
Python Tutorial
Release 3.14.0a3

Guido van Rossum and the Python development team

January 03, 2025

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Whetting Your Appetite 3

2 Using the Python Interpreter 5
2.1 Invoking the Interpreter . 5

2.1.1 Argument Passing . 6
2.1.2 Interactive Mode . 6

2.2 The Interpreter and Its Environment . 6
2.2.1 Source Code Encoding . 6

3 An Informal Introduction to Python 7
3.1 Using Python as a Calculator . 7

3.1.1 Numbers . 7
3.1.2 Text . 9
3.1.3 Lists . 12

3.2 First Steps Towards Programming . 14

4 More Control Flow Tools 17
4.1 if Statements . 17
4.2 for Statements . 17
4.3 The range() Function . 18
4.4 break and continue Statements . 19
4.5 else Clauses on Loops . 19
4.6 pass Statements . 20
4.7 match Statements . 21
4.8 Defining Functions . 23
4.9 More on Defining Functions . 25

4.9.1 Default Argument Values . 25
4.9.2 Keyword Arguments . 26
4.9.3 Special parameters . 27
4.9.4 Arbitrary Argument Lists . 30
4.9.5 Unpacking Argument Lists . 30
4.9.6 Lambda Expressions . 30
4.9.7 Documentation Strings . 31
4.9.8 Function Annotations . 31

4.10 Intermezzo: Coding Style . 32

5 Data Structures 33
5.1 More on Lists . 33

5.1.1 Using Lists as Stacks . 34
5.1.2 Using Lists as Queues . 35
5.1.3 List Comprehensions . 35
5.1.4 Nested List Comprehensions . 36

5.2 The del statement . 37
5.3 Tuples and Sequences . 38
5.4 Sets . 39

i

5.5 Dictionaries . 39
5.6 Looping Techniques . 40
5.7 More on Conditions . 42
5.8 Comparing Sequences and Other Types . 42

6 Modules 43
6.1 More on Modules . 44

6.1.1 Executing modules as scripts . 45
6.1.2 The Module Search Path . 45
6.1.3 “Compiled” Python files . 46

6.2 Standard Modules . 46
6.3 The dir() Function . 47
6.4 Packages . 48

6.4.1 Importing * From a Package . 49
6.4.2 Intra-package References . 50
6.4.3 Packages in Multiple Directories . 51

7 Input and Output 53
7.1 Fancier Output Formatting . 53

7.1.1 Formatted String Literals . 54
7.1.2 The String format() Method . 55
7.1.3 Manual String Formatting . 56
7.1.4 Old string formatting . 57

7.2 Reading and Writing Files . 57
7.2.1 Methods of File Objects . 58
7.2.2 Saving structured data with json . 59

8 Errors and Exceptions 61
8.1 Syntax Errors . 61
8.2 Exceptions . 61
8.3 Handling Exceptions . 62
8.4 Raising Exceptions . 64
8.5 Exception Chaining . 65
8.6 User-defined Exceptions . 66
8.7 Defining Clean-up Actions . 66
8.8 Predefined Clean-up Actions . 68
8.9 Raising and Handling Multiple Unrelated Exceptions . 68
8.10 Enriching Exceptions with Notes . 70

9 Classes 73
9.1 A Word About Names and Objects . 73
9.2 Python Scopes and Namespaces . 73

9.2.1 Scopes and Namespaces Example . 75
9.3 A First Look at Classes . 75

9.3.1 Class Definition Syntax . 75
9.3.2 Class Objects . 76
9.3.3 Instance Objects . 77
9.3.4 Method Objects . 77
9.3.5 Class and Instance Variables . 78

9.4 Random Remarks . 79
9.5 Inheritance . 80

9.5.1 Multiple Inheritance . 81
9.6 Private Variables . 81
9.7 Odds and Ends . 82
9.8 Iterators . 83
9.9 Generators . 84
9.10 Generator Expressions . 84

10 Brief Tour of the Standard Library 87

ii

10.1 Operating System Interface . 87
10.2 File Wildcards . 87
10.3 Command Line Arguments . 87
10.4 Error Output Redirection and Program Termination . 88
10.5 String Pattern Matching . 88
10.6 Mathematics . 88
10.7 Internet Access . 89
10.8 Dates and Times . 90
10.9 Data Compression . 90
10.10 Performance Measurement . 90
10.11 Quality Control . 91
10.12 Batteries Included . 91

11 Brief Tour of the Standard Library — Part II 93
11.1 Output Formatting . 93
11.2 Templating . 94
11.3 Working with Binary Data Record Layouts . 95
11.4 Multi-threading . 95
11.5 Logging . 96
11.6 Weak References . 96
11.7 Tools for Working with Lists . 97
11.8 Decimal Floating-Point Arithmetic . 98

12 Virtual Environments and Packages 101
12.1 Introduction . 101
12.2 Creating Virtual Environments . 101
12.3 Managing Packages with pip . 102

13 What Now? 105

14 Interactive Input Editing and History Substitution 107
14.1 Tab Completion and History Editing . 107
14.2 Alternatives to the Interactive Interpreter . 107

15 Floating-Point Arithmetic: Issues and Limitations 109
15.1 Representation Error . 112

16 Appendix 115
16.1 Interactive Mode . 115

16.1.1 Error Handling . 115
16.1.2 Executable Python Scripts . 115
16.1.3 The Interactive Startup File . 116
16.1.4 The Customization Modules . 116

A Glossary 117

B About this documentation 135
B.1 Contributors to the Python documentation . 135

C History and License 137
C.1 History of the software . 137
C.2 Terms and conditions for accessing or otherwise using Python . 138

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.14.0a3 138
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 139
C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1 139
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 140
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.14.0a3 DOCUMEN-

TATION . 141
C.3 Licenses and Acknowledgements for Incorporated Software . 141

C.3.1 Mersenne Twister . 141

iii

C.3.2 Sockets . 142
C.3.3 Asynchronous socket services . 143
C.3.4 Cookie management . 143
C.3.5 Execution tracing . 143
C.3.6 UUencode and UUdecode functions . 144
C.3.7 XML Remote Procedure Calls . 145
C.3.8 test_epoll . 145
C.3.9 Select kqueue . 146
C.3.10 SipHash24 . 146
C.3.11 strtod and dtoa . 147
C.3.12 OpenSSL . 147
C.3.13 expat . 150
C.3.14 libffi . 151
C.3.15 zlib . 151
C.3.16 cfuhash . 152
C.3.17 libmpdec . 152
C.3.18 W3C C14N test suite . 153
C.3.19 mimalloc . 154
C.3.20 asyncio . 154
C.3.21 Global Unbounded Sequences (GUS) . 154

D Copyright 157

Index 159

iv

Python Tutorial, Release 3.14.0a3

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple
but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together with
its interpreted nature, make it an ideal language for scripting and rapid application development in many areas on
most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all major
platforms from the Python web site, https://www.python.org/, and may be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules, programs and tools, and additional
documentation.

The Python interpreter is easily extended with new functions and data types implemented in C or C++ (or other
languages callable from C). Python is also suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python language and system. It
helps to have a Python interpreter handy for hands-on experience, but all examples are self-contained, so the tutorial
can be read off-line as well.

For a description of standard objects and modules, see library-index. reference-index gives a more formal definition
of the language. To write extensions in C or C++, read extending-index and c-api-index. There are also several books
covering Python in depth.

This tutorial does not attempt to be comprehensive and cover every single feature, or even every commonly used
feature. Instead, it introduces many of Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and write Python modules and programs, and
you will be ready to learn more about the various Python library modules described in library-index.

The Glossary is also worth going through.

CONTENTS 1

https://www.python.org/

Python Tutorial, Release 3.14.0a3

2 CONTENTS

CHAPTER

ONE

WHETTING YOUR APPETITE

If you do much work on computers, eventually you find that there’s some task you’d like to automate. For example,
you may wish to perform a search-and-replace over a large number of text files, or rename and rearrange a bunch
of photo files in a complicated way. Perhaps you’d like to write a small custom database, or a specialized GUI
application, or a simple game.

If you’re a professional software developer, you may have to work with several C/C++/Java libraries but find the usual
write/compile/test/re-compile cycle is too slow. Perhaps you’re writing a test suite for such a library and find writing
the testing code a tedious task. Or maybe you’ve written a program that could use an extension language, and you
don’t want to design and implement a whole new language for your application.

Python is just the language for you.

You could write a Unix shell script or Windows batch files for some of these tasks, but shell scripts are best at moving
around files and changing text data, not well-suited for GUI applications or games. You could write a C/C++/Java
program, but it can take a lot of development time to get even a first-draft program. Python is simpler to use, available
on Windows, macOS, and Unix operating systems, and will help you get the job done more quickly.

Python is simple to use, but it is a real programming language, offering much more structure and support for large
programs than shell scripts or batch files can offer. On the other hand, Python also offers much more error checking
than C, and, being a very-high-level language, it has high-level data types built in, such as flexible arrays and dictio-
naries. Because of its more general data types Python is applicable to a much larger problem domain than Awk or
even Perl, yet many things are at least as easy in Python as in those languages.

Python allows you to split your program into modules that can be reused in other Python programs. It comes with a
large collection of standard modules that you can use as the basis of your programs— or as examples to start learning
to program in Python. Some of these modules provide things like file I/O, system calls, sockets, and even interfaces
to graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time during program development because no
compilation and linking is necessary. The interpreter can be used interactively, whichmakes it easy to experiment with
features of the language, to write throw-away programs, or to test functions during bottom-up program development.
It is also a handy desk calculator.

Python enables programs to be written compactly and readably. Programs written in Python are typically much
shorter than equivalent C, C++, or Java programs, for several reasons:

• the high-level data types allow you to express complex operations in a single statement;

• statement grouping is done by indentation instead of beginning and ending brackets;

• no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new built-in function or module to the
interpreter, either to perform critical operations at maximum speed, or to link Python programs to libraries that may
only be available in binary form (such as a vendor-specific graphics library). Once you are really hooked, you can
link the Python interpreter into an application written in C and use it as an extension or command language for that
application.

By the way, the language is named after the BBC show “Monty Python’s Flying Circus” and has nothing to do with
reptiles. Making references to Monty Python skits in documentation is not only allowed, it is encouraged!

3

Python Tutorial, Release 3.14.0a3

Now that you are all excited about Python, you’ll want to examine it in some more detail. Since the best way to learn
a language is to use it, the tutorial invites you to play with the Python interpreter as you read.

In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane information, but
essential for trying out the examples shown later.

The rest of the tutorial introduces various features of the Python language and system through examples, begin-
ning with simple expressions, statements and data types, through functions and modules, and finally touching upon
advanced concepts like exceptions and user-defined classes.

4 Chapter 1. Whetting Your Appetite

CHAPTER

TWO

USING THE PYTHON INTERPRETER

2.1 Invoking the Interpreter

The Python interpreter is usually installed as /usr/local/bin/python3.14 on those machines where it is avail-
able; putting /usr/local/bin in your Unix shell’s search path makes it possible to start it by typing the command:

python3.14

to the shell.1 Since the choice of the directory where the interpreter lives is an installation option, other places are
possible; check with your local Python guru or system administrator. (E.g., /usr/local/python is a popular
alternative location.)

On Windows machines where you have installed Python from the Microsoft Store, the python3.14 command will
be available. If you have the py.exe launcher installed, you can use the py command. See setting-envvars for other
ways to launch Python.

Typing an end-of-file character (Control-D on Unix, Control-Z on Windows) at the primary prompt causes the
interpreter to exit with a zero exit status. If that doesn’t work, you can exit the interpreter by typing the following
command: quit().

The interpreter’s line-editing features include interactive editing, history substitution and code completion on systems
that support the GNU Readline library. Perhaps the quickest check to see whether command line editing is supported
is typing Control-P to the first Python prompt you get. If it beeps, you have command line editing; see Appendix
Interactive Input Editing and History Substitution for an introduction to the keys. If nothing appears to happen, or if
^P is echoed, command line editing isn’t available; you’ll only be able to use backspace to remove characters from
the current line.

The interpreter operates somewhat like the Unix shell: when called with standard input connected to a tty device, it
reads and executes commands interactively; when called with a file name argument or with a file as standard input, it
reads and executes a script from that file.

A second way of starting the interpreter is python -c command [arg] ..., which executes the statement(s) in
command, analogous to the shell’s -c option. Since Python statements often contain spaces or other characters that
are special to the shell, it is usually advised to quote command in its entirety.

Some Python modules are also useful as scripts. These can be invoked using python -m module [arg] ...,
which executes the source file for module as if you had spelled out its full name on the command line.

When a script file is used, it is sometimes useful to be able to run the script and enter interactive mode afterwards.
This can be done by passing -i before the script.

All command line options are described in using-on-general.

1 On Unix, the Python 3.x interpreter is by default not installed with the executable named python, so that it does not conflict with a simul-
taneously installed Python 2.x executable.

5

https://tiswww.case.edu/php/chet/readline/rltop.html

Python Tutorial, Release 3.14.0a3

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are turned into a list of strings
and assigned to the argv variable in the sysmodule. You can access this list by executing import sys. The length
of the list is at least one; when no script and no arguments are given, sys.argv[0] is an empty string. When the
script name is given as '-' (meaning standard input), sys.argv[0] is set to '-'. When -c command is used,
sys.argv[0] is set to '-c'. When -mmodule is used, sys.argv[0] is set to the full name of the located module.
Options found after -c command or -m module are not consumed by the Python interpreter’s option processing but
left in sys.argv for the command or module to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to be in interactive mode. In this mode it prompts for
the next command with the primary prompt, usually three greater-than signs (>>>); for continuation lines it prompts
with the secondary prompt, by default three dots (...). The interpreter prints a welcome message stating its version
number and a copyright notice before printing the first prompt:

$ python3.14

Python 3.14 (default, April 4 2024, 09:25:04)

[GCC 10.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a look at this if statement:

>>> the_world_is_flat = True

>>> if the_world_is_flat:

... print("Be careful not to fall off!")

...

Be careful not to fall off!

For more on interactive mode, see Interactive Mode.

2.2 The Interpreter and Its Environment

2.2.1 Source Code Encoding

By default, Python source files are treated as encoded in UTF-8. In that encoding, characters of most languages in
the world can be used simultaneously in string literals, identifiers and comments — although the standard library
only uses ASCII characters for identifiers, a convention that any portable code should follow. To display all these
characters properly, your editor must recognize that the file is UTF-8, and it must use a font that supports all the
characters in the file.

To declare an encoding other than the default one, a special comment line should be added as the first line of the file.
The syntax is as follows:

-*- coding: encoding -*-

where encoding is one of the valid codecs supported by Python.

For example, to declare that Windows-1252 encoding is to be used, the first line of your source code file should be:

-*- coding: cp1252 -*-

One exception to the first line rule is when the source code starts with aUNIX “shebang” line. In this case, the encoding
declaration should be added as the second line of the file. For example:

#!/usr/bin/env python3

-*- coding: cp1252 -*-

6 Chapter 2. Using the Python Interpreter

CHAPTER

THREE

AN INFORMAL INTRODUCTION TO PYTHON

In the following examples, input and output are distinguished by the presence or absence of prompts (»> and …):
to repeat the example, you must type everything after the prompt, when the prompt appears; lines that do not begin
with a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an example means
you must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments
in Python start with the hash character, #, and extend to the end of the physical line. A comment may appear at the
start of a line or following whitespace or code, but not within a string literal. A hash character within a string literal
is just a hash character. Since comments are to clarify code and are not interpreted by Python, they may be omitted
when typing in examples.

Some examples:

this is the first comment

spam = 1 # and this is the second comment

... and now a third!

text = "# This is not a comment because it's inside quotes."

3.1 Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the primary prompt, >>>. (It shouldn’t
take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression
syntax is straightforward: the operators +, -, * and / can be used to perform arithmetic; parentheses (()) can be
used for grouping. For example:

>>> 2 + 2

4

>>> 50 - 5*6

20

>>> (50 - 5*6) / 4

5.0

>>> 8 / 5 # division always returns a floating-point number

1.6

The integer numbers (e.g. 2, 4, 20) have type int, the ones with a fractional part (e.g. 5.0, 1.6) have type float.
We will see more about numeric types later in the tutorial.

Division (/) always returns a float. To do floor division and get an integer result you can use the // operator; to
calculate the remainder you can use %:

7

Python Tutorial, Release 3.14.0a3

>>> 17 / 3 # classic division returns a float

5.666666666666667

>>>

>>> 17 // 3 # floor division discards the fractional part

5

>>> 17 % 3 # the % operator returns the remainder of the division

2

>>> 5 * 3 + 2 # floored quotient * divisor + remainder

17

With Python, it is possible to use the ** operator to calculate powers1:

>>> 5 ** 2 # 5 squared

25

>>> 2 ** 7 # 2 to the power of 7

128

The equal sign (=) is used to assign a value to a variable. Afterwards, no result is displayed before the next interactive
prompt:

>>> width = 20

>>> height = 5 * 9

>>> width * height

900

If a variable is not “defined” (assigned a value), trying to use it will give you an error:

>>> n # try to access an undefined variable

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'n' is not defined

There is full support for floating point; operators with mixed type operands convert the integer operand to floating
point:

>>> 4 * 3.75 - 1

14.0

In interactive mode, the last printed expression is assigned to the variable _. This means that when you are using
Python as a desk calculator, it is somewhat easier to continue calculations, for example:

>>> tax = 12.5 / 100

>>> price = 100.50

>>> price * tax

12.5625

>>> price + _

113.0625

>>> round(_, 2)

113.06

This variable should be treated as read-only by the user. Don’t explicitly assign a value to it — you would create an
independent local variable with the same name masking the built-in variable with its magic behavior.

In addition to int and float, Python supports other types of numbers, such as Decimal and Fraction. Python
also has built-in support for complex numbers, and uses the j or J suffix to indicate the imaginary part (e.g. 3+5j).

1 Since ** has higher precedence than -, -3**2 will be interpreted as -(3**2) and thus result in -9. To avoid this and get 9, you can use
(-3)**2.

8 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 3.14.0a3

3.1.2 Text

Python canmanipulate text (represented by type str, so-called “strings”) as well as numbers. This includes characters
“!”, words “rabbit”, names “Paris”, sentences “Got your back.”, etc. “Yay! :)”. They can be enclosed in
single quotes ('...') or double quotes ("...") with the same result2.

>>> 'spam eggs' # single quotes

'spam eggs'

>>> "Paris rabbit got your back :)! Yay!" # double quotes

'Paris rabbit got your back :)! Yay!'

>>> '1975' # digits and numerals enclosed in quotes are also strings

'1975'

To quote a quote, we need to “escape” it, by preceding it with \. Alternatively, we can use the other type of quotation
marks:

>>> 'doesn\'t' # use \' to escape the single quote...

"doesn't"

>>> "doesn't" # ...or use double quotes instead

"doesn't"

>>> '"Yes," they said.'

'"Yes," they said.'

>>> "\"Yes,\" they said."

'"Yes," they said.'

>>> '"Isn\'t," they said.'

'"Isn\'t," they said.'

In the Python shell, the string definition and output string can look different. The print() function produces a more
readable output, by omitting the enclosing quotes and by printing escaped and special characters:

>>> s = 'First line.\nSecond line.' # \n means newline

>>> s # without print(), special characters are included in the string

'First line.\nSecond line.'

>>> print(s) # with print(), special characters are interpreted, so \n produces␣

↪→new line

First line.

Second line.

If you don’t want characters prefaced by \ to be interpreted as special characters, you can use raw strings by adding
an r before the first quote:

>>> print('C:\some\name') # here \n means newline!

C:\some

ame

>>> print(r'C:\some\name') # note the r before the quote

C:\some\name

There is one subtle aspect to raw strings: a raw string may not end in an odd number of \ characters; see the FAQ
entry for more information and workarounds.

String literals can span multiple lines. One way is using triple-quotes: """...""" or '''...'''. End of lines
are automatically included in the string, but it’s possible to prevent this by adding a \ at the end of the line. In the
following example, the initial newline is not included:

>>> print("""\

... Usage: thingy [OPTIONS]

... -h Display this usage message

(continues on next page)

2 Unlike other languages, special characters such as \n have the same meaning with both single ('...') and double ("...") quotes. The
only difference between the two is that within single quotes you don’t need to escape " (but you have to escape \') and vice versa.

3.1. Using Python as a Calculator 9

Python Tutorial, Release 3.14.0a3

(continued from previous page)

... -H hostname Hostname to connect to

... """)

Usage: thingy [OPTIONS]

-h Display this usage message

-H hostname Hostname to connect to

>>>

Strings can be concatenated (glued together) with the + operator, and repeated with *:

>>> # 3 times 'un', followed by 'ium'

>>> 3 * 'un' + 'ium'

'unununium'

Two or more string literals (i.e. the ones enclosed between quotes) next to each other are automatically concatenated.

>>> 'Py' 'thon'

'Python'

This feature is particularly useful when you want to break long strings:

>>> text = ('Put several strings within parentheses '

... 'to have them joined together.')

>>> text

'Put several strings within parentheses to have them joined together.'

This only works with two literals though, not with variables or expressions:

>>> prefix = 'Py'

>>> prefix 'thon' # can't concatenate a variable and a string literal

File "<stdin>", line 1

prefix 'thon'

^^^^^^

SyntaxError: invalid syntax

>>> ('un' * 3) 'ium'

File "<stdin>", line 1

('un' * 3) 'ium'

^^^^^

SyntaxError: invalid syntax

If you want to concatenate variables or a variable and a literal, use +:

>>> prefix + 'thon'

'Python'

Strings can be indexed (subscripted), with the first character having index 0. There is no separate character type; a
character is simply a string of size one:

>>> word = 'Python'

>>> word[0] # character in position 0

'P'

>>> word[5] # character in position 5

'n'

Indices may also be negative numbers, to start counting from the right:

>>> word[-1] # last character

'n'

(continues on next page)

10 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 3.14.0a3

(continued from previous page)

>>> word[-2] # second-last character

'o'

>>> word[-6]

'P'

Note that since -0 is the same as 0, negative indices start from -1.

In addition to indexing, slicing is also supported. While indexing is used to obtain individual characters, slicing allows
you to obtain a substring:

>>> word[0:2] # characters from position 0 (included) to 2 (excluded)

'Py'

>>> word[2:5] # characters from position 2 (included) to 5 (excluded)

'tho'

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the size
of the string being sliced.

>>> word[:2] # character from the beginning to position 2 (excluded)

'Py'

>>> word[4:] # characters from position 4 (included) to the end

'on'

>>> word[-2:] # characters from the second-last (included) to the end

'on'

Note how the start is always included, and the end always excluded. This makes sure that s[:i] + s[i:] is always
equal to s:

>>> word[:2] + word[2:]

'Python'

>>> word[:4] + word[4:]

'Python'

One way to remember how slices work is to think of the indices as pointing between characters, with the left edge of
the first character numbered 0. Then the right edge of the last character of a string of n characters has index n, for
example:

+---+---+---+---+---+---+

| P | y | t | h | o | n |

+---+---+---+---+---+---+

0 1 2 3 4 5 6

-6 -5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0…6 in the string; the second row gives the corresponding
negative indices. The slice from i to j consists of all characters between the edges labeled i and j, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For example,
the length of word[1:3] is 2.

Attempting to use an index that is too large will result in an error:

>>> word[42] # the word only has 6 characters

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: string index out of range

However, out of range slice indexes are handled gracefully when used for slicing:

3.1. Using Python as a Calculator 11

Python Tutorial, Release 3.14.0a3

>>> word[4:42]

'on'

>>> word[42:]

''

Python strings cannot be changed — they are immutable. Therefore, assigning to an indexed position in the string
results in an error:

>>> word[0] = 'J'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

>>> word[2:] = 'py'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

If you need a different string, you should create a new one:

>>> 'J' + word[1:]

'Jython'

>>> word[:2] + 'py'

'Pypy'

The built-in function len() returns the length of a string:

>>> s = 'supercalifragilisticexpialidocious'

>>> len(s)

34

See also

textseq
Strings are examples of sequence types, and support the common operations supported by such types.

string-methods
Strings support a large number of methods for basic transformations and searching.

f-strings
String literals that have embedded expressions.

formatstrings
Information about string formatting with str.format().

old-string-formatting
The old formatting operations invoked when strings are the left operand of the % operator are described in
more detail here.

3.1.3 Lists

Python knows a number of compound data types, used to group together other values. The most versatile is the list,
which can be written as a list of comma-separated values (items) between square brackets. Lists might contain items
of different types, but usually the items all have the same type.

>>> squares = [1, 4, 9, 16, 25]

>>> squares

[1, 4, 9, 16, 25]

Like strings (and all other built-in sequence types), lists can be indexed and sliced:

12 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 3.14.0a3

>>> squares[0] # indexing returns the item

1

>>> squares[-1]

25

>>> squares[-3:] # slicing returns a new list

[9, 16, 25]

Lists also support operations like concatenation:

>>> squares + [36, 49, 64, 81, 100]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Unlike strings, which are immutable, lists are a mutable type, i.e. it is possible to change their content:

>>> cubes = [1, 8, 27, 65, 125] # something's wrong here

>>> 4 ** 3 # the cube of 4 is 64, not 65!

64

>>> cubes[3] = 64 # replace the wrong value

>>> cubes

[1, 8, 27, 64, 125]

You can also add new items at the end of the list, by using the list.append() method (we will see more about
methods later):

>>> cubes.append(216) # add the cube of 6

>>> cubes.append(7 ** 3) # and the cube of 7

>>> cubes

[1, 8, 27, 64, 125, 216, 343]

Simple assignment in Python never copies data. When you assign a list to a variable, the variable refers to the existing
list. Any changes you make to the list through one variable will be seen through all other variables that refer to it.:

>>> rgb = ["Red", "Green", "Blue"]

>>> rgba = rgb

>>> id(rgb) == id(rgba) # they reference the same object

True

>>> rgba.append("Alph")

>>> rgb

["Red", "Green", "Blue", "Alph"]

All slice operations return a new list containing the requested elements. This means that the following slice returns a
shallow copy of the list:

>>> correct_rgba = rgba[:]

>>> correct_rgba[-1] = "Alpha"

>>> correct_rgba

["Red", "Green", "Blue", "Alpha"]

>>> rgba

["Red", "Green", "Blue", "Alph"]

Assignment to slices is also possible, and this can even change the size of the list or clear it entirely:

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']

>>> letters

['a', 'b', 'c', 'd', 'e', 'f', 'g']

>>> # replace some values

>>> letters[2:5] = ['C', 'D', 'E']

>>> letters

(continues on next page)

3.1. Using Python as a Calculator 13

Python Tutorial, Release 3.14.0a3

(continued from previous page)

['a', 'b', 'C', 'D', 'E', 'f', 'g']

>>> # now remove them

>>> letters[2:5] = []

>>> letters

['a', 'b', 'f', 'g']

>>> # clear the list by replacing all the elements with an empty list

>>> letters[:] = []

>>> letters

[]

The built-in function len() also applies to lists:

>>> letters = ['a', 'b', 'c', 'd']

>>> len(letters)

4

It is possible to nest lists (create lists containing other lists), for example:

>>> a = ['a', 'b', 'c']

>>> n = [1, 2, 3]

>>> x = [a, n]

>>> x

[['a', 'b', 'c'], [1, 2, 3]]

>>> x[0]

['a', 'b', 'c']

>>> x[0][1]

'b'

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can
write an initial sub-sequence of the Fibonacci series as follows:

>>> # Fibonacci series:

>>> # the sum of two elements defines the next

>>> a, b = 0, 1

>>> while a < 10:

... print(a)

... a, b = b, a+b

...

0

1

1

2

3

5

8

This example introduces several new features.

• The first line contains a multiple assignment: the variables a and b simultaneously get the new values 0 and 1.
On the last line this is used again, demonstrating that the expressions on the right-hand side are all evaluated
first before any of the assignments take place. The right-hand side expressions are evaluated from the left to
the right.

• The while loop executes as long as the condition (here: a < 10) remains true. In Python, like in C, any non-
zero integer value is true; zero is false. The condition may also be a string or list value, in fact any sequence;

14 Chapter 3. An Informal Introduction to Python

https://en.wikipedia.org/wiki/Fibonacci_sequence

Python Tutorial, Release 3.14.0a3

anything with a non-zero length is true, empty sequences are false. The test used in the example is a simple
comparison. The standard comparison operators are written the same as in C: < (less than), > (greater than),
== (equal to), <= (less than or equal to), >= (greater than or equal to) and != (not equal to).

• The body of the loop is indented: indentation is Python’s way of grouping statements. At the interactive prompt,
you have to type a tab or space(s) for each indented line. In practice you will prepare more complicated input
for Python with a text editor; all decent text editors have an auto-indent facility. When a compound statement
is entered interactively, it must be followed by a blank line to indicate completion (since the parser cannot
guess when you have typed the last line). Note that each line within a basic block must be indented by the
same amount.

• The print() function writes the value of the argument(s) it is given. It differs from just writing the expression
you want to write (as we did earlier in the calculator examples) in the way it handles multiple arguments,
floating-point quantities, and strings. Strings are printed without quotes, and a space is inserted between items,
so you can format things nicely, like this:

>>> i = 256*256

>>> print('The value of i is', i)

The value of i is 65536

The keyword argument end can be used to avoid the newline after the output, or end the output with a different
string:

>>> a, b = 0, 1

>>> while a < 1000:

... print(a, end=',')

... a, b = b, a+b

...

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,

3.2. First Steps Towards Programming 15

Python Tutorial, Release 3.14.0a3

16 Chapter 3. An Informal Introduction to Python

CHAPTER

FOUR

MORE CONTROL FLOW TOOLS

As well as the while statement just introduced, Python uses a few more that we will encounter in this chapter.

4.1 if Statements

Perhaps the most well-known statement type is the if statement. For example:

>>> x = int(input("Please enter an integer: "))

Please enter an integer: 42

>>> if x < 0:

... x = 0

... print('Negative changed to zero')

... elif x == 0:

... print('Zero')

... elif x == 1:

... print('Single')

... else:

... print('More')

...

More

There can be zero or more elif parts, and the else part is optional. The keyword ‘elif’ is short for ‘else if’, and is
useful to avoid excessive indentation. An if… elif… elif… sequence is a substitute for the switch or case
statements found in other languages.

If you’re comparing the same value to several constants, or checking for specific types or attributes, you may also
find the match statement useful. For more details see match Statements.

