
Logging Cookbook
Release 3.14.0a3

Guido van Rossum and the Python development team

January 03, 2025

Python Software Foundation
Email: docs@python.org

Contents

1 Using logging in multiple modules 3

2 Logging from multiple threads 4

3 Multiple handlers and formatters 5

4 Logging to multiple destinations 6

5 Custom handling of levels 7

6 Configuration server example 10

7 Dealing with handlers that block 11

8 Sending and receiving logging events across a network 12
8.1 Running a logging socket listener in production . 14

9 Adding contextual information to your logging output 15
9.1 Using LoggerAdapters to impart contextual information . 15
9.2 Using Filters to impart contextual information . 16

10 Use of contextvars 18

11 Imparting contextual information in handlers 22

12 Logging to a single file from multiple processes 22
12.1 Using concurrent.futures.ProcessPoolExecutor . 26
12.2 Deploying Web applications using Gunicorn and uWSGI . 27

13 Using file rotation 27

14 Use of alternative formatting styles 28

15 Customizing LogRecord 30

16 Subclassing QueueHandler and QueueListener- a ZeroMQ example 31
16.1 Subclass QueueHandler . 31
16.2 Subclass QueueListener . 32

1

17 Subclassing QueueHandler and QueueListener- a pynng example 32
17.1 Subclass QueueListener . 32
17.2 Subclass QueueHandler . 33

18 An example dictionary-based configuration 35

19 Using a rotator and namer to customize log rotation processing 36

20 A more elaborate multiprocessing example 37

21 Inserting a BOM into messages sent to a SysLogHandler 41

22 Implementing structured logging 41

23 Customizing handlers with dictConfig() 43

24 Using particular formatting styles throughout your application 45
24.1 Using LogRecord factories . 45
24.2 Using custom message objects . 45

25 Configuring filters with dictConfig() 46

26 Customized exception formatting 47

27 Speaking logging messages 48

28 Buffering logging messages and outputting them conditionally 49

29 Sending logging messages to email, with buffering 51

30 Formatting times using UTC (GMT) via configuration 53

31 Using a context manager for selective logging 54

32 A CLI application starter template 55

33 A Qt GUI for logging 58

34 Logging to syslog with RFC5424 support 62

35 How to treat a logger like an output stream 64

36 Patterns to avoid 66
36.1 Opening the same log file multiple times . 66
36.2 Using loggers as attributes in a class or passing them as parameters 67
36.3 Adding handlers other than NullHandler to a logger in a library 67
36.4 Creating a lot of loggers . 67

37 Other resources 67

Index 68

Author
Vinay Sajip <vinay_sajip at red-dove dot com>

This page contains a number of recipes related to logging, which have been found useful in the past. For links to
tutorial and reference information, please see Other resources.

2

1 Using logging in multiple modules

Multiple calls to logging.getLogger('someLogger') return a reference to the same logger object. This is true
not only within the same module, but also across modules as long as it is in the same Python interpreter process. It is
true for references to the same object; additionally, application code can define and configure a parent logger in one
module and create (but not configure) a child logger in a separate module, and all logger calls to the child will pass
up to the parent. Here is a main module:

import logging

import auxiliary_module

create logger with 'spam_application'

logger = logging.getLogger('spam_application')

logger.setLevel(logging.DEBUG)

create file handler which logs even debug messages

fh = logging.FileHandler('spam.log')

fh.setLevel(logging.DEBUG)

create console handler with a higher log level

ch = logging.StreamHandler()

ch.setLevel(logging.ERROR)

create formatter and add it to the handlers

formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s

↪→')

fh.setFormatter(formatter)

ch.setFormatter(formatter)

add the handlers to the logger

logger.addHandler(fh)

logger.addHandler(ch)

logger.info('creating an instance of auxiliary_module.Auxiliary')

a = auxiliary_module.Auxiliary()

logger.info('created an instance of auxiliary_module.Auxiliary')

logger.info('calling auxiliary_module.Auxiliary.do_something')

a.do_something()

logger.info('finished auxiliary_module.Auxiliary.do_something')

logger.info('calling auxiliary_module.some_function()')

auxiliary_module.some_function()

logger.info('done with auxiliary_module.some_function()')

Here is the auxiliary module:

import logging

create logger

module_logger = logging.getLogger('spam_application.auxiliary')

class Auxiliary:

def __init__(self):

self.logger = logging.getLogger('spam_application.auxiliary.Auxiliary')

self.logger.info('creating an instance of Auxiliary')

def do_something(self):

self.logger.info('doing something')

a = 1 + 1

self.logger.info('done doing something')

def some_function():

module_logger.info('received a call to "some_function"')

3

The output looks like this:

2005-03-23 23:47:11,663 - spam_application - INFO -

creating an instance of auxiliary_module.Auxiliary

2005-03-23 23:47:11,665 - spam_application.auxiliary.Auxiliary - INFO -

creating an instance of Auxiliary

2005-03-23 23:47:11,665 - spam_application - INFO -

created an instance of auxiliary_module.Auxiliary

2005-03-23 23:47:11,668 - spam_application - INFO -

calling auxiliary_module.Auxiliary.do_something

2005-03-23 23:47:11,668 - spam_application.auxiliary.Auxiliary - INFO -

doing something

2005-03-23 23:47:11,669 - spam_application.auxiliary.Auxiliary - INFO -

done doing something

2005-03-23 23:47:11,670 - spam_application - INFO -

finished auxiliary_module.Auxiliary.do_something

2005-03-23 23:47:11,671 - spam_application - INFO -

calling auxiliary_module.some_function()

2005-03-23 23:47:11,672 - spam_application.auxiliary - INFO -

received a call to 'some_function'

2005-03-23 23:47:11,673 - spam_application - INFO -

done with auxiliary_module.some_function()

2 Logging from multiple threads

Logging frommultiple threads requires no special effort. The following example shows logging from themain (initial)
thread and another thread:

import logging

import threading

import time

def worker(arg):

while not arg['stop']:

logging.debug('Hi from myfunc')

time.sleep(0.5)

def main():

logging.basicConfig(level=logging.DEBUG, format='%(relativeCreated)6d

↪→%(threadName)s %(message)s')

info = {'stop': False}

thread = threading.Thread(target=worker, args=(info,))

thread.start()

while True:

try:

logging.debug('Hello from main')

time.sleep(0.75)

except KeyboardInterrupt:

info['stop'] = True

break

thread.join()

if __name__ == '__main__':

main()

When run, the script should print something like the following:

4

0 Thread-1 Hi from myfunc

3 MainThread Hello from main

505 Thread-1 Hi from myfunc

755 MainThread Hello from main

1007 Thread-1 Hi from myfunc

1507 MainThread Hello from main

1508 Thread-1 Hi from myfunc

2010 Thread-1 Hi from myfunc

2258 MainThread Hello from main

2512 Thread-1 Hi from myfunc

3009 MainThread Hello from main

3013 Thread-1 Hi from myfunc

3515 Thread-1 Hi from myfunc

3761 MainThread Hello from main

4017 Thread-1 Hi from myfunc

4513 MainThread Hello from main

4518 Thread-1 Hi from myfunc

This shows the logging output interspersed as one might expect. This approach works for more threads than shown
here, of course.

3 Multiple handlers and formatters

Loggers are plain Python objects. The addHandler()method has no minimum or maximum quota for the number
of handlers you may add. Sometimes it will be beneficial for an application to log all messages of all severities to a
text file while simultaneously logging errors or above to the console. To set this up, simply configure the appropriate
handlers. The logging calls in the application code will remain unchanged. Here is a slight modification to the
previous simple module-based configuration example:

import logging

logger = logging.getLogger('simple_example')

logger.setLevel(logging.DEBUG)

create file handler which logs even debug messages

fh = logging.FileHandler('spam.log')

fh.setLevel(logging.DEBUG)

create console handler with a higher log level

ch = logging.StreamHandler()

ch.setLevel(logging.ERROR)

create formatter and add it to the handlers

formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s

↪→')

ch.setFormatter(formatter)

fh.setFormatter(formatter)

add the handlers to logger

logger.addHandler(ch)

logger.addHandler(fh)

'application' code

logger.debug('debug message')

logger.info('info message')

logger.warning('warn message')

logger.error('error message')

logger.critical('critical message')

Notice that the ‘application’ code does not care about multiple handlers. All that changed was the addition and
configuration of a new handler named fh.

5

The ability to create new handlers with higher- or lower-severity filters can be very helpful when writing and test-
ing an application. Instead of using many print statements for debugging, use logger.debug: Unlike the print
statements, which you will have to delete or comment out later, the logger.debug statements can remain intact in the
source code and remain dormant until you need them again. At that time, the only change that needs to happen is to
modify the severity level of the logger and/or handler to debug.

4 Logging to multiple destinations

Let’s say you want to log to console and file with different message formats and in differing circumstances. Say you
want to log messages with levels of DEBUG and higher to file, and those messages at level INFO and higher to the
console. Let’s also assume that the file should contain timestamps, but the console messages should not. Here’s how
you can achieve this:

import logging

set up logging to file - see previous section for more details

logging.basicConfig(level=logging.DEBUG,

format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',

datefmt='%m-%d %H:%M',

filename='/tmp/myapp.log',

filemode='w')

define a Handler which writes INFO messages or higher to the sys.stderr

console = logging.StreamHandler()

console.setLevel(logging.INFO)

set a format which is simpler for console use

formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')

tell the handler to use this format

console.setFormatter(formatter)

add the handler to the root logger

logging.getLogger('').addHandler(console)

Now, we can log to the root logger, or any other logger. First the root...

logging.info('Jackdaws love my big sphinx of quartz.')

Now, define a couple of other loggers which might represent areas in your

application:

logger1 = logging.getLogger('myapp.area1')

logger2 = logging.getLogger('myapp.area2')

logger1.debug('Quick zephyrs blow, vexing daft Jim.')

logger1.info('How quickly daft jumping zebras vex.')

logger2.warning('Jail zesty vixen who grabbed pay from quack.')

logger2.error('The five boxing wizards jump quickly.')

When you run this, on the console you will see

root : INFO Jackdaws love my big sphinx of quartz.

myapp.area1 : INFO How quickly daft jumping zebras vex.

myapp.area2 : WARNING Jail zesty vixen who grabbed pay from quack.

myapp.area2 : ERROR The five boxing wizards jump quickly.

and in the file you will see something like

10-22 22:19 root INFO Jackdaws love my big sphinx of quartz.

10-22 22:19 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim.

10-22 22:19 myapp.area1 INFO How quickly daft jumping zebras vex.

(continues on next page)

6

(continued from previous page)

10-22 22:19 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack.

10-22 22:19 myapp.area2 ERROR The five boxing wizards jump quickly.

As you can see, the DEBUG message only shows up in the file. The other messages are sent to both destinations.

This example uses console and file handlers, but you can use any number and combination of handlers you choose.

Note that the above choice of log filename /tmp/myapp.log implies use of a standard location for temporary files
on POSIX systems. On Windows, you may need to choose a different directory name for the log - just ensure that
the directory exists and that you have the permissions to create and update files in it.

5 Custom handling of levels

Sometimes, you might want to do something slightly different from the standard handling of levels in handlers, where
all levels above a threshold get processed by a handler. To do this, you need to use filters. Let’s look at a scenario
where you want to arrange things as follows:

• Send messages of severity INFO and WARNING to sys.stdout

• Send messages of severity ERROR and above to sys.stderr

• Send messages of severity DEBUG and above to file app.log

Suppose you configure logging with the following JSON:

{

"version": 1,

"disable_existing_loggers": false,

"formatters": {

"simple": {

"format": "%(levelname)-8s - %(message)s"

}

},

"handlers": {

"stdout": {

"class": "logging.StreamHandler",

"level": "INFO",

"formatter": "simple",

"stream": "ext://sys.stdout"

},

"stderr": {

"class": "logging.StreamHandler",

"level": "ERROR",

"formatter": "simple",

"stream": "ext://sys.stderr"

},

"file": {

"class": "logging.FileHandler",

"formatter": "simple",

"filename": "app.log",

"mode": "w"

}

},

"root": {

"level": "DEBUG",

"handlers": [

"stderr",

"stdout",

"file"
(continues on next page)

7

(continued from previous page)

]

}

}

This configuration does almost what we want, except that sys.stdout would show messages of severity ERROR and
only events of this severity and higher will be tracked as well as INFO and WARNING messages. To prevent this, we
can set up a filter which excludes those messages and add it to the relevant handler. This can be configured by adding
a filters section parallel to formatters and handlers:

{

"filters": {

"warnings_and_below": {

"()" : "__main__.filter_maker",

"level": "WARNING"

}

}

}

and changing the section on the stdout handler to add it:

{

"stdout": {

"class": "logging.StreamHandler",

"level": "INFO",

"formatter": "simple",

"stream": "ext://sys.stdout",

"filters": ["warnings_and_below"]

}

}

A filter is just a function, so we can define the filter_maker (a factory function) as follows:

def filter_maker(level):

level = getattr(logging, level)

def filter(record):

return record.levelno <= level

return filter

This converts the string argument passed in to a numeric level, and returns a function which only returns True if
the level of the passed in record is at or below the specified level. Note that in this example I have defined the
filter_maker in a test script main.py that I run from the command line, so its module will be __main__ - hence
the __main__.filter_maker in the filter configuration. You will need to change that if you define it in a different
module.

With the filter added, we can run main.py, which in full is:

import json

import logging

import logging.config

CONFIG = '''

{

"version": 1,

"disable_existing_loggers": false,

"formatters": {

(continues on next page)

8

(continued from previous page)

"simple": {

"format": "%(levelname)-8s - %(message)s"

}

},

"filters": {

"warnings_and_below": {

"()" : "__main__.filter_maker",

"level": "WARNING"

}

},

"handlers": {

"stdout": {

"class": "logging.StreamHandler",

"level": "INFO",

"formatter": "simple",

"stream": "ext://sys.stdout",

"filters": ["warnings_and_below"]

},

"stderr": {

"class": "logging.StreamHandler",

"level": "ERROR",

"formatter": "simple",

"stream": "ext://sys.stderr"

},

"file": {

"class": "logging.FileHandler",

"formatter": "simple",

"filename": "app.log",

"mode": "w"

}

},

"root": {

"level": "DEBUG",

"handlers": [

"stderr",

"stdout",

"file"

]

}

}

'''

def filter_maker(level):

level = getattr(logging, level)

def filter(record):

return record.levelno <= level

return filter

logging.config.dictConfig(json.loads(CONFIG))

logging.debug('A DEBUG message')

logging.info('An INFO message')

logging.warning('A WARNING message')

logging.error('An ERROR message')

logging.critical('A CRITICAL message')

9

And after running it like this:

python main.py 2>stderr.log >stdout.log

We can see the results are as expected:

$ more *.log

::::::::::::::

app.log

::::::::::::::

DEBUG - A DEBUG message

INFO - An INFO message

WARNING - A WARNING message

ERROR - An ERROR message

CRITICAL - A CRITICAL message

::::::::::::::

stderr.log

::::::::::::::

ERROR - An ERROR message

CRITICAL - A CRITICAL message

::::::::::::::

stdout.log

::::::::::::::

INFO - An INFO message

WARNING - A WARNING message

6 Configuration server example

Here is an example of a module using the logging configuration server:

import logging

import logging.config

import time

import os

read initial config file

logging.config.fileConfig('logging.conf')

create and start listener on port 9999

t = logging.config.listen(9999)

t.start()

logger = logging.getLogger('simpleExample')

try:

loop through logging calls to see the difference

new configurations make, until Ctrl+C is pressed

while True:

logger.debug('debug message')

logger.info('info message')

logger.warning('warn message')

logger.error('error message')

logger.critical('critical message')

time.sleep(5)

except KeyboardInterrupt:

cleanup

logging.config.stopListening()

(continues on next page)

10

(continued from previous page)

t.join()

And here is a script that takes a filename and sends that file to the server, properly preceded with the binary-encoded
length, as the new logging configuration:

#!/usr/bin/env python

import socket, sys, struct

with open(sys.argv[1], 'rb') as f:

data_to_send = f.read()

HOST = 'localhost'

PORT = 9999

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print('connecting...')

s.connect((HOST, PORT))

print('sending config...')

s.send(struct.pack('>L', len(data_to_send)))

s.send(data_to_send)

s.close()

print('complete')

7 Dealing with handlers that block

Sometimes you have to get your logging handlers to do their work without blocking the thread you’re logging from.
This is common in web applications, though of course it also occurs in other scenarios.

