranslations method), 1534
install() (in module gettext), 1533
install_opener() (in module urllib.request), 1407
install_scripts() (venv.EnvBuilder method), 1892
installHandler() (in module unittest), 1756
instate() (tkinter.ttk.Widget method), 1619
instr() (curses.window method), 918
instream (shlex.shlex attribute), 1591
Instruction (class in dis), 2129
INSTRUCTION (monitoring event), 1928
Instruction.arg (in module dis), 2129
Instruction.argrepr (in module dis), 2129
Instruction.argval (in module dis), 2129
Instruction.baseopcode (in module dis), 2129
Instruction.baseopname (in module dis), 2129
Instruction.cache_offset (in module dis), 2129
Instruction.end_offset (in module dis), 2129
Instruction.is_jump_target (in module dis),

2129
Instruction.jump_target (in module dis), 2129
Instruction.line_number (in module dis), 2129
Instruction.offset (in module dis), 2129
Instruction.oparg (in module dis), 2129
Instruction.opcode (in module dis), 2129
Instruction.opname (in module dis), 2129
Instruction.positions (in module dis), 2129
Instruction.start_offset (in module dis), 2129
Instruction.starts_line (in module dis), 2129
int

built-in function, 38
int (built-in class), 19
int (uuid.UUID attribute), 1470
Int2AP() (in module imaplib), 1457
int_info (in module sys), 1916
int_max_str_digits (sys.flags attribute), 1908
integer

literals, 38
object, 38
types, operations on, 40

--integer

random command line option, 385
Integral (class in numbers), 330
Integrated Development Environment, 1634
IntegrityError, 547

IntEnum (class in enum), 317
interact (pdb command), 1857
interact() (code.InteractiveConsole method), 2020
interact() (in module code), 2019
interactive, 2202
Interactive (class in ast), 2072
interactive (sys.flags attribute), 1908
InteractiveConsole (class in code), 2019
InteractiveInterpreter (class in code), 2019
InterfaceError, 547
intern() (in module sys), 1916
internal_attr (zipfile.ZipInfo attribute), 585
Internaldate2tuple() (in module imaplib), 1456
InternalError, 547
internalSubset (xml.dom.DocumentType attribute),

1358
Internet, 1393
INTERNET_TIMEOUT (in module test.support), 1821
interpolation

bytearray (%), 76
bytes (%), 76

interpolation, string (%), 61
InterpolationDepthError, 630
InterpolationError, 630
InterpolationMissingOptionError, 630
InterpolationSyntaxError, 630
interpreted, 2203
interpreter prompts, 1919
interpreter shutdown, 2203
interpreter_requires_environment() (in mod-

ule test.support.script_helper), 1830
interrupt() (sqlite3.Connection method), 536
interrupt_main() (in module _thread), 1040
InterruptedError, 113
intersection() (frozenset method), 86
intersection_update() (frozenset method), 87
IntFlag (class in enum), 319
intro (cmd.Cmd attribute), 1585
InuseAttributeErr, 1361
inv() (in module operator), 431
inv_cdf() (statistics.NormalDist method), 398
InvalidAccessErr, 1361
invalidate_caches() (im-

portlib.abc.MetaPathFinder method), 2035
invalidate_caches() (im-

portlib.abc.PathEntryFinder method), 2035
invalidate_caches() (im-

portlib.machinery.FileFinder method), 2042
invalidate_caches() (im-

portlib.machinery.PathFinder class method),
2042

invalidate_caches() (in module importlib), 2033
invalidate_caches() (zipimport.zipimporter

method), 2024
--invalidation-mode

compileall command line option, 2121
InvalidCharacterErr, 1361
InvalidModificationErr, 1361

Index 2297



The Python Library Reference, Release 3.13.1

InvalidOperation (class in decimal), 364
InvalidStateErr, 1361
InvalidStateError, 1010, 1086
InvalidTZPathWarning, 245
InvalidURL, 1440
Invert (class in ast), 2076
invert() (in module operator), 431
io

module, 719
IO (class in typing), 1685
IO_REPARSE_TAG_APPEXECLINK (in module stat), 476
IO_REPARSE_TAG_MOUNT_POINT (in module stat), 476
IO_REPARSE_TAG_SYMLINK (in module stat), 476
IOBase (class in io), 722
ioctl() (in module fcntl), 2170
ioctl() (socket.socket method), 1160
IOCTL_VM_SOCKETS_GET_LOCAL_CID (in module

socket), 1150
IOError, 112
ior() (in module operator), 437
ios_ver() (in module platform), 791
io.StringIO

object, 52
ip (ipaddress.IPv4Interface attribute), 1524
ip (ipaddress.IPv6Interface attribute), 1525
ip_address() (in module ipaddress), 1513
ip_interface() (in module ipaddress), 1513
ip_network() (in module ipaddress), 1513
ipaddress

module, 1513
ipow() (in module operator), 437
ipv4_mapped (ipaddress.IPv6Address attribute), 1517
IPv4Address (class in ipaddress), 1514
IPv4Interface (class in ipaddress), 1524
IPv4Network (class in ipaddress), 1519
IPV6_ENABLED (in module test.support.socket_helper),

1829
ipv6_mapped (ipaddress.IPv4Address attribute), 1516
IPv6Address (class in ipaddress), 1516
IPv6Interface (class in ipaddress), 1525
IPv6Network (class in ipaddress), 1522
irshift() (in module operator), 437
is

operator, 38
Is (class in ast), 2077
is not

operator, 38
is_() (in module operator), 431
is_absolute() (pathlib.PurePath method), 446
is_active() (asyncio.AbstractChildWatcher method),

1129
is_active() (graphlib.TopologicalSorter method), 326
is_alive() (multiprocessing.Process method), 961
is_alive() (threading.Thread method), 944
is_android (in module test.support), 1821
is_annotated() (symtable.Symbol method), 2107
is_assigned() (symtable.Symbol method), 2107
is_async (pyclbr.Function attribute), 2118

is_attachment() (email.message.EmailMessage
method), 1236

is_authenticated() (url-
lib.request.HTTPPasswordMgrWithPriorAuth
method), 1416

is_block_device() (pathlib.Path method), 455
is_blocked() (http.cookiejar.DefaultCookiePolicy

method), 1496
is_canonical() (decimal.Context method), 360
is_canonical() (decimal.Decimal method), 352
is_char_device() (pathlib.Path method), 455
IS_CHARACTER_JUNK() (in module difflib), 157
is_check_supported() (in module lzma), 574
is_closed() (asyncio.loop method), 1088
is_closing() (asyncio.BaseTransport method), 1115
is_closing() (asyncio.StreamWriter method), 1070
is_dataclass() (in module dataclasses), 1956
is_declared_global() (symtable.Symbol method),

2107
is_dir() (importlib.abc.Traversable method), 2040
is_dir() (importlib.resources.abc.Traversable

method), 2055
is_dir() (os.DirEntry method), 686
is_dir() (pathlib.Path method), 454
is_dir() (zipfile.Path method), 582
is_dir() (zipfile.ZipInfo method), 584
is_enabled() (in module faulthandler), 1849
is_expired() (http.cookiejar.Cookie method), 1499
is_fifo() (pathlib.Path method), 455
is_file() (importlib.abc.Traversable method), 2040
is_file() (importlib.resources.abc.Traversable

method), 2055
is_file() (os.DirEntry method), 686
is_file() (pathlib.Path method), 454
is_file() (zipfile.Path method), 582
is_finalized() (in module gc), 1995
is_finalizing() (in module sys), 1916
is_finite() (decimal.Context method), 360
is_finite() (decimal.Decimal method), 353
is_free() (symtable.Symbol method), 2107
is_global (ipaddress.IPv4Address attribute), 1515
is_global (ipaddress.IPv6Address attribute), 1517
is_global() (symtable.Symbol method), 2107
is_hop_by_hop() (in module wsgiref.util), 1397
is_imported() (symtable.Symbol method), 2107
is_infinite() (decimal.Context method), 360
is_infinite() (decimal.Decimal method), 353
is_integer() (float method), 42
is_integer() (fractions.Fraction method), 375
is_integer() (int method), 42
is_junction() (os.DirEntry method), 686
is_junction() (pathlib.Path method), 454
is_jython (in module test.support), 1821
IS_LINE_JUNK() (in module difflib), 157
is_linetouched() (curses.window method), 918
is_link_local (ipaddress.IPv4Address attribute),

1516

2298 Index



The Python Library Reference, Release 3.13.1

is_link_local (ipaddress.IPv4Network attribute),
1519

is_link_local (ipaddress.IPv6Address attribute),
1517

is_link_local (ipaddress.IPv6Network attribute),
1522

is_local() (symtable.Symbol method), 2107
is_loopback (ipaddress.IPv4Address attribute), 1516
is_loopback (ipaddress.IPv4Network attribute), 1519
is_loopback (ipaddress.IPv6Address attribute), 1517
is_loopback (ipaddress.IPv6Network attribute), 1522
is_mount() (pathlib.Path method), 454
is_multicast (ipaddress.IPv4Address attribute), 1515
is_multicast (ipaddress.IPv4Network attribute), 1519
is_multicast (ipaddress.IPv6Address attribute), 1517
is_multicast (ipaddress.IPv6Network attribute), 1522
is_multipart() (email.message.EmailMessage

method), 1233
is_multipart() (email.message.Message method),

1270
is_namespace() (symtable.Symbol method), 2107
is_nan() (decimal.Context method), 360
is_nan() (decimal.Decimal method), 353
is_nested() (symtable.SymbolTable method), 2105
is_nonlocal() (symtable.Symbol method), 2107
is_normal() (decimal.Context method), 360
is_normal() (decimal.Decimal method), 353
is_normalized() (in module unicodedata), 170
is_not() (in module operator), 431
is_not_allowed() (http.cookiejar.DefaultCookiePolicy

method), 1497
IS_OP (opcode), 2138
is_optimized() (symtable.SymbolTable method),

2105
is_package() (importlib.abc.InspectLoader method),

2037
is_package() (importlib.abc.SourceLoader method),

2039
is_package() (importlib.machinery.ExtensionFileLoader

method), 2044
is_package() (importlib.machinery.SourceFileLoader

method), 2043
is_package() (importlib.machinery.SourcelessFileLoader

method), 2043
is_package() (zipimport.zipimporter method), 2024
is_parameter() (symtable.Symbol method), 2107
is_private (ipaddress.IPv4Address attribute), 1515
is_private (ipaddress.IPv4Network attribute), 1519
is_private (ipaddress.IPv6Address attribute), 1517
is_private (ipaddress.IPv6Network attribute), 1522
is_protocol() (in module typing), 1692
is_python_build() (in module sysconfig), 1936
is_qnan() (decimal.Context method), 360
is_qnan() (decimal.Decimal method), 353
is_reading() (asyncio.ReadTransport method), 1116
is_referenced() (symtable.Symbol method), 2107
is_relative_to() (pathlib.PurePath method), 447
is_reserved (ipaddress.IPv4Address attribute), 1515

is_reserved (ipaddress.IPv4Network attribute), 1519
is_reserved (ipaddress.IPv6Address attribute), 1517
is_reserved (ipaddress.IPv6Network attribute), 1522
is_reserved() (pathlib.PurePath method), 447
is_resource() (importlib.abc.ResourceReader

method), 2039
is_resource() (im-

portlib.resources.abc.ResourceReader method),
2055

is_resource() (in module importlib.resources), 2054
is_resource_enabled() (in module test.support),

1823
is_running() (asyncio.loop method), 1088
is_safe (uuid.UUID attribute), 1470
is_serving() (asyncio.Server method), 1107
is_set() (asyncio.Event method), 1075
is_set() (threading.Event method), 950
is_signed() (decimal.Context method), 360
is_signed() (decimal.Decimal method), 353
is_site_local (ipaddress.IPv6Address attribute),

1517
is_site_local (ipaddress.IPv6Network attribute),

1523
is_skipped_line() (bdb.Bdb method), 1845
is_snan() (decimal.Context method), 360
is_snan() (decimal.Decimal method), 353
is_socket() (pathlib.Path method), 454
is_stack_trampoline_active() (in module sys),

1923
is_subnormal() (decimal.Context method), 361
is_subnormal() (decimal.Decimal method), 353
is_symlink() (os.DirEntry method), 686
is_symlink() (pathlib.Path method), 454
is_symlink() (zipfile.Path method), 582
is_tarfile() (in module tarfile), 589
is_term_resized() (in module curses), 910
is_tracing() (in module tracemalloc), 1879
is_tracked() (in module gc), 1994
is_typeddict() (in module typing), 1692
is_unspecified (ipaddress.IPv4Address attribute),

1515
is_unspecified (ipaddress.IPv4Network attribute),

1519
is_unspecified (ipaddress.IPv6Address attribute),

1517
is_unspecified (ipaddress.IPv6Network attribute),

1522
is_valid() (string.Template method), 128
is_wintouched() (curses.window method), 918
is_zero() (decimal.Context method), 361
is_zero() (decimal.Decimal method), 353
is_zipfile() (in module zipfile), 577
isabs() (in module os.path), 466
isabstract() (in module inspect), 2000
IsADirectoryError, 113
isalnum() (bytearray method), 72
isalnum() (bytes method), 72
isalnum() (in module curses.ascii), 936

Index 2299



The Python Library Reference, Release 3.13.1

isalnum() (str method), 54
isalpha() (bytearray method), 72
isalpha() (bytes method), 72
isalpha() (in module curses.ascii), 936
isalpha() (str method), 54
isascii() (bytearray method), 72
isascii() (bytes method), 72
isascii() (in module curses.ascii), 936
isascii() (str method), 54
isasyncgen() (in module inspect), 2000
isasyncgenfunction() (in module inspect), 2000
isatty() (in module os), 665
isatty() (io.IOBase method), 723
isawaitable() (in module inspect), 1999
isblank() (in module curses.ascii), 936
isblk() (tarfile.TarInfo method), 596
isbuiltin() (in module inspect), 2000
ischr() (tarfile.TarInfo method), 596
isclass() (in module inspect), 1999
isclose() (in module cmath), 343
isclose() (in module math), 335
iscntrl() (in module curses.ascii), 936
iscode() (in module inspect), 2000
iscoroutine() (in module asyncio), 1061
iscoroutine() (in module inspect), 1999
iscoroutinefunction() (in module inspect), 1999
isctrl() (in module curses.ascii), 936
isDaemon() (threading.Thread method), 944
isdatadescriptor() (in module inspect), 2001
isdecimal() (str method), 55
isdev() (tarfile.TarInfo method), 596
isdevdrive() (in module os.path), 467
isdigit() (bytearray method), 72
isdigit() (bytes method), 72
isdigit() (in module curses.ascii), 936
isdigit() (str method), 55
isdir() (in module os.path), 466
isdir() (tarfile.TarInfo method), 596
isdisjoint() (frozenset method), 86
isdown() (in module turtle), 1562
iselement() (in module xml.etree.ElementTree), 1343
isenabled() (in module gc), 1993
isEnabledFor() (logging.Logger method), 747
isendwin() (in module curses), 910
ISEOF() (in module token), 2108
isfifo() (tarfile.TarInfo method), 596
isfile() (in module os.path), 466
isfile() (tarfile.TarInfo method), 596
isfinite() (in module cmath), 343
isfinite() (in module math), 336
isfirstline() (in module fileinput), 906
isframe() (in module inspect), 2000
isfunction() (in module inspect), 1999
isfuture() (in module asyncio), 1110
isgenerator() (in module inspect), 1999
isgeneratorfunction() (in module inspect), 1999
isgetsetdescriptor() (in module inspect), 2001
isgraph() (in module curses.ascii), 936

isidentifier() (str method), 55
isinf() (in module cmath), 343
isinf() (in module math), 336
isinstance()

built-in function, 19
isjunction() (in module os.path), 466
iskeyword() (in module keyword), 2112
isleap() (in module calendar), 248
islice() (in module itertools), 410
islink() (in module os.path), 466
islnk() (tarfile.TarInfo method), 596
islower() (bytearray method), 73
islower() (bytes method), 73
islower() (in module curses.ascii), 936
islower() (str method), 55
ismemberdescriptor() (in module inspect), 2001
ismeta() (in module curses.ascii), 936
ismethod() (in module inspect), 1999
ismethoddescriptor() (in module inspect), 2001
ismethodwrapper() (in module inspect), 2000
ismodule() (in module inspect), 1999
ismount() (in module os.path), 467
isnan() (in module cmath), 343
isnan() (in module math), 336
ISNONTERMINAL() (in module token), 2108
IsNot (class in ast), 2077
isnumeric() (str method), 55
isocalendar() (datetime.date method), 211
isocalendar() (datetime.datetime method), 221
isoformat() (datetime.date method), 212
isoformat() (datetime.datetime method), 221
isoformat() (datetime.time method), 227
isolated (sys.flags attribute), 1908
IsolatedAsyncioTestCase (class in unittest), 1745
isolation_level (sqlite3.Connection attribute), 542
isoweekday() (datetime.date method), 211
isoweekday() (datetime.datetime method), 221
isprint() (in module curses.ascii), 936
isprintable() (str method), 55
ispunct() (in module curses.ascii), 936
isqrt() (in module math), 334
isreadable() (in module pprint), 302
isreadable() (pprint.PrettyPrinter method), 303
isrecursive() (in module pprint), 302
isrecursive() (pprint.PrettyPrinter method), 303
isreg() (tarfile.TarInfo method), 596
isreserved() (in module os.path), 467
isReservedKey() (http.cookies.Morsel method), 1489
isroutine() (in module inspect), 2000
isSameNode() (xml.dom.Node method), 1357
issoftkeyword() (in module keyword), 2112
isspace() (bytearray method), 73
isspace() (bytes method), 73
isspace() (in module curses.ascii), 936
isspace() (str method), 55
isstdin() (in module fileinput), 906
issubclass()

built-in function, 20

2300 Index



The Python Library Reference, Release 3.13.1

issubset() (frozenset method), 86
issuperset() (frozenset method), 86
issym() (tarfile.TarInfo method), 596
ISTERMINAL() (in module token), 2108
istitle() (bytearray method), 73
istitle() (bytes method), 73
istitle() (str method), 55
istraceback() (in module inspect), 2000
isub() (in module operator), 437
isupper() (bytearray method), 73
isupper() (bytes method), 73
isupper() (in module curses.ascii), 936
isupper() (str method), 55
isvisible() (in module turtle), 1565
isxdigit() (in module curses.ascii), 936
ITALIC (in module tkinter.font), 1608
item() (tkinter.ttk.Treeview method), 1628
item() (xml.dom.NamedNodeMap method), 1360
item() (xml.dom.NodeList method), 1357
itemgetter() (in module operator), 434
items() (configparser.ConfigParser method), 628
items() (contextvars.Context method), 1038
items() (dict method), 89
items() (email.message.EmailMessage method), 1234
items() (email.message.Message method), 1272
items() (mailbox.Mailbox method), 1299
items() (types.MappingProxyType method), 298
items() (xml.etree.ElementTree.Element method), 1346
itemsize (array.array attribute), 284
itemsize (memoryview attribute), 84
ItemsView (class in collections.abc), 274
ItemsView (class in typing), 1696
iter()

built-in function, 20
iter() (xml.etree.ElementTree.Element method), 1347
iter() (xml.etree.ElementTree.ElementTree method),

1349
iter_attachments() (email.message.EmailMessage

method), 1238
iter_child_nodes() (in module ast), 2101
iter_fields() (in module ast), 2101
iter_importers() (in module pkgutil), 2026
iter_modules() (in module pkgutil), 2026
iter_parts() (email.message.EmailMessage method),

1238
iter_unpack() (in module struct), 180
iter_unpack() (struct.Struct method), 186
iterable, 2203
Iterable (class in collections.abc), 273
Iterable (class in typing), 1698
iterator, 2203
Iterator (class in collections.abc), 273
Iterator (class in typing), 1698
iterator protocol, 45
iterdecode() (in module codecs), 189
iterdir() (importlib.abc.Traversable method), 2040
iterdir() (importlib.resources.abc.Traversable

method), 2055

iterdir() (pathlib.Path method), 456
iterdir() (zipfile.Path method), 582
iterdump() (sqlite3.Connection method), 538
iterencode() (in module codecs), 189
iterencode() (json.JSONEncoder method), 1294
iterfind() (xml.etree.ElementTree.Element method),

1347
iterfind() (xml.etree.ElementTree.ElementTree

method), 1349
iteritems() (mailbox.Mailbox method), 1299
iterkeys() (mailbox.Mailbox method), 1298
itermonthdates() (calendar.Calendar method), 245
itermonthdays() (calendar.Calendar method), 245
itermonthdays2() (calendar.Calendar method), 245
itermonthdays3() (calendar.Calendar method), 245
itermonthdays4() (calendar.Calendar method), 245
iterparse() (in module xml.etree.ElementTree), 1343
itertext() (xml.etree.ElementTree.Element method),

1347
itertools

module, 403
itervalues() (mailbox.Mailbox method), 1298
iterweekdays() (calendar.Calendar method), 245
ITIMER_PROF (in module signal), 1219
ITIMER_REAL (in module signal), 1219
ITIMER_VIRTUAL (in module signal), 1219
ItimerError, 1219
itruediv() (in module operator), 437
ixor() (in module operator), 437

J
-j

compileall command line option, 2121
JANUARY (in module calendar), 250
java_ver() (in module platform), 790
join() (asyncio.Queue method), 1084
join() (bytearray method), 67
join() (bytes method), 67
join() (in module os.path), 467
join() (in module shlex), 1588
join() (multiprocessing.JoinableQueue method), 965
join() (multiprocessing.pool.Pool method), 983
join() (multiprocessing.Process method), 960
join() (queue.Queue method), 1034
join() (str method), 56
join() (threading.Thread method), 943
join_thread() (in module

test.support.threading_helper), 1832
join_thread() (multiprocessing.Queue method), 965
JoinableQueue (class in multiprocessing), 965
JoinedStr (class in ast), 2073
joinpath() (importlib.abc.Traversable method), 2040
joinpath() (importlib.resources.abc.Traversable

method), 2055
joinpath() (pathlib.PurePath method), 447
joinpath() (zipfile.Path method), 583
js_output() (http.cookies.BaseCookie method), 1489
js_output() (http.cookies.Morsel method), 1490

Index 2301



The Python Library Reference, Release 3.13.1

json

module, 1287
JSONDecodeError, 1294
JSONDecoder (class in json), 1292
JSONEncoder (class in json), 1292
--json-lines

json.tool command line option, 1297
json.tool

module, 1296
json.tool command line option

--compact, 1297
-h, 1297
--help, 1297
--indent, 1297
infile, 1296
--json-lines, 1297
--no-ensure-ascii, 1296
--no-indent, 1297
outfile, 1296
--sort-keys, 1296
--tab, 1297

JULY (in module calendar), 250
JUMP (monitoring event), 1928
JUMP (opcode), 2145
jump (pdb command), 1855
JUMP_BACKWARD (opcode), 2138
JUMP_BACKWARD_NO_INTERRUPT (opcode), 2138
JUMP_FORWARD (opcode), 2138
JUMP_NO_INTERRUPT (opcode), 2145
JUNE (in module calendar), 250

K
-k

unittest command line option, 1729
kbhit() (in module msvcrt), 2150
kde() (in module statistics), 389
kde_random() (in module statistics), 390
KEEP (enum.FlagBoundary attribute), 322
kevent() (in module select), 1206
key (http.cookies.Morsel attribute), 1489
key (zoneinfo.ZoneInfo attribute), 243
key function, 2203
KEY_A1 (in module curses), 924
KEY_A3 (in module curses), 925
KEY_ALL_ACCESS (in module winreg), 2158
KEY_B2 (in module curses), 925
KEY_BACKSPACE (in module curses), 923
KEY_BEG (in module curses), 925
KEY_BREAK (in module curses), 923
KEY_BTAB (in module curses), 925
KEY_C1 (in module curses), 925
KEY_C3 (in module curses), 925
KEY_CANCEL (in module curses), 925
KEY_CATAB (in module curses), 924
KEY_CLEAR (in module curses), 924
KEY_CLOSE (in module curses), 925
KEY_COMMAND (in module curses), 925
KEY_COPY (in module curses), 925

KEY_CREATE (in module curses), 925
KEY_CREATE_LINK (in module winreg), 2158
KEY_CREATE_SUB_KEY (in module winreg), 2158
KEY_CTAB (in module curses), 924
KEY_DC (in module curses), 923
KEY_DL (in module curses), 923
KEY_DOWN (in module curses), 923
KEY_EIC (in module curses), 924
KEY_END (in module curses), 925
KEY_ENTER (in module curses), 924
KEY_ENUMERATE_SUB_KEYS (in module winreg), 2158
KEY_EOL (in module curses), 924
KEY_EOS (in module curses), 924
KEY_EXECUTE (in module winreg), 2158
KEY_EXIT (in module curses), 925
KEY_F0 (in module curses), 923
KEY_FIND (in module curses), 925
KEY_Fn (in module curses), 923
KEY_HELP (in module curses), 925
KEY_HOME (in module curses), 923
KEY_IC (in module curses), 924
KEY_IL (in module curses), 923
KEY_LEFT (in module curses), 923
KEY_LL (in module curses), 924
KEY_MARK (in module curses), 925
KEY_MAX (in module curses), 928
KEY_MESSAGE (in module curses), 925
KEY_MIN (in module curses), 923
KEY_MOUSE (in module curses), 928
KEY_MOVE (in module curses), 925
KEY_NEXT (in module curses), 926
KEY_NOTIFY (in module winreg), 2158
KEY_NPAGE (in module curses), 924
KEY_OPEN (in module curses), 926
KEY_OPTIONS (in module curses), 926
KEY_PPAGE (in module curses), 924
KEY_PREVIOUS (in module curses), 926
KEY_PRINT (in module curses), 924
KEY_QUERY_VALUE (in module winreg), 2158
KEY_READ (in module winreg), 2158
KEY_REDO (in module curses), 926
KEY_REFERENCE (in module curses), 926
KEY_REFRESH (in module curses), 926
KEY_REPLACE (in module curses), 926
KEY_RESET (in module curses), 924
KEY_RESIZE (in module curses), 928
KEY_RESTART (in module curses), 926
KEY_RESUME (in module curses), 926
KEY_RIGHT (in module curses), 923
KEY_SAVE (in module curses), 926
KEY_SBEG (in module curses), 926
KEY_SCANCEL (in module curses), 926
KEY_SCOMMAND (in module curses), 926
KEY_SCOPY (in module curses), 926
KEY_SCREATE (in module curses), 926
KEY_SDC (in module curses), 926
KEY_SDL (in module curses), 926
KEY_SELECT (in module curses), 927

2302 Index



The Python Library Reference, Release 3.13.1

KEY_SEND (in module curses), 927
KEY_SEOL (in module curses), 927
KEY_SET_VALUE (in module winreg), 2158
KEY_SEXIT (in module curses), 927
KEY_SF (in module curses), 924
KEY_SFIND (in module curses), 927
KEY_SHELP (in module curses), 927
KEY_SHOME (in module curses), 927
KEY_SIC (in module curses), 927
KEY_SLEFT (in module curses), 927
KEY_SMESSAGE (in module curses), 927
KEY_SMOVE (in module curses), 927
KEY_SNEXT (in module curses), 927
KEY_SOPTIONS (in module curses), 927
KEY_SPREVIOUS (in module curses), 927
KEY_SPRINT (in module curses), 927
KEY_SR (in module curses), 924
KEY_SREDO (in module curses), 927
KEY_SREPLACE (in module curses), 927
KEY_SRESET (in module curses), 924
KEY_SRIGHT (in module curses), 927
KEY_SRSUME (in module curses), 928
KEY_SSAVE (in module curses), 928
KEY_SSUSPEND (in module curses), 928
KEY_STAB (in module curses), 924
KEY_SUNDO (in module curses), 928
KEY_SUSPEND (in module curses), 928
KEY_UNDO (in module curses), 928
KEY_UP (in module curses), 923
KEY_WOW64_32KEY (in module winreg), 2158
KEY_WOW64_64KEY (in module winreg), 2158
KEY_WRITE (in module winreg), 2158
KeyboardInterrupt, 108
KeyError, 107
keylog_filename (ssl.SSLContext attribute), 1192
keyname() (in module curses), 910
keypad() (curses.window method), 918
keyrefs() (weakref.WeakKeyDictionary method), 288
keys() (contextvars.Context method), 1038
keys() (dict method), 89
keys() (email.message.EmailMessage method), 1234
keys() (email.message.Message method), 1272
keys() (mailbox.Mailbox method), 1298
keys() (sqlite3.Row method), 545
keys() (types.MappingProxyType method), 298
keys() (xml.etree.ElementTree.Element method), 1346
KeysView (class in collections.abc), 274
KeysView (class in typing), 1696
keyword

module, 2112
keyword (class in ast), 2077
keyword argument, 2203
keywords (functools.partial attribute), 430
kill() (asyncio.subprocess.Process method), 1081
kill() (asyncio.SubprocessTransport method), 1118
kill() (in module os), 705
kill() (multiprocessing.Process method), 962
kill() (subprocess.Popen method), 1020

kill_python() (in module test.support.script_helper),
1831

killchar() (in module curses), 910
killpg() (in module os), 705
kind (inspect.Parameter attribute), 2004
knownfiles (in module mimetypes), 1317
kqueue() (in module select), 1206
KqueueSelector (class in selectors), 1214
KW_ONLY (in module dataclasses), 1956
kwargs (inspect.BoundArguments attribute), 2006
kwargs (typing.ParamSpec attribute), 1676
kwlist (in module keyword), 2112

L
-L

calendar command line option, 252
-l

calendar command line option, 252
compileall command line option, 2121
pickletools command line option, 2147
tarfile command line option, 600
trace command line option, 1872
zipfile command line option, 586

L (in module re), 138
lambda, 2204
Lambda (class in ast), 2096
LambdaType (in module types), 295
LANG, 1531, 1532, 1539, 1543
LANGUAGE, 1531, 1532
language

C, 38
large files, 2163
LARGEST (in module test.support), 1822
LargeZipFile, 576
last_accepted (multiprocessing.connection.Listener

attribute), 985
last_exc (in module sys), 1916
last_traceback (in module sys), 1917
last_type (in module sys), 1917
last_value (in module sys), 1917
lastChild (xml.dom.Node attribute), 1356
lastcmd (cmd.Cmd attribute), 1584
lastgroup (re.Match attribute), 147
lastindex (re.Match attribute), 147
lastResort (in module logging), 761
lastrowid (sqlite3.Cursor attribute), 545
layout() (tkinter.ttk.Style method), 1630
lazycache() (in module linecache), 488
LazyLoader (class in importlib.util), 2048
LBRACE (in module token), 2109
LBYL, 2204
LC_ALL, 1531, 1532
LC_ALL (in module locale), 1545
LC_COLLATE (in module locale), 1545
LC_CTYPE (in module locale), 1545
LC_MESSAGES, 1531, 1532
LC_MESSAGES (in module locale), 1545
LC_MONETARY (in module locale), 1545

Index 2303



The Python Library Reference, Release 3.13.1

LC_NUMERIC (in module locale), 1545
LC_TIME (in module locale), 1545
lchflags() (in module os), 678
lchmod() (in module os), 678
lchmod() (pathlib.Path method), 461
lchown() (in module os), 679
lcm() (in module math), 334
ldexp() (in module math), 336
le() (in module operator), 430
leapdays() (in module calendar), 248
leaveok() (curses.window method), 918
left (filecmp.dircmp attribute), 477
left() (in module turtle), 1554
left_list (filecmp.dircmp attribute), 477
left_only (filecmp.dircmp attribute), 477
LEFTSHIFT (in module token), 2110
LEFTSHIFTEQUAL (in module token), 2110
LEGACY_TRANSACTION_CONTROL (in module sqlite3),

530
len

built-in function, 46, 87
len()

built-in function, 20
length (xml.dom.NamedNodeMap attribute), 1360
length (xml.dom.NodeList attribute), 1357
length_hint() (in module operator), 433
LESS (in module token), 2109
LESSEQUAL (in module token), 2109
level (logging.Logger attribute), 745
LexicalHandler (class in xml.sax.handler), 1371
lexists() (in module os.path), 465
LF (in module curses.ascii), 934
lgamma() (in module math), 340
libc_ver() (in module platform), 791
LIBRARIES_ASSEMBLY_NAME_PREFIX (in module

msvcrt), 2151
library (in module dbm.ndbm), 524
library (ssl.SSLError attribute), 1173
LibraryLoader (class in ctypes), 819
license (built-in variable), 36
LifoQueue (class in asyncio), 1084
LifoQueue (class in queue), 1032
light-weight processes, 1039
limit_denominator() (fractions.Fraction method),

375
LimitOverrunError, 1086
line (bdb.Breakpoint attribute), 1843
LINE (monitoring event), 1928
line (traceback.FrameSummary attribute), 1987
line_buffering (io.TextIOWrapper attribute), 730
line_num (csv.csvreader attribute), 610
linear_regression() (in module statistics), 396
line-buffered I/O, 24
linecache

module, 487
lineno (ast.AST attribute), 2071
lineno (doctest.DocTest attribute), 1718
lineno (doctest.Example attribute), 1719

lineno (inspect.FrameInfo attribute), 2009
lineno (inspect.Traceback attribute), 2010
lineno (json.JSONDecodeError attribute), 1294
lineno (netrc.NetrcParseError attribute), 632
lineno (pyclbr.Class attribute), 2118
lineno (pyclbr.Function attribute), 2118
lineno (re.PatternError attribute), 143
lineno (shlex.shlex attribute), 1591
lineno (SyntaxError attribute), 110
lineno (traceback.FrameSummary attribute), 1987
lineno (traceback.TracebackException attribute), 1985
lineno (tracemalloc.Filter attribute), 1881
lineno (tracemalloc.Frame attribute), 1881
lineno (xml.parsers.expat.ExpatError attribute), 1387
lineno() (in module fileinput), 906
LINES, 909, 914
--lines

calendar command line option, 252
LINES (in module curses), 921
lines (os.terminal_size attribute), 674
linesep (email.policy.Policy attribute), 1247
linesep (in module os), 717
lineterminator (csv.Dialect attribute), 610
LineTooLong, 1440
link() (in module os), 679
linkname (tarfile.TarInfo attribute), 595
LinkOutsideDestinationError, 589
list, 2204

object, 48, 49
type, operations on, 48

--list

tarfile command line option, 600
zipfile command line option, 586

list (built-in class), 49
List (class in ast), 2073
List (class in typing), 1694
list (pdb command), 1855
list comprehension, 2204
list() (imaplib.IMAP4 method), 1458
list() (multiprocessing.managers.SyncManager

method), 976
list() (poplib.POP3 method), 1454
list() (tarfile.TarFile method), 592
LIST_APPEND (opcode), 2133
list_dialects() (in module csv), 606
LIST_EXTEND (opcode), 2137
list_folders() (mailbox.Maildir method), 1301
list_folders() (mailbox.MH method), 1304
ListComp (class in ast), 2079
listdir() (in module os), 679
listdrives() (in module os), 679
listen() (in module logging.config), 764
listen() (in module turtle), 1572
listen() (socket.socket method), 1161
Listener (class in multiprocessing.connection), 984
listener (logging.handlers.QueueHandler attribute),

786
--listfuncs

2304 Index



The Python Library Reference, Release 3.13.1

trace command line option, 1872
listMethods() (xmlrpc.client.ServerProxy.system

method), 1501
listmounts() (in module os), 680
listvolumes() (in module os), 680
listxattr() (in module os), 700
Literal (in module typing), 1664
literal_eval() (in module ast), 2100
literals

binary, 38
complex number, 38
floating-point, 38
hexadecimal, 38
integer, 38
numeric, 38
octal, 38

LiteralString (in module typing), 1660
LittleEndianStructure (class in ctypes), 830
LittleEndianUnion (class in ctypes), 830
ljust() (bytearray method), 69
ljust() (bytes method), 69
ljust() (str method), 56
LK_LOCK (in module msvcrt), 2149
LK_NBLCK (in module msvcrt), 2149
LK_NBRLCK (in module msvcrt), 2149
LK_RLCK (in module msvcrt), 2149
LK_UNLCK (in module msvcrt), 2149
ll (pdb command), 1855
LMTP (class in smtplib), 1463
ln() (decimal.Context method), 361
ln() (decimal.Decimal method), 353
LNKTYPE (in module tarfile), 589
Load (class in ast), 2074
load() (http.cookiejar.FileCookieJar method), 1494
load() (http.cookies.BaseCookie method), 1489
load() (in module json), 1291
load() (in module marshal), 519
load() (in module pickle), 501
load() (in module plistlib), 633
load() (in module tomllib), 631
load() (pickle.Unpickler method), 503
load() (tracemalloc.Snapshot class method), 1882
LOAD_ASSERTION_ERROR (opcode), 2134
LOAD_ATTR (opcode), 2137
LOAD_BUILD_CLASS (opcode), 2134
load_cert_chain() (ssl.SSLContext method), 1187
LOAD_CLOSURE (opcode), 2145
LOAD_CONST (opcode), 2136
load_default_certs() (ssl.SSLContext method),

1188
LOAD_DEREF (opcode), 2140
load_dh_params() (ssl.SSLContext method), 1190
load_extension() (sqlite3.Connection method), 538
LOAD_FAST (opcode), 2139
LOAD_FAST_AND_CLEAR (opcode), 2139
LOAD_FAST_CHECK (opcode), 2139
LOAD_FAST_LOAD_FAST (opcode), 2139
LOAD_FROM_DICT_OR_DEREF (opcode), 2140

LOAD_FROM_DICT_OR_GLOBALS (opcode), 2136
LOAD_GLOBAL (opcode), 2139
LOAD_LOCALS (opcode), 2136
LOAD_METHOD (opcode), 2145
load_module() (importlib.abc.FileLoader method),

2037
load_module() (importlib.abc.InspectLoader method),

2037
load_module() (importlib.abc.Loader method), 2035
load_module() (importlib.abc.SourceLoader method),

2038
load_module() (im-

portlib.machinery.SourceFileLoader method),
2043

load_module() (im-
portlib.machinery.SourcelessFileLoader
method), 2043

load_module() (zipimport.zipimporter method), 2024
LOAD_NAME (opcode), 2136
load_package_tests() (in module test.support),

1827
LOAD_SUPER_ATTR (opcode), 2137
load_verify_locations() (ssl.SSLContext method),

1188
loader, 2204
Loader (class in importlib.abc), 2035
loader (importlib.machinery.ModuleSpec attribute),

2044
loader_state (importlib.machinery.ModuleSpec at-

tribute), 2045
LoadError, 1491
LoadFileDialog (class in tkinter.filedialog), 1612
LoadKey() (in module winreg), 2154
LoadLibrary() (ctypes.LibraryLoader method), 819
loads() (in module json), 1291
loads() (in module marshal), 520
loads() (in module pickle), 501
loads() (in module plistlib), 634
loads() (in module tomllib), 631
loads() (in module xmlrpc.client), 1506
loadTestsFromModule() (unittest.TestLoader

method), 1748
loadTestsFromName() (unittest.TestLoader method),

1748
loadTestsFromNames() (unittest.TestLoader

method), 1748
loadTestsFromTestCase() (unittest.TestLoader

method), 1748
local (class in threading), 942
LOCAL_CREDS (in module socket), 1150
LOCAL_CREDS_PERSISTENT (in module socket), 1150
localcontext() (in module decimal), 357
locale

module, 1539
--locale

calendar command line option, 252
LOCALE (in module re), 138
locale encoding, 2204

Index 2305



The Python Library Reference, Release 3.13.1

localeconv() (in module locale), 1539
LocaleHTMLCalendar (class in calendar), 248
LocaleTextCalendar (class in calendar), 248
localize() (in module locale), 1544
localName (xml.dom.Attr attribute), 1360
localName (xml.dom.Node attribute), 1356
--locals

unittest command line option, 1729
locals()

built-in function, 20
localtime() (in module email.utils), 1284
localtime() (in module time), 735
Locator (class in xml.sax.xmlreader), 1378
Lock (class in asyncio), 1073
Lock (class in multiprocessing), 970
Lock (class in threading), 945
lock (sys.thread_info attribute), 1925
lock() (mailbox.Babyl method), 1306
lock() (mailbox.Mailbox method), 1300
lock() (mailbox.Maildir method), 1302
lock() (mailbox.mbox method), 1303
lock() (mailbox.MH method), 1304
lock() (mailbox.MMDF method), 1306
Lock() (multiprocessing.managers.SyncManager

method), 976
LOCK_EX (in module fcntl), 2171
LOCK_NB (in module fcntl), 2171
LOCK_SH (in module fcntl), 2171
LOCK_UN (in module fcntl), 2171
locked() (_thread.lock method), 1041
locked() (asyncio.Condition method), 1075
locked() (asyncio.Lock method), 1074
locked() (asyncio.Semaphore method), 1076
locked() (threading.Lock method), 945
lockf() (in module fcntl), 2171
lockf() (in module os), 665
locking() (in module msvcrt), 2149
LockType (in module _thread), 1039
log() (in module cmath), 342
log() (in module logging), 758
log() (in module math), 337
log() (logging.Logger method), 748
log1p() (in module math), 337
log2() (in module math), 337
log10() (decimal.Context method), 361
log10() (decimal.Decimal method), 353
log10() (in module cmath), 342
log10() (in module math), 338
LOG_ALERT (in module syslog), 2177
LOG_AUTH (in module syslog), 2178
LOG_AUTHPRIV (in module syslog), 2178
LOG_CONS (in module syslog), 2178
LOG_CRIT (in module syslog), 2177
LOG_CRON (in module syslog), 2178
LOG_DAEMON (in module syslog), 2178
log_date_time_string()