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating
over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration
step and halting condition (as C), Python’s for statement iterates over the items of any sequence (a list or a string),
in the order that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:

>>> words = ['cat', 'window', 'defenestrate']

>>> for w in words:

... print(w, len(w))

...

cat 3

window 6

defenestrate 12

Code that modifies a collection while iterating over that same collection can be tricky to get right. Instead, it is usually
more straight-forward to loop over a copy of the collection or to create a new collection:

17

Python Tutorial, Release 3.14.0a3

Create a sample collection

users = {'Hans': 'active', 'Éléonore': 'inactive', '���': 'active'}

Strategy: Iterate over a copy

for user, status in users.copy().items():

if status == 'inactive':

del users[user]

Strategy: Create a new collection

active_users = {}

for user, status in users.items():

if status == 'active':

active_users[user] = status

4.3 The range() Function

If you do need to iterate over a sequence of numbers, the built-in function range() comes in handy. It generates
arithmetic progressions:

>>> for i in range(5):

... print(i)

...

0

1

2

3

4

The given end point is never part of the generated sequence; range(10) generates 10 values, the legal indices for
items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different
increment (even negative; sometimes this is called the ‘step’):

>>> list(range(5, 10))

[5, 6, 7, 8, 9]

>>> list(range(0, 10, 3))

[0, 3, 6, 9]

>>> list(range(-10, -100, -30))

[-10, -40, -70]

To iterate over the indices of a sequence, you can combine range() and len() as follows:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']

>>> for i in range(len(a)):

... print(i, a[i])

...

0 Mary

1 had

2 a

3 little

4 lamb

In most such cases, however, it is convenient to use the enumerate() function, see Looping Techniques.

A strange thing happens if you just print a range:

18 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.14.0a3

>>> range(10)

range(0, 10)

In many ways the object returned by range() behaves as if it is a list, but in fact it isn’t. It is an object which returns
the successive items of the desired sequence when you iterate over it, but it doesn’t really make the list, thus saving
space.

We say such an object is iterable, that is, suitable as a target for functions and constructs that expect something from
which they can obtain successive items until the supply is exhausted. We have seen that the for statement is such a
construct, while an example of a function that takes an iterable is sum():

>>> sum(range(4)) # 0 + 1 + 2 + 3

6

Later we will see more functions that return iterables and take iterables as arguments. In chapter Data Structures, we
will discuss in more detail about list().

4.4 break and continue Statements

The break statement breaks out of the innermost enclosing for or while loop:

>>> for n in range(2, 10):

... for x in range(2, n):

... if n % x == 0:

... print(f"{n} equals {x} * {n//x}")

... break

...

4 equals 2 * 2

6 equals 2 * 3

8 equals 2 * 4

9 equals 3 * 3

The continue statement continues with the next iteration of the loop:

>>> for num in range(2, 10):

... if num % 2 == 0:

... print(f"Found an even number {num}")

... continue

... print(f"Found an odd number {num}")

...

Found an even number 2

Found an odd number 3

Found an even number 4

Found an odd number 5

Found an even number 6

Found an odd number 7

Found an even number 8

Found an odd number 9

4.5 else Clauses on Loops

In a for or while loop the break statement may be paired with an else clause. If the loop finishes without
executing the break, the else clause executes.

In a for loop, the else clause is executed after the loop finishes its final iteration, that is, if no break occurred.

In a while loop, it’s executed after the loop’s condition becomes false.

4.4. break and continue Statements 19

Python Tutorial, Release 3.14.0a3

In either kind of loop, the else clause is not executed if the loop was terminated by a break. Of course, other ways
of ending the loop early, such as a return or a raised exception, will also skip execution of the else clause.

This is exemplified in the following for loop, which searches for prime numbers:

>>> for n in range(2, 10):

... for x in range(2, n):

... if n % x == 0:

... print(n, 'equals', x, '*', n//x)

... break

... else:

... # loop fell through without finding a factor

... print(n, 'is a prime number')

...

2 is a prime number

3 is a prime number

4 equals 2 * 2

5 is a prime number

6 equals 2 * 3

7 is a prime number

8 equals 2 * 4

9 equals 3 * 3

(Yes, this is the correct code. Look closely: the else clause belongs to the for loop, not the if statement.)

One way to think of the else clause is to imagine it paired with the if inside the loop. As the loop executes, it will
run a sequence like if/if/if/else. The if is inside the loop, encountered a number of times. If the condition is ever
true, a break will happen. If the condition is never true, the else clause outside the loop will execute.

When used with a loop, the else clause has more in common with the else clause of a try statement than it does
with that of if statements: a try statement’s else clause runs when no exception occurs, and a loop’s else clause
runs when no break occurs. For more on the try statement and exceptions, see Handling Exceptions.

4.6 pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the program requires
no action. For example:

>>> while True:

... pass # Busy-wait for keyboard interrupt (Ctrl+C)

...

This is commonly used for creating minimal classes:

>>> class MyEmptyClass:

... pass

...

Another place pass can be used is as a place-holder for a function or conditional body when you are working on new
code, allowing you to keep thinking at a more abstract level. The pass is silently ignored:

>>> def initlog(*args):

... pass # Remember to implement this!

...

20 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.14.0a3

4.7 match Statements

A match statement takes an expression and compares its value to successive patterns given as one or more case
blocks. This is superficially similar to a switch statement in C, Java or JavaScript (and many other languages), but it’s
more similar to pattern matching in languages like Rust or Haskell. Only the first pattern that matches gets executed
and it can also extract components (sequence elements or object attributes) from the value into variables.

The simplest form compares a subject value against one or more literals:

def http_error(status):

match status:

case 400:

return "Bad request"

case 404:

return "Not found"

case 418:

return "I'm a teapot"

case _:

return "Something's wrong with the internet"

Note the last block: the “variable name” _ acts as a wildcard and never fails to match. If no case matches, none of
the branches is executed.

You can combine several literals in a single pattern using | (“or”):

case 401 | 403 | 404:

return "Not allowed"

Patterns can look like unpacking assignments, and can be used to bind variables:

point is an (x, y) tuple

match point:

case (0, 0):

print("Origin")

case (0, y):

print(f"Y={y}")

case (x, 0):

print(f"X={x}")

case (x, y):

print(f"X={x}, Y={y}")

case _:

raise ValueError("Not a point")

Study that one carefully! The first pattern has two literals, and can be thought of as an extension of the literal pattern
shown above. But the next two patterns combine a literal and a variable, and the variable binds a value from the subject
(point). The fourth pattern captures two values, which makes it conceptually similar to the unpacking assignment
(x, y) = point.

If you are using classes to structure your data you can use the class name followed by an argument list resembling a
constructor, but with the ability to capture attributes into variables:

class Point:

def __init__(self, x, y):

self.x = x

self.y = y

def where_is(point):

match point:

case Point(x=0, y=0):

(continues on next page)

4.7. match Statements 21

Python Tutorial, Release 3.14.0a3

(continued from previous page)

print("Origin")

case Point(x=0, y=y):

print(f"Y={y}")

case Point(x=x, y=0):

print(f"X={x}")

case Point():

print("Somewhere else")

case _:

print("Not a point")

You can use positional parameters with some builtin classes that provide an ordering for their attributes (e.g. data-
classes). You can also define a specific position for attributes in patterns by setting the __match_args__ special
attribute in your classes. If it’s set to (“x”, “y”), the following patterns are all equivalent (and all bind the y attribute
to the var variable):

Point(1, var)

Point(1, y=var)

Point(x=1, y=var)

Point(y=var, x=1)

A recommended way to read patterns is to look at them as an extended form of what you would put on the left of
an assignment, to understand which variables would be set to what. Only the standalone names (like var above) are
assigned to by a match statement. Dotted names (like foo.bar), attribute names (the x= and y= above) or class
names (recognized by the “(…)” next to them like Point above) are never assigned to.

Patterns can be arbitrarily nested. For example, if we have a short list of Points, with __match_args__ added, we
could match it like this:

class Point:

__match_args__ = ('x', 'y')

def __init__(self, x, y):

self.x = x

self.y = y

match points:

case []:

print("No points")

case [Point(0, 0)]:

print("The origin")

case [Point(x, y)]:

print(f"Single point {x}, {y}")

case [Point(0, y1), Point(0, y2)]:

print(f"Two on the Y axis at {y1}, {y2}")

case _:

print("Something else")

We can add an if clause to a pattern, known as a “guard”. If the guard is false, match goes on to try the next case
block. Note that value capture happens before the guard is evaluated:

match point:

case Point(x, y) if x == y:

print(f"Y=X at {x}")

case Point(x, y):

print(f"Not on the diagonal")

Several other key features of this statement:

• Like unpacking assignments, tuple and list patterns have exactly the samemeaning and actually match arbitrary
sequences. An important exception is that they don’t match iterators or strings.

22 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.14.0a3

• Sequence patterns support extended unpacking: [x, y, *rest] and (x, y, *rest) work similar to un-
packing assignments. The name after * may also be _, so (x, y, *_) matches a sequence of at least two
items without binding the remaining items.

• Mapping patterns: {"bandwidth": b, "latency": l} captures the "bandwidth" and "latency" val-
ues from a dictionary. Unlike sequence patterns, extra keys are ignored. An unpacking like **rest is also
supported. (But **_ would be redundant, so it is not allowed.)

• Subpatterns may be captured using the as keyword:

case (Point(x1, y1), Point(x2, y2) as p2): ...

will capture the second element of the input as p2 (as long as the input is a sequence of two points)

• Most literals are compared by equality, however the singletons True, False and None are compared by
identity.

• Patterns may use named constants. These must be dotted names to prevent them from being interpreted as
capture variable:

from enum import Enum

class Color(Enum):

RED = 'red'

GREEN = 'green'

BLUE = 'blue'

color = Color(input("Enter your choice of 'red', 'blue' or 'green': "))

match color:

case Color.RED:

print("I see red!")

case Color.GREEN:

print("Grass is green")

case Color.BLUE:

print("I'm feeling the blues :(")

For a more detailed explanation and additional examples, you can look into PEP 636 which is written in a tutorial
format.

4.8 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # write Fibonacci series less than n

... """Print a Fibonacci series less than n."""

... a, b = 0, 1

... while a < n:

... print(a, end=' ')

... a, b = b, a+b

... print()

...

>>> # Now call the function we just defined:

>>> fib(2000)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be followed by the function name and the parenthesized list
of formal parameters. The statements that form the body of the function start at the next line, and must be indented.

The first statement of the function body can optionally be a string literal; this string literal is the function’s documen-
tation string, or docstring. (More about docstrings can be found in the section Documentation Strings.) There are

4.8. Defining Functions 23

https://peps.python.org/pep-0636/

Python Tutorial, Release 3.14.0a3

tools which use docstrings to automatically produce online or printed documentation, or to let the user interactively
browse through code; it’s good practice to include docstrings in code that you write, so make a habit of it.

The execution of a function introduces a new symbol table used for the local variables of the function. More precisely,
all variable assignments in a function store the value in the local symbol table; whereas variable references first look
in the local symbol table, then in the local symbol tables of enclosing functions, then in the global symbol table, and
finally in the table of built-in names. Thus, global variables and variables of enclosing functions cannot be directly
assigned a value within a function (unless, for global variables, named in a global statement, or, for variables of
enclosing functions, named in a nonlocal statement), although they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function
when it is called; thus, arguments are passed using call by value (where the value is always an object reference, not
the value of the object).1 When a function calls another function, or calls itself recursively, a new local symbol table
is created for that call.

A function definition associates the function namewith the function object in the current symbol table. The interpreter
recognizes the object pointed to by that name as a user-defined function. Other names can also point to that same
function object and can also be used to access the function:

>>> fib

<function fib at 10042ed0>

>>> f = fib

>>> f(100)

0 1 1 2 3 5 8 13 21 34 55 89

Coming from other languages, you might object that fib is not a function but a procedure since it doesn’t return a
value. In fact, even functions without a return statement do return a value, albeit a rather boring one. This value
is called None (it’s a built-in name). Writing the value None is normally suppressed by the interpreter if it would be
the only value written. You can see it if you really want to using print():

>>> fib(0)

>>> print(fib(0))

None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n

... """Return a list containing the Fibonacci series up to n."""

... result = []

... a, b = 0, 1

... while a < n:

... result.append(a) # see below

... a, b = b, a+b

... return result

...

>>> f100 = fib2(100) # call it

>>> f100 # write the result

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

• The return statement returns with a value from a function. return without an expression argument returns
None. Falling off the end of a function also returns None.

• The statement result.append(a) calls a method of the list object result. A method is a function that
‘belongs’ to an object and is named obj.methodname, where obj is some object (this may be an expression),
and methodname is the name of a method that is defined by the object’s type. Different types define different
methods. Methods of different types may have the same name without causing ambiguity. (It is possible to
define your own object types and methods, using classes, see Classes) The method append() shown in the

1 Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the callee
makes to it (items inserted into a list).

24 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.14.0a3

example is defined for list objects; it adds a new element at the end of the list. In this example it is equivalent
to result = result + [a], but more efficient.

4.9 More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be
combined.

4.9.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function that can be
called with fewer arguments than it is defined to allow. For example:

def ask_ok(prompt, retries=4, reminder='Please try again!'):

while True:

reply = input(prompt)

if reply in {'y', 'ye', 'yes'}:

return True

if reply in {'n', 'no', 'nop', 'nope'}:

return False

retries = retries - 1

if retries < 0:

raise ValueError('invalid user response')

print(reminder)

This function can be called in several ways:

• giving only the mandatory argument: ask_ok('Do you really want to quit?')

• giving one of the optional arguments: ask_ok('OK to overwrite the file?', 2)

• or even giving all arguments: ask_ok('OK to overwrite the file?', 2, 'Come on, only yes

or no!')

This example also introduces the in keyword. This tests whether or not a sequence contains a certain value.

The default values are evaluated at the point of function definition in the defining scope, so that

i = 5

def f(arg=i):

print(arg)

i = 6

f()

will print 5.

Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable
object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the
arguments passed to it on subsequent calls:

def f(a, L=[]):

L.append(a)

return L

print(f(1))

print(f(2))

print(f(3))

This will print

4.9. More on Defining Functions 25

Python Tutorial, Release 3.14.0a3

[1]

[1, 2]

[1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

def f(a, L=None):

if L is None:

L = []

L.append(a)

return L

4.9.2 Keyword Arguments

Functions can also be called using keyword arguments of the form kwarg=value. For instance, the following func-
tion:

def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):

print("-- This parrot wouldn't", action, end=' ')

print("if you put", voltage, "volts through it.")

print("-- Lovely plumage, the", type)

print("-- It's", state, "!")

accepts one required argument (voltage) and three optional arguments (state, action, and type). This function
can be called in any of the following ways:

parrot(1000) # 1 positional argument

parrot(voltage=1000) # 1 keyword argument

parrot(voltage=1000000, action='VOOOOOM') # 2 keyword arguments

parrot(action='VOOOOOM', voltage=1000000) # 2 keyword arguments

parrot('a million', 'bereft of life', 'jump') # 3 positional arguments

parrot('a thousand', state='pushing up the daisies') # 1 positional, 1 keyword

but all the following calls would be invalid:

parrot() # required argument missing

parrot(voltage=5.0, 'dead') # non-keyword argument after a keyword argument

parrot(110, voltage=220) # duplicate value for the same argument

parrot(actor='John Cleese') # unknown keyword argument

In a function call, keyword arguments must follow positional arguments. All the keyword arguments passed must
match one of the arguments accepted by the function (e.g. actor is not a valid argument for the parrot function),
and their order is not important. This also includes non-optional arguments (e.g. parrot(voltage=1000) is valid
too). No argument may receive a value more than once. Here’s an example that fails due to this restriction:

>>> def function(a):

... pass

...

>>> function(0, a=0)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: function() got multiple values for argument 'a'

When a final formal parameter of the form **name is present, it receives a dictionary (see typesmapping) containing
all keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal
parameter of the form *name (described in the next subsection) which receives a tuple containing the positional
arguments beyond the formal parameter list. (*name must occur before **name.) For example, if we define a
function like this:

26 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.14.0a3

def cheeseshop(kind, *arguments, **keywords):

print("-- Do you have any", kind, "?")

print("-- I'm sorry, we're all out of", kind)

for arg in arguments:

print(arg)

print("-" * 40)

for kw in keywords:

print(kw, ":", keywords[kw])

It could be called like this:

cheeseshop("Limburger", "It's very runny, sir.",

"It's really very, VERY runny, sir.",

shopkeeper="Michael Palin",

client="John Cleese",

sketch="Cheese Shop Sketch")

and of course it would print:

-- Do you have any Limburger ?

-- I'm sorry, we're all out of Limburger

It's very runny, sir.

It's really very, VERY runny, sir.

--

shopkeeper : Michael Palin

client : John Cleese

sketch : Cheese Shop Sketch

Note that the order in which the keyword arguments are printed is guaranteed to match the order in which they were
provided in the function call.

4.9.3 Special parameters

By default, arguments may be passed to a Python function either by position or explicitly by keyword. For readability
and performance, it makes sense to restrict the way arguments can be passed so that a developer need only look at
the function definition to determine if items are passed by position, by position or keyword, or by keyword.

A function definition may look like:

def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2):

----------- ---------- ----------

| | |

| Positional or keyword |

| - Keyword only

-- Positional only

where / and * are optional. If used, these symbols indicate the kind of parameter by how the argumentsmay be passed
to the function: positional-only, positional-or-keyword, and keyword-only. Keyword parameters are also referred to
as named parameters.

Positional-or-Keyword Arguments

If / and * are not present in the function definition, arguments may be passed to a function by position or by keyword.

4.9. More on Defining Functions 27

Python Tutorial, Release 3.14.0a3

Positional-Only Parameters

Looking at this in a bit more detail, it is possible to mark certain parameters as positional-only. If positional-only, the
parameters’ order matters, and the parameters cannot be passed by keyword. Positional-only parameters are placed
before a / (forward-slash). The / is used to logically separate the positional-only parameters from the rest of the
parameters. If there is no / in the function definition, there are no positional-only parameters.

Parameters following the / may be positional-or-keyword or keyword-only.

Keyword-Only Arguments

To mark parameters as keyword-only, indicating the parameters must be passed by keyword argument, place an * in
the arguments list just before the first keyword-only parameter.

Function Examples

Consider the following example function definitions paying close attention to the markers / and *:

>>> def standard_arg(arg):

... print(arg)

...

>>> def pos_only_arg(arg, /):

... print(arg)

...

>>> def kwd_only_arg(*, arg):

... print(arg)

...

>>> def combined_example(pos_only, /, standard, *, kwd_only):

... print(pos_only, standard, kwd_only)

The first function definition, standard_arg, the most familiar form, places no restrictions on the calling convention
and arguments may be passed by position or keyword:

>>> standard_arg(2)

2

>>> standard_arg(arg=2)

2

The second function pos_only_arg is restricted to only use positional parameters as there is a / in the function
definition:

>>> pos_only_arg(1)

1

>>> pos_only_arg(arg=1)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: pos_only_arg() got some positional-only arguments passed as keyword␣

↪→arguments: 'arg'

The third function kwd_only_arg only allows keyword arguments as indicated by a * in the function definition:

>>> kwd_only_arg(3)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: kwd_only_arg() takes 0 positional arguments but 1 was given

>>> kwd_only_arg(arg=3)

3

28 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.14.0a3

And the last uses all three calling conventions in the same function definition:

>>> combined_example(1, 2, 3)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: combined_example() takes 2 positional arguments but 3 were given

>>> combined_example(1, 2, kwd_only=3)

1 2 3

>>> combined_example(1, standard=2, kwd_only=3)

1 2 3

>>> combined_example(pos_only=1, standard=2, kwd_only=3)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: combined_example() got some positional-only arguments passed as keyword␣

↪→arguments: 'pos_only'

Finally, consider this function definition which has a potential collision between the positional argument name and
**kwds which has name as a key:

def foo(name, **kwds):

return 'name' in kwds

There is no possible call that will make it return True as the keyword 'name' will always bind to the first parameter.
For example:

>>> foo(1, **{'name': 2})

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: foo() got multiple values for argument 'name'

>>>

But using / (positional only arguments), it is possible since it allows name as a positional argument and 'name' as
a key in the keyword arguments:

>>> def foo(name, /, **kwds):

... return 'name' in kwds

...

>>> foo(1, **{'name': 2})

True

In other words, the names of positional-only parameters can be used in **kwds without ambiguity.

Recap

The use case will determine which parameters to use in the function definition:

def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2):

As guidance:

• Use positional-only if you want the name of the parameters to not be available to the user. This is useful when
parameter names have no real meaning, if you want to enforce the order of the arguments when the function
is called or if you need to take some positional parameters and arbitrary keywords.

• Use keyword-only when names have meaning and the function definition is more understandable by being
explicit with names or you want to prevent users relying on the position of the argument being passed.

4.9. More on Defining Functions 29

Python Tutorial, Release 3.14.0a3

• For an API, use positional-only to prevent breaking API changes if the parameter’s name is modified in the
future.

4.9.4 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of argu-
ments. These arguments will be wrapped up in a tuple (see Tuples and Sequences). Before the variable number of
arguments, zero or more normal arguments may occur.

def write_multiple_items(file, separator, *args):

file.write(separator.join(args))

Normally, these variadic arguments will be last in the list of formal parameters, because they scoop up all remaining
input arguments that are passed to the function. Any formal parameters which occur after the *args parameter are
‘keyword-only’ arguments, meaning that they can only be used as keywords rather than positional arguments.

>>> def concat(*args, sep="/"):

... return sep.join(args)

...

>>> concat("earth", "mars", "venus")

'earth/mars/venus'

>>> concat("earth", "mars", "venus", sep=".")

'earth.mars.venus'

4.9.5 Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function call
requiring separate positional arguments. For instance, the built-in range() function expects separate start and stop
arguments. If they are not available separately, write the function call with the *-operator to unpack the arguments
out of a list or tuple:

>>> list(range(3, 6)) # normal call with separate arguments

[3, 4, 5]

>>> args = [3, 6]

>>> list(range(*args)) # call with arguments unpacked from a list

[3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the **-operator:

>>> def parrot(voltage, state='a stiff', action='voom'):

... print("-- This parrot wouldn't", action, end=' ')

... print("if you put", voltage, "volts through it.", end=' ')

... print("E's", state, "!")

...

>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}

>>> parrot(**d)

-- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin

↪→' demised !

4.9.6 Lambda Expressions

Small anonymous functions can be created with the lambda keyword. This function returns the sum of its two
arguments: lambda a, b: a+b. Lambda functions can be used wherever function objects are required. They
are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a normal function
definition. Like nested function definitions, lambda functions can reference variables from the containing scope:

>>> def make_incrementor(n):

... return lambda x: x + n

(continues on next page)

30 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.14.0a3

(continued from previous page)

...

>>> f = make_incrementor(42)

>>> f(0)

42

>>> f(1)

43

The above example uses a lambda expression to return a function. Another use is to pass a small function as an
argument:

>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]

>>> pairs.sort(key=lambda pair: pair[1])

>>> pairs

[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]

4.9.7 Documentation Strings

Here are some conventions about the content and formatting of documentation strings.

The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not explicitly
state the object’s name or type, since these are available by other means (except if the name happens to be a verb
describing a function’s operation). This line should begin with a capital letter and end with a period.

If there are more lines in the documentation string, the second line should be blank, visually separating the summary
from the rest of the description. The following lines should be one or more paragraphs describing the object’s calling
conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documen-
tation have to strip indentation if desired. This is done using the following convention. The first non-blank line after
the first line of the string determines the amount of indentation for the entire documentation string. (We can’t use
the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent in the string
literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of the string. Lines
that are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence
of whitespace should be tested after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():

... """Do nothing, but document it.

...

... No, really, it doesn't do anything.

... """

... pass

...

>>> print(my_function.__doc__)

Do nothing, but document it.

No, really, it doesn't do anything.

4.9.8 Function Annotations

Function annotations are completely optional metadata information about the types used by user-defined functions
(see PEP 3107 and PEP 484 for more information).

Annotations are stored in the __annotations__ attribute of the function as a dictionary and have no effect on any
other part of the function. Parameter annotations are defined by a colon after the parameter name, followed by an
expression evaluating to the value of the annotation. Return annotations are defined by a literal ->, followed by an
expression, between the parameter list and the colon denoting the end of the def statement. The following example
has a required argument, an optional argument, and the return value annotated:

4.9. More on Defining Functions 31

https://peps.python.org/pep-3107/
https://peps.python.org/pep-0484/

Python Tutorial, Release 3.14.0a3

>>> def f(ham: str, eggs: str = 'eggs') -> str:

... print("Annotations:", f.__annotations__)

... print("Arguments:", ham, eggs)

... return ham + ' and ' + eggs

...

>>> f('spam')

Annotations: {'ham': <class 'str'>, 'return': <class 'str'>, 'eggs': <class 'str'>}

Arguments: spam eggs

'spam and eggs'

4.10 Intermezzo: Coding Style

Now that you are about to write longer, more complex pieces of Python, it is a good time to talk about coding style.
Most languages can be written (or more concise, formatted) in different styles; some are more readable than others.
Making it easy for others to read your code is always a good idea, and adopting a nice coding style helps tremendously
for that.

For Python, PEP 8 has emerged as the style guide that most projects adhere to; it promotes a very readable and
eye-pleasing coding style. Every Python developer should read it at some point; here are the most important points
extracted for you:

• Use 4-space indentation, and no tabs.

4 spaces are a good compromise between small indentation (allows greater nesting depth) and large indentation
(easier to read). Tabs introduce confusion, and are best left out.

• Wrap lines so that they don’t exceed 79 characters.

This helps users with small displays and makes it possible to have several code files side-by-side on larger
displays.

• Use blank lines to separate functions and classes, and larger blocks of code inside functions.

• When possible, put comments on a line of their own.

• Use docstrings.

• Use spaces around operators and after commas, but not directly inside bracketing constructs: a = f(1, 2)

+ g(3, 4).

• Name your classes and functions consistently; the convention is to use UpperCamelCase for classes and
lowercase_with_underscores for functions and methods. Always use self as the name for the first
method argument (see A First Look at Classes for more on classes and methods).

• Don’t use fancy encodings if your code is meant to be used in international environments. Python’s default,
UTF-8, or even plain ASCII work best in any case.

• Likewise, don’t use non-ASCII characters in identifiers if there is only the slightest chance people speaking a
different language will read or maintain the code.

32 Chapter 4. More Control Flow Tools

https://peps.python.org/pep-0008/

CHAPTER

FIVE

DATA STRUCTURES

This chapter describes some things you’ve learned about already in more detail, and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

list.append(x)
Add an item to the end of the list. Similar to a[len(a):] = [x].

list.extend(iterable)
Extend the list by appending all the items from the iterable. Similar to a[len(a):] = iterable.

list.insert(i, x)
Insert an item at a given position. The first argument is the index of the element before which to insert, so a.
insert(0, x) inserts at the front of the list, and a.insert(len(a), x) is equivalent to a.append(x).

list.remove(x)
Remove the first item from the list whose value is equal to x. It raises a ValueError if there is no such item.

list.pop([i])
Remove the item at the given position in the list, and return it. If no index is specified, a.pop() removes and
returns the last item in the list. It raises an IndexError if the list is empty or the index is outside the list
range.

list.clear()

Remove all items from the list. Similar to del a[:].

list.index(x[, start[, end]])
Return zero-based index in the list of the first item whose value is equal to x. Raises a ValueError if there
is no such item.

The optional arguments start and end are interpreted as in the slice notation and are used to limit the search
to a particular subsequence of the list. The returned index is computed relative to the beginning of the full
sequence rather than the start argument.

list.count(x)

Return the number of times x appears in the list.

list.sort(*, key=None, reverse=False)
Sort the items of the list in place (the arguments can be used for sort customization, see sorted() for their
explanation).

list.reverse()

Reverse the elements of the list in place.

33

Python Tutorial, Release 3.14.0a3

list.copy()

Return a shallow copy of the list. Similar to a[:].

An example that uses most of the list methods:

>>> fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']

>>> fruits.count('apple')

2

>>> fruits.count('tangerine')

0

>>> fruits.index('banana')

3

>>> fruits.index('banana', 4) # Find next banana starting at position 4

6

>>> fruits.reverse()

>>> fruits

['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange']

>>> fruits.append('grape')

>>> fruits

['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange', 'grape']

>>> fruits.sort()

>>> fruits

['apple', 'apple', 'banana', 'banana', 'grape', 'kiwi', 'orange', 'pear']

>>> fruits.pop()

'pear'

You might have noticed that methods like insert, remove or sort that only modify the list have no return value
printed – they return the default None.1 This is a design principle for all mutable data structures in Python.

Another thing you might notice is that not all data can be sorted or compared. For instance, [None, 'hello',

10] doesn’t sort because integers can’t be compared to strings and None can’t be compared to other types. Also, there
are some types that don’t have a defined ordering relation. For example, 3+4j < 5+7j isn’t a valid comparison.

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element added is the first element retrieved
(“last-in, first-out”). To add an item to the top of the stack, use append(). To retrieve an item from the top of the
stack, use pop() without an explicit index. For example:

>>> stack = [3, 4, 5]

>>> stack.append(6)

>>> stack.append(7)

>>> stack

[3, 4, 5, 6, 7]

>>> stack.pop()

7

>>> stack

[3, 4, 5, 6]

>>> stack.pop()

6

>>> stack.pop()

5

>>> stack

[3, 4]

1 Other languages may return the mutated object, which allows method chaining, such as d->insert("a")->remove("b")->sort();.

34 Chapter 5. Data Structures

Python Tutorial, Release 3.14.0a3

5.1.2 Using Lists as Queues

It is also possible to use a list as a queue, where the first element added is the first element retrieved (“first-in, first-
out”); however, lists are not efficient for this purpose. While appends and pops from the end of list are fast, doing
inserts or pops from the beginning of a list is slow (because all of the other elements have to be shifted by one).

To implement a queue, use collections.deque which was designed to have fast appends and pops from both
ends. For example:

>>> from collections import deque

>>> queue = deque(["Eric", "John", "Michael"])

>>> queue.append("Terry") # Terry arrives

>>> queue.append("Graham") # Graham arrives

>>> queue.popleft() # The first to arrive now leaves

'Eric'

>>> queue.popleft() # The second to arrive now leaves

'John'

>>> queue # Remaining queue in order of arrival

deque(['Michael', 'Terry', 'Graham'])

5.1.3 List Comprehensions

List comprehensions provide a concise way to create lists. Common applications are to make new lists where each
element is the result of some operations applied to each member of another sequence or iterable, or to create a
subsequence of those elements that satisfy a certain condition.

