What's New in Python

Release 3.14.0a3
A. M. Kuchling

January 03, 2025

Python Software Foundation
Email: docs@python.org

Contents

1 Summary - release highlights 3

2 New features 3
2.1 PEP 649: deferred evaluation of annotations 3
2.2 Improved error MESSAZES . « . v ¢ v v e 4
2.3 PEP 741: Python Configuration C APT 4

3 Other language changes 4

4 New modules 5

5 Improved modules 5
5.1 Argparse e 5
52 aSt oo e e e e 5
5.3 concurrent.futUres L L e e e e e e e e e e e e e e e e e e e 6
54 CLYPES . o v v e e e 6
5.5 datetime e e e e e e e e e e e e e e e e 6
5.6 decimal L e e e e e e e e e e e e 6
57 diS . o e e e e 6
5.8 BITNO o o o i e e e e e 6
5.9 fractions L e e e e e e 6
5.10 functools L e e e e 7
501 etOpt . . . L e e e e 7
502 http . o o e e e e e 7
SA3 ANSPECt e e e e e e e e e e e e e 7
50400 . oo 7
S5 50N L. e e e e e e e e e 7
506 MIMELYPES .+« ¢ v v v v v e e e e e e e e e e e e e e e e 7
5.7 Multiprocessing v v v v e 8
5.8 0Perator L e e e e e e e e e e e e e 8
519 08 . o e e 8
520 pathlib o e 8
521 pdb .o e 9
522 platform e e e e e e e e e e e e e e 9
523 pickle e e e e e e e e e 9
524 pydoC ..o e e e e e e e e 9
5.25 SSL . . e e 9
526 symtable e 9

5.2 SYS i e e e e e e e e e e e e e e e e 9
5.28 SYS.MONIOTING .+ & v v v v v o e 9
529 tkinter e e e e e e e e e 9
5.30 unicodedata e e e e e e e e e e e e e e e e 10
S3T UNILESE .« . v v o o e 10
532 urllib . .o oL e e e 10
533 uuid ... e e e e e 10
534 zipinfoo e e e e 10
6 Optimizations 10
6.1 aSYNCIO o e e e e e e e e e e e e e 10
6.2 10 . .. e 10
7 Deprecated 10
7.1 Pending removal in Python 3.15. L. e 11
7.2 Pending removal in Python3.16 oL 12
7.3 Pending removal in future versions Lo e 13
8 Removed 16
.l ArgPArSe . . . v o i e 16
8.2 ASt . . e e e 16
83 @SYNCIO . . . v v v e e e 16
8.4 collections.abc e e e e 18
85 email.o e e e 18
8.6 Importlib. e e e e e e e e e 18
8.7 IErtoOls o e e e e e e e e e 19
8.8 pathlib e 19
8.9 pkgutil . . . L e 19
L0 Ply . o o o e e 19
.11 sqlite3 . . . o o e e e e e e e e 19
A2 tyPING . . o o e e e e e e e e e 19
.13 wrllib . . . o L e 19
.14 Others o o e e e e 19
9 Porting to Python 3.14 20
9.1 Changesinthe Python APT 20
10 Build changes 20
10.1 PEP 761: Discontinuation of PGP signatures 20
11 C API changes 20
1.1 New features o o o e e e e e e e e e e e e e e 20
11.2 Porting to Python 3.14 o 22
11.3 Deprecated o e e e e e e 22
11.4 Removed L L e e e e 23
Index 24
Editor
TBD

This article explains the new features in Python 3.14, compared to 3.13.

For full details, see the changelog.

© Note

Prerelease users should be aware that this document is currently in draft form. It will be updated substantially as
Python 3.14 moves towards release, so it’s worth checking back even after reading earlier versions.

1 Summary - release highlights

o PEP 649: deferred evaluation of annotations

e PEP 741: Python Configuration C API

2 New features

2.1 PEP 649: deferred evaluation of annotations

The annotations on functions, classes, and modules are no longer evaluated eagerly. Instead, annotations are stored in
special-purpose annotate functions and evaluated only when necessary. This is specified in PEP 649 and PEP 749.

This change is designed to make annotations in Python more performant and more usable in most circumstances.
The runtime cost for defining annotations is minimized, but it remains possible to introspect annotations at runtime.
It is usually no longer necessary to enclose annotations in strings if they contain forward references.

The new annotationlib module provides tools for inspecting deferred annotations. Annotations may be evalu-
ated in the VALUE format (which evaluates annotations to runtime values, similar to the behavior in earlier Python
versions), the FORWARDREF format (which replaces undefined names with special markers), and the STRING format
(which returns annotations as strings).