(http.server.BaseHTTPRequestHandler
method), 1485

LOG_DEBUG (in module syslog), 2177
LOG_EMERG (in module syslog), 2177
LOG_ERR (in module syslog), 2177
log_error() (http.server.BaseHTTPRequestHandler

method), 1484
log_exception() (wsgiref.handlers.BaseHandler

method), 1403
LOG_FTP (in module syslog), 2178
LOG_INFO (in module syslog), 2177
LOG_INSTALL (in module syslog), 2178
LOG_KERN (in module syslog), 2178
LOG_LAUNCHD (in module syslog), 2178
LOG_LOCAL0 (in module syslog), 2178
LOG_LOCAL1 (in module syslog), 2178
LOG_LOCAL2 (in module syslog), 2178
LOG_LOCAL3 (in module syslog), 2178
LOG_LOCAL4 (in module syslog), 2178
LOG_LOCAL5 (in module syslog), 2178
LOG_LOCAL6 (in module syslog), 2178
LOG_LOCAL7 (in module syslog), 2178
LOG_LPR (in module syslog), 2178
LOG_MAIL (in module syslog), 2178
log_message() (http.server.BaseHTTPRequestHandler

method), 1484
LOG_NDELAY (in module syslog), 2178
LOG_NETINFO (in module syslog), 2178
LOG_NEWS (in module syslog), 2178
LOG_NOTICE (in module syslog), 2177
LOG_NOWAIT (in module syslog), 2178
LOG_ODELAY (in module syslog), 2178
LOG_PERROR (in module syslog), 2178
LOG_PID (in module syslog), 2178
LOG_RAS (in module syslog), 2178
LOG_REMOTEAUTH (in module syslog), 2178
log_request() (http.server.BaseHTTPRequestHandler

method), 1484
LOG_SYSLOG (in module syslog), 2178
log_to_stderr() (in module multiprocessing), 987
LOG_USER (in module syslog), 2178
LOG_UUCP (in module syslog), 2178
LOG_WARNING (in module syslog), 2177
logb() (decimal.Context method), 361
logb() (decimal.Decimal method), 353
Logger (class in logging), 745
LoggerAdapter (class in logging), 757
logging

Errors, 743
module, 743

logging.config

module, 762
logging.handlers

module, 774
logical_and() (decimal.Context method), 361
logical_and() (decimal.Decimal method), 353
logical_invert() (decimal.Context method), 361
logical_invert() (decimal.Decimal method), 353
logical_or() (decimal.Context method), 361
logical_or() (decimal.Decimal method), 353

2306 Index



The Python Library Reference, Release 3.13.1

logical_xor() (decimal.Context method), 361
logical_xor() (decimal.Decimal method), 353
login() (ftplib.FTP method), 1448
login() (imaplib.IMAP4 method), 1458
login() (smtplib.SMTP method), 1465
login_cram_md5() (imaplib.IMAP4 method), 1458
login_tty() (in module os), 666
LOGNAME, 657, 904
lognormvariate() (in module random), 381
logout() (imaplib.IMAP4 method), 1459
LogRecord (class in logging), 754
LONG_TIMEOUT (in module test.support), 1821
longMessage (unittest.TestCase attribute), 1743
longname() (in module curses), 910
lookup() (in module codecs), 187
lookup() (in module unicodedata), 169
lookup() (symtable.SymbolTable method), 2106
lookup() (tkinter.ttk.Style method), 1630
lookup_error() (in module codecs), 191
LookupError, 107
loop

over mutable sequence, 46
loop_factory (unittest.IsolatedAsyncioTestCase

attribute), 1745
LOOPBACK_TIMEOUT (in module test.support), 1821
lower() (bytearray method), 73
lower() (bytes method), 73
lower() (str method), 56
LPAR (in module token), 2108
lpAttributeList (subprocess.STARTUPINFO at-

tribute), 1022
lru_cache() (in module functools), 422
lseek() (in module os), 666
LShift (class in ast), 2076
lshift() (in module operator), 432
LSQB (in module token), 2109
lstat() (in module os), 680
lstat() (pathlib.Path method), 453
lstrip() (bytearray method), 69
lstrip() (bytes method), 69
lstrip() (str method), 56
lsub() (imaplib.IMAP4 method), 1459
Lt (class in ast), 2077
lt() (in module operator), 430
lt() (in module turtle), 1554
LtE (class in ast), 2077
LWPCookieJar (class in http.cookiejar), 1495
lzma

module, 570
LZMACompressor (class in lzma), 572
LZMADecompressor (class in lzma), 573
LZMAError, 570
LZMAFile (class in lzma), 571

M
-m

ast command line option, 2104
calendar command line option, 252

pickletools command line option, 2147
trace command line option, 1873
zipapp command line option, 1897

M (in module re), 138
mac_ver() (in module platform), 791
machine() (in module platform), 788
macros (netrc.netrc attribute), 633
MADV_AUTOSYNC (in module mmap), 1229
MADV_CORE (in module mmap), 1229
MADV_DODUMP (in module mmap), 1229
MADV_DOFORK (in module mmap), 1229
MADV_DONTDUMP (in module mmap), 1229
MADV_DONTFORK (in module mmap), 1229
MADV_DONTNEED (in module mmap), 1229
MADV_FREE (in module mmap), 1229
MADV_FREE_REUSABLE (in module mmap), 1229
MADV_FREE_REUSE (in module mmap), 1229
MADV_HUGEPAGE (in module mmap), 1229
MADV_HWPOISON (in module mmap), 1229
MADV_MERGEABLE (in module mmap), 1229
MADV_NOCORE (in module mmap), 1229
MADV_NOHUGEPAGE (in module mmap), 1229
MADV_NORMAL (in module mmap), 1229
MADV_NOSYNC (in module mmap), 1229
MADV_PROTECT (in module mmap), 1229
MADV_RANDOM (in module mmap), 1229
MADV_REMOVE (in module mmap), 1229
MADV_SEQUENTIAL (in module mmap), 1229
MADV_SOFT_OFFLINE (in module mmap), 1229
MADV_UNMERGEABLE (in module mmap), 1229
MADV_WILLNEED (in module mmap), 1229
madvise() (mmap.mmap method), 1227
magic

method, 2204
magic method, 2204
MAGIC_NUMBER (in module importlib.util), 2046
MagicMock (class in unittest.mock), 1787
mailbox

module, 1297
Mailbox (class in mailbox), 1297
mailcap

module, 2189
Maildir (class in mailbox), 1300
MaildirMessage (class in mailbox), 1307
--main

zipapp command line option, 1897
main() (in module site), 2017
main() (in module unittest), 1753
main_thread() (in module threading), 941
mainloop() (in module turtle), 1574
maintype (email.headerregistry.ContentTypeHeader at-

tribute), 1257
major (email.headerregistry.MIMEVersionHeader

attribute), 1256
major() (in module os), 682
make_alternative() (email.message.EmailMessage

method), 1238
make_archive() (in module shutil), 494

Index 2307



The Python Library Reference, Release 3.13.1

make_bad_fd() (in module test.support.os_helper),
1834

MAKE_CELL (opcode), 2140
make_cookies() (http.cookiejar.CookieJar method),

1493
make_dataclass() (in module dataclasses), 1955
make_file() (difflib.HtmlDiff method), 154
MAKE_FUNCTION (opcode), 2141
make_header() (in module email.header), 1281
make_legacy_pyc() (in module

test.support.import_helper), 1835
make_mixed() (email.message.EmailMessage method),

1238
make_msgid() (in module email.utils), 1284
make_parser() (in module xml.sax), 1370
make_pkg() (in module test.support.script_helper),

1831
make_related() (email.message.EmailMessage

method), 1238
make_script() (in module test.support.script_helper),

1831
make_server() (in module wsgiref.simple_server),

1399
make_table() (difflib.HtmlDiff method), 154
make_zip_pkg() (in module test.support.script_helper),

1831
make_zip_script() (in module

test.support.script_helper), 1831
makedev() (in module os), 682
makedirs() (in module os), 681
makeelement() (xml.etree.ElementTree.Element

method), 1347
makefile() (socket.socket method), 1161
makeLogRecord() (in module logging), 759
makePickle() (logging.handlers.SocketHandler

method), 780
makeRecord() (logging.Logger method), 749
makeSocket() (logging.handlers.DatagramHandler

method), 781
makeSocket() (logging.handlers.SocketHandler

method), 780
maketrans() (bytearray static method), 67
maketrans() (bytes static method), 67
maketrans() (str static method), 56
manager (logging.LoggerAdapter attribute), 757
mangle_from_ (email.policy.Compat32 attribute), 1252
mangle_from_ (email.policy.Policy attribute), 1248
MANPAGER, 1700
mant_dig (sys.float_info attribute), 1910
map()

built-in function, 21
map() (concurrent.futures.Executor method), 1003
map() (multiprocessing.pool.Pool method), 982
map() (tkinter.ttk.Style method), 1630
MAP_32BIT (in module mmap), 1229
MAP_ADD (opcode), 2133
MAP_ALIGNED_SUPER (in module mmap), 1229
MAP_ANON (in module mmap), 1229

MAP_ANONYMOUS (in module mmap), 1229
map_async() (multiprocessing.pool.Pool method), 982
MAP_CONCEAL (in module mmap), 1229
MAP_DENYWRITE (in module mmap), 1229
MAP_EXECUTABLE (in module mmap), 1229
MAP_HASSEMAPHORE (in module mmap), 1229
MAP_JIT (in module mmap), 1229
MAP_NOCACHE (in module mmap), 1229
MAP_NOEXTEND (in module mmap), 1229
MAP_NORESERVE (in module mmap), 1229
MAP_POPULATE (in module mmap), 1229
MAP_PRIVATE (in module mmap), 1229
MAP_RESILIENT_CODESIGN (in module mmap), 1229
MAP_RESILIENT_MEDIA (in module mmap), 1229
MAP_SHARED (in module mmap), 1229
MAP_STACK (in module mmap), 1229
map_table_b2() (in module stringprep), 171
map_table_b3() (in module stringprep), 171
map_to_type() (email.headerregistry.HeaderRegistry

method), 1258
MAP_TPRO (in module mmap), 1229
MAP_TRANSLATED_ALLOW_EXECUTE (in module

mmap), 1229
MAP_UNIX03 (in module mmap), 1229
mapLogRecord() (logging.handlers.HTTPHandler

method), 785
mapping, 2204

object, 87
types, operations on, 87

Mapping (class in collections.abc), 274
Mapping (class in typing), 1696
MappingProxyType (class in types), 298
MappingView (class in collections.abc), 274
MappingView (class in typing), 1696
mapPriority() (logging.handlers.SysLogHandler

method), 783
maps (collections.ChainMap attribute), 253
MARCH (in module calendar), 250
markcoroutinefunction() (in module inspect),

1999
marshal

module, 518
marshalling

objects, 499
masking

operations, 40
master (tkinter.Tk attribute), 1597
Match (class in ast), 2089
Match (class in re), 145
Match (class in typing), 1695
match() (in module re), 140
match() (pathlib.PurePath method), 448
match() (re.Pattern method), 144
match_case (class in ast), 2089
MATCH_CLASS (opcode), 2143
MATCH_KEYS (opcode), 2135
MATCH_MAPPING (opcode), 2135
MATCH_SEQUENCE (opcode), 2135

2308 Index



The Python Library Reference, Release 3.13.1

match_value() (test.support.Matcher method), 1829
MatchAs (class in ast), 2093
MatchClass (class in ast), 2092
Matcher (class in test.support), 1829
matches() (test.support.Matcher method), 1829
MatchMapping (class in ast), 2091
MatchOr (class in ast), 2094
MatchSequence (class in ast), 2090
MatchSingleton (class in ast), 2090
MatchStar (class in ast), 2091
MatchValue (class in ast), 2089
math

module, 39, 332, 344
matmul() (in module operator), 432
MatMult (class in ast), 2076
max

built-in function, 46
max (datetime.date attribute), 210
max (datetime.datetime attribute), 217
max (datetime.time attribute), 225
max (datetime.timedelta attribute), 206
max (sys.float_info attribute), 1910
max()

built-in function, 21
max() (decimal.Context method), 361
max() (decimal.Decimal method), 353
max_10_exp (sys.float_info attribute), 1910
max_count (email.headerregistry.BaseHeader attribute),

1254
MAX_EMAX (in module decimal), 363
max_exp (sys.float_info attribute), 1910
MAX_INTERPOLATION_DEPTH (in module config-

parser), 629
max_line_length (email.policy.Policy attribute), 1247
max_lines (textwrap.TextWrapper attribute), 169
max_mag() (decimal.Context method), 361
max_mag() (decimal.Decimal method), 354
max_memuse (in module test.support), 1822
MAX_PREC (in module decimal), 363
max_prefixlen (ipaddress.IPv4Address attribute),

1514
max_prefixlen (ipaddress.IPv4Network attribute),

1519
max_prefixlen (ipaddress.IPv6Address attribute),

1517
max_prefixlen (ipaddress.IPv6Network attribute),

1522
MAX_Py_ssize_t (in module test.support), 1822
maxarray (reprlib.Repr attribute), 308
maxdeque (reprlib.Repr attribute), 308
maxdict (reprlib.Repr attribute), 308
maxDiff (unittest.TestCase attribute), 1744
maxfrozenset (reprlib.Repr attribute), 308
MAXIMUM_SUPPORTED (ssl.TLSVersion attribute), 1182
maximum_version (ssl.SSLContext attribute), 1193
maxlen (collections.deque attribute), 260
maxlevel (reprlib.Repr attribute), 308
maxlist (reprlib.Repr attribute), 308

maxlong (reprlib.Repr attribute), 308
maxother (reprlib.Repr attribute), 308
maxset (reprlib.Repr attribute), 308
maxsize (asyncio.Queue attribute), 1083
maxsize (in module sys), 1917
maxstring (reprlib.Repr attribute), 308
maxtuple (reprlib.Repr attribute), 308
maxunicode (in module sys), 1917
MAXYEAR (in module datetime), 204
MAY (in module calendar), 250
MB_ICONASTERISK (in module winsound), 2161
MB_ICONEXCLAMATION (in module winsound), 2162
MB_ICONHAND (in module winsound), 2162
MB_ICONQUESTION (in module winsound), 2162
MB_OK (in module winsound), 2162
mbox (class in mailbox), 1303
mboxMessage (class in mailbox), 1309
md5() (in module hashlib), 638
mean (statistics.NormalDist attribute), 397
mean() (in module statistics), 388
measure() (tkinter.font.Font method), 1609
median (statistics.NormalDist attribute), 397
median() (in module statistics), 391
median_grouped() (in module statistics), 391
median_high() (in module statistics), 391
median_low() (in module statistics), 391
member() (in module enum), 324
member_names (enum.EnumDict attribute), 322
MemberDescriptorType (in module types), 297
memfd_create() (in module os), 695
memmove() (in module ctypes), 825
--memo

pickletools command line option, 2147
MemoryBIO (class in ssl), 1202
MemoryError, 108
MemoryHandler (class in logging.handlers), 785
memoryview

object, 63
memoryview (built-in class), 78
memset() (in module ctypes), 825
merge() (in module heapq), 276
message (BaseExceptionGroup attribute), 115
Message (class in email.message), 1269
Message (class in mailbox), 1306
Message (class in tkinter.messagebox), 1612
message digest, MD5, 637
message_factory (email.policy.Policy attribute), 1248
message_from_binary_file() (in module email),

1242
message_from_bytes() (in module email), 1242
message_from_file() (in module email), 1242
message_from_string() (in module email), 1242
MessageBeep() (in module winsound), 2160
MessageClass (http.server.BaseHTTPRequestHandler

attribute), 1483
MessageDefect, 1253
MessageError, 1252
MessageParseError, 1252

Index 2309



The Python Library Reference, Release 3.13.1

messages (in module xml.parsers.expat.errors), 1388
meta path finder, 2204
meta() (in module curses), 911
meta_path (in module sys), 1917
metaclass, 2204
metadata() (in module importlib.metadata), 2059
--metadata-encoding

zipfile command line option, 586
MetaPathFinder (class in importlib.abc), 2034
metavar (optparse.Option attribute), 891
MetavarTypeHelpFormatter (class in argparse), 836
method, 2205

magic, 2204
object, 99
special, 2209

method (urllib.request.Request attribute), 1412
method resolution order, 2205
method_calls (unittest.mock.Mock attribute), 1766
methodcaller() (in module operator), 434
MethodDescriptorType (in module types), 296
methodHelp() (xmlrpc.client.ServerProxy.system

method), 1502
methods

bytearray, 65
bytes, 65
string, 52

methods (pyclbr.Class attribute), 2118
methodSignature() (xml-

rpc.client.ServerProxy.system method), 1502
MethodType (in module types), 296
MethodWrapperType (in module types), 296
metrics() (tkinter.font.Font method), 1609
MFD_ALLOW_SEALING (in module os), 695
MFD_CLOEXEC (in module os), 695
MFD_HUGE_1GB (in module os), 695
MFD_HUGE_1MB (in module os), 695
MFD_HUGE_2GB (in module os), 695
MFD_HUGE_2MB (in module os), 695
MFD_HUGE_8MB (in module os), 695
MFD_HUGE_16GB (in module os), 695
MFD_HUGE_16MB (in module os), 695
MFD_HUGE_32MB (in module os), 695
MFD_HUGE_64KB (in module os), 695
MFD_HUGE_256MB (in module os), 695
MFD_HUGE_512KB (in module os), 695
MFD_HUGE_512MB (in module os), 695
MFD_HUGE_MASK (in module os), 695
MFD_HUGE_SHIFT (in module os), 695
MFD_HUGETLB (in module os), 695
MH (class in mailbox), 1304
MHMessage (class in mailbox), 1310
microsecond (datetime.datetime attribute), 217
microsecond (datetime.time attribute), 225
microseconds (datetime.timedelta attribute), 207
MIME

base64 encoding, 1319
content type, 1316
headers, 1316

quoted-printable encoding, 1324
MIMEApplication (class in email.mime.application),

1277
MIMEAudio (class in email.mime.audio), 1277
MIMEBase (class in email.mime.base), 1276
MIMEImage (class in email.mime.image), 1278
MIMEMessage (class in email.mime.message), 1278
MIMEMultipart (class in email.mime.multipart), 1277
MIMENonMultipart (class in

email.mime.nonmultipart), 1277
MIMEPart (class in email.message), 1239
MIMEText (class in email.mime.text), 1278
mimetypes

module, 1316
MimeTypes (class in mimetypes), 1318
MIMEVersionHeader (class in email.headerregistry),

1256
min

built-in function, 46
min (datetime.date attribute), 209
min (datetime.datetime attribute), 217
min (datetime.time attribute), 225
min (datetime.timedelta attribute), 206
min (sys.float_info attribute), 1910
min()

built-in function, 21
min() (decimal.Context method), 361
min() (decimal.Decimal method), 354
min_10_exp (sys.float_info attribute), 1910
MIN_EMIN (in module decimal), 363
MIN_ETINY (in module decimal), 363
min_exp (sys.float_info attribute), 1910
min_mag() (decimal.Context method), 361
min_mag() (decimal.Decimal method), 354
MINEQUAL (in module token), 2110
MINIMUM_SUPPORTED (ssl.TLSVersion attribute), 1182
minimum_version (ssl.SSLContext attribute), 1193
minor (email.headerregistry.MIMEVersionHeader

attribute), 1256
minor() (in module os), 682
MINUS (in module token), 2109
minus() (decimal.Context method), 361
minute (datetime.datetime attribute), 217
minute (datetime.time attribute), 225
MINYEAR (in module datetime), 204
mirrored() (in module unicodedata), 170
misc_header (cmd.Cmd attribute), 1585
--missing

trace command line option, 1873
MISSING (contextvars.Token attribute), 1036
MISSING (in module dataclasses), 1956
MISSING (in module sys.monitoring), 1931
MISSING_C_DOCSTRINGS (in module test.support),

1822
missing_compiler_executable() (in module

test.support), 1828
MissingSectionHeaderError, 630
mkd() (ftplib.FTP method), 1450

2310 Index



The Python Library Reference, Release 3.13.1

mkdir() (in module os), 681
mkdir() (pathlib.Path method), 459
mkdir() (zipfile.ZipFile method), 581
mkdtemp() (in module tempfile), 481
mkfifo() (in module os), 681
mknod() (in module os), 682
mkstemp() (in module tempfile), 480
mktemp() (in module tempfile), 483
mktime() (in module time), 735
mktime_tz() (in module email.utils), 1285
mlsd() (ftplib.FTP method), 1449
mmap

module, 1225
mmap (class in mmap), 1225
MMDF (class in mailbox), 1306
MMDFMessage (class in mailbox), 1313
Mock (class in unittest.mock), 1759
mock_add_spec() (unittest.mock.Mock method), 1762
mock_calls (unittest.mock.Mock attribute), 1766
mock_open() (in module unittest.mock), 1792
Mod (class in ast), 2076
mod() (in module operator), 432
--mode

ast command line option, 2104
mode (bz2.BZ2File attribute), 567
mode (gzip.GzipFile attribute), 564
mode (io.FileIO attribute), 726
mode (lzma.LZMAFile attribute), 571
mode (statistics.NormalDist attribute), 397
mode (tarfile.TarInfo attribute), 595
mode() (in module statistics), 392
mode() (in module turtle), 1575
modes

file, 22
modf() (in module math), 335
modified() (urllib.robotparser.RobotFileParser

method), 1434
modify() (select.devpoll method), 1207
modify() (select.epoll method), 1209
modify() (selectors.BaseSelector method), 1213
modify() (select.poll method), 1209
module, 2205

__future__, 1991
__main__, 1938, 2030
_locale, 1539
_thread, 1039
_tkinter, 1598
abc, 1975
aifc, 2187
argparse, 833
array, 63, 283
ast, 2067
asynchat, 2187
asyncio, 1043
asyncore, 2187
atexit, 1980
audioop, 2187
base64, 1319, 1322

bdb, 1843, 1850
binascii, 1322
bisect, 279
builtins, 33, 1937
bz2, 566
calendar, 245
cgi, 2188
cgitb, 2188
chunk, 2188
cmath, 341
cmd, 1583, 1850
code, 2019
codecs, 186
codeop, 2021
collections, 252
collections.abc, 270
colorsys, 1530
compileall, 2120
concurrent.futures, 1003
configparser, 612
contextlib, 1961
contextvars, 1035
copy, 300, 515
copyreg, 515
cProfile, 1861
crypt, 2188
csv, 605
ctypes, 798
curses, 907
curses.ascii, 933
curses.panel, 937
curses.textpad, 932
dataclasses, 1950
datetime, 203
dbm, 520
dbm.dumb, 525
dbm.gnu, 517, 522
dbm.ndbm, 517, 524
dbm.sqlite3, 522
decimal, 345
difflib, 153
dis, 2124
distutils, 2188
doctest, 1703
email, 1231
email.charset, 1281
email.contentmanager, 1259
email.encoders, 1283
email.errors, 1252
email.generator, 1243
email.header, 1279
email.headerregistry, 1254
email.iterators, 1286
email.message, 1232
email.mime, 1276
email.mime.application, 1277
email.mime.audio, 1277
email.mime.base, 1276

Index 2311



The Python Library Reference, Release 3.13.1

email.mime.image, 1278
email.mime.message, 1278
email.mime.multipart, 1277
email.mime.nonmultipart, 1277
email.mime.text, 1278
email.parser, 1240
email.policy, 1246
email.utils, 1284
encodings.idna, 201
encodings.mbcs, 202
encodings.utf_8_sig, 202
ensurepip, 1885
enum, 310
errno, 108, 792
faulthandler, 1848
fcntl, 2169
filecmp, 476
fileinput, 905
fnmatch, 486
fractions, 373
ftplib, 1446
functools, 420
gc, 1993
getopt, 2183
getpass, 904
gettext, 1531
glob, 484, 486
graphlib, 325
grp, 2165
gzip, 562
hashlib, 637
heapq, 276
hmac, 648
html, 1327
html.entities, 1332
html.parser, 1327
http, 1435
http.client, 1438
http.cookiejar, 1491
http.cookies, 1488
http.server, 1481
idlelib, 1645
imaplib, 1455
imghdr, 2188
imp, 2189
importlib, 2032
importlib.abc, 2034
importlib.machinery, 2040
importlib.metadata, 2056
importlib.resources, 2051
importlib.resources.abc, 2054
importlib.util, 2046
inspect, 1996
io, 719
ipaddress, 1513
itertools, 403
json, 1287
json.tool, 1296

keyword, 2112
linecache, 487
locale, 1539
logging, 743
logging.config, 762
logging.handlers, 774
lzma, 570
mailbox, 1297
mailcap, 2189
marshal, 518
math, 39, 332, 344
mimetypes, 1316
mmap, 1225
modulefinder, 2028
msilib, 2189
msvcrt, 2149
multiprocessing, 953
multiprocessing.connection, 984
multiprocessing.dummy, 987
multiprocessing.managers, 974
multiprocessing.pool, 981
multiprocessing.shared_memory, 997
multiprocessing.sharedctypes, 972
netrc, 632
nis, 2189
nntplib, 2189
numbers, 329
operator, 430
optparse, 877
os, 653, 2163
os.path, 464
ossaudiodev, 2189
pathlib, 439
pdb, 1850
pickle, 300, 499, 515, 516, 518
pickletools, 2146
pipes, 2190
pkgutil, 2025
platform, 788
plistlib, 633
poplib, 1452
posix, 2163
pprint, 301
profile, 1861
pstats, 1863
pty, 668, 2168
pwd, 465, 2164
py_compile, 2119
pyclbr, 2117
pydoc, 1699
pyexpat, 1381
queue, 1032
quopri, 1324
random, 377
re, 52, 130, 486
readline, 172
reprlib, 307
resource, 2172

2312 Index



The Python Library Reference, Release 3.13.1

rlcompleter, 177
runpy, 2029
sched, 1030
search path, 487, 1918, 2015
secrets, 650
select, 1205
selectors, 1212
shelve, 516, 518
shlex, 1588
shutil, 488
signal, 1041, 1215
site, 2015
sitecustomize, 2016
smtpd, 2190
smtplib, 1462
sndhdr, 2190
socket, 1142, 1393
socketserver, 1473
spwd, 2190
sqlite3, 526
ssl, 1170
stat, 470, 687
statistics, 386
string, 119
stringprep, 171
struct, 179, 1165
subprocess, 1010
sunau, 2190
symtable, 2104
sys, 24, 1901
sysconfig, 1931
syslog, 2176
sys.monitoring, 1927
tabnanny, 2116
tarfile, 587
telnetlib, 2190
tempfile, 478
termios, 2165
test, 1818
test.regrtest, 1820
test.support, 1820
test.support.bytecode_helper, 1831
test.support.import_helper, 1834
test.support.os_helper, 1833
test.support.script_helper, 1830
test.support.socket_helper, 1829
test.support.threading_helper, 1832
test.support.warnings_helper, 1836
textwrap, 165
threading, 939
time, 732
timeit, 1867
tkinter, 1595
tkinter.colorchooser, 1608
tkinter.commondialog, 1612
tkinter.dnd, 1615
tkinter.filedialog, 1610
tkinter.font, 1608

tkinter.messagebox, 1612
tkinter.scrolledtext, 1614
tkinter.simpledialog, 1609
tkinter.ttk, 1616
token, 2108
tokenize, 2112
tomllib, 630
trace, 1872
traceback, 1982
tracemalloc, 1874
tty, 2167
turtle, 1547
turtledemo, 1581
types, 100, 293
typing, 1647
unicodedata, 169
unittest, 1726
unittest.mock, 1757
urllib, 1406
urllib.error, 1433
urllib.parse, 1424
urllib.request, 1406, 1438
urllib.response, 1424
urllib.robotparser, 1434
usercustomize, 2017
uu, 2191
uuid, 1469
venv, 1887
warnings, 1943
wave, 1527
weakref, 286
webbrowser, 1393
winreg, 2151
winsound, 2160
wsgiref, 1396
wsgiref.handlers, 1401
wsgiref.headers, 1398
wsgiref.simple_server, 1399
wsgiref.types, 1404
wsgiref.util, 1396
wsgiref.validate, 1400
xdrlib, 2191
xml, 1332
xml.dom, 1353
xml.dom.minidom, 1363
xml.dom.pulldom, 1367
xml.etree.ElementInclude, 1345
xml.etree.ElementTree, 1334
xml.parsers.expat, 1381
xml.parsers.expat.errors, 1388
xml.parsers.expat.model, 1388
xmlrpc, 1499
xmlrpc.client, 1500
xmlrpc.server, 1507
xml.sax, 1369
xml.sax.handler, 1371
xml.sax.saxutils, 1376
xml.sax.xmlreader, 1377

Index 2313



The Python Library Reference, Release 3.13.1

zipapp, 1896
zipfile, 576
zipimport, 2023
zlib, 559
zoneinfo, 240

Module (class in ast), 2072
module (pyclbr.Class attribute), 2118
module (pyclbr.Function attribute), 2118
MODULE (symtable.SymbolTableType attribute), 2105
Module browser, 1634
module spec, 2205
module_from_spec() (in module importlib.util), 2047
modulefinder

module, 2028
ModuleFinder (class in modulefinder), 2028
ModuleInfo (class in pkgutil), 2025
ModuleNotFoundError, 107
modules (in module sys), 1917
modules (modulefinder.ModuleFinder attribute), 2028
modules_cleanup() (in module

test.support.import_helper), 1835
modules_setup() (in module

test.support.import_helper), 1835
ModuleSpec (class in importlib.machinery), 2044
ModuleType (class in types), 296
modulus (sys.hash_info attribute), 1914
MON_1 (in module locale), 1541
MON_2 (in module locale), 1541
MON_3 (in module locale), 1541
MON_4 (in module locale), 1541
MON_5 (in module locale), 1541
MON_6 (in module locale), 1541
MON_7 (in module locale), 1541
MON_8 (in module locale), 1541
MON_9 (in module locale), 1541
MON_10 (in module locale), 1541
MON_11 (in module locale), 1541
MON_12 (in module locale), 1541
MONDAY (in module calendar), 249
monotonic() (in module time), 735
monotonic_ns() (in module time), 735
month

calendar command line option, 252
month (calendar.IllegalMonthError attribute), 250
Month (class in calendar), 250
month (datetime.date attribute), 210
month (datetime.datetime attribute), 217
month() (in module calendar), 249
month_abbr (in module calendar), 250
month_name (in module calendar), 249
monthcalendar() (in module calendar), 249
monthdatescalendar() (calendar.Calendar

method), 246
monthdays2calendar() (calendar.Calendar

method), 246
monthdayscalendar() (calendar.Calendar method),

246
monthrange() (in module calendar), 249

--months

calendar command line option, 252
Morsel (class in http.cookies), 1489
most_common() (collections.Counter method), 256
mouseinterval() (in module curses), 911
mousemask() (in module curses), 911
move() (curses.panel.Panel method), 938
move() (curses.window method), 919
move() (in module shutil), 491
move() (mmap.mmap method), 1228
move() (tkinter.ttk.Treeview method), 1628
move_to_end() (collections.OrderedDict method), 267
MozillaCookieJar (class in http.cookiejar), 1494
MRO, 2205
msg (http.client.HTTPResponse attribute), 1444
msg (json.JSONDecodeError attribute), 1294
msg (netrc.NetrcParseError attribute), 632
msg (re.PatternError attribute), 143
msg (traceback.TracebackException attribute), 1986
msilib

module, 2189
msvcrt

module, 2149
mtime (gzip.GzipFile attribute), 564
mtime (tarfile.TarInfo attribute), 595
mtime() (urllib.robotparser.RobotFileParser method),

1434
mul() (in module operator), 432
Mult (class in ast), 2076
MultiCall (class in xmlrpc.client), 1505
MULTILINE (in module re), 138
MultilineContinuationError, 630
MultiLoopChildWatcher (class in asyncio), 1129
multimode() (in module statistics), 393
MultipartConversionError, 1253
multiply() (decimal.Context method), 361
multiprocessing

module, 953
multiprocessing.connection

module, 984
multiprocessing.dummy

module, 987
multiprocessing.Manager()

built-in function, 974
multiprocessing.managers

module, 974
multiprocessing.pool

module, 981
multiprocessing.shared_memory

module, 997
multiprocessing.sharedctypes

module, 972
mutable, 2205

sequence types, 48
mutable sequence

loop over, 46
MutableMapping (class in collections.abc), 274
MutableMapping (class in typing), 1696

2314 Index



The Python Library Reference, Release 3.13.1

MutableSequence (class in collections.abc), 273
MutableSequence (class in typing), 1696
MutableSet (class in collections.abc), 273
MutableSet (class in typing), 1696
mvderwin() (curses.window method), 919
mvwin() (curses.window method), 919
myrights() (imaplib.IMAP4 method), 1459

N
-N

uuid command line option, 1472
-n

timeit command line option, 1869
uuid command line option, 1472

N_TOKENS (in module token), 2111
n_waiting (asyncio.Barrier attribute), 1078
n_waiting (threading.Barrier attribute), 952
NAK (in module curses.ascii), 935
--name

uuid command line option, 1472
name (bz2.BZ2File attribute), 567
Name (class in ast), 2074
name (codecs.CodecInfo attribute), 187
name (contextvars.ContextVar attribute), 1036
name (doctest.DocTest attribute), 1718
name (email.headerregistry.BaseHeader attribute), 1254
name (enum.Enum attribute), 314
name (gzip.GzipFile attribute), 564
name (hashlib.hash attribute), 639
name (hmac.HMAC attribute), 649
name (http.cookiejar.Cookie attribute), 1498
name (ImportError attribute), 107
name (importlib.abc.FileLoader attribute), 2037
name (importlib.abc.Traversable attribute), 2040
name (importlib.machinery.AppleFrameworkLoader at-

tribute), 2046
name (importlib.machinery.ExtensionFileLoader at-

tribute), 2044
name (importlib.machinery.ModuleSpec attribute), 2044
name (importlib.machinery.SourceFileLoader attribute),

2043
name (importlib.machinery.SourcelessFileLoader at-

tribute), 2043
name (importlib.resources.abc.Traversable attribute),

2055
name (in module os), 653
NAME (in module token), 2108
name (inspect.Parameter attribute), 2004
name (io.FileIO attribute), 726
name (logging.Logger attribute), 745
name (lzma.LZMAFile attribute), 572
name (multiprocessing.Process attribute), 961
name (multiprocessing.shared_memory.SharedMemory

attribute), 998
name (os.DirEntry attribute), 685
name (pathlib.PurePath attribute), 445
name (pyclbr.Class attribute), 2118
name (pyclbr.Function attribute), 2118

name (sys.thread_info attribute), 1925
name (tarfile.TarInfo attribute), 595
name (tempfile.TemporaryDirectory attribute), 480
name (threading.Thread attribute), 944
name (traceback.FrameSummary attribute), 1987
name (webbrowser.controller attribute), 1395
name (xml.dom.Attr attribute), 1360
name (xml.dom.DocumentType attribute), 1358
name (zipfile.Path attribute), 582
name() (in module unicodedata), 169
name2codepoint (in module html.entities), 1332
Named Shared Memory, 997
named tuple, 2205
NAMED_FLAGS (enum.EnumCheck attribute), 321
NamedExpr (class in ast), 2078
NamedTemporaryFile() (in module tempfile), 479
NamedTuple (class in typing), 1678
namedtuple() (in module collections), 264
NameError, 108
namelist() (zipfile.ZipFile method), 579
nameprep() (in module encodings.idna), 202
namer (logging.handlers.BaseRotatingHandler attribute),

777
namereplace

error handler's name, 190
namereplace_errors() (in module codecs), 191
names() (in module tkinter.font), 1609
namespace, 2205
--namespace

uuid command line option, 1472
Namespace (class in argparse), 854
Namespace (class in multiprocessing.managers), 977
namespace package, 2205
namespace() (imaplib.IMAP4 method), 1459
Namespace() (multiprocessing.managers.SyncManager

method), 976
NAMESPACE_DNS (in module uuid), 1471
NAMESPACE_OID (in module uuid), 1471
NAMESPACE_URL (in module uuid), 1471
NAMESPACE_X500 (in module uuid), 1471
NamespaceErr, 1361
NamespaceLoader (class in importlib.machinery), 2044
namespaceURI (xml.dom.Node attribute), 1356
nametofont() (in module tkinter.font), 1609
NaN, 16
nan (in module cmath), 344
nan (in module math), 340
nan (sys.hash_info attribute), 1914
nanj (in module cmath), 344
NannyNag, 2117
napms() (in module curses), 911
nargs (optparse.Option attribute), 891
native_id (threading.Thread attribute), 944
nbytes (memoryview attribute), 83
ncurses_version (in module curses), 921
ND (inspect.BufferFlags attribute), 2014
ndiff() (in module difflib), 155
ndim (memoryview attribute), 84

Index 2315



The Python Library Reference, Release 3.13.1

ne() (in module operator), 430
needs_input (bz2.BZ2Decompressor attribute), 569
needs_input (lzma.LZMADecompressor attribute),

574
neg() (in module operator), 432
nested scope, 2205
netmask (ipaddress.IPv4Network attribute), 1520
netmask (ipaddress.IPv6Network attribute), 1522
NetmaskValueError, 1526
netrc

module, 632
netrc (class in netrc), 632
NetrcParseError, 632
netscape (http.cookiejar.CookiePolicy attribute), 1496
network (ipaddress.IPv4Interface attribute), 1524
network (ipaddress.IPv6Interface attribute), 1525
network_address (ipaddress.IPv4Network attribute),

1520
network_address (ipaddress.IPv6Network attribute),

1522
Never (in module typing), 1660
NEVER_EQ (in module test.support), 1822
new() (in module hashlib), 638
new() (in module hmac), 648
new-style class, 2206
new_child() (collections.ChainMap method), 253
new_class() (in module types), 294
new_event_loop() (asyncio.AbstractEventLoopPolicy

method), 1127
new_event_loop() (in module asyncio), 1087
new_panel() (in module curses.panel), 937
NEWLINE (in module token), 2108
newlines (io.TextIOBase attribute), 728
newpad() (in module curses), 911
NewType (class in typing), 1679
newwin() (in module curses), 911
next (pdb command), 1855
next()

built-in function, 22
next() (tarfile.TarFile method), 592
next() (tkinter.ttk.Treeview method), 1628
next_minus() (decimal.Context method), 361
next_minus() (decimal.Decimal method), 354
next_plus() (decimal.Context method), 361
next_plus() (decimal.Decimal method), 354
next_toward() (decimal.Context method), 361
next_toward() (decimal.Decimal method), 354
nextafter() (in module math), 336
nextfile() (in module fileinput), 906
nextkey() (dbm.gnu.gdbm method), 523
nextSibling (xml.dom.Node attribute), 1356
ngettext() (gettext.GNUTranslations method), 1535
ngettext() (gettext.NullTranslations method), 1533
ngettext() (in module gettext), 1532
nice() (in module os), 705
nis

module, 2189
NL (in module curses.ascii), 934

NL (in module token), 2111
nl() (in module curses), 911
nl_langinfo() (in module locale), 1540
nlargest() (in module heapq), 277
nlst() (ftplib.FTP method), 1449
nntplib

module, 2189
NO (in module tkinter.messagebox), 1614
no_cache() (zoneinfo.ZoneInfo class method), 242
NO_EVENTS (monitoring event), 1928
no_proxy, 1410
no_site (sys.flags attribute), 1908
no_tracing() (in module test.support), 1826
no_type_check() (in module typing), 1689
no_type_check_decorator() (in module typing),