For example, assume we want to create a list of squares, like:

>>> squares = []

>>> for x in range(10):

... squares.append(x**2)

...

>>> squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Note that this creates (or overwrites) a variable named x that still exists after the loop completes. We can calculate
the list of squares without any side effects using:

squares = list(map(lambda x: x**2, range(10)))

or, equivalently:

squares = [x**2 for x in range(10)]

which is more concise and readable.

A list comprehension consists of brackets containing an expression followed by a for clause, then zero or more for
or if clauses. The result will be a new list resulting from evaluating the expression in the context of the for and if
clauses which follow it. For example, this listcomp combines the elements of two lists if they are not equal:

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]

[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

and it’s equivalent to:

>>> combs = []

>>> for x in [1,2,3]:

... for y in [3,1,4]:

... if x != y:

... combs.append((x, y))

(continues on next page)

5.1. More on Lists 35

Python Tutorial, Release 3.14.0a3

(continued from previous page)

...

>>> combs

[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

Note how the order of the for and if statements is the same in both these snippets.

If the expression is a tuple (e.g. the (x, y) in the previous example), it must be parenthesized.

>>> vec = [-4, -2, 0, 2, 4]

>>> # create a new list with the values doubled

>>> [x*2 for x in vec]

[-8, -4, 0, 4, 8]

>>> # filter the list to exclude negative numbers

>>> [x for x in vec if x >= 0]

[0, 2, 4]

>>> # apply a function to all the elements

>>> [abs(x) for x in vec]

[4, 2, 0, 2, 4]

>>> # call a method on each element

>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']

>>> [weapon.strip() for weapon in freshfruit]

['banana', 'loganberry', 'passion fruit']

>>> # create a list of 2-tuples like (number, square)

>>> [(x, x**2) for x in range(6)]

[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]

>>> # the tuple must be parenthesized, otherwise an error is raised

>>> [x, x**2 for x in range(6)]

File "<stdin>", line 1

[x, x**2 for x in range(6)]

^^^^^^^

SyntaxError: did you forget parentheses around the comprehension target?

>>> # flatten a list using a listcomp with two 'for'

>>> vec = [[1,2,3], [4,5,6], [7,8,9]]

>>> [num for elem in vec for num in elem]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

List comprehensions can contain complex expressions and nested functions:

>>> from math import pi

>>> [str(round(pi, i)) for i in range(1, 6)]

['3.1', '3.14', '3.142', '3.1416', '3.14159']

5.1.4 Nested List Comprehensions

The initial expression in a list comprehension can be any arbitrary expression, including another list comprehension.

Consider the following example of a 3x4 matrix implemented as a list of 3 lists of length 4:

>>> matrix = [

... [1, 2, 3, 4],

... [5, 6, 7, 8],

... [9, 10, 11, 12],

...]

The following list comprehension will transpose rows and columns:

>>> [[row[i] for row in matrix] for i in range(4)]

[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

36 Chapter 5. Data Structures

Python Tutorial, Release 3.14.0a3

As we saw in the previous section, the inner list comprehension is evaluated in the context of the for that follows it,
so this example is equivalent to:

>>> transposed = []

>>> for i in range(4):

... transposed.append([row[i] for row in matrix])

...

>>> transposed

[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

which, in turn, is the same as:

>>> transposed = []

>>> for i in range(4):

... # the following 3 lines implement the nested listcomp

... transposed_row = []

... for row in matrix:

... transposed_row.append(row[i])

... transposed.append(transposed_row)

...

>>> transposed

[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

In the real world, you should prefer built-in functions to complex flow statements. The zip() function would do a
great job for this use case:

>>> list(zip(*matrix))

[(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)]

See Unpacking Argument Lists for details on the asterisk in this line.

5.2 The del statement

There is a way to remove an item from a list given its index instead of its value: the del statement. This differs from
the pop() method which returns a value. The del statement can also be used to remove slices from a list or clear
the entire list (which we did earlier by assignment of an empty list to the slice). For example:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]

>>> del a[0]

>>> a

[1, 66.25, 333, 333, 1234.5]

>>> del a[2:4]

>>> a

[1, 66.25, 1234.5]

>>> del a[:]

>>> a

[]

del can also be used to delete entire variables:

>>> del a

Referencing the name a hereafter is an error (at least until another value is assigned to it). We’ll find other uses for
del later.

5.2. The del statement 37

Python Tutorial, Release 3.14.0a3

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing and slicing operations. They are two
examples of sequence data types (see typesseq). Since Python is an evolving language, other sequence data types may
be added. There is also another standard sequence data type: the tuple.

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, 'hello!'

>>> t[0]

12345

>>> t

(12345, 54321, 'hello!')

>>> # Tuples may be nested:

>>> u = t, (1, 2, 3, 4, 5)

>>> u

((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))

>>> # Tuples are immutable:

>>> t[0] = 88888

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

>>> # but they can contain mutable objects:

>>> v = ([1, 2, 3], [3, 2, 1])

>>> v

([1, 2, 3], [3, 2, 1])

As you see, on output tuples are always enclosed in parentheses, so that nested tuples are interpreted correctly; they
may be input with or without surrounding parentheses, although often parentheses are necessary anyway (if the tuple
is part of a larger expression). It is not possible to assign to the individual items of a tuple, however it is possible to
create tuples which contain mutable objects, such as lists.

Though tuples may seem similar to lists, they are often used in different situations and for different purposes. Tuples
are immutable, and usually contain a heterogeneous sequence of elements that are accessed via unpacking (see later
in this section) or indexing (or even by attribute in the case of namedtuples). Lists are mutable, and their elements
are usually homogeneous and are accessed by iterating over the list.

A special problem is the construction of tuples containing 0 or 1 items: the syntax has some extra quirks to accom-
modate these. Empty tuples are constructed by an empty pair of parentheses; a tuple with one item is constructed
by following a value with a comma (it is not sufficient to enclose a single value in parentheses). Ugly, but effective.
For example:

>>> empty = ()

>>> singleton = 'hello', # <-- note trailing comma

>>> len(empty)

0

>>> len(singleton)

1

>>> singleton

('hello',)

The statement t = 12345, 54321, 'hello!' is an example of tuple packing: the values 12345, 54321 and
'hello!' are packed together in a tuple. The reverse operation is also possible:

>>> x, y, z = t

This is called, appropriately enough, sequence unpacking and works for any sequence on the right-hand side. Sequence
unpacking requires that there are as many variables on the left side of the equals sign as there are elements in the
sequence. Note that multiple assignment is really just a combination of tuple packing and sequence unpacking.

38 Chapter 5. Data Structures

Python Tutorial, Release 3.14.0a3

5.4 Sets

Python also includes a data type for sets. A set is an unordered collection with no duplicate elements. Basic uses
include membership testing and eliminating duplicate entries. Set objects also support mathematical operations like
union, intersection, difference, and symmetric difference.

Curly braces or the set() function can be used to create sets. Note: to create an empty set you have to use set(),
not {}; the latter creates an empty dictionary, a data structure that we discuss in the next section.

Here is a brief demonstration:

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}

>>> print(basket) # show that duplicates have been removed

{'orange', 'banana', 'pear', 'apple'}

>>> 'orange' in basket # fast membership testing

True

>>> 'crabgrass' in basket

False

>>> # Demonstrate set operations on unique letters from two words

>>>

>>> a = set('abracadabra')

>>> b = set('alacazam')

>>> a # unique letters in a

{'a', 'r', 'b', 'c', 'd'}

>>> a - b # letters in a but not in b

{'r', 'd', 'b'}

>>> a | b # letters in a or b or both

{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}

>>> a & b # letters in both a and b

{'a', 'c'}

>>> a ^ b # letters in a or b but not both

{'r', 'd', 'b', 'm', 'z', 'l'}

Similarly to list comprehensions, set comprehensions are also supported:

>>> a = {x for x in 'abracadabra' if x not in 'abc'}

>>> a

{'r', 'd'}

5.5 Dictionaries

Another useful data type built into Python is the dictionary (see typesmapping). Dictionaries are sometimes found
in other languages as “associative memories” or “associative arrays”. Unlike sequences, which are indexed by a range
of numbers, dictionaries are indexed by keys, which can be any immutable type; strings and numbers can always be
keys. Tuples can be used as keys if they contain only strings, numbers, or tuples; if a tuple contains any mutable
object either directly or indirectly, it cannot be used as a key. You can’t use lists as keys, since lists can be modified
in place using index assignments, slice assignments, or methods like append() and extend().

It is best to think of a dictionary as a set of key: value pairs, with the requirement that the keys are unique (within
one dictionary). A pair of braces creates an empty dictionary: {}. Placing a comma-separated list of key:value pairs
within the braces adds initial key:value pairs to the dictionary; this is also the way dictionaries are written on output.

The main operations on a dictionary are storing a value with some key and extracting the value given the key. It is also
possible to delete a key:value pair with del. If you store using a key that is already in use, the old value associated
with that key is forgotten. It is an error to extract a value using a non-existent key.

Performing list(d) on a dictionary returns a list of all the keys used in the dictionary, in insertion order (if you
want it sorted, just use sorted(d) instead). To check whether a single key is in the dictionary, use the in keyword.

5.4. Sets 39

Python Tutorial, Release 3.14.0a3

Here is a small example using a dictionary:

>>> tel = {'jack': 4098, 'sape': 4139}

>>> tel['guido'] = 4127

>>> tel

{'jack': 4098, 'sape': 4139, 'guido': 4127}

>>> tel['jack']

4098

>>> del tel['sape']

>>> tel['irv'] = 4127

>>> tel

{'jack': 4098, 'guido': 4127, 'irv': 4127}

>>> list(tel)

['jack', 'guido', 'irv']

>>> sorted(tel)

['guido', 'irv', 'jack']

>>> 'guido' in tel

True

>>> 'jack' not in tel

False

The dict() constructor builds dictionaries directly from sequences of key-value pairs:

>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])

{'sape': 4139, 'guido': 4127, 'jack': 4098}

In addition, dict comprehensions can be used to create dictionaries from arbitrary key and value expressions:

>>> {x: x**2 for x in (2, 4, 6)}

{2: 4, 4: 16, 6: 36}

When the keys are simple strings, it is sometimes easier to specify pairs using keyword arguments:

>>> dict(sape=4139, guido=4127, jack=4098)

{'sape': 4139, 'guido': 4127, 'jack': 4098}

5.6 Looping Techniques

When looping through dictionaries, the key and corresponding value can be retrieved at the same time using the
items() method.

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}

>>> for k, v in knights.items():

... print(k, v)

...

gallahad the pure

robin the brave

When looping through a sequence, the position index and corresponding value can be retrieved at the same time using
the enumerate() function.

>>> for i, v in enumerate(['tic', 'tac', 'toe']):

... print(i, v)

...

0 tic

1 tac

2 toe

40 Chapter 5. Data Structures

Python Tutorial, Release 3.14.0a3

To loop over two or more sequences at the same time, the entries can be paired with the zip() function.

>>> questions = ['name', 'quest', 'favorite color']

>>> answers = ['lancelot', 'the holy grail', 'blue']

>>> for q, a in zip(questions, answers):

... print('What is your {0}? It is {1}.'.format(q, a))

...

What is your name? It is lancelot.

What is your quest? It is the holy grail.

What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward direction and then call the reversed()
function.

>>> for i in reversed(range(1, 10, 2)):

... print(i)

...

9

7

5

3

1

To loop over a sequence in sorted order, use the sorted() function which returns a new sorted list while leaving
the source unaltered.

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']

>>> for i in sorted(basket):

... print(i)

...

apple

apple

banana

orange

orange

pear

Using set() on a sequence eliminates duplicate elements. The use of sorted() in combination with set() over
a sequence is an idiomatic way to loop over unique elements of the sequence in sorted order.

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']

>>> for f in sorted(set(basket)):

... print(f)

...

apple

banana

orange

pear

It is sometimes tempting to change a list while you are looping over it; however, it is often simpler and safer to create
a new list instead.

>>> import math

>>> raw_data = [56.2, float('NaN'), 51.7, 55.3, 52.5, float('NaN'), 47.8]

>>> filtered_data = []

>>> for value in raw_data:

... if not math.isnan(value):

... filtered_data.append(value)

(continues on next page)

5.6. Looping Techniques 41

Python Tutorial, Release 3.14.0a3

(continued from previous page)

...

>>> filtered_data

[56.2, 51.7, 55.3, 52.5, 47.8]

5.7 More on Conditions

The conditions used in while and if statements can contain any operators, not just comparisons.

The comparison operators in and not in are membership tests that determine whether a value is in (or not in) a
container. The operators is and is not compare whether two objects are really the same object. All comparison
operators have the same priority, which is lower than that of all numerical operators.

Comparisons can be chained. For example, a < b == c tests whether a is less than b and moreover b equals c.

Comparisons may be combined using the Boolean operators and and or, and the outcome of a comparison (or of
any other Boolean expression) may be negated with not. These have lower priorities than comparison operators;
between them, not has the highest priority and or the lowest, so that A and not B or C is equivalent to (A and

(not B)) or C. As always, parentheses can be used to express the desired composition.

The Boolean operators and and or are so-called short-circuit operators: their arguments are evaluated from left to
right, and evaluation stops as soon as the outcome is determined. For example, if A and C are true but B is false, A
and B and C does not evaluate the expression C. When used as a general value and not as a Boolean, the return
value of a short-circuit operator is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression to a variable. For example,

>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'

>>> non_null = string1 or string2 or string3

>>> non_null

'Trondheim'

Note that in Python, unlike C, assignment inside expressions must be done explicitly with the walrus operator :=.
This avoids a common class of problems encountered in C programs: typing = in an expression when ==was intended.

5.8 Comparing Sequences and Other Types

Sequence objects typically may be compared to other objects with the same sequence type. The comparison uses
lexicographical ordering: first the first two items are compared, and if they differ this determines the outcome of
the comparison; if they are equal, the next two items are compared, and so on, until either sequence is exhausted.
If two items to be compared are themselves sequences of the same type, the lexicographical comparison is carried
out recursively. If all items of two sequences compare equal, the sequences are considered equal. If one sequence
is an initial sub-sequence of the other, the shorter sequence is the smaller (lesser) one. Lexicographical ordering for
strings uses the Unicode code point number to order individual characters. Some examples of comparisons between
sequences of the same type:

(1, 2, 3) < (1, 2, 4)

[1, 2, 3] < [1, 2, 4]

'ABC' < 'C' < 'Pascal' < 'Python'

(1, 2, 3, 4) < (1, 2, 4)

(1, 2) < (1, 2, -1)

(1, 2, 3) == (1.0, 2.0, 3.0)

(1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)

Note that comparing objects of different types with < or > is legal provided that the objects have appropriate com-
parison methods. For example, mixed numeric types are compared according to their numeric value, so 0 equals 0.0,
etc. Otherwise, rather than providing an arbitrary ordering, the interpreter will raise a TypeError exception.

42 Chapter 5. Data Structures

CHAPTER

SIX

MODULES

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables)
are lost. Therefore, if you want to write a somewhat longer program, you are better off using a text editor to prepare
the input for the interpreter and running it with that file as input instead. This is known as creating a script. As your
program gets longer, you may want to split it into several files for easier maintenance. You may also want to use a
handy function that you’ve written in several programs without copying its definition into each program.

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance
of the interpreter. Such a file is called a module; definitions from a module can be imported into other modules or
into the main module (the collection of variables that you have access to in a script executed at the top level and in
calculator mode).

A module is a file containing Python definitions and statements. The file name is the module name with the suffix
.py appended. Within a module, the module’s name (as a string) is available as the value of the global variable
__name__. For instance, use your favorite text editor to create a file called fibo.py in the current directory with
the following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n

a, b = 0, 1

while a < n:

print(a, end=' ')

a, b = b, a+b

print()

def fib2(n): # return Fibonacci series up to n

result = []

a, b = 0, 1

while a < n:

result.append(a)

a, b = b, a+b

return result

Now enter the Python interpreter and import this module with the following command:

>>> import fibo

This does not add the names of the functions defined in fibo directly to the current namespace (see Python Scopes
and Namespaces for more details); it only adds the module name fibo there. Using the module name you can access
the functions:

>>> fibo.fib(1000)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

>>> fibo.fib2(100)

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

(continues on next page)

43

Python Tutorial, Release 3.14.0a3

(continued from previous page)

>>> fibo.__name__

'fibo'

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib

>>> fib(500)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

6.1 More on Modules

Amodule can contain executable statements as well as function definitions. These statements are intended to initialize
the module. They are executed only the first time the module name is encountered in an import statement.1 (They
are also run if the file is executed as a script.)

Each module has its own private namespace, which is used as the global namespace by all functions defined in the
module. Thus, the author of a module can use global variables in the module without worrying about accidental
clashes with a user’s global variables. On the other hand, if you know what you are doing you can touch a module’s
global variables with the same notation used to refer to its functions, modname.itemname.

Modules can import other modules. It is customary but not required to place all import statements at the beginning
of a module (or script, for that matter). The imported module names, if placed at the top level of a module (outside
any functions or classes), are added to the module’s global namespace.

There is a variant of the import statement that imports names from a module directly into the importing module’s
namespace. For example:

>>> from fibo import fib, fib2

>>> fib(500)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name fromwhich the imports are taken in the local namespace (so in the example,
fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *

>>> fib(500)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_). In most cases Python programmers do not
use this facility since it introduces an unknown set of names into the interpreter, possibly hiding some things you
have already defined.

Note that in general the practice of importing * from a module or package is frowned upon, since it often causes
poorly readable code. However, it is okay to use it to save typing in interactive sessions.

If the module name is followed by as, then the name following as is bound directly to the imported module.

>>> import fibo as fib

>>> fib.fib(500)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

This is effectively importing the module in the same way that import fibo will do, with the only difference of it
being available as fib.

It can also be used when utilising from with similar effects:
1 In fact function definitions are also ‘statements’ that are ‘executed’; the execution of a module-level function definition adds the function name

to the module’s global namespace.

44 Chapter 6. Modules

Python Tutorial, Release 3.14.0a3

>>> from fibo import fib as fibonacci

>>> fibonacci(500)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

Note

For efficiency reasons, each module is only imported once per interpreter session. Therefore, if you change
your modules, you must restart the interpreter – or, if it’s just one module you want to test interactively, use
importlib.reload(), e.g. import importlib; importlib.reload(modulename).

6.1.1 Executing modules as scripts

When you run a Python module with

python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with the __name__ set to "__main__". That
means that by adding this code at the end of your module:

if __name__ == "__main__":

import sys

fib(int(sys.argv[1]))

you can make the file usable as a script as well as an importable module, because the code that parses the command
line only runs if the module is executed as the “main” file:

$ python fibo.py 50

0 1 1 2 3 5 8 13 21 34

If the module is imported, the code is not run:

>>> import fibo

>>>

This is often used either to provide a convenient user interface to a module, or for testing purposes (running the
module as a script executes a test suite).

6.1.2 The Module Search Path

When a module named spam is imported, the interpreter first searches for a built-in module with that name. These
module names are listed in sys.builtin_module_names. If not found, it then searches for a file named spam.py
in a list of directories given by the variable sys.path. sys.path is initialized from these locations:

• The directory containing the input script (or the current directory when no file is specified).

• PYTHONPATH (a list of directory names, with the same syntax as the shell variable PATH).

• The installation-dependent default (by convention including a site-packages directory, handled by the site
module).

More details are at sys-path-init.

Note

On file systems which support symlinks, the directory containing the input script is calculated after the symlink
is followed. In other words the directory containing the symlink is not added to the module search path.

6.1. More on Modules 45

Python Tutorial, Release 3.14.0a3

After initialization, Python programs can modify sys.path. The directory containing the script being run is placed
at the beginning of the search path, ahead of the standard library path. This means that scripts in that directory will
be loaded instead of modules of the same name in the library directory. This is an error unless the replacement is
intended. See section Standard Modules for more information.

6.1.3 “Compiled” Python files

To speed up loading modules, Python caches the compiled version of each module in the __pycache__ directory
under the name module.version.pyc, where the version encodes the format of the compiled file; it generally
contains the Python version number. For example, in CPython release 3.3 the compiled version of spam.py would
be cached as __pycache__/spam.cpython-33.pyc. This naming convention allows compiled modules from
different releases and different versions of Python to coexist.

Python checks the modification date of the source against the compiled version to see if it’s out of date and needs
to be recompiled. This is a completely automatic process. Also, the compiled modules are platform-independent, so
the same library can be shared among systems with different architectures.

Python does not check the cache in two circumstances. First, it always recompiles and does not store the result for
the module that’s loaded directly from the command line. Second, it does not check the cache if there is no source
module. To support a non-source (compiled only) distribution, the compiled module must be in the source directory,
and there must not be a source module.

Some tips for experts:

• You can use the -O or -OO switches on the Python command to reduce the size of a compiled module. The -O
switch removes assert statements, the -OO switch removes both assert statements and __doc__ strings. Since
some programs may rely on having these available, you should only use this option if you know what you’re
doing. “Optimized” modules have an opt- tag and are usually smaller. Future releases may change the effects
of optimization.

• A program doesn’t run any faster when it is read from a .pyc file than when it is read from a .py file; the only
thing that’s faster about .pyc files is the speed with which they are loaded.

• The module compileall can create .pyc files for all modules in a directory.

• There is more detail on this process, including a flow chart of the decisions, in PEP 3147.

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate document, the Python Library Reference
(“Library Reference” hereafter). Some modules are built into the interpreter; these provide access to operations
that are not part of the core of the language but are nevertheless built in, either for efficiency or to provide access
to operating system primitives such as system calls. The set of such modules is a configuration option which also
depends on the underlying platform. For example, the winreg module is only provided on Windows systems. One
particular module deserves some attention: sys, which is built into every Python interpreter. The variables sys.ps1
and sys.ps2 define the strings used as primary and secondary prompts:

>>> import sys

>>> sys.ps1

'>>> '

>>> sys.ps2

'... '

>>> sys.ps1 = 'C> '

C> print('Yuck!')

Yuck!

C>

These two variables are only defined if the interpreter is in interactive mode.

The variable sys.path is a list of strings that determines the interpreter’s search path for modules. It is initialized
to a default path taken from the environment variable PYTHONPATH, or from a built-in default if PYTHONPATH is not
set. You can modify it using standard list operations:

46 Chapter 6. Modules

https://peps.python.org/pep-3147/

Python Tutorial, Release 3.14.0a3

>>> import sys

>>> sys.path.append('/ufs/guido/lib/python')

6.3 The dir() Function

The built-in function dir() is used to find out which names a module defines. It returns a sorted list of strings:

>>> import fibo, sys

>>> dir(fibo)

['__name__', 'fib', 'fib2']

>>> dir(sys)

['__breakpointhook__', '__displayhook__', '__doc__', '__excepthook__',

'__interactivehook__', '__loader__', '__name__', '__package__', '__spec__',

'__stderr__', '__stdin__', '__stdout__', '__unraisablehook__',

'_clear_type_cache', '_current_frames', '_debugmallocstats', '_framework',

'_getframe', '_git', '_home', '_xoptions', 'abiflags', 'addaudithook',

'api_version', 'argv', 'audit', 'base_exec_prefix', 'base_prefix',

'breakpointhook', 'builtin_module_names', 'byteorder', 'call_tracing',

'callstats', 'copyright', 'displayhook', 'dont_write_bytecode', 'exc_info',

'excepthook', 'exec_prefix', 'executable', 'exit', 'flags', 'float_info',

'float_repr_style', 'get_asyncgen_hooks', 'get_coroutine_origin_tracking_depth',

'getallocatedblocks', 'getdefaultencoding', 'getdlopenflags',

'getfilesystemencodeerrors', 'getfilesystemencoding', 'getprofile',

'getrecursionlimit', 'getrefcount', 'getsizeof', 'getswitchinterval',

'gettrace', 'hash_info', 'hexversion', 'implementation', 'int_info',

'intern', 'is_finalizing', 'last_traceback', 'last_type', 'last_value',

'maxsize', 'maxunicode', 'meta_path', 'modules', 'path', 'path_hooks',

'path_importer_cache', 'platform', 'prefix', 'ps1', 'ps2', 'pycache_prefix',

'set_asyncgen_hooks', 'set_coroutine_origin_tracking_depth', 'setdlopenflags',

'setprofile', 'setrecursionlimit', 'setswitchinterval', 'settrace', 'stderr',

'stdin', 'stdout', 'thread_info', 'unraisablehook', 'version', 'version_info',

'warnoptions']

Without arguments, dir() lists the names you have defined currently:

>>> a = [1, 2, 3, 4, 5]

>>> import fibo

>>> fib = fibo.fib

>>> dir()

['__builtins__', '__name__', 'a', 'fib', 'fibo', 'sys']

Note that it lists all types of names: variables, modules, functions, etc.

dir() does not list the names of built-in functions and variables. If you want a list of those, they are defined in the
standard module builtins:

>>> import builtins

>>> dir(builtins)

['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',

'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',

'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError',

'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning',

'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',

'FileExistsError', 'FileNotFoundError', 'FloatingPointError',

'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',

'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError',

'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError',

(continues on next page)

6.3. The dir() Function 47

Python Tutorial, Release 3.14.0a3

(continued from previous page)

'MemoryError', 'NameError', 'None', 'NotADirectoryError', 'NotImplemented',

'NotImplementedError', 'OSError', 'OverflowError',

'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError',

'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning',

'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError',

'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError',

'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError',

'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning',

'ValueError', 'Warning', 'ZeroDivisionError', '_', '__build_class__',

'__debug__', '__doc__', '__import__', '__name__', '__package__', 'abs',

'all', 'any', 'ascii', 'bin', 'bool', 'bytearray', 'bytes', 'callable',

'chr', 'classmethod', 'compile', 'complex', 'copyright', 'credits',

'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'exec', 'exit',

'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr',

'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass',

'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview',

'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property',

'quit', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice',

'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars',

'zip']

6.4 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For example, the
module name A.B designates a submodule named B in a package named A. Just like the use of modules saves the
authors of different modules from having to worry about each other’s global variable names, the use of dotted module
names saves the authors of multi-module packages like NumPy or Pillow from having to worry about each other’s
module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files and sound
data. There are many different sound file formats (usually recognized by their extension, for example: .wav, .
aiff, .au), so you may need to create and maintain a growing collection of modules for the conversion between
the various file formats. There are also many different operations you might want to perform on sound data (such as
mixing, adding echo, applying an equalizer function, creating an artificial stereo effect), so in addition you will be
writing a never-ending stream of modules to perform these operations. Here’s a possible structure for your package
(expressed in terms of a hierarchical filesystem):

sound/ Top-level package

__init__.py Initialize the sound package

formats/ Subpackage for file format conversions

__init__.py

wavread.py

wavwrite.py

aiffread.py

aiffwrite.py

auread.py

auwrite.py

...

effects/ Subpackage for sound effects

__init__.py

echo.py

surround.py

reverse.py

...

filters/ Subpackage for filters

__init__.py
(continues on next page)

48 Chapter 6. Modules

Python Tutorial, Release 3.14.0a3

(continued from previous page)

equalizer.py

vocoder.py

karaoke.py

...

When importing the package, Python searches through the directories on sys.path looking for the package subdi-
rectory.

The __init__.py files are required to make Python treat directories containing the file as packages (unless us-
ing a namespace package, a relatively advanced feature). This prevents directories with a common name, such as
string, from unintentionally hiding valid modules that occur later on the module search path. In the simplest case,
__init__.py can just be an empty file, but it can also execute initialization code for the package or set the __all__
variable, described later.

Users of the package can import individual modules from the package, for example:

import sound.effects.echo

This loads the submodule sound.effects.echo. It must be referenced with its full name.

sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from sound.effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it can be used as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from sound.effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a submodule (or subpackage) of the
package, or some other name defined in the package, like a function, class or variable. The import statement first
tests whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it fails to
find it, an ImportError exception is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the last must be a
package; the last item can be a module or a package but can’t be a class or function or variable defined in the previous
item.

6.4.1 Importing * From a Package

Now what happens when the user writes from sound.effects import *? Ideally, one would hope that this
somehow goes out to the filesystem, finds which submodules are present in the package, and imports them all. This
could take a long time and importing sub-modules might have unwanted side-effects that should only happen when
the sub-module is explicitly imported.

The only solution is for the package author to provide an explicit index of the package. The import statement uses
the following convention: if a package’s __init__.py code defines a list named __all__, it is taken to be the list
of module names that should be imported when from package import * is encountered. It is up to the package
author to keep this list up-to-date when a new version of the package is released. Package authors may also decide
not to support it, if they don’t see a use for importing * from their package. For example, the file sound/effects/
__init__.py could contain the following code:

6.4. Packages 49

Python Tutorial, Release 3.14.0a3

__all__ = ["echo", "surround", "reverse"]

This would mean that from sound.effects import * would import the three named submodules of the
sound.effects package.

Be aware that submodules might become shadowed by locally defined names. For example, if you added a reverse
function to the sound/effects/__init__.py file, the from sound.effects import * would only import
the two submodules echo and surround, but not the reverse submodule, because it is shadowed by the locally
defined reverse function:

__all__ = [

"echo", # refers to the 'echo.py' file

"surround", # refers to the 'surround.py' file

"reverse", # !!! refers to the 'reverse' function now !!!

]

def reverse(msg: str): # <-- this name shadows the 'reverse.py' submodule

return msg[::-1] # in the case of a 'from sound.effects import *'

If __all__ is not defined, the statement from sound.effects import * does not import all submodules from
the package sound.effects into the current namespace; it only ensures that the package sound.effects has
been imported (possibly running any initialization code in __init__.py) and then imports whatever names are
defined in the package. This includes any names defined (and submodules explicitly loaded) by __init__.py. It
also includes any submodules of the package that were explicitly loaded by previous import statements. Consider
this code:

import sound.effects.echo

import sound.effects.surround

from sound.effects import *

In this example, the echo and surroundmodules are imported in the current namespace because they are defined in
the sound.effects package when the from...import statement is executed. (This also works when __all__
is defined.)

Although certain modules are designed to export only names that follow certain patterns when you use import *,
it is still considered bad practice in production code.

Remember, there is nothing wrong with using from package import specific_submodule! In fact, this is
the recommended notation unless the importing module needs to use submodules with the same name from different
packages.

6.4.2 Intra-package References

When packages are structured into subpackages (as with the sound package in the example), you can use absolute
imports to refer to submodules of siblings packages. For example, if the module sound.filters.vocoder needs
to use the echo module in the sound.effects package, it can use from sound.effects import echo.