A common culprit which demonstrates sluggish behaviour is the SMTPHandler: sending emails can take a long
time, for a number of reasons outside the developer’s control (for example, a poorly performing mail or network
infrastructure). But almost any network-based handler can block: Even a SocketHandler operation may do a
DNS query under the hood which is too slow (and this query can be deep in the socket library code, below the
Python layer, and outside your control).

One solution is to use a two-part approach. For the first part, attach only a QueueHandler to those loggers which are
accessed from performance-critical threads. They simply write to their queue, which can be sized to a large enough
capacity or initialized with no upper bound to their size. The write to the queue will typically be accepted quickly,
though you will probably need to catch the queue.Full exception as a precaution in your code. If you are a library
developer who has performance-critical threads in their code, be sure to document this (together with a suggestion
to attach only QueueHandlers to your loggers) for the benefit of other developers who will use your code.

The second part of the solution is QueueListener, which has been designed as the counterpart to QueueHandler.
A QueueListener is very simple: it’s passed a queue and some handlers, and it fires up an internal thread which
listens to its queue for LogRecords sent from QueueHandlers (or any other source of LogRecords, for that matter).
The LogRecords are removed from the queue and passed to the handlers for processing.

The advantage of having a separate QueueListener class is that you can use the same instance to service multiple
QueueHandlers. This is more resource-friendly than, say, having threaded versions of the existing handler classes,
which would eat up one thread per handler for no particular benefit.

An example of using these two classes follows (imports omitted):

que = queue.Queue(-1) # no limit on size

queue_handler = QueueHandler(que)

handler = logging.StreamHandler()

listener = QueueListener(que, handler)

root = logging.getLogger()

root.addHandler(queue_handler)

formatter = logging.Formatter('%(threadName)s: %(message)s')

(continues on next page)

11

(continued from previous page)

handler.setFormatter(formatter)

listener.start()

The log output will display the thread which generated

the event (the main thread) rather than the internal

thread which monitors the internal queue. This is what

you want to happen.

root.warning('Look out!')

listener.stop()

which, when run, will produce:

MainThread: Look out!

Note

Although the earlier discussionwasn’t specifically talking about async code, but rather about slow logging handlers,
it should be noted that when logging from async code, network and even file handlers could lead to problems
(blocking the event loop) because some logging is done from asyncio internals. It might be best, if any async
code is used in an application, to use the above approach for logging, so that any blocking code runs only in the
QueueListener thread.

Changed in version 3.5: Prior to Python 3.5, the QueueListener always passed every message received from the
queue to every handler it was initialized with. (This was because it was assumed that level filtering was all done on
the other side, where the queue is filled.) From 3.5 onwards, this behaviour can be changed by passing a keyword
argument respect_handler_level=True to the listener’s constructor. When this is done, the listener compares
the level of each message with the handler’s level, and only passes a message to a handler if it’s appropriate to do so.

8 Sending and receiving logging events across a network

Let’s say you want to send logging events across a network, and handle them at the receiving end. A simple way of
doing this is attaching a SocketHandler instance to the root logger at the sending end:

import logging, logging.handlers

rootLogger = logging.getLogger('')

rootLogger.setLevel(logging.DEBUG)

socketHandler = logging.handlers.SocketHandler('localhost',

logging.handlers.DEFAULT_TCP_LOGGING_PORT)

don't bother with a formatter, since a socket handler sends the event as

an unformatted pickle

rootLogger.addHandler(socketHandler)

Now, we can log to the root logger, or any other logger. First the root...

logging.info('Jackdaws love my big sphinx of quartz.')

Now, define a couple of other loggers which might represent areas in your

application:

logger1 = logging.getLogger('myapp.area1')

logger2 = logging.getLogger('myapp.area2')

logger1.debug('Quick zephyrs blow, vexing daft Jim.')

logger1.info('How quickly daft jumping zebras vex.')

logger2.warning('Jail zesty vixen who grabbed pay from quack.')

logger2.error('The five boxing wizards jump quickly.')

12

At the receiving end, you can set up a receiver using the socketserver module. Here is a basic working example:

import pickle

import logging

import logging.handlers

import socketserver

import struct

class LogRecordStreamHandler(socketserver.StreamRequestHandler):

"""Handler for a streaming logging request.

This basically logs the record using whatever logging policy is

configured locally.

"""

def handle(self):

"""

Handle multiple requests - each expected to be a 4-byte length,

followed by the LogRecord in pickle format. Logs the record

according to whatever policy is configured locally.

"""

while True:

chunk = self.connection.recv(4)

if len(chunk) < 4:

break

slen = struct.unpack('>L', chunk)[0]

chunk = self.connection.recv(slen)

while len(chunk) < slen:

chunk = chunk + self.connection.recv(slen - len(chunk))

obj = self.unPickle(chunk)

record = logging.makeLogRecord(obj)

self.handleLogRecord(record)

def unPickle(self, data):

return pickle.loads(data)

def handleLogRecord(self, record):

if a name is specified, we use the named logger rather than the one

implied by the record.

if self.server.logname is not None:

name = self.server.logname

else:

name = record.name

logger = logging.getLogger(name)

N.B. EVERY record gets logged. This is because Logger.handle

is normally called AFTER logger-level filtering. If you want

to do filtering, do it at the client end to save wasting

cycles and network bandwidth!

logger.handle(record)

class LogRecordSocketReceiver(socketserver.ThreadingTCPServer):

"""

Simple TCP socket-based logging receiver suitable for testing.

"""

allow_reuse_address = True

(continues on next page)

13

(continued from previous page)

def __init__(self, host='localhost',

port=logging.handlers.DEFAULT_TCP_LOGGING_PORT,

handler=LogRecordStreamHandler):

socketserver.ThreadingTCPServer.__init__(self, (host, port), handler)

self.abort = 0

self.timeout = 1

self.logname = None

def serve_until_stopped(self):

import select

abort = 0

while not abort:

rd, wr, ex = select.select([self.socket.fileno()],

[], [],

self.timeout)

if rd:

self.handle_request()

abort = self.abort

def main():

logging.basicConfig(

format='%(relativeCreated)5d %(name)-15s %(levelname)-8s %(message)s')

tcpserver = LogRecordSocketReceiver()

print('About to start TCP server...')

tcpserver.serve_until_stopped()

if __name__ == '__main__':

main()

First run the server, and then the client. On the client side, nothing is printed on the console; on the server side, you
should see something like:

About to start TCP server...

59 root INFO Jackdaws love my big sphinx of quartz.

59 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim.

69 myapp.area1 INFO How quickly daft jumping zebras vex.

69 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack.

69 myapp.area2 ERROR The five boxing wizards jump quickly.

Note that there are some security issues with pickle in some scenarios. If these affect you, you can use an alternative
serialization scheme by overriding the makePickle() method and implementing your alternative there, as well as
adapting the above script to use your alternative serialization.

8.1 Running a logging socket listener in production

To run a logging listener in production, you may need to use a process-management tool such as Supervisor. Here is
a Gist which provides the bare-bones files to run the above functionality using Supervisor. It consists of the following
files:

14

http://supervisord.org/
https://gist.github.com/vsajip/4b227eeec43817465ca835ca66f75e2b
https://gist.github.com/vsajip/4b227eeec43817465ca835ca66f75e2b

File Purpose

prepare.sh A Bash script to prepare the environment for testing
supervisor.

conf

The Supervisor configuration file, which has entries for the listener and a multi-process web
application

ensure_app.sh A Bash script to ensure that Supervisor is running with the above configuration
log_listener.

py

The socket listener program which receives log events and records them to a file

main.py A simple web application which performs logging via a socket connected to the listener
webapp.json A JSON configuration file for the web application
client.py A Python script to exercise the web application

The web application uses Gunicorn, which is a popular web application server that starts multiple worker processes
to handle requests. This example setup shows how the workers can write to the same log file without conflicting with
one another — they all go through the socket listener.

To test these files, do the following in a POSIX environment:

1. Download the Gist as a ZIP archive using the Download ZIP button.

2. Unzip the above files from the archive into a scratch directory.

3. In the scratch directory, run bash prepare.sh to get things ready. This creates a run subdirectory to contain
Supervisor-related and log files, and a venv subdirectory to contain a virtual environment into which bottle,
gunicorn and supervisor are installed.

4. Run bash ensure_app.sh to ensure that Supervisor is running with the above configuration.

5. Run venv/bin/python client.py to exercise the web application, which will lead to records being written
to the log.

6. Inspect the log files in the run subdirectory. You should see the most recent log lines in files matching the
pattern app.log*. They won’t be in any particular order, since they have been handled concurrently by
different worker processes in a non-deterministic way.

7. You can shut down the listener and the web application by running venv/bin/supervisorctl -c

supervisor.conf shutdown.

You may need to tweak the configuration files in the unlikely event that the configured ports clash with something
else in your test environment.

9 Adding contextual information to your logging output

Sometimes you want logging output to contain contextual information in addition to the parameters passed to the
logging call. For example, in a networked application, it may be desirable to log client-specific information in the
log (e.g. remote client’s username, or IP address). Although you could use the extra parameter to achieve this, it’s
not always convenient to pass the information in this way. While it might be tempting to create Logger instances
on a per-connection basis, this is not a good idea because these instances are not garbage collected. While this is
not a problem in practice, when the number of Logger instances is dependent on the level of granularity you want
to use in logging an application, it could be hard to manage if the number of Logger instances becomes effectively
unbounded.

9.1 Using LoggerAdapters to impart contextual information

An easy way in which you can pass contextual information to be output along with logging event information is to use
the LoggerAdapter class. This class is designed to look like a Logger, so that you can call debug(), info(),
warning(), error(), exception(), critical() and log(). These methods have the same signatures as their
counterparts in Logger, so you can use the two types of instances interchangeably.

When you create an instance of LoggerAdapter, you pass it a Logger instance and a dict-like object which contains
your contextual information. When you call one of the logging methods on an instance of LoggerAdapter, it

15

https://gunicorn.org/
https://gist.github.com/vsajip/4b227eeec43817465ca835ca66f75e2b

delegates the call to the underlying instance of Logger passed to its constructor, and arranges to pass the contextual
information in the delegated call. Here’s a snippet from the code of LoggerAdapter:

def debug(self, msg, /, *args, **kwargs):

"""

Delegate a debug call to the underlying logger, after adding

contextual information from this adapter instance.

"""

msg, kwargs = self.process(msg, kwargs)

self.logger.debug(msg, *args, **kwargs)

The process() method of LoggerAdapter is where the contextual information is added to the logging output.
It’s passed the message and keyword arguments of the logging call, and it passes back (potentially) modified versions
of these to use in the call to the underlying logger. The default implementation of this method leaves the message
alone, but inserts an ‘extra’ key in the keyword argument whose value is the dict-like object passed to the constructor.
Of course, if you had passed an ‘extra’ keyword argument in the call to the adapter, it will be silently overwritten.

The advantage of using ‘extra’ is that the values in the dict-like object are merged into the LogRecord instance’s
__dict__, allowing you to use customized strings with your Formatter instances which know about the keys of the
dict-like object. If you need a different method, e.g. if you want to prepend or append the contextual information to
the message string, you just need to subclass LoggerAdapter and override process() to do what you need. Here
is a simple example:

class CustomAdapter(logging.LoggerAdapter):

"""

This example adapter expects the passed in dict-like object to have a

'connid' key, whose value in brackets is prepended to the log message.

"""

def process(self, msg, kwargs):

return '[%s] %s' % (self.extra['connid'], msg), kwargs

which you can use like this:

logger = logging.getLogger(__name__)

adapter = CustomAdapter(logger, {'connid': some_conn_id})

Then any events that you log to the adapter will have the value of some_conn_id prepended to the log messages.

Using objects other than dicts to pass contextual information

You don’t need to pass an actual dict to a LoggerAdapter - you could pass an instance of a class which implements
__getitem__ and __iter__ so that it looks like a dict to logging. This would be useful if you want to generate
values dynamically (whereas the values in a dict would be constant).

9.2 Using Filters to impart contextual information

You can also add contextual information to log output using a user-defined Filter. Filter instances are allowed
to modify the LogRecords passed to them, including adding additional attributes which can then be output using a
suitable format string, or if needed a custom Formatter.

For example in a web application, the request being processed (or at least, the interesting parts of it) can be stored
in a threadlocal (threading.local) variable, and then accessed from a Filter to add, say, information from the
request - say, the remote IP address and remote user’s username - to the LogRecord, using the attribute names ‘ip’
and ‘user’ as in the LoggerAdapter example above. In that case, the same format string can be used to get similar
output to that shown above. Here’s an example script:

import logging

from random import choice

(continues on next page)

16

(continued from previous page)

class ContextFilter(logging.Filter):

"""

This is a filter which injects contextual information into the log.

Rather than use actual contextual information, we just use random

data in this demo.

"""

USERS = ['jim', 'fred', 'sheila']

IPS = ['123.231.231.123', '127.0.0.1', '192.168.0.1']

def filter(self, record):

record.ip = choice(ContextFilter.IPS)

record.user = choice(ContextFilter.USERS)

return True

if __name__ == '__main__':

levels = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.

↪→CRITICAL)

logging.basicConfig(level=logging.DEBUG,

format='%(asctime)-15s %(name)-5s %(levelname)-8s IP:

↪→%(ip)-15s User: %(user)-8s %(message)s')

a1 = logging.getLogger('a.b.c')

a2 = logging.getLogger('d.e.f')

f = ContextFilter()

a1.addFilter(f)

a2.addFilter(f)

a1.debug('A debug message')

a1.info('An info message with %s', 'some parameters')

for x in range(10):

lvl = choice(levels)

lvlname = logging.getLevelName(lvl)

a2.log(lvl, 'A message at %s level with %d %s', lvlname, 2, 'parameters')

which, when run, produces something like:

2010-09-06 22:38:15,292 a.b.c DEBUG IP: 123.231.231.123 User: fred A debug␣

↪→message

2010-09-06 22:38:15,300 a.b.c INFO IP: 192.168.0.1 User: sheila An info␣

↪→message with some parameters

2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A␣

↪→message at CRITICAL level with 2 parameters

2010-09-06 22:38:15,300 d.e.f ERROR IP: 127.0.0.1 User: jim A␣

↪→message at ERROR level with 2 parameters

2010-09-06 22:38:15,300 d.e.f DEBUG IP: 127.0.0.1 User: sheila A␣

↪→message at DEBUG level with 2 parameters

2010-09-06 22:38:15,300 d.e.f ERROR IP: 123.231.231.123 User: fred A␣

↪→message at ERROR level with 2 parameters

2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 192.168.0.1 User: jim A␣

↪→message at CRITICAL level with 2 parameters

2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A␣

↪→message at CRITICAL level with 2 parameters

2010-09-06 22:38:15,300 d.e.f DEBUG IP: 192.168.0.1 User: jim A␣

↪→message at DEBUG level with 2 parameters

(continues on next page)

17

(continued from previous page)

2010-09-06 22:38:15,301 d.e.f ERROR IP: 127.0.0.1 User: sheila A␣

↪→message at ERROR level with 2 parameters

2010-09-06 22:38:15,301 d.e.f DEBUG IP: 123.231.231.123 User: fred A␣

↪→message at DEBUG level with 2 parameters

2010-09-06 22:38:15,301 d.e.f INFO IP: 123.231.231.123 User: fred A␣

↪→message at INFO level with 2 parameters

10 Use of contextvars

Since Python 3.7, the contextvars module has provided context-local storage which works for both threading
and asyncio processing needs. This type of storage may thus be generally preferable to thread-locals. The following
example shows how, in a multi-threaded environment, logs can populated with contextual information such as, for
example, request attributes handled by web applications.