1690
no_user_site (sys.flags attribute), 1908
nocbreak() (in module curses), 911
NoDataAllowedErr, 1362
node (uuid.UUID attribute), 1470
node() (in module platform), 788
NoDefault (in module typing), 1693
nodelay() (curses.window method), 919
nodeName (xml.dom.Node attribute), 1356
NodeTransformer (class in ast), 2102
nodeType (xml.dom.Node attribute), 1356
nodeValue (xml.dom.Node attribute), 1356
NodeVisitor (class in ast), 2101
noecho() (in module curses), 911
--no-ensure-ascii

json.tool command line option, 1296
NOEXPR (in module locale), 1542
NOFLAG (in module re), 138
--no-indent

json.tool command line option, 1297
NoModificationAllowedErr, 1362
NonCallableMagicMock (class in unittest.mock), 1787
NonCallableMock (class in unittest.mock), 1767
None (Built-in object), 37
None (built-in variable), 35
NoneType (in module types), 295
nonl() (in module curses), 911
Nonlocal (class in ast), 2097
nonmember() (in module enum), 324
noop() (imaplib.IMAP4 method), 1459
noop() (poplib.POP3 method), 1454
NoOptionError, 630
NOP (opcode), 2130
noqiflush() (in module curses), 911
noraw() (in module curses), 911
--no-report

trace command line option, 1873
NoReturn (in module typing), 1660
NORMAL (in module tkinter.font), 1608
NORMAL_PRIORITY_CLASS (in module subprocess),

1023
NormalDist (class in statistics), 397
normalize() (decimal.Context method), 361

2316 Index



The Python Library Reference, Release 3.13.1

normalize() (decimal.Decimal method), 354
normalize() (in module locale), 1544
normalize() (in module unicodedata), 170
normalize() (xml.dom.Node method), 1357
NORMALIZE_WHITESPACE (in module doctest), 1711
normalvariate() (in module random), 381
normcase() (in module os.path), 467
normpath() (in module os.path), 467
NoSectionError, 630
NoSuchMailboxError, 1314
not

operator, 37
Not (class in ast), 2076
not in

operator, 38, 46
not_() (in module operator), 431
NotADirectoryError, 113
notationDecl() (xml.sax.handler.DTDHandler

method), 1375
NotationDeclHandler()

(xml.parsers.expat.xmlparser method), 1386
notations (xml.dom.DocumentType attribute), 1358
NotConnected, 1440
Notebook (class in tkinter.ttk), 1622
NotEmptyError, 1314
NotEq (class in ast), 2077
NOTEQUAL (in module token), 2109
NotFoundErr, 1362
notify() (asyncio.Condition method), 1075
notify() (threading.Condition method), 948
notify_all() (asyncio.Condition method), 1075
notify_all() (threading.Condition method), 949
notimeout() (curses.window method), 919
NotImplemented (built-in variable), 35
NotImplementedError, 108
NotImplementedType (in module types), 296
NotIn (class in ast), 2077
NotRequired (in module typing), 1665
NOTSET (in module logging), 750
NotStandaloneHandler()

(xml.parsers.expat.xmlparser method), 1386
NotSupportedErr, 1362
NotSupportedError, 547
--no-type-comments

ast command line option, 2104
noutrefresh() (curses.window method), 919
NOVEMBER (in module calendar), 250
now() (datetime.datetime class method), 214
npgettext() (gettext.GNUTranslations method), 1535
npgettext() (gettext.NullTranslations method), 1534
npgettext() (in module gettext), 1532
NSIG (in module signal), 1218
nsmallest() (in module heapq), 277
NT_OFFSET (in module token), 2111
NTEventLogHandler (class in logging.handlers), 783
ntohl() (in module socket), 1156
ntohs() (in module socket), 1156
ntransfercmd() (ftplib.FTP method), 1449

NUL (in module curses.ascii), 934
nullcontext() (in module contextlib), 1964
NullHandler (class in logging), 776
NullTranslations (class in gettext), 1533
num_addresses (ipaddress.IPv4Network attribute),

1520
num_addresses (ipaddress.IPv6Network attribute),

1523
num_tickets (ssl.SSLContext attribute), 1193
--number

timeit command line option, 1869
Number (class in numbers), 329
NUMBER (in module token), 2108
number_class() (decimal.Context method), 361
number_class() (decimal.Decimal method), 354
numbers

module, 329
numerator (fractions.Fraction attribute), 375
numerator (numbers.Rational attribute), 329
numeric

conversions, 39
literals, 38
object, 38
types, operations on, 39

numeric() (in module unicodedata), 169
numinput() (in module turtle), 1574

O
-O

dis command line option, 2125
-o

compileall command line option, 2121
pickletools command line option, 2146
zipapp command line option, 1897

O_APPEND (in module os), 667
O_ASYNC (in module os), 668
O_BINARY (in module os), 668
O_CLOEXEC (in module os), 667
O_CREAT (in module os), 667
O_DIRECT (in module os), 668
O_DIRECTORY (in module os), 668
O_DSYNC (in module os), 667
O_EVTONLY (in module os), 668
O_EXCL (in module os), 667
O_EXLOCK (in module os), 668
O_FSYNC (in module os), 668
O_NDELAY (in module os), 667
O_NOATIME (in module os), 668
O_NOCTTY (in module os), 667
O_NOFOLLOW (in module os), 668
O_NOFOLLOW_ANY (in module os), 668
O_NOINHERIT (in module os), 668
O_NONBLOCK (in module os), 667
O_PATH (in module os), 668
O_RANDOM (in module os), 668
O_RDONLY (in module os), 667
O_RDWR (in module os), 667
O_RSYNC (in module os), 667

Index 2317



The Python Library Reference, Release 3.13.1

O_SEQUENTIAL (in module os), 668
O_SHLOCK (in module os), 668
O_SHORT_LIVED (in module os), 668
O_SYMLINK (in module os), 668
O_SYNC (in module os), 667
O_TEMPORARY (in module os), 668
O_TEXT (in module os), 668
O_TMPFILE (in module os), 668
O_TRUNC (in module os), 667
O_WRONLY (in module os), 667
obj (memoryview attribute), 83
object, 2206

Boolean, 38
bytearray, 48, 63, 64
bytes, 63
code, 100, 519
complex number, 38
dictionary, 87
floating-point, 38
GenericAlias, 93
integer, 38
io.StringIO, 52
list, 48, 49
mapping, 87
memoryview, 63
method, 99
numeric, 38
range, 50
sequence, 46
set, 85
socket, 1143
string, 51
traceback, 1906, 1982
tuple, 48, 49
type, 31
Union, 97

object (built-in class), 22
object (UnicodeError attribute), 111
objects

comparing, 38
flattening, 499
marshalling, 499
persistent, 499
pickling, 499
serializing, 499

oct()

built-in function, 22
octal

literals, 38
octdigits (in module string), 119
OCTOBER (in module calendar), 250
offset (SyntaxError attribute), 110
offset (tarfile.TarInfo attribute), 596
offset (traceback.TracebackException attribute), 1985
offset (xml.parsers.expat.ExpatError attribute), 1387
offset_data (tarfile.TarInfo attribute), 596
OK (in module curses), 921
OK (in module tkinter.messagebox), 1614

ok_command() (tkinter.filedialog.LoadFileDialog
method), 1612

ok_command() (tkinter.filedialog.SaveFileDialog
method), 1612

ok_event() (tkinter.filedialog.FileDialog method),
1611

OKCANCEL (in module tkinter.messagebox), 1614
old_value (contextvars.Token attribute), 1036
OleDLL (class in ctypes), 818
on_motion() (tkinter.dnd.DndHandler method), 1615
on_release() (tkinter.dnd.DndHandler method), 1615
onclick() (in module turtle), 1573
ondrag() (in module turtle), 1568
onecmd() (cmd.Cmd method), 1584
onkey() (in module turtle), 1572
onkeypress() (in module turtle), 1573
onkeyrelease() (in module turtle), 1572
onrelease() (in module turtle), 1568
onscreenclick() (in module turtle), 1573
ontimer() (in module turtle), 1573
OP (in module token), 2111
OP_ALL (in module ssl), 1178
OP_CIPHER_SERVER_PREFERENCE (in module ssl),

1179
OP_ENABLE_KTLS (in module ssl), 1179
OP_ENABLE_MIDDLEBOX_COMPAT (in module ssl),

1179
OP_IGNORE_UNEXPECTED_EOF (in module ssl), 1179
OP_LEGACY_SERVER_CONNECT (in module ssl), 1180
OP_NO_COMPRESSION (in module ssl), 1179
OP_NO_RENEGOTIATION (in module ssl), 1179
OP_NO_SSLv2 (in module ssl), 1178
OP_NO_SSLv3 (in module ssl), 1178
OP_NO_TICKET (in module ssl), 1179
OP_NO_TLSv1 (in module ssl), 1178
OP_NO_TLSv1_1 (in module ssl), 1178
OP_NO_TLSv1_2 (in module ssl), 1178
OP_NO_TLSv1_3 (in module ssl), 1178
OP_SINGLE_DH_USE (in module ssl), 1179
OP_SINGLE_ECDH_USE (in module ssl), 1179
Open (class in tkinter.filedialog), 1611
open()

built-in function, 22
open() (imaplib.IMAP4 method), 1459
open() (importlib.abc.Traversable method), 2040
open() (importlib.resources.abc.Traversable method),

2056
open() (in module bz2), 566
open() (in module codecs), 188
open() (in module dbm), 520
open() (in module dbm.dumb), 525
open() (in module dbm.gnu), 522
open() (in module dbm.ndbm), 524
open() (in module dbm.sqlite3), 522
open() (in module gzip), 563
open() (in module io), 720
open() (in module lzma), 571
open() (in module os), 667

2318 Index



The Python Library Reference, Release 3.13.1

open() (in module shelve), 516
open() (in module tarfile), 587
open() (in module tokenize), 2113
open() (in module wave), 1527
open() (in module webbrowser), 1394
open() (pathlib.Path method), 455
open() (tarfile.TarFile class method), 591
open() (urllib.request.OpenerDirector method), 1413
open() (urllib.request.URLopener method), 1422
open() (webbrowser.controller method), 1395
open() (zipfile.Path method), 582
open() (zipfile.ZipFile method), 579
open_binary() (in module importlib.resources), 2053
open_code() (in module io), 720
open_connection() (in module asyncio), 1066
open_flags (in module dbm.gnu), 523
open_new() (in module webbrowser), 1394
open_new() (webbrowser.controller method), 1396
open_new_tab() (in module webbrowser), 1394
open_new_tab() (webbrowser.controller method),

1396
open_osfhandle() (in module msvcrt), 2149
open_resource() (importlib.abc.ResourceReader

method), 2039
open_resource() (im-

portlib.resources.abc.ResourceReader method),
2055

open_text() (in module importlib.resources), 2053
open_unix_connection() (in module asyncio), 1067
open_unknown() (urllib.request.URLopener method),

1422
open_urlresource() (in module test.support), 1827
OpenerDirector (class in urllib.request), 1409
OpenKey() (in module winreg), 2155
OpenKeyEx() (in module winreg), 2155
openlog() (in module syslog), 2177
openpty() (in module os), 668
openpty() (in module pty), 2168
OpenSSL

(use in module hashlib), 637
(use in module ssl), 1170

OPENSSL_VERSION (in module ssl), 1181
OPENSSL_VERSION_INFO (in module ssl), 1181
OPENSSL_VERSION_NUMBER (in module ssl), 1181
operation

concatenation, 46
repetition, 46
slice, 46
subscript, 46

OperationalError, 547
operations

bitwise, 40
Boolean, 37
masking, 40
shifting, 40

operations on

dictionary type, 87
integer types, 40

list type, 48
mapping types, 87
numeric types, 39
sequence types, 46, 48

operator

- (minus), 38
% (percent), 38
& (ampersand), 40
* (asterisk), 38
**, 38
+ (plus), 38
/ (slash), 38
//, 38
< (less), 38
<<, 40
<=, 38
!=, 38
==, 38
> (greater), 38
>=, 38
>>, 40
^ (caret), 40
| (vertical bar), 40
~ (tilde), 40
and, 37
comparison, 38
in, 38, 46
is, 38
is not, 38
module, 430
not, 37
not in, 38, 46
or, 37

opmap (in module dis), 2145
opname (in module dis), 2145
optim_args_from_interpreter_flags() (in

module test.support), 1824
optimize (sys.flags attribute), 1908
optimize() (in module pickletools), 2147
optimized scope, 2206
OPTIMIZED_BYTECODE_SUFFIXES (in module im-

portlib.machinery), 2041
Option (class in optparse), 891
Optional (in module typing), 1663
OptionConflictError, 904
OptionError, 904
OptionGroup (class in optparse), 885
OptionParser (class in optparse), 888
Options (class in ssl), 1179
options (doctest.Example attribute), 1719
options (ssl.SSLContext attribute), 1193
options() (configparser.ConfigParser method), 626
OptionValueError, 904
optionxform() (configparser.ConfigParser method),

628
optparse

module, 877
or

Index 2319



The Python Library Reference, Release 3.13.1

operator, 37
Or (class in ast), 2076
or_() (in module operator), 432
ord()

built-in function, 25
ordered_attributes (xml.parsers.expat.xmlparser

attribute), 1384
OrderedDict (class in collections), 267
OrderedDict (class in typing), 1694
orig_argv (in module sys), 1917
origin (importlib.machinery.ModuleSpec attribute),

2045
origin_req_host (urllib.request.Request attribute),

1412
origin_server (wsgiref.handlers.BaseHandler

attribute), 1404
os

module, 653, 2163
os_environ (wsgiref.handlers.BaseHandler attribute),

1402
OSError, 108
os.path

module, 464
ossaudiodev

module, 2189
OUT_TO_DEFAULT (in module msvcrt), 2150
OUT_TO_MSGBOX (in module msvcrt), 2151
OUT_TO_STDERR (in module msvcrt), 2150
outfile

json.tool command line option, 1296
--output

pickletools command line option, 2146
zipapp command line option, 1897

output (subprocess.CalledProcessError attribute), 1013
output (subprocess.TimeoutExpired attribute), 1012
output (unittest.TestCase attribute), 1741
output() (http.cookies.BaseCookie method), 1488
output() (http.cookies.Morsel method), 1490
output_charset (email.charset.Charset attribute),

1282
output_codec (email.charset.Charset attribute), 1282
output_difference() (doctest.OutputChecker

method), 1722
OutputChecker (class in doctest), 1722
OutputString() (http.cookies.Morsel method), 1490
OutsideDestinationError, 589
Overflow (class in decimal), 364
OverflowError, 109
overlap() (statistics.NormalDist method), 398
overlaps() (ipaddress.IPv4Network method), 1520
overlaps() (ipaddress.IPv6Network method), 1523
overlay() (curses.window method), 919
overload() (in module typing), 1688
override() (in module typing), 1690
overwrite() (curses.window method), 919
owner() (pathlib.Path method), 461

P
-p

compileall command line option, 2121
pickletools command line option, 2147
timeit command line option, 1869
unittest-discover command line

option, 1730
zipapp command line option, 1897

p (pdb command), 1855
P_ALL (in module os), 712
P_DETACH (in module os), 709
P_NOWAIT (in module os), 708
P_NOWAITO (in module os), 708
P_OVERLAY (in module os), 709
P_PGID (in module os), 712
P_PID (in module os), 712
P_PIDFD (in module os), 712
P_WAIT (in module os), 709
pack() (in module struct), 179
pack() (mailbox.MH method), 1304
pack() (struct.Struct method), 186
pack_into() (in module struct), 179
pack_into() (struct.Struct method), 186
package, 2016, 2206
PackageMetadata (class in importlib.metadata), 2059
PackageNotFoundError, 2057
PackagePath (class in importlib.metadata), 2060
packages_distributions() (in module im-

portlib.metadata), 2061
packed (ipaddress.IPv4Address attribute), 1514
packed (ipaddress.IPv6Address attribute), 1517
packing

binary data, 179
packing (widgets), 1602
PAGER, 1700
pair_content() (in module curses), 912
pair_number() (in module curses), 912
pairwise() (in module itertools), 410
parameter, 2206
Parameter (class in inspect), 2004
ParameterizedMIMEHeader (class in

email.headerregistry), 1256
parameters (inspect.Signature attribute), 2003
params (email.headerregistry.ParameterizedMIMEHeader

attribute), 1256
ParamSpec (class in ast), 2095
ParamSpec (class in typing), 1675
ParamSpecArgs (in module typing), 1677
ParamSpecKwargs (in module typing), 1677
paramstyle (in module sqlite3), 531
pardir (in module os), 717
parent (importlib.machinery.ModuleSpec attribute),

2045
parent (logging.Logger attribute), 745
parent (pathlib.PurePath attribute), 445
parent (pyclbr.Class attribute), 2118
parent (pyclbr.Function attribute), 2118
parent (urllib.request.BaseHandler attribute), 1414

2320 Index



The Python Library Reference, Release 3.13.1

parent() (tkinter.ttk.Treeview method), 1628
parent_process() (in module multiprocessing), 966
parentNode (xml.dom.Node attribute), 1356
parents (collections.ChainMap attribute), 253
parents (pathlib.PurePath attribute), 445
paretovariate() (in module random), 381
parse() (doctest.DocTestParser method), 1720
parse() (email.parser.BytesParser method), 1241
parse() (email.parser.Parser method), 1242
parse() (in module ast), 2099
parse() (in module xml.dom.minidom), 1364
parse() (in module xml.dom.pulldom), 1368
parse() (in module xml.etree.ElementTree), 1343
parse() (in module xml.sax), 1370
parse() (string.Formatter method), 120
parse() (urllib.robotparser.RobotFileParser method),

1434
parse() (xml.etree.ElementTree.ElementTree method),

1349
Parse() (xml.parsers.expat.xmlparser method), 1382
parse() (xml.sax.xmlreader.XMLReader method),

1378
parse_and_bind() (in module readline), 173
parse_args() (argparse.ArgumentParser method),

851
parse_args() (optparse.OptionParser method), 895
PARSE_COLNAMES (in module sqlite3), 530
parse_config_h() (in module sysconfig), 1936
PARSE_DECLTYPES (in module sqlite3), 530
parse_headers() (in module http.client), 1439
parse_intermixed_args() (arg-

parse.ArgumentParser method), 862
parse_known_args() (argparse.ArgumentParser

method), 861
parse_known_intermixed_args() (arg-

parse.ArgumentParser method), 862
parse_qs() (in module urllib.parse), 1426
parse_qsl() (in module urllib.parse), 1427
parseaddr() (in module email.utils), 1284
parsebytes() (email.parser.BytesParser method),

1241
parsedate() (in module email.utils), 1285
parsedate_to_datetime() (in module email.utils),

1285
parsedate_tz() (in module email.utils), 1285
ParseError (class in xml.etree.ElementTree), 1353
ParseFile() (xml.parsers.expat.xmlparser method),

1383
ParseFlags() (in module imaplib), 1457
Parser (class in email.parser), 1241
parser (pathlib.PurePath attribute), 444
ParserCreate() (in module xml.parsers.expat), 1382
ParseResult (class in urllib.parse), 1430
ParseResultBytes (class in urllib.parse), 1431
parsestr() (email.parser.Parser method), 1242
parseString() (in module xml.dom.minidom), 1364
parseString() (in module xml.dom.pulldom), 1369
parseString() (in module xml.sax), 1370

parsing

URL, 1424
ParsingError, 630
partial (asyncio.IncompleteReadError attribute), 1086
partial() (imaplib.IMAP4 method), 1459
partial() (in module functools), 424
partialmethod (class in functools), 424
parties (asyncio.Barrier attribute), 1078
parties (threading.Barrier attribute), 952
partition() (bytearray method), 67
partition() (bytes method), 67
partition() (str method), 56
parts (pathlib.PurePath attribute), 443
Pass (class in ast), 2083
pass_() (poplib.POP3 method), 1454
Paste, 1638
patch() (in module test.support), 1828
patch() (in module unittest.mock), 1776
patch.dict() (in module unittest.mock), 1780
patch.multiple() (in module unittest.mock), 1781
patch.object() (in module unittest.mock), 1779
patch.stopall() (in module unittest.mock), 1783
PATH, 463, 493, 701, 702, 707, 708, 717, 1014, 1393,

1889, 2016
path

configuration file, 2016
module search, 487, 1918, 2015
operations, 439, 464

Path (class in pathlib), 450
Path (class in zipfile), 582
path (http.cookiejar.Cookie attribute), 1498
path (http.cookies.Morsel attribute), 1489
path (http.server.BaseHTTPRequestHandler attribute),

1482
path (ImportError attribute), 107
path (importlib.abc.FileLoader attribute), 2037
path (importlib.machinery.AppleFrameworkLoader at-

tribute), 2046
path (importlib.machinery.ExtensionFileLoader at-

tribute), 2044
path (importlib.machinery.FileFinder attribute), 2042
path (importlib.machinery.SourceFileLoader attribute),

2043
path (importlib.machinery.SourcelessFileLoader at-

tribute), 2043
path (in module sys), 1918
path (os.DirEntry attribute), 685
path based finder, 2207
Path browser, 1634
path entry, 2207
path entry finder, 2207
path entry hook, 2207
path() (in module importlib.resources), 2054
path-like object, 2207
path_hook() (importlib.machinery.FileFinder class

method), 2042
path_hooks (in module sys), 1918
path_importer_cache (in module sys), 1918

Index 2321



The Python Library Reference, Release 3.13.1

path_mtime() (importlib.abc.SourceLoader method),
2038

path_return_ok() (http.cookiejar.CookiePolicy
method), 1495

path_stats() (importlib.abc.SourceLoader method),
2038

path_stats() (importlib.machinery.SourceFileLoader
method), 2043

pathconf() (in module os), 682
pathconf_names (in module os), 682
PathEntryFinder (class in importlib.abc), 2035
PATHEXT, 493
PathFinder (class in importlib.machinery), 2041
pathlib

module, 439
PathLike (class in os), 656
pathname2url() (in module urllib.request), 1408
pathsep (in module os), 717
Path.stem (in module zipfile), 582
Path.suffix (in module zipfile), 582
Path.suffixes (in module zipfile), 582
--pattern

unittest-discover command line

option, 1730
Pattern (class in re), 143
Pattern (class in typing), 1695
pattern (re.Pattern attribute), 145
pattern (re.PatternError attribute), 143
PatternError, 143
pause() (in module signal), 1220
pause_reading() (asyncio.ReadTransport method),

1116
pause_writing() (asyncio.BaseProtocol method),

1119
PAX_FORMAT (in module tarfile), 590
pax_headers (tarfile.TarFile attribute), 594
pax_headers (tarfile.TarInfo attribute), 596
pbkdf2_hmac() (in module hashlib), 641
pd() (in module turtle), 1561
pdb

module, 1850
Pdb (class in pdb), 1850, 1852
.pdbrc

file, 1853
pdf() (statistics.NormalDist method), 398
peek() (bz2.BZ2File method), 567
peek() (gzip.GzipFile method), 564
peek() (io.BufferedReader method), 727
peek() (lzma.LZMAFile method), 571
peek() (weakref.finalize method), 289
PEM_cert_to_DER_cert() (in module ssl), 1175
pen() (in module turtle), 1561
pencolor() (in module turtle), 1562
pending (ssl.MemoryBIO attribute), 1202
pending() (ssl.SSLSocket method), 1186
PendingDeprecationWarning, 114
pendown() (in module turtle), 1561
pensize() (in module turtle), 1561

penup() (in module turtle), 1561
PEP, 2207
PERCENT (in module token), 2109
PERCENTEQUAL (in module token), 2110
perf_counter() (in module time), 735
perf_counter_ns() (in module time), 736
Performance, 1867
perm() (in module math), 334
PermissionError, 113
permutations() (in module itertools), 411
persistence, 499
persistent

objects, 499
persistent_id (pickle protocol), 507
persistent_id() (pickle.Pickler method), 502
persistent_load (pickle protocol), 507
persistent_load() (pickle.Unpickler method), 504
PF_CAN (in module socket), 1148
PF_DIVERT (in module socket), 1149
PF_PACKET (in module socket), 1149
PF_RDS (in module socket), 1149
pformat() (in module pprint), 302
pformat() (pprint.PrettyPrinter method), 303
pgettext() (gettext.GNUTranslations method), 1535
pgettext() (gettext.NullTranslations method), 1534
pgettext() (in module gettext), 1532
PGO (in module test.support), 1821
phase() (in module cmath), 342
pi (in module cmath), 344
pi (in module math), 340
pi() (xml.etree.ElementTree.TreeBuilder method), 1350
pickle

module, 300, 499, 515, 516, 518
pickle() (in module copyreg), 515
PickleBuffer (class in pickle), 504
PickleError, 502
Pickler (class in pickle), 502
pickletools

module, 2146
pickletools command line option

-a, 2146
--annotate, 2146
--indentlevel, 2147
-l, 2147
-m, 2147
--memo, 2147
-o, 2146
--output, 2146
-p, 2147
--preamble, 2147

pickling

objects, 499
PicklingError, 502
pid (asyncio.subprocess.Process attribute), 1082
pid (multiprocessing.Process attribute), 961
pid (subprocess.Popen attribute), 1021
PIDFD_NONBLOCK (in module os), 705
pidfd_open() (in module os), 705

2322 Index



The Python Library Reference, Release 3.13.1

pidfd_send_signal() (in module signal), 1220
PidfdChildWatcher (class in asyncio), 1130
PIPE (in module subprocess), 1012
Pipe() (in module multiprocessing), 964
pipe() (in module os), 668
pipe2() (in module os), 668
PIPE_BUF (in module select), 1207
pipe_connection_lost() (asyn-

cio.SubprocessProtocol method), 1121
pipe_data_received() (asyncio.SubprocessProtocol

method), 1121
PIPE_MAX_SIZE (in module test.support), 1821
pipes

module, 2190
pkgutil

module, 2025
placeholder (textwrap.TextWrapper attribute), 169
platform

module, 788
platform (in module sys), 1918
platform() (in module platform), 788
platlibdir (in module sys), 1919
PlaySound() (in module winsound), 2160
plist

file, 633
plistlib

module, 633
plock() (in module os), 705
PLUS (in module token), 2109
plus() (decimal.Context method), 361
PLUSEQUAL (in module token), 2110
pm() (in module pdb), 1852
POINTER() (in module ctypes), 825
pointer() (in module ctypes), 825
polar() (in module cmath), 342
Policy (class in email.policy), 1247
poll() (in module select), 1206
poll() (multiprocessing.connection.Connection

method), 968
poll() (select.devpoll method), 1208
poll() (select.epoll method), 1209
poll() (select.poll method), 1209
poll() (subprocess.Popen method), 1019
PollSelector (class in selectors), 1214
Pool (class in multiprocessing.pool), 981
pop() (array.array method), 285
pop() (collections.deque method), 259
pop() (dict method), 89
pop() (frozenset method), 87
pop() (mailbox.Mailbox method), 1299
pop() (sequence method), 48
POP3

protocol, 1452
POP3 (class in poplib), 1453
POP3_SSL (class in poplib), 1453
pop_all() (contextlib.ExitStack method), 1969
POP_BLOCK (opcode), 2145
POP_EXCEPT (opcode), 2134

POP_JUMP_IF_FALSE (opcode), 2139
POP_JUMP_IF_NONE (opcode), 2139
POP_JUMP_IF_NOT_NONE (opcode), 2139
POP_JUMP_IF_TRUE (opcode), 2138
pop_source() (shlex.shlex method), 1590
POP_TOP (opcode), 2130
Popen (class in subprocess), 1014
popen() (in module os), 705, 1206
popitem() (collections.OrderedDict method), 267
popitem() (dict method), 89
popitem() (mailbox.Mailbox method), 1300
popleft() (collections.deque method), 259
poplib

module, 1452
port (http.cookiejar.Cookie attribute), 1498
port_specified (http.cookiejar.Cookie attribute),

1498
portion, 2207
pos (json.JSONDecodeError attribute), 1294
pos (re.Match attribute), 147
pos (re.PatternError attribute), 143
pos() (in module operator), 432
pos() (in module turtle), 1559
position (xml.etree.ElementTree.ParseError attribute),

1353
position() (in module turtle), 1559
positional argument, 2207
Positions (class in dis), 2130
positions (inspect.FrameInfo attribute), 2010
positions (inspect.Traceback attribute), 2010
Positions.col_offset (in module dis), 2130
Positions.end_col_offset (in module dis), 2130
Positions.end_lineno (in module dis), 2130
Positions.lineno (in module dis), 2130
POSIX

I/O control, 2165
threads, 1039

posix

module, 2163
POSIX Shared Memory, 997
POSIX_FADV_DONTNEED (in module os), 669
POSIX_FADV_NOREUSE (in module os), 669
POSIX_FADV_NORMAL (in module os), 669
POSIX_FADV_RANDOM (in module os), 669
POSIX_FADV_SEQUENTIAL (in module os), 669
POSIX_FADV_WILLNEED (in module os), 669
posix_fadvise() (in module os), 669
posix_fallocate() (in module os), 668
posix_openpt() (in module os), 669
posix_spawn() (in module os), 706
POSIX_SPAWN_CLOSE (in module os), 706
POSIX_SPAWN_CLOSEFROM (in module os), 706
POSIX_SPAWN_DUP2 (in module os), 706
POSIX_SPAWN_OPEN (in module os), 706
posix_spawnp() (in module os), 707
PosixPath (class in pathlib), 450
post_handshake_auth (ssl.SSLContext attribute),

1193

Index 2323



The Python Library Reference, Release 3.13.1

post_mortem() (in module pdb), 1852
post_setup() (venv.EnvBuilder method), 1892
postcmd() (cmd.Cmd method), 1584
postloop() (cmd.Cmd method), 1584
Pow (class in ast), 2076
pow()

built-in function, 25
pow() (in module math), 338
pow() (in module operator), 432
power() (decimal.Context method), 362
pp (pdb command), 1856
pp() (in module pprint), 301
pprint

module, 301
pprint() (in module pprint), 302
pprint() (pprint.PrettyPrinter method), 303
prcal() (in module calendar), 249
pread() (in module os), 669
preadv() (in module os), 669
--preamble

pickletools command line option, 2147
preamble (email.message.EmailMessage attribute),

1239
preamble (email.message.Message attribute), 1276
precmd() (cmd.Cmd method), 1584
prefix (in module sys), 1919
prefix (xml.dom.Attr attribute), 1360
prefix (xml.dom.Node attribute), 1356
prefix (zipimport.zipimporter attribute), 2024
PREFIXES (in module site), 2017
prefixlen (ipaddress.IPv4Network attribute), 1520
prefixlen (ipaddress.IPv6Network attribute), 1523
preloop() (cmd.Cmd method), 1584
prepare() (graphlib.TopologicalSorter method), 326
prepare() (logging.handlers.QueueHandler method),

786
prepare() (logging.handlers.QueueListener method),

787
prepare_class() (in module types), 294
prepare_input_source() (in module

xml.sax.saxutils), 1377
PrepareProtocol (class in sqlite3), 546
PrettyPrinter (class in pprint), 302
prev() (tkinter.ttk.Treeview method), 1628
previousSibling (xml.dom.Node attribute), 1356
print()

built-in function, 25
print() (traceback.TracebackException method), 1986
print_callees() (pstats.Stats method), 1865
print_callers() (pstats.Stats method), 1864
print_exc() (in module traceback), 1983
print_exc() (timeit.Timer method), 1869
print_exception() (in module traceback), 1982
print_help() (argparse.ArgumentParser method),

860
print_last() (in module traceback), 1983
print_list() (in module traceback), 1983
print_stack() (asyncio.Task method), 1063

print_stack() (in module traceback), 1983
print_stats() (profile.Profile method), 1862
print_stats() (pstats.Stats method), 1864
print_tb() (in module traceback), 1982
print_usage() (argparse.ArgumentParser method),

860
print_usage() (optparse.OptionParser method), 897
print_version() (optparse.OptionParser method),

887
print_warning() (in module test.support), 1825
printable (in module string), 119
printdir() (zipfile.ZipFile method), 580
printf-style formatting, 61, 76
PRIO_DARWIN_BG (in module os), 658
PRIO_DARWIN_NONUI (in module os), 658
PRIO_DARWIN_PROCESS (in module os), 658
PRIO_DARWIN_THREAD (in module os), 658
PRIO_PGRP (in module os), 658
PRIO_PROCESS (in module os), 658
PRIO_USER (in module os), 658
PriorityQueue (class in asyncio), 1084
PriorityQueue (class in queue), 1032
prlimit() (in module resource), 2173
prmonth() (calendar.TextCalendar method), 246
prmonth() (in module calendar), 249
ProactorEventLoop (class in asyncio), 1107
process

group, 657, 658
id, 658
id of parent, 658
killing, 705
scheduling priority, 658, 660
signalling, 705

--process

timeit command line option, 1869
Process (class in multiprocessing), 960
process() (logging.LoggerAdapter method), 757
process_cpu_count() (in module os), 716
process_exited() (asyncio.SubprocessProtocol

method), 1121
process_request() (socketserver.BaseServer

method), 1477
process_time() (in module time), 736
process_time_ns() (in module time), 736
process_tokens() (in module tabnanny), 2117
ProcessError, 962
processes, light-weight, 1039
ProcessingInstruction() (in module

xml.etree.ElementTree), 1343
processingInstruction()

(xml.sax.handler.ContentHandler method),
1375

ProcessingInstructionHandler()

(xml.parsers.expat.xmlparser method), 1385
ProcessLookupError, 113
processor time, 736, 740
processor() (in module platform), 789

2324 Index



The Python Library Reference, Release 3.13.1

ProcessPoolExecutor (class in concurrent.futures),
1006

prod() (in module math), 338
product() (in module itertools), 411
profile

module, 1861
Profile (class in profile), 1861
profile function, 941, 1913, 1920
profiler, 1913, 1920
profiling, deterministic, 1859
ProgrammingError, 547
Progressbar (class in tkinter.ttk), 1623
prompt (cmd.Cmd attribute), 1584
prompt_user_passwd() (url-

lib.request.FancyURLopener method), 1423
prompts, interpreter, 1919
propagate (logging.Logger attribute), 745
property (built-in class), 25
property list, 633
property() (in module enum), 324
property_declaration_handler (in module

xml.sax.handler), 1372
property_dom_node (in module xml.sax.handler),

1373
property_lexical_handler (in module

xml.sax.handler), 1372
property_xml_string (in module xml.sax.handler),

1373
property.deleter()

built-in function, 26
property.getter()

built-in function, 26
PropertyMock (class in unittest.mock), 1768
property.setter()

built-in function, 26
prot_c() (ftplib.FTP_TLS method), 1452
prot_p() (ftplib.FTP_TLS method), 1452
proto (socket.socket attribute), 1166
protocol

context management, 92
copy, 506
FTP, 1423, 1446
HTTP, 1423, 1435, 1438, 1481
IMAP4, 1455
IMAP4_SSL, 1455
IMAP4_stream, 1455
iterator, 45
POP3, 1452
SMTP, 1462

Protocol (class in asyncio), 1118
Protocol (class in typing), 1680
protocol (ssl.SSLContext attribute), 1193
PROTOCOL_SSLv3 (in module ssl), 1177
PROTOCOL_SSLv23 (in module ssl), 1177
PROTOCOL_TLS (in module ssl), 1177
PROTOCOL_TLS_CLIENT (in module ssl), 1177
PROTOCOL_TLS_SERVER (in module ssl), 1177
PROTOCOL_TLSv1 (in module ssl), 1177

PROTOCOL_TLSv1_1 (in module ssl), 1177
PROTOCOL_TLSv1_2 (in module ssl), 1178
protocol_version (http.server.BaseHTTPRequestHandler

attribute), 1483
PROTOCOL_VERSION (imaplib.IMAP4 attribute), 1461
ProtocolError (class in xmlrpc.client), 1504
provisional API, 2207
provisional package, 2207
proxy() (in module weakref), 287
proxyauth() (imaplib.IMAP4 method), 1459
ProxyBasicAuthHandler (class in urllib.request),

1410
ProxyDigestAuthHandler (class in urllib.request),

1411
ProxyHandler (class in urllib.request), 1410
ProxyType (in module weakref), 289
ProxyTypes (in module weakref), 290
pryear() (calendar.TextCalendar method), 246
ps1 (in module sys), 1919
ps2 (in module sys), 1919
pstats

module, 1863
pstdev() (in module statistics), 393
pthread_getcpuclockid() (in module time), 733
pthread_kill() (in module signal), 1220
pthread_sigmask() (in module signal), 1220
pthreads, 1039
pthreads (sys._emscripten_info attribute), 1905
ptsname() (in module os), 670
pty

module, 668, 2168
pu() (in module turtle), 1561
publicId (xml.dom.DocumentType attribute), 1358
PullDom (class in xml.dom.pulldom), 1368
punctuation (in module string), 119
punctuation_chars (shlex.shlex attribute), 1591
PurePath (class in pathlib), 441
PurePosixPath (class in pathlib), 442
PureWindowsPath (class in pathlib), 442
purge() (in module re), 143
Purpose.CLIENT_AUTH (in module ssl), 1181
Purpose.SERVER_AUTH (in module ssl), 1181
push() (code.InteractiveConsole method), 2021
push() (contextlib.ExitStack method), 1969
push_async_callback() (contextlib.AsyncExitStack

method), 1969
push_async_exit() (contextlib.AsyncExitStack

method), 1969
PUSH_EXC_INFO (opcode), 2134
PUSH_NULL (opcode), 2141
push_source() (shlex.shlex method), 1590
push_token() (shlex.shlex method), 1590
put() (asyncio.Queue method), 1084
put() (multiprocessing.Queue method), 964
put() (multiprocessing.SimpleQueue method), 965
put() (queue.Queue method), 1033
put() (queue.SimpleQueue method), 1035
put_nowait() (asyncio.Queue method), 1084

Index 2325



The Python Library Reference, Release 3.13.1

put_nowait() (multiprocessing.Queue method), 964
put_nowait() (queue.Queue method), 1033
put_nowait() (queue.SimpleQueue method), 1035
putch() (in module msvcrt), 2150
putenv() (in module os), 659
putheader() (http.client.HTTPConnection method),

1443
putp() (in module curses), 912
putrequest() (http.client.HTTPConnection method),

1443
putwch() (in module msvcrt), 2150
putwin() (curses.window method), 919
pvariance() (in module statistics), 393
pwd

module, 465, 2164
pwd() (ftplib.FTP method), 1450
pwrite() (in module os), 670
pwritev() (in module os), 670
py_compile

module, 2119
Py_DEBUG (in module test.support), 1822
py_object (class in ctypes), 829
PY_RESUME (monitoring event), 1928
PY_RETURN (monitoring event), 1928
PY_START (monitoring event), 1928
PY_THROW (monitoring event), 1928
PY_UNWIND (monitoring event), 1928
PY_YIELD (monitoring event), 1928
pycache_prefix (in module sys), 1905
PyCF_ALLOW_TOP_LEVEL_AWAIT (in module ast),

2103
PyCF_ONLY_AST (in module ast), 2103
PyCF_OPTIMIZED_AST (in module ast), 2103
PyCF_TYPE_COMMENTS (in module ast), 2103
PycInvalidationMode (class in py_compile), 2119
pyclbr

module, 2117
PyCompileError, 2119
PyDLL (class in ctypes), 818
pydoc

module, 1699
pyexpat

module, 1381
PYFUNCTYPE() (in module ctypes), 822
--python

zipapp command line option, 1897
Python 3000, 2207
Python Editor, 1634
Python Enhancement Proposals

PEP 1, 2207
PEP 8, 29
PEP 205, 290
PEP 227, 1992
PEP 235, 2032
PEP 236, 1993
PEP 237, 62, 78
PEP 238, 1992, 2200
PEP 246, 546

PEP 249, 526, 529, 541, 542, 547, 550, 556
PEP 0249#threadsafety, 531
PEP 255, 1992
PEP 263, 2032, 2113
PEP 273, 2023
PEP 278, 2210
PEP 282, 494, 762
PEP 292, 128
PEP 302, 33, 487, 1918, 2023, 2026, 2027, 2030,

2032, 20352037, 2204
PEP 305, 605
PEP 307, 500
PEP 324, 1010
PEP 328, 33, 1992, 2032
PEP 338, 2031
PEP 342, 273
PEP 343, 1973, 1992, 2198
PEP 362, 2007, 2196, 2206
PEP 366, 2031, 2032
PEP 370, 2018
PEP 378, 123
PEP 380#use-of-stopiteration-to-return-values,

1929
PEP 383, 190, 1143
PEP 387, 114
PEP 393, 195, 1917
PEP 405, 1887
PEP 411, 1914, 1922, 2207
PEP 412, 421
PEP 420, 2032, 2205, 2207
PEP 421, 1915, 1916
PEP 428, 440
PEP 434, 1645
PEP 442, 1995
PEP 443, 2201
PEP 451, 1917, 2026, 20302032
PEP 453, 1885
PEP 461, 78
PEP 468, 268
PEP 475, 25, 113, 667, 671, 673, 711, 736, 1159,