You can also write relative imports, with the from module import name form of import statement. These im-
ports use leading dots to indicate the current and parent packages involved in the relative import. From the surround
module for example, you might use:

from . import echo

from .. import formats

from ..filters import equalizer

Note that relative imports are based on the name of the current module. Since the name of the main module is
always "__main__", modules intended for use as the main module of a Python application must always use absolute
imports.

50 Chapter 6. Modules

Python Tutorial, Release 3.14.0a3

6.4.3 Packages in Multiple Directories

Packages support one more special attribute, __path__. This is initialized to be a sequence of strings containing the
name of the directory holding the package’s __init__.py before the code in that file is executed. This variable can
be modified; doing so affects future searches for modules and subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of modules found in a package.

6.4. Packages 51

Python Tutorial, Release 3.14.0a3

52 Chapter 6. Modules

CHAPTER

SEVEN

INPUT AND OUTPUT

There are several ways to present the output of a program; data can be printed in a human-readable form, or written
to a file for future use. This chapter will discuss some of the possibilities.

7.1 Fancier Output Formatting

So far we’ve encountered two ways of writing values: expression statements and the print() function. (A third way
is using the write() method of file objects; the standard output file can be referenced as sys.stdout. See the
Library Reference for more information on this.)

Often you’ll want more control over the formatting of your output than simply printing space-separated values. There
are several ways to format output.

• To use formatted string literals, begin a string with f or F before the opening quotation mark or triple quotation
mark. Inside this string, you can write a Python expression between { and } characters that can refer to
variables or literal values.

>>> year = 2016

>>> event = 'Referendum'

>>> f'Results of the {year} {event}'

'Results of the 2016 Referendum'

• The str.format() method of strings requires more manual effort. You’ll still use { and } to mark where a
variable will be substituted and can provide detailed formatting directives, but you’ll also need to provide the
information to be formatted. In the following code block there are two examples of how to format variables:

>>> yes_votes = 42_572_654

>>> total_votes = 85_705_149

>>> percentage = yes_votes / total_votes

>>> '{:-9} YES votes {:2.2%}'.format(yes_votes, percentage)

' 42572654 YES votes 49.67%'

Notice how the yes_votes are padded with spaces and a negative sign only for negative numbers. The
example also prints percentagemultiplied by 100, with 2 decimal places and followed by a percent sign (see
formatspec for details).

• Finally, you can do all the string handling yourself by using string slicing and concatenation operations to create
any layout you can imagine. The string type has some methods that perform useful operations for padding
strings to a given column width.

When you don’t need fancy output but just want a quick display of some variables for debugging purposes, you can
convert any value to a string with the repr() or str() functions.

The str() function is meant to return representations of values which are fairly human-readable, while repr()
is meant to generate representations which can be read by the interpreter (or will force a SyntaxError if there is
no equivalent syntax). For objects which don’t have a particular representation for human consumption, str() will
return the same value as repr(). Many values, such as numbers or structures like lists and dictionaries, have the
same representation using either function. Strings, in particular, have two distinct representations.

53

Python Tutorial, Release 3.14.0a3

Some examples:

>>> s = 'Hello, world.'

>>> str(s)

'Hello, world.'

>>> repr(s)

"'Hello, world.'"

>>> str(1/7)

'0.14285714285714285'

>>> x = 10 * 3.25

>>> y = 200 * 200

>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '...'

>>> print(s)

The value of x is 32.5, and y is 40000...

>>> # The repr() of a string adds string quotes and backslashes:

>>> hello = 'hello, world\n'

>>> hellos = repr(hello)

>>> print(hellos)

'hello, world\n'

>>> # The argument to repr() may be any Python object:

>>> repr((x, y, ('spam', 'eggs')))

"(32.5, 40000, ('spam', 'eggs'))"

The string module contains a Template class that offers yet another way to substitute values into strings, using
placeholders like $x and replacing them with values from a dictionary, but offers much less control of the formatting.

7.1.1 Formatted String Literals

Formatted string literals (also called f-strings for short) let you include the value of Python expressions inside a string
by prefixing the string with f or F and writing expressions as {expression}.

An optional format specifier can follow the expression. This allows greater control over how the value is formatted.
The following example rounds pi to three places after the decimal:

>>> import math

>>> print(f'The value of pi is approximately {math.pi:.3f}.')

The value of pi is approximately 3.142.

Passing an integer after the ':' will cause that field to be a minimum number of characters wide. This is useful for
making columns line up.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}

>>> for name, phone in table.items():

... print(f'{name:10} ==> {phone:10d}')

...

Sjoerd ==> 4127

Jack ==> 4098

Dcab ==> 7678

Other modifiers can be used to convert the value before it is formatted. '!a' applies ascii(), '!s' applies str(),
and '!r' applies repr():

>>> animals = 'eels'

>>> print(f'My hovercraft is full of {animals}.')

My hovercraft is full of eels.

>>> print(f'My hovercraft is full of {animals!r}.')

My hovercraft is full of 'eels'.

The = specifier can be used to expand an expression to the text of the expression, an equal sign, then the representation
of the evaluated expression:

54 Chapter 7. Input and Output

Python Tutorial, Release 3.14.0a3

>>> bugs = 'roaches'

>>> count = 13

>>> area = 'living room'

>>> print(f'Debugging {bugs=} {count=} {area=}')

Debugging bugs='roaches' count=13 area='living room'

See self-documenting expressions for more information on the = specifier. For a reference on these format specifi-
cations, see the reference guide for the formatspec.

7.1.2 The String format() Method

Basic usage of the str.format() method looks like this:

>>> print('We are the {} who say "{}!"'.format('knights', 'Ni'))

We are the knights who say "Ni!"

The brackets and characters within them (called format fields) are replaced with the objects passed into the str.
format() method. A number in the brackets can be used to refer to the position of the object passed into the
str.format() method.

>>> print('{0} and {1}'.format('spam', 'eggs'))

spam and eggs

>>> print('{1} and {0}'.format('spam', 'eggs'))

eggs and spam

If keyword arguments are used in the str.format() method, their values are referred to by using the name of the
argument.

>>> print('This {food} is {adjective}.'.format(

... food='spam', adjective='absolutely horrible'))

This spam is absolutely horrible.

Positional and keyword arguments can be arbitrarily combined:

>>> print('The story of {0}, {1}, and {other}.'.format('Bill', 'Manfred',

... other='Georg'))

The story of Bill, Manfred, and Georg.

If you have a really long format string that you don’t want to split up, it would be nice if you could reference the
variables to be formatted by name instead of by position. This can be done by simply passing the dict and using
square brackets '[]' to access the keys.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}

>>> print('Jack: {0[Jack]:d}; Sjoerd: {0[Sjoerd]:d}; '

... 'Dcab: {0[Dcab]:d}'.format(table))

Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This could also be done by passing the table dictionary as keyword arguments with the ** notation.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}

>>> print('Jack: {Jack:d}; Sjoerd: {Sjoerd:d}; Dcab: {Dcab:d}'.format(**table))

Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the built-in function vars(), which returns a dictionary containing
all local variables:

>>> table = {k: str(v) for k, v in vars().items()}

>>> message = " ".join([f'{k}: ' + '{' + k +'};' for k in table.keys()])

(continues on next page)

7.1. Fancier Output Formatting 55

Python Tutorial, Release 3.14.0a3

(continued from previous page)

>>> print(message.format(**table))

__name__: __main__; __doc__: None; __package__: None; __loader__: ...

As an example, the following lines produce a tidily aligned set of columns giving integers and their squares and cubes:

>>> for x in range(1, 11):

... print('{0:2d} {1:3d} {2:4d}'.format(x, x*x, x*x*x))

...

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729

10 100 1000

For a complete overview of string formatting with str.format(), see formatstrings.

7.1.3 Manual String Formatting

Here’s the same table of squares and cubes, formatted manually:

>>> for x in range(1, 11):

... print(repr(x).rjust(2), repr(x*x).rjust(3), end=' ')

... # Note use of 'end' on previous line

... print(repr(x*x*x).rjust(4))

...

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729

10 100 1000

(Note that the one space between each column was added by the way print() works: it always adds spaces between
its arguments.)

The str.rjust()method of string objects right-justifies a string in a field of a given width by padding it with spaces
on the left. There are similar methods str.ljust() and str.center(). These methods do not write anything,
they just return a new string. If the input string is too long, they don’t truncate it, but return it unchanged; this will
mess up your column lay-out but that’s usually better than the alternative, which would be lying about a value. (If
you really want truncation you can always add a slice operation, as in x.ljust(n)[:n].)

There is another method, str.zfill(), which pads a numeric string on the left with zeros. It understands about
plus and minus signs:

>>> '12'.zfill(5)

'00012'

>>> '-3.14'.zfill(7)

'-003.14'

(continues on next page)

56 Chapter 7. Input and Output

Python Tutorial, Release 3.14.0a3

(continued from previous page)

>>> '3.14159265359'.zfill(5)

'3.14159265359'

7.1.4 Old string formatting

The % operator (modulo) can also be used for string formatting. Given format % values (where format is a
string), % conversion specifications in format are replaced with zero or more elements of values. This operation is
commonly known as string interpolation. For example:

>>> import math

>>> print('The value of pi is approximately %5.3f.' % math.pi)

The value of pi is approximately 3.142.

More information can be found in the old-string-formatting section.

7.2 Reading and Writing Files

open() returns a file object, and is most commonly used with two positional arguments and one keyword argument:
open(filename, mode, encoding=None)

>>> f = open('workfile', 'w', encoding="utf-8")

The first argument is a string containing the filename. The second argument is another string containing a few
characters describing the way in which the file will be used. mode can be 'r' when the file will only be read, 'w'
for only writing (an existing file with the same name will be erased), and 'a' opens the file for appending; any data
written to the file is automatically added to the end. 'r+' opens the file for both reading and writing. The mode
argument is optional; 'r' will be assumed if it’s omitted.

Normally, files are opened in text mode, that means, you read and write strings from and to the file, which are encoded
in a specific encoding. If encoding is not specified, the default is platform dependent (see open()). Because UTF-
8 is the modern de-facto standard, encoding="utf-8" is recommended unless you know that you need to use a
different encoding. Appending a 'b' to the mode opens the file in binary mode. Binary mode data is read and written
as bytes objects. You can not specify encoding when opening file in binary mode.

In text mode, the default when reading is to convert platform-specific line endings (\n on Unix, \r\n on Windows)
to just \n. When writing in text mode, the default is to convert occurrences of \n back to platform-specific line
endings. This behind-the-scenes modification to file data is fine for text files, but will corrupt binary data like that in
JPEG or EXE files. Be very careful to use binary mode when reading and writing such files.

It is good practice to use the with keyword when dealing with file objects. The advantage is that the file is properly
closed after its suite finishes, even if an exception is raised at some point. Using with is also much shorter than
writing equivalent try-finally blocks:

>>> with open('workfile', encoding="utf-8") as f:

... read_data = f.read()

>>> # We can check that the file has been automatically closed.

>>> f.closed

True

If you’re not using the with keyword, then you should call f.close() to close the file and immediately free up any
system resources used by it.

Warning

Calling f.write() without using the with keyword or calling f.close() might result in the arguments of
f.write() not being completely written to the disk, even if the program exits successfully.

7.2. Reading and Writing Files 57

Python Tutorial, Release 3.14.0a3

After a file object is closed, either by a with statement or by calling f.close(), attempts to use the file object will
automatically fail.

>>> f.close()

>>> f.read()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: I/O operation on closed file.

7.2.1 Methods of File Objects

The rest of the examples in this section will assume that a file object called f has already been created.

To read a file’s contents, call f.read(size), which reads some quantity of data and returns it as a string (in text
mode) or bytes object (in binary mode). size is an optional numeric argument. When size is omitted or negative, the
entire contents of the file will be read and returned; it’s your problem if the file is twice as large as your machine’s
memory. Otherwise, at most size characters (in text mode) or size bytes (in binary mode) are read and returned. If
the end of the file has been reached, f.read() will return an empty string ('').

>>> f.read()

'This is the entire file.\n'

>>> f.read()

''

f.readline() reads a single line from the file; a newline character (\n) is left at the end of the string, and is only
omitted on the last line of the file if the file doesn’t end in a newline. This makes the return value unambiguous; if
f.readline() returns an empty string, the end of the file has been reached, while a blank line is represented by
'\n', a string containing only a single newline.

>>> f.readline()

'This is the first line of the file.\n'

>>> f.readline()

'Second line of the file\n'

>>> f.readline()

''

For reading lines from a file, you can loop over the file object. This is memory efficient, fast, and leads to simple
code:

>>> for line in f:

... print(line, end='')

...

This is the first line of the file.

Second line of the file

If you want to read all the lines of a file in a list you can also use list(f) or f.readlines().

f.write(string) writes the contents of string to the file, returning the number of characters written.

>>> f.write('This is a test\n')

15

Other types of objects need to be converted – either to a string (in text mode) or a bytes object (in binary mode) –
before writing them:

>>> value = ('the answer', 42)

>>> s = str(value) # convert the tuple to string

>>> f.write(s)

18

58 Chapter 7. Input and Output

Python Tutorial, Release 3.14.0a3

f.tell() returns an integer giving the file object’s current position in the file represented as number of bytes from
the beginning of the file when in binary mode and an opaque number when in text mode.

To change the file object’s position, use f.seek(offset, whence). The position is computed from adding offset
to a reference point; the reference point is selected by the whence argument. A whence value of 0 measures from the
beginning of the file, 1 uses the current file position, and 2 uses the end of the file as the reference point. whence can
be omitted and defaults to 0, using the beginning of the file as the reference point.

>>> f = open('workfile', 'rb+')

>>> f.write(b'0123456789abcdef')

16

>>> f.seek(5) # Go to the 6th byte in the file

5

>>> f.read(1)

b'5'

>>> f.seek(-3, 2) # Go to the 3rd byte before the end

13

>>> f.read(1)

b'd'

In text files (those opened without a b in the mode string), only seeks relative to the beginning of the file are allowed
(the exception being seeking to the very file end with seek(0, 2)) and the only valid offset values are those returned
from the f.tell(), or zero. Any other offset value produces undefined behaviour.

File objects have some additional methods, such as isatty() and truncate() which are less frequently used;
consult the Library Reference for a complete guide to file objects.

7.2.2 Saving structured data with json

Strings can easily be written to and read from a file. Numbers take a bit more effort, since the read() method only
returns strings, which will have to be passed to a function like int(), which takes a string like '123' and returns its
numeric value 123. When you want to save more complex data types like nested lists and dictionaries, parsing and
serializing by hand becomes complicated.

Rather than having users constantly writing and debugging code to save complicated data types to files, Python allows
you to use the popular data interchange format called JSON (JavaScript Object Notation). The standardmodule called
json can take Python data hierarchies, and convert them to string representations; this process is called serializing.
Reconstructing the data from the string representation is called deserializing. Between serializing and deserializing,
the string representing the object may have been stored in a file or data, or sent over a network connection to some
distant machine.

Note

The JSON format is commonly used by modern applications to allow for data exchange. Many programmers are
already familiar with it, which makes it a good choice for interoperability.

If you have an object x, you can view its JSON string representation with a simple line of code:

>>> import json

>>> x = [1, 'simple', 'list']

>>> json.dumps(x)

'[1, "simple", "list"]'

Another variant of the dumps() function, called dump(), simply serializes the object to a text file. So if f is a text
file object opened for writing, we can do this:

json.dump(x, f)

To decode the object again, if f is a binary file or text file object which has been opened for reading:

7.2. Reading and Writing Files 59

https://json.org

Python Tutorial, Release 3.14.0a3

x = json.load(f)

Note

JSON files must be encoded in UTF-8. Use encoding="utf-8" when opening JSON file as a text file for both
of reading and writing.

This simple serialization technique can handle lists and dictionaries, but serializing arbitrary class instances in JSON
requires a bit of extra effort. The reference for the json module contains an explanation of this.

See also

pickle - the pickle module

Contrary to JSON, pickle is a protocol which allows the serialization of arbitrarily complex Python objects. As
such, it is specific to Python and cannot be used to communicate with applications written in other languages. It
is also insecure by default: deserializing pickle data coming from an untrusted source can execute arbitrary code,
if the data was crafted by a skilled attacker.

60 Chapter 7. Input and Output

CHAPTER

EIGHT

ERRORS AND EXCEPTIONS

Until now error messages haven’t been more than mentioned, but if you have tried out the examples you have probably
seen some. There are (at least) two distinguishable kinds of errors: syntax errors and exceptions.

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get while you are
still learning Python:

>>> while True print('Hello world')

File "<stdin>", line 1

while True print('Hello world')

^^^^^

SyntaxError: invalid syntax

The parser repeats the offending line and displays little arrows pointing at the token in the line where the error was
detected. The error may be caused by the absence of a token before the indicated token. In the example, the error is
detected at the function print(), since a colon (':') is missing before it. File name and line number are printed
so you know where to look in case the input came from a script.

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute
it. Errors detected during execution are called exceptions and are not unconditionally fatal: you will soon learn how
to handle them in Python programs. Most exceptions are not handled by programs, however, and result in error
messages as shown here:

>>> 10 * (1/0)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

10 * (1/0)

~^~

ZeroDivisionError: division by zero

>>> 4 + spam*3

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

4 + spam*3

^^^^

NameError: name 'spam' is not defined

>>> '2' + 2

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

'2' + 2

~~~~^~~

TypeError: can only concatenate str (not "int") to str

61



Python Tutorial, Release 3.14.0a3

The last line of the error message indicates what happened. Exceptions come in different types, and the type is
printed as part of the message: the types in the example are ZeroDivisionError, NameError and TypeError.
The string printed as the exception type is the name of the built-in exception that occurred. This is true for all built-in
exceptions, but need not be true for user-defined exceptions (although it is a useful convention). Standard exception
names are built-in identifiers (not reserved keywords).

The rest of the line provides detail based on the type of exception and what caused it.

The preceding part of the error message shows the context where the exception occurred, in the form of a stack
traceback. In general it contains a stack traceback listing source lines; however, it will not display lines read from
standard input.

bltin-exceptions lists the built-in exceptions and their meanings.

8.3 Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the following example, which asks the user
for input until a valid integer has been entered, but allows the user to interrupt the program (using Control-C

or whatever the operating system supports); note that a user-generated interruption is signalled by raising the
KeyboardInterrupt exception.

>>> while True:

... try:

... x = int(input("Please enter a number: "))

... break

... except ValueError:

... print("Oops! That was no valid number. Try again...")

...

The try statement works as follows.

• First, the try clause (the statement(s) between the try and except keywords) is executed.

• If no exception occurs, the except clause is skipped and execution of the try statement is finished.

• If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then, if its type
matches the exception named after the except keyword, the except clause is executed, and then execution
continues after the try/except block.

• If an exception occurs which does not match the exception named in the except clause, it is passed on to outer
try statements; if no handler is found, it is an unhandled exception and execution stops with an error message.

A try statement may have more than one except clause, to specify handlers for different exceptions. At most one
handler will be executed. Handlers only handle exceptions that occur in the corresponding try clause, not in other
handlers of the same try statement. An except clause may name multiple exceptions as a parenthesized tuple, for
example:

... except (RuntimeError, TypeError, NameError):

... pass

A class in an except clause matches exceptions which are instances of the class itself or one of its derived classes
(but not the other way around — an except clause listing a derived class does not match instances of its base classes).
For example, the following code will print B, C, D in that order:

class B(Exception):

pass

class C(B):

pass

class D(C):

(continues on next page)

62 Chapter 8. Errors and Exceptions



Python Tutorial, Release 3.14.0a3

(continued from previous page)

pass

for cls in [B, C, D]:

try:

raise cls()

except D:

print("D")

except C:

print("C")

except B:

print("B")

Note that if the except clauseswere reversed (with except B first), it would have printed B, B, B— the first matching
except clause is triggered.

When an exception occurs, it may have associated values, also known as the exception’s arguments. The presence
and types of the arguments depend on the exception type.

The except clause may specify a variable after the exception name. The variable is bound to the exception instance
which typically has an args attribute that stores the arguments. For convenience, builtin exception types define
__str__() to print all the arguments without explicitly accessing .args.

>>> try:

... raise Exception('spam', 'eggs')

... except Exception as inst:

... print(type(inst)) # the exception type

... print(inst.args) # arguments stored in .args

... print(inst) # __str__ allows args to be printed directly,

... # but may be overridden in exception subclasses

... x, y = inst.args # unpack args

... print('x =', x)

... print('y =', y)

...

<class 'Exception'>

('spam', 'eggs')

('spam', 'eggs')

x = spam

y = eggs

The exception’s __str__() output is printed as the last part (‘detail’) of the message for unhandled exceptions.

BaseException is the common base class of all exceptions. One of its subclasses, Exception, is the base class of
all the non-fatal exceptions. Exceptions which are not subclasses of Exception are not typically handled, because
they are used to indicate that the program should terminate. They include SystemExit which is raised by sys.
exit() and KeyboardInterrupt which is raised when a user wishes to interrupt the program.

Exception can be used as a wildcard that catches (almost) everything. However, it is good practice to be as specific
as possible with the types of exceptions that we intend to handle, and to allow any unexpected exceptions to propagate
on.

The most common pattern for handling Exception is to print or log the exception and then re-raise it (allowing a
caller to handle the exception as well):

import sys

try:

f = open('myfile.txt')

s = f.readline()

i = int(s.strip())

(continues on next page)

8.3. Handling Exceptions 63



Python Tutorial, Release 3.14.0a3

(continued from previous page)

except OSError as err:

print("OS error:", err)

except ValueError:

print("Could not convert data to an integer.")

except Exception as err:

print(f"Unexpected {err=}, {type(err)=}")

raise

The try… except statement has an optional else clause, which, when present, must follow all except clauses. It is
useful for code that must be executed if the try clause does not raise an exception. For example:

for arg in sys.argv[1:]:

try:

f = open(arg, 'r')

except OSError:

print('cannot open', arg)

else:

print(arg, 'has', len(f.readlines()), 'lines')

f.close()

The use of the else clause is better than adding additional code to the try clause because it avoids accidentally
catching an exception that wasn’t raised by the code being protected by the try… except statement.

Exception handlers do not handle only exceptions that occur immediately in the try clause, but also those that occur
inside functions that are called (even indirectly) in the try clause. For example:

>>> def this_fails():

... x = 1/0

...

>>> try:

... this_fails()

... except ZeroDivisionError as err:

... print('Handling run-time error:', err)

...

Handling run-time error: division by zero

8.4 Raising Exceptions

The raise statement allows the programmer to force a specified exception to occur. For example:

>>> raise NameError('HiThere')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

raise NameError('HiThere')

NameError: HiThere

The sole argument to raise indicates the exception to be raised. This must be either an exception instance or an
exception class (a class that derives from BaseException, such as Exception or one of its subclasses). If an
exception class is passed, it will be implicitly instantiated by calling its constructor with no arguments:

raise ValueError # shorthand for 'raise ValueError()'

If you need to determine whether an exception was raised but don’t intend to handle it, a simpler form of the raise
statement allows you to re-raise the exception:

64 Chapter 8. Errors and Exceptions



Python Tutorial, Release 3.14.0a3

>>> try:

... raise NameError('HiThere')

... except NameError:

... print('An exception flew by!')

... raise

...

An exception flew by!

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

raise NameError('HiThere')

NameError: HiThere

8.5 Exception Chaining

If an unhandled exception occurs inside an except section, it will have the exception being handled attached to it
and included in the error message:

>>> try:

... open("database.sqlite")

... except OSError:

... raise RuntimeError("unable to handle error")

...

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

open("database.sqlite")

~~~~^^^^^^^^^^^^^^^^^^^

FileNotFoundError: [Errno 2] No such file or directory: 'database.sqlite'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):

File "<stdin>", line 4, in <module>

raise RuntimeError("unable to handle error")

RuntimeError: unable to handle error

To indicate that an exception is a direct consequence of another, the raise statement allows an optional from clause:

exc must be exception instance or None.

raise RuntimeError from exc

This can be useful when you are transforming exceptions. For example:

>>> def func():

... raise ConnectionError

...

>>> try:

... func()

... except ConnectionError as exc:

... raise RuntimeError('Failed to open database') from exc

...

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

func()

~~~~^^

File "<stdin>", line 2, in func

ConnectionError

(continues on next page)

8.5. Exception Chaining 65



Python Tutorial, Release 3.14.0a3

(continued from previous page)

The above exception was the direct cause of the following exception:

Traceback (most recent call last):

File "<stdin>", line 4, in <module>

raise RuntimeError('Failed to open database') from exc

RuntimeError: Failed to open database

It also allows disabling automatic exception chaining using the from None idiom:

>>> try:

... open('database.sqlite')

... except OSError:

... raise RuntimeError from None

...

Traceback (most recent call last):

File "<stdin>", line 4, in <module>

raise RuntimeError from None

RuntimeError

For more information about chaining mechanics, see bltin-exceptions.

8.6 User-defined Exceptions

Programs may name their own exceptions by creating a new exception class (see Classes for more about Python
classes). Exceptions should typically be derived from the Exception class, either directly or indirectly.

Exception classes can be defined which do anything any other class can do, but are usually kept simple, often only
offering a number of attributes that allow information about the error to be extracted by handlers for the exception.

Most exceptions are defined with names that end in “Error”, similar to the naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that may occur in functions they define.

8.7 Defining Clean-up Actions

The try statement has another optional clause which is intended to define clean-up actions that must be executed
under all circumstances. For example:

>>> try:

... raise KeyboardInterrupt

... finally:

... print('Goodbye, world!')

...

Goodbye, world!

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

raise KeyboardInterrupt

KeyboardInterrupt

If a finally clause is present, the finally clause will execute as the last task before the try statement completes.
The finally clause runs whether or not the try statement produces an exception. The following points discuss
more complex cases when an exception occurs:

• If an exception occurs during execution of the try clause, the exception may be handled by an except clause.
If the exception is not handled by an except clause, the exception is re-raised after the finally clause has
been executed.

66 Chapter 8. Errors and Exceptions



Python Tutorial, Release 3.14.0a3

• An exception could occur during execution of an except or else clause. Again, the exception is re-raised
after the finally clause has been executed.

• If the finally clause executes a break, continue or return statement, exceptions are not re-raised.

• If the try statement reaches a break, continue or return statement, the finally clause will execute just
prior to the break, continue or return statement’s execution.

• If a finally clause includes a return statement, the returned value will be the one from the finally
clause’s return statement, not the value from the try clause’s return statement.

For example:

>>> def bool_return():

... try:

... return True

... finally:

... return False

...

>>> bool_return()

False

A more complicated example:

>>> def divide(x, y):

... try:

... result = x / y

... except ZeroDivisionError:

... print("division by zero!")

... else:

... print("result is", result)

... finally:

... print("executing finally clause")

...

>>> divide(2, 1)

result is 2.0

executing finally clause

>>> divide(2, 0)

division by zero!

executing finally clause

>>> divide("2", "1")

executing finally clause

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

divide("2", "1")

~~~~~~^^^^^^^^^^

File "<stdin>", line 3, in divide

result = x / y

~~^~~

TypeError: unsupported operand type(s) for /: 'str' and 'str'

As you can see, the finally clause is executed in any event. The TypeError raised by dividing two strings is not
handled by the except clause and therefore re-raised after the finally clause has been executed.

In real world applications, the finally clause is useful for releasing external resources (such as files or network
connections), regardless of whether the use of the resource was successful.

8.7. Defining Clean-up Actions 67

Python Tutorial, Release 3.14.0a3

8.8 Predefined Clean-up Actions

Some objects define standard clean-up actions to be undertaken when the object is no longer needed, regardless of
whether or not the operation using the object succeeded or failed. Look at the following example, which tries to open
a file and print its contents to the screen.

for line in open("myfile.txt"):

print(line, end="")

The problem with this code is that it leaves the file open for an indeterminate amount of time after this part of the
code has finished executing. This is not an issue in simple scripts, but can be a problem for larger applications. The
with statement allows objects like files to be used in a way that ensures they are always cleaned up promptly and
correctly.

with open("myfile.txt") as f:

for line in f:

print(line, end="")

After the statement is executed, the file f is always closed, even if a problem was encountered while processing the
lines. Objects which, like files, provide predefined clean-up actions will indicate this in their documentation.

8.9 Raising and Handling Multiple Unrelated Exceptions

There are situations where it is necessary to report several exceptions that have occurred. This is often the case in
concurrency frameworks, when several tasks may have failed in parallel, but there are also other use cases where it
is desirable to continue execution and collect multiple errors rather than raise the first exception.

The builtin ExceptionGroupwraps a list of exception instances so that they can be raised together. It is an exception
itself, so it can be caught like any other exception.

>>> def f():

... excs = [OSError('error 1'), SystemError('error 2')]

... raise ExceptionGroup('there were problems', excs)

...

>>> f()

+ Exception Group Traceback (most recent call last):

| File "<stdin>", line 1, in <module>

| f()

| ~^^

| File "<stdin>", line 3, in f

| raise ExceptionGroup('there were problems', excs)

| ExceptionGroup: there were problems (2 sub-exceptions)

+-+---------------- 1 ----------------

| OSError: error 1

+---------------- 2 ----------------

| SystemError: error 2

+------------------------------------

>>> try:

... f()

... except Exception as e:

... print(f'caught {type(e)}: e')

...

caught <class 'ExceptionGroup'>: e

>>>

By using except* instead of except, we can selectively handle only the exceptions in the group that match a certain
type. In the following example, which shows a nested exception group, each except* clause extracts from the group
exceptions of a certain type while letting all other exceptions propagate to other clauses and eventually to be reraised.

68 Chapter 8. Errors and Exceptions

Python Tutorial, Release 3.14.0a3

>>> def f():

... raise ExceptionGroup(

... "group1",

... [

... OSError(1),

... SystemError(2),

... ExceptionGroup(

... "group2",

... [

... OSError(3),

... RecursionError(4)

...]

...)

...]

...)

...

>>> try:

... f()

... except* OSError as e:

... print("There were OSErrors")

... except* SystemError as e:

... print("There were SystemErrors")

...

There were OSErrors

There were SystemErrors

+ Exception Group Traceback (most recent call last):

| File "<stdin>", line 2, in <module>

| f()

| ~^^

| File "<stdin>", line 2, in f

| raise ExceptionGroup(

| ...<12 lines>...

|)

| ExceptionGroup: group1 (1 sub-exception)

+-+---------------- 1 ----------------

| ExceptionGroup: group2 (1 sub-exception)

+-+---------------- 1 ----------------

| RecursionError: 4

+------------------------------------

>>>

Note that the exceptions nested in an exception group must be instances, not types. This is because in practice the
exceptions would typically be ones that have already been raised and caught by the program, along the following
pattern:

>>> excs = []

... for test in tests:

... try:

... test.run()

... except Exception as e:

... excs.append(e)

...