This example shows how these formats behave:

>>> from annotationlib import get_annotations, Format
>>> def func(arg: Undefined):

pass
>>> get_annotations (func, format=Format.VALUE)
Traceback (most recent call last):

NameError: name 'Undefined' is not defined

>>> get_annotations (func, format=Format.FORWARDREF)
{'arg': ForwardRef ('Undefined’') }

>>> get_annotations (func, format=Format.STRING)
{'arg': 'Undefined'}

Implications for annotated code

If you define annotations in your code (for example, for use with a static type checker), then this change probably
does not affect you: you can keep writing annotations the same way you did with previous versions of Python.

You will likely be able to remove quoted strings in annotations, which are frequently used for forward references.
Similarly, if you use from _ future_ import annotations to avoid having to write strings in annotations,
you may well be able to remove that import. However, if you rely on third-party libraries that read annotations, those
libraries may need changes to support unquoted annotations before they work as expected.

Implications for readers of __annotations_

If your code reads the __annotations__ attribute on objects, you may want to make changes in order to sup-
port code that relies on deferred evaluation of annotations. For example, you may want to use annotationlib.
get_annotations () with the FORWARDREF format, as the dataclasses module now does.

https://peps.python.org/pep-0649/
https://peps.python.org/pep-0749/

Related changes

The changes in Python 3.14 are designed to rework how __annotations__ works at runtime while minimizing
breakage to code that contains annotations in source code and to code that reads __annotations__. However, if
you rely on undocumented details of the annotation behavior or on private functions in the standard library, there are
many ways in which your code may not work in Python 3.14. To safeguard your code against future changes, use
only the documented functionality of the annotationlib module.

from __ future__ import annotations

In Python 3.7, PEP 563 introduced the from _ future import annotations directive, which turns all
annotations into strings. This directive is now considered deprecated and it is expected to be removed in a future
version of Python. However, this removal will not happen until after Python 3.13, the last version of Python without
deferred evaluation of annotations, reaches its end of life in 2029. In Python 3.14, the behavior of code using from
__ future__ import annotations is unchanged.

2.2 Improved error messages

When unpacking assignment fails due to incorrect number of variables, the error message prints the received
number of values in more cases than before. (Contributed by Tushar Sadhwani in gh-122239.)

>>> x, vy, z =1, 2, 3, 4
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
X, vy, 2z =1, 2, 3, 4

AAAAAAA

ValueError: too many values to unpack (expected 3, got 4)

2.3 PEP 741: Python Configuration C API

Add a PylnitConfig C API to configure the Python initialization without relying on C structures and the ability to
make ABI-compatible changes in the future.

Complete the PEP 587 PyConfig C API by adding PyInitConfig_AddModule () which can be used to add a
built-in extension module; feature previously referred to as the “inittab”.

Add pyConfig_Get () and PyConfig_Set () functions to get and set the current runtime configuration.

PEP 587 “Python Initialization Configuration” unified all the ways to configure the Python initialization. This PEP
unifies also the configuration of the Python preinitialization and the Python initialization in a single API. Moreover,
this PEP only provides a single choice to embed Python, instead of having two “Python” and “Isolated” choices (PEP
587), to simplify the API further.

The lower level PEP 587 PyConfig API remains available for use cases with an intentionally higher level of coupling to
CPython implementation details (such as emulating the full functionality of CPython’s CLI, including its configuration
mechanisms).

(Contributed by Victor Stinner in gh-107954.)

> See also
PEP 741.

3 Other language changes

e The map () built-in now has an optional keyword-only strict flag like zip () to check that all the iterables are
of equal length. (Contributed by Wannes Boeykens in gh-119793.)

https://peps.python.org/pep-0563/
https://github.com/python/cpython/issues/122239
https://peps.python.org/pep-0587/
https://github.com/python/cpython/issues/107954
https://peps.python.org/pep-0741/
https://github.com/python/cpython/issues/119793

« Incorrect usage of await and asynchronous comprehensions is now detected even if the code is optimized
away by the —0 command-line option. For example, python -0 -c 'assert await 1' now produces a
SyntaxError. (Contributed by Jelle Zijlstra in gh-121637.)

o Writesto___debug___ are now detected even if the code is optimized away by the —0 command-line option. For
example, python -0 -c 'assert (__debug__ := 1)' now produces a SyntaxError. (Contributed
by Irit Katriel in gh-122245.)

e Add class methods float . from_number () and complex. from_number () to convert a number to float
or complex type correspondingly. They raise an error if the argument is a string. (Contributed by Serhiy
Storchaka in gh-84978.)

« Implement mixed-mode arithmetic rules combining real and complex numbers as specified by C standards
since C99. (Contributed by Sergey B Kirpichev in gh-69639.)

o All Windows code pages are now supported as “cpXXX” codecs on Windows. (Contributed by Serhiy Stor-
chaka in gh-123803.)

e super objects are now pickleable and copyable. (Contributed by Serhiy Storchaka in gh-125767.)

e The memoryview type now supports subscription, making it a generic type. (Contributed by Brian Schubert
in gh-126012.)

e \Bin regular expression now matches empty input string. Now it is always the opposite of \b. (Con-
tributed by Serhiy Storchaka in gh-124130.)