11611164, 12071210, 1214, 1223
PEP 479, 110, 1992
PEP 483, 2201
PEP 484, 97, 1649, 1658, 1672, 1689, 2072, 2099,

2103, 2195, 2201, 2210
PEP 485, 336, 344
PEP 488, 1835, 2032, 2046, 2119
PEP 489, 2033, 2041, 2043, 2044, 2048
PEP 492, 274, 2014, 2196, 2198
PEP 495, 240
PEP 498, 2200
PEP 506, 650
PEP 515, 123, 374
PEP 519, 2207
PEP 524, 718
PEP 525, 274, 1914, 1922, 2014, 2196
PEP 526, 1665, 1679, 1950, 1957, 2099, 2103,

2195, 2210

2326 Index



The Python Library Reference, Release 3.13.1

PEP 529, 678, 1912, 1923
PEP 538, 1545
PEP 540, 654, 1545
PEP 544, 1659, 1680
PEP 552, 2033, 2119
PEP 557, 1950
PEP 560, 294, 295
PEP 563, 1693, 1992
PEP 565, 114
PEP 566, 2059
PEP 567, 1035, 1090, 1112
PEP 574, 501, 513
PEP 578, 1839, 1901
PEP 584, 254, 262, 268, 288, 298, 655, 656
PEP 585, 97, 271, 297, 16931699, 2201
PEP 586, 1664
PEP 589, 1684
PEP 591, 1665, 1689
PEP 593, 1668, 1691
PEP 594, 2183, 21872191
PEP 597, 720
PEP 604, 99
PEP 610, 2062
PEP 612, 1651, 1657, 1664, 1677, 1698
PEP 613, 1662
PEP 615, 240
PEP 626, 2128
PEP 632, 2188
PEP 644, 1171
PEP 646, 1675
PEP 647, 1669
PEP 649, 1992
PEP 655, 1665, 1684
PEP 667, 21, 1851
PEP 673, 1662
PEP 675, 1660
PEP 681, 1688
PEP 682, 123
PEP 683, 2202
PEP 686, 655, 720
PEP 688, 275
PEP 692, 1670
PEP 695, 1660, 1672, 1673, 1675, 1676, 1699
PEP 698, 1690
PEP 702, 1949
PEP 703, 2200, 2202
PEP 705, 1666
PEP 706, 597
PEP 709, 21
PEP 742, 1669
PEP 3101, 120
PEP 3105, 1992
PEP 3112, 1992
PEP 3115, 294, 2098
PEP 3116, 2210
PEP 3118, 79
PEP 3119, 276, 1975
PEP 3120, 2033

PEP 3134, 106
PEP 3141, 329, 1975
PEP 3147, 1835, 2030, 2033, 2046, 2119,

21212123
PEP 3148, 1009
PEP 3149, 1901
PEP 3151, 113, 1146, 1205, 2172
PEP 3154, 500
PEP 3155, 2208
PEP 3333, 13961400, 1403, 1404
PEP 3333#input-and-error-streams, 1404
PEP 3333#optional-platform-specific-file-handling,

1404
PEP 3333#the-start-response-callable,

1404
python_branch() (in module platform), 789
python_build() (in module platform), 789
python_compiler() (in module platform), 789
PYTHON_CPU_COUNT, 716, 966
PYTHON_DOM, 1354
PYTHON_GIL, 2202
python_implementation() (in module platform),

789
python_is_optimized() (in module test.support),

1823
python_revision() (in module platform), 789
python_version() (in module platform), 789
python_version_tuple() (in module platform), 789
PYTHONASYNCIODEBUG, 1103, 1139, 1701
PYTHONBREAKPOINT, 9, 1904
PYTHONCASEOK, 33
PYTHONCOERCECLOCALE, 654
PYTHONDEVMODE, 1700
PYTHONDONTWRITEBYTECODE, 1905
PYTHONFAULTHANDLER, 1701, 1848
PythonFinalizationError, 109
PYTHONHOME, 1830, 2064
Pythonic, 2207
PYTHONINTMAXSTRDIGITS, 102, 1916
PYTHONIOENCODING, 654, 1924
PYTHONLEGACYWINDOWSFSENCODING, 1923
PYTHONLEGACYWINDOWSSTDIO, 1924
PYTHONMALLOC, 1701
python--m-py_compile command line option

-, 2120
<file>, 2120
-q, 2120
--quiet, 2120

python--m-sqlite3-[-h]-[-v]-[filename]-[sql]

command line option

-h, 549
--help, 549
-v, 549
--version, 549

PYTHONNOUSERSITE, 2017
PYTHONPATH, 1830, 1918, 2064
PYTHONPLATLIBDIR, 2064
PYTHONPYCACHEPREFIX, 1905

Index 2327



The Python Library Reference, Release 3.13.1

PYTHONSAFEPATH, 1918, 2193
PYTHONSTARTUP, 175, 1044, 1641, 1916, 2017
PYTHONTRACEMALLOC, 1874, 1880
PYTHONTZPATH, 245
PYTHONUNBUFFERED, 1924
PYTHONUSERBASE, 2017
PYTHONUSERSITE, 1830
PYTHONUTF8, 654, 1924
PYTHONWARNDEFAULTENCODING, 720
PYTHONWARNINGS, 1701, 1944, 1945
PyZipFile (class in zipfile), 583

Q
-q

compileall command line option, 2121
python--m-py_compile command line

option, 2120
qiflush() (in module curses), 912
QName (class in xml.etree.ElementTree), 1350
qsize() (asyncio.Queue method), 1084
qsize() (multiprocessing.Queue method), 964
qsize() (queue.Queue method), 1033
qsize() (queue.SimpleQueue method), 1034
qualified name, 2208
quantiles() (in module statistics), 395
quantiles() (statistics.NormalDist method), 398
quantize() (decimal.Context method), 362
quantize() (decimal.Decimal method), 354
QueryInfoKey() (in module winreg), 2155
QueryReflectionKey() (in module winreg), 2157
QueryValue() (in module winreg), 2155
QueryValueEx() (in module winreg), 2155
QUESTION (in module tkinter.messagebox), 1614
queue

module, 1032
Queue (class in asyncio), 1083
Queue (class in multiprocessing), 964
Queue (class in queue), 1032
queue (sched.scheduler attribute), 1031
Queue() (multiprocessing.managers.SyncManager

method), 976
QueueEmpty, 1085
QueueFull, 1085
QueueHandler (class in logging.handlers), 786
QueueListener (class in logging.handlers), 787
QueueShutDown, 1085
quick_ratio() (difflib.SequenceMatcher method), 159
--quiet

python--m-py_compile command line

option, 2120
quiet (sys.flags attribute), 1908
quit (built-in variable), 36
quit (pdb command), 1858
quit() (ftplib.FTP method), 1450
quit() (poplib.POP3 method), 1454
quit() (smtplib.SMTP method), 1468
quit() (tkinter.filedialog.FileDialog method), 1611
quitting (bdb.Bdb attribute), 1846

quopri

module, 1324
quote() (in module email.utils), 1284
quote() (in module shlex), 1588
quote() (in module urllib.parse), 1431
QUOTE_ALL (in module csv), 608
quote_from_bytes() (in module urllib.parse), 1431
QUOTE_MINIMAL (in module csv), 609
QUOTE_NONE (in module csv), 609
QUOTE_NONNUMERIC (in module csv), 609
QUOTE_NOTNULL (in module csv), 609
quote_plus() (in module urllib.parse), 1431
QUOTE_STRINGS (in module csv), 609
quoteattr() (in module xml.sax.saxutils), 1377
quotechar (csv.Dialect attribute), 610
quoted-printable

encoding, 1324
quotes (shlex.shlex attribute), 1591
quoting (csv.Dialect attribute), 610

R
-R

trace command line option, 1873
-r

compileall command line option, 2121
timeit command line option, 1869
trace command line option, 1872

R_OK (in module os), 676
radians() (in module math), 339
radians() (in module turtle), 1560
radix (sys.float_info attribute), 1910
radix() (decimal.Context method), 362
radix() (decimal.Decimal method), 355
RADIXCHAR (in module locale), 1542
raise

statement, 105
Raise (class in ast), 2082
RAISE (monitoring event), 1928
raise_on_defect (email.policy.Policy attribute), 1248
raise_signal() (in module signal), 1220
RAISE_VARARGS (opcode), 2140
raiseExceptions (in module logging), 762
RAND_add() (in module ssl), 1174
RAND_bytes() (in module ssl), 1174
RAND_status() (in module ssl), 1174
randbelow() (in module secrets), 650
randbits() (in module secrets), 650
randbytes() (in module random), 378
randint() (in module random), 378
random

module, 377
Random (class in random), 381
random command line option

-c, 385
--choice, 385
-f, 385
--float, 385
-h, 385

2328 Index



The Python Library Reference, Release 3.13.1

--help, 385
-i, 385
--integer, 385

random() (in module random), 380
random() (random.Random method), 381
randrange() (in module random), 378
range

object, 50
range (built-in class), 50
RARROW (in module token), 2111
ratio() (difflib.SequenceMatcher method), 159
Rational (class in numbers), 329
raw (io.BufferedIOBase attribute), 725
raw() (in module curses), 912
raw() (pickle.PickleBuffer method), 504
raw_data_manager (in module

email.contentmanager), 1260
raw_decode() (json.JSONDecoder method), 1292
raw_input() (code.InteractiveConsole method), 2021
RawArray() (in module multiprocessing.sharedctypes),

972
RawConfigParser (class in configparser), 629
RawDescriptionHelpFormatter (class in argparse),

836
RawIOBase (class in io), 724
RawPen (class in turtle), 1577
RawTextHelpFormatter (class in argparse), 836
RawTurtle (class in turtle), 1577
RawValue() (in module multiprocessing.sharedctypes),

972
RBRACE (in module token), 2109
re

module, 52, 130, 486
re (re.Match attribute), 147
READ (inspect.BufferFlags attribute), 2015
read() (asyncio.StreamReader method), 1068
read() (codecs.StreamReader method), 194
read() (configparser.ConfigParser method), 627
read() (http.client.HTTPResponse method), 1443
read() (imaplib.IMAP4 method), 1459
read() (in module os), 671
read() (io.BufferedIOBase method), 725
read() (io.BufferedReader method), 727
read() (io.RawIOBase method), 724
read() (io.TextIOBase method), 729
read() (mimetypes.MimeTypes method), 1318
read() (mmap.mmap method), 1228
read() (sqlite3.Blob method), 546
read() (ssl.MemoryBIO method), 1202
read() (ssl.SSLSocket method), 1183
read() (urllib.robotparser.RobotFileParser method),

1434
read() (zipfile.ZipFile method), 580
read1() (bz2.BZ2File method), 567
read1() (io.BufferedIOBase method), 725
read1() (io.BufferedReader method), 727
read1() (io.BytesIO method), 727
read_binary() (in module importlib.resources), 2053

read_byte() (mmap.mmap method), 1228
read_bytes() (importlib.abc.Traversable method),

2040
read_bytes() (importlib.resources.abc.Traversable

method), 2056
read_bytes() (pathlib.Path method), 455
read_bytes() (zipfile.Path method), 583
read_dict() (configparser.ConfigParser method), 627
read_environ() (in module wsgiref.handlers), 1404
read_events() (xml.etree.ElementTree.XMLPullParser

method), 1352
read_file() (configparser.ConfigParser method), 627
read_history_file() (in module readline), 173
read_init_file() (in module readline), 173
read_mime_types() (in module mimetypes), 1317
read_string() (configparser.ConfigParser method),

627
read_text() (importlib.abc.Traversable method),

2040
read_text() (importlib.resources.abc.Traversable

method), 2056
read_text() (in module importlib.resources), 2053
read_text() (pathlib.Path method), 455
read_text() (zipfile.Path method), 583
read_token() (shlex.shlex method), 1590
read_windows_registry() (mimetypes.MimeTypes

method), 1318
READABLE (in module _tkinter), 1608
readable() (bz2.BZ2File method), 567
readable() (io.IOBase method), 723
readall() (io.RawIOBase method), 724
reader() (in module csv), 605
ReadError, 589
readexactly() (asyncio.StreamReader method), 1068
readfp() (mimetypes.MimeTypes method), 1318
readframes() (wave.Wave_read method), 1528
readinto() (bz2.BZ2File method), 567
readinto() (http.client.HTTPResponse method), 1443
readinto() (io.BufferedIOBase method), 725
readinto() (io.RawIOBase method), 724
readinto1() (io.BufferedIOBase method), 725
readinto1() (io.BytesIO method), 727
readline

module, 172
readline() (asyncio.StreamReader method), 1068
readline() (codecs.StreamReader method), 194
readline() (imaplib.IMAP4 method), 1459
readline() (io.IOBase method), 723
readline() (io.TextIOBase method), 729
readline() (mmap.mmap method), 1228
readlines() (codecs.StreamReader method), 195
readlines() (io.IOBase method), 723
readlink() (in module os), 682
readlink() (pathlib.Path method), 453
readmodule() (in module pyclbr), 2117
readmodule_ex() (in module pyclbr), 2117
ReadOnly (in module typing), 1665
readonly (memoryview attribute), 84

Index 2329



The Python Library Reference, Release 3.13.1

ReadTransport (class in asyncio), 1114
readuntil() (asyncio.StreamReader method), 1068
readv() (in module os), 673
ready() (multiprocessing.pool.AsyncResult method),

983
Real (class in numbers), 329
real (numbers.Complex attribute), 329
real_max_memuse (in module test.support), 1822
real_quick_ratio() (difflib.SequenceMatcher

method), 159
realpath() (in module os.path), 468
REALTIME_PRIORITY_CLASS (in module subprocess),

1023
reap_children() (in module test.support), 1827
reap_threads() (in module

test.support.threading_helper), 1832
reason (http.client.HTTPResponse attribute), 1444
reason (ssl.SSLError attribute), 1173
reason (UnicodeError attribute), 111
reason (urllib.error.HTTPError attribute), 1433
reason (urllib.error.URLError attribute), 1433
reattach() (tkinter.ttk.Treeview method), 1628
recent() (imaplib.IMAP4 method), 1459
reconfigure() (io.TextIOWrapper method), 730
record_original_stdout() (in module

test.support), 1824
RECORDS (inspect.BufferFlags attribute), 2015
records (unittest.TestCase attribute), 1741
RECORDS_RO (inspect.BufferFlags attribute), 2015
rect() (in module cmath), 342
rectangle() (in module curses.textpad), 932
RecursionError, 109
recursive_repr() (in module reprlib), 307
recv() (multiprocessing.connection.Connection

method), 968
recv() (socket.socket method), 1161
recv_bytes() (multiprocessing.connection.Connection

method), 968
recv_bytes_into() (multiprocess-

ing.connection.Connection method), 968
recv_fds() (in module socket), 1158
recv_into() (socket.socket method), 1163
recvfrom() (socket.socket method), 1161
recvfrom_into() (socket.socket method), 1163
recvmsg() (socket.socket method), 1162
recvmsg_into() (socket.socket method), 1162
redirect_request() (url-

lib.request.HTTPRedirectHandler method),
1415

redirect_stderr() (in module contextlib), 1966
redirect_stdout() (in module contextlib), 1965
redisplay() (in module readline), 173
redrawln() (curses.window method), 919
redrawwin() (curses.window method), 919
reduce() (in module functools), 425
reducer_override() (pickle.Pickler method), 503
ref (class in weakref), 287
refcount_test() (in module test.support), 1827

reference count, 2208
ReferenceError, 109
ReferenceType (in module weakref), 289
refold_source (email.policy.EmailPolicy attribute),

1250
refresh() (curses.window method), 919
REG_BINARY (in module winreg), 2158
REG_DWORD (in module winreg), 2158
REG_DWORD_BIG_ENDIAN (in module winreg), 2158
REG_DWORD_LITTLE_ENDIAN (in module winreg),

2158
REG_EXPAND_SZ (in module winreg), 2159
REG_FULL_RESOURCE_DESCRIPTOR (in module win-

reg), 2159
REG_LINK (in module winreg), 2159
REG_MULTI_SZ (in module winreg), 2159
REG_NONE (in module winreg), 2159
REG_QWORD (in module winreg), 2159
REG_QWORD_LITTLE_ENDIAN (in module winreg),

2159
REG_RESOURCE_LIST (in module winreg), 2159
REG_RESOURCE_REQUIREMENTS_LIST (in module

winreg), 2159
REG_SZ (in module winreg), 2159
RegexFlag (class in re), 137
register() (abc.ABCMeta method), 1976
register() (argparse.ArgumentParser method), 862
register() (in module atexit), 1980
register() (in module codecs), 188
register() (in module faulthandler), 1849
register() (in module webbrowser), 1394
register() (multiprocessing.managers.BaseManager

method), 975
register() (select.devpoll method), 1207
register() (select.epoll method), 1208
register() (selectors.BaseSelector method), 1213
register() (select.poll method), 1209
register_adapter() (in module sqlite3), 530
register_archive_format() (in module shutil),

495
register_at_fork() (in module os), 707
register_callback() (in module sys.monitoring),

1930
register_converter() (in module sqlite3), 530
register_defect() (email.policy.Policy method),

1248
register_dialect() (in module csv), 606
register_error() (in module codecs), 190
register_function() (xml-

rpc.server.CGIXMLRPCRequestHandler
method), 1511

register_function() (xml-
rpc.server.SimpleXMLRPCServer method),
1508

register_instance() (xml-
rpc.server.CGIXMLRPCRequestHandler
method), 1511

register_instance() (xml-

2330 Index



The Python Library Reference, Release 3.13.1

rpc.server.SimpleXMLRPCServer method),
1508

register_introspection_functions() (xml-
rpc.server.CGIXMLRPCRequestHandler
method), 1511

register_introspection_functions() (xml-
rpc.server.SimpleXMLRPCServer method),
1508

register_multicall_functions() (xml-
rpc.server.CGIXMLRPCRequestHandler
method), 1511

register_multicall_functions() (xml-
rpc.server.SimpleXMLRPCServer method),
1508

register_namespace() (in module
xml.etree.ElementTree), 1343

register_optionflag() (in module doctest), 1712
register_shape() (in module turtle), 1575
register_unpack_format() (in module shutil), 496
registerDOMImplementation() (in module

xml.dom), 1354
registerResult() (in module unittest), 1756
REGTYPE (in module tarfile), 589
regular package, 2208
relative

URL, 1424
relative_to() (pathlib.PurePath method), 448
release() (_thread.lock method), 1041
release() (asyncio.Condition method), 1076
release() (asyncio.Lock method), 1074
release() (asyncio.Semaphore method), 1077
release() (in module platform), 789
release() (logging.Handler method), 750
release() (memoryview method), 81
release() (multiprocessing.Lock method), 970
release() (multiprocessing.RLock method), 971
release() (pickle.PickleBuffer method), 504
release() (threading.Condition method), 948
release() (threading.Lock method), 945
release() (threading.RLock method), 946
release() (threading.Semaphore method), 949
reload() (in module importlib), 2033
relpath() (in module os.path), 468
remainder() (decimal.Context method), 362
remainder() (in module math), 335
remainder_near() (decimal.Context method), 362
remainder_near() (decimal.Decimal method), 355
RemoteDisconnected, 1440
remove() (array.array method), 285
remove() (collections.deque method), 260
remove() (frozenset method), 87
remove() (in module os), 683
remove() (mailbox.Mailbox method), 1298
remove() (mailbox.MH method), 1304
remove() (sequence method), 48
remove() (xml.etree.ElementTree.Element method),

1347

remove_child_handler() (asyn-
cio.AbstractChildWatcher method), 1129

remove_done_callback() (asyncio.Future method),
1112

remove_done_callback() (asyncio.Task method),
1062

remove_flag() (mailbox.Maildir method), 1302
remove_flag() (mailbox.MaildirMessage method),

1308
remove_flag() (mailbox.mboxMessage method), 1309
remove_flag() (mailbox.MMDFMessage method),

1313
remove_folder() (mailbox.Maildir method), 1301
remove_folder() (mailbox.MH method), 1304
remove_header() (urllib.request.Request method),

1412
remove_history_item() (in module readline), 174
remove_label() (mailbox.BabylMessage method),

1312
remove_option() (configparser.ConfigParser

method), 628
remove_option() (optparse.OptionParser method),

896
remove_reader() (asyncio.loop method), 1097
remove_section() (configparser.ConfigParser

method), 628
remove_sequence() (mailbox.MHMessage method),

1311
remove_signal_handler() (asyncio.loop method),

1100
remove_writer() (asyncio.loop method), 1097
removeAttribute() (xml.dom.Element method),

1359
removeAttributeNode() (xml.dom.Element

method), 1359
removeAttributeNS() (xml.dom.Element method),

1359
removeChild() (xml.dom.Node method), 1357
removedirs() (in module os), 683
removeFilter() (logging.Handler method), 751
removeFilter() (logging.Logger method), 749
removeHandler() (in module unittest), 1756
removeHandler() (logging.Logger method), 749
removeprefix() (bytearray method), 65
removeprefix() (bytes method), 65
removeprefix() (str method), 56
removeResult() (in module unittest), 1756
removesuffix() (bytearray method), 66
removesuffix() (bytes method), 66
removesuffix() (str method), 57
removexattr() (in module os), 700
rename() (ftplib.FTP method), 1450
rename() (imaplib.IMAP4 method), 1459
rename() (in module os), 683
rename() (pathlib.Path method), 460
renames() (in module os), 684
reopenIfNeeded() (log-

ging.handlers.WatchedFileHandler method),

Index 2331



The Python Library Reference, Release 3.13.1

776
reorganize() (dbm.gnu.gdbm method), 523
--repeat

timeit command line option, 1869
repeat() (in module itertools), 412
repeat() (in module timeit), 1868
repeat() (timeit.Timer method), 1869
repetition

operation, 46
REPL, 2208
replace

error handler's name, 189
replace() (bytearray method), 67
replace() (bytes method), 67
replace() (curses.panel.Panel method), 938
replace() (datetime.date method), 211
replace() (datetime.datetime method), 219
replace() (datetime.time method), 226
replace() (in module copy), 300
replace() (in module dataclasses), 1956
replace() (in module os), 684
replace() (inspect.Parameter method), 2005
replace() (inspect.Signature method), 2003
replace() (pathlib.Path method), 460
replace() (str method), 57
replace() (tarfile.TarInfo method), 596
replace_errors() (in module codecs), 191
replace_header() (email.message.EmailMessage

method), 1235
replace_header() (email.message.Message method),

1273
replace_history_item() (in module readline), 174
replace_whitespace (textwrap.TextWrapper at-

tribute), 167
replaceChild() (xml.dom.Node method), 1357
ReplacePackage() (in module modulefinder), 2028
--report

trace command line option, 1872
report() (filecmp.dircmp method), 477
report() (modulefinder.ModuleFinder method), 2028
REPORT_CDIFF (in module doctest), 1712
REPORT_ERRMODE (in module msvcrt), 2151
report_failure() (doctest.DocTestRunner method),

1721
report_full_closure() (filecmp.dircmp method),

477
REPORT_NDIFF (in module doctest), 1712
REPORT_ONLY_FIRST_FAILURE (in module doctest),

1712
report_partial_closure() (filecmp.dircmp

method), 477
report_start() (doctest.DocTestRunner method),

1721
report_success() (doctest.DocTestRunner method),

1721
REPORT_UDIFF (in module doctest), 1711
report_unexpected_exception()

(doctest.DocTestRunner method), 1721

REPORTING_FLAGS (in module doctest), 1712
Repr (class in reprlib), 307
repr()

built-in function, 27
repr() (in module reprlib), 307
repr() (reprlib.Repr method), 309
repr1() (reprlib.Repr method), 309
ReprEnum (class in enum), 320
reprlib

module, 307
Request (class in urllib.request), 1408
request (socketserver.BaseRequestHandler attribute),

1477
request() (http.client.HTTPConnection method), 1441
request_queue_size (socketserver.BaseServer

attribute), 1476
request_rate() (urllib.robotparser.RobotFileParser

method), 1434
request_uri() (in module wsgiref.util), 1396
request_version (http.server.BaseHTTPRequestHandler

attribute), 1482
RequestHandlerClass (socketserver.BaseServer at-

tribute), 1476
requestline (http.server.BaseHTTPRequestHandler

attribute), 1482
Required (in module typing), 1665
requires() (in module importlib.metadata), 2061
requires() (in module test.support), 1823
requires_bz2() (in module test.support), 1826
requires_docstrings() (in module test.support),

1826
requires_freebsd_version() (in module

test.support), 1826
requires_gil_enabled() (in module test.support),

1826
requires_gzip() (in module test.support), 1826
requires_IEEE_754() (in module test.support), 1826
requires_limited_api() (in module test.support),

1826
requires_linux_version() (in module

test.support), 1826
requires_lzma() (in module test.support), 1826
requires_mac_version() (in module test.support),

1826
requires_resource() (in module test.support), 1826
requires_zlib() (in module test.support), 1826
RERAISE (monitoring event), 1928
RERAISE (opcode), 2134
reschedule() (asyncio.Timeout method), 1057
reserved (zipfile.ZipInfo attribute), 585
RESERVED_FUTURE (in module uuid), 1471
RESERVED_MICROSOFT (in module uuid), 1471
RESERVED_NCS (in module uuid), 1471
reset() (asyncio.Barrier method), 1078
reset() (bdb.Bdb method), 1844
reset() (codecs.IncrementalDecoder method), 193
reset() (codecs.IncrementalEncoder method), 192
reset() (codecs.StreamReader method), 195

2332 Index



The Python Library Reference, Release 3.13.1

reset() (codecs.StreamWriter method), 194
reset() (contextvars.ContextVar method), 1036
reset() (html.parser.HTMLParser method), 1328
reset() (in module turtle), 1564
reset() (threading.Barrier method), 952
reset() (xml.dom.pulldom.DOMEventStream method),

1369
reset() (xml.sax.xmlreader.IncrementalParser

method), 1379
reset_mock() (unittest.mock.AsyncMock method),

1771
reset_mock() (unittest.mock.Mock method), 1762
reset_peak() (in module tracemalloc), 1879
reset_prog_mode() (in module curses), 912
reset_shell_mode() (in module curses), 912
reset_tzpath() (in module zoneinfo), 244
resetbuffer() (code.InteractiveConsole method),

2021
resetscreen() (in module turtle), 1571
resetty() (in module curses), 912
resetwarnings() (in module warnings), 1949
resize() (curses.window method), 920
resize() (in module ctypes), 825
resize() (mmap.mmap method), 1228
resize_term() (in module curses), 912
resizemode() (in module turtle), 1565
resizeterm() (in module curses), 912
resolution (datetime.date attribute), 210
resolution (datetime.datetime attribute), 217
resolution (datetime.time attribute), 225
resolution (datetime.timedelta attribute), 206
resolve() (pathlib.Path method), 452
resolve_bases() (in module types), 294
resolve_name() (in module importlib.util), 2047
resolve_name() (in module pkgutil), 2027
resolveEntity() (xml.sax.handler.EntityResolver

method), 1375
resource

module, 2172
resource_path() (importlib.abc.ResourceReader

method), 2039
resource_path() (im-

portlib.resources.abc.ResourceReader method),
2055

ResourceDenied, 1820
ResourceLoader (class in importlib.abc), 2036
ResourceReader (class in importlib.abc), 2039
ResourceReader (class in importlib.resources.abc),

2054
ResourceWarning, 114
response() (imaplib.IMAP4 method), 1459
ResponseNotReady, 1440
responses (http.server.BaseHTTPRequestHandler at-

tribute), 1483
responses (in module http.client), 1440
restart (pdb command), 1857
restart_events() (in module sys.monitoring), 1930
restore() (in module difflib), 156

restore() (test.support.SaveSignals method), 1829
restype (ctypes._CFuncPtr attribute), 820
result() (asyncio.Future method), 1111
result() (asyncio.Task method), 1062
result() (concurrent.futures.Future method), 1008
results() (trace.Trace method), 1873
RESUME (opcode), 2143
resume_reading() (asyncio.ReadTransport method),

1116
resume_writing() (asyncio.BaseProtocol method),

1119
retr() (poplib.POP3 method), 1454
retrbinary() (ftplib.FTP method), 1448
retrieve() (urllib.request.URLopener method), 1422
retrlines() (ftplib.FTP method), 1448
RETRY (in module tkinter.messagebox), 1614
RETRYCANCEL (in module tkinter.messagebox), 1614
Return (class in ast), 2097
return (pdb command), 1855
return_annotation (inspect.Signature attribute),

2003
RETURN_CONST (opcode), 2133
RETURN_GENERATOR (opcode), 2143
return_ok() (http.cookiejar.CookiePolicy method),

1495
RETURN_VALUE (opcode), 2133
return_value (unittest.mock.Mock attribute), 1763
returncode (asyncio.subprocess.Process attribute),

1082
returncode (subprocess.CalledProcessError attribute),

1013
returncode (subprocess.CompletedProcess attribute),

1012
returncode (subprocess.Popen attribute), 1021
retval (pdb command), 1858
reveal_type() (in module typing), 1686
reverse() (array.array method), 285
reverse() (collections.deque method), 260
reverse() (sequence method), 48
reverse_order() (pstats.Stats method), 1864
reverse_pointer (ipaddress.IPv4Address attribute),

1515
reverse_pointer (ipaddress.IPv6Address attribute),

1517
reversed()

built-in function, 27
Reversible (class in collections.abc), 273
Reversible (class in typing), 1698
revert() (http.cookiejar.FileCookieJar method), 1494
rewind() (wave.Wave_read method), 1528
RFC

RFC 821, 1462, 1464
RFC 822, 738, 1262, 1279, 1443, 1465, 1467,

1468, 1534
RFC 959, 1446
RFC 1123, 738
RFC 1321, 637
RFC 1422, 1196, 1204

Index 2333



The Python Library Reference, Release 3.13.1

RFC 1521, 1322, 1324, 1325
RFC 1522, 13231325
RFC 1730, 1455
RFC 1738, 1433
RFC 1750, 1174
RFC 1766, 1543
RFC 1808, 1424, 1425, 1433
RFC 1869, 1462, 1464
RFC 1939, 1452
RFC 2045, 1231, 1235, 1256, 1257, 1273, 1274,

1279, 1319, 1321, 1322
RFC 2045 Section 6.8, 1503
RFC 2046, 1231, 1261, 1279
RFC 2047, 1231, 1250, 1254, 1255, 1279, 1280,

1285
RFC 2060, 1455, 1460
RFC 2068, 1488
RFC 2104, 648
RFC 2109, 14881492, 1497, 1498
RFC 2183, 1231, 1237, 1275
RFC 2231, 1231, 1235, 1236, 12721274, 1279,

1286
RFC 2295, 1437
RFC 2324, 1436
RFC 2342, 1459
RFC 2368, 1433
RFC 2373, 1515, 1516
RFC 2396, 1427, 1431, 1433
RFC 2397, 1418
RFC 2449, 1454
RFC 2518, 1436
RFC 2595, 1452, 1455
RFC 2616, 1397, 1400, 1415, 1423, 1433
RFC 2616 Section 5.1.2, 1441
RFC 2616 Section 14.23, 1441
RFC 2640, 1446, 1447, 1451
RFC 2732, 1433
RFC 2774, 1437
RFC 2821, 1231
RFC 2822, 738, 1271, 1279, 1280, 1284, 1285,

1306, 1439, 1482
RFC 2964, 1493
RFC 2965, 1409, 1412, 14911493, 14951499
RFC 3056, 1517
RFC 3171, 1515
RFC 3229, 1436
RFC 3280, 1184
RFC 3330, 1516
RFC 3454, 171
RFC 3490, 200202
RFC 3490 Section 3.1, 202
RFC 3492, 200, 201
RFC 3493, 1170
RFC 3501, 1461
RFC 3542, 1157
RFC 3548, 1323
RFC 3659, 1449
RFC 3879, 1517

RFC 3927, 1516
RFC 3986, 1424, 1426, 1429, 1431, 1433, 1482
RFC 4007, 1516, 1517
RFC 4086, 1205
RFC 4122, 14691471
RFC 4180, 605
RFC 4193, 1517
RFC 4217, 1450
RFC 4291, 1516
RFC 4380, 1517
RFC 4627, 1287, 1295
RFC 4648, 1319, 1320, 1322, 2193
RFC 4918, 1436, 1437
RFC 4954, 1466
RFC 5161, 1458
RFC 5246, 1181, 1205
RFC 5280, 1172, 1174, 1205
RFC 5321, 1259
RFC 5322, 1231, 1232, 1241, 1244, 1245, 1247,

1249, 1250, 12531255, 1258, 1259, 1268,
1467

RFC 5424, 782
RFC 5735, 1515
RFC 5789, 1438
RFC 5842, 1436, 1437
RFC 5891, 201
RFC 5895, 201
RFC 5929, 1185
RFC 6066, 1180, 1190, 1205
RFC 6531, 1233, 1250, 1463
RFC 6532, 1231, 1232, 1241, 1250
RFC 6585, 1436, 1437
RFC 6855, 1458
RFC 6856, 1455
RFC 7159, 1287, 1294, 1295
RFC 7230, 1408, 1443
RFC 7301, 1180, 1189
RFC 7525, 1205
RFC 7693, 641
RFC 7725, 1436
RFC 7914, 641
RFC 8089, 451
RFC 8297, 1436
RFC 8305, 1092
RFC 8470, 1436
RFC 9110, 14361438

rfc2109 (http.cookiejar.Cookie attribute), 1498
rfc2109_as_netscape

(http.cookiejar.DefaultCookiePolicy attribute),
1497

rfc2965 (http.cookiejar.CookiePolicy attribute), 1496
RFC_4122 (in module uuid), 1471
rfile (http.server.BaseHTTPRequestHandler attribute),

1482
rfile (socketserver.DatagramRequestHandler attribute),

1478
rfind() (bytearray method), 68
rfind() (bytes method), 68

2334 Index



The Python Library Reference, Release 3.13.1

rfind() (mmap.mmap method), 1228
rfind() (str method), 57
rgb_to_hls() (in module colorsys), 1530
rgb_to_hsv() (in module colorsys), 1530
rgb_to_yiq() (in module colorsys), 1530
rglob() (pathlib.Path method), 457
right (filecmp.dircmp attribute), 477
right() (in module turtle), 1554
right_list (filecmp.dircmp attribute), 477
right_only (filecmp.dircmp attribute), 477
RIGHTSHIFT (in module token), 2110
RIGHTSHIFTEQUAL (in module token), 2110
rindex() (bytearray method), 68
rindex() (bytes method), 68
rindex() (str method), 57
rjust() (bytearray method), 69
rjust() (bytes method), 69
rjust() (str method), 57
rlcompleter

module, 177
RLIM_INFINITY (in module resource), 2172
RLIMIT_AS (in module resource), 2174
RLIMIT_CORE (in module resource), 2173
RLIMIT_CPU (in module resource), 2173
RLIMIT_DATA (in module resource), 2173
RLIMIT_FSIZE (in module resource), 2173
RLIMIT_KQUEUES (in module resource), 2175
RLIMIT_MEMLOCK (in module resource), 2173
RLIMIT_MSGQUEUE (in module resource), 2174
RLIMIT_NICE (in module resource), 2174
RLIMIT_NOFILE (in module resource), 2173
RLIMIT_NPROC (in module resource), 2173
RLIMIT_NPTS (in module resource), 2174
RLIMIT_OFILE (in module resource), 2173
RLIMIT_RSS (in module resource), 2173
RLIMIT_RTPRIO (in module resource), 2174
RLIMIT_RTTIME (in module resource), 2174
RLIMIT_SBSIZE (in module resource), 2174
RLIMIT_SIGPENDING (in module resource), 2174
RLIMIT_STACK (in module resource), 2173
RLIMIT_SWAP (in module resource), 2174
RLIMIT_VMEM (in module resource), 2174
RLock (class in multiprocessing), 970
RLock (class in threading), 946
RLock() (multiprocessing.managers.SyncManager

method), 976
rmd() (ftplib.FTP method), 1450
rmdir() (in module os), 684
rmdir() (in module test.support.os_helper), 1834
rmdir() (pathlib.Path method), 460
rmtree() (in module shutil), 491
rmtree() (in module test.support.os_helper), 1834
RobotFileParser (class in urllib.robotparser), 1434
robots.txt, 1434
rollback() (sqlite3.Connection method), 533
rollover() (tempfile.SpooledTemporaryFile method),

480
ROMAN (in module tkinter.font), 1608

root (pathlib.PurePath attribute), 444
rotate() (collections.deque method), 260
rotate() (decimal.Context method), 362
rotate() (decimal.Decimal method), 355
rotate() (logging.handlers.BaseRotatingHandler

method), 777
RotatingFileHandler (class in logging.handlers),

778
rotation_filename() (log-

ging.handlers.BaseRotatingHandler method),
777

rotator (logging.handlers.BaseRotatingHandler
attribute), 777

round()

built-in function, 27
ROUND_05UP (in module decimal), 364
ROUND_CEILING (in module decimal), 363
ROUND_DOWN (in module decimal), 363
ROUND_FLOOR (in module decimal), 363
ROUND_HALF_DOWN (in module decimal), 363
ROUND_HALF_EVEN (in module decimal), 363
ROUND_HALF_UP (in module decimal), 363
ROUND_UP (in module decimal), 364
Rounded (class in decimal), 365
rounds (sys.float_info attribute), 1910
Row (class in sqlite3), 545
row_factory (sqlite3.Connection attribute), 542
row_factory (sqlite3.Cursor attribute), 545
rowcount (sqlite3.Cursor attribute), 545
RPAR (in module token), 2108
rpartition() (bytearray method), 68
rpartition() (bytes method), 68
rpartition() (str method), 57
rpc_paths (xmlrpc.server.SimpleXMLRPCRequestHandler

attribute), 1508
rpop() (poplib.POP3 method), 1454
RS (in module curses.ascii), 935
rset() (poplib.POP3 method), 1454
RShift (class in ast), 2076
rshift() (in module operator), 432
rsplit() (bytearray method), 70
rsplit() (bytes method), 70
rsplit() (str method), 57
RSQB (in module token), 2109
rstrip() (bytearray method), 70
rstrip() (bytes method), 70
rstrip() (str method), 57
rt() (in module turtle), 1554
RTLD_DEEPBIND (in module os), 717
RTLD_GLOBAL (in module os), 717
RTLD_LAZY (in module os), 717
RTLD_LOCAL (in module os), 717
RTLD_NODELETE (in module os), 717
RTLD_NOLOAD (in module os), 717
RTLD_NOW (in module os), 717
ruler (cmd.Cmd attribute), 1585
run (pdb command), 1857
Run script, 1636

Index 2335



The Python Library Reference, Release 3.13.1

run() (asyncio.Runner method), 1045
run() (bdb.Bdb method), 1847
run() (contextvars.Context method), 1037
run() (doctest.DocTestRunner method), 1721
run() (in module asyncio), 1044
run() (in module pdb), 1851
run() (in module profile), 1861
run() (in module subprocess), 1010
run() (multiprocessing.Process method), 960
run() (pdb.Pdb method), 1852
run() (profile.Profile method), 1862
run() (sched.scheduler method), 1031
run() (threading.Thread method), 943
run() (trace.Trace method), 1873
run() (unittest.IsolatedAsyncioTestCase method), 1746
run() (unittest.TestCase method), 1737
run() (unittest.TestSuite method), 1747
run() (unittest.TextTestRunner method), 1753
run() (wsgiref.handlers.BaseHandler method), 1402
run_coroutine_threadsafe() (in module asyncio),

1060
run_docstring_examples() (in module doctest),

1715
run_forever() (asyncio.loop method), 1088
run_in_executor() (asyncio.loop method), 1101
run_in_subinterp() (in module test.support), 1828
run_module() (in module runpy), 2030
run_path() (in module runpy), 2030
run_python_until_end() (in module

test.support.script_helper), 1830
run_script() (modulefinder.ModuleFinder method),

2028
run_until_complete() (asyncio.loop method), 1088
run_with_locale() (in module test.support), 1826
run_with_tz() (in module test.support), 1826
runcall() (bdb.Bdb method), 1847
runcall() (in module pdb), 1852
runcall() (pdb.Pdb method), 1852
runcall() (profile.Profile method), 1862
runcode() (code.InteractiveInterpreter method), 2020
runctx() (bdb.Bdb method), 1847
runctx() (in module profile), 1861
runctx() (profile.Profile method), 1862
runctx() (trace.Trace method), 1873
runeval() (bdb.Bdb method), 1847
runeval() (in module pdb), 1852
runeval() (pdb.Pdb method), 1852
runfunc() (trace.Trace method), 1873
Runner (class in asyncio), 1045
running() (concurrent.futures.Future method), 1008
runpy

module, 2029
runsource() (code.InteractiveInterpreter method),

2020
runtime (sys._emscripten_info attribute), 1905
runtime_checkable() (in module typing), 1680
RuntimeError, 109
RuntimeWarning, 114

RUSAGE_BOTH (in module resource), 2176
RUSAGE_CHILDREN (in module resource), 2176
RUSAGE_SELF (in module resource), 2176
RUSAGE_THREAD (in module resource), 2176
RWF_APPEND (in module os), 671
RWF_DSYNC (in module os), 671
RWF_HIPRI (in module os), 670
RWF_NOWAIT (in module os), 670
RWF_SYNC (in module os), 671