For the purposes of illustration, say that you have different web applications, each independent of the other but
running in the same Python process and using a library common to them. How can each of these applications have
their own log, where all logging messages from the library (and other request processing code) are directed to the
appropriate application’s log file, while including in the log additional contextual information such as client IP, HTTP
request method and client username?

Let’s assume that the library can be simulated by the following code:

webapplib.py

import logging

import time

logger = logging.getLogger(__name__)

def useful():

Just a representative event logged from the library

logger.debug('Hello from webapplib!')

Just sleep for a bit so other threads get to run

time.sleep(0.01)

Wecan simulate themultiple web applications bymeans of two simple classes, Request and WebApp. These simulate
how real threaded web applications work - each request is handled by a thread:

main.py

import argparse

from contextvars import ContextVar

import logging

import os

from random import choice

import threading

import webapplib

logger = logging.getLogger(__name__)

root = logging.getLogger()

root.setLevel(logging.DEBUG)

class Request:

"""

A simple dummy request class which just holds dummy HTTP request method,

client IP address and client username

"""

def __init__(self, method, ip, user):

(continues on next page)

18

(continued from previous page)

self.method = method

self.ip = ip

self.user = user

A dummy set of requests which will be used in the simulation - we'll just pick

from this list randomly. Note that all GET requests are from 192.168.2.XXX

addresses, whereas POST requests are from 192.16.3.XXX addresses. Three users

are represented in the sample requests.

REQUESTS = [

Request('GET', '192.168.2.20', 'jim'),

Request('POST', '192.168.3.20', 'fred'),

Request('GET', '192.168.2.21', 'sheila'),

Request('POST', '192.168.3.21', 'jim'),

Request('GET', '192.168.2.22', 'fred'),

Request('POST', '192.168.3.22', 'sheila'),

]

Note that the format string includes references to request context information

such as HTTP method, client IP and username

formatter = logging.Formatter('%(threadName)-11s %(appName)s %(name)-9s %(user)-6s

↪→%(ip)s %(method)-4s %(message)s')

Create our context variables. These will be filled at the start of request

processing, and used in the logging that happens during that processing

ctx_request = ContextVar('request')

ctx_appname = ContextVar('appname')

class InjectingFilter(logging.Filter):

"""

A filter which injects context-specific information into logs and ensures

that only information for a specific webapp is included in its log

"""

def __init__(self, app):

self.app = app

def filter(self, record):

request = ctx_request.get()

record.method = request.method

record.ip = request.ip

record.user = request.user

record.appName = appName = ctx_appname.get()

return appName == self.app.name

class WebApp:

"""

A dummy web application class which has its own handler and filter for a

webapp-specific log.

"""

def __init__(self, name):

self.name = name

handler = logging.FileHandler(name + '.log', 'w')

f = InjectingFilter(self)

handler.setFormatter(formatter)

(continues on next page)

19

(continued from previous page)

handler.addFilter(f)

root.addHandler(handler)

self.num_requests = 0

def process_request(self, request):

"""

This is the dummy method for processing a request. It's called on a

different thread for every request. We store the context information into

the context vars before doing anything else.

"""

ctx_request.set(request)

ctx_appname.set(self.name)

self.num_requests += 1

logger.debug('Request processing started')

webapplib.useful()

logger.debug('Request processing finished')

def main():

fn = os.path.splitext(os.path.basename(__file__))[0]

adhf = argparse.ArgumentDefaultsHelpFormatter

ap = argparse.ArgumentParser(formatter_class=adhf, prog=fn,

description='Simulate a couple of web '

'applications handling some '

'requests, showing how request '

'context can be used to '

'populate logs')

aa = ap.add_argument

aa('--count', '-c', type=int, default=100, help='How many requests to simulate

↪→')

options = ap.parse_args()

Create the dummy webapps and put them in a list which we can use to select

from randomly

app1 = WebApp('app1')

app2 = WebApp('app2')

apps = [app1, app2]

threads = []

Add a common handler which will capture all events

handler = logging.FileHandler('app.log', 'w')

handler.setFormatter(formatter)

root.addHandler(handler)

Generate calls to process requests

for i in range(options.count):

try:

Pick an app at random and a request for it to process

app = choice(apps)

request = choice(REQUESTS)

Process the request in its own thread

t = threading.Thread(target=app.process_request, args=(request,))

threads.append(t)

t.start()

except KeyboardInterrupt:

break

Wait for the threads to terminate

(continues on next page)

20

(continued from previous page)

for t in threads:

t.join()

for app in apps:

print('%s processed %s requests' % (app.name, app.num_requests))

if __name__ == '__main__':

main()

If you run the above, you should find that roughly half the requests go into app1.log and the rest into app2.log,
and the all the requests are logged to app.log. Each webapp-specific log will contain only log entries for only that
webapp, and the request information will be displayed consistently in the log (i.e. the information in each dummy
request will always appear together in a log line). This is illustrated by the following shell output:

~/logging-contextual-webapp$ python main.py

app1 processed 51 requests

app2 processed 49 requests

~/logging-contextual-webapp$ wc -l *.log

153 app1.log

147 app2.log

300 app.log

600 total

~/logging-contextual-webapp$ head -3 app1.log

Thread-3 (process_request) app1 __main__ jim 192.168.3.21 POST Request␣

↪→processing started

Thread-3 (process_request) app1 webapplib jim 192.168.3.21 POST Hello from␣

↪→webapplib!

Thread-5 (process_request) app1 __main__ jim 192.168.3.21 POST Request␣

↪→processing started

~/logging-contextual-webapp$ head -3 app2.log

Thread-1 (process_request) app2 __main__ sheila 192.168.2.21 GET Request␣

↪→processing started

Thread-1 (process_request) app2 webapplib sheila 192.168.2.21 GET Hello from␣

↪→webapplib!

Thread-2 (process_request) app2 __main__ jim 192.168.2.20 GET Request␣

↪→processing started

~/logging-contextual-webapp$ head app.log

Thread-1 (process_request) app2 __main__ sheila 192.168.2.21 GET Request␣

↪→processing started

Thread-1 (process_request) app2 webapplib sheila 192.168.2.21 GET Hello from␣

↪→webapplib!

Thread-2 (process_request) app2 __main__ jim 192.168.2.20 GET Request␣

↪→processing started

Thread-3 (process_request) app1 __main__ jim 192.168.3.21 POST Request␣

↪→processing started

Thread-2 (process_request) app2 webapplib jim 192.168.2.20 GET Hello from␣

↪→webapplib!

Thread-3 (process_request) app1 webapplib jim 192.168.3.21 POST Hello from␣

↪→webapplib!

Thread-4 (process_request) app2 __main__ fred 192.168.2.22 GET Request␣

↪→processing started

Thread-5 (process_request) app1 __main__ jim 192.168.3.21 POST Request␣

↪→processing started

Thread-4 (process_request) app2 webapplib fred 192.168.2.22 GET Hello from␣

↪→webapplib!

Thread-6 (process_request) app1 __main__ jim 192.168.3.21 POST Request␣

(continues on next page)

21

(continued from previous page)

↪→processing started

~/logging-contextual-webapp$ grep app1 app1.log | wc -l

153

~/logging-contextual-webapp$ grep app2 app2.log | wc -l

147

~/logging-contextual-webapp$ grep app1 app.log | wc -l

153

~/logging-contextual-webapp$ grep app2 app.log | wc -l

147

11 Imparting contextual information in handlers

Each Handler has its own chain of filters. If you want to add contextual information to a LogRecord without
leaking it to other handlers, you can use a filter that returns a new LogRecord instead of modifying it in-place, as
shown in the following script:

import copy

import logging

def filter(record: logging.LogRecord):

record = copy.copy(record)

record.user = 'jim'

return record

if __name__ == '__main__':

logger = logging.getLogger()

logger.setLevel(logging.INFO)

handler = logging.StreamHandler()

formatter = logging.Formatter('%(message)s from %(user)-8s')

handler.setFormatter(formatter)

handler.addFilter(filter)

logger.addHandler(handler)

logger.info('A log message')

12 Logging to a single file from multiple processes

Although logging is thread-safe, and logging to a single file from multiple threads in a single process is supported,
logging to a single file frommultiple processes is not supported, because there is no standard way to serialize access to
a single file across multiple processes in Python. If you need to log to a single file from multiple processes, one way
of doing this is to have all the processes log to a SocketHandler, and have a separate process which implements
a socket server which reads from the socket and logs to file. (If you prefer, you can dedicate one thread in one of
the existing processes to perform this function.) This section documents this approach in more detail and includes a
working socket receiver which can be used as a starting point for you to adapt in your own applications.

You could also write your own handler which uses the Lock class from the multiprocessing module to se-
rialize access to the file from your processes. The stdlib FileHandler and subclasses do not make use of
multiprocessing.

Alternatively, you can use a Queue and a QueueHandler to send all logging events to one of the processes in your
multi-process application. The following example script demonstrates how you can do this; in the example a separate
listener process listens for events sent by other processes and logs them according to its own logging configuration.
Although the example only demonstrates one way of doing it (for example, you may want to use a listener thread
rather than a separate listener process – the implementation would be analogous) it does allow for completely different
logging configurations for the listener and the other processes in your application, and can be used as the basis for
code meeting your own specific requirements:

22

You'll need these imports in your own code

import logging

import logging.handlers

import multiprocessing

Next two import lines for this demo only

from random import choice, random

import time

#

Because you'll want to define the logging configurations for listener and␣

↪→workers, the

listener and worker process functions take a configurer parameter which is a␣

↪→callable

for configuring logging for that process. These functions are also passed the␣

↪→queue,

which they use for communication.

#

In practice, you can configure the listener however you want, but note that in␣

↪→this

simple example, the listener does not apply level or filter logic to received␣

↪→records.

In practice, you would probably want to do this logic in the worker processes,␣

↪→to avoid

sending events which would be filtered out between processes.

#

The size of the rotated files is made small so you can see the results easily.

def listener_configurer():

root = logging.getLogger()

h = logging.handlers.RotatingFileHandler('mptest.log', 'a', 300, 10)

f = logging.Formatter('%(asctime)s %(processName)-10s %(name)s %(levelname)-8s

↪→%(message)s')

h.setFormatter(f)

root.addHandler(h)

This is the listener process top-level loop: wait for logging events

(LogRecords)on the queue and handle them, quit when you get a None for a

LogRecord.

def listener_process(queue, configurer):

configurer()

while True:

try:

record = queue.get()

if record is None: # We send this as a sentinel to tell the listener␣

↪→to quit.

break

logger = logging.getLogger(record.name)

logger.handle(record) # No level or filter logic applied - just do it!

except Exception:

import sys, traceback

print('Whoops! Problem:', file=sys.stderr)

traceback.print_exc(file=sys.stderr)

Arrays used for random selections in this demo

LEVELS = [logging.DEBUG, logging.INFO, logging.WARNING,

logging.ERROR, logging.CRITICAL]
(continues on next page)

23

(continued from previous page)

LOGGERS = ['a.b.c', 'd.e.f']

MESSAGES = [

'Random message #1',

'Random message #2',

'Random message #3',

]

The worker configuration is done at the start of the worker process run.

Note that on Windows you can't rely on fork semantics, so each process

will run the logging configuration code when it starts.

def worker_configurer(queue):

h = logging.handlers.QueueHandler(queue) # Just the one handler needed

root = logging.getLogger()

root.addHandler(h)

send all messages, for demo; no other level or filter logic applied.

root.setLevel(logging.DEBUG)

This is the worker process top-level loop, which just logs ten events with

random intervening delays before terminating.

The print messages are just so you know it's doing something!

def worker_process(queue, configurer):

configurer(queue)

name = multiprocessing.current_process().name

print('Worker started: %s' % name)

for i in range(10):

time.sleep(random())

logger = logging.getLogger(choice(LOGGERS))

level = choice(LEVELS)

message = choice(MESSAGES)

logger.log(level, message)

print('Worker finished: %s' % name)

Here's where the demo gets orchestrated. Create the queue, create and start

the listener, create ten workers and start them, wait for them to finish,

then send a None to the queue to tell the listener to finish.

def main():

queue = multiprocessing.Queue(-1)

listener = multiprocessing.Process(target=listener_process,

args=(queue, listener_configurer))

listener.start()

workers = []

for i in range(10):

worker = multiprocessing.Process(target=worker_process,

args=(queue, worker_configurer))

workers.append(worker)

worker.start()

for w in workers:

w.join()

queue.put_nowait(None)

listener.join()

if __name__ == '__main__':

main()

A variant of the above script keeps the logging in the main process, in a separate thread:

24

import logging

import logging.config

import logging.handlers

from multiprocessing import Process, Queue

import random

import threading

import time

def logger_thread(q):

while True:

record = q.get()

if record is None:

break

logger = logging.getLogger(record.name)

logger.handle(record)

def worker_process(q):

qh = logging.handlers.QueueHandler(q)

root = logging.getLogger()

root.setLevel(logging.DEBUG)

root.addHandler(qh)

levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,

logging.CRITICAL]

loggers = ['foo', 'foo.bar', 'foo.bar.baz',

'spam', 'spam.ham', 'spam.ham.eggs']

for i in range(100):

lvl = random.choice(levels)

logger = logging.getLogger(random.choice(loggers))

logger.log(lvl, 'Message no. %d', i)

if __name__ == '__main__':

q = Queue()

d = {

'version': 1,

'formatters': {

'detailed': {

'class': 'logging.Formatter',

'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-

↪→10s %(message)s'

}

},

'handlers': {

'console': {

'class': 'logging.StreamHandler',

'level': 'INFO',

},

'file': {

'class': 'logging.FileHandler',

'filename': 'mplog.log',

'mode': 'w',

'formatter': 'detailed',

},

'foofile': {

'class': 'logging.FileHandler',

'filename': 'mplog-foo.log',

'mode': 'w',
(continues on next page)

25

(continued from previous page)

'formatter': 'detailed',

},

'errors': {

'class': 'logging.FileHandler',

'filename': 'mplog-errors.log',

'mode': 'w',

'level': 'ERROR',

'formatter': 'detailed',

},

},

'loggers': {

'foo': {

'handlers': ['foofile']

}

},

'root': {

'level': 'DEBUG',

'handlers': ['console', 'file', 'errors']

},

}

workers = []

for i in range(5):

wp = Process(target=worker_process, name='worker %d' % (i + 1), args=(q,))

workers.append(wp)

wp.start()

logging.config.dictConfig(d)

lp = threading.Thread(target=logger_thread, args=(q,))

lp.start()

At this point, the main process could do some useful work of its own

Once it's done that, it can wait for the workers to terminate...

for wp in workers:

wp.join()

And now tell the logging thread to finish up, too

q.put(None)

lp.join()

This variant shows how you can e.g. apply configuration for particular loggers - e.g. the foo logger has a special
handler which stores all events in the foo subsystem in a file mplog-foo.log. This will be used by the logging
machinery in the main process (even though the logging events are generated in the worker processes) to direct the
messages to the appropriate destinations.