>>> if excs:

... raise ExceptionGroup("Test Failures", excs)

...

8.9. Raising and Handling Multiple Unrelated Exceptions 69

Python Tutorial, Release 3.14.0a3

8.10 Enriching Exceptions with Notes

When an exception is created in order to be raised, it is usually initialized with information that describes the error
that has occurred. There are cases where it is useful to add information after the exception was caught. For this
purpose, exceptions have a method add_note(note) that accepts a string and adds it to the exception’s notes list.
The standard traceback rendering includes all notes, in the order they were added, after the exception.

>>> try:

... raise TypeError('bad type')

... except Exception as e:

... e.add_note('Add some information')

... e.add_note('Add some more information')

... raise

...

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

raise TypeError('bad type')

TypeError: bad type

Add some information

Add some more information

>>>

For example, when collecting exceptions into an exception group, we may want to add context information for the
individual errors. In the following each exception in the group has a note indicating when this error has occurred.

>>> def f():

... raise OSError('operation failed')

...

>>> excs = []

>>> for i in range(3):

... try:

... f()

... except Exception as e:

... e.add_note(f'Happened in Iteration {i+1}')

... excs.append(e)

...

>>> raise ExceptionGroup('We have some problems', excs)

+ Exception Group Traceback (most recent call last):

| File "<stdin>", line 1, in <module>

| raise ExceptionGroup('We have some problems', excs)

| ExceptionGroup: We have some problems (3 sub-exceptions)

+-+---------------- 1 ----------------

| Traceback (most recent call last):

| File "<stdin>", line 3, in <module>

| f()

| ~^^

| File "<stdin>", line 2, in f

| raise OSError('operation failed')

| OSError: operation failed

| Happened in Iteration 1

+---------------- 2 ----------------

| Traceback (most recent call last):

| File "<stdin>", line 3, in <module>

| f()

| ~^^

| File "<stdin>", line 2, in f

| raise OSError('operation failed')

| OSError: operation failed
(continues on next page)

70 Chapter 8. Errors and Exceptions

Python Tutorial, Release 3.14.0a3

(continued from previous page)

| Happened in Iteration 2

+---------------- 3 ----------------

| Traceback (most recent call last):

| File "<stdin>", line 3, in <module>

| f()

| ~^^

| File "<stdin>", line 2, in f

| raise OSError('operation failed')

| OSError: operation failed

| Happened in Iteration 3

+------------------------------------

>>>

8.10. Enriching Exceptions with Notes 71

Python Tutorial, Release 3.14.0a3

72 Chapter 8. Errors and Exceptions

CHAPTER

NINE

CLASSES

Classes provide a means of bundling data and functionality together. Creating a new class creates a new type of object,
allowing new instances of that type to be made. Each class instance can have attributes attached to it for maintaining
its state. Class instances can also have methods (defined by its class) for modifying its state.

Compared with other programming languages, Python’s class mechanism adds classes with a minimum of new syntax
and semantics. It is a mixture of the class mechanisms found in C++ and Modula-3. Python classes provide all the
standard features of Object Oriented Programming: the class inheritance mechanism allows multiple base classes, a
derived class can override any methods of its base class or classes, and a method can call the method of a base class
with the same name. Objects can contain arbitrary amounts and kinds of data. As is true for modules, classes partake
of the dynamic nature of Python: they are created at runtime, and can be modified further after creation.

In C++ terminology, normally class members (including the data members) are public (except see below Private
Variables), and all member functions are virtual. As in Modula-3, there are no shorthands for referencing the object’s
members from its methods: the method function is declared with an explicit first argument representing the object,
which is provided implicitly by the call. As in Smalltalk, classes themselves are objects. This provides semantics for
importing and renaming. Unlike C++ and Modula-3, built-in types can be used as base classes for extension by the
user. Also, like in C++, most built-in operators with special syntax (arithmetic operators, subscripting etc.) can be
redefined for class instances.

(Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk and C++
terms. I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python than C++, but
I expect that few readers have heard of it.)

9.1 A Word About Names and Objects

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object. This is known
as aliasing in other languages. This is usually not appreciated on a first glance at Python, and can be safely ignored
when dealing with immutable basic types (numbers, strings, tuples). However, aliasing has a possibly surprising effect
on the semantics of Python code involving mutable objects such as lists, dictionaries, and most other types. This is
usually used to the benefit of the program, since aliases behave like pointers in some respects. For example, passing
an object is cheap since only a pointer is passed by the implementation; and if a function modifies an object passed as
an argument, the caller will see the change— this eliminates the need for two different argument passing mechanisms
as in Pascal.

9.2 Python Scopes and Namespaces

Before introducing classes, I first have to tell you something about Python’s scope rules. Class definitions play some
neat tricks with namespaces, and you need to know how scopes and namespaces work to fully understand what’s
going on. Incidentally, knowledge about this subject is useful for any advanced Python programmer.

Let’s begin with some definitions.

A namespace is a mapping from names to objects. Most namespaces are currently implemented as Python dictionar-
ies, but that’s normally not noticeable in any way (except for performance), and it may change in the future. Examples
of namespaces are: the set of built-in names (containing functions such as abs(), and built-in exception names);
the global names in a module; and the local names in a function invocation. In a sense the set of attributes of an

73

Python Tutorial, Release 3.14.0a3

object also form a namespace. The important thing to know about namespaces is that there is absolutely no relation
between names in different namespaces; for instance, two different modules may both define a function maximize
without confusion — users of the modules must prefix it with the module name.

By the way, I use the word attribute for any name following a dot — for example, in the expression z.real, real
is an attribute of the object z. Strictly speaking, references to names in modules are attribute references: in the
expression modname.funcname, modname is a module object and funcname is an attribute of it. In this case there
happens to be a straightforward mapping between the module’s attributes and the global names defined in the module:
they share the same namespace!1

Attributes may be read-only or writable. In the latter case, assignment to attributes is possible. Module attributes are
writable: you can write modname.the_answer = 42. Writable attributes may also be deleted with the del state-
ment. For example, del modname.the_answer will remove the attribute the_answer from the object named
by modname.

Namespaces are created at different moments and have different lifetimes. The namespace containing the built-in
names is created when the Python interpreter starts up, and is never deleted. The global namespace for a module
is created when the module definition is read in; normally, module namespaces also last until the interpreter quits.
The statements executed by the top-level invocation of the interpreter, either read from a script file or interactively,
are considered part of a module called __main__, so they have their own global namespace. (The built-in names
actually also live in a module; this is called builtins.)

The local namespace for a function is created when the function is called, and deleted when the function returns or
raises an exception that is not handled within the function. (Actually, forgetting would be a better way to describe
what actually happens.) Of course, recursive invocations each have their own local namespace.

A scope is a textual region of a Python program where a namespace is directly accessible. “Directly accessible” here
means that an unqualified reference to a name attempts to find the name in the namespace.

Although scopes are determined statically, they are used dynamically. At any time during execution, there are 3 or 4
nested scopes whose namespaces are directly accessible:

• the innermost scope, which is searched first, contains the local names

• the scopes of any enclosing functions, which are searched starting with the nearest enclosing scope, contain
non-local, but also non-global names

• the next-to-last scope contains the current module’s global names

• the outermost scope (searched last) is the namespace containing built-in names

If a name is declared global, then all references and assignments go directly to the next-to-last scope containing the
module’s global names. To rebind variables found outside of the innermost scope, the nonlocal statement can be
used; if not declared nonlocal, those variables are read-only (an attempt to write to such a variable will simply create
a new local variable in the innermost scope, leaving the identically named outer variable unchanged).

Usually, the local scope references the local names of the (textually) current function. Outside functions, the local
scope references the same namespace as the global scope: themodule’s namespace. Class definitions place yet another
namespace in the local scope.

It is important to realize that scopes are determined textually: the global scope of a function defined in a module
is that module’s namespace, no matter from where or by what alias the function is called. On the other hand, the
actual search for names is done dynamically, at run time— however, the language definition is evolving towards static
name resolution, at “compile” time, so don’t rely on dynamic name resolution! (In fact, local variables are already
determined statically.)

A special quirk of Python is that – if no global or nonlocal statement is in effect – assignments to names always
go into the innermost scope. Assignments do not copy data — they just bind names to objects. The same is true for
deletions: the statement del x removes the binding of x from the namespace referenced by the local scope. In fact,
all operations that introduce new names use the local scope: in particular, import statements and function definitions
bind the module or function name in the local scope.

1 Except for one thing. Module objects have a secret read-only attribute called __dict__ which returns the dictionary used to implement
the module’s namespace; the name __dict__ is an attribute but not a global name. Obviously, using this violates the abstraction of namespace
implementation, and should be restricted to things like post-mortem debuggers.

74 Chapter 9. Classes

Python Tutorial, Release 3.14.0a3

The global statement can be used to indicate that particular variables live in the global scope and should be rebound
there; the nonlocal statement indicates that particular variables live in an enclosing scope and should be rebound
there.

9.2.1 Scopes and Namespaces Example

This is an example demonstrating how to reference the different scopes and namespaces, and how global and
nonlocal affect variable binding:

def scope_test():

def do_local():

spam = "local spam"

def do_nonlocal():

nonlocal spam

spam = "nonlocal spam"

def do_global():

global spam

spam = "global spam"

spam = "test spam"

do_local()

print("After local assignment:", spam)

do_nonlocal()

print("After nonlocal assignment:", spam)

do_global()

print("After global assignment:", spam)

scope_test()

print("In global scope:", spam)

The output of the example code is:

After local assignment: test spam

After nonlocal assignment: nonlocal spam

After global assignment: nonlocal spam

In global scope: global spam

Note how the local assignment (which is default) didn’t change scope_test’s binding of spam. The nonlocal assign-
ment changed scope_test’s binding of spam, and the global assignment changed the module-level binding.

You can also see that there was no previous binding for spam before the global assignment.

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

9.3.1 Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:

<statement-1>

.

.

.

<statement-N>

9.3. A First Look at Classes 75

Python Tutorial, Release 3.14.0a3

Class definitions, like function definitions (def statements) must be executed before they have any effect. (You could
conceivably place a class definition in a branch of an if statement, or inside a function.)

In practice, the statements inside a class definition will usually be function definitions, but other statements are al-
lowed, and sometimes useful — we’ll come back to this later. The function definitions inside a class normally have
a peculiar form of argument list, dictated by the calling conventions for methods — again, this is explained later.

When a class definition is entered, a new namespace is created, and used as the local scope — thus, all assignments
to local variables go into this new namespace. In particular, function definitions bind the name of the new function
here.

When a class definition is left normally (via the end), a class object is created. This is basically a wrapper around the
contents of the namespace created by the class definition; we’ll learn more about class objects in the next section. The
original local scope (the one in effect just before the class definition was entered) is reinstated, and the class object is
bound here to the class name given in the class definition header (ClassName in the example).

9.3.2 Class Objects

Class objects support two kinds of operations: attribute references and instantiation.

Attribute references use the standard syntax used for all attribute references in Python: obj.name. Valid attribute
names are all the names that were in the class’s namespace when the class object was created. So, if the class definition
looked like this:

class MyClass:

"""A simple example class"""

i = 12345

def f(self):

return 'hello world'

then MyClass.i and MyClass.f are valid attribute references, returning an integer and a function object, respec-
tively. Class attributes can also be assigned to, so you can change the value of MyClass.i by assignment. __doc__
is also a valid attribute, returning the docstring belonging to the class: "A simple example class".

Class instantiation uses function notation. Just pretend that the class object is a parameterless function that returns a
new instance of the class. For example (assuming the above class):

x = MyClass()

creates a new instance of the class and assigns this object to the local variable x.

The instantiation operation (“calling” a class object) creates an empty object. Many classes like to create objects with
instances customized to a specific initial state. Therefore a class may define a special method named __init__(),
like this:

def __init__(self):

self.data = []

When a class defines an __init__() method, class instantiation automatically invokes __init__() for the newly
created class instance. So in this example, a new, initialized instance can be obtained by:

x = MyClass()

Of course, the __init__() method may have arguments for greater flexibility. In that case, arguments given to the
class instantiation operator are passed on to __init__(). For example,

>>> class Complex:

... def __init__(self, realpart, imagpart):

... self.r = realpart

... self.i = imagpart

(continues on next page)

76 Chapter 9. Classes

Python Tutorial, Release 3.14.0a3

(continued from previous page)

...

>>> x = Complex(3.0, -4.5)

>>> x.r, x.i

(3.0, -4.5)

9.3.3 Instance Objects

Now what can we do with instance objects? The only operations understood by instance objects are attribute refer-
ences. There are two kinds of valid attribute names: data attributes and methods.

Data attributes correspond to “instance variables” in Smalltalk, and to “data members” in C++. Data attributes need
not be declared; like local variables, they spring into existence when they are first assigned to. For example, if x is
the instance of MyClass created above, the following piece of code will print the value 16, without leaving a trace:

x.counter = 1

while x.counter < 10:

x.counter = x.counter * 2

print(x.counter)

del x.counter

The other kind of instance attribute reference is a method. A method is a function that “belongs to” an object.

Valid method names of an instance object depend on its class. By definition, all attributes of a class that are function
objects define corresponding methods of its instances. So in our example, x.f is a valid method reference, since
MyClass.f is a function, but x.i is not, since MyClass.i is not. But x.f is not the same thing as MyClass.f—
it is a method object, not a function object.

9.3.4 Method Objects

Usually, a method is called right after it is bound:

x.f()

In the MyClass example, this will return the string 'hello world'. However, it is not necessary to call a method
right away: x.f is a method object, and can be stored away and called at a later time. For example:

xf = x.f

while True:

print(xf())

will continue to print hello world until the end of time.

What exactly happens when a method is called? You may have noticed that x.f() was called without an argument
above, even though the function definition for f() specified an argument. What happened to the argument? Surely
Python raises an exception when a function that requires an argument is called without any — even if the argument
isn’t actually used…

Actually, you may have guessed the answer: the special thing about methods is that the instance object is passed as the
first argument of the function. In our example, the call x.f() is exactly equivalent to MyClass.f(x). In general,
calling a method with a list of n arguments is equivalent to calling the corresponding function with an argument list
that is created by inserting the method’s instance object before the first argument.

In general, methods work as follows. When a non-data attribute of an instance is referenced, the instance’s class is
searched. If the name denotes a valid class attribute that is a function object, references to both the instance object
and the function object are packed into a method object. When the method object is called with an argument list, a
new argument list is constructed from the instance object and the argument list, and the function object is called with
this new argument list.

9.3. A First Look at Classes 77

Python Tutorial, Release 3.14.0a3

9.3.5 Class and Instance Variables

Generally speaking, instance variables are for data unique to each instance and class variables are for attributes and
methods shared by all instances of the class:

class Dog:

kind = 'canine' # class variable shared by all instances

def __init__(self, name):

self.name = name # instance variable unique to each instance

>>> d = Dog('Fido')

>>> e = Dog('Buddy')

>>> d.kind # shared by all dogs

'canine'

>>> e.kind # shared by all dogs

'canine'

>>> d.name # unique to d

'Fido'

>>> e.name # unique to e

'Buddy'

As discussed in A Word About Names and Objects, shared data can have possibly surprising effects with involving
mutable objects such as lists and dictionaries. For example, the tricks list in the following code should not be used as
a class variable because just a single list would be shared by all Dog instances:

class Dog:

tricks = [] # mistaken use of a class variable

def __init__(self, name):

self.name = name

def add_trick(self, trick):

self.tricks.append(trick)

>>> d = Dog('Fido')

>>> e = Dog('Buddy')

>>> d.add_trick('roll over')

>>> e.add_trick('play dead')

>>> d.tricks # unexpectedly shared by all dogs

['roll over', 'play dead']

Correct design of the class should use an instance variable instead:

class Dog:

def __init__(self, name):

self.name = name

self.tricks = [] # creates a new empty list for each dog

def add_trick(self, trick):

self.tricks.append(trick)

>>> d = Dog('Fido')

>>> e = Dog('Buddy')

>>> d.add_trick('roll over')

(continues on next page)

78 Chapter 9. Classes

Python Tutorial, Release 3.14.0a3

(continued from previous page)

>>> e.add_trick('play dead')

>>> d.tricks

['roll over']

>>> e.tricks

['play dead']

9.4 Random Remarks

If the same attribute name occurs in both an instance and in a class, then attribute lookup prioritizes the instance:

>>> class Warehouse:

... purpose = 'storage'

... region = 'west'

...

>>> w1 = Warehouse()

>>> print(w1.purpose, w1.region)

storage west

>>> w2 = Warehouse()

>>> w2.region = 'east'

>>> print(w2.purpose, w2.region)

storage east

Data attributes may be referenced by methods as well as by ordinary users (“clients”) of an object. In other words,
classes are not usable to implement pure abstract data types. In fact, nothing in Python makes it possible to enforce
data hiding — it is all based upon convention. (On the other hand, the Python implementation, written in C, can
completely hide implementation details and control access to an object if necessary; this can be used by extensions
to Python written in C.)

Clients should use data attributes with care— clients may mess up invariants maintained by the methods by stamping
on their data attributes. Note that clients may add data attributes of their own to an instance object without affecting
the validity of the methods, as long as name conflicts are avoided — again, a naming convention can save a lot of
headaches here.

There is no shorthand for referencing data attributes (or other methods!) from within methods. I find that this
actually increases the readability of methods: there is no chance of confusing local variables and instance variables
when glancing through a method.

Often, the first argument of a method is called self. This is nothing more than a convention: the name self has
absolutely no special meaning to Python. Note, however, that by not following the convention your code may be less
readable to other Python programmers, and it is also conceivable that a class browser program might be written that
relies upon such a convention.

Any function object that is a class attribute defines a method for instances of that class. It is not necessary that the
function definition is textually enclosed in the class definition: assigning a function object to a local variable in the
class is also ok. For example:

Function defined outside the class

def f1(self, x, y):

return min(x, x+y)

class C:

f = f1

def g(self):

return 'hello world'

h = g

9.4. Random Remarks 79

Python Tutorial, Release 3.14.0a3

Now f, g and h are all attributes of class C that refer to function objects, and consequently they are all methods of
instances of C— h being exactly equivalent to g. Note that this practice usually only serves to confuse the reader of
a program.

Methods may call other methods by using method attributes of the self argument:

class Bag:

def __init__(self):

self.data = []

def add(self, x):

self.data.append(x)

def addtwice(self, x):

self.add(x)

self.add(x)

Methods may reference global names in the same way as ordinary functions. The global scope associated with a
method is the module containing its definition. (A class is never used as a global scope.) While one rarely encounters
a good reason for using global data in a method, there are many legitimate uses of the global scope: for one thing,
functions and modules imported into the global scope can be used by methods, as well as functions and classes defined
in it. Usually, the class containing the method is itself defined in this global scope, and in the next section we’ll find
some good reasons why a method would want to reference its own class.

Each value is an object, and therefore has a class (also called its type). It is stored as object.__class__.

9.5 Inheritance

Of course, a language feature would not be worthy of the name “class” without supporting inheritance. The syntax
for a derived class definition looks like this:

class DerivedClassName(BaseClassName):

<statement-1>

.

.

.

<statement-N>

The name BaseClassName must be defined in a namespace accessible from the scope containing the derived class
definition. In place of a base class name, other arbitrary expressions are also allowed. This can be useful, for example,
when the base class is defined in another module:

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the same as for a base class. When the class object is constructed,
the base class is remembered. This is used for resolving attribute references: if a requested attribute is not found
in the class, the search proceeds to look in the base class. This rule is applied recursively if the base class itself is
derived from some other class.

There’s nothing special about instantiation of derived classes: DerivedClassName() creates a new instance of the
class. Method references are resolved as follows: the corresponding class attribute is searched, descending down the
chain of base classes if necessary, and the method reference is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods have no special privileges when calling
other methods of the same object, a method of a base class that calls another method defined in the same base class
may end up calling a method of a derived class that overrides it. (For C++ programmers: all methods in Python are
effectively virtual.)

An overriding method in a derived class may in fact want to extend rather than simply replace the base class method
of the same name. There is a simple way to call the base class method directly: just call BaseClassName.

80 Chapter 9. Classes

Python Tutorial, Release 3.14.0a3

methodname(self, arguments). This is occasionally useful to clients as well. (Note that this only works if
the base class is accessible as BaseClassName in the global scope.)

Python has two built-in functions that work with inheritance:

• Use isinstance() to check an instance’s type: isinstance(obj, int) will be True only if obj.
__class__ is int or some class derived from int.

• Use issubclass() to check class inheritance: issubclass(bool, int) is True since bool is a subclass
of int. However, issubclass(float, int) is False since float is not a subclass of int.

9.5.1 Multiple Inheritance

Python supports a form of multiple inheritance as well. A class definition with multiple base classes looks like this:

class DerivedClassName(Base1, Base2, Base3):

<statement-1>

.

.

.

<statement-N>

For most purposes, in the simplest cases, you can think of the search for attributes inherited from a parent class as
depth-first, left-to-right, not searching twice in the same class where there is an overlap in the hierarchy. Thus, if an
attribute is not found in DerivedClassName, it is searched for in Base1, then (recursively) in the base classes of
Base1, and if it was not found there, it was searched for in Base2, and so on.

In fact, it is slightly more complex than that; the method resolution order changes dynamically to support cooperative
calls to super(). This approach is known in some other multiple-inheritance languages as call-next-method and is
more powerful than the super call found in single-inheritance languages.

Dynamic ordering is necessary because all cases of multiple inheritance exhibit one or more diamond relationships
(where at least one of the parent classes can be accessed through multiple paths from the bottommost class). For
example, all classes inherit from object, so any case of multiple inheritance provides more than one path to reach
object. To keep the base classes from being accessed more than once, the dynamic algorithm linearizes the search
order in a way that preserves the left-to-right ordering specified in each class, that calls each parent only once, and that
is monotonic (meaning that a class can be subclassed without affecting the precedence order of its parents). Taken
together, these properties make it possible to design reliable and extensible classes with multiple inheritance. For
more detail, see python_2.3_mro.

9.6 Private Variables

“Private” instance variables that cannot be accessed except from inside an object don’t exist in Python. However, there
is a convention that is followed by most Python code: a name prefixed with an underscore (e.g. _spam) should be
treated as a non-public part of the API (whether it is a function, a method or a data member). It should be considered
an implementation detail and subject to change without notice.

Since there is a valid use-case for class-private members (namely to avoid name clashes of names with names
defined by subclasses), there is limited support for such a mechanism, called name mangling. Any identifier of
the form __spam (at least two leading underscores, at most one trailing underscore) is textually replaced with
_classname__spam, where classname is the current class name with leading underscore(s) stripped. This man-
gling is done without regard to the syntactic position of the identifier, as long as it occurs within the definition of a
class.

See also

The private name mangling specifications for details and special cases.

Name mangling is helpful for letting subclasses override methods without breaking intraclass method calls. For
example:

9.6. Private Variables 81

Python Tutorial, Release 3.14.0a3

class Mapping:

def __init__(self, iterable):

self.items_list = []

self.__update(iterable)

def update(self, iterable):

for item in iterable:

self.items_list.append(item)

__update = update # private copy of original update() method

class MappingSubclass(Mapping):

def update(self, keys, values):

provides new signature for update()

but does not break __init__()

for item in zip(keys, values):

self.items_list.append(item)

The above example would work even if MappingSubclass were to introduce a __update identifier since
it is replaced with _Mapping__update in the Mapping class and _MappingSubclass__update in the
MappingSubclass class respectively.

Note that the mangling rules are designed mostly to avoid accidents; it still is possible to access or modify a variable
that is considered private. This can even be useful in special circumstances, such as in the debugger.

Notice that code passed to exec() or eval() does not consider the classname of the invoking class to be the current
class; this is similar to the effect of the global statement, the effect of which is likewise restricted to code that is
byte-compiled together. The same restriction applies to getattr(), setattr() and delattr(), as well as when
referencing __dict__ directly.

9.7 Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal “record” or C “struct”, bundling together a few named
data items. The idiomatic approach is to use dataclasses for this purpose:

from dataclasses import dataclass

@dataclass

class Employee:

name: str

dept: str

salary: int

>>> john = Employee('john', 'computer lab', 1000)

>>> john.dept

'computer lab'

>>> john.salary

1000

A piece of Python code that expects a particular abstract data type can often be passed a class that emulates the
methods of that data type instead. For instance, if you have a function that formats some data from a file object, you
can define a class with methods read() and readline() that get the data from a string buffer instead, and pass it
as an argument.

Instance method objects have attributes, too: m.__self__ is the instance object with the method m(), and m.

__func__ is the function object corresponding to the method.

82 Chapter 9. Classes

Python Tutorial, Release 3.14.0a3

9.8 Iterators

By now you have probably noticed that most container objects can be looped over using a for statement:

for element in [1, 2, 3]:

print(element)

for element in (1, 2, 3):

print(element)

for key in {'one':1, 'two':2}:

print(key)

for char in "123":

print(char)

for line in open("myfile.txt"):

print(line, end='')

This style of access is clear, concise, and convenient. The use of iterators pervades and unifies Python. Behind
the scenes, the for statement calls iter() on the container object. The function returns an iterator object that
defines the method __next__() which accesses elements in the container one at a time. When there are no more
elements, __next__() raises a StopIteration exception which tells the for loop to terminate. You can call the
__next__() method using the next() built-in function; this example shows how it all works:

>>> s = 'abc'

>>> it = iter(s)

>>> it

<str_iterator object at 0x10c90e650>

>>> next(it)

'a'

>>> next(it)

'b'

>>> next(it)

'c'

>>> next(it)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

next(it)

StopIteration

Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to your classes. Define an
__iter__() method which returns an object with a __next__() method. If the class defines __next__(), then
__iter__() can just return self:

class Reverse:

"""Iterator for looping over a sequence backwards."""

def __init__(self, data):

self.data = data

self.index = len(data)

def __iter__(self):

return self

def __next__(self):

if self.index == 0:

raise StopIteration

self.index = self.index - 1

return self.data[self.index]

>>> rev = Reverse('spam')

>>> iter(rev)
(continues on next page)

9.8. Iterators 83

Python Tutorial, Release 3.14.0a3

(continued from previous page)

<__main__.Reverse object at 0x00A1DB50>

>>> for char in rev:

... print(char)

...

m

a

p

s

9.9 Generators

Generators are a simple and powerful tool for creating iterators. They are written like regular functions but use the
yield statement whenever they want to return data. Each time next() is called on it, the generator resumes where
it left off (it remembers all the data values and which statement was last executed). An example shows that generators
can be trivially easy to create:

def reverse(data):

for index in range(len(data)-1, -1, -1):

yield data[index]

>>> for char in reverse('golf'):

... print(char)

...

f

l

o

g

Anything that can be done with generators can also be done with class-based iterators as described in the previ-
ous section. What makes generators so compact is that the __iter__() and __next__() methods are created
automatically.

Another key feature is that the local variables and execution state are automatically saved between calls. This made
the function easier to write and much more clear than an approach using instance variables like self.index and
self.data.

In addition to automatic method creation and saving program state, when generators terminate, they automatically
raise StopIteration. In combination, these features make it easy to create iterators with no more effort than
writing a regular function.

9.10 Generator Expressions

Some simple generators can be coded succinctly as expressions using a syntax similar to list comprehensions but with
parentheses instead of square brackets. These expressions are designed for situations where the generator is used
right away by an enclosing function. Generator expressions are more compact but less versatile than full generator
definitions and tend to be more memory friendly than equivalent list comprehensions.

Examples:

>>> sum(i*i for i in range(10)) # sum of squares

285

>>> xvec = [10, 20, 30]

>>> yvec = [7, 5, 3]

>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product

260

(continues on next page)

84 Chapter 9. Classes

Python Tutorial, Release 3.14.0a3

(continued from previous page)

>>> unique_words = set(word for line in page for word in line.split())

>>> valedictorian = max((student.gpa, student.name) for student in graduates)

>>> data = 'golf'

>>> list(data[i] for i in range(len(data)-1, -1, -1))

['f', 'l', 'o', 'g']

9.10. Generator Expressions 85

Python Tutorial, Release 3.14.0a3

86 Chapter 9. Classes

CHAPTER

TEN

BRIEF TOUR OF THE STANDARD LIBRARY

10.1 Operating System Interface

The os module provides dozens of functions for interacting with the operating system:

>>> import os

>>> os.getcwd() # Return the current working directory

'C:\\Python314'

>>> os.chdir('/server/accesslogs') # Change current working directory

>>> os.system('mkdir today') # Run the command mkdir in the system shell

0

Be sure to use the import os style instead of from os import *. This will keep os.open() from shadowing
the built-in open() function which operates much differently.

The built-in dir() and help() functions are useful as interactive aids for working with large modules like os:

>>> import os

>>> dir(os)

<returns a list of all module functions>

>>> help(os)

<returns an extensive manual page created from the module's docstrings>

For daily file and directory management tasks, the shutil module provides a higher level interface that is easier to
use:

>>> import shutil

>>> shutil.copyfile('data.db', 'archive.db')

'archive.db'

>>> shutil.move('/build/executables', 'installdir')

'installdir'

10.2 File Wildcards

The glob module provides a function for making file lists from directory wildcard searches:

>>> import glob

>>> glob.glob('*.py')

['primes.py', 'random.py', 'quote.py']

10.3 Command Line Arguments

Common utility scripts often need to process command line arguments. These arguments are stored in the sys
module’s argv attribute as a list. For instance, let’s take the following demo.py file:

87

Python Tutorial, Release 3.14.0a3

File demo.py

import sys

print(sys.argv)

Here is the output from running python demo.py one two three at the command line:

['demo.py', 'one', 'two', 'three']

The argparsemodule provides amore sophisticatedmechanism to process command line arguments. The following
script extracts one or more filenames and an optional number of lines to be displayed:

import argparse

parser = argparse.ArgumentParser(

prog='top',

description='Show top lines from each file')

parser.add_argument('filenames', nargs='+')

parser.add_argument('-l', '--lines', type=int, default=10)

args = parser.parse_args()

print(args)

When run at the command line with python top.py --lines=5 alpha.txt beta.txt, the script sets args.
lines to 5 and args.filenames to ['alpha.txt', 'beta.txt'].

10.4 Error Output Redirection and Program Termination

The sys module also has attributes for stdin, stdout, and stderr. The latter is useful for emitting warnings and error
messages to make them visible even when stdout has been redirected:

>>> sys.stderr.write('Warning, log file not found starting a new one\n')

Warning, log file not found starting a new one

The most direct way to terminate a script is to use sys.exit().