S
-s

calendar command line option, 252
compileall command line option, 2121
timeit command line option, 1869
trace command line option, 1873
unittest-discover command line

option, 1730
S (in module re), 139
S_ENFMT (in module stat), 474
S_IEXEC (in module stat), 474
S_IFBLK (in module stat), 472
S_IFCHR (in module stat), 472
S_IFDIR (in module stat), 472
S_IFDOOR (in module stat), 473
S_IFIFO (in module stat), 473
S_IFLNK (in module stat), 472
S_IFMT() (in module stat), 471
S_IFPORT (in module stat), 473
S_IFREG (in module stat), 472
S_IFSOCK (in module stat), 472
S_IFWHT (in module stat), 473
S_IMODE() (in module stat), 471
S_IREAD (in module stat), 474
S_IRGRP (in module stat), 473
S_IROTH (in module stat), 474
S_IRUSR (in module stat), 473
S_IRWXG (in module stat), 473
S_IRWXO (in module stat), 474
S_IRWXU (in module stat), 473
S_ISBLK() (in module stat), 470
S_ISCHR() (in module stat), 470
S_ISDIR() (in module stat), 470
S_ISDOOR() (in module stat), 471
S_ISFIFO() (in module stat), 470
S_ISGID (in module stat), 473
S_ISLNK() (in module stat), 470
S_ISPORT() (in module stat), 471
S_ISREG() (in module stat), 470
S_ISSOCK() (in module stat), 470
S_ISUID (in module stat), 473
S_ISVTX (in module stat), 473
S_ISWHT() (in module stat), 471
S_IWGRP (in module stat), 473
S_IWOTH (in module stat), 474
S_IWRITE (in module stat), 474
S_IWUSR (in module stat), 473
S_IXGRP (in module stat), 473

2336 Index



The Python Library Reference, Release 3.13.1

S_IXOTH (in module stat), 474
S_IXUSR (in module stat), 473
safe (uuid.SafeUUID attribute), 1469
safe_path (sys.flags attribute), 1908
safe_substitute() (string.Template method), 128
SafeChildWatcher (class in asyncio), 1130
saferepr() (in module pprint), 302
SafeUUID (class in uuid), 1469
same_files (filecmp.dircmp attribute), 477
same_quantum() (decimal.Context method), 362
same_quantum() (decimal.Decimal method), 355
samefile() (in module os.path), 468
samefile() (pathlib.Path method), 455
SameFileError, 489
sameopenfile() (in module os.path), 468
samesite (http.cookies.Morsel attribute), 1489
samestat() (in module os.path), 468
sample() (in module random), 379
samples() (statistics.NormalDist method), 398
SATURDAY (in module calendar), 249
save() (http.cookiejar.FileCookieJar method), 1494
save() (test.support.SaveSignals method), 1829
SaveAs (class in tkinter.filedialog), 1611
SAVEDCWD (in module test.support.os_helper), 1833
SaveFileDialog (class in tkinter.filedialog), 1612
SaveKey() (in module winreg), 2156
SaveSignals (class in test.support), 1829
savetty() (in module curses), 912
SAX2DOM (class in xml.dom.pulldom), 1368
SAXException, 1370
SAXNotRecognizedException, 1370
SAXNotSupportedException, 1370
SAXParseException, 1370
scaleb() (decimal.Context method), 362
scaleb() (decimal.Decimal method), 355
scandir() (in module os), 684
scanf (C function), 148
sched

module, 1030
SCHED_BATCH (in module os), 714
SCHED_FIFO (in module os), 715
sched_get_priority_max() (in module os), 715
sched_get_priority_min() (in module os), 715
sched_getaffinity() (in module os), 715
sched_getparam() (in module os), 715
sched_getscheduler() (in module os), 715
SCHED_IDLE (in module os), 714
SCHED_OTHER (in module os), 714
sched_param (class in os), 715
sched_priority (os.sched_param attribute), 715
SCHED_RESET_ON_FORK (in module os), 715
SCHED_RR (in module os), 715
sched_rr_get_interval() (in module os), 715
sched_setaffinity() (in module os), 715
sched_setparam() (in module os), 715
sched_setscheduler() (in module os), 715
SCHED_SPORADIC (in module os), 714
sched_yield() (in module os), 715

scheduler (class in sched), 1030
SCM_CREDS2 (in module socket), 1150
scope_id (ipaddress.IPv6Address attribute), 1517
Screen (class in turtle), 1577
screensize() (in module turtle), 1571
script_from_examples() (in module doctest), 1723
scroll() (curses.window method), 920
ScrolledCanvas (class in turtle), 1577
ScrolledText (class in tkinter.scrolledtext), 1615
scrollok() (curses.window method), 920
scrypt() (in module hashlib), 641
seal() (in module unittest.mock), 1796
search

path, module, 487, 1918, 2015
search() (imaplib.IMAP4 method), 1459
search() (in module re), 140
search() (re.Pattern method), 143
second (datetime.datetime attribute), 217
second (datetime.time attribute), 225
seconds (datetime.timedelta attribute), 206
seconds since the epoch, 732
secrets

module, 650
SECTCRE (configparser.ConfigParser attribute), 623
sections() (configparser.ConfigParser method), 626
secure (http.cookiejar.Cookie attribute), 1498
secure (http.cookies.Morsel attribute), 1489
secure hash algorithm, SHA1, SHA2,

SHA224, SHA256, SHA384, SHA512,

SHA3, Shake, Blake2, 637
Secure Sockets Layer, 1170
security

http.server, 1487
security considerations, 2191
security_level (ssl.SSLContext attribute), 1194
see() (tkinter.ttk.Treeview method), 1628
seed() (in module random), 377
seed() (random.Random method), 381
seed_bits (sys.hash_info attribute), 1915
seek() (io.IOBase method), 723
seek() (io.TextIOBase method), 729
seek() (io.TextIOWrapper method), 730
seek() (mmap.mmap method), 1228
seek() (sqlite3.Blob method), 546
SEEK_CUR (in module os), 666
SEEK_DATA (in module os), 666
SEEK_END (in module os), 666
SEEK_HOLE (in module os), 666
SEEK_SET (in module os), 666
seekable() (bz2.BZ2File method), 567
seekable() (io.IOBase method), 723
seekable() (mmap.mmap method), 1228
select

module, 1205
select() (imaplib.IMAP4 method), 1460
select() (in module select), 1206
select() (selectors.BaseSelector method), 1213
select() (tkinter.ttk.Notebook method), 1622

Index 2337



The Python Library Reference, Release 3.13.1

selected_alpn_protocol() (ssl.SSLSocket method),
1185

selected_npn_protocol() (ssl.SSLSocket method),
1185

selection() (tkinter.ttk.Treeview method), 1628
selection_add() (tkinter.ttk.Treeview method), 1629
selection_remove() (tkinter.ttk.Treeview method),

1629
selection_set() (tkinter.ttk.Treeview method), 1628
selection_toggle() (tkinter.ttk.Treeview method),

1629
selector (urllib.request.Request attribute), 1412
SelectorEventLoop (class in asyncio), 1107
SelectorKey (class in selectors), 1213
selectors

module, 1212
SelectSelector (class in selectors), 1214
Self (in module typing), 1661
Semaphore (class in asyncio), 1076
Semaphore (class in multiprocessing), 971
Semaphore (class in threading), 949
Semaphore() (multiprocessing.managers.SyncManager

method), 976
semaphores, binary, 1039
SEMI (in module token), 2109
SEND (opcode), 2143
send() (http.client.HTTPConnection method), 1443
send() (imaplib.IMAP4 method), 1460
send() (logging.handlers.DatagramHandler method),

781
send() (logging.handlers.SocketHandler method), 780
send() (multiprocessing.connection.Connection

method), 968
send() (socket.socket method), 1163
send_bytes() (multiprocessing.connection.Connection

method), 968
send_error() (http.server.BaseHTTPRequestHandler

method), 1484
send_fds() (in module socket), 1158
send_header() (http.server.BaseHTTPRequestHandler

method), 1484
send_message() (smtplib.SMTP method), 1467
send_response() (http.server.BaseHTTPRequestHandler

method), 1484
send_response_only()

(http.server.BaseHTTPRequestHandler
method), 1484

send_signal() (asyncio.subprocess.Process method),
1081

send_signal() (asyncio.SubprocessTransport
method), 1118

send_signal() (subprocess.Popen method), 1020
sendall() (socket.socket method), 1163
sendcmd() (ftplib.FTP method), 1448
sendfile() (asyncio.loop method), 1096
sendfile() (in module os), 671
sendfile() (socket.socket method), 1164
sendfile() (wsgiref.handlers.BaseHandler method),

1403
SendfileNotAvailableError, 1086
sendmail() (smtplib.SMTP method), 1466
sendmsg() (socket.socket method), 1164
sendmsg_afalg() (socket.socket method), 1164
sendto() (asyncio.DatagramTransport method), 1117
sendto() (socket.socket method), 1164
sentinel (in module unittest.mock), 1789
sentinel (multiprocessing.Process attribute), 961
sep (in module os), 717
SEPTEMBER (in module calendar), 250
sequence, 2208

iteration, 45
object, 46
types, immutable, 48
types, mutable, 48
types, operations on, 46, 48

Sequence (class in collections.abc), 273
Sequence (class in typing), 1697
SequenceMatcher (class in difflib), 157
serialize() (sqlite3.Connection method), 541
serializing

objects, 499
serve_forever() (asyncio.Server method), 1106
serve_forever() (socketserver.BaseServer method),

1475
server

WWW, 1481
Server (class in asyncio), 1105
server (http.server.BaseHTTPRequestHandler at-

tribute), 1482
server (socketserver.BaseRequestHandler attribute),

1477
server_activate() (socketserver.BaseServer

method), 1477
server_address (socketserver.BaseServer attribute),

1476
server_bind() (socketserver.BaseServer method),

1477
server_close() (socketserver.BaseServer method),

1476
server_hostname (ssl.SSLSocket attribute), 1186
server_side (ssl.SSLSocket attribute), 1186
server_software (wsgiref.handlers.BaseHandler at-

tribute), 1402
server_version (http.server.BaseHTTPRequestHandler

attribute), 1483
server_version (http.server.SimpleHTTPRequestHandler

attribute), 1485
ServerProxy (class in xmlrpc.client), 1500
service_actions() (socketserver.BaseServer

method), 1475
session (ssl.SSLSocket attribute), 1186
session_reused (ssl.SSLSocket attribute), 1186
session_stats() (ssl.SSLContext method), 1192
set

object, 85
set (built-in class), 85

2338 Index



The Python Library Reference, Release 3.13.1

Set (class in ast), 2074
Set (class in collections.abc), 273
Set (class in typing), 1694
Set Breakpoint, 1638
set comprehension, 2209
set() (asyncio.Event method), 1074
set() (configparser.ConfigParser method), 628
set() (configparser.RawConfigParser method), 629
set() (contextvars.ContextVar method), 1036
set() (http.cookies.Morsel method), 1489
set() (test.support.os_helper.EnvironmentVarGuard

method), 1833
set() (threading.Event method), 950
set() (tkinter.ttk.Combobox method), 1620
set() (tkinter.ttk.Spinbox method), 1620
set() (tkinter.ttk.Treeview method), 1629
set() (xml.etree.ElementTree.Element method), 1346
SET_ADD (opcode), 2133
set_allowed_domains()

(http.cookiejar.DefaultCookiePolicy method),
1497

set_alpn_protocols() (ssl.SSLContext method),
1189

set_app() (wsgiref.simple_server.WSGIServer
method), 1399

set_asyncgen_hooks() (in module sys), 1922
set_authorizer() (sqlite3.Connection method), 536
set_auto_history() (in module readline), 174
set_blocked_domains()

(http.cookiejar.DefaultCookiePolicy method),
1496

set_blocking() (in module os), 672
set_boundary() (email.message.EmailMessage

method), 1236
set_boundary() (email.message.Message method),

1274
set_break() (bdb.Bdb method), 1846
set_charset() (email.message.Message method),

1271
set_child_watcher() (asyn-

cio.AbstractEventLoopPolicy method), 1128
set_child_watcher() (in module asyncio), 1128
set_children() (tkinter.ttk.Treeview method), 1626
set_ciphers() (ssl.SSLContext method), 1189
set_completer() (in module readline), 175
set_completer_delims() (in module readline), 175
set_completion_display_matches_hook() (in

module readline), 175
set_content() (email.contentmanager.ContentManager

method), 1260
set_content() (email.message.EmailMessage

method), 1238
set_content() (in module email.contentmanager),

1260
set_continue() (bdb.Bdb method), 1846
set_cookie() (http.cookiejar.CookieJar method),

1493
set_cookie_if_ok() (http.cookiejar.CookieJar

method), 1493
set_coroutine_origin_tracking_depth() (in

module sys), 1922
set_data() (importlib.abc.SourceLoader method),

2038
set_data() (importlib.machinery.SourceFileLoader

method), 2043
set_date() (mailbox.MaildirMessage method), 1308
set_debug() (asyncio.loop method), 1103
set_debug() (in module gc), 1993
set_debuglevel() (ftplib.FTP method), 1447
set_debuglevel() (http.client.HTTPConnection

method), 1442
set_debuglevel() (poplib.POP3 method), 1454
set_debuglevel() (smtplib.SMTP method), 1464
set_default_executor() (asyncio.loop method),

1102
set_default_type() (email.message.EmailMessage

method), 1235
set_default_type() (email.message.Message

method), 1273
set_default_verify_paths() (ssl.SSLContext

method), 1189
set_defaults() (argparse.ArgumentParser method),

860
set_defaults() (optparse.OptionParser method), 897
set_ecdh_curve() (ssl.SSLContext method), 1191
set_errno() (in module ctypes), 825
set_error_mode() (in module msvcrt), 2150
set_escdelay() (in module curses), 912
set_event_loop() (asyncio.AbstractEventLoopPolicy

method), 1127
set_event_loop() (in module asyncio), 1087
set_event_loop_policy() (in module asyncio),

1127
set_events() (in module sys.monitoring), 1930
set_exception() (asyncio.Future method), 1111
set_exception() (concurrent.futures.Future method),

1009
set_exception_handler() (asyncio.loop method),

1102
set_executable() (in module multiprocessing), 967
set_filter() (tkinter.filedialog.FileDialog method),

1612
set_flags() (mailbox.Maildir method), 1301
set_flags() (mailbox.MaildirMessage method), 1307
set_flags() (mailbox.mboxMessage method), 1309
set_flags() (mailbox.MMDFMessage method), 1313
set_forkserver_preload() (in module multipro-

cessing), 967
set_from() (mailbox.mboxMessage method), 1309
set_from() (mailbox.MMDFMessage method), 1313
SET_FUNCTION_ATTRIBUTE (opcode), 2141
set_handle_inheritable() (in module os), 675
set_history_length() (in module readline), 173
set_info() (mailbox.Maildir method), 1302
set_info() (mailbox.MaildirMessage method), 1308
set_inheritable() (in module os), 674

Index 2339



The Python Library Reference, Release 3.13.1

set_inheritable() (socket.socket method), 1165
set_int_max_str_digits() (in module sys), 1920
set_labels() (mailbox.BabylMessage method), 1312
set_last_error() (in module ctypes), 825
set_local_events() (in module sys.monitoring),

1930
set_memlimit() (in module test.support), 1824
set_name() (asyncio.Task method), 1063
set_next() (bdb.Bdb method), 1846
set_nonstandard_attr() (http.cookiejar.Cookie

method), 1499
set_npn_protocols() (ssl.SSLContext method), 1190
set_ok() (http.cookiejar.CookiePolicy method), 1495
set_param() (email.message.EmailMessage method),

1235
set_param() (email.message.Message method), 1274
set_pasv() (ftplib.FTP method), 1448
set_payload() (email.message.Message method),

1270
set_policy() (http.cookiejar.CookieJar method),

1493
set_pre_input_hook() (in module readline), 174
set_progress_handler() (sqlite3.Connection

method), 537
set_protocol() (asyncio.BaseTransport method),

1116
set_proxy() (urllib.request.Request method), 1412
set_psk_client_callback() (ssl.SSLContext

method), 1194
set_psk_server_callback() (ssl.SSLContext

method), 1195
set_quit() (bdb.Bdb method), 1846
set_result() (asyncio.Future method), 1111
set_result() (concurrent.futures.Future method),

1008
set_return() (bdb.Bdb method), 1846
set_running_or_notify_cancel() (concur-

rent.futures.Future method), 1008
set_selection() (tkinter.filedialog.FileDialog

method), 1612
set_seq1() (difflib.SequenceMatcher method), 158
set_seq2() (difflib.SequenceMatcher method), 158
set_seqs() (difflib.SequenceMatcher method), 158
set_sequences() (mailbox.MH method), 1304
set_sequences() (mailbox.MHMessage method),

1311
set_server_documentation() (xml-

rpc.server.DocCGIXMLRPCRequestHandler
method), 1513

set_server_documentation() (xml-
rpc.server.DocXMLRPCServer method),
1512

set_server_name() (xml-
rpc.server.DocCGIXMLRPCRequestHandler
method), 1513

set_server_name() (xml-
rpc.server.DocXMLRPCServer method),
1512

set_server_title() (xml-
rpc.server.DocCGIXMLRPCRequestHandler
method), 1513

set_server_title() (xml-
rpc.server.DocXMLRPCServer method),
1512

set_servername_callback (ssl.SSLContext at-
tribute), 1190

set_start_method() (in module multiprocessing),
967

set_startup_hook() (in module readline), 174
set_step() (bdb.Bdb method), 1846
set_subdir() (mailbox.MaildirMessage method),

1307
set_tabsize() (in module curses), 912
set_task_factory() (asyncio.loop method), 1091
set_threshold() (in module gc), 1993
set_trace() (bdb.Bdb method), 1846
set_trace() (in module bdb), 1848
set_trace() (in module pdb), 1852
set_trace() (pdb.Pdb method), 1852
set_trace_callback() (sqlite3.Connection method),

537
set_tunnel() (http.client.HTTPConnection method),

1442
set_type() (email.message.Message method), 1274
set_unittest_reportflags() (in module doctest),

1717
set_unixfrom() (email.message.EmailMessage

method), 1233
set_unixfrom() (email.message.Message method),

1270
set_until() (bdb.Bdb method), 1846
SET_UPDATE (opcode), 2137
set_url() (urllib.robotparser.RobotFileParser

method), 1434
set_usage() (optparse.OptionParser method), 897
set_userptr() (curses.panel.Panel method), 938
set_visible() (mailbox.BabylMessagemethod), 1312
set_wakeup_fd() (in module signal), 1221
set_write_buffer_limits() (asyn-

cio.WriteTransport method), 1116
setacl() (imaplib.IMAP4 method), 1460
setannotation() (imaplib.IMAP4 method), 1460
setattr()

built-in function, 28
setAttribute() (xml.dom.Element method), 1359
setAttributeNode() (xml.dom.Element method),

1359
setAttributeNodeNS() (xml.dom.Element method),

1360
setAttributeNS() (xml.dom.Element method), 1360
SetBase() (xml.parsers.expat.xmlparser method), 1383
setblocking() (socket.socket method), 1165
setByteStream() (xml.sax.xmlreader.InputSource

method), 1380
setcbreak() (in module tty), 2167
setCharacterStream()

2340 Index



The Python Library Reference, Release 3.13.1

(xml.sax.xmlreader.InputSource method),
1380

SetComp (class in ast), 2079
setcomptype() (wave.Wave_write method), 1529
setconfig() (sqlite3.Connection method), 540
setContentHandler()

(xml.sax.xmlreader.XMLReader method),
1378

setcontext() (in module decimal), 357
setDaemon() (threading.Thread method), 944
setdefault() (dict method), 90
setdefault() (http.cookies.Morsel method), 1490
setdefaulttimeout() (in module socket), 1157
setdlopenflags() (in module sys), 1919
setDocumentLocator()

(xml.sax.handler.ContentHandler method),
1373

setDTDHandler() (xml.sax.xmlreader.XMLReader
method), 1379

setegid() (in module os), 659
setEncoding() (xml.sax.xmlreader.InputSource

method), 1380
setEntityResolver()

(xml.sax.xmlreader.XMLReader method),
1379

setErrorHandler() (xml.sax.xmlreader.XMLReader
method), 1379

seteuid() (in module os), 659
setFeature() (xml.sax.xmlreader.XMLReader

method), 1379
setfirstweekday() (in module calendar), 248
setFormatter() (logging.Handler method), 750
setframerate() (wave.Wave_write method), 1529
setgid() (in module os), 659
setgroups() (in module os), 659
seth() (in module turtle), 1556
setheading() (in module turtle), 1556
sethostname() (in module socket), 1157
setinputsizes() (sqlite3.Cursor method), 544
setitem() (in module operator), 433
setitimer() (in module signal), 1221
setLevel() (logging.Handler method), 750
setLevel() (logging.Logger method), 746
setlimit() (sqlite3.Connection method), 540
setlocale() (in module locale), 1539
setLocale() (xml.sax.xmlreader.XMLReader

method), 1379
setLoggerClass() (in module logging), 761
setlogmask() (in module syslog), 2177
setLogRecordFactory() (in module logging), 761
setMaxConns() (urllib.request.CacheFTPHandler

method), 1418
setmode() (in module msvcrt), 2149
setName() (threading.Thread method), 944
setnchannels() (wave.Wave_write method), 1529
setnframes() (wave.Wave_write method), 1529
setns() (in module os), 659
setoutputsize() (sqlite3.Cursor method), 544

SetParamEntityParsing()

(xml.parsers.expat.xmlparser method), 1383
setparams() (wave.Wave_write method), 1529
setpassword() (zipfile.ZipFile method), 580
setpgid() (in module os), 660
setpgrp() (in module os), 660
setpos() (in module turtle), 1554
setpos() (wave.Wave_read method), 1528
setposition() (in module turtle), 1554
setpriority() (in module os), 660
setprofile() (in module sys), 1920
setprofile() (in module threading), 941
setprofile_all_threads() (in module threading),

941
setProperty() (xml.sax.xmlreader.XMLReader

method), 1379
setPublicId() (xml.sax.xmlreader.InputSource

method), 1380
setquota() (imaplib.IMAP4 method), 1460
setraw() (in module tty), 2167
setrecursionlimit() (in module sys), 1920
setregid() (in module os), 660
SetReparseDeferralEnabled()

(xml.parsers.expat.xmlparser method), 1383
setresgid() (in module os), 660
setresuid() (in module os), 660
setreuid() (in module os), 660
setrlimit() (in module resource), 2172
setsampwidth() (wave.Wave_write method), 1529
setscrreg() (curses.window method), 920
setsid() (in module os), 661
setsockopt() (socket.socket method), 1165
setstate() (codecs.IncrementalDecoder method), 193
setstate() (codecs.IncrementalEncoder method), 192
setstate() (in module random), 378
setstate() (random.Random method), 381
setStream() (logging.StreamHandler method), 775
setswitchinterval() (in module sys), 1921
setswitchinterval() (in module test.support), 1823
setSystemId() (xml.sax.xmlreader.InputSource

method), 1380
setsyx() (in module curses), 913
setTarget() (logging.handlers.MemoryHandler

method), 785
settimeout() (socket.socket method), 1165
setTimeout() (urllib.request.CacheFTPHandler

method), 1418
settrace() (in module sys), 1921
settrace() (in module threading), 941
settrace_all_threads() (in module threading),

941
setuid() (in module os), 661
setundobuffer() (in module turtle), 1569
--setup

timeit command line option, 1869
setup() (in module turtle), 1576
setup() (socketserver.BaseRequestHandler method),

1477

Index 2341



The Python Library Reference, Release 3.13.1

setUp() (unittest.TestCase method), 1736
SETUP_ANNOTATIONS (opcode), 2134
SETUP_CLEANUP (opcode), 2144
setup_environ() (wsgiref.handlers.BaseHandler

method), 1403
SETUP_FINALLY (opcode), 2144
setup_python() (venv.EnvBuilder method), 1891
setup_scripts() (venv.EnvBuilder method), 1892
setup_testing_defaults() (in module ws-

giref.util), 1397
SETUP_WITH (opcode), 2144
setUpClass() (unittest.TestCase method), 1736
setupterm() (in module curses), 913
SetValue() (in module winreg), 2156
SetValueEx() (in module winreg), 2156
setworldcoordinates() (in module turtle), 1571
setx() (in module turtle), 1555
setxattr() (in module os), 700
sety() (in module turtle), 1556
SF_APPEND (in module stat), 475
SF_ARCHIVED (in module stat), 475
SF_DATALESS (in module stat), 475
SF_FIRMLINK (in module stat), 475
SF_IMMUTABLE (in module stat), 475
SF_MNOWAIT (in module os), 672
SF_NOCACHE (in module os), 672
SF_NODISKIO (in module os), 672
SF_NOUNLINK (in module stat), 475
SF_RESTRICTED (in module stat), 475
SF_SETTABLE (in module stat), 475
SF_SNAPSHOT (in module stat), 475
SF_SUPPORTED (in module stat), 475
SF_SYNC (in module os), 672
SF_SYNTHETIC (in module stat), 475
sha1() (in module hashlib), 638
sha3_224() (in module hashlib), 638
sha3_256() (in module hashlib), 638
sha3_384() (in module hashlib), 638
sha3_512() (in module hashlib), 638
sha224() (in module hashlib), 638
sha256() (in module hashlib), 638
sha384() (in module hashlib), 638
sha512() (in module hashlib), 638
shake_128() (in module hashlib), 640
shake_256() (in module hashlib), 640
Shape (class in turtle), 1577
shape (memoryview attribute), 84
shape() (in module turtle), 1565
shapesize() (in module turtle), 1566
shapetransform() (in module turtle), 1567
share() (socket.socket method), 1165
ShareableList (class in multiprocess-

ing.shared_memory), 1000
ShareableList() (multiprocess-

ing.managers.SharedMemoryManager
method), 1000

Shared Memory, 997
shared_ciphers() (ssl.SSLSocket method), 1185

shared_memory (sys._emscripten_info attribute), 1905
SharedMemory (class in multiprocess-

ing.shared_memory), 997
SharedMemory() (multiprocess-

ing.managers.SharedMemoryManager
method), 1000

SharedMemoryManager (class in multiprocess-
ing.managers), 1000

shearfactor() (in module turtle), 1566
Shelf (class in shelve), 517
shelve

module, 516, 518
shield() (in module asyncio), 1055
shift() (decimal.Context method), 362
shift() (decimal.Decimal method), 355
shift_path_info() (in module wsgiref.util), 1396
shifting

operations, 40
shlex

module, 1588
shlex (class in shlex), 1589
shm (multiprocessing.shared_memory.ShareableList at-

tribute), 1001
SHORT_TIMEOUT (in module test.support), 1821
shortDescription() (unittest.TestCase method),

1744
shorten() (in module textwrap), 166
shouldFlush() (logging.handlers.BufferingHandler

method), 784
shouldFlush() (logging.handlers.MemoryHandler

method), 785
shouldStop (unittest.TestResult attribute), 1750
show() (curses.panel.Panel method), 938
show() (tkinter.commondialog.Dialog method), 1612
show() (tkinter.messagebox.Message method), 1613
show_code() (in module dis), 2126
show_flag_values() (in module enum), 324
--show-caches

dis command line option, 2125
showerror() (in module tkinter.messagebox), 1613
showinfo() (in module tkinter.messagebox), 1613
--show-offsets

dis command line option, 2125
showsyntaxerror() (code.InteractiveInterpreter

method), 2020
showtraceback() (code.InteractiveInterpreter

method), 2020
showturtle() (in module turtle), 1565
showwarning() (in module tkinter.messagebox), 1613
showwarning() (in module warnings), 1948
shuffle() (in module random), 379
SHUT_RD (in module socket), 1151
SHUT_RDWR (in module socket), 1151
SHUT_WR (in module socket), 1151
ShutDown, 1033
shutdown() (asyncio.Queue method), 1084
shutdown() (concurrent.futures.Executor method),

1004

2342 Index



The Python Library Reference, Release 3.13.1

shutdown() (imaplib.IMAP4 method), 1460
shutdown() (in module logging), 760
shutdown() (multiprocessing.managers.BaseManager

method), 975
shutdown() (queue.Queue method), 1034
shutdown() (socketserver.BaseServer method), 1476
shutdown() (socket.socket method), 1165
shutdown_asyncgens() (asyncio.loop method), 1089
shutdown_default_executor() (asyncio.loop

method), 1089
shutil

module, 488
SI (in module curses.ascii), 934
side_effect (unittest.mock.Mock attribute), 1764
SIG_BLOCK (in module signal), 1219
SIG_DFL (in module signal), 1216
SIG_IGN (in module signal), 1217
SIG_SETMASK (in module signal), 1219
SIG_UNBLOCK (in module signal), 1219
SIGABRT (in module signal), 1217
SIGALRM (in module signal), 1217
SIGBREAK (in module signal), 1217
SIGBUS (in module signal), 1217
SIGCHLD (in module signal), 1217
SIGCLD (in module signal), 1217
SIGCONT (in module signal), 1217
SIGFPE (in module signal), 1217
SIGHUP (in module signal), 1217
SIGILL (in module signal), 1217
SIGINT (in module signal), 1217
siginterrupt() (in module signal), 1221
SIGKILL (in module signal), 1217
Sigmasks (class in signal), 1216
signal

module, 1041, 1215
signal() (in module signal), 1222
Signals (class in signal), 1216
Signature (class in inspect), 2003
signature (inspect.BoundArguments attribute), 2006
signature() (in module inspect), 2002
sigpending() (in module signal), 1222
SIGPIPE (in module signal), 1218
SIGSEGV (in module signal), 1218
SIGSTKFLT (in module signal), 1218
SIGTERM (in module signal), 1218
sigtimedwait() (in module signal), 1223
SIGUSR1 (in module signal), 1218
SIGUSR2 (in module signal), 1218
sigwait() (in module signal), 1222
sigwaitinfo() (in module signal), 1222
SIGWINCH (in module signal), 1218
SIMPLE (inspect.BufferFlags attribute), 2014
Simple Mail Transfer Protocol, 1462
SimpleCookie (class in http.cookies), 1488
simplefilter() (in module warnings), 1949
SimpleHandler (class in wsgiref.handlers), 1401
SimpleHTTPRequestHandler (class in http.server),

1485

SimpleNamespace (class in types), 299
SimpleQueue (class in multiprocessing), 965
SimpleQueue (class in queue), 1032
SimpleXMLRPCRequestHandler (class in xml-

rpc.server), 1508
SimpleXMLRPCServer (class in xmlrpc.server), 1507
sin() (in module cmath), 343
sin() (in module math), 339
single dispatch, 2209
SingleAddressHeader (class in email.headerregistry),

1256
singledispatch() (in module functools), 425
singledispatchmethod (class in functools), 428
sinh() (in module cmath), 343
sinh() (in module math), 340
SIO_KEEPALIVE_VALS (in module socket), 1149
SIO_LOOPBACK_FAST_PATH (in module socket), 1149
SIO_RCVALL (in module socket), 1149
site

module, 2015
site command line option

--user-base, 2018
--user-site, 2018

site_maps() (urllib.robotparser.RobotFileParser
method), 1434

sitecustomize

module, 2016
site-packages

directory, 2015
sixtofour (ipaddress.IPv6Address attribute), 1517
size (multiprocessing.shared_memory.SharedMemory

attribute), 998
size (struct.Struct attribute), 186
size (tarfile.TarInfo attribute), 595
size (tracemalloc.Statistic attribute), 1883
size (tracemalloc.StatisticDiff attribute), 1883
size (tracemalloc.Trace attribute), 1883
size() (ftplib.FTP method), 1450
size() (mmap.mmap method), 1228
size_diff (tracemalloc.StatisticDiff attribute), 1883
Sized (class in collections.abc), 273
Sized (class in typing), 1698
sizeof() (in module ctypes), 826
sizeof_digit (sys.int_info attribute), 1916
SKIP (in module doctest), 1711
skip() (in module unittest), 1734
skip_if_broken_multiprocessing_synchronize()

(in module test.support), 1829
skip_unless_bind_unix_socket() (in module

test.support.socket_helper), 1830
skip_unless_symlink() (in module

test.support.os_helper), 1834
skip_unless_xattr() (in module

test.support.os_helper), 1834
skipIf() (in module unittest), 1734
skipinitialspace (csv.Dialect attribute), 610
skipped (doctest.TestResults attribute), 1720
skipped (unittest.TestResult attribute), 1750

Index 2343



The Python Library Reference, Release 3.13.1

skippedEntity() (xml.sax.handler.ContentHandler
method), 1375

skips (doctest.DocTestRunner attribute), 1722
SkipTest, 1734
skipTest() (unittest.TestCase method), 1737
skipUnless() (in module unittest), 1734
SLASH (in module token), 2109
SLASHEQUAL (in module token), 2110
sleep() (in module asyncio), 1053
sleep() (in module time), 736
sleeping_retry() (in module test.support), 1823
slice, 2209

assignment, 48
built-in function, 2142
operation, 46

slice (built-in class), 28
Slice (class in ast), 2078
slow_callback_duration (asyncio.loop attribute),

1103
SMALLEST (in module test.support), 1822
SMTP

protocol, 1462
SMTP (class in smtplib), 1462
SMTP (in module email.policy), 1251
SMTP_SSL (class in smtplib), 1463
SMTPAuthenticationError, 1464
SMTPConnectError, 1464
smtpd

module, 2190
SMTPDataError, 1464
SMTPException, 1463
SMTPHandler (class in logging.handlers), 784
SMTPHeloError, 1464
smtplib

module, 1462
SMTPNotSupportedError, 1464
SMTPRecipientsRefused, 1463
SMTPResponseException, 1463
SMTPSenderRefused, 1463
SMTPServerDisconnected, 1463
SMTPUTF8 (in module email.policy), 1251
Snapshot (class in tracemalloc), 1881
SND_ALIAS (in module winsound), 2160
SND_ASYNC (in module winsound), 2161
SND_FILENAME (in module winsound), 2160
SND_LOOP (in module winsound), 2161
SND_MEMORY (in module winsound), 2161
SND_NODEFAULT (in module winsound), 2161
SND_NOSTOP (in module winsound), 2161
SND_NOWAIT (in module winsound), 2161
SND_PURGE (in module winsound), 2161
sndhdr

module, 2190
sni_callback (ssl.SSLContext attribute), 1190
sniff() (csv.Sniffer method), 608
Sniffer (class in csv), 608
SO (in module curses.ascii), 934
SO_INCOMING_CPU (in module socket), 1150

sock_accept() (asyncio.loop method), 1099
SOCK_CLOEXEC (in module socket), 1147
sock_connect() (asyncio.loop method), 1098
SOCK_DGRAM (in module socket), 1147
SOCK_MAX_SIZE (in module test.support), 1822
SOCK_NONBLOCK (in module socket), 1147
SOCK_RAW (in module socket), 1147
SOCK_RDM (in module socket), 1147
sock_recv() (asyncio.loop method), 1098
sock_recv_into() (asyncio.loop method), 1098
sock_recvfrom() (asyncio.loop method), 1098
sock_recvfrom_into() (asyncio.loop method), 1098
sock_sendall() (asyncio.loop method), 1098
sock_sendfile() (asyncio.loop method), 1099
sock_sendto() (asyncio.loop method), 1098
SOCK_SEQPACKET (in module socket), 1147
SOCK_STREAM (in module socket), 1147
socket

module, 1142, 1393
object, 1143

socket (class in socket), 1151
socket (socketserver.BaseServer attribute), 1476
socket() (imaplib.IMAP4 method), 1460
socket() (in module socket), 1206
socket_type (socketserver.BaseServer attribute), 1476
SocketHandler (class in logging.handlers), 780
socketpair() (in module socket), 1152
sockets (asyncio.Server attribute), 1107
socketserver

module, 1473
SocketType (in module socket), 1153
soft deprecated, 2209
SOFT_KEYWORD (in module token), 2111
softkwlist (in module keyword), 2112
SOH (in module curses.ascii), 934
SOL_ALG (in module socket), 1149
SOL_RDS (in module socket), 1149
SOMAXCONN (in module socket), 1147
sort() (imaplib.IMAP4 method), 1460
sort() (list method), 49
sort_stats() (pstats.Stats method), 1863
sortdict() (in module test.support), 1823
sorted()

built-in function, 28
--sort-keys

json.tool command line option, 1296
sortTestMethodsUsing (unittest.TestLoader at-

tribute), 1749
source (doctest.Example attribute), 1719
source (pdb command), 1856
source (shlex.shlex attribute), 1591
SOURCE_DATE_EPOCH, 2119, 2121
source_from_cache() (in module importlib.util),

2046
source_hash() (in module importlib.util), 2047
SOURCE_SUFFIXES (in module importlib.machinery),

2040

2344 Index



The Python Library Reference, Release 3.13.1

source_to_code() (importlib.abc.InspectLoader
static method), 2037

SourceFileLoader (class in importlib.machinery),
2042

sourcehook() (shlex.shlex method), 1590
SourcelessFileLoader (class in im-

portlib.machinery), 2043
SourceLoader (class in importlib.abc), 2038
SP (in module curses.ascii), 935
space

in printf-style formatting, 61, 77
in string formatting, 123

--spacing

calendar command line option, 252
span() (re.Match method), 147
sparse (tarfile.TarInfo attribute), 596
spawn() (in module pty), 2168
spawn_python() (in module test.support.script_helper),

1831
spawnl() (in module os), 708
spawnle() (in module os), 708
spawnlp() (in module os), 708
spawnlpe() (in module os), 708
spawnv() (in module os), 708
spawnve() (in module os), 708
spawnvp() (in module os), 708
spawnvpe() (in module os), 708
spec_from_file_location() (in module im-

portlib.util), 2047
spec_from_loader() (in module importlib.util), 2047
special

method, 2209
special method, 2209
SpecialFileError, 589
specified_attributes (xml.parsers.expat.xmlparser

attribute), 1384
speed() (in module turtle), 1558
Spinbox (class in tkinter.ttk), 1620
splice() (in module os), 672
SPLICE_F_MORE (in module os), 672
SPLICE_F_MOVE (in module os), 672
SPLICE_F_NONBLOCK (in module os), 672
split() (BaseExceptionGroup method), 115
split() (bytearray method), 70
split() (bytes method), 70
split() (in module os.path), 469
split() (in module re), 140
split() (in module shlex), 1588
split() (re.Pattern method), 144
split() (str method), 58
splitdrive() (in module os.path), 469
splitext() (in module os.path), 469
splitlines() (bytearray method), 74
splitlines() (bytes method), 74
splitlines() (str method), 58
SplitResult (class in urllib.parse), 1430
SplitResultBytes (class in urllib.parse), 1431
splitroot() (in module os.path), 469

SpooledTemporaryFile (class in tempfile), 480
sprintf-style formatting, 61, 76
spwd

module, 2190
sqlite3

module, 526
SQLITE_DBCONFIG_DEFENSIVE (in module sqlite3),

531
SQLITE_DBCONFIG_DQS_DDL (in module sqlite3), 531
SQLITE_DBCONFIG_DQS_DML (in module sqlite3), 531
SQLITE_DBCONFIG_ENABLE_FKEY (in module sqlite3),

531
SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER (in

module sqlite3), 531
SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION (in

module sqlite3), 531
SQLITE_DBCONFIG_ENABLE_QPSG (in module sqlite3),

531
SQLITE_DBCONFIG_ENABLE_TRIGGER (in module

sqlite3), 531
SQLITE_DBCONFIG_ENABLE_VIEW (in module sqlite3),

531
SQLITE_DBCONFIG_LEGACY_ALTER_TABLE (in mod-

ule sqlite3), 531
SQLITE_DBCONFIG_LEGACY_FILE_FORMAT (in mod-

ule sqlite3), 531
SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE (in module

sqlite3), 531
SQLITE_DBCONFIG_RESET_DATABASE (in module

sqlite3), 531
SQLITE_DBCONFIG_TRIGGER_EQP (in module sqlite3),

531
SQLITE_DBCONFIG_TRUSTED_SCHEMA (in module

sqlite3), 531
SQLITE_DBCONFIG_WRITABLE_SCHEMA (in module

sqlite3), 531
SQLITE_DENY (in module sqlite3), 530
sqlite_errorcode (sqlite3.Error attribute), 547
sqlite_errorname (sqlite3.Error attribute), 547
SQLITE_IGNORE (in module sqlite3), 530
SQLITE_OK (in module sqlite3), 530
sqlite_version (in module sqlite3), 531
sqlite_version_info (in module sqlite3), 531
sqrt() (decimal.Context method), 362
sqrt() (decimal.Decimal method), 355
sqrt() (in module cmath), 342
sqrt() (in module math), 338
SSL, 1170
ssl

module, 1170
ssl_version (ftplib.FTP_TLS attribute), 1451
SSLCertVerificationError, 1173
SSLContext (class in ssl), 1186
SSLEOFError, 1173
SSLError, 1173
SSLErrorNumber (class in ssl), 1182
SSLKEYLOGFILE, 1172
SSLObject (class in ssl), 1201