12.1 Using concurrent.futures.ProcessPoolExecutor

If you want to use concurrent.futures.ProcessPoolExecutor to start your worker processes, you need to
create the queue slightly differently. Instead of

queue = multiprocessing.Queue(-1)

you should use

queue = multiprocessing.Manager().Queue(-1) # also works with the examples above

and you can then replace the worker creation from this:

workers = []

for i in range(10):

worker = multiprocessing.Process(target=worker_process,

(continues on next page)

26

(continued from previous page)

args=(queue, worker_configurer))

workers.append(worker)

worker.start()

for w in workers:

w.join()

to this (remembering to first import concurrent.futures):

with concurrent.futures.ProcessPoolExecutor(max_workers=10) as executor:

for i in range(10):

executor.submit(worker_process, queue, worker_configurer)

12.2 Deploying Web applications using Gunicorn and uWSGI

When deploying Web applications using Gunicorn or uWSGI (or similar), multiple worker processes are created
to handle client requests. In such environments, avoid creating file-based handlers directly in your web application.
Instead, use a SocketHandler to log from the web application to a listener in a separate process. This can be set
up using a process management tool such as Supervisor - see Running a logging socket listener in production for more
details.

13 Using file rotation

Sometimes you want to let a log file grow to a certain size, then open a new file and log to that. You may want
to keep a certain number of these files, and when that many files have been created, rotate the files so that the
number of files and the size of the files both remain bounded. For this usage pattern, the logging package provides a
RotatingFileHandler:

import glob

import logging

import logging.handlers

LOG_FILENAME = 'logging_rotatingfile_example.out'

Set up a specific logger with our desired output level

my_logger = logging.getLogger('MyLogger')

my_logger.setLevel(logging.DEBUG)

Add the log message handler to the logger

handler = logging.handlers.RotatingFileHandler(

LOG_FILENAME, maxBytes=20, backupCount=5)

my_logger.addHandler(handler)

Log some messages

for i in range(20):

my_logger.debug('i = %d' % i)

See what files are created

logfiles = glob.glob('%s*' % LOG_FILENAME)

for filename in logfiles:

print(filename)

The result should be 6 separate files, each with part of the log history for the application:

27

https://gunicorn.org/
https://uwsgi-docs.readthedocs.io/en/latest/

logging_rotatingfile_example.out

logging_rotatingfile_example.out.1

logging_rotatingfile_example.out.2

logging_rotatingfile_example.out.3

logging_rotatingfile_example.out.4

logging_rotatingfile_example.out.5

The most current file is always logging_rotatingfile_example.out, and each time it reaches the size limit it
is renamed with the suffix .1. Each of the existing backup files is renamed to increment the suffix (.1 becomes .2,
etc.) and the .6 file is erased.

Obviously this example sets the log length much too small as an extreme example. You would want to set maxBytes
to an appropriate value.

14 Use of alternative formatting styles

When logging was added to the Python standard library, the only way of formatting messages with variable content
was to use the %-formatting method. Since then, Python has gained two new formatting approaches: string.
Template (added in Python 2.4) and str.format() (added in Python 2.6).

Logging (as of 3.2) provides improved support for these two additional formatting styles. The Formatter class been
enhanced to take an additional, optional keyword parameter named style. This defaults to '%', but other possible
values are '{' and '$', which correspond to the other two formatting styles. Backwards compatibility is maintained
by default (as you would expect), but by explicitly specifying a style parameter, you get the ability to specify format
strings which work with str.format() or string.Template. Here’s an example console session to show the
possibilities:

>>> import logging

>>> root = logging.getLogger()

>>> root.setLevel(logging.DEBUG)

>>> handler = logging.StreamHandler()

>>> bf = logging.Formatter('{asctime} {name} {levelname:8s} {message}',

... style='{')

>>> handler.setFormatter(bf)

>>> root.addHandler(handler)

>>> logger = logging.getLogger('foo.bar')

>>> logger.debug('This is a DEBUG message')

2010-10-28 15:11:55,341 foo.bar DEBUG This is a DEBUG message

>>> logger.critical('This is a CRITICAL message')

2010-10-28 15:12:11,526 foo.bar CRITICAL This is a CRITICAL message

>>> df = logging.Formatter('$asctime $name ${levelname} $message',

... style='$')

>>> handler.setFormatter(df)

>>> logger.debug('This is a DEBUG message')

2010-10-28 15:13:06,924 foo.bar DEBUG This is a DEBUG message

>>> logger.critical('This is a CRITICAL message')

2010-10-28 15:13:11,494 foo.bar CRITICAL This is a CRITICAL message

>>>

Note that the formatting of logging messages for final output to logs is completely independent of how an individual
logging message is constructed. That can still use %-formatting, as shown here:

>>> logger.error('This is an%s %s %s', 'other,', 'ERROR,', 'message')

2010-10-28 15:19:29,833 foo.bar ERROR This is another, ERROR, message

>>>

Logging calls (logger.debug(), logger.info() etc.) only take positional parameters for the actual logging
message itself, with keyword parameters used only for determining options for how to handle the actual logging

28

call (e.g. the exc_info keyword parameter to indicate that traceback information should be logged, or the extra
keyword parameter to indicate additional contextual information to be added to the log). So you cannot directly make
logging calls using str.format() or string.Template syntax, because internally the logging package uses %-
formatting to merge the format string and the variable arguments. There would be no changing this while preserving
backward compatibility, since all logging calls which are out there in existing code will be using %-format strings.

There is, however, a way that you can use {}- and $- formatting to construct your individual log messages. Recall
that for a message you can use an arbitrary object as a message format string, and that the logging package will call
str() on that object to get the actual format string. Consider the following two classes:

class BraceMessage:

def __init__(self, fmt, /, *args, **kwargs):

self.fmt = fmt

self.args = args

self.kwargs = kwargs

def __str__(self):

return self.fmt.format(*self.args, **self.kwargs)

class DollarMessage:

def __init__(self, fmt, /, **kwargs):

self.fmt = fmt

self.kwargs = kwargs

def __str__(self):

from string import Template

return Template(self.fmt).substitute(**self.kwargs)

Either of these can be used in place of a format string, to allow {}- or $-formatting to be used to build the actual
“message” part which appears in the formatted log output in place of “%(message)s” or “{message}” or “$message”.
It’s a little unwieldy to use the class names whenever you want to log something, but it’s quite palatable if you use an
alias such as __ (double underscore — not to be confused with _, the single underscore used as a synonym/alias for
gettext.gettext() or its brethren).

The above classes are not included in Python, though they’re easy enough to copy and paste into your own code. They
can be used as follows (assuming that they’re declared in a module called wherever):

>>> from wherever import BraceMessage as __

>>> print(__('Message with {0} {name}', 2, name='placeholders'))

Message with 2 placeholders

>>> class Point: pass

...

>>> p = Point()

>>> p.x = 0.5

>>> p.y = 0.5

>>> print(__('Message with coordinates: ({point.x:.2f}, {point.y:.2f})',

... point=p))

Message with coordinates: (0.50, 0.50)

>>> from wherever import DollarMessage as __

>>> print(__('Message with $num $what', num=2, what='placeholders'))

Message with 2 placeholders

>>>

While the above examples use print() to show how the formatting works, you would of course use logger.
debug() or similar to actually log using this approach.

One thing to note is that you pay no significant performance penalty with this approach: the actual formatting happens
not when you make the logging call, but when (and if) the logged message is actually about to be output to a log by a
handler. So the only slightly unusual thing which might trip you up is that the parentheses go around the format string
and the arguments, not just the format string. That’s because the __ notation is just syntax sugar for a constructor call

29

to one of the XXXMessage classes.

If you prefer, you can use a LoggerAdapter to achieve a similar effect to the above, as in the following example:

import logging

class Message:

def __init__(self, fmt, args):

self.fmt = fmt

self.args = args

def __str__(self):

return self.fmt.format(*self.args)

class StyleAdapter(logging.LoggerAdapter):

def log(self, level, msg, /, *args, stacklevel=1, **kwargs):

if self.isEnabledFor(level):

msg, kwargs = self.process(msg, kwargs)

self.logger.log(level, Message(msg, args), **kwargs,

stacklevel=stacklevel+1)

logger = StyleAdapter(logging.getLogger(__name__))

def main():

logger.debug('Hello, {}', 'world!')

if __name__ == '__main__':

logging.basicConfig(level=logging.DEBUG)

main()

The above script should log the message Hello, world! when run with Python 3.8 or later.

15 Customizing LogRecord

Every logging event is represented by a LogRecord instance. When an event is logged and not filtered out by a logger’s
level, a LogRecord is created, populated with information about the event and then passed to the handlers for that
logger (and its ancestors, up to and including the logger where further propagation up the hierarchy is disabled).
Before Python 3.2, there were only two places where this creation was done:

• Logger.makeRecord(), which is called in the normal process of logging an event. This invoked LogRecord
directly to create an instance.

• makeLogRecord(), which is called with a dictionary containing attributes to be added to the LogRecord.
This is typically invoked when a suitable dictionary has been received over the network (e.g. in pickle form
via a SocketHandler, or in JSON form via an HTTPHandler).

This has usually meant that if you need to do anything special with a LogRecord, you’ve had to do one of the
following.

• Create your own Logger subclass, which overrides Logger.makeRecord(), and set it using
setLoggerClass() before any loggers that you care about are instantiated.

• Add a Filter to a logger or handler, which does the necessary special manipulation you need when its
filter() method is called.

The first approach would be a little unwieldy in the scenario where (say) several different libraries wanted to do
different things. Each would attempt to set its own Logger subclass, and the one which did this last would win.

The second approach works reasonably well for many cases, but does not allow you to e.g. use a specialized subclass
of LogRecord. Library developers can set a suitable filter on their loggers, but they would have to remember to do
this every time they introduced a new logger (which they would do simply by adding new packages or modules and
doing

30

logger = logging.getLogger(__name__)

at module level). It’s probably one too many things to think about. Developers could also add the filter to a
NullHandler attached to their top-level logger, but this would not be invoked if an application developer attached
a handler to a lower-level library logger — so output from that handler would not reflect the intentions of the library
developer.

In Python 3.2 and later, LogRecord creation is done through a factory, which you can specify. The factory is just
a callable you can set with setLogRecordFactory(), and interrogate with getLogRecordFactory(). The
factory is invoked with the same signature as the LogRecord constructor, as LogRecord is the default setting for
the factory.

This approach allows a custom factory to control all aspects of LogRecord creation. For example, you could return
a subclass, or just add some additional attributes to the record once created, using a pattern similar to this:

old_factory = logging.getLogRecordFactory()

def record_factory(*args, **kwargs):

record = old_factory(*args, **kwargs)

record.custom_attribute = 0xdecafbad

return record

logging.setLogRecordFactory(record_factory)

This pattern allows different libraries to chain factories together, and as long as they don’t overwrite each other’s
attributes or unintentionally overwrite the attributes provided as standard, there should be no surprises. However, it
should be borne in mind that each link in the chain adds run-time overhead to all logging operations, and the technique
should only be used when the use of a Filter does not provide the desired result.

16 Subclassing QueueHandler and QueueListener- a ZeroMQ ex-
ample

16.1 Subclass QueueHandler

You can use a QueueHandler subclass to send messages to other kinds of queues, for example a ZeroMQ ‘publish’
socket. In the example below,the socket is created separately and passed to the handler (as its ‘queue’):

import zmq # using pyzmq, the Python binding for ZeroMQ

import json # for serializing records portably

ctx = zmq.Context()

sock = zmq.Socket(ctx, zmq.PUB) # or zmq.PUSH, or other suitable value

sock.bind('tcp://*:5556') # or wherever

class ZeroMQSocketHandler(QueueHandler):

def enqueue(self, record):

self.queue.send_json(record.__dict__)

handler = ZeroMQSocketHandler(sock)

Of course there are other ways of organizing this, for example passing in the data needed by the handler to create the
socket:

class ZeroMQSocketHandler(QueueHandler):

def __init__(self, uri, socktype=zmq.PUB, ctx=None):

self.ctx = ctx or zmq.Context()

(continues on next page)

31

(continued from previous page)

socket = zmq.Socket(self.ctx, socktype)

socket.bind(uri)

super().__init__(socket)

def enqueue(self, record):

self.queue.send_json(record.__dict__)

def close(self):

self.queue.close()

16.2 Subclass QueueListener

You can also subclass QueueListener to get messages from other kinds of queues, for example a ZeroMQ ‘sub-
scribe’ socket. Here’s an example:

class ZeroMQSocketListener(QueueListener):

def __init__(self, uri, /, *handlers, **kwargs):

self.ctx = kwargs.get('ctx') or zmq.Context()

socket = zmq.Socket(self.ctx, zmq.SUB)

socket.setsockopt_string(zmq.SUBSCRIBE, '') # subscribe to everything

socket.connect(uri)

super().__init__(socket, *handlers, **kwargs)

def dequeue(self):

msg = self.queue.recv_json()

return logging.makeLogRecord(msg)

17 Subclassing QueueHandler and QueueListener- a pynng exam-
ple

In a similar way to the above section, we can implement a listener and handler using pynng, which is a Python
binding to NNG, billed as a spiritual successor to ZeroMQ. The following snippets illustrate – you can test them in
an environment which has pynng installed. Just for variety, we present the listener first.

17.1 Subclass QueueListener

listener.py

import json

import logging

import logging.handlers

import pynng

DEFAULT_ADDR = "tcp://localhost:13232"

interrupted = False

class NNGSocketListener(logging.handlers.QueueListener):

def __init__(self, uri, /, *handlers, **kwargs):

Have a timeout for interruptability, and open a

subscriber socket

socket = pynng.Sub0(listen=uri, recv_timeout=500)

The b'' subscription matches all topics

(continues on next page)

32

https://pypi.org/project/pynng/
https://nng.nanomsg.org/

(continued from previous page)

topics = kwargs.pop('topics', None) or b''

socket.subscribe(topics)

We treat the socket as a queue

super().__init__(socket, *handlers, **kwargs)

def dequeue(self, block):

data = None

Keep looping while not interrupted and no data received over the

socket

while not interrupted:

try:

data = self.queue.recv(block=block)

break

except pynng.Timeout:

pass

except pynng.Closed: # sometimes happens when you hit Ctrl-C

break

if data is None:

return None

Get the logging event sent from a publisher

event = json.loads(data.decode('utf-8'))

return logging.makeLogRecord(event)

def enqueue_sentinel(self):

Not used in this implementation, as the socket isn't really a

queue

pass

logging.getLogger('pynng').propagate = False

listener = NNGSocketListener(DEFAULT_ADDR, logging.StreamHandler(), topics=b'')

listener.start()

print('Press Ctrl-C to stop.')

try:

while True:

pass

except KeyboardInterrupt:

interrupted = True

finally:

listener.stop()

17.2 Subclass QueueHandler

sender.py

import json

import logging

import logging.handlers

import time

import random

import pynng

DEFAULT_ADDR = "tcp://localhost:13232"

class NNGSocketHandler(logging.handlers.QueueHandler):

(continues on next page)

33

(continued from previous page)

def __init__(self, uri):

socket = pynng.Pub0(dial=uri, send_timeout=500)

super().__init__(socket)

def enqueue(self, record):

Send the record as UTF-8 encoded JSON

d = dict(record.__dict__)

data = json.dumps(d)

self.queue.send(data.encode('utf-8'))

def close(self):

self.queue.close()

logging.getLogger('pynng').propagate = False

handler = NNGSocketHandler(DEFAULT_ADDR)

Make sure the process ID is in the output

logging.basicConfig(level=logging.DEBUG,

handlers=[logging.StreamHandler(), handler],

format='%(levelname)-8s %(name)10s %(process)6s %(message)s')

levels = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,

logging.CRITICAL)

logger_names = ('myapp', 'myapp.lib1', 'myapp.lib2')

msgno = 1

while True:

Just randomly select some loggers and levels and log away

level = random.choice(levels)

logger = logging.getLogger(random.choice(logger_names))

logger.log(level, 'Message no. %5d' % msgno)

msgno += 1

delay = random.random() * 2 + 0.5

time.sleep(delay)

You can run the above two snippets in separate command shells. If we run the listener in one shell and run the sender
in two separate shells, we should see something like the following. In the first sender shell:

$ python sender.py

DEBUG myapp 613 Message no. 1

WARNING myapp.lib2 613 Message no. 2

CRITICAL myapp.lib2 613 Message no. 3

WARNING myapp.lib2 613 Message no. 4

CRITICAL myapp.lib1 613 Message no. 5

DEBUG myapp 613 Message no. 6

CRITICAL myapp.lib1 613 Message no. 7

INFO myapp.lib1 613 Message no. 8

(and so on)

In the second sender shell:

$ python sender.py

INFO myapp.lib2 657 Message no. 1

CRITICAL myapp.lib2 657 Message no. 2

CRITICAL myapp 657 Message no. 3

CRITICAL myapp.lib1 657 Message no. 4

INFO myapp.lib1 657 Message no. 5

WARNING myapp.lib2 657 Message no. 6

CRITICAL myapp 657 Message no. 7

DEBUG myapp.lib1 657 Message no. 8
(continues on next page)

34

(continued from previous page)

(and so on)

In the listener shell:

$ python listener.py

Press Ctrl-C to stop.