10.5 String Pattern Matching

The re module provides regular expression tools for advanced string processing. For complex matching and manip-
ulation, regular expressions offer succinct, optimized solutions:

>>> import re

>>> re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest')

['foot', 'fell', 'fastest']

>>> re.sub(r'(\b[a-z]+) \1', r'\1', 'cat in the the hat')

'cat in the hat'

When only simple capabilities are needed, string methods are preferred because they are easier to read and debug:

>>> 'tea for too'.replace('too', 'two')

'tea for two'

10.6 Mathematics

The math module gives access to the underlying C library functions for floating-point math:

88 Chapter 10. Brief Tour of the Standard Library

Python Tutorial, Release 3.14.0a3

>>> import math

>>> math.cos(math.pi / 4)

0.70710678118654757

>>> math.log(1024, 2)

10.0

The random module provides tools for making random selections:

>>> import random

>>> random.choice(['apple', 'pear', 'banana'])

'apple'

>>> random.sample(range(100), 10) # sampling without replacement

[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]

>>> random.random() # random float from the interval [0.0, 1.0)

0.17970987693706186

>>> random.randrange(6) # random integer chosen from range(6)

4

The statistics module calculates basic statistical properties (the mean, median, variance, etc.) of numeric data:

>>> import statistics

>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]

>>> statistics.mean(data)

1.6071428571428572

>>> statistics.median(data)

1.25

>>> statistics.variance(data)

1.3720238095238095

The SciPy project <https://scipy.org> has many other modules for numerical computations.

10.7 Internet Access

There are a number of modules for accessing the internet and processing internet protocols. Two of the simplest are
urllib.request for retrieving data from URLs and smtplib for sending mail:

>>> from urllib.request import urlopen

>>> with urlopen('http://worldtimeapi.org/api/timezone/etc/UTC.txt') as response:

... for line in response:

... line = line.decode() # Convert bytes to a str

... if line.startswith('datetime'):

... print(line.rstrip()) # Remove trailing newline

...

datetime: 2022-01-01T01:36:47.689215+00:00

>>> import smtplib

>>> server = smtplib.SMTP('localhost')

>>> server.sendmail('soothsayer@example.org', 'jcaesar@example.org',

... """To: jcaesar@example.org

... From: soothsayer@example.org

...

... Beware the Ides of March.

... """)

>>> server.quit()

(Note that the second example needs a mailserver running on localhost.)

10.7. Internet Access 89

https://scipy.org

Python Tutorial, Release 3.14.0a3

10.8 Dates and Times

The datetime module supplies classes for manipulating dates and times in both simple and complex ways. While
date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for output
formatting and manipulation. The module also supports objects that are timezone aware.

>>> # dates are easily constructed and formatted

>>> from datetime import date

>>> now = date.today()

>>> now

datetime.date(2003, 12, 2)

>>> now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B.")

'12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.'

>>> # dates support calendar arithmetic

>>> birthday = date(1964, 7, 31)

>>> age = now - birthday

>>> age.days

14368

10.9 Data Compression

Common data archiving and compression formats are directly supported by modules including: zlib, gzip, bz2,
lzma, zipfile and tarfile.

>>> import zlib

>>> s = b'witch which has which witches wrist watch'

>>> len(s)

41

>>> t = zlib.compress(s)

>>> len(t)

37

>>> zlib.decompress(t)

b'witch which has which witches wrist watch'

>>> zlib.crc32(s)

226805979

10.10 Performance Measurement

Some Python users develop a deep interest in knowing the relative performance of different approaches to the same
problem. Python provides a measurement tool that answers those questions immediately.

For example, it may be tempting to use the tuple packing and unpacking feature instead of the traditional approach
to swapping arguments. The timeit module quickly demonstrates a modest performance advantage:

>>> from timeit import Timer

>>> Timer('t=a; a=b; b=t', 'a=1; b=2').timeit()

0.57535828626024577

>>> Timer('a,b = b,a', 'a=1; b=2').timeit()

0.54962537085770791

In contrast to timeit’s fine level of granularity, the profile and pstats modules provide tools for identifying
time critical sections in larger blocks of code.

90 Chapter 10. Brief Tour of the Standard Library

Python Tutorial, Release 3.14.0a3

10.11 Quality Control

One approach for developing high quality software is to write tests for each function as it is developed and to run
those tests frequently during the development process.

The doctestmodule provides a tool for scanning a module and validating tests embedded in a program’s docstrings.
Test construction is as simple as cutting-and-pasting a typical call along with its results into the docstring. This
improves the documentation by providing the user with an example and it allows the doctest module to make sure
the code remains true to the documentation:

def average(values):

"""Computes the arithmetic mean of a list of numbers.

>>> print(average([20, 30, 70]))

40.0

"""

return sum(values) / len(values)

import doctest

doctest.testmod() # automatically validate the embedded tests

The unittest module is not as effortless as the doctest module, but it allows a more comprehensive set of tests
to be maintained in a separate file:

import unittest

class TestStatisticalFunctions(unittest.TestCase):

def test_average(self):

self.assertEqual(average([20, 30, 70]), 40.0)

self.assertEqual(round(average([1, 5, 7]), 1), 4.3)

with self.assertRaises(ZeroDivisionError):

average([])

with self.assertRaises(TypeError):

average(20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

10.12 Batteries Included

Python has a “batteries included” philosophy. This is best seen through the sophisticated and robust capabilities of
its larger packages. For example:

• The xmlrpc.client and xmlrpc.server modules make implementing remote procedure calls into an
almost trivial task. Despite the modules’ names, no direct knowledge or handling of XML is needed.

• The email package is a library for managing email messages, including MIME and other RFC 2822-based
message documents. Unlike smtplib and poplib which actually send and receive messages, the email pack-
age has a complete toolset for building or decoding complex message structures (including attachments) and
for implementing internet encoding and header protocols.

• The json package provides robust support for parsing this popular data interchange format. The csv mod-
ule supports direct reading and writing of files in Comma-Separated Value format, commonly supported by
databases and spreadsheets. XML processing is supported by the xml.etree.ElementTree, xml.dom and
xml.sax packages. Together, these modules and packages greatly simplify data interchange between Python
applications and other tools.

• The sqlite3 module is a wrapper for the SQLite database library, providing a persistent database that can
be updated and accessed using slightly nonstandard SQL syntax.

10.11. Quality Control 91

https://datatracker.ietf.org/doc/html/rfc2822.html

Python Tutorial, Release 3.14.0a3

• Internationalization is supported by a number of modules including gettext, locale, and the codecs pack-
age.

92 Chapter 10. Brief Tour of the Standard Library

CHAPTER

ELEVEN

BRIEF TOUR OF THE STANDARD LIBRARY — PART II

This second tour covers more advanced modules that support professional programming needs. These modules rarely
occur in small scripts.

11.1 Output Formatting

The reprlib module provides a version of repr() customized for abbreviated displays of large or deeply nested
containers:

>>> import reprlib

>>> reprlib.repr(set('supercalifragilisticexpialidocious'))

"{'a', 'c', 'd', 'e', 'f', 'g', ...}"

The pprint module offers more sophisticated control over printing both built-in and user defined objects in a way
that is readable by the interpreter. When the result is longer than one line, the “pretty printer” adds line breaks and
indentation to more clearly reveal data structure:

>>> import pprint

>>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',

... 'yellow'], 'blue']]]

...

>>> pprint.pprint(t, width=30)

[[[['black', 'cyan'],

'white',

['green', 'red']],

[['magenta', 'yellow'],

'blue']]]

The textwrap module formats paragraphs of text to fit a given screen width:

>>> import textwrap

>>> doc = """The wrap() method is just like fill() except that it returns

... a list of strings instead of one big string with newlines to separate

... the wrapped lines."""

...

>>> print(textwrap.fill(doc, width=40))

The wrap() method is just like fill()

except that it returns a list of strings

instead of one big string with newlines

to separate the wrapped lines.

The locale module accesses a database of culture specific data formats. The grouping attribute of locale’s format
function provides a direct way of formatting numbers with group separators:

93

Python Tutorial, Release 3.14.0a3

>>> import locale

>>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')

'English_United States.1252'

>>> conv = locale.localeconv() # get a mapping of conventions

>>> x = 1234567.8

>>> locale.format_string("%d", x, grouping=True)

'1,234,567'

>>> locale.format_string("%s%.*f", (conv['currency_symbol'],

... conv['frac_digits'], x), grouping=True)

'$1,234,567.80'

11.2 Templating

The string module includes a versatile Template class with a simplified syntax suitable for editing by end-users.
This allows users to customize their applications without having to alter the application.

The format uses placeholder names formed by $ with valid Python identifiers (alphanumeric characters and under-
scores). Surrounding the placeholder with braces allows it to be followed by more alphanumeric letters with no
intervening spaces. Writing $$ creates a single escaped $:

>>> from string import Template

>>> t = Template('${village}folk send $$10 to $cause.')

>>> t.substitute(village='Nottingham', cause='the ditch fund')

'Nottinghamfolk send $10 to the ditch fund.'

The substitute() method raises a KeyError when a placeholder is not supplied in a dictionary or a keyword
argument. For mail-merge style applications, user supplied data may be incomplete and the safe_substitute()
method may be more appropriate — it will leave placeholders unchanged if data is missing:

>>> t = Template('Return the $item to $owner.')

>>> d = dict(item='unladen swallow')

>>> t.substitute(d)

Traceback (most recent call last):

...

KeyError: 'owner'

>>> t.safe_substitute(d)

'Return the unladen swallow to $owner.'

Template subclasses can specify a custom delimiter. For example, a batch renaming utility for a photo browser may
elect to use percent signs for placeholders such as the current date, image sequence number, or file format:

>>> import time, os.path

>>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']

>>> class BatchRename(Template):

... delimiter = '%'

...

>>> fmt = input('Enter rename style (%d-date %n-seqnum %f-format): ')

Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f

>>> t = BatchRename(fmt)

>>> date = time.strftime('%d%b%y')

>>> for i, filename in enumerate(photofiles):

... base, ext = os.path.splitext(filename)

... newname = t.substitute(d=date, n=i, f=ext)

... print('{0} --> {1}'.format(filename, newname))

img_1074.jpg --> Ashley_0.jpg

(continues on next page)

94 Chapter 11. Brief Tour of the Standard Library — Part II

Python Tutorial, Release 3.14.0a3

(continued from previous page)

img_1076.jpg --> Ashley_1.jpg

img_1077.jpg --> Ashley_2.jpg

Another application for templating is separating program logic from the details of multiple output formats. This
makes it possible to substitute custom templates for XML files, plain text reports, and HTML web reports.

11.3 Working with Binary Data Record Layouts

The struct module provides pack() and unpack() functions for working with variable length binary record
formats. The following example shows how to loop through header information in a ZIP file without using the
zipfile module. Pack codes "H" and "I" represent two and four byte unsigned numbers respectively. The "<"
indicates that they are standard size and in little-endian byte order:

import struct

with open('myfile.zip', 'rb') as f:

data = f.read()

start = 0

for i in range(3): # show the first 3 file headers

start += 14

fields = struct.unpack('<IIIHH', data[start:start+16])

crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

start += 16

filename = data[start:start+filenamesize]

start += filenamesize

extra = data[start:start+extra_size]

print(filename, hex(crc32), comp_size, uncomp_size)

start += extra_size + comp_size # skip to the next header

11.4 Multi-threading

Threading is a technique for decoupling tasks which are not sequentially dependent. Threads can be used to improve
the responsiveness of applications that accept user input while other tasks run in the background. A related use case
is running I/O in parallel with computations in another thread.

The following code shows how the high level threadingmodule can run tasks in backgroundwhile themain program
continues to run:

import threading, zipfile

class AsyncZip(threading.Thread):

def __init__(self, infile, outfile):

threading.Thread.__init__(self)

self.infile = infile

self.outfile = outfile

def run(self):

f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)

f.write(self.infile)

f.close()

print('Finished background zip of:', self.infile)

(continues on next page)

11.3. Working with Binary Data Record Layouts 95

Python Tutorial, Release 3.14.0a3

(continued from previous page)

background = AsyncZip('mydata.txt', 'myarchive.zip')

background.start()

print('The main program continues to run in foreground.')

background.join() # Wait for the background task to finish

print('Main program waited until background was done.')

The principal challenge of multi-threaded applications is coordinating threads that share data or other resources. To
that end, the threading module provides a number of synchronization primitives including locks, events, condition
variables, and semaphores.

While those tools are powerful, minor design errors can result in problems that are difficult to reproduce. So, the
preferred approach to task coordination is to concentrate all access to a resource in a single thread and then use the
queuemodule to feed that thread with requests from other threads. Applications using Queue objects for inter-thread
communication and coordination are easier to design, more readable, and more reliable.

11.5 Logging

The logging module offers a full featured and flexible logging system. At its simplest, log messages are sent to a
file or to sys.stderr:

import logging

logging.debug('Debugging information')

logging.info('Informational message')

logging.warning('Warning:config file %s not found', 'server.conf')

logging.error('Error occurred')

logging.critical('Critical error -- shutting down')

This produces the following output:

WARNING:root:Warning:config file server.conf not found

ERROR:root:Error occurred

CRITICAL:root:Critical error -- shutting down

By default, informational and debugging messages are suppressed and the output is sent to standard error. Other
output options include routing messages through email, datagrams, sockets, or to an HTTP Server. New filters can
select different routing based on message priority: DEBUG, INFO, WARNING, ERROR, and CRITICAL.

The logging system can be configured directly from Python or can be loaded from a user editable configuration file
for customized logging without altering the application.

11.6 Weak References

Python does automatic memory management (reference counting for most objects and garbage collection to eliminate
cycles). The memory is freed shortly after the last reference to it has been eliminated.

This approach works fine for most applications but occasionally there is a need to track objects only as long as they
are being used by something else. Unfortunately, just tracking them creates a reference that makes them permanent.
The weakref module provides tools for tracking objects without creating a reference. When the object is no longer
needed, it is automatically removed from a weakref table and a callback is triggered for weakref objects. Typical
applications include caching objects that are expensive to create:

>>> import weakref, gc

>>> class A:

... def __init__(self, value):

... self.value = value

... def __repr__(self):

(continues on next page)

96 Chapter 11. Brief Tour of the Standard Library — Part II

Python Tutorial, Release 3.14.0a3

(continued from previous page)

... return str(self.value)

...

>>> a = A(10) # create a reference

>>> d = weakref.WeakValueDictionary()

>>> d['primary'] = a # does not create a reference

>>> d['primary'] # fetch the object if it is still alive

10

>>> del a # remove the one reference

>>> gc.collect() # run garbage collection right away

0

>>> d['primary'] # entry was automatically removed

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

d['primary'] # entry was automatically removed

File "C:/python314/lib/weakref.py", line 46, in __getitem__

o = self.data[key]()

KeyError: 'primary'

11.7 Tools for Working with Lists

Many data structure needs can be met with the built-in list type. However, sometimes there is a need for alternative
implementations with different performance trade-offs.

The array module provides an array object that is like a list that stores only homogeneous data and stores it more
compactly. The following example shows an array of numbers stored as two byte unsigned binary numbers (typecode
"H") rather than the usual 16 bytes per entry for regular lists of Python int objects:

>>> from array import array

>>> a = array('H', [4000, 10, 700, 22222])

>>> sum(a)

26932

>>> a[1:3]

array('H', [10, 700])

The collections module provides a deque object that is like a list with faster appends and pops from the left
side but slower lookups in the middle. These objects are well suited for implementing queues and breadth first tree
searches:

>>> from collections import deque

>>> d = deque(["task1", "task2", "task3"])

>>> d.append("task4")

>>> print("Handling", d.popleft())

Handling task1

unsearched = deque([starting_node])

def breadth_first_search(unsearched):

node = unsearched.popleft()

for m in gen_moves(node):

if is_goal(m):

return m

unsearched.append(m)

In addition to alternative list implementations, the library also offers other tools such as the bisect module with
functions for manipulating sorted lists:

11.7. Tools for Working with Lists 97

Python Tutorial, Release 3.14.0a3

>>> import bisect

>>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]

>>> bisect.insort(scores, (300, 'ruby'))

>>> scores

[(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]

The heapq module provides functions for implementing heaps based on regular lists. The lowest valued entry is
always kept at position zero. This is useful for applications which repeatedly access the smallest element but do not
want to run a full list sort:

>>> from heapq import heapify, heappop, heappush

>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]

>>> heapify(data) # rearrange the list into heap order

>>> heappush(data, -5) # add a new entry

>>> [heappop(data) for i in range(3)] # fetch the three smallest entries

[-5, 0, 1]

11.8 Decimal Floating-Point Arithmetic

The decimal module offers a Decimal datatype for decimal floating-point arithmetic. Compared to the built-in
float implementation of binary floating point, the class is especially helpful for

• financial applications and other uses which require exact decimal representation,

• control over precision,

• control over rounding to meet legal or regulatory requirements,

• tracking of significant decimal places, or

• applications where the user expects the results to match calculations done by hand.

For example, calculating a 5% tax on a 70 cent phone charge gives different results in decimal floating point and
binary floating point. The difference becomes significant if the results are rounded to the nearest cent:

>>> from decimal import *

>>> round(Decimal('0.70') * Decimal('1.05'), 2)

Decimal('0.74')

>>> round(.70 * 1.05, 2)

0.73

The Decimal result keeps a trailing zero, automatically inferring four place significance from multiplicands with two
place significance. Decimal reproduces mathematics as done by hand and avoids issues that can arise when binary
floating point cannot exactly represent decimal quantities.

Exact representation enables the Decimal class to perform modulo calculations and equality tests that are unsuitable
for binary floating point:

>>> Decimal('1.00') % Decimal('.10')

Decimal('0.00')

>>> 1.00 % 0.10

0.09999999999999995

>>> sum([Decimal('0.1')]*10) == Decimal('1.0')

True

>>> 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 == 1.0

False

The decimal module provides arithmetic with as much precision as needed:

98 Chapter 11. Brief Tour of the Standard Library — Part II

Python Tutorial, Release 3.14.0a3

>>> getcontext().prec = 36

>>> Decimal(1) / Decimal(7)

Decimal('0.142857142857142857142857142857142857')

11.8. Decimal Floating-Point Arithmetic 99

Python Tutorial, Release 3.14.0a3

100 Chapter 11. Brief Tour of the Standard Library — Part II

CHAPTER

TWELVE

VIRTUAL ENVIRONMENTS AND PACKAGES

12.1 Introduction

Python applications will often use packages and modules that don’t come as part of the standard library. Applications
will sometimes need a specific version of a library, because the application may require that a particular bug has been
fixed or the application may be written using an obsolete version of the library’s interface.

This means it may not be possible for one Python installation to meet the requirements of every application. If
application A needs version 1.0 of a particular module but application B needs version 2.0, then the requirements are
in conflict and installing either version 1.0 or 2.0 will leave one application unable to run.

The solution for this problem is to create a virtual environment, a self-contained directory tree that contains a Python
installation for a particular version of Python, plus a number of additional packages.

Different applications can then use different virtual environments. To resolve the earlier example of conflicting
requirements, application A can have its own virtual environment with version 1.0 installed while application B has
another virtual environment with version 2.0. If application B requires a library be upgraded to version 3.0, this will
not affect application A’s environment.

12.2 Creating Virtual Environments

The module used to create and manage virtual environments is called venv. venv will install the Python version
from which the command was run (as reported by the --version option). For instance, executing the command
with python3.12 will install version 3.12.

To create a virtual environment, decide upon a directory where you want to place it, and run the venv module as a
script with the directory path:

python -m venv tutorial-env

This will create the tutorial-env directory if it doesn’t exist, and also create directories inside it containing a copy
of the Python interpreter and various supporting files.

A common directory location for a virtual environment is .venv. This name keeps the directory typically hidden
in your shell and thus out of the way while giving it a name that explains why the directory exists. It also prevents
clashing with .env environment variable definition files that some tooling supports.

Once you’ve created a virtual environment, you may activate it.

On Windows, run:

tutorial-env\Scripts\activate

On Unix or MacOS, run:

source tutorial-env/bin/activate

(This script is written for the bash shell. If you use the csh or fish shells, there are alternate activate.csh and
activate.fish scripts you should use instead.)

101

Python Tutorial, Release 3.14.0a3

Activating the virtual environment will change your shell’s prompt to show what virtual environment you’re using,
and modify the environment so that running python will get you that particular version and installation of Python.
For example:

$ source ~/envs/tutorial-env/bin/activate

(tutorial-env) $ python

Python 3.5.1 (default, May 6 2016, 10:59:36)

...

>>> import sys

>>> sys.path

['', '/usr/local/lib/python35.zip', ...,

'~/envs/tutorial-env/lib/python3.5/site-packages']

>>>

To deactivate a virtual environment, type:

deactivate

into the terminal.

12.3 Managing Packages with pip

You can install, upgrade, and remove packages using a program called pip. By default pipwill install packages from
the Python Package Index. You can browse the Python Package Index by going to it in your web browser.

pip has a number of subcommands: “install”, “uninstall”, “freeze”, etc. (Consult the installing-index guide for
complete documentation for pip.)

You can install the latest version of a package by specifying a package’s name:

(tutorial-env) $ python -m pip install novas

Collecting novas

Downloading novas-3.1.1.3.tar.gz (136kB)

Installing collected packages: novas

Running setup.py install for novas

Successfully installed novas-3.1.1.3

You can also install a specific version of a package by giving the package name followed by == and the version
number:

(tutorial-env) $ python -m pip install requests==2.6.0

Collecting requests==2.6.0

Using cached requests-2.6.0-py2.py3-none-any.whl

Installing collected packages: requests

Successfully installed requests-2.6.0

If you re-run this command, pip will notice that the requested version is already installed and do nothing. You can
supply a different version number to get that version, or you can run python -m pip install --upgrade to
upgrade the package to the latest version:

(tutorial-env) $ python -m pip install --upgrade requests

Collecting requests

Installing collected packages: requests

Found existing installation: requests 2.6.0

Uninstalling requests-2.6.0:

Successfully uninstalled requests-2.6.0

Successfully installed requests-2.7.0

python -m pip uninstall followed by one or more package names will remove the packages from the virtual
environment.

102 Chapter 12. Virtual Environments and Packages

https://pypi.org

Python Tutorial, Release 3.14.0a3

python -m pip show will display information about a particular package:

(tutorial-env) $ python -m pip show requests

Metadata-Version: 2.0

Name: requests

Version: 2.7.0

Summary: Python HTTP for Humans.

Home-page: http://python-requests.org

Author: Kenneth Reitz

Author-email: me@kennethreitz.com

License: Apache 2.0

Location: /Users/akuchling/envs/tutorial-env/lib/python3.4/site-packages

Requires:

python -m pip list will display all of the packages installed in the virtual environment:

(tutorial-env) $ python -m pip list

novas (3.1.1.3)

numpy (1.9.2)

pip (7.0.3)

requests (2.7.0)

setuptools (16.0)

python -m pip freeze will produce a similar list of the installed packages, but the output uses the format that
python -m pip install expects. A common convention is to put this list in a requirements.txt file:

(tutorial-env) $ python -m pip freeze > requirements.txt

(tutorial-env) $ cat requirements.txt

novas==3.1.1.3

numpy==1.9.2

requests==2.7.0

The requirements.txt can then be committed to version control and shipped as part of an application. Users can
then install all the necessary packages with install -r:

(tutorial-env) $ python -m pip install -r requirements.txt

Collecting novas==3.1.1.3 (from -r requirements.txt (line 1))

...

Collecting numpy==1.9.2 (from -r requirements.txt (line 2))

...

Collecting requests==2.7.0 (from -r requirements.txt (line 3))

...

Installing collected packages: novas, numpy, requests

Running setup.py install for novas

Successfully installed novas-3.1.1.3 numpy-1.9.2 requests-2.7.0

pip has many more options. Consult the installing-index guide for complete documentation for pip. When you’ve
written a package and want to make it available on the Python Package Index, consult the Python packaging user
guide.

12.3. Managing Packages with pip 103

https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://packaging.python.org/en/latest/tutorials/packaging-projects/

Python Tutorial, Release 3.14.0a3

104 Chapter 12. Virtual Environments and Packages

CHAPTER

THIRTEEN

WHAT NOW?

Reading this tutorial has probably reinforced your interest in using Python — you should be eager to apply Python to
solving your real-world problems. Where should you go to learn more?

This tutorial is part of Python’s documentation set. Some other documents in the set are:

• library-index:

You should browse through this manual, which gives complete (though terse) reference material about types,
functions, and the modules in the standard library. The standard Python distribution includes a lot of additional
code. There are modules to read Unix mailboxes, retrieve documents via HTTP, generate random numbers,
parse command-line options, compress data, and many other tasks. Skimming through the Library Reference
will give you an idea of what’s available.

• installing-index explains how to install additional modules written by other Python users.

• reference-index: A detailed explanation of Python’s syntax and semantics. It’s heavy reading, but is useful as
a complete guide to the language itself.

More Python resources:

• https://www.python.org: The major Python web site. It contains code, documentation, and pointers to Python-
related pages around the web.

• https://docs.python.org: Fast access to Python’s documentation.

• https://pypi.org: The Python Package Index, previously also nicknamed the Cheese Shop1, is an index of user-
created Python modules that are available for download. Once you begin releasing code, you can register it
here so that others can find it.

• https://code.activestate.com/recipes/langs/python/: The Python Cookbook is a sizable collection of code ex-
amples, larger modules, and useful scripts. Particularly notable contributions are collected in a book also titled
Python Cookbook (O’Reilly & Associates, ISBN 0-596-00797-3.)

• https://pyvideo.org collects links to Python-related videos from conferences and user-group meetings.

• https://scipy.org: The Scientific Python project includesmodules for fast array computations andmanipulations
plus a host of packages for such things as linear algebra, Fourier transforms, non-linear solvers, random number
distributions, statistical analysis and the like.

For Python-related questions and problem reports, you can post to the newsgroup comp.lang.python, or send
them to the mailing list at python-list@python.org. The newsgroup and mailing list are gatewayed, so messages
posted to one will automatically be forwarded to the other. There are hundreds of postings a day, asking (and
answering) questions, suggesting new features, and announcing new modules. Mailing list archives are available at
https://mail.python.org/pipermail/.

Before posting, be sure to check the list of Frequently Asked Questions (also called the FAQ). The FAQ answers
many of the questions that come up again and again, and may already contain the solution for your problem.

1 “Cheese Shop” is a Monty Python’s sketch: a customer enters a cheese shop, but whatever cheese he asks for, the clerk says it’s missing.

105

https://www.python.org
https://docs.python.org
https://pypi.org
https://code.activestate.com/recipes/langs/python/
https://pyvideo.org
https://scipy.org
mailto:python-list@python.org
https://mail.python.org/pipermail/

Python Tutorial, Release 3.14.0a3

106 Chapter 13. What Now?

CHAPTER

FOURTEEN

INTERACTIVE INPUT EDITING AND HISTORY SUBSTITUTION

Some versions of the Python interpreter support editing of the current input line and history substitution, similar to
facilities found in the Korn shell and the GNU Bash shell. This is implemented using the GNU Readline library,
which supports various styles of editing. This library has its own documentation which we won’t duplicate here.

14.1 Tab Completion and History Editing

Completion of variable and module names is automatically enabled at interpreter startup so that the Tab key invokes
the completion function; it looks at Python statement names, the current local variables, and the available module
names. For dotted expressions such as string.a, it will evaluate the expression up to the final '.' and then suggest
completions from the attributes of the resulting object. Note that this may execute application-defined code if an
object with a __getattr__() method is part of the expression. The default configuration also saves your history
into a file named .python_history in your user directory. The history will be available again during the next
interactive interpreter session.

14.2 Alternatives to the Interactive Interpreter

This facility is an enormous step forward compared to earlier versions of the interpreter; however, some wishes are
left: It would be nice if the proper indentation were suggested on continuation lines (the parser knows if an indent
token is required next). The completion mechanism might use the interpreter’s symbol table. A command to check
(or even suggest) matching parentheses, quotes, etc., would also be useful.

One alternative enhanced interactive interpreter that has been around for quite some time is IPython, which features
tab completion, object exploration and advanced history management. It can also be thoroughly customized and
embedded into other applications. Another similar enhanced interactive environment is bpython.

107

https://tiswww.case.edu/php/chet/readline/rltop.html
https://ipython.org/
https://bpython-interpreter.org/

Python Tutorial, Release 3.14.0a3

108 Chapter 14. Interactive Input Editing and History Substitution

CHAPTER

FIFTEEN

FLOATING-POINT ARITHMETIC: ISSUES AND LIMITATIONS

Floating-point numbers are represented in computer hardware as base 2 (binary) fractions. For example, the decimal
fraction 0.625 has value 6/10 + 2/100 + 5/1000, and in the same way the binary fraction 0.101 has value 1/2 +
0/4 + 1/8. These two fractions have identical values, the only real difference being that the first is written in base 10
fractional notation, and the second in base 2.

Unfortunately, most decimal fractions cannot be represented exactly as binary fractions. A consequence is that, in
general, the decimal floating-point numbers you enter are only approximated by the binary floating-point numbers
actually stored in the machine.

The problem is easier to understand at first in base 10. Consider the fraction 1/3. You can approximate that as a base
10 fraction:

0.3

or, better,

0.33

or, better,

0.333

and so on. No matter how many digits you’re willing to write down, the result will never be exactly 1/3, but will be
an increasingly better approximation of 1/3.

In the same way, no matter how many base 2 digits you’re willing to use, the decimal value 0.1 cannot be represented
exactly as a base 2 fraction. In base 2, 1/10 is the infinitely repeating fraction

0.0001100110011001100110011001100110011001100110011...

Stop at any finite number of bits, and you get an approximation. On most machines today, floats are approximated
using a binary fraction with the numerator using the first 53 bits starting with the most significant bit and with the
denominator as a power of two. In the case of 1/10, the binary fraction is 3602879701896397 / 2 ** 55 which
is close to but not exactly equal to the true value of 1/10.

Many users are not aware of the approximation because of the way values are displayed. Python only prints a decimal
approximation to the true decimal value of the binary approximation stored by the machine. On most machines, if
Python were to print the true decimal value of the binary approximation stored for 0.1, it would have to display:

>>> 0.1

0.1000000000000000055511151231257827021181583404541015625

That is more digits than most people find useful, so Python keeps the number of digits manageable by displaying a
rounded value instead:

>>> 1 / 10

0.1

109

Python Tutorial, Release 3.14.0a3

Just remember, even though the printed result looks like the exact value of 1/10, the actual stored value is the nearest
representable binary fraction.