Index 2345



The Python Library Reference, Release 3.13.1

sslobject_class (ssl.SSLContext attribute), 1192
SSLSession (class in ssl), 1203
SSLSocket (class in ssl), 1182
sslsocket_class (ssl.SSLContext attribute), 1192
SSLSyscallError, 1173
SSLv3 (ssl.TLSVersion attribute), 1182
SSLWantReadError, 1173
SSLWantWriteError, 1173
SSLZeroReturnError, 1173
st() (in module turtle), 1565
ST_ATIME (in module stat), 472
st_atime (os.stat_result attribute), 688
st_atime_ns (os.stat_result attribute), 688
st_birthtime (os.stat_result attribute), 689
st_birthtime_ns (os.stat_result attribute), 689
st_blksize (os.stat_result attribute), 689
st_blocks (os.stat_result attribute), 689
st_creator (os.stat_result attribute), 689
ST_CTIME (in module stat), 472
st_ctime (os.stat_result attribute), 688
st_ctime_ns (os.stat_result attribute), 688
ST_DEV (in module stat), 472
st_dev (os.stat_result attribute), 688
st_file_attributes (os.stat_result attribute), 690
st_flags (os.stat_result attribute), 689
st_fstype (os.stat_result attribute), 689
st_gen (os.stat_result attribute), 689
ST_GID (in module stat), 472
st_gid (os.stat_result attribute), 688
ST_INO (in module stat), 472
st_ino (os.stat_result attribute), 688
ST_MODE (in module stat), 472
st_mode (os.stat_result attribute), 688
ST_MTIME (in module stat), 472
st_mtime (os.stat_result attribute), 688
st_mtime_ns (os.stat_result attribute), 688
ST_NLINK (in module stat), 472
st_nlink (os.stat_result attribute), 688
st_rdev (os.stat_result attribute), 689
st_reparse_tag (os.stat_result attribute), 690
st_rsize (os.stat_result attribute), 689
ST_SIZE (in module stat), 472
st_size (os.stat_result attribute), 688
st_type (os.stat_result attribute), 689
ST_UID (in module stat), 472
st_uid (os.stat_result attribute), 688
stack (traceback.TracebackException attribute), 1985
stack viewer, 1637
stack() (in module inspect), 2011
stack_effect() (in module dis), 2128
stack_size() (in module _thread), 1040
stack_size() (in module threading), 941
stackable

streams, 186
StackSummary (class in traceback), 1986
stamp() (in module turtle), 1557
standard_b64decode() (in module base64), 1320
standard_b64encode() (in module base64), 1320

standend() (curses.window method), 920
standout() (curses.window method), 920
STAR (in module token), 2109
STAREQUAL (in module token), 2110
starmap() (in module itertools), 412
starmap() (multiprocessing.pool.Pool method), 982
starmap_async() (multiprocessing.pool.Pool method),

982
Starred (class in ast), 2075
start (range attribute), 51
start (slice attribute), 28
start (UnicodeError attribute), 112
start() (in module tracemalloc), 1880
start() (logging.handlers.QueueListener method), 787
start() (multiprocessing.managers.BaseManager

method), 975
start() (multiprocessing.Process method), 960
start() (re.Match method), 147
start() (threading.Thread method), 943
start() (tkinter.ttk.Progressbar method), 1623
start() (xml.etree.ElementTree.TreeBuilder method),

1350
start_color() (in module curses), 913
start_new_thread() (in module _thread), 1039
start_ns() (xml.etree.ElementTree.TreeBuilder

method), 1350
start_server() (in module asyncio), 1066
start_serving() (asyncio.Server method), 1106
start_threads() (in module

test.support.threading_helper), 1832
start_tls() (asyncio.loop method), 1097
start_tls() (asyncio.StreamWriter method), 1069
start_unix_server() (in module asyncio), 1067
startCDATA() (xml.sax.handler.LexicalHandler

method), 1376
StartCdataSectionHandler()

(xml.parsers.expat.xmlparser method), 1386
--start-directory

unittest-discover command line

option, 1730
StartDoctypeDeclHandler()

(xml.parsers.expat.xmlparser method), 1385
startDocument() (xml.sax.handler.ContentHandler

method), 1373
startDTD() (xml.sax.handler.LexicalHandler method),

1376
startElement() (xml.sax.handler.ContentHandler

method), 1374
StartElementHandler()

(xml.parsers.expat.xmlparser method), 1385
startElementNS() (xml.sax.handler.ContentHandler

method), 1374
STARTF_FORCEOFFFEEDBACK (in module subprocess),

1023
STARTF_FORCEONFEEDBACK (in module subprocess),

1023
STARTF_USESHOWWINDOW (in module subprocess), 1022
STARTF_USESTDHANDLES (in module subprocess), 1022

2346 Index



The Python Library Reference, Release 3.13.1

startfile() (in module os), 709
StartNamespaceDeclHandler()

(xml.parsers.expat.xmlparser method), 1386
startPrefixMapping()

(xml.sax.handler.ContentHandler method),
1373

StartResponse (class in wsgiref.types), 1404
startswith() (bytearray method), 68
startswith() (bytes method), 68
startswith() (str method), 59
startTest() (unittest.TestResult method), 1751
startTestRun() (unittest.TestResult method), 1751
starttls() (imaplib.IMAP4 method), 1460
starttls() (smtplib.SMTP method), 1466
STARTUPINFO (class in subprocess), 1021
stat

module, 470, 687
stat() (in module os), 687
stat() (os.DirEntry method), 686
stat() (pathlib.Path method), 453
stat() (poplib.POP3 method), 1454
stat_result (class in os), 688
state() (tkinter.ttk.Widget method), 1619
statement, 2209

assert, 107
del, 48, 87
except, 105
if, 37
import, 33, 2016
raise, 105
try, 105
while, 37

static type checker, 2209
static_order() (graphlib.TopologicalSorter method),

327
staticmethod()

built-in function, 29
Statistic (class in tracemalloc), 1882
StatisticDiff (class in tracemalloc), 1883
statistics

module, 386
statistics() (tracemalloc.Snapshot method), 1882
StatisticsError, 397
Stats (class in pstats), 1863
status (http.client.HTTPResponse attribute), 1444
status (urllib.response.addinfourl attribute), 1424
status() (imaplib.IMAP4 method), 1460
statvfs() (in module os), 690
STD_ERROR_HANDLE (in module subprocess), 1022
STD_INPUT_HANDLE (in module subprocess), 1022
STD_OUTPUT_HANDLE (in module subprocess), 1022
stderr (asyncio.subprocess.Process attribute), 1082
stderr (in module sys), 1923
stderr (subprocess.CalledProcessError attribute), 1013
stderr (subprocess.CompletedProcess attribute), 1012
stderr (subprocess.Popen attribute), 1021
stderr (subprocess.TimeoutExpired attribute), 1012
stdev (statistics.NormalDist attribute), 397

stdev() (in module statistics), 394
stdin (asyncio.subprocess.Process attribute), 1082
stdin (in module sys), 1923
stdin (subprocess.Popen attribute), 1021
stdlib_module_names (in module sys), 1924
stdout (asyncio.subprocess.Process attribute), 1082
STDOUT (in module subprocess), 1012
stdout (in module sys), 1923
stdout (subprocess.CalledProcessError attribute), 1013
stdout (subprocess.CompletedProcess attribute), 1012
stdout (subprocess.Popen attribute), 1021
stdout (subprocess.TimeoutExpired attribute), 1012
stem (pathlib.PurePath attribute), 446
step (pdb command), 1855
step (range attribute), 51
step (slice attribute), 28
step() (tkinter.ttk.Progressbar method), 1623
stls() (poplib.POP3 method), 1455
stop (range attribute), 51
stop (slice attribute), 28
stop() (asyncio.loop method), 1088
stop() (in module tracemalloc), 1880
stop() (logging.handlers.QueueListener method), 787
stop() (tkinter.ttk.Progressbar method), 1623
stop() (unittest.TestResult method), 1751
stop_here() (bdb.Bdb method), 1845
STOP_ITERATION (monitoring event), 1928
StopAsyncIteration, 110
StopIteration, 110
stopListening() (in module logging.config), 764
stopTest() (unittest.TestResult method), 1751
stopTestRun() (unittest.TestResult method), 1751
storbinary() (ftplib.FTP method), 1449
Store (class in ast), 2074
store() (imaplib.IMAP4 method), 1460
STORE_ACTIONS (optparse.Option attribute), 902
STORE_ATTR (opcode), 2135
STORE_DEREF (opcode), 2140
STORE_FAST (opcode), 2139
STORE_FAST_LOAD_FAST (opcode), 2140
STORE_FAST_STORE_FAST (opcode), 2139
STORE_GLOBAL (opcode), 2136
STORE_NAME (opcode), 2135
STORE_SLICE (opcode), 2132
STORE_SUBSCR (opcode), 2131
storlines() (ftplib.FTP method), 1449
str (built-in class), 52

(see also string), 51
str() (in module locale), 1544
str_digits_check_threshold (sys.int_info at-

tribute), 1916
strcoll() (in module locale), 1544
StreamError, 589
StreamHandler (class in logging), 775
StreamReader (class in asyncio), 1068
StreamReader (class in codecs), 194
streamreader (codecs.CodecInfo attribute), 187
StreamReaderWriter (class in codecs), 195

Index 2347



The Python Library Reference, Release 3.13.1

StreamRecoder (class in codecs), 195
StreamRequestHandler (class in socketserver), 1477
streams, 186

stackable, 186
StreamWriter (class in asyncio), 1068
StreamWriter (class in codecs), 193
streamwriter (codecs.CodecInfo attribute), 187
StrEnum (class in enum), 317
strerror (OSError attribute), 109
strerror() (in module os), 661
strftime() (datetime.date method), 212
strftime() (datetime.datetime method), 222
strftime() (datetime.time method), 227
strftime() (in module time), 736
strict

error handler's name, 189
strict (csv.Dialect attribute), 610
STRICT (enum.FlagBoundary attribute), 321
strict (in module email.policy), 1251
strict_domain (http.cookiejar.DefaultCookiePolicy at-

tribute), 1497
strict_errors() (in module codecs), 191
strict_ns_domain (http.cookiejar.DefaultCookiePolicy

attribute), 1497
strict_ns_set_initial_dollar

(http.cookiejar.DefaultCookiePolicy attribute),
1497

strict_ns_set_path

(http.cookiejar.DefaultCookiePolicy attribute),
1497

strict_ns_unverifiable

(http.cookiejar.DefaultCookiePolicy attribute),
1497

strict_rfc2965_unverifiable

(http.cookiejar.DefaultCookiePolicy attribute),
1497

STRIDED (inspect.BufferFlags attribute), 2015
STRIDED_RO (inspect.BufferFlags attribute), 2015
STRIDES (inspect.BufferFlags attribute), 2014
strides (memoryview attribute), 84
string

format() (built-in function), 17
formatting, printf, 61
interpolation, printf, 61
methods, 52
module, 119
object, 51
str (built-in class), 52
str() (built-in function), 29
text sequence type, 51

STRING (in module token), 2108
string (re.Match attribute), 147
string_at() (in module ctypes), 826
StringIO (class in io), 731
stringprep

module, 171
strip() (bytearray method), 71
strip() (bytes method), 71

strip() (str method), 59
strip_dirs() (pstats.Stats method), 1863
stripspaces (curses.textpad.Textbox attribute), 933
strong reference, 2209
strptime() (datetime.datetime class method), 216
strptime() (in module time), 738
strsignal() (in module signal), 1219
struct

module, 179, 1165
Struct (class in struct), 185
struct_time (class in time), 738
Structure (class in ctypes), 830
structures

C, 179
strxfrm() (in module locale), 1544
STX (in module curses.ascii), 934
Style (class in tkinter.ttk), 1629
Sub (class in ast), 2076
SUB (in module curses.ascii), 935
sub() (in module operator), 432
sub() (in module re), 141
sub() (re.Pattern method), 144
subdirs (filecmp.dircmp attribute), 478
SubElement() (in module xml.etree.ElementTree),

1343
subgroup() (BaseExceptionGroup method), 115
submit() (concurrent.futures.Executor method), 1003
submodule_search_locations (im-

portlib.machinery.ModuleSpec attribute),
2045

subn() (in module re), 142
subn() (re.Pattern method), 144
subnet_of() (ipaddress.IPv4Network method), 1521
subnet_of() (ipaddress.IPv6Network method), 1523
subnets() (ipaddress.IPv4Network method), 1521
subnets() (ipaddress.IPv6Network method), 1523
Subnormal (class in decimal), 365
suboffsets (memoryview attribute), 85
subpad() (curses.window method), 920
subprocess

module, 1010
subprocess_exec() (asyncio.loop method), 1103
subprocess_shell() (asyncio.loop method), 1104
SubprocessError, 1012
SubprocessProtocol (class in asyncio), 1118
SubprocessTransport (class in asyncio), 1115
subscribe() (imaplib.IMAP4 method), 1461
subscript

assignment, 48
operation, 46

Subscript (class in ast), 2078
subsequent_indent (textwrap.TextWrapper at-

tribute), 168
substitute() (string.Template method), 128
subTest() (unittest.TestCase method), 1737
subtract() (collections.Counter method), 256
subtract() (decimal.Context method), 362

2348 Index



The Python Library Reference, Release 3.13.1

subtype (email.headerregistry.ContentTypeHeader at-
tribute), 1257

subwin() (curses.window method), 920
successful() (multiprocessing.pool.AsyncResult

method), 983
suffix (pathlib.PurePath attribute), 446
suffix_map (in module mimetypes), 1317
suffix_map (mimetypes.MimeTypes attribute), 1318
suffixes (pathlib.PurePath attribute), 446
suiteClass (unittest.TestLoader attribute), 1749
sum()

built-in function, 29
summarize() (doctest.DocTestRunner method), 1722
summarize_address_range() (in module ipaddress),

1526
--summary

trace command line option, 1873
sumprod() (in module math), 339
sunau

module, 2190
SUNDAY (in module calendar), 249
super (built-in class), 29
super (pyclbr.Class attribute), 2118
supernet() (ipaddress.IPv4Network method), 1521
supernet() (ipaddress.IPv6Network method), 1523
supernet_of() (ipaddress.IPv4Network method),

1521
supernet_of() (ipaddress.IPv6Network method),

1523
supports_bytes_environ (in module os), 661
supports_dir_fd (in module os), 691
supports_effective_ids (in module os), 691
supports_fd (in module os), 691
supports_follow_symlinks (in module os), 691
supports_unicode_filenames (in module os.path),

470
SupportsAbs (class in typing), 1685
SupportsBytes (class in typing), 1685
SupportsComplex (class in typing), 1685
SupportsFloat (class in typing), 1685
SupportsIndex (class in typing), 1685
SupportsInt (class in typing), 1685
SupportsRound (class in typing), 1685
suppress() (in module contextlib), 1964
SuppressCrashReport (class in test.support), 1829
surrogateescape

error handler's name, 189
surrogatepass

error handler's name, 190
SW_HIDE (in module subprocess), 1022
SWAP (opcode), 2130
swap_attr() (in module test.support), 1825
swap_item() (in module test.support), 1825
swapcase() (bytearray method), 74
swapcase() (bytes method), 74
swapcase() (str method), 60
Symbol (class in symtable), 2107
SymbolTable (class in symtable), 2105

SymbolTableType (class in symtable), 2105
symlink() (in module os), 692
symlink_to() (pathlib.Path method), 459
symmetric_difference() (frozenset method), 86
symmetric_difference_update() (frozenset

method), 87
symtable

module, 2104
symtable() (in module symtable), 2104
SYMTYPE (in module tarfile), 590
SYN (in module curses.ascii), 935
sync() (dbm.dumb.dumbdbm method), 525
sync() (dbm.gnu.gdbm method), 523
sync() (in module os), 692
sync() (shelve.Shelf method), 517
syncdown() (curses.window method), 920
synchronized() (in module multiprocess-

ing.sharedctypes), 973
SyncManager (class in multiprocessing.managers), 976
syncok() (curses.window method), 920
syncup() (curses.window method), 920
SyntaxErr, 1362
SyntaxError, 110
SyntaxWarning, 114
sys

module, 24, 1901
sys_version (http.server.BaseHTTPRequestHandler

attribute), 1483
sysconf() (in module os), 716
sysconf_names (in module os), 716
sysconfig

module, 1931
syslog

module, 2176
syslog() (in module syslog), 2176
SysLogHandler (class in logging.handlers), 781
sys.monitoring

module, 1927
system() (in module os), 709
system() (in module platform), 789
system_alias() (in module platform), 789
system_must_validate_cert() (in module

test.support), 1826
SystemError, 111
SystemExit, 111
systemId (xml.dom.DocumentType attribute), 1358
SystemRandom (class in random), 381
SystemRandom (class in secrets), 650
SystemRoot, 1018

T
-T

trace command line option, 1872
-t

calendar command line option, 252
tarfile command line option, 600
trace command line option, 1872

Index 2349



The Python Library Reference, Release 3.13.1

unittest-discover command line

option, 1730
zipfile command line option, 586

T_FMT (in module locale), 1541
T_FMT_AMPM (in module locale), 1541
--tab

json.tool command line option, 1297
TAB (in module curses.ascii), 934
tab() (tkinter.ttk.Notebook method), 1622
TabError, 111
tabnanny

module, 2116
tabs() (tkinter.ttk.Notebook method), 1622
tabsize (textwrap.TextWrapper attribute), 167
tabular

data, 605
tag (xml.etree.ElementTree.Element attribute), 1346
tag_bind() (tkinter.ttk.Treeview method), 1629
tag_configure() (tkinter.ttk.Treeview method), 1629
tag_has() (tkinter.ttk.Treeview method), 1629
tagName (xml.dom.Element attribute), 1359
tail (xml.etree.ElementTree.Element attribute), 1346
take_snapshot() (in module tracemalloc), 1880
takewhile() (in module itertools), 412
tan() (in module cmath), 343
tan() (in module math), 339
tanh() (in module cmath), 343
tanh() (in module math), 340
tar_filter() (in module tarfile), 597
TarError, 589
tarfile

module, 587
TarFile (class in tarfile), 591
tarfile command line option

-c, 600
--create, 600
-e, 600
--extract, 600
--filter, 600
-l, 600
--list, 600
-t, 600
--test, 600
-v, 600
--verbose, 600

target (xml.dom.ProcessingInstruction attribute), 1361
TarInfo (class in tarfile), 594
tarinfo (tarfile.FilterError attribute), 589
Task (class in asyncio), 1061
task_done() (asyncio.Queue method), 1084
task_done() (multiprocessing.JoinableQueue method),

965
task_done() (queue.Queue method), 1033
TaskGroup (class in asyncio), 1051
tau (in module cmath), 344
tau (in module math), 340
tb_locals (unittest.TestResult attribute), 1751
tbreak (pdb command), 1854

tcdrain() (in module termios), 2166
tcflow() (in module termios), 2166
tcflush() (in module termios), 2166
tcgetattr() (in module termios), 2165
tcgetpgrp() (in module os), 673
tcgetwinsize() (in module termios), 2166
Tcl() (in module tkinter), 1597
TCPServer (class in socketserver), 1473
TCSADRAIN (in module termios), 2166
TCSAFLUSH (in module termios), 2166
TCSANOW (in module termios), 2166
tcsendbreak() (in module termios), 2166
tcsetattr() (in module termios), 2166
tcsetpgrp() (in module os), 673
tcsetwinsize() (in module termios), 2166
tearDown() (unittest.TestCase method), 1736
tearDownClass() (unittest.TestCase method), 1736
tee() (in module itertools), 413
teleport() (in module turtle), 1555
tell() (io.IOBase method), 723
tell() (io.TextIOBase method), 729
tell() (io.TextIOWrapper method), 731
tell() (mmap.mmap method), 1228
tell() (sqlite3.Blob method), 546
tell() (wave.Wave_read method), 1528
tell() (wave.Wave_write method), 1529
telnetlib

module, 2190
TEMP, 481
temp_cwd() (in module test.support.os_helper), 1834
temp_dir() (in module test.support.os_helper), 1834
temp_umask() (in module test.support.os_helper), 1834
tempdir (in module tempfile), 482
tempfile

module, 478
Template (class in string), 128
template (string.Template attribute), 129
temporary

file, 478
file name, 478

temporary (bdb.Breakpoint attribute), 1843
TemporaryDirectory (class in tempfile), 480
TemporaryFile() (in module tempfile), 478
teredo (ipaddress.IPv6Address attribute), 1517
TERM, 913
termattrs() (in module curses), 913
terminal_size (class in os), 674
terminate() (asyncio.subprocess.Process method),

1081
terminate() (asyncio.SubprocessTransport method),

1118
terminate() (multiprocessing.pool.Pool method), 983
terminate() (multiprocessing.Process method), 961
terminate() (subprocess.Popen method), 1020
terminator (logging.StreamHandler attribute), 775
termios

module, 2165
termname() (in module curses), 913

2350 Index



The Python Library Reference, Release 3.13.1

test

module, 1818
--test

tarfile command line option, 600
zipfile command line option, 586

test (doctest.DocTestFailure attribute), 1725
test (doctest.UnexpectedException attribute), 1725
TEST_DATA_DIR (in module test.support), 1822
TEST_HOME_DIR (in module test.support), 1822
TEST_HTTP_URL (in module test.support), 1822
TEST_SUPPORT_DIR (in module test.support), 1822
TestCase (class in unittest), 1736
TestFailed, 1820
testfile() (in module doctest), 1714
TESTFN (in module test.support.os_helper), 1833
TESTFN_NONASCII (in module test.support.os_helper),

1833
TESTFN_UNDECODABLE (in module

test.support.os_helper), 1833
TESTFN_UNENCODABLE (in module

test.support.os_helper), 1833
TESTFN_UNICODE (in module test.support.os_helper),

1833
TestLoader (class in unittest), 1747
testMethodPrefix (unittest.TestLoader attribute),

1749
testmod() (in module doctest), 1715
testNamePatterns (unittest.TestLoader attribute),

1750
test.regrtest

module, 1820
TestResult (class in unittest), 1750
TestResults (class in doctest), 1720
testsource() (in module doctest), 1724
testsRun (unittest.TestResult attribute), 1750
TestSuite (class in unittest), 1747
test.support

module, 1820
test.support.bytecode_helper

module, 1831
test.support.import_helper

module, 1834
test.support.os_helper

module, 1833
test.support.script_helper

module, 1830
test.support.socket_helper

module, 1829
test.support.threading_helper

module, 1832
test.support.warnings_helper

module, 1836
testzip() (zipfile.ZipFile method), 580
Text (class in typing), 1695
text (SyntaxError attribute), 110
text (traceback.TracebackException attribute), 1985
text (xml.etree.ElementTree.Element attribute), 1346
text encoding, 2209

text file, 2209
text mode, 24
text_encoding() (in module io), 721
text_factory (sqlite3.Connection attribute), 542
Textbox (class in curses.textpad), 932
TextCalendar (class in calendar), 246
textdomain() (in module gettext), 1531
textdomain() (in module locale), 1546
textinput() (in module turtle), 1574
TextIO (class in typing), 1685
TextIOBase (class in io), 728
TextIOWrapper (class in io), 729
TextTestResult (class in unittest), 1752
TextTestRunner (class in unittest), 1752
textwrap

module, 165
TextWrapper (class in textwrap), 167
TFD_CLOEXEC (in module os), 699
TFD_NONBLOCK (in module os), 699
TFD_TIMER_ABSTIME (in module os), 699
TFD_TIMER_CANCEL_ON_SET (in module os), 700
theme_create() (tkinter.ttk.Style method), 1633
theme_names() (tkinter.ttk.Style method), 1633
theme_settings() (tkinter.ttk.Style method), 1633
theme_use() (tkinter.ttk.Style method), 1633
THOUSEP (in module locale), 1542
Thread (class in threading), 943
thread() (imaplib.IMAP4 method), 1461
thread_info (in module sys), 1924
thread_time() (in module time), 740
thread_time_ns() (in module time), 740
ThreadedChildWatcher (class in asyncio), 1129
threading

module, 939
threading_cleanup() (in module

test.support.threading_helper), 1832
threading_setup() (in module

test.support.threading_helper), 1832
ThreadingHTTPServer (class in http.server), 1482
ThreadingMixIn (class in socketserver), 1474
ThreadingMock (class in unittest.mock), 1772
ThreadingTCPServer (class in socketserver), 1474
ThreadingUDPServer (class in socketserver), 1474
ThreadingUnixDatagramServer (class in socket-

server), 1474
ThreadingUnixStreamServer (class in socket-

server), 1474
ThreadPool (class in multiprocessing.pool), 987
ThreadPoolExecutor (class in concurrent.futures),

1005
threads

POSIX, 1039
threadsafety (in module sqlite3), 531
THURSDAY (in module calendar), 249
ticket_lifetime_hint (ssl.SSLSession attribute),

1203
tigetflag() (in module curses), 913
tigetnum() (in module curses), 913

Index 2351



The Python Library Reference, Release 3.13.1

tigetstr() (in module curses), 913
TILDE (in module token), 2110
tilt() (in module turtle), 1566
tiltangle() (in module turtle), 1567
time

module, 732
time (class in datetime), 225
time (ssl.SSLSession attribute), 1203
time (uuid.UUID attribute), 1470
time() (asyncio.loop method), 1090
time() (datetime.datetime method), 219
time() (in module time), 739
Time2Internaldate() (in module imaplib), 1457
time_hi_version (uuid.UUID attribute), 1470
time_low (uuid.UUID attribute), 1470
time_mid (uuid.UUID attribute), 1470
time_ns() (in module time), 740
timedelta (class in datetime), 205
TimedRotatingFileHandler (class in log-

ging.handlers), 778
timegm() (in module calendar), 249
timeit

module, 1867
timeit command line option

-h, 1870
--help, 1870
-n, 1869
--number, 1869
-p, 1869
--process, 1869
-r, 1869
--repeat, 1869
-s, 1869
--setup, 1869
-u, 1869
--unit, 1869
-v, 1870
--verbose, 1870

timeit() (in module timeit), 1867
timeit() (timeit.Timer method), 1868
timeout, 1146
Timeout (class in asyncio), 1056
timeout (socketserver.BaseServer attribute), 1476
timeout (ssl.SSLSession attribute), 1203
timeout (subprocess.TimeoutExpired attribute), 1012
timeout() (curses.window method), 920
timeout() (in module asyncio), 1056
timeout_at() (in module asyncio), 1057
TIMEOUT_MAX (in module _thread), 1041
TIMEOUT_MAX (in module threading), 941
TimeoutError, 113, 962, 1010, 1086
TimeoutExpired, 1012
Timer (class in threading), 951
Timer (class in timeit), 1868
timerfd_create() (in module os), 697
timerfd_gettime() (in module os), 699
timerfd_gettime_ns() (in module os), 699
timerfd_settime() (in module os), 698

timerfd_settime_ns() (in module os), 699
TimerHandle (class in asyncio), 1105
times() (in module os), 710
TIMESTAMP (py_compile.PycInvalidationMode at-

tribute), 2120
timestamp() (datetime.datetime method), 220
timetuple() (datetime.date method), 211
timetuple() (datetime.datetime method), 220
timetz() (datetime.datetime method), 219
timezone (class in datetime), 235
timezone (in module time), 743
--timing

trace command line option, 1873
title() (bytearray method), 75
title() (bytes method), 75
title() (in module turtle), 1577
title() (str method), 60
Tk, 1595
Tk (class in tkinter), 1597
tk (tkinter.Tk attribute), 1597
Tk Option Data Types, 1605
Tkinter, 1595
tkinter

module, 1595
tkinter.colorchooser

module, 1608
tkinter.commondialog

module, 1612
tkinter.dnd

module, 1615
tkinter.filedialog

module, 1610
tkinter.font

module, 1608
tkinter.messagebox

module, 1612
tkinter.scrolledtext

module, 1614
tkinter.simpledialog

module, 1609
tkinter.ttk

module, 1616
TLS, 1170
TLSv1 (ssl.TLSVersion attribute), 1182
TLSv1_1 (ssl.TLSVersion attribute), 1182
TLSv1_2 (ssl.TLSVersion attribute), 1182
TLSv1_3 (ssl.TLSVersion attribute), 1182
TLSVersion (class in ssl), 1182
tm_gmtoff (time.struct_time attribute), 739
tm_hour (time.struct_time attribute), 739
tm_isdst (time.struct_time attribute), 739
tm_mday (time.struct_time attribute), 739
tm_min (time.struct_time attribute), 739
tm_mon (time.struct_time attribute), 739
tm_sec (time.struct_time attribute), 739
tm_wday (time.struct_time attribute), 739
tm_yday (time.struct_time attribute), 739
tm_year (time.struct_time attribute), 739

2352 Index



The Python Library Reference, Release 3.13.1

tm_zone (time.struct_time attribute), 739
TMP, 481
TMPDIR, 481
TO_BOOL (opcode), 2131
to_bytes() (int method), 41
to_eng_string() (decimal.Context method), 362
to_eng_string() (decimal.Decimal method), 356
to_integral() (decimal.Decimal method), 356
to_integral_exact() (decimal.Context method),

363
to_integral_exact() (decimal.Decimal method),

356
to_integral_value() (decimal.Decimal method),

356
to_sci_string() (decimal.Context method), 363
to_thread() (in module asyncio), 1060
ToASCII() (in module encodings.idna), 202
tobuf() (tarfile.TarInfo method), 595
tobytes() (array.array method), 285
tobytes() (memoryview method), 80
today() (datetime.date class method), 209
today() (datetime.datetime class method), 214
tofile() (array.array method), 285
tok_name (in module token), 2108
token

module, 2108
Token (class in contextvars), 1036
token (shlex.shlex attribute), 1591
token_bytes() (in module secrets), 650
token_hex() (in module secrets), 651
token_urlsafe() (in module secrets), 651
TokenError, 2114
tokenize

module, 2112
tokenize command line option

-e, 2114
--exact, 2114
-h, 2114
--help, 2114

tokenize() (in module tokenize), 2113
tolist() (array.array method), 285
tolist() (memoryview method), 81
TOMLDecodeError, 631
tomllib

module, 630
toordinal() (datetime.date method), 211
toordinal() (datetime.datetime method), 220
top() (curses.panel.Panel method), 938
top() (poplib.POP3 method), 1454
top_panel() (in module curses.panel), 937
--top-level-directory

unittest-discover command line

option, 1730
TopologicalSorter (class in graphlib), 325
toprettyxml() (xml.dom.minidom.Node method),

1365
toreadonly() (memoryview method), 81
tostring() (in module xml.etree.ElementTree), 1344

tostringlist() (in module xml.etree.ElementTree),
1344

total() (collections.Counter method), 257
total_changes (sqlite3.Connection attribute), 542
total_nframe (tracemalloc.Traceback attribute), 1884
total_ordering() (in module functools), 423
total_seconds() (datetime.timedelta method), 208
touch() (pathlib.Path method), 459
touchline() (curses.window method), 920
touchwin() (curses.window method), 920
tounicode() (array.array method), 285
ToUnicode() (in module encodings.idna), 202
towards() (in module turtle), 1559
toxml() (xml.dom.minidom.Node method), 1365
tparm() (in module curses), 913
trace

module, 1872
--trace

trace command line option, 1872
Trace (class in trace), 1873
Trace (class in tracemalloc), 1883
trace command line option

-C, 1873
-c, 1872
--count, 1872
--coverdir, 1873
-f, 1873
--file, 1873
-g, 1873
--help, 1872
--ignore-dir, 1873
--ignore-module, 1873
-l, 1872
--listfuncs, 1872
-m, 1873
--missing, 1873
--no-report, 1873
-R, 1873
-r, 1872
--report, 1872
-s, 1873
--summary, 1873
-T, 1872
-t, 1872
--timing, 1873
--trace, 1872
--trackcalls, 1872
--version, 1872

trace function, 941, 1913, 1921
trace() (in module inspect), 2011
trace_dispatch() (bdb.Bdb method), 1844
traceback

module, 1982
object, 1906, 1982

Traceback (class in inspect), 2010
Traceback (class in tracemalloc), 1883
traceback (tracemalloc.Statistic attribute), 1883
traceback (tracemalloc.StatisticDiff attribute), 1883

Index 2353



The Python Library Reference, Release 3.13.1

traceback (tracemalloc.Trace attribute), 1883
traceback_limit (tracemalloc.Snapshot attribute),

1882
traceback_limit (wsgiref.handlers.BaseHandler at-

tribute), 1403
TracebackException (class in traceback), 1984
tracebacklimit (in module sys), 1925
TracebackType (class in types), 297
tracemalloc

module, 1874
tracer() (in module turtle), 1572
traces (tracemalloc.Snapshot attribute), 1882
--trackcalls

trace command line option, 1872
transfercmd() (ftplib.FTP method), 1449
transient_internet() (in module

test.support.socket_helper), 1830
translate() (bytearray method), 68
translate() (bytes method), 68
translate() (in module fnmatch), 487
translate() (in module glob), 485
translate() (str method), 60
translation() (in module gettext), 1533
transport (asyncio.StreamWriter attribute), 1069
Transport (class in asyncio), 1114
Transport Layer Security, 1170
Traversable (class in importlib.abc), 2039
Traversable (class in importlib.resources.abc), 2055
TraversableResources (class in importlib.abc), 2040
TraversableResources (class in im-

portlib.resources.abc), 2056
TreeBuilder (class in xml.etree.ElementTree), 1350
Treeview (class in tkinter.ttk), 1626
triangular() (in module random), 380
tries (doctest.DocTestRunner attribute), 1722
triple-quoted string, 2209
True, 37, 45
true, 37
True (built-in variable), 35
truediv() (in module operator), 432
trunc() (in module math), 39, 335
truncate() (in module os), 692
truncate() (io.IOBase method), 723
truth

value, 37
truth() (in module operator), 431
try

statement, 105
Try (class in ast), 2086
TryStar (class in ast), 2087
ttk, 1616
tty

I/O control, 2165
module, 2167

ttyname() (in module os), 673
TUESDAY (in module calendar), 249
tuple

object, 48, 49

tuple (built-in class), 49
Tuple (class in ast), 2073
Tuple (in module typing), 1694
turtle

module, 1547
Turtle (class in turtle), 1577
turtledemo

module, 1581
turtles() (in module turtle), 1576
TurtleScreen (class in turtle), 1577
turtlesize() (in module turtle), 1566
type, 2210

Boolean, 9
built-in function, 100
object, 31
operations on dictionary, 87
operations on list, 48
union, 97

--type

calendar command line option, 252
type (built-in class), 30
Type (class in typing), 1694
type (optparse.Option attribute), 891
type (socket.socket attribute), 1166
type (tarfile.TarInfo attribute), 595
type (urllib.request.Request attribute), 1411
type alias, 2210
type hint, 2210
TYPE_ALIAS (symtable.SymbolTableType attribute),

2105
type_check_only() (in module typing), 1690
TYPE_CHECKER (optparse.Option attribute), 901
TYPE_CHECKING (in module typing), 1693
type_comment (ast.arg attribute), 2096
type_comment (ast.Assign attribute), 2081
type_comment (ast.For attribute), 2085
type_comment (ast.FunctionDef attribute), 2096
type_comment (ast.With attribute), 2088
TYPE_COMMENT (in module token), 2111
TYPE_IGNORE (in module token), 2111
TYPE_PARAMETERS (symtable.SymbolTableType at-

tribute), 2105
TYPE_VARIABLE (symtable.SymbolTableType attribute),

2105
typeahead() (in module curses), 913
TypeAlias (class in ast), 2083
TypeAlias (in module typing), 1662
TypeAliasType (class in typing), 1677
typecode (array.array attribute), 284
typecodes (in module array), 283
TYPED_ACTIONS (optparse.Option attribute), 903
typed_subpart_iterator() (in module

email.iterators), 1286
TypedDict (class in typing), 1681
TypeError, 111
TypeGuard (in module typing), 1669
TypeIs (in module typing), 1668
types

2354 Index



The Python Library Reference, Release 3.13.1

built-in, 37
immutable sequence, 48
module, 100, 293
mutable sequence, 48
operations on integer, 40
operations on mapping, 87
operations on numeric, 39
operations on sequence, 46, 48

TYPES (optparse.Option attribute), 901
types_map (in module mimetypes), 1317
types_map (mimetypes.MimeTypes attribute), 1318
types_map_inv (mimetypes.MimeTypes attribute),

1318
TypeVar (class in ast), 2094
TypeVar (class in typing), 1671
TypeVarTuple (class in ast), 2095
TypeVarTuple (class in typing), 1673
typing

module, 1647
TZ, 740, 741
tzinfo (class in datetime), 228
tzinfo (datetime.datetime attribute), 217
tzinfo (datetime.time attribute), 225
tzname (in module time), 743
tzname() (datetime.datetime method), 220
tzname() (datetime.time method), 228
tzname() (datetime.timezone method), 235
tzname() (datetime.tzinfo method), 230
TZPATH (in module zoneinfo), 244
tzset() (in module time), 740

U
-u

timeit command line option, 1869
uuid command line option, 1472

U (in module re), 139
UAdd (class in ast), 2076
ucd_3_2_0 (in module unicodedata), 170
udata (select.kevent attribute), 1212
UDPServer (class in socketserver), 1473
UF_APPEND (in module stat), 474
UF_COMPRESSED (in module stat), 474
UF_DATAVAULT (in module stat), 474
UF_HIDDEN (in module stat), 474
UF_IMMUTABLE (in module stat), 474
UF_NODUMP (in module stat), 474
UF_NOUNLINK (in module stat), 474
UF_OPAQUE (in module stat), 474
UF_SETTABLE (in module stat), 474
UF_TRACKED (in module stat), 474
UID (class in plistlib), 634
uid (tarfile.TarInfo attribute), 595
uid() (imaplib.IMAP4 method), 1461
uidl() (poplib.POP3 method), 1455
ulp() (in module math), 336
umask() (in module os), 661
unalias (pdb command), 1857
uname (tarfile.TarInfo attribute), 595

uname() (in module os), 661
uname() (in module platform), 790
UNARY_INVERT (opcode), 2131
UNARY_NEGATIVE (opcode), 2131
UNARY_NOT (opcode), 2131
UnaryOp (class in ast), 2075
UnboundLocalError, 111
unbuffered I/O, 24
UNC paths

and os.makedirs(), 681
uncancel() (asyncio.Task method), 1064
UNCHECKED_HASH (py_compile.PycInvalidationMode

attribute), 2120
unconsumed_tail (zlib.Decompress attribute), 561
unctrl() (in module curses), 913
unctrl() (in module curses.ascii), 937
Underflow (class in decimal), 365
undisplay (pdb command), 1857
undo() (in module turtle), 1558
undobufferentries() (in module turtle), 1569
undoc_header (cmd.Cmd attribute), 1585
unescape() (in module html), 1327
unescape() (in module xml.sax.saxutils), 1377
UnexpectedException, 1725
unexpectedSuccesses (unittest.TestResult attribute),

1750
unfreeze() (in module gc), 1995
unget_wch() (in module curses), 914
ungetch() (in module curses), 913
ungetch() (in module msvcrt), 2150
ungetmouse() (in module curses), 914
ungetwch() (in module msvcrt), 2150
unhexlify() (in module binascii), 1324
Unicode, 169, 186

database, 169
UNICODE (in module re), 139
unicodedata

module, 169
UnicodeDecodeError, 112
UnicodeEncodeError, 112
UnicodeError, 111
UnicodeTranslateError, 112
UnicodeWarning, 114
unidata_version (in module unicodedata), 170
unified_diff() (in module difflib), 156
uniform() (in module random), 380
UnimplementedFileMode, 1440
Union

object, 97
union

type, 97
Union (class in ctypes), 829
Union (in module typing), 1662
union() (frozenset method), 86
UnionType (class in types), 297
UNIQUE (enum.EnumCheck attribute), 320
unique() (in module enum), 324
--unit

Index 2355



The Python Library Reference, Release 3.13.1

timeit command line option, 1869
unittest

module, 1726
unittest command line option

-b, 1729
--buffer, 1729
-c, 1729
--catch, 1729
--durations, 1729
-f, 1729
--failfast, 1729
-k, 1729
--locals, 1729

unittest-discover command line option

-p, 1730
--pattern, 1730
-s, 1730
--start-directory, 1730
-t, 1730
--top-level-directory, 1730
-v, 1730
--verbose, 1730

unittest.mock

module, 1757
universal newlines, 2210

bytearray.splitlines method, 74
bytes.splitlines method, 74
csv.reader function, 605
importlib.abc.InspectLoader.get_source

method, 2036
io.IncrementalNewlineDecoder class,

731
io.TextIOWrapper class, 729
open() built-in function, 24
str.splitlines method, 58
subprocess module, 1013