DEBUG myapp 613 Message no. 1

WARNING myapp.lib2 613 Message no. 2

INFO myapp.lib2 657 Message no. 1

CRITICAL myapp.lib2 613 Message no. 3

CRITICAL myapp.lib2 657 Message no. 2

CRITICAL myapp 657 Message no. 3

WARNING myapp.lib2 613 Message no. 4

CRITICAL myapp.lib1 613 Message no. 5

CRITICAL myapp.lib1 657 Message no. 4

INFO myapp.lib1 657 Message no. 5

DEBUG myapp 613 Message no. 6

WARNING myapp.lib2 657 Message no. 6

CRITICAL myapp 657 Message no. 7

CRITICAL myapp.lib1 613 Message no. 7

INFO myapp.lib1 613 Message no. 8

DEBUG myapp.lib1 657 Message no. 8

(and so on)

As you can see, the logging from the two sender processes is interleaved in the listener’s output.

18 An example dictionary-based configuration

Below is an example of a logging configuration dictionary - it’s taken from the documentation on the Django project.
This dictionary is passed to dictConfig() to put the configuration into effect:

LOGGING = {

'version': 1,

'disable_existing_loggers': False,

'formatters': {

'verbose': {

'format': '{levelname} {asctime} {module} {process:d} {thread:d}

↪→{message}',

'style': '{',

},

'simple': {

'format': '{levelname} {message}',

'style': '{',

},

},

'filters': {

'special': {

'()': 'project.logging.SpecialFilter',

'foo': 'bar',

},

},

'handlers': {

'console': {

'level': 'INFO',

'class': 'logging.StreamHandler',

'formatter': 'simple',

(continues on next page)

35

https://docs.djangoproject.com/en/stable/topics/logging/#configuring-logging

(continued from previous page)

},

'mail_admins': {

'level': 'ERROR',

'class': 'django.utils.log.AdminEmailHandler',

'filters': ['special']

}

},

'loggers': {

'django': {

'handlers': ['console'],

'propagate': True,

},

'django.request': {

'handlers': ['mail_admins'],

'level': 'ERROR',

'propagate': False,

},

'myproject.custom': {

'handlers': ['console', 'mail_admins'],

'level': 'INFO',

'filters': ['special']

}

}

}

For more information about this configuration, you can see the relevant section of the Django documentation.

19 Using a rotator and namer to customize log rotation processing

An example of how you can define a namer and rotator is given in the following runnable script, which shows gzip
compression of the log file:

import gzip

import logging

import logging.handlers

import os

import shutil

def namer(name):

return name + ".gz"

def rotator(source, dest):

with open(source, 'rb') as f_in:

with gzip.open(dest, 'wb') as f_out:

shutil.copyfileobj(f_in, f_out)

os.remove(source)

rh = logging.handlers.RotatingFileHandler('rotated.log', maxBytes=128,␣

↪→backupCount=5)

rh.rotator = rotator

rh.namer = namer

root = logging.getLogger()

root.setLevel(logging.INFO)

root.addHandler(rh)
(continues on next page)

36

https://docs.djangoproject.com/en/stable/topics/logging/#configuring-logging

(continued from previous page)

f = logging.Formatter('%(asctime)s %(message)s')

rh.setFormatter(f)

for i in range(1000):

root.info(f'Message no. {i + 1}')

After running this, you will see six new files, five of which are compressed:

$ ls rotated.log*

rotated.log rotated.log.2.gz rotated.log.4.gz

rotated.log.1.gz rotated.log.3.gz rotated.log.5.gz

$ zcat rotated.log.1.gz

2023-01-20 02:28:17,767 Message no. 996

2023-01-20 02:28:17,767 Message no. 997

2023-01-20 02:28:17,767 Message no. 998

20 A more elaborate multiprocessing example

The following working example shows how logging can be used with multiprocessing using configuration files. The
configurations are fairly simple, but serve to illustrate how more complex ones could be implemented in a real mul-
tiprocessing scenario.

In the example, the main process spawns a listener process and some worker processes. Each of the main process,
the listener and the workers have three separate configurations (the workers all share the same configuration). We
can see logging in the main process, how the workers log to a QueueHandler and how the listener implements a
QueueListener and a more complex logging configuration, and arranges to dispatch events received via the queue to
the handlers specified in the configuration. Note that these configurations are purely illustrative, but you should be
able to adapt this example to your own scenario.

Here’s the script - the docstrings and the comments hopefully explain how it works:

import logging

import logging.config

import logging.handlers

from multiprocessing import Process, Queue, Event, current_process

import os

import random

import time

class MyHandler:

"""

A simple handler for logging events. It runs in the listener process and

dispatches events to loggers based on the name in the received record,

which then get dispatched, by the logging system, to the handlers

configured for those loggers.

"""

def handle(self, record):

if record.name == "root":

logger = logging.getLogger()

else:

logger = logging.getLogger(record.name)

if logger.isEnabledFor(record.levelno):

The process name is transformed just to show that it's the listener

doing the logging to files and console

record.processName = '%s (for %s)' % (current_process().name, record.

(continues on next page)

37

(continued from previous page)

↪→processName)

logger.handle(record)

def listener_process(q, stop_event, config):

"""

This could be done in the main process, but is just done in a separate

process for illustrative purposes.

This initialises logging according to the specified configuration,

starts the listener and waits for the main process to signal completion

via the event. The listener is then stopped, and the process exits.

"""

logging.config.dictConfig(config)

listener = logging.handlers.QueueListener(q, MyHandler())

listener.start()

if os.name == 'posix':

On POSIX, the setup logger will have been configured in the

parent process, but should have been disabled following the

dictConfig call.

On Windows, since fork isn't used, the setup logger won't

exist in the child, so it would be created and the message

would appear - hence the "if posix" clause.

logger = logging.getLogger('setup')

logger.critical('Should not appear, because of disabled logger ...')

stop_event.wait()

listener.stop()

def worker_process(config):

"""

A number of these are spawned for the purpose of illustration. In

practice, they could be a heterogeneous bunch of processes rather than

ones which are identical to each other.

This initialises logging according to the specified configuration,

and logs a hundred messages with random levels to randomly selected

loggers.

A small sleep is added to allow other processes a chance to run. This

is not strictly needed, but it mixes the output from the different

processes a bit more than if it's left out.

"""

logging.config.dictConfig(config)

levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,

logging.CRITICAL]

loggers = ['foo', 'foo.bar', 'foo.bar.baz',

'spam', 'spam.ham', 'spam.ham.eggs']

if os.name == 'posix':

On POSIX, the setup logger will have been configured in the

parent process, but should have been disabled following the

dictConfig call.

On Windows, since fork isn't used, the setup logger won't

exist in the child, so it would be created and the message

would appear - hence the "if posix" clause.

logger = logging.getLogger('setup')

logger.critical('Should not appear, because of disabled logger ...')

for i in range(100):

(continues on next page)

38

(continued from previous page)

lvl = random.choice(levels)

logger = logging.getLogger(random.choice(loggers))

logger.log(lvl, 'Message no. %d', i)

time.sleep(0.01)

def main():

q = Queue()

The main process gets a simple configuration which prints to the console.

config_initial = {

'version': 1,

'handlers': {

'console': {

'class': 'logging.StreamHandler',

'level': 'INFO'

}

},

'root': {

'handlers': ['console'],

'level': 'DEBUG'

}

}

The worker process configuration is just a QueueHandler attached to the

root logger, which allows all messages to be sent to the queue.

We disable existing loggers to disable the "setup" logger used in the

parent process. This is needed on POSIX because the logger will

be there in the child following a fork().

config_worker = {

'version': 1,

'disable_existing_loggers': True,

'handlers': {

'queue': {

'class': 'logging.handlers.QueueHandler',

'queue': q

}

},

'root': {

'handlers': ['queue'],

'level': 'DEBUG'

}

}

The listener process configuration shows that the full flexibility of

logging configuration is available to dispatch events to handlers however

you want.

We disable existing loggers to disable the "setup" logger used in the

parent process. This is needed on POSIX because the logger will

be there in the child following a fork().

config_listener = {

'version': 1,

'disable_existing_loggers': True,

'formatters': {

'detailed': {

'class': 'logging.Formatter',

'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-

↪→10s %(message)s'

},

'simple': {

(continues on next page)

39

(continued from previous page)

'class': 'logging.Formatter',

'format': '%(name)-15s %(levelname)-8s %(processName)-10s

↪→%(message)s'

}

},

'handlers': {

'console': {

'class': 'logging.StreamHandler',

'formatter': 'simple',

'level': 'INFO'

},

'file': {

'class': 'logging.FileHandler',

'filename': 'mplog.log',

'mode': 'w',

'formatter': 'detailed'

},

'foofile': {

'class': 'logging.FileHandler',

'filename': 'mplog-foo.log',

'mode': 'w',

'formatter': 'detailed'

},

'errors': {

'class': 'logging.FileHandler',

'filename': 'mplog-errors.log',

'mode': 'w',

'formatter': 'detailed',

'level': 'ERROR'

}

},

'loggers': {

'foo': {

'handlers': ['foofile']

}

},

'root': {

'handlers': ['console', 'file', 'errors'],

'level': 'DEBUG'

}

}

Log some initial events, just to show that logging in the parent works

normally.

logging.config.dictConfig(config_initial)

logger = logging.getLogger('setup')

logger.info('About to create workers ...')

workers = []

for i in range(5):

wp = Process(target=worker_process, name='worker %d' % (i + 1),

args=(config_worker,))

workers.append(wp)

wp.start()

logger.info('Started worker: %s', wp.name)

logger.info('About to create listener ...')

stop_event = Event()

lp = Process(target=listener_process, name='listener',

(continues on next page)

40

(continued from previous page)

args=(q, stop_event, config_listener))

lp.start()

logger.info('Started listener')

We now hang around for the workers to finish their work.

for wp in workers:

wp.join()

Workers all done, listening can now stop.

Logging in the parent still works normally.

logger.info('Telling listener to stop ...')

stop_event.set()

lp.join()

logger.info('All done.')

if __name__ == '__main__':

main()

21 Inserting a BOM into messages sent to a SysLogHandler

RFC 5424 requires that a Unicode message be sent to a syslog daemon as a set of bytes which have the following
structure: an optional pure-ASCII component, followed by a UTF-8 Byte Order Mark (BOM), followed by Unicode
encoded using UTF-8. (See the relevant section of the specification.)

In Python 3.1, code was added to SysLogHandler to insert a BOM into the message, but unfortunately, it was
implemented incorrectly, with the BOM appearing at the beginning of the message and hence not allowing any pure-
ASCII component to appear before it.

As this behaviour is broken, the incorrect BOM insertion code is being removed from Python 3.2.4 and later. How-
ever, it is not being replaced, and if you want to produce RFC 5424-compliant messages which include a BOM, an
optional pure-ASCII sequence before it and arbitrary Unicode after it, encoded using UTF-8, then you need to do
the following:

1. Attach a Formatter instance to your SysLogHandler instance, with a format string such as:

'ASCII section\ufeffUnicode section'

The Unicode code point U+FEFF, when encoded using UTF-8, will be encoded as a UTF-8 BOM – the byte-
string b'\xef\xbb\xbf'.

2. Replace the ASCII section with whatever placeholders you like, but make sure that the data that appears in
there after substitution is always ASCII (that way, it will remain unchanged after UTF-8 encoding).

3. Replace the Unicode section with whatever placeholders you like; if the data which appears there after substi-
tution contains characters outside the ASCII range, that’s fine – it will be encoded using UTF-8.

The formatted message will be encoded using UTF-8 encoding by SysLogHandler. If you follow the above rules,
you should be able to produce RFC 5424-compliant messages. If you don’t, logging may not complain, but your
messages will not be RFC 5424-compliant, and your syslog daemon may complain.

22 Implementing structured logging

Although most logging messages are intended for reading by humans, and thus not readily machine-parseable, there
might be circumstances where you want to output messages in a structured format which is capable of being parsed
by a program (without needing complex regular expressions to parse the log message). This is straightforward to
achieve using the logging package. There are a number of ways in which this could be achieved, but the following is
a simple approach which uses JSON to serialise the event in a machine-parseable manner:

41

https://datatracker.ietf.org/doc/html/rfc5424.html
https://datatracker.ietf.org/doc/html/rfc5424.html#section-6
https://datatracker.ietf.org/doc/html/rfc5424.html
https://datatracker.ietf.org/doc/html/rfc5424.html

import json

import logging

class StructuredMessage:

def __init__(self, message, /, **kwargs):

self.message = message

self.kwargs = kwargs

def __str__(self):

return '%s >>> %s' % (self.message, json.dumps(self.kwargs))

_ = StructuredMessage # optional, to improve readability

logging.basicConfig(level=logging.INFO, format='%(message)s')

logging.info(_('message 1', foo='bar', bar='baz', num=123, fnum=123.456))

If the above script is run, it prints:

message 1 >>> {"fnum": 123.456, "num": 123, "bar": "baz", "foo": "bar"}

Note that the order of items might be different according to the version of Python used.

If you need more specialised processing, you can use a custom JSON encoder, as in the following complete example:

import json

import logging

class Encoder(json.JSONEncoder):

def default(self, o):

if isinstance(o, set):

return tuple(o)

elif isinstance(o, str):

return o.encode('unicode_escape').decode('ascii')

return super().default(o)

class StructuredMessage:

def __init__(self, message, /, **kwargs):

self.message = message

self.kwargs = kwargs

def __str__(self):

s = Encoder().encode(self.kwargs)

return '%s >>> %s' % (self.message, s)

_ = StructuredMessage # optional, to improve readability

def main():

logging.basicConfig(level=logging.INFO, format='%(message)s')

logging.info(_('message 1', set_value={1, 2, 3}, snowman='\u2603'))

if __name__ == '__main__':

main()

When the above script is run, it prints:

message 1 >>> {"snowman": "\u2603", "set_value": [1, 2, 3]}

Note that the order of items might be different according to the version of Python used.

42

23 Customizing handlers with dictConfig()

There are times when you want to customize logging handlers in particular ways, and if you use dictConfig() you
may be able to do this without subclassing. As an example, consider that you may want to set the ownership of a
log file. On POSIX, this is easily done using shutil.chown(), but the file handlers in the stdlib don’t offer built-in
support. You can customize handler creation using a plain function such as:

def owned_file_handler(filename, mode='a', encoding=None, owner=None):

if owner:

if not os.path.exists(filename):

open(filename, 'a').close()

shutil.chown(filename, *owner)

return logging.FileHandler(filename, mode, encoding)

You can then specify, in a logging configuration passed to dictConfig(), that a logging handler be created by
calling this function:

LOGGING = {

'version': 1,

'disable_existing_loggers': False,

'formatters': {

'default': {

'format': '%(asctime)s %(levelname)s %(name)s %(message)s'

},

},

'handlers': {

'file':{

The values below are popped from this dictionary and

used to create the handler, set the handler's level and

its formatter.