Interestingly, there are many different decimal numbers that share the same nearest approxi-
mate binary fraction. For example, the numbers 0.1 and 0.10000000000000001 and 0.

1000000000000000055511151231257827021181583404541015625 are all approximated by
3602879701896397 / 2 ** 55. Since all of these decimal values share the same approximation, any
one of them could be displayed while still preserving the invariant eval(repr(x)) == x.

Historically, the Python prompt and built-in repr() function would choose the one with 17 significant digits, 0.
10000000000000001. Starting with Python 3.1, Python (on most systems) is now able to choose the shortest of
these and simply display 0.1.

Note that this is in the very nature of binary floating point: this is not a bug in Python, and it is not a bug in your
code either. You’ll see the same kind of thing in all languages that support your hardware’s floating-point arithmetic
(although some languages may not display the difference by default, or in all output modes).

For more pleasant output, you may wish to use string formatting to produce a limited number of significant digits:

>>> format(math.pi, '.12g') # give 12 significant digits

'3.14159265359'

>>> format(math.pi, '.2f') # give 2 digits after the point

'3.14'

>>> repr(math.pi)

'3.141592653589793'

It’s important to realize that this is, in a real sense, an illusion: you’re simply rounding the display of the true machine
value.

One illusion may beget another. For example, since 0.1 is not exactly 1/10, summing three values of 0.1 may not
yield exactly 0.3, either:

>>> 0.1 + 0.1 + 0.1 == 0.3

False

Also, since the 0.1 cannot get any closer to the exact value of 1/10 and 0.3 cannot get any closer to the exact value
of 3/10, then pre-rounding with round() function cannot help:

>>> round(0.1, 1) + round(0.1, 1) + round(0.1, 1) == round(0.3, 1)

False

Though the numbers cannot be made closer to their intended exact values, the math.isclose() function can be
useful for comparing inexact values:

>>> math.isclose(0.1 + 0.1 + 0.1, 0.3)

True

Alternatively, the round() function can be used to compare rough approximations:

>>> round(math.pi, ndigits=2) == round(22 / 7, ndigits=2)

True

Binary floating-point arithmetic holds many surprises like this. The problem with “0.1” is explained in precise detail
below, in the “Representation Error” section. See Examples of Floating Point Problems for a pleasant summary of
how binary floating point works and the kinds of problems commonly encountered in practice. Also see The Perils
of Floating Point for a more complete account of other common surprises.

As that says near the end, “there are no easy answers.” Still, don’t be unduly wary of floating point! The errors in
Python float operations are inherited from the floating-point hardware, and on most machines are on the order of no

110 Chapter 15. Floating-Point Arithmetic: Issues and Limitations

https://jvns.ca/blog/2023/01/13/examples-of-floating-point-problems/
http://www.indowsway.com/floatingpoint.htm
http://www.indowsway.com/floatingpoint.htm

Python Tutorial, Release 3.14.0a3

more than 1 part in 2**53 per operation. That’s more than adequate for most tasks, but you do need to keep in mind
that it’s not decimal arithmetic and that every float operation can suffer a new rounding error.

While pathological cases do exist, for most casual use of floating-point arithmetic you’ll see the result you expect
in the end if you simply round the display of your final results to the number of decimal digits you expect. str()
usually suffices, and for finer control see the str.format() method’s format specifiers in formatstrings.

For use cases which require exact decimal representation, try using the decimalmodule which implements decimal
arithmetic suitable for accounting applications and high-precision applications.

Another form of exact arithmetic is supported by the fractions module which implements arithmetic based on
rational numbers (so the numbers like 1/3 can be represented exactly).

If you are a heavy user of floating-point operations you should take a look at the NumPy package and many other
packages for mathematical and statistical operations supplied by the SciPy project. See <https://scipy.org>.

Python provides tools that may help on those rare occasions when you really do want to know the exact value of a
float. The float.as_integer_ratio() method expresses the value of a float as a fraction:

>>> x = 3.14159

>>> x.as_integer_ratio()

(3537115888337719, 1125899906842624)

Since the ratio is exact, it can be used to losslessly recreate the original value:

>>> x == 3537115888337719 / 1125899906842624

True

The float.hex() method expresses a float in hexadecimal (base 16), again giving the exact value stored by your
computer:

>>> x.hex()

'0x1.921f9f01b866ep+1'

This precise hexadecimal representation can be used to reconstruct the float value exactly:

>>> x == float.fromhex('0x1.921f9f01b866ep+1')

True

Since the representation is exact, it is useful for reliably porting values across different versions of Python (platform
independence) and exchanging data with other languages that support the same format (such as Java and C99).

Another helpful tool is the sum() function which helps mitigate loss-of-precision during summation. It uses extended
precision for intermediate rounding steps as values are added onto a running total. That can make a difference in
overall accuracy so that the errors do not accumulate to the point where they affect the final total:

>>> 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 == 1.0

False

>>> sum([0.1] * 10) == 1.0

True

The math.fsum() goes further and tracks all of the “lost digits” as values are added onto a running total so that the
result has only a single rounding. This is slower than sum() but will be more accurate in uncommon cases where
large magnitude inputs mostly cancel each other out leaving a final sum near zero:

>>> arr = [-0.10430216751806065, -266310978.67179024, 143401161448607.16,

... -143401161400469.7, 266262841.31058735, -0.003244936839808227]

>>> float(sum(map(Fraction, arr))) # Exact summation with single rounding

8.042173697819788e-13

>>> math.fsum(arr) # Single rounding

8.042173697819788e-13

>>> sum(arr) # Multiple roundings in extended precision

(continues on next page)

111

https://scipy.org

Python Tutorial, Release 3.14.0a3

(continued from previous page)

8.042178034628478e-13

>>> total = 0.0

>>> for x in arr:

... total += x # Multiple roundings in standard precision

...

>>> total # Straight addition has no correct digits!

-0.0051575902860057365

15.1 Representation Error

This section explains the “0.1” example in detail, and shows how you can perform an exact analysis of cases like this
yourself. Basic familiarity with binary floating-point representation is assumed.

Representation error refers to the fact that some (most, actually) decimal fractions cannot be represented exactly as
binary (base 2) fractions. This is the chief reason why Python (or Perl, C, C++, Java, Fortran, and many others) often
won’t display the exact decimal number you expect.

Why is that? 1/10 is not exactly representable as a binary fraction. Since at least 2000, almost all machines use
IEEE 754 binary floating-point arithmetic, and almost all platforms map Python floats to IEEE 754 binary64 “double
precision” values. IEEE 754 binary64 values contain 53 bits of precision, so on input the computer strives to convert
0.1 to the closest fraction it can of the form J/2**N where J is an integer containing exactly 53 bits. Rewriting

1 / 10 ~= J / (2**N)

as

J ~= 2**N / 10

and recalling that J has exactly 53 bits (is >= 2**52 but < 2**53), the best value for N is 56:

>>> 2**52 <= 2**56 // 10 < 2**53

True

That is, 56 is the only value for N that leaves J with exactly 53 bits. The best possible value for J is then that quotient
rounded:

>>> q, r = divmod(2**56, 10)

>>> r

6

Since the remainder is more than half of 10, the best approximation is obtained by rounding up:

>>> q+1

7205759403792794

Therefore the best possible approximation to 1/10 in IEEE 754 double precision is:

7205759403792794 / 2 ** 56

Dividing both the numerator and denominator by two reduces the fraction to:

3602879701896397 / 2 ** 55

Note that since we rounded up, this is actually a little bit larger than 1/10; if we had not rounded up, the quotient
would have been a little bit smaller than 1/10. But in no case can it be exactly 1/10!

So the computer never “sees” 1/10: what it sees is the exact fraction given above, the best IEEE 754 double approx-
imation it can get:

112 Chapter 15. Floating-Point Arithmetic: Issues and Limitations

Python Tutorial, Release 3.14.0a3

>>> 0.1 * 2 ** 55

3602879701896397.0

If we multiply that fraction by 10**55, we can see the value out to 55 decimal digits:

>>> 3602879701896397 * 10 ** 55 // 2 ** 55

1000000000000000055511151231257827021181583404541015625

meaning that the exact number stored in the computer is equal to the decimal value
0.1000000000000000055511151231257827021181583404541015625. Instead of displaying the full deci-
mal value, many languages (including older versions of Python), round the result to 17 significant digits:

>>> format(0.1, '.17f')

'0.10000000000000001'

The fractions and decimal modules make these calculations easy:

>>> from decimal import Decimal

>>> from fractions import Fraction

>>> Fraction.from_float(0.1)

Fraction(3602879701896397, 36028797018963968)

>>> (0.1).as_integer_ratio()

(3602879701896397, 36028797018963968)

>>> Decimal.from_float(0.1)

Decimal('0.1000000000000000055511151231257827021181583404541015625')

>>> format(Decimal.from_float(0.1), '.17')

'0.10000000000000001'

15.1. Representation Error 113

Python Tutorial, Release 3.14.0a3

114 Chapter 15. Floating-Point Arithmetic: Issues and Limitations

CHAPTER

SIXTEEN

APPENDIX

16.1 Interactive Mode

There are two variants of the interactiveREPL. The classic basic interpreter is supported on all platforms withminimal
line control capabilities.

OnWindows, or Unix-like systems with curses support, a new interactive shell is used by default. This one supports
color, multiline editing, history browsing, and paste mode. To disable color, see using-on-controlling-color for details.
Function keys provide some additional functionality. F1 enters the interactive help browser pydoc. F2 allows for
browsing command-line history with neither output nor the »> and… prompts. F3 enters “paste mode”, which makes
pasting larger blocks of code easier. Press F3 to return to the regular prompt.

When using the new interactive shell, exit the shell by typing exit or quit. Adding call parentheses after those
commands is not required.

If the new interactive shell is not desired, it can be disabled via the PYTHON_BASIC_REPL environment variable.

16.1.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode, it then returns
to the primary prompt; when input came from a file, it exits with a nonzero exit status after printing the stack
trace. (Exceptions handled by an except clause in a try statement are not errors in this context.) Some errors are
unconditionally fatal and cause an exit with a nonzero exit status; this applies to internal inconsistencies and some
cases of running out of memory. All error messages are written to the standard error stream; normal output from
executed commands is written to standard output.

Typing the interrupt character (usually Control-C or Delete) to the primary or secondary prompt cancels
the input and returns to the primary prompt.1 Typing an interrupt while a command is executing raises the
KeyboardInterrupt exception, which may be handled by a try statement.

16.1.2 Executable Python Scripts

On BSD’ish Unix systems, Python scripts can be made directly executable, like shell scripts, by putting the line

#!/usr/bin/env python3

(assuming that the interpreter is on the user’s PATH) at the beginning of the script and giving the file an executable
mode. The #!must be the first two characters of the file. On some platforms, this first line must end with a Unix-style
line ending ('\n'), not a Windows ('\r\n') line ending. Note that the hash, or pound, character, '#', is used to
start a comment in Python.

The script can be given an executable mode, or permission, using the chmod command.

$ chmod +x myscript.py

OnWindows systems, there is no notion of an “executable mode”. The Python installer automatically associates .py
files with python.exe so that a double-click on a Python file will run it as a script. The extension can also be .pyw,
in that case, the console window that normally appears is suppressed.

1 A problem with the GNU Readline package may prevent this.

115

Python Tutorial, Release 3.14.0a3

16.1.3 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard commands executed every time the
interpreter is started. You can do this by setting an environment variable named PYTHONSTARTUP to the name of a
file containing your start-up commands. This is similar to the .profile feature of the Unix shells.

This file is only read in interactive sessions, not when Python reads commands from a script, and not when /dev/tty
is given as the explicit source of commands (which otherwise behaves like an interactive session). It is executed in
the same namespace where interactive commands are executed, so that objects that it defines or imports can be used
without qualification in the interactive session. You can also change the prompts sys.ps1 and sys.ps2 in this file.

If you want to read an additional start-up file from the current directory, you can program this in the global start-up
file using code like if os.path.isfile('.pythonrc.py'): exec(open('.pythonrc.py').read()). If
you want to use the startup file in a script, you must do this explicitly in the script:

import os

filename = os.environ.get('PYTHONSTARTUP')

if filename and os.path.isfile(filename):

with open(filename) as fobj:

startup_file = fobj.read()

exec(startup_file)

16.1.4 The Customization Modules

Python provides two hooks to let you customize it: sitecustomize and usercustomize. To see how it works, you need
first to find the location of your user site-packages directory. Start Python and run this code:

>>> import site

>>> site.getusersitepackages()

'/home/user/.local/lib/python3.x/site-packages'

Now you can create a file named usercustomize.py in that directory and put anything you want in it. It will affect
every invocation of Python, unless it is started with the -s option to disable the automatic import.

sitecustomize works in the same way, but is typically created by an administrator of the computer in the global site-
packages directory, and is imported before usercustomize. See the documentation of the site module for more
details.

116 Chapter 16. Appendix

APPENDIX

A

GLOSSARY

>>>

The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

...

Can refer to:

• The default Python prompt of the interactive shell when entering the code for an indented code block,
when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or
triple quotes), or after specifying a decorator.

• The Ellipsis built-in constant.

abstract base class
Abstract base classes complement duck-typing by providing a way to define interfaces when other techniques
like hasattr() would be clumsy or subtly wrong (for example with magic methods). ABCs introduce virtual
subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance() and
issubclass(); see the abc module documentation. Python comes with many built-in ABCs for data struc-
tures (in the collections.abc module), numbers (in the numbers module), streams (in the io module),
import finders and loaders (in the importlib.abc module). You can create your own ABCs with the abc
module.

annotate function
A function that can be called to retrieve the annotations of an object. This function is accessible as the
__annotate__ attribute of functions, classes, and modules. Annotate functions are a subset of evaluate
functions.

annotation
A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class at-
tributes, and functions can be retrieved by calling annotationlib.get_annotations() on modules,
classes, and functions, respectively.

See variable annotation, function annotation, PEP 484, PEP 526, and PEP 649, which describe this func-
tionality. Also see annotations-howto for best practices on working with annotations.

argument
A value passed to a function (or method) when calling the function. There are two kinds of argument:

• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following
calls to complex():

complex(real=3, imag=5)

complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3

117

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/
https://peps.python.org/pep-0649/

Python Tutorial, Release 3.14.0a3

and 5 are both positional arguments in the following calls:

complex(3, 5)

complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

asynchronous context manager
An object which controls the environment seen in an async with statement by defining __aenter__() and
__aexit__() methods. Introduced by PEP 492.

asynchronous generator
A function which returns an asynchronous generator iterator. It looks like a coroutine function defined with
async def except that it contains yield expressions for producing a series of values usable in an async
for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in
some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain await expressions as well as async for, and async with

statements.

asynchronous generator iterator
An object created by a asynchronous generator function.

This is an asynchronous iteratorwhich when called using the __anext__()method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the asynchronous generator iterator effectively resumes with another
awaitable returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__() method. Introduced by PEP 492.

asynchronous iterator
An object that implements the __aiter__() and __anext__() methods. __anext__() must return an
awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s __anext__()
method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute
A value associated with an object which is usually referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.

It is possible to give an object an attribute whose name is not an identifier as defined by identifiers, for example
using setattr(), if the object allows it. Such an attribute will not be accessible using a dotted expression,
and would instead need to be retrieved with getattr().

awaitable
An object that can be used in an await expression. Can be a coroutine or an object with an __await__()
method. See also PEP 492.

BDFL
Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file
A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode
('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.BytesIO and
gzip.GzipFile.

118 Appendix A. Glossary

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

Python Tutorial, Release 3.14.0a3

See also text file for a file object able to read and write str objects.

borrowed reference
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection
can remove the last strong reference to the object and so destroy it.

Calling Py_INCREF() on the borrowed reference is recommended to convert it to a strong reference in-place,
except when the object cannot be destroyed before the last usage of the borrowed reference. The Py_NewRef()
function can be used to create a new strong reference.

bytes-like object
An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all bytes,
bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like objects
can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as “read-write
bytes-like objects”. Example mutable buffer objects include bytearray and a memoryview of a bytearray.
Other operations require the binary data to be stored in immutable objects (“read-only bytes-like objects”);
examples of these include bytes and a memoryview of a bytes object.

bytecode
Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a
virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are
not expected to work between different Python virtual machines, nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

callable
A callable is an object that can be called, possibly with a set of arguments (see argument), with the following
syntax:

callable(argument1, argument2, argumentN)

A function, and by extension a method, is a callable. An instance of a class that implements the __call__()
method is also a callable.

callback
A subroutine function which is passed as an argument to be executed at some point in the future.

class
A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

class variable
A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the class).

closure variable
A free variable referenced from a nested scope that is defined in an outer scope rather than being resolved at
runtime from the globals or builtin namespaces. May be explicitly defined with the nonlocal keyword to
allow write access, or implicitly defined if the variable is only being read.

For example, in the inner function in the following code, both x and print are free variables, but only x is
a closure variable:

def outer():

x = 0

def inner():

nonlocal x

x += 1

(continues on next page)

119

Python Tutorial, Release 3.14.0a3

(continued from previous page)

print(x)

return inner

Due to the codeobject.co_freevars attribute (which, despite its name, only includes the names of closure
variables rather than listing all referenced free variables), the more general free variable term is sometimes used
even when the intended meaning is to refer specifically to closure variables.

complex number
An extension of the familiar real number system in which all numbers are expressed as a sum of a real part and
an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1), often
written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to com-
plex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical
feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context
This term has different meanings depending on where and how it is used. Some common meanings:

• The temporary state or environment established by a context manager via a with statement.

• The collection of keyvalue bindings associated with a particular contextvars.Context object and
accessed via ContextVar objects. Also see context variable.

• A contextvars.Context object. Also see current context.

context management protocol
The __enter__() and __exit__() methods called by the with statement. See PEP 343.

context manager
An object which implements the context management protocol and controls the environment seen in a with
statement. See PEP 343.

context variable
A variable whose value depends on which context is the current context. Values are accessed via
contextvars.ContextVar objects. Context variables are primarily used to isolate state between concur-
rent asynchronous tasks.

contiguous
A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next
to each other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the
last index varies the fastest when visiting items in order of memory address. However, in Fortran contiguous
arrays, the first index varies the fastest.

coroutine
Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at
another point. Coroutines can be entered, exited, and resumed at many different points. They can be imple-
mented with the async def statement. See also PEP 492.

coroutine function
A function which returns a coroutine object. A coroutine function may be defined with the async def state-
ment, and may contain await, async for, and async with keywords. These were introduced by PEP
492.

CPython
The canonical implementation of the Python programming language, as distributed on python.org. The term
“CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

current context
The context (contextvars.Context object) that is currently used by ContextVar objects to access (get
or set) the values of context variables. Each thread has its own current context. Frameworks for executing
asynchronous tasks (see asyncio) associate each task with a context which becomes the current context
whenever the task starts or resumes execution.

120 Appendix A. Glossary

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

Python Tutorial, Release 3.14.0a3

decorator
A function returning another function, usually applied as a function transformation using the @wrapper syntax.
Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiv-
alent:

def f(arg):

...

f = staticmethod(f)

@staticmethod

def f(arg):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

descriptor
Any object which defines the methods __get__(), __set__(), or __delete__(). When a class attribute
is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to get,
set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

For more information about descriptors’ methods, see descriptors or the Descriptor How To Guide.

dictionary
An associative array, where arbitrary keys are mapped to values. The keys can be any object with __hash__()
and __eq__() methods. Called a hash in Perl.

dictionary comprehension
A compact way to process all or part of the elements in an iterable and return a dictionary with the re-
sults. results = {n: n ** 2 for n in range(10)} generates a dictionary containing key n mapped
to value n ** 2. See comprehensions.

dictionary view
The objects returned from dict.keys(), dict.values(), and dict.items() are called dictionary views.
They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the
view reflects these changes. To force the dictionary view to become a full list use list(dictview). See
dict-views.

docstring
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing
A programming style which does not look at an object’s type to determine if it has the right interface; instead,
the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must be
a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility
by allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note,
however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests or EAFP programming.

EAFP
Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of
valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except statements. The technique contrasts with the LBYL
style common to many other languages such as C.

121

Python Tutorial, Release 3.14.0a3

evaluate function
A function that can be called to evaluate a lazily evaluated attribute of an object, such as the value of type
aliases created with the type statement.

expression
A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation of
expression elements like literals, names, attribute access, operators or function calls which all return a value. In
contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

extension module
A module written in C or C++, using Python’s C API to interact with the core and with user code.

f-string
String literals prefixed with 'f' or 'F' are commonly called “f-strings” which is short for formatted string
literals. See also PEP 498.

file object
An object exposing a file-oriented API (with methods such as read() or write()) to an underlying resource.
Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type of
storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes, etc.).
File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open()
function.

file-like object
A synonym for file object.

filesystem encoding and error handler
Encoding and error handler used by Python to decode bytes from the operating system and encode Unicode to
the operating system.

The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding
fails to provide this guarantee, API functions can raise UnicodeError.

The sys.getfilesystemencoding() and sys.getfilesystemencodeerrors() functions can be
used to get the filesystem encoding and error handler.

The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read() func-
tion: see filesystem_encoding and filesystem_errors members of PyConfig.

See also the locale encoding.

finder
An object that tries to find the loader for a module that is being imported.

There are two types of finder: meta path finders for use with sys.meta_path, and path entry finders for use
with sys.path_hooks.

See finders-and-loaders and importlib for much more detail.

floor division
Mathematical division that rounds down to nearest integer. The floor division operator is //. For example, the
expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11)
// 4 is -3 because that is -2.75 rounded downward. See PEP 238.

free threading
A threadingmodel wheremultiple threads can run Python bytecode simultaneously within the same interpreter.
This is in contrast to the global interpreter lock which allows only one thread to execute Python bytecode at a
time. See PEP 703.

free variable
Formally, as defined in the language execution model, a free variable is any variable used in a namespace
which is not a local variable in that namespace. See closure variable for an example. Pragmatically, due to the

122 Appendix A. Glossary

https://peps.python.org/pep-0498/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0703/

Python Tutorial, Release 3.14.0a3

name of the codeobject.co_freevars attribute, the term is also sometimes used as a synonym for closure
variable.

function
A series of statements which returns some value to a caller. It can also be passed zero or more argumentswhich
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation
An annotation of a function parameter or return value.

Function annotations are usually used for type hints: for example, this function is expected to take two int
arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:

return a + b

Function annotation syntax is explained in section function.

See variable annotation and PEP 484, which describe this functionality. Also see annotations-howto for best
practices on working with annotations.

__future__
A future statement, from __future__ import <feature>, directs the compiler to compile the current
module using syntax or semantics that will become standard in a future release of Python. The __future__
module documents the possible values of feature. By importing this module and evaluating its variables, you
can see when a new feature was first added to the language and when it will (or did) become the default:

>>> import __future__

>>> __future__.division

_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection
The process of freeing memory when it is not used anymore. Python performs garbage collection via reference
counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage collector
can be controlled using the gc module.

generator
A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next() function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where
the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator
An object created by a generator function.

Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast
to functions which start fresh on every invocation).

generator expression
An expression that returns an iterator. It looks like a normal expression followed by a for clause defining a
loop variable, range, and an optional if clause. The combined expression generates values for an enclosing
function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81

285

generic function
A function composed of multiple functions implementing the same operation for different types. Which im-
plementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP 443.

123

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0443/

Python Tutorial, Release 3.14.0a3

generic type
A type that can be parameterized; typically a container class such as list or dict. Used for type hints and
annotations.

For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the typing module.

GIL
See global interpreter lock.

global interpreter lock
The mechanism used by the CPython interpreter to assure that only one thread executes Python bytecode at
a time. This simplifies the CPython implementation by making the object model (including critical built-in
types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/O.

As of Python 3.13, the GIL can be disabled using the --disable-gil build configuration. After building
Python with this option, code must be run with -X gil=0 or after setting the PYTHON_GIL=0 environment
variable. This feature enables improved performance for multi-threaded applications and makes it easier to
use multi-core CPUs efficiently. For more details, see PEP 703.

hash-based pyc
A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source file to
determine its validity. See pyc-invalidation.

hashable
An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__() method). Hashable objects which
compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries)
are not; immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable.
Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except
with themselves), and their hash value is derived from their id().

IDLE
An Integrated Development and Learning Environment for Python. idle is a basic editor and interpreter envi-
ronment which ships with the standard distribution of Python.

immortal
Immortal objects are a CPython implementation detail introduced in PEP 683.

If an object is immortal, its reference count is never modified, and therefore it is never deallocated while the
interpreter is running. For example, True and None are immortal in CPython.

immutable
An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path
A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys.path, but for subpackages it may also come from the
parent package’s __path__ attribute.

importing
The process by which Python code in one module is made available to Python code in another module.

124 Appendix A. Glossary

https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0683/

Python Tutorial, Release 3.14.0a3

importer
An object that both finds and loads a module; both a finder and loader object.

interactive
Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly
by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect
modules and packages (remember help(x)). For more on interactive mode, see Interactive Mode.

interpreted
Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly
creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown
When asked to shut down, the Python interpreter enters a special phase where it gradually releases all allocated
resources, such as modules and various critical internal structures. It also makes several calls to the garbage
collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code exe-
cuted during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

iterable
An object capable of returning its members one at a time. Examples of iterables include all sequence types
(such as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any
classes you define with an __iter__()method or with a __getitem__()method that implements sequence
semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(),
…). When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter() or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator
An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or passing
it to the built-in function next()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
to its __next__() method just raise StopIteration again. Iterators are required to have an __iter__()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places
where other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A
container object (such as a list) produces a fresh new iterator each time you pass it to the iter() function
or use it in a for loop. Attempting this with an iterator will just return the same exhausted iterator object used
in the previous iteration pass, making it appear like an empty container.

More information can be found in typeiter.

CPython implementation detail: CPython does not consistently apply the requirement that an iterator define
__iter__(). And also please note that the free-threading CPython does not guarantee the thread-safety of
iterator operations.

key function
A key function or collation function is a callable that returns a value used for sorting or ordering. For example,
locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They
include min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.
nlargest(), and itertools.groupby().

125

Python Tutorial, Release 3.14.0a3

There are several ways to create a key function. For example. the str.lower() method can serve as a
key function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression
such as lambda r: (r[0], r[2]). Also, operator.attrgetter(), operator.itemgetter(), and
operator.methodcaller() are three key function constructors. See the Sorting HOW TO for examples
of how to create and use key functions.

keyword argument
See argument.

lambda
An anonymous inline function consisting of a single expression which is evaluated when the function is called.
The syntax to create a lambda function is lambda [parameters]: expression

LBYL
Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the
looking” and “the leaping”. For example, the code, if key in mapping: return mapping[key] can
fail if another thread removes key from mapping after the test, but before the lookup. This issue can be solved
with locks or by using the EAFP approach.

list
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension
A compact way to process all or part of the elements in a sequence and return a list with the results. result
= ['{:#04x}'.format(x) for x in range(256) if x % 2 == 0] generates a list of strings con-
taining even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all elements
in range(256) are processed.

loader
An object that loads a module. It must define a method named load_module(). A loader is typically returned
by a finder. See also:

• finders-and-loaders

• importlib.abc.Loader

• PEP 302

locale encoding
On Unix, it is the encoding of the LC_CTYPE locale. It can be set with locale.setlocale(locale.

LC_CTYPE, new_locale).

On Windows, it is the ANSI code page (ex: "cp1252").

On Android and VxWorks, Python uses "utf-8" as the locale encoding.

locale.getencoding() can be used to get the locale encoding.

See also the filesystem encoding and error handler.

magic method
An informal synonym for special method.

mapping
A container object that supports arbitrary key lookups and implements the methods specified in the
collections.abc.Mapping or collections.abc.MutableMapping abstract base classes. Exam-
ples include dict, collections.defaultdict, collections.OrderedDict and collections.

Counter.

meta path finder
A finder returned by a search of sys.meta_path. Meta path finders are related to, but different from path
entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

126 Appendix A. Glossary

https://peps.python.org/pep-0302/

Python Tutorial, Release 3.14.0a3

metaclass
The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented pro-
gramming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method
A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order
Method Resolution Order is the order in which base classes are searched for a member during lookup. See
python_2.3_mro for details of the algorithm used by the Python interpreter since the 2.3 release.

module
An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec
A namespace containing the import-related information used to load a module. An instance of importlib.
machinery.ModuleSpec.

See also module-specs.

MRO
See method resolution order.

mutable
Mutable objects can change their value but keep their id(). See also immutable.

named tuple
The term “named tuple” applies to any type or class that inherits from tuple and whose indexable elements are
also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime() and os.

stat(). Another example is sys.float_info:

>>> sys.float_info[1] # indexed access

1024

>>> sys.float_info.max_exp # named field access

1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be
created from a regular class definition that inherits from tuple and that defines named fields. Such a class
can be written by hand, or it can be created by inheriting typing.NamedTuple, or with the factory function
collections.namedtuple(). The latter techniques also add some extra methods that may not be found
in hand-written or built-in named tuples.

namespace
The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support
modularity by preventing naming conflicts. For instance, the functions builtins.open and os.open() are
distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random.seed() or itertools.islice()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

127

Python Tutorial, Release 3.14.0a3

namespace package
A PEP 420 package which serves only as a container for subpackages. Namespace packages may have no
physical representation, and specifically are not like a regular package because they have no __init__.py
file.

See also module.

nested scope
The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference
and not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables
read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only
new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

object
Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

optimized scope
A scope where target local variable names are reliably known to the compiler when the code is compiled,
allowing optimization of read and write access to these names. The local namespaces for functions, generators,
coroutines, comprehensions, and generator expressions are optimized in this fashion. Note: most interpreter
optimizations are applied to all scopes, only those relying on a known set of local and nonlocal variable names
are restricted to optimized scopes.

package
A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module with a __path__ attribute.

See also regular package and namespace package.

parameter
A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argu-
ment. This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Positional-only parameters
can be defined by including a / character in the parameter list of the function definition after them, for
example posonly1 and posonly2 in the following:

def func(posonly1, posonly2, /, positional_or_keyword): ...