UNIX

file control, 2169
I/O control, 2169

unix_dialect (class in csv), 608
unix_shell (in module test.support), 1821
UnixDatagramServer (class in socketserver), 1473
UnixStreamServer (class in socketserver), 1473
unknown (uuid.SafeUUID attribute), 1469
unknown_decl() (html.parser.HTMLParser method),

1330
unknown_open() (urllib.request.BaseHandler method),

1414
unknown_open() (urllib.request.UnknownHandler

method), 1418
UnknownHandler (class in urllib.request), 1411
UnknownProtocol, 1440
UnknownTransferEncoding, 1440
unlink() (in module os), 692
unlink() (in module test.support.os_helper), 1834
unlink() (multiprocess-

ing.shared_memory.SharedMemory method),
998

unlink() (pathlib.Path method), 460
unlink() (xml.dom.minidom.Node method), 1365
unload() (in module test.support.import_helper), 1835
unlock() (mailbox.Babyl method), 1306
unlock() (mailbox.Mailbox method), 1300
unlock() (mailbox.Maildir method), 1302
unlock() (mailbox.mbox method), 1303
unlock() (mailbox.MH method), 1304
unlock() (mailbox.MMDF method), 1306
unlockpt() (in module os), 673
UNNAMED_SECTION (in module configparser), 629
Unpack (in module typing), 1670
unpack() (in module struct), 180
unpack() (struct.Struct method), 186
unpack_archive() (in module shutil), 495
UNPACK_EX (opcode), 2135
unpack_from() (in module struct), 180
unpack_from() (struct.Struct method), 186
UNPACK_SEQUENCE (opcode), 2135
unparse() (in module ast), 2100
unparsedEntityDecl()

(xml.sax.handler.DTDHandler method),
1375

UnparsedEntityDeclHandler()

(xml.parsers.expat.xmlparser method), 1385
Unpickler (class in pickle), 503
UnpicklingError, 502
unquote() (in module email.utils), 1284
unquote() (in module urllib.parse), 1431
unquote_plus() (in module urllib.parse), 1432
unquote_to_bytes() (in module urllib.parse), 1432
unraisablehook() (in module sys), 1925
unregister() (in module atexit), 1981
unregister() (in module codecs), 188
unregister() (in module faulthandler), 1849
unregister() (select.devpoll method), 1208
unregister() (select.epoll method), 1209
unregister() (selectors.BaseSelector method), 1213
unregister() (select.poll method), 1209
unregister_archive_format() (in module shutil),

495
unregister_dialect() (in module csv), 606
unregister_unpack_format() (in module shutil),

496
unsafe (uuid.SafeUUID attribute), 1469
unselect() (imaplib.IMAP4 method), 1461
unset() (test.support.os_helper.EnvironmentVarGuard

method), 1833
unsetenv() (in module os), 661
unshare() (in module os), 662
UnstructuredHeader (class in email.headerregistry),

1255
unsubscribe() (imaplib.IMAP4 method), 1461
UnsupportedOperation, 441, 721
until (pdb command), 1855
untokenize() (in module tokenize), 2113
untouchwin() (curses.window method), 920
unused_data (bz2.BZ2Decompressor attribute), 569

2356 Index



The Python Library Reference, Release 3.13.1

unused_data (lzma.LZMADecompressor attribute),
573

unused_data (zlib.Decompress attribute), 561
unverifiable (urllib.request.Request attribute), 1412
unwrap() (in module inspect), 2008
unwrap() (in module urllib.parse), 1429
unwrap() (ssl.SSLSocket method), 1185
up (pdb command), 1854
up() (in module turtle), 1561
update() (collections.Counter method), 257
update() (dict method), 90
update() (frozenset method), 87
update() (hashlib.hash method), 639
update() (hmac.HMAC method), 649
update() (http.cookies.Morsel method), 1490
update() (in module turtle), 1572
update() (mailbox.Mailbox method), 1300
update() (mailbox.Maildir method), 1302
update() (trace.CoverageResults method), 1874
update_abstractmethods() (in module abc), 1980
update_authenticated() (url-

lib.request.HTTPPasswordMgrWithPriorAuth
method), 1416

update_lines_cols() (in module curses), 914
update_panels() (in module curses.panel), 937
update_visible() (mailbox.BabylMessage method),

1312
update_wrapper() (in module functools), 429
upgrade_dependencies() (venv.EnvBuilder

method), 1892
upper() (bytearray method), 75
upper() (bytes method), 75
upper() (str method), 60
urandom() (in module os), 718
URL, 1424, 1434, 1481

parsing, 1424
relative, 1424

url (http.client.HTTPResponse attribute), 1444
url (urllib.error.HTTPError attribute), 1433
url (urllib.response.addinfourl attribute), 1424
url (xmlrpc.client.ProtocolError attribute), 1504
url2pathname() (in module urllib.request), 1408
urlcleanup() (in module urllib.request), 1422
urldefrag() (in module urllib.parse), 1429
urlencode() (in module urllib.parse), 1432
URLError, 1433
urljoin() (in module urllib.parse), 1428
urllib

module, 1406
urllib.error

module, 1433
urllib.parse

module, 1424
urllib.request

module, 1406, 1438
urllib.response

module, 1424
urllib.robotparser

module, 1434
urlopen() (in module urllib.request), 1406
URLopener (class in urllib.request), 1422
urlparse() (in module urllib.parse), 1425
urlretrieve() (in module urllib.request), 1421
urlsafe_b64decode() (in module base64), 1320
urlsafe_b64encode() (in module base64), 1320
urlsplit() (in module urllib.parse), 1427
urlunparse() (in module urllib.parse), 1427
urlunsplit() (in module urllib.parse), 1428
urn (uuid.UUID attribute), 1470
US (in module curses.ascii), 935
use_default_colors() (in module curses), 914
use_env() (in module curses), 914
use_rawinput (cmd.Cmd attribute), 1585
use_tool_id() (in module sys.monitoring), 1927
UseForeignDTD() (xml.parsers.expat.xmlparser

method), 1383
USER, 904
user

effective id, 657
id, 658
id, setting, 661

user() (poplib.POP3 method), 1454
USER_BASE (in module site), 2017
user_call() (bdb.Bdb method), 1845
user_exception() (bdb.Bdb method), 1845
user_line() (bdb.Bdb method), 1845
user_return() (bdb.Bdb method), 1845
USER_SITE (in module site), 2017
--user-base

site command line option, 2018
usercustomize

module, 2017
UserDict (class in collections), 269
UserList (class in collections), 270
USERNAME, 465, 657, 904
username (email.headerregistry.Address attribute), 1258
USERPROFILE, 465
userptr() (curses.panel.Panel method), 938
--user-site

site command line option, 2018
UserString (class in collections), 270
UserWarning, 113
USTAR_FORMAT (in module tarfile), 590
USub (class in ast), 2076
UTC, 732
utc (datetime.timezone attribute), 236
UTC (in module datetime), 204
utcfromtimestamp() (datetime.datetime class

method), 215
utcnow() (datetime.datetime class method), 214
utcoffset() (datetime.datetime method), 219
utcoffset() (datetime.time method), 228
utcoffset() (datetime.timezone method), 235
utcoffset() (datetime.tzinfo method), 229
utctimetuple() (datetime.datetime method), 220
utf8 (email.policy.EmailPolicy attribute), 1250

Index 2357



The Python Library Reference, Release 3.13.1

utf8() (poplib.POP3 method), 1455
utf8_enabled (imaplib.IMAP4 attribute), 1461
utf8_mode (sys.flags attribute), 1908
utime() (in module os), 693
uu

module, 2191
uuid

module, 1469
--uuid

uuid command line option, 1472
UUID (class in uuid), 1469
uuid command line option

-h, 1472
--help, 1472
-N, 1472
-n, 1472
--name, 1472
--namespace, 1472
-u, 1472
--uuid, 1472

uuid1, 1471
uuid1() (in module uuid), 1471
uuid3, 1471
uuid3() (in module uuid), 1471
uuid4, 1471
uuid4() (in module uuid), 1471
uuid5, 1471
uuid5() (in module uuid), 1471

V
-v

python--m-sqlite3-[-h]-[-v]-[filename]-[sql]

command line option, 549
tarfile command line option, 600
timeit command line option, 1870
unittest-discover command line

option, 1730
v4_int_to_packed() (in module ipaddress), 1525
v6_int_to_packed() (in module ipaddress), 1526
valid_signals() (in module signal), 1219
validator() (in module wsgiref.validate), 1400
value

truth, 37
value (ctypes._SimpleCData attribute), 827
value (enum.Enum attribute), 314
value (http.cookiejar.Cookie attribute), 1498
value (http.cookies.Morsel attribute), 1489
value (StopIteration attribute), 110
value (xml.dom.Attr attribute), 1360
Value() (in module multiprocessing), 971
Value() (in module multiprocessing.sharedctypes), 973
Value() (multiprocessing.managers.SyncManager

method), 976
value_decode() (http.cookies.BaseCookie method),

1488
value_encode() (http.cookies.BaseCookie method),

1488
ValueError, 112

valuerefs() (weakref.WeakValueDictionary method),
288

values

Boolean, 45
Values (class in optparse), 890
values() (contextvars.Context method), 1038
values() (dict method), 90
values() (email.message.EmailMessage method), 1234
values() (email.message.Message method), 1272
values() (mailbox.Mailbox method), 1298
values() (types.MappingProxyType method), 298
ValuesView (class in collections.abc), 274
ValuesView (class in typing), 1697
var (contextvars.Token attribute), 1036
variable annotation, 2210
variance (statistics.NormalDist attribute), 398
variance() (in module statistics), 394
variant (uuid.UUID attribute), 1470
vars()

built-in function, 31
VBAR (in module token), 2109
vbar (tkinter.scrolledtext.ScrolledText attribute), 1615
VBAREQUAL (in module token), 2110
VC_ASSEMBLY_PUBLICKEYTOKEN (in module msvcrt),

2151
Vec2D (class in turtle), 1578
venv

module, 1887
--verbose

tarfile command line option, 600
timeit command line option, 1870
unittest-discover command line

option, 1730
VERBOSE (in module re), 139
verbose (in module tabnanny), 2116
verbose (in module test.support), 1821
verbose (sys.flags attribute), 1908
verify() (in module enum), 324
verify() (smtplib.SMTP method), 1465
VERIFY_ALLOW_PROXY_CERTS (in module ssl), 1176
verify_client_post_handshake() (ssl.SSLSocket

method), 1185
verify_code (ssl.SSLCertVerificationError attribute),

1173
VERIFY_CRL_CHECK_CHAIN (in module ssl), 1176
VERIFY_CRL_CHECK_LEAF (in module ssl), 1176
VERIFY_DEFAULT (in module ssl), 1176
verify_flags (ssl.SSLContext attribute), 1194
verify_generated_headers (email.policy.Policy at-

tribute), 1248
verify_message (ssl.SSLCertVerificationError at-

tribute), 1173
verify_mode (ssl.SSLContext attribute), 1194
verify_request() (socketserver.BaseServer method),

1477
VERIFY_X509_PARTIAL_CHAIN (in module ssl), 1177
VERIFY_X509_STRICT (in module ssl), 1176
VERIFY_X509_TRUSTED_FIRST (in module ssl), 1176

2358 Index



The Python Library Reference, Release 3.13.1

VerifyFlags (class in ssl), 1177
VerifyMode (class in ssl), 1176
--version

python--m-sqlite3-[-h]-[-v]-[filename]-[sql]

command line option, 549
trace command line option, 1872

version (email.headerregistry.MIMEVersionHeader at-
tribute), 1256

version (http.client.HTTPResponse attribute), 1444
version (http.cookiejar.Cookie attribute), 1498
version (http.cookies.Morsel attribute), 1489
version (in module curses), 921
version (in module marshal), 520
version (in module sqlite3), 531
version (in module sys), 1926
version (ipaddress.IPv4Address attribute), 1514
version (ipaddress.IPv4Network attribute), 1519
version (ipaddress.IPv6Address attribute), 1517
version (ipaddress.IPv6Network attribute), 1522
version (sys.thread_info attribute), 1925
version (urllib.request.URLopener attribute), 1422
version (uuid.UUID attribute), 1470
version() (in module ensurepip), 1886
version() (in module importlib.metadata), 2060
version() (in module platform), 789
version() (ssl.SSLSocket method), 1186
version_info (in module sqlite3), 531
version_info (in module sys), 1926
version_string() (http.server.BaseHTTPRequestHandler

method), 1485
vformat() (string.Formatter method), 120
virtual

Environments, 1887
virtual environment, 2210
virtual machine, 2211
visit() (ast.NodeVisitor method), 2101
visit_Constant() (ast.NodeVisitor method), 2102
vline() (curses.window method), 921
voidcmd() (ftplib.FTP method), 1448
volume (zipfile.ZipInfo attribute), 585
vonmisesvariate() (in module random), 381
VT (in module curses.ascii), 934

W
-w

calendar command line option, 252
W_OK (in module os), 676
wait() (asyncio.Barrier method), 1078
wait() (asyncio.Condition method), 1076
wait() (asyncio.Event method), 1074
wait() (asyncio.subprocess.Process method), 1081
wait() (in module asyncio), 1058
wait() (in module concurrent.futures), 1009
wait() (in module multiprocessing.connection), 985
wait() (in module os), 710
wait() (multiprocessing.pool.AsyncResult method), 983
wait() (subprocess.Popen method), 1019
wait() (threading.Barrier method), 951

wait() (threading.Condition method), 948
wait() (threading.Event method), 950
wait3() (in module os), 711
wait4() (in module os), 711
wait_closed() (asyncio.Server method), 1107
wait_closed() (asyncio.StreamWriter method), 1070
wait_for() (asyncio.Condition method), 1076
wait_for() (in module asyncio), 1057
wait_for() (threading.Condition method), 948
wait_process() (in module test.support), 1825
wait_threads_exit() (in module

test.support.threading_helper), 1832
wait_until_any_call_with()

(unittest.mock.ThreadingMock method),
1773

wait_until_called()

(unittest.mock.ThreadingMock method),
1772

waitid() (in module os), 710
waitpid() (in module os), 711
waitstatus_to_exitcode() (in module os), 713
walk() (email.message.EmailMessage method), 1237
walk() (email.message.Message method), 1275
walk() (in module ast), 2101
walk() (in module os), 693
walk() (pathlib.Path method), 457
walk_packages() (in module pkgutil), 2027
walk_stack() (in module traceback), 1984
walk_tb() (in module traceback), 1984
want (doctest.Example attribute), 1719
warn() (in module warnings), 1947
warn_default_encoding (sys.flags attribute), 1908
warn_explicit() (in module warnings), 1948
Warning, 113, 547
WARNING (in module logging), 750
WARNING (in module tkinter.messagebox), 1614
warning() (in module logging), 758
warning() (logging.Logger method), 748
warning() (xml.sax.handler.ErrorHandler method),

1376
warnings, 1943

module, 1943
WarningsRecorder (class in

test.support.warnings_helper), 1837
warnoptions (in module sys), 1926
wasSuccessful() (unittest.TestResult method), 1751
WatchedFileHandler (class in logging.handlers), 776
wave

module, 1527
Wave_read (class in wave), 1527
Wave_write (class in wave), 1528
WCONTINUED (in module os), 712
WCOREDUMP() (in module os), 713
WeakKeyDictionary (class in weakref), 287
WeakMethod (class in weakref), 288
weakref

module, 286
WeakSet (class in weakref), 288

Index 2359



The Python Library Reference, Release 3.13.1

WeakValueDictionary (class in weakref), 288
webbrowser

module, 1393
WEDNESDAY (in module calendar), 249
weekday (calendar.IllegalWeekdayError attribute), 250
weekday() (datetime.date method), 211
weekday() (datetime.datetime method), 221
weekday() (in module calendar), 248
weekheader() (in module calendar), 248
weibullvariate() (in module random), 381
WEXITED (in module os), 712
WEXITSTATUS() (in module os), 714
wfile (http.server.BaseHTTPRequestHandler attribute),

1483
wfile (socketserver.DatagramRequestHandler attribute),

1478
whatis (pdb command), 1856
when() (asyncio.Timeout method), 1057
when() (asyncio.TimerHandle method), 1105
where (pdb command), 1853
which() (in module shutil), 492
whichdb() (in module dbm), 520
while

statement, 37
While (class in ast), 2085
whitespace (in module string), 120
whitespace (shlex.shlex attribute), 1590
whitespace_split (shlex.shlex attribute), 1591
Widget (class in tkinter.ttk), 1619
--width

calendar command line option, 252
width (sys.hash_info attribute), 1914
width (textwrap.TextWrapper attribute), 167
width() (in module turtle), 1561
WIFCONTINUED() (in module os), 713
WIFEXITED() (in module os), 714
WIFSIGNALED() (in module os), 714
WIFSTOPPED() (in module os), 714
win32_edition() (in module platform), 790
win32_is_iot() (in module platform), 790
win32_ver() (in module platform), 790
WinDLL (class in ctypes), 818
window manager (widgets), 1604
window() (curses.panel.Panel method), 938
window_height() (in module turtle), 1576
window_width() (in module turtle), 1576
Windows ini file, 612
WindowsError, 112
WindowsPath (class in pathlib), 450
WindowsProactorEventLoopPolicy (class in asyn-

cio), 1128
WindowsRegistryFinder (class in im-

portlib.machinery), 2041
WindowsSelectorEventLoopPolicy (class in asyn-

cio), 1128
winerror (OSError attribute), 109
WinError() (in module ctypes), 826
WINFUNCTYPE() (in module ctypes), 821

winreg

module, 2151
WinSock, 1207
winsound

module, 2160
winver (in module sys), 1926
With (class in ast), 2088
WITH_EXCEPT_START (opcode), 2134
with_hostmask (ipaddress.IPv4Interface attribute),

1525
with_hostmask (ipaddress.IPv4Network attribute),

1520
with_hostmask (ipaddress.IPv6Interface attribute),

1525
with_hostmask (ipaddress.IPv6Network attribute),

1523
with_name() (pathlib.PurePath method), 449
with_netmask (ipaddress.IPv4Interface attribute),

1525
with_netmask (ipaddress.IPv4Network attribute), 1520
with_netmask (ipaddress.IPv6Interface attribute),

1525
with_netmask (ipaddress.IPv6Network attribute), 1523
with_prefixlen (ipaddress.IPv4Interface attribute),

1524
with_prefixlen (ipaddress.IPv4Network attribute),

1520
with_prefixlen (ipaddress.IPv6Interface attribute),

1525
with_prefixlen (ipaddress.IPv6Network attribute),

1523
with_pymalloc() (in module test.support), 1823
with_segments() (pathlib.PurePath method), 450
with_stem() (pathlib.PurePath method), 449
with_suffix() (pathlib.PurePath method), 449
with_traceback() (BaseException method), 106
withitem (class in ast), 2088
WNOHANG (in module os), 712
WNOWAIT (in module os), 712
wordchars (shlex.shlex attribute), 1590
World Wide Web, 1393, 1424, 1434
wrap() (in module textwrap), 165
wrap() (textwrap.TextWrapper method), 169
wrap_bio() (ssl.SSLContext method), 1192
wrap_future() (in module asyncio), 1111
wrap_socket() (ssl.SSLContext method), 1191
wrapper() (in module curses), 914
WrapperDescriptorType (in module types), 296
wraps() (in module functools), 429
WRITABLE (in module _tkinter), 1608
WRITABLE (inspect.BufferFlags attribute), 2014
writable() (bz2.BZ2File method), 567
writable() (io.IOBase method), 724
WRITE (inspect.BufferFlags attribute), 2015
write() (asyncio.StreamWriter method), 1068
write() (asyncio.WriteTransport method), 1117
write() (codecs.StreamWriter method), 194
write() (code.InteractiveInterpreter method), 2020

2360 Index



The Python Library Reference, Release 3.13.1

write() (configparser.ConfigParser method), 628
write() (email.generator.BytesGenerator method),

1244
write() (email.generator.Generator method), 1245
write() (in module os), 673
write() (in module turtle), 1564
write() (io.BufferedIOBase method), 725
write() (io.BufferedWriter method), 728
write() (io.RawIOBase method), 724
write() (io.TextIOBase method), 729
write() (mmap.mmap method), 1228
write() (sqlite3.Blob method), 546
write() (ssl.MemoryBIO method), 1202
write() (ssl.SSLSocket method), 1183
write() (xml.etree.ElementTree.ElementTree method),

1349
write() (zipfile.ZipFile method), 580
write_byte() (mmap.mmap method), 1229
write_bytes() (pathlib.Path method), 456
write_docstringdict() (in module turtle), 1580
write_eof() (asyncio.StreamWriter method), 1069
write_eof() (asyncio.WriteTransport method), 1117
write_eof() (ssl.MemoryBIO method), 1202
write_history_file() (in module readline), 173
write_results() (trace.CoverageResults method),

1874
write_text() (pathlib.Path method), 456
write_through (io.TextIOWrapper attribute), 730
writeframes() (wave.Wave_write method), 1529
writeframesraw() (wave.Wave_write method), 1529
writeheader() (csv.DictWriter method), 611
writelines() (asyncio.StreamWriter method), 1069
writelines() (asyncio.WriteTransport method), 1117
writelines() (codecs.StreamWriter method), 194
writelines() (io.IOBase method), 724
writepy() (zipfile.PyZipFile method), 583
writer() (in module csv), 606
writerow() (csv.csvwriter method), 611
writerows() (csv.csvwriter method), 611
writestr() (zipfile.ZipFile method), 581
WriteTransport (class in asyncio), 1114
writev() (in module os), 673
writexml() (xml.dom.minidom.Node method), 1365
WrongDocumentErr, 1362
wsgi_file_wrapper (wsgiref.handlers.BaseHandler

attribute), 1403
wsgi_multiprocess (wsgiref.handlers.BaseHandler

attribute), 1402
wsgi_multithread (wsgiref.handlers.BaseHandler at-

tribute), 1402
wsgi_run_once (wsgiref.handlers.BaseHandler

attribute), 1402
WSGIApplication (in module wsgiref.types), 1404
WSGIEnvironment (in module wsgiref.types), 1404
wsgiref

module, 1396
wsgiref.handlers

module, 1401

wsgiref.headers

module, 1398
wsgiref.simple_server

module, 1399
wsgiref.types

module, 1404
wsgiref.util

module, 1396
wsgiref.validate

module, 1400
WSGIRequestHandler (class in wsgiref.simple_server),

1399
WSGIServer (class in wsgiref.simple_server), 1399
wShowWindow (subprocess.STARTUPINFO attribute),

1022
WSTOPPED (in module os), 712
WSTOPSIG() (in module os), 714
wstring_at() (in module ctypes), 826
WTERMSIG() (in module os), 714
WUNTRACED (in module os), 712
WWW, 1393, 1424, 1434

server, 1481

X
-x

compileall command line option, 2121
X (in module re), 139
X509 certificate, 1195
X_OK (in module os), 676
xatom() (imaplib.IMAP4 method), 1461
XATTR_CREATE (in module os), 701
XATTR_REPLACE (in module os), 701
XATTR_SIZE_MAX (in module os), 701
xcor() (in module turtle), 1559
xdrlib

module, 2191
XHTML, 1327
XHTML_NAMESPACE (in module xml.dom), 1355
xml

module, 1332
XML() (in module xml.etree.ElementTree), 1344
XML_ERROR_ABORTED (in module

xml.parsers.expat.errors), 1390
XML_ERROR_AMPLIFICATION_LIMIT_BREACH (in

module xml.parsers.expat.errors), 1391
XML_ERROR_ASYNC_ENTITY (in module

xml.parsers.expat.errors), 1389
XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF

(in module xml.parsers.expat.errors), 1389
XML_ERROR_BAD_CHAR_REF (in module

xml.parsers.expat.errors), 1389
XML_ERROR_BINARY_ENTITY_REF (in module

xml.parsers.expat.errors), 1389
XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING

(in module xml.parsers.expat.errors), 1390
XML_ERROR_DUPLICATE_ATTRIBUTE (in module

xml.parsers.expat.errors), 1389

Index 2361



The Python Library Reference, Release 3.13.1

XML_ERROR_ENTITY_DECLARED_IN_PE (in module
xml.parsers.expat.errors), 1390

XML_ERROR_EXTERNAL_ENTITY_HANDLING (in mod-
ule xml.parsers.expat.errors), 1390

XML_ERROR_FEATURE_REQUIRES_XML_DTD (in mod-
ule xml.parsers.expat.errors), 1390

XML_ERROR_FINISHED (in module
xml.parsers.expat.errors), 1390

XML_ERROR_INCOMPLETE_PE (in module
xml.parsers.expat.errors), 1390

XML_ERROR_INCORRECT_ENCODING (in module
xml.parsers.expat.errors), 1389

XML_ERROR_INVALID_ARGUMENT (in module
xml.parsers.expat.errors), 1391

XML_ERROR_INVALID_TOKEN (in module
xml.parsers.expat.errors), 1389

XML_ERROR_JUNK_AFTER_DOC_ELEMENT (in module
xml.parsers.expat.errors), 1389

XML_ERROR_MISPLACED_XML_PI (in module
xml.parsers.expat.errors), 1389

XML_ERROR_NO_BUFFER (in module
xml.parsers.expat.errors), 1391

XML_ERROR_NO_ELEMENTS (in module
xml.parsers.expat.errors), 1389

XML_ERROR_NO_MEMORY (in module
xml.parsers.expat.errors), 1389

XML_ERROR_NOT_STANDALONE (in module
xml.parsers.expat.errors), 1390

XML_ERROR_NOT_SUSPENDED (in module
xml.parsers.expat.errors), 1390

XML_ERROR_PARAM_ENTITY_REF (in module
xml.parsers.expat.errors), 1389

XML_ERROR_PARTIAL_CHAR (in module
xml.parsers.expat.errors), 1389

XML_ERROR_PUBLICID (in module
xml.parsers.expat.errors), 1390

XML_ERROR_RECURSIVE_ENTITY_REF (in module
xml.parsers.expat.errors), 1389

XML_ERROR_RESERVED_NAMESPACE_URI (in module
xml.parsers.expat.errors), 1390

XML_ERROR_RESERVED_PREFIX_XML (in module
xml.parsers.expat.errors), 1390

XML_ERROR_RESERVED_PREFIX_XMLNS (in module
xml.parsers.expat.errors), 1390

XML_ERROR_SUSPEND_PE (in module
xml.parsers.expat.errors), 1390

XML_ERROR_SUSPENDED (in module
xml.parsers.expat.errors), 1390

XML_ERROR_SYNTAX (in module
xml.parsers.expat.errors), 1389

XML_ERROR_TAG_MISMATCH (in module
xml.parsers.expat.errors), 1389

XML_ERROR_TEXT_DECL (in module
xml.parsers.expat.errors), 1390

XML_ERROR_UNBOUND_PREFIX (in module
xml.parsers.expat.errors), 1390

XML_ERROR_UNCLOSED_CDATA_SECTION (in module
xml.parsers.expat.errors), 1389

XML_ERROR_UNCLOSED_TOKEN (in module
xml.parsers.expat.errors), 1389

XML_ERROR_UNDECLARING_PREFIX (in module
xml.parsers.expat.errors), 1390

XML_ERROR_UNDEFINED_ENTITY (in module
xml.parsers.expat.errors), 1389

XML_ERROR_UNEXPECTED_STATE (in module
xml.parsers.expat.errors), 1390

XML_ERROR_UNKNOWN_ENCODING (in module
xml.parsers.expat.errors), 1389

XML_ERROR_XML_DECL (in module
xml.parsers.expat.errors), 1390

XML_NAMESPACE (in module xml.dom), 1354
xmlcharrefreplace

error handler's name, 190
xmlcharrefreplace_errors() (in module codecs),

191
XmlDeclHandler() (xml.parsers.expat.xmlparser

method), 1385
xml.dom

module, 1353
xml.dom.minidom

module, 1363
xml.dom.pulldom

module, 1367
xml.etree.ElementInclude

module, 1345
xml.etree.ElementTree

module, 1334
XMLFilterBase (class in xml.sax.saxutils), 1377
XMLGenerator (class in xml.sax.saxutils), 1377
XMLID() (in module xml.etree.ElementTree), 1344
XMLNS_NAMESPACE (in module xml.dom), 1354
XMLParser (class in xml.etree.ElementTree), 1351
xml.parsers.expat

module, 1381
xml.parsers.expat.errors

module, 1388
xml.parsers.expat.model

module, 1388
XMLParserType (in module xml.parsers.expat), 1382
XMLPullParser (class in xml.etree.ElementTree), 1352
XMLReader (class in xml.sax.xmlreader), 1377
xmlrpc

module, 1499
xmlrpc.client

module, 1500
xmlrpc.server

module, 1507
xml.sax

module, 1369
xml.sax.handler

module, 1371
xml.sax.saxutils

module, 1376
xml.sax.xmlreader

module, 1377
xor() (in module operator), 432

2362 Index



The Python Library Reference, Release 3.13.1

xview() (tkinter.ttk.Treeview method), 1629

Y
ycor() (in module turtle), 1559
year

calendar command line option, 252
year (datetime.date attribute), 210
year (datetime.datetime attribute), 217
Year 2038, 732
yeardatescalendar() (calendar.Calendar method),

246
yeardays2calendar() (calendar.Calendar method),

246
yeardayscalendar() (calendar.Calendar method),

246
YES (in module tkinter.messagebox), 1614
YESEXPR (in module locale), 1542
YESNO (in module tkinter.messagebox), 1614
YESNOCANCEL (in module tkinter.messagebox), 1614
Yield (class in ast), 2097
YIELD_VALUE (opcode), 2133
YieldFrom (class in ast), 2097
yiq_to_rgb() (in module colorsys), 1530
yview() (tkinter.ttk.Treeview method), 1629

Z
z

in string formatting, 123
z85decode() (in module base64), 1321
z85encode() (in module base64), 1321
Zen of Python, 2211
ZeroDivisionError, 112
zfill() (bytearray method), 76
zfill() (bytes method), 76
zfill() (str method), 60
zip()

built-in function, 31
ZIP_BZIP2 (in module zipfile), 577
ZIP_DEFLATED (in module zipfile), 577
zip_longest() (in module itertools), 414
ZIP_LZMA (in module zipfile), 577
ZIP_STORED (in module zipfile), 577
zipapp

module, 1896
zipapp command line option

-c, 1897
--compress, 1897
-h, 1897
--help, 1897
--info, 1897
-m, 1897
--main, 1897
-o, 1897
--output, 1897
-p, 1897
--python, 1897

zipfile

module, 576

ZipFile (class in zipfile), 577
zipfile command line option

-c, 586
--create, 586
-e, 586
--extract, 586
-l, 586
--list, 586
--metadata-encoding, 586
-t, 586
--test, 586

zipimport

module, 2023
zipimporter (class in zipimport), 2024
ZipImportError, 2023
ZipInfo (class in zipfile), 576
zlib

module, 559
ZLIB_RUNTIME_VERSION (in module zlib), 562
ZLIB_VERSION (in module zlib), 562
zoneinfo

module, 240
ZoneInfo (class in zoneinfo), 242
ZoneInfoNotFoundError, 245
zscore() (statistics.NormalDist method), 398

Index 2363


	Introduction
	Notes on availability
	WebAssembly platforms
	Mobile platforms


	Built-in Functions
	Built-in Constants
	Constants added by the site module

	Built-in Types
	Truth Value Testing
	Boolean Operations — and, or, not
	Comparisons
	Numeric Types — int, float, complex
	Bitwise Operations on Integer Types
	Additional Methods on Integer Types
	Additional Methods on Float
	Hashing of numeric types

	Boolean Type - bool
	Iterator Types
	Generator Types

	Sequence Types — list, tuple, range
	Common Sequence Operations
	Immutable Sequence Types
	Mutable Sequence Types
	Lists
	Tuples
	Ranges

	Text Sequence Type — str
	String Methods
	printf-style String Formatting

	Binary Sequence Types — bytes, bytearray, memoryview
	Bytes Objects
	Bytearray Objects
	Bytes and Bytearray Operations
	printf-style Bytes Formatting
	Memory Views

	Set Types — set, frozenset
	Mapping Types — dict
	Dictionary view objects

	Context Manager Types
	Type Annotation Types — Generic Alias, Union
	Generic Alias Type
	Standard Generic Classes
	Special Attributes of GenericAlias objects

	Union Type

	Other Built-in Types
	Modules
	Classes and Class Instances
	Functions
	Methods
	Code Objects
	Type Objects
	The Null Object
	The Ellipsis Object
	The NotImplemented Object
	Internal Objects

	Special Attributes
	Integer string conversion length limitation
	Affected APIs
	Configuring the limit
	Recommended configuration


	Built-in Exceptions
	Exception context
	Inheriting from built-in exceptions
	Base classes
	Concrete exceptions
	OS exceptions

	Warnings
	Exception groups
	Exception hierarchy

	Text Processing Services
	string — Common string operations
	String constants
	Custom String Formatting
	Format String Syntax
	Format Specification Mini-Language
	Format examples

	Template strings
	Helper functions

	re — Regular expression operations
	Regular Expression Syntax
	Module Contents
	Flags
	Functions
	Exceptions

	Regular Expression Objects
	Match Objects
	Regular Expression Examples
	Checking for a Pair
	Simulating scanf()
	search() vs. match()
	Making a Phonebook
	Text Munging
	Finding all Adverbs
	Finding all Adverbs and their Positions
	Raw String Notation
	Writing a Tokenizer


	difflib — Helpers for computing deltas
	SequenceMatcher Objects
	SequenceMatcher Examples
	Differ Objects
	Differ Example
	A command-line interface to difflib
	ndiff example

	textwrap — Text wrapping and filling
	unicodedata — Unicode Database
	stringprep — Internet String Preparation
	readline — GNU readline interface
	Init file
	Line buffer
	History file
	History list
	Startup hooks
	Completion
	Example

	rlcompleter — Completion function for GNU readline

	Binary Data Services
	struct — Interpret bytes as packed binary data
	Functions and Exceptions
	Format Strings
	Byte Order, Size, and Alignment
	Format Characters
	Examples

	Applications
	Native Formats
	Standard Formats

	Classes

	codecs — Codec registry and base classes
	Codec Base Classes
	Error Handlers
	Stateless Encoding and Decoding
	Incremental Encoding and Decoding
	IncrementalEncoder Objects
	IncrementalDecoder Objects

	Stream Encoding and Decoding
	StreamWriter Objects
	StreamReader Objects
	StreamReaderWriter Objects
	StreamRecoder Objects


	Encodings and Unicode
	Standard Encodings
	Python Specific Encodings
	Text Encodings
	Binary Transforms
	Text Transforms

	encodings.idna — Internationalized Domain Names in Applications
	encodings.mbcs — Windows ANSI codepage
	encodings.utf_8_sig — UTF-8 codec with BOM signature


	Data Types
	datetime — Basic date and time types
	Aware and Naive Objects
	Constants
	Available Types
	Common Properties
	Determining if an Object is Aware or Naive

	timedelta Objects
	Examples of usage: timedelta

	date Objects
	Examples of Usage: date

	datetime Objects
	Examples of Usage: datetime

	time Objects
	Examples of Usage: time

	tzinfo Objects
	timezone Objects
	strftime() and strptime() Behavior
	strftime() and strptime() Format Codes
	Technical Detail


	zoneinfo — IANA time zone support
	Using ZoneInfo
	Data sources
	Configuring the data sources
	Compile-time configuration
	Environment configuration
	Runtime configuration


	The ZoneInfo class
	String representations
	Pickle serialization

	Functions
	Globals
	Exceptions and warnings

	calendar — General calendar-related functions
	Command-Line Usage

	collections — Container datatypes
	ChainMap objects
	ChainMap Examples and Recipes

	Counter objects
	deque objects
	deque Recipes

	defaultdict objects
	defaultdict Examples

	namedtuple() Factory Function for Tuples with Named Fields
	OrderedDict objects
	OrderedDict Examples and Recipes

	UserDict objects
	UserList objects
	UserString objects

	collections.abc — Abstract Base Classes for Containers
	Collections Abstract Base Classes
	Collections Abstract Base Classes – Detailed Descriptions
	Examples and Recipes

	heapq — Heap queue algorithm
	Basic Examples
	Priority Queue Implementation Notes
	Theory

	bisect — Array bisection algorithm
	Performance Notes
	Searching Sorted Lists
	Examples

	array — Efficient arrays of numeric values
	weakref — Weak references
	Weak Reference Objects
	Example
	Finalizer Objects
	Comparing finalizers with __del__() methods

	types — Dynamic type creation and names for built-in types
	Dynamic Type Creation
	Standard Interpreter Types
	Additional Utility Classes and Functions
	Coroutine Utility Functions

	copy — Shallow and deep copy operations
	pprint — Data pretty printer
	Functions
	PrettyPrinter Objects
	Example

	reprlib — Alternate repr() implementation
	Repr Objects
	Subclassing Repr Objects

	enum — Support for enumerations
	Module Contents
	Data Types
	Supported __dunder__ names
	Supported _sunder_ names

	Utilities and Decorators
	Notes

	graphlib — Functionality to operate with graph-like structures
	Exceptions


	Numeric and Mathematical Modules
	numbers — Numeric abstract base classes
	The numeric tower
	Notes for type implementers
	Adding More Numeric ABCs
	Implementing the arithmetic operations


	math — Mathematical functions
	Number-theoretic functions
	Floating point arithmetic
	Floating point manipulation functions
	Power, exponential and logarithmic functions
	Summation and product functions
	Angular conversion
	Trigonometric functions
	Hyperbolic functions
	Special functions
	Constants

	cmath — Mathematical functions for complex numbers
	Conversions to and from polar coordinates
	Power and logarithmic functions
	Trigonometric functions
	Hyperbolic functions
	Classification functions
	Constants

	decimal — Decimal fixed-point and floating-point arithmetic
	Quick-start Tutorial
	Decimal objects
	Logical operands

	Context objects
	Constants
	Rounding modes
	Signals
	Floating-Point Notes
	Mitigating round-off error with increased precision
	Special values

	Working with threads
	Recipes
	Decimal FAQ

	fractions — Rational numbers
	random — Generate pseudo-random numbers
	Bookkeeping functions
	Functions for bytes
	Functions for integers
	Functions for sequences
	Discrete distributions
	Real-valued distributions
	Alternative Generator
	Notes on Reproducibility
	Examples
	Recipes
	Command-line usage
	Command-line example

	statistics — Mathematical statistics functions
	Averages and measures of central location
	Measures of spread
	Statistics for relations between two inputs
	Function details
	Exceptions
	NormalDist objects
	Examples and Recipes
	Classic probability problems
	Monte Carlo inputs for simulations
	Approximating binomial distributions
	Naive bayesian classifier



	Functional Programming Modules
	itertools — Functions creating iterators for efficient looping
	Itertool Functions
	Itertools Recipes

	functools — Higher-order functions and operations on callable objects
	partial Objects

	operator — Standard operators as functions
	Mapping Operators to Functions
	In-place Operators


	File and Directory Access
	pathlib — Object-oriented filesystem paths
	Basic use
	Exceptions
	Pure paths
	General properties
	Operators
	Accessing individual parts
	Methods and properties

	Concrete paths
	Parsing and generating URIs
	Expanding and resolving paths
	Querying file type and status
	Reading and writing files
	Reading directories
	Creating files and directories
	Renaming and deleting
	Permissions and ownership

	Pattern language
	Comparison to the glob module
	Comparison to the os and os.path modules
	Corresponding tools


	os.path — Common pathname manipulations
	stat — Interpreting stat() results
	filecmp — File and Directory Comparisons
	The dircmp class

	tempfile — Generate temporary files and directories
	Examples
	Deprecated functions and variables

	glob — Unix style pathname pattern expansion
	Examples

	fnmatch — Unix filename pattern matching
	linecache — Random access to text lines
	shutil — High-level file operations
	Directory and files operations
	Platform-dependent efficient copy operations
	copytree example
	rmtree example

	Archiving operations
	Archiving example
	Archiving example with base_dir

	Querying the size of the output terminal


	Data Persistence
	pickle — Python object serialization
	Relationship to other Python modules
	Comparison with marshal
	Comparison with json

	Data stream format
	Module Interface
	What can be pickled and unpickled?
	Pickling Class Instances
	Persistence of External Objects
	Dispatch Tables
	Handling Stateful Objects

	Custom Reduction for Types, Functions, and Other Objects
	Out-of-band Buffers
	Provider API
	Consumer API
	Example

	Restricting Globals
	Performance
	Examples

	copyreg — Register pickle support functions
	Example

	shelve — Python object persistence
	Restrictions
	Example

	marshal — Internal Python object serialization
	dbm — Interfaces to Unix “databases”
	dbm.sqlite3 — SQLite backend for dbm
	dbm.gnu — GNU database manager
	dbm.ndbm — New Database Manager
	dbm.dumb — Portable DBM implementation

	sqlite3 — DB-API 2.0 interface for SQLite databases
	Tutorial
	Reference
	Module functions
	Module constants
	Connection objects
	Cursor objects
	Row objects
	Blob objects
	PrepareProtocol objects
	Exceptions
	SQLite and Python types
	Default adapters and converters (deprecated)
	Command-line interface

	How-to guides
	How to use placeholders to bind values in SQL queries
	How to adapt custom Python types to SQLite values
	How to write adaptable objects
	How to register adapter callables

	How to convert SQLite values to custom Python types
	Adapter and converter recipes
	How to use connection shortcut methods
	How to use the connection context manager
	How to work with SQLite URIs
	How to create and use row factories
	How to handle non-UTF-8 text encodings

	Explanation
	Transaction control
	Transaction control via the autocommit attribute
	Transaction control via the isolation_level attribute




	Data Compression and Archiving
	zlib — Compression compatible with gzip
	gzip — Support for gzip files
	Examples of usage
	Command Line Interface
	Command line options


	bz2 — Support for bzip2 compression
	(De)compression of files
	Incremental (de)compression
	One-shot (de)compression
	Examples of usage

	lzma — Compression using the LZMA algorithm
	Reading and writing compressed files
	Compressing and decompressing data in memory
	Miscellaneous
	Specifying custom filter chains
	Examples

	zipfile — Work with ZIP archives
	ZipFile Objects
	Path Objects
	PyZipFile Objects
	ZipInfo Objects
	Command-Line Interface
	Command-line options

	Decompression pitfalls
	From file itself
	File System limitations
	Resources limitations
	Interruption
	Default behaviors of extraction


	tarfile — Read and write tar archive files
	TarFile Objects
	TarInfo Objects
	Extraction filters
	Default named filters
	Filter errors
	Hints for further verification
	Supporting older Python versions
	Stateful extraction filter example

	Command-Line Interface
	Command-line options

	Examples
	Supported tar formats
	Unicode issues


	File Formats
	csv — CSV File Reading and Writing
	Module Contents
	Dialects and Formatting Parameters
	Reader Objects
	Writer Objects
	Examples

	configparser — Configuration file parser
	Quick Start
	Supported Datatypes
	Fallback Values
	Supported INI File Structure
	Unnamed Sections
	Interpolation of values
	Mapping Protocol Access
	Customizing Parser Behaviour
	Legacy API Examples
	ConfigParser Objects
	RawConfigParser Objects
	Exceptions

	tomllib — Parse TOML files
	Examples
	Conversion Table

	netrc — netrc file processing
	netrc Objects

	plistlib — Generate and parse Apple .plist files
	Examples


	Cryptographic Services
	hashlib — Secure hashes and message digests
	Hash algorithms
	Usage
	Constructors
	Attributes
	Hash Objects
	SHAKE variable length digests
	File hashing
	Key derivation
	BLAKE2
	Creating hash objects
	Constants
	Examples
	Simple hashing
	Using different digest sizes
	Keyed hashing
	Randomized hashing
	Personalization
	Tree mode

	Credits


	hmac — Keyed-Hashing for Message Authentication
	secrets — Generate secure random numbers for managing secrets
	Random numbers
	Generating tokens
	How many bytes should tokens use?