'()': owned_file_handler,

'level':'DEBUG',

'formatter': 'default',

The values below are passed to the handler creator callable

as keyword arguments.

'owner': ['pulse', 'pulse'],

'filename': 'chowntest.log',

'mode': 'w',

'encoding': 'utf-8',

},

},

'root': {

'handlers': ['file'],

'level': 'DEBUG',

},

}

In this example I am setting the ownership using the pulse user and group, just for the purposes of illustration.
Putting it together into a working script, chowntest.py:

import logging, logging.config, os, shutil

def owned_file_handler(filename, mode='a', encoding=None, owner=None):

if owner:

if not os.path.exists(filename):

open(filename, 'a').close()

shutil.chown(filename, *owner)

return logging.FileHandler(filename, mode, encoding)

(continues on next page)

43

(continued from previous page)

LOGGING = {

'version': 1,

'disable_existing_loggers': False,

'formatters': {

'default': {

'format': '%(asctime)s %(levelname)s %(name)s %(message)s'

},

},

'handlers': {

'file':{

The values below are popped from this dictionary and

used to create the handler, set the handler's level and

its formatter.

'()': owned_file_handler,

'level':'DEBUG',

'formatter': 'default',

The values below are passed to the handler creator callable

as keyword arguments.

'owner': ['pulse', 'pulse'],

'filename': 'chowntest.log',

'mode': 'w',

'encoding': 'utf-8',

},

},

'root': {

'handlers': ['file'],

'level': 'DEBUG',

},

}

logging.config.dictConfig(LOGGING)

logger = logging.getLogger('mylogger')

logger.debug('A debug message')

To run this, you will probably need to run as root:

$ sudo python3.3 chowntest.py

$ cat chowntest.log

2013-11-05 09:34:51,128 DEBUG mylogger A debug message

$ ls -l chowntest.log

-rw-r--r-- 1 pulse pulse 55 2013-11-05 09:34 chowntest.log

Note that this example uses Python 3.3 because that’s where shutil.chown()makes an appearance. This approach
should work with any Python version that supports dictConfig() - namely, Python 2.7, 3.2 or later. With pre-3.3
versions, you would need to implement the actual ownership change using e.g. os.chown().

In practice, the handler-creating function may be in a utility module somewhere in your project. Instead of the line
in the configuration:

'()': owned_file_handler,

you could use e.g.:

'()': 'ext://project.util.owned_file_handler',

where project.util can be replaced with the actual name of the package where the function resides. In the
above working script, using 'ext://__main__.owned_file_handler' should work. Here, the actual callable

44

is resolved by dictConfig() from the ext:// specification.

This example hopefully also points the way to how you could implement other types of file change - e.g. setting
specific POSIX permission bits - in the same way, using os.chmod().

Of course, the approach could also be extended to types of handler other than a FileHandler - for example, one
of the rotating file handlers, or a different type of handler altogether.

24 Using particular formatting styles throughout your application

In Python 3.2, the Formatter gained a style keyword parameter which, while defaulting to % for backward com-
patibility, allowed the specification of { or $ to support the formatting approaches supported by str.format()
and string.Template. Note that this governs the formatting of logging messages for final output to logs, and is
completely orthogonal to how an individual logging message is constructed.

Logging calls (debug(), info() etc.) only take positional parameters for the actual logging message itself, with
keyword parameters used only for determining options for how to handle the logging call (e.g. the exc_info keyword
parameter to indicate that traceback information should be logged, or the extra keyword parameter to indicate
additional contextual information to be added to the log). So you cannot directly make logging calls using str.
format() or string.Template syntax, because internally the logging package uses %-formatting to merge the
format string and the variable arguments. There would be no changing this while preserving backward compatibility,
since all logging calls which are out there in existing code will be using %-format strings.

There have been suggestions to associate format styles with specific loggers, but that approach also runs into backward
compatibility problems because any existing code could be using a given logger name and using %-formatting.

For logging to work interoperably between any third-party libraries and your code, decisions about formatting need
to be made at the level of the individual logging call. This opens up a couple of ways in which alternative formatting
styles can be accommodated.

24.1 Using LogRecord factories

In Python 3.2, along with the Formatter changes mentioned above, the logging package gained the ability to allow
users to set their own LogRecord subclasses, using the setLogRecordFactory() function. You can use this to set
your own subclass of LogRecord, which does the Right Thing by overriding the getMessage()method. The base
class implementation of this method is where the msg % args formatting happens, and where you can substitute
your alternate formatting; however, you should be careful to support all formatting styles and allow %-formatting as
the default, to ensure interoperability with other code. Care should also be taken to call str(self.msg), just as
the base implementation does.

Refer to the reference documentation on setLogRecordFactory() and LogRecord for more information.

24.2 Using custom message objects

There is another, perhaps simpler way that you can use {}- and $- formatting to construct your individual log messages.
You may recall (from arbitrary-object-messages) that when logging you can use an arbitrary object as a message
format string, and that the logging package will call str() on that object to get the actual format string. Consider
the following two classes:

class BraceMessage:

def __init__(self, fmt, /, *args, **kwargs):

self.fmt = fmt

self.args = args

self.kwargs = kwargs

def __str__(self):

return self.fmt.format(*self.args, **self.kwargs)

class DollarMessage:

def __init__(self, fmt, /, **kwargs):

(continues on next page)

45

(continued from previous page)

self.fmt = fmt

self.kwargs = kwargs

def __str__(self):

from string import Template

return Template(self.fmt).substitute(**self.kwargs)

Either of these can be used in place of a format string, to allow {}- or $-formatting to be used to build the actual
“message” part which appears in the formatted log output in place of “%(message)s” or “{message}” or “$message”.
If you find it a little unwieldy to use the class names whenever you want to log something, you can make it more
palatable if you use an alias such as M or _ for the message (or perhaps __, if you are using _ for localization).

Examples of this approach are given below. Firstly, formatting with str.format():

>>> __ = BraceMessage

>>> print(__('Message with {0} {1}', 2, 'placeholders'))

Message with 2 placeholders

>>> class Point: pass

...

>>> p = Point()

>>> p.x = 0.5

>>> p.y = 0.5

>>> print(__('Message with coordinates: ({point.x:.2f}, {point.y:.2f})', point=p))

Message with coordinates: (0.50, 0.50)

Secondly, formatting with string.Template:

>>> __ = DollarMessage

>>> print(__('Message with $num $what', num=2, what='placeholders'))

Message with 2 placeholders

>>>

One thing to note is that you pay no significant performance penalty with this approach: the actual formatting happens
not when you make the logging call, but when (and if) the logged message is actually about to be output to a log by a
handler. So the only slightly unusual thing which might trip you up is that the parentheses go around the format string
and the arguments, not just the format string. That’s because the __ notation is just syntax sugar for a constructor call
to one of the XXXMessage classes shown above.

25 Configuring filters with dictConfig()

You can configure filters using dictConfig(), though it might not be obvious at first glance how to do it (hence
this recipe). Since Filter is the only filter class included in the standard library, and it is unlikely to cater to many
requirements (it’s only there as a base class), you will typically need to define your own Filter subclass with an
overridden filter()method. To do this, specify the () key in the configuration dictionary for the filter, specifying
a callable which will be used to create the filter (a class is the most obvious, but you can provide any callable which
returns a Filter instance). Here is a complete example:

import logging

import logging.config

import sys

class MyFilter(logging.Filter):

def __init__(self, param=None):

self.param = param

def filter(self, record):

(continues on next page)

46

(continued from previous page)

if self.param is None:

allow = True

else:

allow = self.param not in record.msg

if allow:

record.msg = 'changed: ' + record.msg

return allow

LOGGING = {

'version': 1,

'filters': {

'myfilter': {

'()': MyFilter,

'param': 'noshow',

}

},

'handlers': {

'console': {

'class': 'logging.StreamHandler',

'filters': ['myfilter']

}

},

'root': {

'level': 'DEBUG',

'handlers': ['console']

},

}

if __name__ == '__main__':

logging.config.dictConfig(LOGGING)

logging.debug('hello')

logging.debug('hello - noshow')

This example shows how you can pass configuration data to the callable which constructs the instance, in the form of
keyword parameters. When run, the above script will print:

changed: hello

which shows that the filter is working as configured.

A couple of extra points to note:

• If you can’t refer to the callable directly in the configuration (e.g. if it lives in a different module, and you can’t
import it directly where the configuration dictionary is), you can use the form ext://... as described in
logging-config-dict-externalobj. For example, you could have used the text 'ext://__main__.MyFilter'
instead of MyFilter in the above example.

• As well as for filters, this technique can also be used to configure custom handlers and formatters. See logging-
config-dict-userdef for more information on how logging supports using user-defined objects in its configura-
tion, and see the other cookbook recipe Customizing handlers with dictConfig() above.

26 Customized exception formatting

There might be times when you want to do customized exception formatting - for argument’s sake, let’s say you
want exactly one line per logged event, even when exception information is present. You can do this with a custom
formatter class, as shown in the following example:

47

import logging

class OneLineExceptionFormatter(logging.Formatter):

def formatException(self, exc_info):

"""

Format an exception so that it prints on a single line.

"""

result = super().formatException(exc_info)

return repr(result) # or format into one line however you want to

def format(self, record):

s = super().format(record)

if record.exc_text:

s = s.replace('\n', '') + '|'

return s

def configure_logging():

fh = logging.FileHandler('output.txt', 'w')

f = OneLineExceptionFormatter('%(asctime)s|%(levelname)s|%(message)s|',

'%d/%m/%Y %H:%M:%S')

fh.setFormatter(f)

root = logging.getLogger()

root.setLevel(logging.DEBUG)

root.addHandler(fh)

def main():

configure_logging()

logging.info('Sample message')

try:

x = 1 / 0

except ZeroDivisionError as e:

logging.exception('ZeroDivisionError: %s', e)

if __name__ == '__main__':

main()

When run, this produces a file with exactly two lines:

28/01/2015 07:21:23|INFO|Sample message|

28/01/2015 07:21:23|ERROR|ZeroDivisionError: division by zero|'Traceback (most␣

↪→recent call last):\n File "logtest7.py", line 30, in main\n x = 1 / 0\

↪→nZeroDivisionError: division by zero'|

While the above treatment is simplistic, it points the way to how exception information can be formatted to your
liking. The traceback module may be helpful for more specialized needs.

27 Speaking logging messages

There might be situations when it is desirable to have logging messages rendered in an audible rather than a visible
format. This is easy to do if you have text-to-speech (TTS) functionality available in your system, even if it doesn’t
have a Python binding. Most TTS systems have a command line program you can run, and this can be invoked from
a handler using subprocess. It’s assumed here that TTS command line programs won’t expect to interact with
users or take a long time to complete, and that the frequency of logged messages will be not so high as to swamp the
user with messages, and that it’s acceptable to have the messages spoken one at a time rather than concurrently, The
example implementation below waits for one message to be spoken before the next is processed, and this might cause
other handlers to be kept waiting. Here is a short example showing the approach, which assumes that the espeak
TTS package is available:

48

import logging

import subprocess

import sys

class TTSHandler(logging.Handler):

def emit(self, record):

msg = self.format(record)

Speak slowly in a female English voice

cmd = ['espeak', '-s150', '-ven+f3', msg]

p = subprocess.Popen(cmd, stdout=subprocess.PIPE,

stderr=subprocess.STDOUT)

wait for the program to finish

p.communicate()

def configure_logging():

h = TTSHandler()

root = logging.getLogger()

root.addHandler(h)

the default formatter just returns the message

root.setLevel(logging.DEBUG)

def main():

logging.info('Hello')

logging.debug('Goodbye')

if __name__ == '__main__':

configure_logging()

sys.exit(main())

When run, this script should say “Hello” and then “Goodbye” in a female voice.

The above approach can, of course, be adapted to other TTS systems and even other systems altogether which can
process messages via external programs run from a command line.

28 Buffering logging messages and outputting them conditionally

There might be situations where you want to log messages in a temporary area and only output them if a certain
condition occurs. For example, youmay want to start logging debug events in a function, and if the function completes
without errors, you don’t want to clutter the log with the collected debug information, but if there is an error, you
want all the debug information to be output as well as the error.

Here is an example which shows how you could do this using a decorator for your functions where you want logging
to behave this way. It makes use of the logging.handlers.MemoryHandler, which allows buffering of logged
events until some condition occurs, at which point the buffered events are flushed - passed to another handler (the
target handler) for processing. By default, the MemoryHandler flushed when its buffer gets filled up or an event
whose level is greater than or equal to a specified threshold is seen. You can use this recipe with a more specialised
subclass of MemoryHandler if you want custom flushing behavior.

The example script has a simple function, foo, which just cycles through all the logging levels, writing to sys.

stderr to say what level it’s about to log at, and then actually logging a message at that level. You can pass a
parameter to foo which, if true, will log at ERROR and CRITICAL levels - otherwise, it only logs at DEBUG, INFO
and WARNING levels.

The script just arranges to decorate foo with a decorator which will do the conditional logging that’s required. The
decorator takes a logger as a parameter and attaches a memory handler for the duration of the call to the decorated
function. The decorator can be additionally parameterised using a target handler, a level at which flushing should
occur, and a capacity for the buffer (number of records buffered). These default to a StreamHandler which writes
to sys.stderr, logging.ERROR and 100 respectively.

49

Here’s the script:

import logging

from logging.handlers import MemoryHandler

import sys

logger = logging.getLogger(__name__)

logger.addHandler(logging.NullHandler())

def log_if_errors(logger, target_handler=None, flush_level=None, capacity=None):

if target_handler is None:

target_handler = logging.StreamHandler()

if flush_level is None:

flush_level = logging.ERROR

if capacity is None:

capacity = 100

handler = MemoryHandler(capacity, flushLevel=flush_level, target=target_

↪→handler)

def decorator(fn):

def wrapper(*args, **kwargs):

logger.addHandler(handler)

try:

return fn(*args, **kwargs)

except Exception:

logger.exception('call failed')

raise

finally:

super(MemoryHandler, handler).flush()

logger.removeHandler(handler)

return wrapper

return decorator

def write_line(s):

sys.stderr.write('%s\n' % s)

def foo(fail=False):

write_line('about to log at DEBUG ...')

logger.debug('Actually logged at DEBUG')

write_line('about to log at INFO ...')

logger.info('Actually logged at INFO')

write_line('about to log at WARNING ...')

logger.warning('Actually logged at WARNING')

if fail:

write_line('about to log at ERROR ...')

logger.error('Actually logged at ERROR')

write_line('about to log at CRITICAL ...')

logger.critical('Actually logged at CRITICAL')

return fail

decorated_foo = log_if_errors(logger)(foo)

if __name__ == '__main__':

logger.setLevel(logging.DEBUG)

write_line('Calling undecorated foo with False')

assert not foo(False)

write_line('Calling undecorated foo with True')
(continues on next page)

50

(continued from previous page)

assert foo(True)

write_line('Calling decorated foo with False')

assert not decorated_foo(False)

write_line('Calling decorated foo with True')

assert decorated_foo(True)

When this script is run, the following output should be observed:

Calling undecorated foo with False

about to log at DEBUG ...

about to log at INFO ...

about to log at WARNING ...

Calling undecorated foo with True

about to log at DEBUG ...

about to log at INFO ...

about to log at WARNING ...

about to log at ERROR ...

about to log at CRITICAL ...

Calling decorated foo with False

about to log at DEBUG ...

about to log at INFO ...

about to log at WARNING ...

Calling decorated foo with True

about to log at DEBUG ...

about to log at INFO ...

about to log at WARNING ...

about to log at ERROR ...