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters
can be defined by including a single var-positional parameter or bare * in the parameter list of the function
definition before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

128 Appendix A. Glossary

https://peps.python.org/pep-0420/

Python Tutorial, Release 3.14.0a3

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional
arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
the inspect.Parameter class, the function section, and PEP 362.

path entry
A single location on the import path which the path based finder consults to find modules for importing.

path entry finder
A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to locate
modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook
A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules on
a specific path entry.

path based finder
One of the default meta path finders which searches an import path for modules.

path-like object
An object representing a file system path. A path-like object is either a str or bytes object representing
a path, or an object implementing the os.PathLike protocol. An object that supports the os.PathLike
protocol can be converted to a str or bytes file system path by calling the os.fspath() function; os.
fsdecode() and os.fsencode() can be used to guarantee a str or bytes result instead, respectively.
Introduced by PEP 519.

PEP
Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community
input on an issue, and for documenting the design decisions that have gone into Python. The PEP author is
responsible for building consensus within the community and documenting dissenting opinions.

See PEP 1.

portion
A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as
defined in PEP 420.

positional argument
See argument.

provisional API
A provisional API is one which has been deliberately excluded from the standard library’s backwards com-
patibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if
deemed necessary by core developers. Such changes will not be made gratuitously – they will occur only if
serious fundamental flaws are uncovered that were missed prior to the inclusion of the API.

Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” - every
attempt will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package
See provisional API.

129

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/

Python Tutorial, Release 3.14.0a3

Python 3000
Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in the
distant future.) This is also abbreviated “Py3k”.

Pythonic
An idea or piece of code which closely follows the most common idioms of the Python language, rather than
implementing code using concepts common to other languages. For example, a common idiom in Python is
to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):

print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:

print(piece)

qualified name
A dotted name showing the “path” from a module’s global scope to a class, function or method defined in that
module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

>>> class C:

... class D:

... def meth(self):

... pass

...

>>> C.__qualname__

'C'

>>> C.D.__qualname__

'C.D'

>>> C.D.meth.__qualname__

'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including
any parent packages, e.g. email.mime.text:

>>> import email.mime.text

>>> email.mime.text.__name__

'email.mime.text'

reference count
The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Some objects are immortal and have reference counts that are never modified, and therefore the objects are
never deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPython implementation. Programmers can call the sys.getrefcount() function to return the reference
count for a particular object.

regular package
A traditional package, such as a directory containing an __init__.py file.

See also namespace package.

REPL
An acronym for the “read–eval–print loop”, another name for the interactive interpreter shell.

__slots__
A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for
rare cases where there are large numbers of instances in a memory-critical application.

130 Appendix A. Glossary

https://peps.python.org/pep-3155/

Python Tutorial, Release 3.14.0a3

sequence
An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a __len__() method that returns the length of the sequence. Some built-in sequence
types are list, str, tuple, and bytes. Note that dict also supports __getitem__() and __len__(),
but is considered a mapping rather than a sequence because the lookups use arbitrary hashable keys rather
than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes beyond just
__getitem__() and __len__(), adding count(), index(), __contains__(), and __reversed__().
Types that implement this expanded interface can be registered explicitly using register(). For more
documentation on sequence methods generally, see Common Sequence Operations.

set comprehension
A compact way to process all or part of the elements in an iterable and return a set with the results. results
= {c for c in 'abracadabra' if c not in 'abc'} generates the set of strings {'r', 'd'}. See
comprehensions.

single dispatch
A form of generic function dispatch where the implementation is chosen based on the type of a single argument.

slice
An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (sub-
script) notation uses slice objects internally.

soft deprecated
A soft deprecated API should not be used in new code, but it is safe for already existing code to use it. The
API remains documented and tested, but will not be enhanced further.

Soft deprecation, unlike normal deprecation, does not plan on removing the API and will not emit warnings.

See PEP 387: Soft Deprecation.

special method
A method that is called implicitly by Python to execute a certain operation on a type, such as addition. Such
methods have names starting and ending with double underscores. Special methods are documented in spe-
cialnames.

statement
A statement is part of a suite (a “block” of code). A statement is either an expression or one of several constructs
with a keyword, such as if, while or for.

static type checker
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also
type hints and the typing module.

strong reference
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the
reference. The strong reference is taken by calling Py_INCREF() when the reference is created and released
with Py_DECREF() when the reference is deleted.

The Py_NewRef() function can be used to create a strong reference to an object. Usually, the Py_DECREF()
function must be called on the strong reference before exiting the scope of the strong reference, to avoid leaking
one reference.

See also borrowed reference.

text encoding
A string in Python is a sequence of Unicode code points (in range U+0000–U+10FFFF). To store or transfer
a string, it needs to be serialized as a sequence of bytes.

Serializing a string into a sequence of bytes is known as “encoding”, and recreating the string from the sequence
of bytes is known as “decoding”.

There are a variety of different text serialization codecs, which are collectively referred to as “text encodings”.

131

https://peps.python.org/pep-0387/#soft-deprecation

Python Tutorial, Release 3.14.0a3

text file
A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented datastream
and handles the text encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of io.StringIO.

See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string
A string which is bound by three instances of either a quotation mark (”) or an apostrophe (‘). While they don’t
provide any functionality not available with single-quoted strings, they are useful for a number of reasons.
They allow you to include unescaped single and double quotes within a string and they can span multiple lines
without the use of the continuation character, making them especially useful when writing docstrings.

type
The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

type alias
A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying type hints. For example:

def remove_gray_shades(

colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]:

pass

could be made more readable like this:

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) -> list[Color]:

pass

See typing and PEP 484, which describe this functionality.

type hint
An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return
value.

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can
also aid IDEs with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().

See typing and PEP 484, which describe this functionality.

universal newlines
A manner of interpreting text streams in which all of the following are recognized as ending a line: the Unix
end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention '\r'. See
PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.

variable annotation
An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:

field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

132 Appendix A. Glossary

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/

Python Tutorial, Release 3.14.0a3

Variable annotation syntax is explained in section annassign.

See function annotation, PEP 484 andPEP 526, which describe this functionality. Also see annotations-howto
for best practices on working with annotations.

virtual environment
A cooperatively isolated runtime environment that allows Python users and applications to install and upgrade
Python distribution packages without interfering with the behaviour of other Python applications running on
the same system.

See also venv.

virtual machine
A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by the byte-
code compiler.

Zen of Python
Listing of Python design principles and philosophies that are helpful in understanding and using the language.
The listing can be found by typing “import this” at the interactive prompt.

133

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

Python Tutorial, Release 3.14.0a3

134 Appendix A. Glossary

APPENDIX

B

ABOUT THIS DOCUMENTATION

Python’s documentation is generated from reStructuredText sources using Sphinx, a documentation generator origi-
nally created for Python and now maintained as an independent project.

Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you
want to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers
are always welcome!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and author of much of the content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation.
See Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful documentation
– Thank You!

135

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/main/Misc/ACKS

Python Tutorial, Release 3.14.0a3

136 Appendix B. About this documentation

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https:
//www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
//www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see https://www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?

0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

Note

GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the GPL,
let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

137

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Python Tutorial, Release 3.14.0a3

C.2 Terms and conditions for accessing or otherwise using Python

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Some software incorporated into Python is under different licenses. The licenses are listed with code falling under
that license. See Licenses and Acknowledgements for Incorporated Software for an incomplete list of these licenses.

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.14.0a3

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise using Python

3.14.0a3 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,

analyze, test, perform and/or display publicly, prepare derivative works,

distribute, and otherwise use Python 3.14.0a3 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's notice of

copyright, i.e., "Copyright © 2001 Python Software Foundation; All Rights

Reserved" are retained in Python 3.14.0a3 alone or in any derivative version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or

incorporates Python 3.14.0a3 or any part thereof, and wants to make the

derivative work available to others as provided herein, then Licensee hereby

agrees to include in any such work a brief summary of the changes made to Python

3.14.0a3.

4. PSF is making Python 3.14.0a3 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE

USE OF PYTHON 3.14.0a3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.14.0a3

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.14.0a3, OR ANY DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship

of agency, partnership, or joint venture between PSF and Licensee. This License

Agreement does not grant permission to use PSF trademarks or trade name in a

trademark sense to endorse or promote products or services of Licensee, or any

third party.

8. By copying, installing or otherwise using Python 3.14.0a3, Licensee agrees

to be bound by the terms and conditions of this License Agreement.

138 Appendix C. History and License

Python Tutorial, Release 3.14.0a3

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at

160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization

("Licensee") accessing and otherwise using this software in source or binary

form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,

BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license

to reproduce, analyze, test, perform and/or display publicly, prepare derivative

works, distribute, and otherwise use the Software alone or in any derivative

version, provided, however, that the BeOpen Python License is retained in the

Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.

BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE

USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR

ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,

MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF

ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of

its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects

by the law of the State of California, excluding conflict of law provisions.

Nothing in this License Agreement shall be deemed to create any relationship of

agency, partnership, or joint venture between BeOpen and Licensee. This License

Agreement does not grant permission to use BeOpen trademarks or trade names in a

trademark sense to endorse or promote products or services of Licensee, or any

third party. As an exception, the "BeOpen Python" logos available at

http://www.pythonlabs.com/logos.html may be used according to the permissions

granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be

bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research

Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191

("CNRI"), and the Individual or Organization ("Licensee") accessing and

otherwise using Python 1.6.1 software in source or binary form and its

associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,

analyze, test, perform and/or display publicly, prepare derivative works,

distribute, and otherwise use Python 1.6.1 alone or in any derivative version,

provided, however, that CNRI's License Agreement and CNRI's notice of copyright,

i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All

(continues on next page)

C.2. Terms and conditions for accessing or otherwise using Python 139

Python Tutorial, Release 3.14.0a3

(continued from previous page)

Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version

prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,

Licensee may substitute the following text (omitting the quotes): "Python 1.6.1

is made available subject to the terms and conditions in CNRI's License

Agreement. This Agreement together with Python 1.6.1 may be located on the

internet using the following unique, persistent identifier (known as a handle):

1895.22/1013. This Agreement may also be obtained from a proxy server on the

internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or

incorporates Python 1.6.1 or any part thereof, and wants to make the derivative

work available to others as provided herein, then Licensee hereby agrees to

include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI

MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,

BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY

OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF

PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR

ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of

its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property

law of the United States, including without limitation the federal copyright

law, and, to the extent such U.S. federal law does not apply, by the law of the

Commonwealth of Virginia, excluding Virginia's conflict of law provisions.

Notwithstanding the foregoing, with regard to derivative works based on Python

1.6.1 that incorporate non-separable material that was previously distributed

under the GNU General Public License (GPL), the law of the Commonwealth of

Virginia shall govern this License Agreement only as to issues arising under or

with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in

this License Agreement shall be deemed to create any relationship of agency,

partnership, or joint venture between CNRI and Licensee. This License Agreement

does not grant permission to use CNRI trademarks or trade name in a trademark

sense to endorse or promote products or services of Licensee, or any third

party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing

or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and

conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The

Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its

documentation for any purpose and without fee is hereby granted, provided that

the above copyright notice appear in all copies and that both that copyright

(continues on next page)

140 Appendix C. History and License

Python Tutorial, Release 3.14.0a3

(continued from previous page)

notice and this permission notice appear in supporting documentation, and that

the name of Stichting Mathematisch Centrum or CWI not be used in advertising or

publicity pertaining to distribution of the software without specific, written

prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO

EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT

OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,

DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS

SOFTWARE.

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.14.0a3 DOCU-
MENTATION

Permission to use, copy, modify, and/or distribute this software for any

purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH

REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,

INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM

LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR

OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR

PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _randomC extension underlying the randommodule includes code based on a download from http://www.math.
sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html. The following are the verbatim comments from the
original code:

A C-program for MT19937, with initialization improved 2002/1/26.

Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)

or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 141

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Tutorial, Release 3.14.0a3

(continued from previous page)

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote

products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socketmodule uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate source
files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors

may be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

142 Appendix C. History and License

https://www.wide.ad.jp/

Python Tutorial, Release 3.14.0a3

C.3.3 Asynchronous socket services

The test.support.asynchat and test.support.asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of Sam

Rushing not be used in advertising or publicity pertaining to

distribution of the software without specific, written prior

permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,

INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN

NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR

CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS

OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of

Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written

prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR

ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR

PERFORMANCE OF THIS SOFTWARE.

C.3.5 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...

err... reserved and offered to the public under the terms of the

Python 2.2 license.
(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 143

Python Tutorial, Release 3.14.0a3

(continued from previous page)

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.

Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.

Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.

Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and

its associated documentation for any purpose without fee is hereby

granted, provided that the above copyright notice appears in all copies,

and that both that copyright notice and this permission notice appear in

supporting documentation, and that the name of neither Automatrix,

Bioreason or Mojam Media be used in advertising or publicity pertaining to

distribution of the software without specific, written prior permission.

C.3.6 UUencode and UUdecode functions

The uu codec contains the following notice:

Copyright 1994 by Lance Ellinghouse

Cathedral City, California Republic, United States of America.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its

documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that

both that copyright notice and this permission notice appear in

supporting documentation, and that the name of Lance Ellinghouse

not be used in advertising or publicity pertaining to distribution

of the software without specific, written prior permission.

LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE

FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT

OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C

version is still 5 times faster, though.

- Arguments more compliant with Python standard

144 Appendix C. History and License

Python Tutorial, Release 3.14.0a3

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB

Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its

associated documentation, you agree that you have read, understood,

and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and

its associated documentation for any purpose and without fee is

hereby granted, provided that the above copyright notice appears in

all copies, and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of

Secret Labs AB or the author not be used in advertising or publicity

pertaining to distribution of the software without specific, written

prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD

TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-

ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR

BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY

DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE

OF THIS SOFTWARE.

C.3.8 test_epoll

The test.test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE

LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 145

Python Tutorial, Release 3.14.0a3

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3.10 SipHash24

The file Python/pyhash.c contains Marek Majkowski’ implementation of Dan Bernstein’s SipHash24 algorithm.
It contains the following note:

<MIT License>

Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

</MIT License>

Original location:

https://github.com/majek/csiphash/

Solution inspired by code from:

Samuel Neves (supercop/crypto_auth/siphash24/little)

djb (supercop/crypto_auth/siphash24/little2)

Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

146 Appendix C. History and License

Python Tutorial, Release 3.14.0a3

C.3.11 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from https://web.archive.org/web/
20220517033456/http://www.netlib.org/fp/dtoa.c. The original file, as retrieved on March 16, 2009, contains the
following copyright and licensing notice:

/**

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice

* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

C.3.12 OpenSSL

The modules hashlib, posix and ssl use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived
from that, the Apache License v2 applies:

Apache License

Version 2.0, January 2004

https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,

and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by

the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all

other entities that control, are controlled by, or are under common

control with that entity. For the purposes of this definition,

"control" means (i) the power, direct or indirect, to cause the

direction or management of such entity, whether by contract or

otherwise, or (ii) ownership of fifty percent (50%) or more of the

outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity

exercising permissions granted by this License.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 147

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

Python Tutorial, Release 3.14.0a3

(continued from previous page)

"Source" form shall mean the preferred form for making modifications,

including but not limited to software source code, documentation

source, and configuration files.

"Object" form shall mean any form resulting from mechanical

transformation or translation of a Source form, including but

not limited to compiled object code, generated documentation,

and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or

Object form, made available under the License, as indicated by a

copyright notice that is included in or attached to the work

(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object

form, that is based on (or derived from) the Work and for which the

editorial revisions, annotations, elaborations, or other modifications

represent, as a whole, an original work of authorship. For the purposes

of this License, Derivative Works shall not include works that remain

separable from, or merely link (or bind by name) to the interfaces of,

the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally

submitted to Licensor for inclusion in the Work by the copyright owner

or by an individual or Legal Entity authorized to submit on behalf of

the copyright owner. For the purposes of this definition, "submitted"

means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to

communication on electronic mailing lists, source code control systems,

and issue tracking systems that are managed by, or on behalf of, the

Licensor for the purpose of discussing and improving the Work, but

excluding communication that is conspicuously marked or otherwise

designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity

on behalf of whom a Contribution has been received by Licensor and

subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual,

worldwide, non-exclusive, no-charge, royalty-free, irrevocable

copyright license to reproduce, prepare Derivative Works of,

publicly display, publicly perform, sublicense, and distribute the

Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual,

worldwide, non-exclusive, no-charge, royalty-free, irrevocable

(except as stated in this section) patent license to make, have made,

use, offer to sell, sell, import, and otherwise transfer the Work,

where such license applies only to those patent claims licensable

by such Contributor that are necessarily infringed by their

Contribution(s) alone or by combination of their Contribution(s)

with the Work to which such Contribution(s) was submitted. If You

(continues on next page)

148 Appendix C. History and License

Python Tutorial, Release 3.14.0a3

(continued from previous page)

institute patent litigation against any entity (including a

cross-claim or counterclaim in a lawsuit) alleging that the Work

or a Contribution incorporated within the Work constitutes direct

or contributory patent infringement, then any patent licenses

granted to You under this License for that Work shall terminate

as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the

Work or Derivative Works thereof in any medium, with or without

modifications, and in Source or Object form, provided that You

meet the following conditions:

(a) You must give any other recipients of the Work or

Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices

stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works

that You distribute, all copyright, patent, trademark, and

attribution notices from the Source form of the Work,

excluding those notices that do not pertain to any part of

the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its

distribution, then any Derivative Works that You distribute must

include a readable copy of the attribution notices contained

within such NOTICE file, excluding those notices that do not

pertain to any part of the Derivative Works, in at least one

of the following places: within a NOTICE text file distributed

as part of the Derivative Works; within the Source form or

documentation, if provided along with the Derivative Works; or,

within a display generated by the Derivative Works, if and

wherever such third-party notices normally appear. The contents

of the NOTICE file are for informational purposes only and

do not modify the License. You may add Your own attribution

notices within Derivative Works that You distribute, alongside

or as an addendum to the NOTICE text from the Work, provided

that such additional attribution notices cannot be construed

as modifying the License.

You may add Your own copyright statement to Your modifications and

may provide additional or different license terms and conditions

for use, reproduction, or distribution of Your modifications, or

for any such Derivative Works as a whole, provided Your use,

reproduction, and distribution of the Work otherwise complies with

the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,

any Contribution intentionally submitted for inclusion in the Work

by You to the Licensor shall be under the terms and conditions of

this License, without any additional terms or conditions.

Notwithstanding the above, nothing herein shall supersede or modify

the terms of any separate license agreement you may have executed

with Licensor regarding such Contributions.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 149

Python Tutorial, Release 3.14.0a3

(continued from previous page)

6. Trademarks. This License does not grant permission to use the trade

names, trademarks, service marks, or product names of the Licensor,

except as required for reasonable and customary use in describing the

origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or

agreed to in writing, Licensor provides the Work (and each

Contributor provides its Contributions) on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied, including, without limitation, any warranties or conditions

of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A

PARTICULAR PURPOSE. You are solely responsible for determining the

appropriateness of using or redistributing the Work and assume any

risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,

whether in tort (including negligence), contract, or otherwise,

unless required by applicable law (such as deliberate and grossly

negligent acts) or agreed to in writing, shall any Contributor be

liable to You for damages, including any direct, indirect, special,

incidental, or consequential damages of any character arising as a

result of this License or out of the use or inability to use the

Work (including but not limited to damages for loss of goodwill,

work stoppage, computer failure or malfunction, or any and all

other commercial damages or losses), even if such Contributor

has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing

the Work or Derivative Works thereof, You may choose to offer,

and charge a fee for, acceptance of support, warranty, indemnity,

or other liability obligations and/or rights consistent with this

License. However, in accepting such obligations, You may act only

on Your own behalf and on Your sole responsibility, not on behalf

of any other Contributor, and only if You agree to indemnify,

defend, and hold each Contributor harmless for any liability

incurred by, or claims asserted against, such Contributor by reason

of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

(continues on next page)

150 Appendix C. History and License

Python Tutorial, Release 3.14.0a3

(continued from previous page)

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes C extension underlying the ctypes module is built using an included copy of the libffi sources unless
the build is configured --with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

``Software''), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

C.3.15 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too
old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied

warranty. In no event will the authors be held liable for any damages

arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,

including commercial applications, and to alter it and redistribute it

freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not

claim that you wrote the original software. If you use this software

in a product, an acknowledgment in the product documentation would be

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 151

Python Tutorial, Release 3.14.0a3

(continued from previous page)

appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be

misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler

jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens

All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided

with the distribution.

* Neither the name of the author nor the names of its

contributors may be used to endorse or promote products derived

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal C extension underlying the decimal module is built using an included copy of the libmpdec library
unless the build is configured --with-system-libmpdec:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without

(continues on next page)

152 Appendix C. History and License

Python Tutorial, Release 3.14.0a3

(continued from previous page)

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3.18 W3C C14N test suite

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/c14n-20/) was retrieved from the W3C
website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),

All Rights Reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

* Redistributions of works must retain the original copyright notice,

this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be

used to endorse or promote products derived from this work without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 153

https://www.w3.org/TR/xml-c14n2-testcases/

Python Tutorial, Release 3.14.0a3

C.3.19 mimalloc

MIT License:

Copyright (c) 2018-2021 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE

LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.21 Global Unbounded Sequences (GUS)

The file Python/qsbr.c is adapted from FreeBSD’s “Global Unbounded Sequences” safe memory reclamation
scheme in subr_smr.c. The file is distributed under the 2-Clause BSD License:

Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions
(continues on next page)

154 Appendix C. History and License

https://github.com/MagicStack/uvloop/tree/v0.16.0
https://github.com/freebsd/freebsd-src/blob/main/sys/kern/subr_smr.c

Python Tutorial, Release 3.14.0a3

(continued from previous page)

are met:

1. Redistributions of source code must retain the above copyright

notice unmodified, this list of conditions, and the following

disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 155

Python Tutorial, Release 3.14.0a3

156 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

157

Python Tutorial, Release 3.14.0a3

158 Appendix D. Copyright

INDEX

Non-alphabetical
..., 117
(hash)

comment, 7
* (asterisk)

in function calls, 30
**

in function calls, 30
: (colon)

function annotations, 31
->

function annotations, 31
>>>, 117
__all__, 49
__future__, 123
__slots__, 130

A
abstract base class, 117
annotate function, 117
annotation, 117
annotations

function, 31
argument, 117
asynchronous context manager, 118
asynchronous generator, 118
asynchronous generator iterator, 118
asynchronous iterable, 118
asynchronous iterator, 118
attribute, 118
awaitable, 118

B
BDFL, 118
binary file, 118
borrowed reference, 119
built-in function

help, 87
open, 57

builtins

module, 47
bytecode, 119
bytes-like object, 119

C
callable, 119

callback, 119
C-contiguous, 120
class, 119
class variable, 119
closure variable, 119
coding

style, 32
complex number, 120
context, 120
context management protocol, 120
context manager, 120
context variable, 120
contiguous, 120
coroutine, 120
coroutine function, 120
CPython, 120
current context, 120

D
decorator, 121
descriptor, 121
dictionary, 121
dictionary comprehension, 121
dictionary view, 121
docstring, 121
docstrings, 23, 31
documentation strings, 23, 31
duck-typing, 121

E
EAFP, 121
environment variable

PATH, 45, 115
PYTHON_BASIC_REPL, 115
PYTHON_GIL, 124
PYTHONPATH, 45, 46
PYTHONSTARTUP, 116

evaluate function, 122
expression, 122
extension module, 122

F
f-string, 122
file

object, 57
file object, 122

159

Python Tutorial, Release 3.14.0a3

file-like object, 122
filesystem encoding and error handler, 122
finder, 122
floor division, 122
for

statement, 17
formatted string literal, 54
Fortran contiguous, 120
free threading, 122
free variable, 122
fstring, 54
f-string, 54
function, 123

annotations, 31
function annotation, 123

G
garbage collection, 123
generator, 123
generator expression, 123
generator iterator, 123
generic function, 123
generic type, 124
GIL, 124
global interpreter lock, 124

H
hash-based pyc, 124
hashable, 124
help

built-in function, 87

I
IDLE, 124
immortal, 124
immutable, 124
import path, 124
importer, 125
importing, 124
interactive, 125
interpolated string literal, 54
interpreted, 125
interpreter shutdown, 125
iterable, 125
iterator, 125

J
json

module, 59

K
key function, 125
keyword argument, 126

L
lambda, 126
LBYL, 126
list, 126

list comprehension, 126
loader, 126
locale encoding, 126

M
magic

method, 126
magic method, 126
mangling

name, 81
mapping, 126
meta path finder, 126
metaclass, 127
method, 127

magic, 126
object, 77
special, 131

method resolution order, 127
module, 127

builtins, 47
json, 59
search path, 45
sys, 46

module spec, 127
MRO, 127
mutable, 127

N
name

mangling, 81
named tuple, 127
namespace, 127
namespace package, 128
nested scope, 128
new-style class, 128

O
object, 128

file, 57
method, 77

open

built-in function, 57
optimized scope, 128

P
package, 128
parameter, 128
PATH, 45, 115
path

module search, 45
path based finder, 129
path entry, 129
path entry finder, 129
path entry hook, 129
path-like object, 129
PEP, 129
portion, 129
positional argument, 129

160 Index

Python Tutorial, Release 3.14.0a3

provisional API, 129
provisional package, 129
Python 3000, 130
Python Enhancement Proposals

PEP 1, 129
PEP 8, 32
PEP 238, 122
PEP 278, 132
PEP 302, 126
PEP 343, 120
PEP 362, 118, 129
PEP 411, 129
PEP 420, 128, 129
PEP 443, 123
PEP 483, 124
PEP 484, 31, 117, 123, 124, 132, 133
PEP 492, 118, 120
PEP 498, 122
PEP 519, 129
PEP 525, 118
PEP 526, 117, 133
PEP 585, 124
PEP 636, 23
PEP 649, 117
PEP 683, 124
PEP 703, 122, 124
PEP 3107, 31
PEP 3116, 132
PEP 3147, 46
PEP 3155, 130

PYTHON_BASIC_REPL, 115
PYTHON_GIL, 124
Pythonic, 130
PYTHONPATH, 45, 46
PYTHONSTARTUP, 116

Q
qualified name, 130

R
reference count, 130
regular package, 130
REPL, 130
RFC

RFC 2822, 91

S
search

path, module, 45
sequence, 131
set comprehension, 131
single dispatch, 131
sitecustomize, 116
slice, 131
soft deprecated, 131
special

method, 131
special method, 131

statement, 131
for, 17

static type checker, 131
string

formatted literal, 54
interpolated literal, 54

strings, documentation, 23, 31
strong reference, 131
style

coding, 32
sys

module, 46

T
text encoding, 131
text file, 132
triple-quoted string, 132
type, 132
type alias, 132
type hint, 132

U
universal newlines, 132
usercustomize, 116

V
variable annotation, 132
virtual environment, 133
virtual machine, 133

Z
Zen of Python, 133

Index 161

	Whetting Your Appetite
	Using the Python Interpreter
	Invoking the Interpreter
	Argument Passing
	Interactive Mode

	The Interpreter and Its Environment
	Source Code Encoding

	An Informal Introduction to Python
	Using Python as a Calculator
	Numbers
	Text
	Lists

	First Steps Towards Programming

	More Control Flow Tools
	if Statements
	for Statements
	The range() Function
	break and continue Statements
	else Clauses on Loops
	pass Statements
	match Statements
	Defining Functions
	More on Defining Functions
	Default Argument Values
	Keyword Arguments
	Special parameters
	Positional-or-Keyword Arguments
	Positional-Only Parameters
	Keyword-Only Arguments
	Function Examples
	Recap

	Arbitrary Argument Lists
	Unpacking Argument Lists
	Lambda Expressions
	Documentation Strings
	Function Annotations

	Intermezzo: Coding Style

	Data Structures
	More on Lists
	Using Lists as Stacks
	Using Lists as Queues
	List Comprehensions
	Nested List Comprehensions

	The del statement
	Tuples and Sequences
	Sets
	Dictionaries
	Looping Techniques
	More on Conditions
	Comparing Sequences and Other Types

	Modules
	More on Modules
	Executing modules as scripts
	The Module Search Path
	“Compiled” Python files

	Standard Modules
	The dir() Function
	Packages
	Importing * From a Package
	Intra-package References
	Packages in Multiple Directories

	Input and Output
	Fancier Output Formatting
	Formatted String Literals
	The String format() Method
	Manual String Formatting
	Old string formatting

	Reading and Writing Files
	Methods of File Objects
	Saving structured data with json

	Errors and Exceptions
	Syntax Errors
	Exceptions
	Handling Exceptions
	Raising Exceptions
	Exception Chaining
	User-defined Exceptions
	Defining Clean-up Actions
	Predefined Clean-up Actions
	Raising and Handling Multiple Unrelated Exceptions
	Enriching Exceptions with Notes

	Classes
	A Word About Names and Objects
	Python Scopes and Namespaces
	Scopes and Namespaces Example

	A First Look at Classes
	Class Definition Syntax
	Class Objects
	Instance Objects
	Method Objects
	Class and Instance Variables

	Random Remarks
	Inheritance
	Multiple Inheritance

	Private Variables
	Odds and Ends
	Iterators
	Generators
	Generator Expressions

	Brief Tour of the Standard Library
	Operating System Interface
	File Wildcards
	Command Line Arguments
	Error Output Redirection and Program Termination
	String Pattern Matching
	Mathematics
	Internet Access
	Dates and Times
	Data Compression
	Performance Measurement
	Quality Control
	Batteries Included

	Brief Tour of the Standard Library — Part II
	Output Formatting
	Templating
	Working with Binary Data Record Layouts
	Multi-threading
	Logging
	Weak References
	Tools for Working with Lists
	Decimal Floating-Point Arithmetic

	Virtual Environments and Packages
	Introduction
	Creating Virtual Environments
	Managing Packages with pip

	What Now?
	Interactive Input Editing and History Substitution
	Tab Completion and History Editing
	Alternatives to the Interactive Interpreter

	Floating-Point Arithmetic: Issues and Limitations
	Representation Error

	Appendix
	Interactive Mode
	Error Handling
	Executable Python Scripts
	The Interactive Startup File
	The Customization Modules

	Glossary
	About this documentation
	Contributors to the Python documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	PSF LICENSE AGREEMENT FOR PYTHON 3.14.0a3
	BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
	CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
	CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.14.0a3 DOCUMENTATION

	Licenses and Acknowledgements for Incorporated Software
	Mersenne Twister
	Sockets
	Asynchronous socket services
	Cookie management
	Execution tracing
	UUencode and UUdecode functions
	XML Remote Procedure Calls
	test_epoll
	Select kqueue
	SipHash24
	strtod and dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test suite
	mimalloc
	asyncio
	Global Unbounded Sequences (GUS)

	Copyright
	Index