	Other functions
	Recipes and best practices


	Generic Operating System Services
	os — Miscellaneous operating system interfaces
	File Names, Command Line Arguments, and Environment Variables
	Python UTF-8 Mode
	Process Parameters
	File Object Creation
	File Descriptor Operations
	Querying the size of a terminal
	Inheritance of File Descriptors

	Files and Directories
	Timer File Descriptors
	Linux extended attributes

	Process Management
	Interface to the scheduler
	Miscellaneous System Information
	Random numbers

	io — Core tools for working with streams
	Overview
	Text I/O
	Binary I/O
	Raw I/O

	Text Encoding
	Opt-in EncodingWarning

	High-level Module Interface
	Class hierarchy
	I/O Base Classes
	Raw File I/O
	Buffered Streams
	Text I/O

	Performance
	Binary I/O
	Text I/O
	Multi-threading
	Reentrancy


	time — Time access and conversions
	Functions
	Clock ID Constants
	Timezone Constants

	logging — Logging facility for Python
	Logger Objects
	Logging Levels
	Handler Objects
	Formatter Objects
	Filter Objects
	LogRecord Objects
	LogRecord attributes
	LoggerAdapter Objects
	Thread Safety
	Module-Level Functions
	Module-Level Attributes
	Integration with the warnings module

	logging.config — Logging configuration
	Configuration functions
	Security considerations
	Configuration dictionary schema
	Dictionary Schema Details
	Incremental Configuration
	Object connections
	User-defined objects
	Handler configuration order
	Access to external objects
	Access to internal objects
	Import resolution and custom importers
	Configuring QueueHandler and QueueListener

	Configuration file format

	logging.handlers — Logging handlers
	StreamHandler
	FileHandler
	NullHandler
	WatchedFileHandler
	BaseRotatingHandler
	RotatingFileHandler
	TimedRotatingFileHandler
	SocketHandler
	DatagramHandler
	SysLogHandler
	NTEventLogHandler
	SMTPHandler
	MemoryHandler
	HTTPHandler
	QueueHandler
	QueueListener

	platform — Access to underlying platform’s identifying data
	Cross Platform
	Java Platform
	Windows Platform
	macOS Platform
	iOS Platform
	Unix Platforms
	Linux Platforms
	Android Platform

	errno — Standard errno system symbols
	ctypes — A foreign function library for Python
	ctypes tutorial
	Loading dynamic link libraries
	Accessing functions from loaded dlls
	Calling functions
	Fundamental data types
	Calling functions, continued
	Calling variadic functions
	Calling functions with your own custom data types
	Specifying the required argument types (function prototypes)
	Return types
	Passing pointers (or: passing parameters by reference)
	Structures and unions
	Structure/union alignment and byte order
	Bit fields in structures and unions
	Arrays
	Pointers
	Type conversions
	Incomplete Types
	Callback functions
	Accessing values exported from dlls
	Surprises
	Variable-sized data types

	ctypes reference
	Finding shared libraries
	Loading shared libraries
	Foreign functions
	Function prototypes
	Utility functions
	Data types
	Fundamental data types
	Structured data types
	Arrays and pointers



	Command Line Interface Libraries
	argparse — Parser for command-line options, arguments and subcommands
	ArgumentParser objects
	prog
	usage
	description
	epilog
	parents
	formatter_class
	prefix_chars
	fromfile_prefix_chars
	argument_default
	allow_abbrev
	conflict_handler
	add_help
	exit_on_error

	The add_argument() method
	name or flags
	action
	nargs
	const
	default
	type
	choices
	required
	help
	metavar
	dest
	deprecated
	Action classes

	The parse_args() method
	Option value syntax
	Invalid arguments
	Arguments containing -
	Argument abbreviations (prefix matching)
	Beyond sys.argv
	The Namespace object

	Other utilities
	Sub-commands
	FileType objects
	Argument groups
	Mutual exclusion
	Parser defaults
	Printing help
	Partial parsing
	Customizing file parsing
	Exiting methods
	Intermixed parsing
	Registering custom types or actions

	Exceptions
	Argparse Tutorial
	Concepts
	The basics
	Introducing Positional arguments
	Introducing Optional arguments
	Short options

	Combining Positional and Optional arguments
	Getting a little more advanced
	Specifying ambiguous arguments
	Conflicting options

	How to translate the argparse output
	Custom type converters
	Conclusion

	Migrating optparse code to argparse


	optparse — Parser for command line options
	Choosing an argument parsing library
	Introduction
	Background
	Terminology
	What are options for?
	What are positional arguments for?

	Tutorial
	Understanding option actions
	The store action
	Handling boolean (flag) options
	Other actions
	Default values
	Generating help
	Grouping Options

	Printing a version string
	How optparse handles errors
	Putting it all together

	Reference Guide
	Creating the parser
	Populating the parser
	Defining options
	Option attributes
	Standard option actions
	Standard option types
	Parsing arguments
	Querying and manipulating your option parser
	Conflicts between options
	Cleanup
	Other methods

	Option Callbacks
	Defining a callback option
	How callbacks are called
	Raising errors in a callback
	Callback example 1: trivial callback
	Callback example 2: check option order
	Callback example 3: check option order (generalized)
	Callback example 4: check arbitrary condition
	Callback example 5: fixed arguments
	Callback example 6: variable arguments

	Extending optparse
	Adding new types
	Adding new actions

	Exceptions

	getpass — Portable password input
	fileinput — Iterate over lines from multiple input streams
	curses — Terminal handling for character-cell displays
	Functions
	Window Objects
	Constants

	curses.textpad — Text input widget for curses programs
	Textbox objects

	curses.ascii — Utilities for ASCII characters
	curses.panel — A panel stack extension for curses
	Functions
	Panel Objects


	Concurrent Execution
	threading — Thread-based parallelism
	Thread-Local Data
	Thread Objects
	Lock Objects
	RLock Objects
	Condition Objects
	Semaphore Objects
	Semaphore Example

	Event Objects
	Timer Objects
	Barrier Objects
	Using locks, conditions, and semaphores in the with statement

	multiprocessing — Process-based parallelism
	Introduction
	The Process class
	Contexts and start methods
	Exchanging objects between processes
	Synchronization between processes
	Sharing state between processes
	Using a pool of workers

	Reference
	Process and exceptions
	Pipes and Queues
	Miscellaneous
	Connection Objects
	Synchronization primitives
	Shared ctypes Objects
	The multiprocessing.sharedctypes module

	Managers
	Customized managers
	Using a remote manager

	Proxy Objects
	Cleanup

	Process Pools
	Listeners and Clients
	Address Formats

	Authentication keys
	Logging
	The multiprocessing.dummy module

	Programming guidelines
	All start methods
	The spawn and forkserver start methods

	Examples

	multiprocessing.shared_memory — Shared memory for direct access across processes
	The concurrent package
	concurrent.futures — Launching parallel tasks
	Executor Objects
	ThreadPoolExecutor
	ThreadPoolExecutor Example

	ProcessPoolExecutor
	ProcessPoolExecutor Example

	Future Objects
	Module Functions
	Exception classes

	subprocess — Subprocess management
	Using the subprocess Module
	Frequently Used Arguments
	Popen Constructor
	Exceptions

	Security Considerations
	Popen Objects
	Windows Popen Helpers
	Windows Constants

	Older high-level API
	Replacing Older Functions with the subprocess Module
	Replacing /bin/sh shell command substitution
	Replacing shell pipeline
	Replacing os.system()
	Replacing the os.spawn family
	Replacing os.popen(), os.popen2(), os.popen3()
	Replacing functions from the popen2 module

	Legacy Shell Invocation Functions
	Notes
	Converting an argument sequence to a string on Windows
	Disabling use of vfork() or posix_spawn()


	sched — Event scheduler
	Scheduler Objects

	queue — A synchronized queue class
	Queue Objects
	Terminating queues

	SimpleQueue Objects

	contextvars — Context Variables
	Context Variables
	Manual Context Management
	asyncio support

	_thread — Low-level threading API

	Networking and Interprocess Communication
	asyncio — Asynchronous I/O
	Runners
	Running an asyncio Program
	Runner context manager
	Handling Keyboard Interruption

	Coroutines and Tasks
	Coroutines
	Awaitables
	Creating Tasks
	Task Cancellation
	Task Groups
	Terminating a Task Group

	Sleeping
	Running Tasks Concurrently
	Eager Task Factory
	Shielding From Cancellation
	Timeouts
	Waiting Primitives
	Running in Threads
	Scheduling From Other Threads
	Introspection
	Task Object

	Streams
	StreamReader
	StreamWriter
	Examples
	TCP echo client using streams
	TCP echo server using streams
	Get HTTP headers
	Register an open socket to wait for data using streams


	Synchronization Primitives
	Lock
	Event
	Condition
	Semaphore
	BoundedSemaphore
	Barrier

	Subprocesses
	Creating Subprocesses
	Constants
	Interacting with Subprocesses
	Subprocess and Threads
	Examples


	Queues
	Queue
	Priority Queue
	LIFO Queue
	Exceptions
	Examples

	Exceptions
	Event Loop
	Event Loop Methods
	Running and stopping the loop
	Scheduling callbacks
	Scheduling delayed callbacks
	Creating Futures and Tasks
	Opening network connections
	Creating network servers
	Transferring files
	TLS Upgrade
	Watching file descriptors
	Working with socket objects directly
	DNS
	Working with pipes
	Unix signals
	Executing code in thread or process pools
	Error Handling API
	Enabling debug mode
	Running Subprocesses

	Callback Handles
	Server Objects
	Event Loop Implementations
	Examples
	Hello World with call_soon()
	Display the current date with call_later()
	Watch a file descriptor for read events
	Set signal handlers for SIGINT and SIGTERM


	Futures
	Future Functions
	Future Object

	Transports and Protocols
	Transports
	Transports Hierarchy
	Base Transport
	Read-only Transports
	Write-only Transports
	Datagram Transports
	Subprocess Transports

	Protocols
	Base Protocols
	Base Protocol
	Streaming Protocols
	Buffered Streaming Protocols
	Datagram Protocols
	Subprocess Protocols

	Examples
	TCP Echo Server
	TCP Echo Client
	UDP Echo Server
	UDP Echo Client
	Connecting Existing Sockets
	loop.subprocess_exec() and SubprocessProtocol


	Policies
	Getting and Setting the Policy
	Policy Objects
	Process Watchers
	Custom Policies

	Platform Support
	All Platforms
	Windows
	Subprocess Support on Windows

	macOS

	Extending
	Writing a Custom Event Loop
	Future and Task private constructors
	Task lifetime support

	High-level API Index
	Tasks
	Queues
	Subprocesses
	Streams
	Synchronization
	Exceptions

	Low-level API Index
	Obtaining the Event Loop
	Event Loop Methods
	Transports
	Protocols
	Event Loop Policies

	Developing with asyncio
	Debug Mode
	Concurrency and Multithreading
	Running Blocking Code
	Logging
	Detect never-awaited coroutines
	Detect never-retrieved exceptions


	socket — Low-level networking interface
	Socket families
	Module contents
	Exceptions
	Constants
	Functions
	Creating sockets
	Other functions


	Socket Objects
	Notes on socket timeouts
	Timeouts and the connect method
	Timeouts and the accept method

	Example

	ssl — TLS/SSL wrapper for socket objects
	Functions, Constants, and Exceptions
	Socket creation
	Context creation
	Exceptions
	Random generation
	Certificate handling
	Constants

	SSL Sockets
	SSL Contexts
	Certificates
	Certificate chains
	CA certificates
	Combined key and certificate
	Self-signed certificates

	Examples
	Testing for SSL support
	Client-side operation
	Server-side operation

	Notes on non-blocking sockets
	Memory BIO Support
	SSL session
	Security considerations
	Best defaults
	Manual settings
	Verifying certificates
	Protocol versions
	Cipher selection

	Multi-processing

	TLS 1.3

	select — Waiting for I/O completion
	/dev/poll Polling Objects
	Edge and Level Trigger Polling (epoll) Objects
	Polling Objects
	Kqueue Objects
	Kevent Objects

	selectors — High-level I/O multiplexing
	Introduction
	Classes
	Examples

	signal — Set handlers for asynchronous events
	General rules
	Execution of Python signal handlers
	Signals and threads

	Module contents
	Examples
	Note on SIGPIPE
	Note on Signal Handlers and Exceptions

	mmap — Memory-mapped file support
	MADV_* Constants
	MAP_* Constants


	Internet Data Handling
	email — An email and MIME handling package
	email.message: Representing an email message
	email.parser: Parsing email messages
	FeedParser API
	Parser API
	Additional notes

	email.generator: Generating MIME documents
	email.policy: Policy Objects
	email.errors: Exception and Defect classes
	email.headerregistry: Custom Header Objects
	email.contentmanager: Managing MIME Content
	Content Manager Instances

	email: Examples
	email.message.Message: Representing an email message using the compat32 API
	email.mime: Creating email and MIME objects from scratch
	email.header: Internationalized headers
	email.charset: Representing character sets
	email.encoders: Encoders
	email.utils: Miscellaneous utilities
	email.iterators: Iterators

	json — JSON encoder and decoder
	Basic Usage
	Encoders and Decoders
	Exceptions
	Standard Compliance and Interoperability
	Character Encodings
	Infinite and NaN Number Values
	Repeated Names Within an Object
	Top-level Non-Object, Non-Array Values
	Implementation Limitations

	Command Line Interface
	Command line options


	mailbox — Manipulate mailboxes in various formats
	Mailbox objects
	Maildir objects
	mbox objects
	MH objects
	Babyl objects
	MMDF objects

	Message objects
	MaildirMessage objects
	mboxMessage objects
	MHMessage objects
	BabylMessage objects
	MMDFMessage objects

	Exceptions
	Examples

	mimetypes — Map filenames to MIME types
	MimeTypes Objects

	base64 — Base16, Base32, Base64, Base85 Data Encodings
	Security Considerations

	binascii — Convert between binary and ASCII
	quopri — Encode and decode MIME quoted-printable data

	Structured Markup Processing Tools
	html — HyperText Markup Language support
	html.parser — Simple HTML and XHTML parser
	Example HTML Parser Application
	HTMLParser Methods
	Examples

	html.entities — Definitions of HTML general entities
	XML Processing Modules
	XML vulnerabilities
	The defusedxml Package

	xml.etree.ElementTree — The ElementTree XML API
	Tutorial
	XML tree and elements
	Parsing XML
	Pull API for non-blocking parsing
	Finding interesting elements
	Modifying an XML File
	Building XML documents
	Parsing XML with Namespaces

	XPath support
	Example
	Supported XPath syntax

	Reference
	Functions

	XInclude support
	Example

	Reference
	Functions
	Element Objects
	ElementTree Objects
	QName Objects
	TreeBuilder Objects
	XMLParser Objects
	XMLPullParser Objects
	Exceptions


	xml.dom — The Document Object Model API
	Module Contents
	Objects in the DOM
	DOMImplementation Objects
	Node Objects
	NodeList Objects
	DocumentType Objects
	Document Objects
	Element Objects
	Attr Objects
	NamedNodeMap Objects
	Comment Objects
	Text and CDATASection Objects
	ProcessingInstruction Objects
	Exceptions

	Conformance
	Type Mapping
	Accessor Methods


	xml.dom.minidom — Minimal DOM implementation
	DOM Objects
	DOM Example
	minidom and the DOM standard

	xml.dom.pulldom — Support for building partial DOM trees
	DOMEventStream Objects

	xml.sax — Support for SAX2 parsers
	SAXException Objects

	xml.sax.handler — Base classes for SAX handlers
	ContentHandler Objects
	DTDHandler Objects
	EntityResolver Objects
	ErrorHandler Objects
	LexicalHandler Objects

	xml.sax.saxutils — SAX Utilities
	xml.sax.xmlreader — Interface for XML parsers
	XMLReader Objects
	IncrementalParser Objects
	Locator Objects
	InputSource Objects
	The Attributes Interface
	The AttributesNS Interface

	xml.parsers.expat — Fast XML parsing using Expat
	XMLParser Objects
	ExpatError Exceptions
	Example
	Content Model Descriptions
	Expat error constants


	Internet Protocols and Support
	webbrowser — Convenient web-browser controller
	Browser Controller Objects

	wsgiref — WSGI Utilities and Reference Implementation
	wsgiref.util – WSGI environment utilities
	wsgiref.headers – WSGI response header tools
	wsgiref.simple_server – a simple WSGI HTTP server
	wsgiref.validate — WSGI conformance checker
	wsgiref.handlers – server/gateway base classes
	wsgiref.types – WSGI types for static type checking
	Examples

	urllib — URL handling modules
	urllib.request — Extensible library for opening URLs
	Request Objects
	OpenerDirector Objects
	BaseHandler Objects
	HTTPRedirectHandler Objects
	HTTPCookieProcessor Objects
	ProxyHandler Objects
	HTTPPasswordMgr Objects
	HTTPPasswordMgrWithPriorAuth Objects
	AbstractBasicAuthHandler Objects
	HTTPBasicAuthHandler Objects
	ProxyBasicAuthHandler Objects
	AbstractDigestAuthHandler Objects
	HTTPDigestAuthHandler Objects
	ProxyDigestAuthHandler Objects
	HTTPHandler Objects
	HTTPSHandler Objects
	FileHandler Objects
	DataHandler Objects
	FTPHandler Objects
	CacheFTPHandler Objects
	UnknownHandler Objects
	HTTPErrorProcessor Objects
	Examples
	Legacy interface
	urllib.request Restrictions

	urllib.response — Response classes used by urllib
	urllib.parse — Parse URLs into components
	URL Parsing
	URL parsing security
	Parsing ASCII Encoded Bytes
	Structured Parse Results
	URL Quoting

	urllib.error — Exception classes raised by urllib.request
	urllib.robotparser — Parser for robots.txt
	http — HTTP modules
	HTTP status codes
	HTTP status category
	HTTP methods

	http.client — HTTP protocol client
	HTTPConnection Objects
	HTTPResponse Objects
	Examples
	HTTPMessage Objects

	ftplib — FTP protocol client
	Reference
	FTP objects
	FTP_TLS objects
	Module variables


	poplib — POP3 protocol client
	POP3 Objects
	POP3 Example

	imaplib — IMAP4 protocol client
	IMAP4 Objects
	IMAP4 Example

	smtplib — SMTP protocol client
	SMTP Objects
	SMTP Example

	uuid — UUID objects according to RFC 4122
	Command-Line Usage
	Example
	Command-Line Example

	socketserver — A framework for network servers
	Server Creation Notes
	Server Objects
	Request Handler Objects
	Examples
	socketserver.TCPServer Example
	socketserver.UDPServer Example
	Asynchronous Mixins


	http.server — HTTP servers
	Security Considerations

	http.cookies — HTTP state management
	Cookie Objects
	Morsel Objects
	Example

	http.cookiejar — Cookie handling for HTTP clients
	CookieJar and FileCookieJar Objects
	FileCookieJar subclasses and co-operation with web browsers
	CookiePolicy Objects
	DefaultCookiePolicy Objects
	Cookie Objects
	Examples

	xmlrpc — XMLRPC server and client modules
	xmlrpc.client — XML-RPC client access
	ServerProxy Objects
	DateTime Objects
	Binary Objects
	Fault Objects
	ProtocolError Objects
	MultiCall Objects
	Convenience Functions
	Example of Client Usage
	Example of Client and Server Usage

	xmlrpc.server — Basic XML-RPC servers
	SimpleXMLRPCServer Objects
	SimpleXMLRPCServer Example

	CGIXMLRPCRequestHandler
	Documenting XMLRPC server
	DocXMLRPCServer Objects
	DocCGIXMLRPCRequestHandler

	ipaddress — IPv4/IPv6 manipulation library
	Convenience factory functions
	IP Addresses
	Address objects
	Conversion to Strings and Integers
	Operators
	Comparison operators
	Arithmetic operators


	IP Network definitions
	Prefix, net mask and host mask
	Network objects
	Operators
	Logical operators
	Iteration
	Networks as containers of addresses


	Interface objects
	Operators
	Logical operators


	Other Module Level Functions
	Custom Exceptions


	Multimedia Services
	wave — Read and write WAV files
	Wave_read Objects
	Wave_write Objects

	colorsys — Conversions between color systems

	Internationalization
	gettext — Multilingual internationalization services
	GNU gettext API
	Class-based API
	The NullTranslations class
	The GNUTranslations class
	Solaris message catalog support
	The Catalog constructor

	Internationalizing your programs and modules
	Localizing your module
	Localizing your application
	Changing languages on the fly
	Deferred translations

	Acknowledgements

	locale — Internationalization services
	Background, details, hints, tips and caveats
	For extension writers and programs that embed Python
	Access to message catalogs


	Program Frameworks
	turtle — Turtle graphics
	Introduction
	Get started
	Tutorial
	Starting a turtle environment
	Basic drawing
	Pen control
	The turtle’s position

	Making algorithmic patterns

	How to…
	Get started as quickly as possible
	Use the turtle module namespace
	Use turtle graphics in a script
	Use object-oriented turtle graphics

	Turtle graphics reference
	Turtle methods
	Methods of TurtleScreen/Screen

	Methods of RawTurtle/Turtle and corresponding functions
	Turtle motion
	Tell Turtle’s state
	Settings for measurement
	Pen control
	Drawing state
	Color control
	Filling
	More drawing control

	Turtle state
	Visibility
	Appearance

	Using events
	Special Turtle methods
	Compound shapes

	Methods of TurtleScreen/Screen and corresponding functions
	Window control
	Animation control
	Using screen events
	Input methods
	Settings and special methods
	Methods specific to Screen, not inherited from TurtleScreen

	Public classes
	Explanation
	Help and configuration
	How to use help
	Translation of docstrings into different languages
	How to configure Screen and Turtles

	turtledemo — Demo scripts
	Changes since Python 2.6
	Changes since Python 3.0

	cmd — Support for line-oriented command interpreters
	Cmd Objects
	Cmd Example

	shlex — Simple lexical analysis
	shlex Objects
	Parsing Rules
	Improved Compatibility with Shells


	Graphical User Interfaces with Tk
	tkinter — Python interface to Tcl/Tk
	Architecture
	Tkinter Modules
	Tkinter Life Preserver
	A Hello World Program
	Important Tk Concepts
	Understanding How Tkinter Wraps Tcl/Tk
	How do I…? What option does…?
	Navigating the Tcl/Tk Reference Manual

	Threading model
	Handy Reference
	Setting Options
	The Packer
	Packer Options
	Coupling Widget Variables
	The Window Manager
	Tk Option Data Types
	Bindings and Events
	The index Parameter
	Images

	File Handlers

	tkinter.colorchooser — Color choosing dialog
	tkinter.font — Tkinter font wrapper
	Tkinter Dialogs
	tkinter.simpledialog — Standard Tkinter input dialogs
	tkinter.filedialog — File selection dialogs
	Native Load/Save Dialogs

	tkinter.commondialog — Dialog window templates

	tkinter.messagebox — Tkinter message prompts
	tkinter.scrolledtext — Scrolled Text Widget
	tkinter.dnd — Drag and drop support
	tkinter.ttk — Tk themed widgets
	Using Ttk
	Ttk Widgets
	Widget
	Standard Options
	Scrollable Widget Options
	Label Options
	Compatibility Options
	Widget States
	ttk.Widget

	Combobox
	Options
	Virtual events
	ttk.Combobox

	Spinbox
	Options
	Virtual events
	ttk.Spinbox

	Notebook
	Options
	Tab Options
	Tab Identifiers
	Virtual Events
	ttk.Notebook

	Progressbar
	Options
	ttk.Progressbar

	Separator
	Options

	Sizegrip
	Platform-specific notes
	Bugs

	Treeview
	Options
	Item Options
	Tag Options
	Column Identifiers
	Virtual Events
	ttk.Treeview

	Ttk Styling
	Layouts


	IDLE
	Menus
	File menu (Shell and Editor)
	Edit menu (Shell and Editor)
	Format menu (Editor window only)
	Run menu (Editor window only)
	Shell menu (Shell window only)
	Debug menu (Shell window only)
	Options menu (Shell and Editor)
	Window menu (Shell and Editor)
	Help menu (Shell and Editor)
	Context menus

	Editing and Navigation
	Editor windows
	Key bindings
	Automatic indentation
	Search and Replace
	Completions
	Calltips
	Code Context
	Shell window
	Text colors

	Startup and Code Execution
	Command line usage
	Startup failure
	Running user code
	User output in Shell
	Developing tkinter applications
	Running without a subprocess

	Help and Preferences
	Help sources
	Setting preferences
	IDLE on macOS
	Extensions

	idlelib


	Development Tools
	typing — Support for type hints
	Specification for the Python Type System
	Type aliases
	NewType
	Annotating callable objects
	Generics
	Annotating tuples
	The type of class objects
	Annotating generators and coroutines
	User-defined generic types
	The Any type
	Nominal vs structural subtyping
	Module contents
	Special typing primitives
	Special types
	Special forms
	Building generic types and type aliases
	Other special directives

	Protocols
	ABCs for working with IO
	Functions and decorators
	Introspection helpers
	Constant
	Deprecated aliases
	Aliases to built-in types
	Aliases to types in collections
	Aliases to other concrete types
	Aliases to container ABCs in collections.abc
	Aliases to asynchronous ABCs in collections.abc
	Aliases to other ABCs in collections.abc
	Aliases to contextlib ABCs


	Deprecation Timeline of Major Features

	pydoc — Documentation generator and online help system
	Python Development Mode
	Effects of the Python Development Mode
	ResourceWarning Example
	Bad file descriptor error example

	doctest — Test interactive Python examples
	Simple Usage: Checking Examples in Docstrings
	Simple Usage: Checking Examples in a Text File
	How It Works
	Which Docstrings Are Examined?
	How are Docstring Examples Recognized?
	What’s the Execution Context?
	What About Exceptions?
	Option Flags
	Directives
	Warnings

	Basic API
	Unittest API
	Advanced API
	DocTest Objects
	Example Objects
	DocTestFinder objects
	DocTestParser objects
	TestResults objects
	DocTestRunner objects
	OutputChecker objects

	Debugging
	Soapbox

	unittest — Unit testing framework
	Basic example
	Command-Line Interface
	Command-line options

	Test Discovery
	Organizing test code
	Re-using old test code
	Skipping tests and expected failures
	Distinguishing test iterations using subtests
	Classes and functions
	Test cases
	Grouping tests
	Loading and running tests
	load_tests Protocol


	Class and Module Fixtures
	setUpClass and tearDownClass
	setUpModule and tearDownModule

	Signal Handling

	unittest.mock — mock object library
	Quick Guide
	The Mock Class
	Calling
	Deleting Attributes
	Mock names and the name attribute
	Attaching Mocks as Attributes

	The patchers
	patch
	patch.object
	patch.dict
	patch.multiple
	patch methods: start and stop
	patch builtins
	TEST_PREFIX
	Nesting Patch Decorators
	Where to patch
	Patching Descriptors and Proxy Objects

	MagicMock and magic method support
	Mocking Magic Methods
	Magic Mock

	Helpers
	sentinel
	DEFAULT
	call
	create_autospec
	ANY
	FILTER_DIR
	mock_open
	Autospeccing
	Sealing mocks

	Order of precedence of side_effect, return_value and wraps

	unittest.mock — getting started
	Using Mock
	Mock Patching Methods
	Mock for Method Calls on an Object
	Mocking Classes
	Naming your mocks
	Tracking all Calls
	Setting Return Values and Attributes
	Raising exceptions with mocks
	Side effect functions and iterables
	Mocking asynchronous iterators
	Mocking asynchronous context manager
	Creating a Mock from an Existing Object
	Using side_effect to return per file content

	Patch Decorators
	Further Examples
	Mocking chained calls
	Partial mocking
	Mocking a Generator Method
	Applying the same patch to every test method
	Mocking Unbound Methods
	Checking multiple calls with mock
	Coping with mutable arguments
	Nesting Patches
	Mocking a dictionary with MagicMock
	Mock subclasses and their attributes
	Mocking imports with patch.dict
	Tracking order of calls and less verbose call assertions
	More complex argument matching


	test — Regression tests package for Python
	Writing Unit Tests for the test package
	Running tests using the command-line interface

	test.support — Utilities for the Python test suite
	test.support.socket_helper — Utilities for socket tests
	test.support.script_helper — Utilities for the Python execution tests
	test.support.bytecode_helper — Support tools for testing correct bytecode generation
	test.support.threading_helper — Utilities for threading tests
	test.support.os_helper — Utilities for os tests
	test.support.import_helper — Utilities for import tests
	test.support.warnings_helper — Utilities for warnings tests

	Debugging and Profiling
	Audit events table
	bdb — Debugger framework
	faulthandler — Dump the Python traceback
	Dumping the traceback
	Fault handler state
	Dumping the tracebacks after a timeout
	Dumping the traceback on a user signal
	Issue with file descriptors
	Example

	pdb — The Python Debugger
	Debugger Commands

	The Python Profilers
	Introduction to the profilers
	Instant User’s Manual
	profile and cProfile Module Reference
	The Stats Class
	What Is Deterministic Profiling?
	Limitations
	Calibration
	Using a custom timer

	timeit — Measure execution time of small code snippets
	Basic Examples
	Python Interface
	Command-Line Interface
	Examples

	trace — Trace or track Python statement execution
	Command-Line Usage
	Main options
	Modifiers
	Filters

	Programmatic Interface

	tracemalloc — Trace memory allocations
	Examples
	Display the top 10
	Compute differences
	Get the traceback of a memory block
	Pretty top
	Record the current and peak size of all traced memory blocks


	API
	Functions
	DomainFilter
	Filter
	Frame
	Snapshot
	Statistic
	StatisticDiff
	Trace
	Traceback



	Software Packaging and Distribution
	ensurepip — Bootstrapping the pip installer
	Command line interface
	Module API

	venv — Creation of virtual environments
	Creating virtual environments
	How venvs work
	API
	An example of extending EnvBuilder

	zipapp — Manage executable Python zip archives
	Basic Example
	Command-Line Interface
	Python API
	Examples
	Specifying the Interpreter
	Creating Standalone Applications with zipapp
	Caveats

	The Python Zip Application Archive Format


	Python Runtime Services
	sys — System-specific parameters and functions
	sys.monitoring — Execution event monitoring
	Tool identifiers
	Registering and using tools

	Events
	Local events
	Ancillary events
	Other events
	The STOP_ITERATION event

	Turning events on and off
	Setting events globally
	Per code object events
	Disabling events

	Registering callback functions
	Callback function arguments


	sysconfig — Provide access to Python’s configuration information
	Configuration variables
	Installation paths
	User scheme
	posix_user
	nt_user
	osx_framework_user

	Home scheme
	posix_home

	Prefix scheme
	posix_prefix
	nt

	Installation path functions
	Other functions
	Using sysconfig as a script

	builtins — Built-in objects
	__main__ — Top-level code environment
	__name__ == '__main__'
	What is the “top-level code environment”?
	Idiomatic Usage
	Packaging Considerations

	__main__.py in Python Packages
	Idiomatic Usage

	import __main__

	warnings — Warning control
	Warning Categories
	The Warnings Filter
	Repeated Warning Suppression Criteria
	Describing Warning Filters
	Default Warning Filter
	Overriding the default filter

	Temporarily Suppressing Warnings
	Testing Warnings
	Updating Code For New Versions of Dependencies
	Available Functions
	Available Context Managers

	dataclasses — Data Classes
	Module contents
	Post-init processing
	Class variables
	Init-only variables
	Frozen instances
	Inheritance
	Re-ordering of keyword-only parameters in __init__()
	Default factory functions
	Mutable default values
	Descriptor-typed fields

	contextlib — Utilities for with-statement contexts
	Utilities
	Examples and Recipes
	Supporting a variable number of context managers
	Catching exceptions from __enter__ methods
	Cleaning up in an __enter__ implementation
	Replacing any use of try-finally and flag variables
	Using a context manager as a function decorator

	Single use, reusable and reentrant context managers
	Reentrant context managers
	Reusable context managers


	abc — Abstract Base Classes
	atexit — Exit handlers
	atexit Example

	traceback — Print or retrieve a stack traceback
	Module-Level Functions
	TracebackException Objects
	StackSummary Objects
	FrameSummary Objects
	Examples of Using the Module-Level Functions
	Examples of Using TracebackException

	__future__ — Future statement definitions
	Module Contents

	gc — Garbage Collector interface
	inspect — Inspect live objects
	Types and members
	Retrieving source code
	Introspecting callables with the Signature object
	Classes and functions
	The interpreter stack
	Fetching attributes statically
	Current State of Generators, Coroutines, and Asynchronous Generators
	Code Objects Bit Flags
	Buffer flags
	Command Line Interface

	site — Site-specific configuration hook
	sitecustomize
	usercustomize
	Readline configuration
	Module contents
	Command Line Interface


	Custom Python Interpreters
	code — Interpreter base classes
	Interactive Interpreter Objects
	Interactive Console Objects

	codeop — Compile Python code

	Importing Modules
	zipimport — Import modules from Zip archives
	zipimporter Objects
	Examples

	pkgutil — Package extension utility
	modulefinder — Find modules used by a script
	Example usage of ModuleFinder

	runpy — Locating and executing Python modules
	importlib — The implementation of import
	Introduction
	Functions
	importlib.abc – Abstract base classes related to import
	importlib.machinery – Importers and path hooks
	importlib.util – Utility code for importers
	Examples
	Importing programmatically
	Checking if a module can be imported
	Importing a source file directly
	Implementing lazy imports
	Setting up an importer
	Approximating importlib.import_module()


	importlib.resources – Package resource reading, opening and access
	Functional API

	importlib.resources.abc – Abstract base classes for resources
	importlib.metadata – Accessing package metadata
	Overview
	Functional API
	Entry points
	Distribution metadata
	Distribution versions
	Distribution files
	Distribution requirements
	Mapping import to distribution packages

	Distributions
	Distribution Discovery
	Extending the search algorithm
	Example


	The initialization of the sys.path module search path
	Virtual environments
	_pth files
	Embedded Python


	Python Language Services
	ast — Abstract Syntax Trees
	Abstract Grammar
	Node classes
	Root nodes
	Literals
	Variables
	Expressions
	Subscripting
	Comprehensions

	Statements
	Imports

	Control flow
	Pattern matching
	Type parameters
	Function and class definitions
	Async and await

	ast Helpers
	Compiler Flags
	Command-Line Usage

	symtable — Access to the compiler’s symbol tables
	Generating Symbol Tables
	Examining Symbol Tables
	Command-Line Usage

	token — Constants used with Python parse trees
	keyword — Testing for Python keywords
	tokenize — Tokenizer for Python source
	Tokenizing Input
	Command-Line Usage
	Examples

	tabnanny — Detection of ambiguous indentation
	pyclbr — Python module browser support
	Function Objects
	Class Objects

	py_compile — Compile Python source files
	Command-Line Interface

	compileall — Byte-compile Python libraries
	Command-line use
	Public functions

	dis — Disassembler for Python bytecode
	Command-line interface
	Bytecode analysis
	Analysis functions
	Python Bytecode Instructions
	Opcode collections

	pickletools — Tools for pickle developers
	Command line usage
	Command line options

	Programmatic Interface


	MS Windows Specific Services
	msvcrt — Useful routines from the MS VC++ runtime
	File Operations
	Console I/O
	Other Functions

	winreg — Windows registry access
	Functions
	Constants
	HKEY_* Constants
	Access Rights
	64-bit Specific

	Value Types

	Registry Handle Objects

	winsound — Sound-playing interface for Windows

	Unix Specific Services
	posix — The most common POSIX system calls
	Large File Support
	Notable Module Contents

	pwd — The password database
	grp — The group database
	termios — POSIX style tty control
	Example

	tty — Terminal control functions
	pty — Pseudo-terminal utilities
	Example

	fcntl — The fcntl and ioctl system calls
	resource — Resource usage information
	Resource Limits
	Resource Usage

	syslog — Unix syslog library routines
	Examples
	Simple example



	Modules command-line interface (CLI)
	Superseded Modules
	getopt — C-style parser for command line options

	Removed Modules
	aifc — Read and write AIFF and AIFC files
	asynchat — Asynchronous socket command/response handler
	asyncore — Asynchronous socket handler
	audioop — Manipulate raw audio data
	cgi — Common Gateway Interface support
	cgitb — Traceback manager for CGI scripts
	chunk — Read IFF chunked data
	crypt — Function to check Unix passwords
	distutils — Building and installing Python modules
	imghdr — Determine the type of an image
	imp — Access the import internals
	mailcap — Mailcap file handling
	msilib — Read and write Microsoft Installer files
	nis — Interface to Sun’s NIS (Yellow Pages)
	nntplib — NNTP protocol client
	ossaudiodev — Access to OSS-compatible audio devices
	pipes — Interface to shell pipelines
	smtpd — SMTP Server
	sndhdr — Determine type of sound file
	spwd — The shadow password database
	sunau — Read and write Sun AU files
	telnetlib — Telnet client
	uu — Encode and decode uuencode files
	xdrlib — Encode and decode XDR data

	Security Considerations
	Glossary
	About this documentation
	Contributors to the Python documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	PSF LICENSE AGREEMENT FOR PYTHON 3.13.1
	BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
	CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
	CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.13.1 DOCUMENTATION

	Licenses and Acknowledgements for Incorporated Software
	Mersenne Twister
	Sockets
	Asynchronous socket services
	Cookie management
	Execution tracing
	UUencode and UUdecode functions
	XML Remote Procedure Calls
	test_epoll
	Select kqueue
	SipHash24
	strtod and dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test suite
	mimalloc
	asyncio
	Global Unbounded Sequences (GUS)


	Copyright
	Bibliography
	Python Module Index
	Index