Actually logged at DEBUG

Actually logged at INFO

Actually logged at WARNING

Actually logged at ERROR

about to log at CRITICAL ...

Actually logged at CRITICAL

As you can see, actual logging output only occurs when an event is logged whose severity is ERROR or greater, but
in that case, any previous events at lower severities are also logged.

You can of course use the conventional means of decoration:

@log_if_errors(logger)

def foo(fail=False):

...

29 Sending logging messages to email, with buffering

To illustrate how you can send log messages via email, so that a set number of messages are sent per email, you
can subclass BufferingHandler. In the following example, which you can adapt to suit your specific needs, a
simple test harness is provided which allows you to run the script with command line arguments specifying what you
typically need to send things via SMTP. (Run the downloaded script with the -h argument to see the required and
optional arguments.)

import logging

import logging.handlers

import smtplib

class BufferingSMTPHandler(logging.handlers.BufferingHandler):

(continues on next page)

51

(continued from previous page)

def __init__(self, mailhost, port, username, password, fromaddr, toaddrs,

subject, capacity):

logging.handlers.BufferingHandler.__init__(self, capacity)

self.mailhost = mailhost

self.mailport = port

self.username = username

self.password = password

self.fromaddr = fromaddr

if isinstance(toaddrs, str):

toaddrs = [toaddrs]

self.toaddrs = toaddrs

self.subject = subject

self.setFormatter(logging.Formatter("%(asctime)s %(levelname)-5s

↪→%(message)s"))

def flush(self):

if len(self.buffer) > 0:

try:

smtp = smtplib.SMTP(self.mailhost, self.mailport)

smtp.starttls()

smtp.login(self.username, self.password)

msg = "From: %s\r\nTo: %s\r\nSubject: %s\r\n\r\n" % (self.fromaddr,

↪→ ','.join(self.toaddrs), self.subject)

for record in self.buffer:

s = self.format(record)

msg = msg + s + "\r\n"

smtp.sendmail(self.fromaddr, self.toaddrs, msg)

smtp.quit()

except Exception:

if logging.raiseExceptions:

raise

self.buffer = []

if __name__ == '__main__':

import argparse

ap = argparse.ArgumentParser()

aa = ap.add_argument

aa('host', metavar='HOST', help='SMTP server')

aa('--port', '-p', type=int, default=587, help='SMTP port')

aa('user', metavar='USER', help='SMTP username')

aa('password', metavar='PASSWORD', help='SMTP password')

aa('to', metavar='TO', help='Addressee for emails')

aa('sender', metavar='SENDER', help='Sender email address')

aa('--subject', '-s',

default='Test Logging email from Python logging module (buffering)',

help='Subject of email')

options = ap.parse_args()

logger = logging.getLogger()

logger.setLevel(logging.DEBUG)

h = BufferingSMTPHandler(options.host, options.port, options.user,

options.password, options.sender,

options.to, options.subject, 10)

logger.addHandler(h)

for i in range(102):

logger.info("Info index = %d", i)

(continues on next page)

52

(continued from previous page)

h.flush()

h.close()

If you run this script and your SMTP server is correctly set up, you should find that it sends eleven emails to the
addressee you specify. The first ten emails will each have ten log messages, and the eleventh will have two messages.
That makes up 102 messages as specified in the script.

30 Formatting times using UTC (GMT) via configuration

Sometimes you want to format times using UTC, which can be done using a class such as UTCFormatter, shown
below:

import logging

import time

class UTCFormatter(logging.Formatter):

converter = time.gmtime

and you can then use the UTCFormatter in your code instead of Formatter. If you want to do that via configura-
tion, you can use the dictConfig() API with an approach illustrated by the following complete example:

import logging

import logging.config

import time

class UTCFormatter(logging.Formatter):

converter = time.gmtime

LOGGING = {

'version': 1,

'disable_existing_loggers': False,

'formatters': {

'utc': {

'()': UTCFormatter,

'format': '%(asctime)s %(message)s',

},

'local': {

'format': '%(asctime)s %(message)s',

}

},

'handlers': {

'console1': {

'class': 'logging.StreamHandler',

'formatter': 'utc',

},

'console2': {

'class': 'logging.StreamHandler',

'formatter': 'local',

},

},

'root': {

'handlers': ['console1', 'console2'],

}

}

if __name__ == '__main__':

(continues on next page)

53

(continued from previous page)

logging.config.dictConfig(LOGGING)

logging.warning('The local time is %s', time.asctime())

When this script is run, it should print something like:

2015-10-17 12:53:29,501 The local time is Sat Oct 17 13:53:29 2015

2015-10-17 13:53:29,501 The local time is Sat Oct 17 13:53:29 2015

showing how the time is formatted both as local time and UTC, one for each handler.

31 Using a context manager for selective logging

There are times when it would be useful to temporarily change the logging configuration and revert it back after doing
something. For this, a context manager is the most obvious way of saving and restoring the logging context. Here
is a simple example of such a context manager, which allows you to optionally change the logging level and add a
logging handler purely in the scope of the context manager:

import logging

import sys

class LoggingContext:

def __init__(self, logger, level=None, handler=None, close=True):

self.logger = logger

self.level = level

self.handler = handler

self.close = close

def __enter__(self):

if self.level is not None:

self.old_level = self.logger.level

self.logger.setLevel(self.level)

if self.handler:

self.logger.addHandler(self.handler)

def __exit__(self, et, ev, tb):

if self.level is not None:

self.logger.setLevel(self.old_level)

if self.handler:

self.logger.removeHandler(self.handler)

if self.handler and self.close:

self.handler.close()

implicit return of None => don't swallow exceptions

If you specify a level value, the logger’s level is set to that value in the scope of the with block covered by the context
manager. If you specify a handler, it is added to the logger on entry to the block and removed on exit from the block.
You can also ask the manager to close the handler for you on block exit - you could do this if you don’t need the
handler any more.

To illustrate how it works, we can add the following block of code to the above:

if __name__ == '__main__':

logger = logging.getLogger('foo')

logger.addHandler(logging.StreamHandler())

logger.setLevel(logging.INFO)

logger.info('1. This should appear just once on stderr.')

logger.debug('2. This should not appear.')

(continues on next page)

54

(continued from previous page)

with LoggingContext(logger, level=logging.DEBUG):

logger.debug('3. This should appear once on stderr.')

logger.debug('4. This should not appear.')

h = logging.StreamHandler(sys.stdout)

with LoggingContext(logger, level=logging.DEBUG, handler=h, close=True):

logger.debug('5. This should appear twice - once on stderr and once on␣

↪→stdout.')

logger.info('6. This should appear just once on stderr.')

logger.debug('7. This should not appear.')

We initially set the logger’s level to INFO, so message #1 appears and message #2 doesn’t. We then change the level
to DEBUG temporarily in the following with block, and so message #3 appears. After the block exits, the logger’s
level is restored to INFO and so message #4 doesn’t appear. In the next with block, we set the level to DEBUG again
but also add a handler writing to sys.stdout. Thus, message #5 appears twice on the console (once via stderr
and once via stdout). After the with statement’s completion, the status is as it was before so message #6 appears
(like message #1) whereas message #7 doesn’t (just like message #2).

If we run the resulting script, the result is as follows:

$ python logctx.py

1. This should appear just once on stderr.

3. This should appear once on stderr.

5. This should appear twice - once on stderr and once on stdout.

5. This should appear twice - once on stderr and once on stdout.

6. This should appear just once on stderr.

If we run it again, but pipe stderr to /dev/null, we see the following, which is the only message written to
stdout:

$ python logctx.py 2>/dev/null

5. This should appear twice - once on stderr and once on stdout.

Once again, but piping stdout to /dev/null, we get:

$ python logctx.py >/dev/null

1. This should appear just once on stderr.

3. This should appear once on stderr.

5. This should appear twice - once on stderr and once on stdout.

6. This should appear just once on stderr.

In this case, the message #5 printed to stdout doesn’t appear, as expected.

Of course, the approach described here can be generalised, for example to attach logging filters temporarily. Note
that the above code works in Python 2 as well as Python 3.

32 A CLI application starter template

Here’s an example which shows how you can:

• Use a logging level based on command-line arguments

• Dispatch to multiple subcommands in separate files, all logging at the same level in a consistent way

• Make use of simple, minimal configuration

Suppose we have a command-line application whose job is to stop, start or restart some services. This could be
organised for the purposes of illustration as a file app.py that is the main script for the application, with individual
commands implemented in start.py, stop.py and restart.py. Suppose further that we want to control the
verbosity of the application via a command-line argument, defaulting to logging.INFO. Here’s one way that app.
py could be written:

55

import argparse

import importlib

import logging

import os

import sys

def main(args=None):

scriptname = os.path.basename(__file__)

parser = argparse.ArgumentParser(scriptname)

levels = ('DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL')

parser.add_argument('--log-level', default='INFO', choices=levels)

subparsers = parser.add_subparsers(dest='command',

help='Available commands:')

start_cmd = subparsers.add_parser('start', help='Start a service')

start_cmd.add_argument('name', metavar='NAME',

help='Name of service to start')

stop_cmd = subparsers.add_parser('stop',

help='Stop one or more services')

stop_cmd.add_argument('names', metavar='NAME', nargs='+',

help='Name of service to stop')

restart_cmd = subparsers.add_parser('restart',

help='Restart one or more services')

restart_cmd.add_argument('names', metavar='NAME', nargs='+',

help='Name of service to restart')

options = parser.parse_args()

the code to dispatch commands could all be in this file. For the purposes

of illustration only, we implement each command in a separate module.

try:

mod = importlib.import_module(options.command)

cmd = getattr(mod, 'command')

except (ImportError, AttributeError):

print('Unable to find the code for command \'%s\'' % options.command)

return 1

Could get fancy here and load configuration from file or dictionary

logging.basicConfig(level=options.log_level,

format='%(levelname)s %(name)s %(message)s')

cmd(options)

if __name__ == '__main__':

sys.exit(main())

And the start, stop and restart commands can be implemented in separate modules, like so for starting:

start.py

import logging

logger = logging.getLogger(__name__)

def command(options):

logger.debug('About to start %s', options.name)

actually do the command processing here ...

logger.info('Started the \'%s\' service.', options.name)

and thus for stopping:

stop.py

import logging

(continues on next page)

56

(continued from previous page)

logger = logging.getLogger(__name__)

def command(options):

n = len(options.names)

if n == 1:

plural = ''

services = '\'%s\'' % options.names[0]

else:

plural = 's'

services = ', '.join('\'%s\'' % name for name in options.names)

i = services.rfind(', ')

services = services[:i] + ' and ' + services[i + 2:]

logger.debug('About to stop %s', services)

actually do the command processing here ...

logger.info('Stopped the %s service%s.', services, plural)

and similarly for restarting:

restart.py

import logging

logger = logging.getLogger(__name__)

def command(options):

n = len(options.names)

if n == 1:

plural = ''

services = '\'%s\'' % options.names[0]

else:

plural = 's'

services = ', '.join('\'%s\'' % name for name in options.names)

i = services.rfind(', ')

services = services[:i] + ' and ' + services[i + 2:]

logger.debug('About to restart %s', services)

actually do the command processing here ...

logger.info('Restarted the %s service%s.', services, plural)

If we run this application with the default log level, we get output like this:

$ python app.py start foo

INFO start Started the 'foo' service.

$ python app.py stop foo bar

INFO stop Stopped the 'foo' and 'bar' services.

$ python app.py restart foo bar baz

INFO restart Restarted the 'foo', 'bar' and 'baz' services.

The first word is the logging level, and the second word is the module or package name of the place where the event
was logged.

If we change the logging level, then we can change the information sent to the log. For example, if we want more
information:

$ python app.py --log-level DEBUG start foo

DEBUG start About to start foo

(continues on next page)

57

(continued from previous page)

INFO start Started the 'foo' service.

$ python app.py --log-level DEBUG stop foo bar

DEBUG stop About to stop 'foo' and 'bar'

INFO stop Stopped the 'foo' and 'bar' services.

$ python app.py --log-level DEBUG restart foo bar baz

DEBUG restart About to restart 'foo', 'bar' and 'baz'

INFO restart Restarted the 'foo', 'bar' and 'baz' services.

And if we want less:

$ python app.py --log-level WARNING start foo

$ python app.py --log-level WARNING stop foo bar

$ python app.py --log-level WARNING restart foo bar baz

In this case, the commands don’t print anything to the console, since nothing at WARNING level or above is logged by
them.

33 A Qt GUI for logging

A question that comes up from time to time is about how to log to a GUI application. The Qt framework is a popular
cross-platform UI framework with Python bindings using PySide2 or PyQt5 libraries.

The following example shows how to log to a Qt GUI. This introduces a simple QtHandler class which takes a
callable, which should be a slot in the main thread that does GUI updates. A worker thread is also created to show
how you can log to the GUI from both the UI itself (via a button for manual logging) as well as a worker thread doing
work in the background (here, just logging messages at random levels with random short delays in between).

The worker thread is implemented using Qt’s QThread class rather than the threading module, as there are cir-
cumstances where one has to use QThread, which offers better integration with other Qt components.

The code should work with recent releases of any of PySide6, PyQt6, PySide2 or PyQt5. You should be able
to adapt the approach to earlier versions of Qt. Please refer to the comments in the code snippet for more detailed
information.

import datetime

import logging

import random

import sys

import time

Deal with minor differences between different Qt packages

try:

from PySide6 import QtCore, QtGui, QtWidgets

Signal = QtCore.Signal

Slot = QtCore.Slot

except ImportError:

try:

from PyQt6 import QtCore, QtGui, QtWidgets

Signal = QtCore.pyqtSignal

Slot = QtCore.pyqtSlot

except ImportError:

try:

from PySide2 import QtCore, QtGui, QtWidgets

Signal = QtCore.Signal

Slot = QtCore.Slot

(continues on next page)

58

https://www.qt.io/
https://pypi.org/project/PySide2/
https://pypi.org/project/PyQt5/

(continued from previous page)

except ImportError:

from PyQt5 import QtCore, QtGui, QtWidgets

Signal = QtCore.pyqtSignal

Slot = QtCore.pyqtSlot

logger = logging.getLogger(__name__)

#

Signals need to be contained in a QObject or subclass in order to be correctly

initialized.

#

class Signaller(QtCore.QObject):

signal = Signal(str, logging.LogRecord)

#

Output to a Qt GUI is only supposed to happen on the main thread. So, this

handler is designed to take a slot function which is set up to run in the main

thread. In this example, the function takes a string argument which is a

formatted log message, and the log record which generated it. The formatted

string is just a convenience - you could format a string for output any way

you like in the slot function itself.

#

You specify the slot function to do whatever GUI updates you want. The handler

doesn't know or care about specific UI elements.

#

class QtHandler(logging.Handler):

def __init__(self, slotfunc, *args, **kwargs):

super().__init__(*args, **kwargs)

self.signaller = Signaller()

self.signaller.signal.connect(slotfunc)

def emit(self, record):

s = self.format(record)

self.signaller.signal.emit(s, record)

#

This example uses QThreads, which means that the threads at the Python level

are named something like "Dummy-1". The function below gets the Qt name of the

current thread.

#

def ctname():

return QtCore.QThread.currentThread().objectName()

#

Used to generate random levels for logging.

#

LEVELS = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,

logging.CRITICAL)

#

This worker class represents work that is done in a thread separate to the

main thread. The way the thread is kicked off to do work is via a button press

that connects to a slot in the worker.

#

(continues on next page)

59

(continued from previous page)

Because the default threadName value in the LogRecord isn't much use, we add

a qThreadName which contains the QThread name as computed above, and pass that

value in an "extra" dictionary which is used to update the LogRecord with the

QThread name.

#

This example worker just outputs messages sequentially, interspersed with

random delays of the order of a few seconds.

#

class Worker(QtCore.QObject):

@Slot()

def start(self):

extra = {'qThreadName': ctname() }

logger.debug('Started work', extra=extra)

i = 1

Let the thread run until interrupted. This allows reasonably clean

thread termination.

while not QtCore.QThread.currentThread().isInterruptionRequested():

delay = 0.5 + random.random() * 2

time.sleep(delay)

try:

if random.random() < 0.1:

raise ValueError('Exception raised: %d' % i)

else:

level = random.choice(LEVELS)

logger.log(level, 'Message after delay of %3.1f: %d', delay, i,

↪→ extra=extra)

except ValueError as e:

logger.exception('Failed: %s', e, extra=extra)

i += 1

#

Implement a simple UI for this cookbook example. This contains:

#

* A read-only text edit window which holds formatted log messages

* A button to start work and log stuff in a separate thread

* A button to log something from the main thread

* A button to clear the log window

#

class Window(QtWidgets.QWidget):

COLORS = {

logging.DEBUG: 'black',

logging.INFO: 'blue',

logging.WARNING: 'orange',

logging.ERROR: 'red',

logging.CRITICAL: 'purple',

}

def __init__(self, app):

super().__init__()

self.app = app

self.textedit = te = QtWidgets.QPlainTextEdit(self)

Set whatever the default monospace font is for the platform

f = QtGui.QFont('nosuchfont')

if hasattr(f, 'Monospace'):

f.setStyleHint(f.Monospace)

(continues on next page)

60

(continued from previous page)

else:

f.setStyleHint(f.StyleHint.Monospace) # for Qt6

te.setFont(f)

te.setReadOnly(True)

PB = QtWidgets.QPushButton

self.work_button = PB('Start background work', self)

self.log_button = PB('Log a message at a random level', self)

self.clear_button = PB('Clear log window', self)

self.handler = h = QtHandler(self.update_status)

Remember to use qThreadName rather than threadName in the format string.

fs = '%(asctime)s %(qThreadName)-12s %(levelname)-8s %(message)s'

formatter = logging.Formatter(fs)

h.setFormatter(formatter)

logger.addHandler(h)

Set up to terminate the QThread when we exit

app.aboutToQuit.connect(self.force_quit)

Lay out all the widgets

layout = QtWidgets.QVBoxLayout(self)

layout.addWidget(te)

layout.addWidget(self.work_button)

layout.addWidget(self.log_button)

layout.addWidget(self.clear_button)

self.setFixedSize(900, 400)

Connect the non-worker slots and signals

self.log_button.clicked.connect(self.manual_update)

self.clear_button.clicked.connect(self.clear_display)

Start a new worker thread and connect the slots for the worker

self.start_thread()

self.work_button.clicked.connect(self.worker.start)

Once started, the button should be disabled

self.work_button.clicked.connect(lambda : self.work_button.

↪→setEnabled(False))

def start_thread(self):

self.worker = Worker()

self.worker_thread = QtCore.QThread()

self.worker.setObjectName('Worker')

self.worker_thread.setObjectName('WorkerThread') # for qThreadName

self.worker.moveToThread(self.worker_thread)

This will start an event loop in the worker thread

self.worker_thread.start()

def kill_thread(self):

Just tell the worker to stop, then tell it to quit and wait for that

to happen

self.worker_thread.requestInterruption()

if self.worker_thread.isRunning():

self.worker_thread.quit()

self.worker_thread.wait()

else:

print('worker has already exited.')

def force_quit(self):

(continues on next page)

61

(continued from previous page)

For use when the window is closed

if self.worker_thread.isRunning():

self.kill_thread()

The functions below update the UI and run in the main thread because

that's where the slots are set up

@Slot(str, logging.LogRecord)

def update_status(self, status, record):

color = self.COLORS.get(record.levelno, 'black')

s = '<pre>%s</pre>' % (color, status)

self.textedit.appendHtml(s)

@Slot()

def manual_update(self):

This function uses the formatted message passed in, but also uses

information from the record to format the message in an appropriate

color according to its severity (level).

level = random.choice(LEVELS)

extra = {'qThreadName': ctname() }

logger.log(level, 'Manually logged!', extra=extra)

@Slot()

def clear_display(self):

self.textedit.clear()

def main():

QtCore.QThread.currentThread().setObjectName('MainThread')

logging.getLogger().setLevel(logging.DEBUG)

app = QtWidgets.QApplication(sys.argv)

example = Window(app)

example.show()

if hasattr(app, 'exec'):

rc = app.exec()

else:

rc = app.exec_()

sys.exit(rc)

if __name__=='__main__':

main()

34 Logging to syslog with RFC5424 support

Although RFC 5424 dates from 2009, most syslog servers are configured by default to use the older RFC 3164,
which hails from 2001. When logging was added to Python in 2003, it supported the earlier (and only existing)
protocol at the time. Since RFC5424 came out, as there has not been widespread deployment of it in syslog servers,
the SysLogHandler functionality has not been updated.

RFC 5424 contains some useful features such as support for structured data, and if you need to be able to log to a
syslog server with support for it, you can do so with a subclassed handler which looks something like this:

import datetime

import logging.handlers

import re

import socket
(continues on next page)

62

https://datatracker.ietf.org/doc/html/rfc5424.html
https://datatracker.ietf.org/doc/html/rfc3164.html

(continued from previous page)

import time

class SysLogHandler5424(logging.handlers.SysLogHandler):

tz_offset = re.compile(r'([+-]\d{2})(\d{2})$')

escaped = re.compile(r'([\]"\\])')

def __init__(self, *args, **kwargs):

self.msgid = kwargs.pop('msgid', None)

self.appname = kwargs.pop('appname', None)

super().__init__(*args, **kwargs)

def format(self, record):

version = 1

asctime = datetime.datetime.fromtimestamp(record.created).isoformat()

m = self.tz_offset.match(time.strftime('%z'))

has_offset = False

if m and time.timezone:

hrs, mins = m.groups()

if int(hrs) or int(mins):

has_offset = True

if not has_offset:

asctime += 'Z'

else:

asctime += f'{hrs}:{mins}'

try:

hostname = socket.gethostname()

except Exception:

hostname = '-'

appname = self.appname or '-'

procid = record.process

msgid = '-'

msg = super().format(record)

sdata = '-'

if hasattr(record, 'structured_data'):

sd = record.structured_data

This should be a dict where the keys are SD-ID and the value is a

dict mapping PARAM-NAME to PARAM-VALUE (refer to the RFC for what␣

↪→these

mean)

There's no error checking here - it's purely for illustration, and␣

↪→you

can adapt this code for use in production environments

parts = []

def replacer(m):

g = m.groups()

return '\\' + g[0]

for sdid, dv in sd.items():

part = f'[{sdid}'

for k, v in dv.items():

s = str(v)

s = self.escaped.sub(replacer, s)

part += f' {k}="{s}"'

part += ']'

(continues on next page)

63

(continued from previous page)

parts.append(part)

sdata = ''.join(parts)

return f'{version} {asctime} {hostname} {appname} {procid} {msgid} {sdata}

↪→{msg}'

You’ll need to be familiar with RFC 5424 to fully understand the above code, and it may be that you have slightly
different needs (e.g. for how you pass structural data to the log). Nevertheless, the above should be adaptable to your
speciric needs. With the above handler, you’d pass structured data using something like this:

sd = {

'foo@12345': {'bar': 'baz', 'baz': 'bozz', 'fizz': r'buzz'},

'foo@54321': {'rab': 'baz', 'zab': 'bozz', 'zzif': r'buzz'}

}

extra = {'structured_data': sd}

i = 1

logger.debug('Message %d', i, extra=extra)

35 How to treat a logger like an output stream

Sometimes, you need to interface to a third-party API which expects a file-like object to write to, but you want to
direct the API’s output to a logger. You can do this using a class which wraps a logger with a file-like API. Here’s a
short script illustrating such a class:

import logging

class LoggerWriter:

def __init__(self, logger, level):

self.logger = logger

self.level = level

def write(self, message):

if message != '\n': # avoid printing bare newlines, if you like

self.logger.log(self.level, message)

def flush(self):

doesn't actually do anything, but might be expected of a file-like

object - so optional depending on your situation

pass

def close(self):

doesn't actually do anything, but might be expected of a file-like

object - so optional depending on your situation. You might want

to set a flag so that later calls to write raise an exception

pass

def main():

logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger('demo')

info_fp = LoggerWriter(logger, logging.INFO)

debug_fp = LoggerWriter(logger, logging.DEBUG)

print('An INFO message', file=info_fp)

print('A DEBUG message', file=debug_fp)

if __name__ == "__main__":

main()

64

When this script is run, it prints

INFO:demo:An INFO message

DEBUG:demo:A DEBUG message

You could also use LoggerWriter to redirect sys.stdout and sys.stderr by doing something like this:

import sys

sys.stdout = LoggerWriter(logger, logging.INFO)

sys.stderr = LoggerWriter(logger, logging.WARNING)

You should do this after configuring logging for your needs. In the above example, the basicConfig() call does
this (using the sys.stderr value before it is overwritten by a LoggerWriter instance). Then, you’d get this kind
of result:

>>> print('Foo')

INFO:demo:Foo

>>> print('Bar', file=sys.stderr)

WARNING:demo:Bar

>>>

Of course, the examples above show output according to the format used by basicConfig(), but you can use a
different formatter when you configure logging.

Note that with the above scheme, you are somewhat at the mercy of buffering and the sequence of write calls which
you are intercepting. For example, with the definition of LoggerWriter above, if you have the snippet

sys.stderr = LoggerWriter(logger, logging.WARNING)

1 / 0

then running the script results in

WARNING:demo:Traceback (most recent call last):

WARNING:demo: File "/home/runner/cookbook-loggerwriter/test.py", line 53, in

↪→<module>

WARNING:demo:

WARNING:demo:main()

WARNING:demo: File "/home/runner/cookbook-loggerwriter/test.py", line 49, in main

WARNING:demo:

WARNING:demo:1 / 0

WARNING:demo:ZeroDivisionError

WARNING:demo::

WARNING:demo:division by zero

As you can see, this output isn’t ideal. That’s because the underlying code which writes to sys.stderr makes
multiple writes, each of which results in a separate logged line (for example, the last three lines above). To get
around this problem, you need to buffer things and only output log lines when newlines are seen. Let’s use a slightly
better implementation of LoggerWriter:

class BufferingLoggerWriter(LoggerWriter):

def __init__(self, logger, level):

super().__init__(logger, level)

self.buffer = ''

def write(self, message):

(continues on next page)

65

(continued from previous page)

if '\n' not in message:

self.buffer += message

else:

parts = message.split('\n')

if self.buffer:

s = self.buffer + parts.pop(0)

self.logger.log(self.level, s)

self.buffer = parts.pop()

for part in parts:

self.logger.log(self.level, part)

This just buffers up stuff until a newline is seen, and then logs complete lines. With this approach, you get better
output:

WARNING:demo:Traceback (most recent call last):

WARNING:demo: File "/home/runner/cookbook-loggerwriter/main.py", line 55, in

↪→<module>

WARNING:demo: main()

WARNING:demo: File "/home/runner/cookbook-loggerwriter/main.py", line 52, in main

WARNING:demo: 1/0

WARNING:demo:ZeroDivisionError: division by zero

36 Patterns to avoid

Although the preceding sections have described ways of doing things you might need to do or deal with, it is worth
mentioning some usage patterns which are unhelpful, and which should therefore be avoided in most cases. The
following sections are in no particular order.

36.1 Opening the same log file multiple times

On Windows, you will generally not be able to open the same file multiple times as this will lead to a “file is in use
by another process” error. However, on POSIX platforms you’ll not get any errors if you open the same file multiple
times. This could be done accidentally, for example by:

• Adding a file handler more than once which references the same file (e.g. by a copy/paste/forget-to-change
error).

• Opening two files that look different, as they have different names, but are the same because one is a symbolic
link to the other.

• Forking a process, following which both parent and child have a reference to the same file. This might be
through use of the multiprocessing module, for example.

Opening a file multiple times might appear to workmost of the time, but can lead to a number of problems in practice:

• Logging output can be garbled because multiple threads or processes try to write to the same file. Although
logging guards against concurrent use of the same handler instance by multiple threads, there is no such pro-
tection if concurrent writes are attempted by two different threads using two different handler instances which
happen to point to the same file.

• An attempt to delete a file (e.g. during file rotation) silently fails, because there is another reference pointing to
it. This can lead to confusion and wasted debugging time - log entries end up in unexpected places, or are lost
altogether. Or a file that was supposed to be moved remains in place, and grows in size unexpectedly despite
size-based rotation being supposedly in place.

Use the techniques outlined in Logging to a single file from multiple processes to circumvent such issues.

66

36.2 Using loggers as attributes in a class or passing them as parameters

While there might be unusual cases where you’ll need to do this, in general there is no point because loggers are
singletons. Code can always access a given logger instance by name using logging.getLogger(name), so passing
instances around and holding them as instance attributes is pointless. Note that in other languages such as Java and
C#, loggers are often static class attributes. However, this pattern doesn’t make sense in Python, where the module
(and not the class) is the unit of software decomposition.

36.3 Adding handlers other than NullHandler to a logger in a library

Configuring logging by adding handlers, formatters and filters is the responsibility of the application developer, not
the library developer. If you are maintaining a library, ensure that you don’t add handlers to any of your loggers other
than a NullHandler instance.

36.4 Creating a lot of loggers

Loggers are singletons that are never freed during a script execution, and so creating lots of loggers will use up
memory which can’t then be freed. Rather than create a logger per e.g. file processed or network connection made,
use the existing mechanisms for passing contextual information into your logs and restrict the loggers created to those
describing areas within your application (generally modules, but occasionally slightly more fine-grained than that).

37 Other resources

See also

Module logging
API reference for the logging module.

Module logging.config
Configuration API for the logging module.

Module logging.handlers
Useful handlers included with the logging module.

Basic Tutorial

Advanced Tutorial

67

Index

R
RFC

RFC 3164, 62
RFC 5424, 41, 62
RFC 5424 Section 6, 41

68

	Using logging in multiple modules
	Logging from multiple threads
	Multiple handlers and formatters
	Logging to multiple destinations
	Custom handling of levels
	Configuration server example
	Dealing with handlers that block
	Sending and receiving logging events across a network
	Running a logging socket listener in production

	Adding contextual information to your logging output
	Using LoggerAdapters to impart contextual information
	Using objects other than dicts to pass contextual information

	Using Filters to impart contextual information

	Use of contextvars
	Imparting contextual information in handlers
	Logging to a single file from multiple processes
	Using concurrent.futures.ProcessPoolExecutor
	Deploying Web applications using Gunicorn and uWSGI

	Using file rotation
	Use of alternative formatting styles
	Customizing LogRecord
	Subclassing QueueHandler and QueueListener- a ZeroMQ example
	Subclass QueueHandler
	Subclass QueueListener

	Subclassing QueueHandler and QueueListener- a pynng example
	Subclass QueueListener
	Subclass QueueHandler

	An example dictionary-based configuration
	Using a rotator and namer to customize log rotation processing
	A more elaborate multiprocessing example
	Inserting a BOM into messages sent to a SysLogHandler
	Implementing structured logging
	Customizing handlers with dictConfig()
	Using particular formatting styles throughout your application
	Using LogRecord factories
	Using custom message objects

	Configuring filters with dictConfig()
	Customized exception formatting
	Speaking logging messages
	Buffering logging messages and outputting them conditionally
	Sending logging messages to email, with buffering
	Formatting times using UTC (GMT) via configuration
	Using a context manager for selective logging
	A CLI application starter template
	A Qt GUI for logging
	Logging to syslog with RFC5424 support
	How to treat a logger like an output stream
	Patterns to avoid
	Opening the same log file multiple times
	Using loggers as attributes in a class or passing them as parameters
	Adding handlers other than NullHandler to a logger in a library
	Creating a lot of loggers

	Other resources
	Index