¢ i0S and macOS apps can now be configured to redirect stdout and stderr content to the system log.
(Contributed by Russell Keith-Magee in gh-127592.)

» The iOS testbed is now able to stream test output while the test is running. The testbed can also be used to run
the test suite of projects other than CPython itself. (Contributed by Russell Keith-Magee in gh-127592.)

4 New modules

e annotationlib: For introspecting annotations. See PEP 749 for more details. (Contributed by Jelle Zijlstra
in gh-119180.)

5 Improved modules

5.1 argparse

o The default value of the program name for argparse.ArgumentParser now reflects the way the Python
interpreter was instructed to find the _ main_ module code. (Contributed by Serhiy Storchaka and Alyssa
Coghlan in gh-66436.)

« Introduced the optional suggest_on_error parameter to argparse.ArgumentParser, enabling suggestions
for argument choices and subparser names if mistyped by the user. (Contributed by Savannah Ostrowski in
gh-124456.)

5.2 ast

e Add ast.compare () for comparing two ASTs. (Contributed by Batuhan Taskaya and Jeremy Hylton in
gh-60191.)

o Add support for copy.replace () for AST nodes. (Contributed by Bénédikt Tran in gh-121141.)

¢ Docstrings are now removed from an optimized AST in optimization level 2. (Contributed by Irit Katriel in
gh-123958.)

e The repr () output for AST nodes now includes more information. (Contributed by Tomas R in gh-116022.)

https://github.com/python/cpython/issues/121637
https://github.com/python/cpython/issues/122245
https://github.com/python/cpython/issues/84978
https://github.com/python/cpython/issues/69639
https://github.com/python/cpython/issues/123803
https://github.com/python/cpython/issues/125767
https://github.com/python/cpython/issues/126012
https://github.com/python/cpython/issues/124130
https://github.com/python/cpython/issues/127592
https://github.com/python/cpython/issues/127592
https://peps.python.org/pep-0749/
https://github.com/python/cpython/issues/119180
https://github.com/python/cpython/issues/66436
https://github.com/python/cpython/issues/124456
https://github.com/python/cpython/issues/60191
https://github.com/python/cpython/issues/121141
https://github.com/python/cpython/issues/123958
https://github.com/python/cpython/issues/116022

5.3 concurrent.futures

e Add InterpreterPoolExecutor, which exposes “subinterpreters (multiple Python interpreters in the same
process) to Python code. This is separate from the proposed API in PEP 734. (Contributed by Eric Snow in
gh-124548.)

o The default ProcessPoolExecutor start method (see multiprocessing-start-methods) changed from fork
to forkserver on platforms other than macOS & Windows. If you require the threading incompatible
fork start method you must explicitly request it by supplying a mp_context to concurrent.futures.
ProcessPoolExecutor. (Contributed by Gregory P. Smith in gh-84559.)

5.4 ctypes

o The layout of bit fields in Structure and Union now matches platform defaults (GCC/Clang or MVSC)
more closely. In particular, fields no longer overlap. (Contributed by Matthias Gorgens in gh-97702.)

e The Structure._layout_ class attribute can now be set to help match a non-default ABI. (Contributed by
Petr Viktorin in gh-97702.)

« On Windows, the COMError exception is now public. (Contributed by Jun Komoda in gh-126686.)

« On Windows, the CopyComPointer () function is now public. (Contributed by Jun Komoda in gh-127275.)

5.5 datetime

e Add datetime.time.strptime() and datetime.date.strptime(). (Contributed by Wannes
Boeykens in gh-41431.)

5.6 decimal

o Add alternative Decimal constructor Decimal . from_number (). (Contributed by Serhiy Storchaka in gh-
121798.)

5.7 dis

o Add support for rendering full source location information of instructions, rather than only the line num-
ber. This feature is added to the following interfaces via the show_positions keyword argument:

- dis.Bytecode
— dis.dis ()
— dis.distb ()
— dis.disassemble ()
This feature is also exposed via dis —-show-positions. (Contributed by Bénédikt Tran in gh-123165.)

e Addthedis --specializedcommand-line option to show specialized bytecode. (Contributed by Bénédikt
Tran in gh-127413.)
5.8 errno

¢ Add errno.EHWPOISON error code. (Contributed by James Roy in gh-126585.)

5.9 fractions

« Add support for converting any objects that have the as_integer_ratio () method toa Fraction. (Con-
tributed by Serhiy Storchaka in gh-82017.)

» Add alternative Fraction constructor Fraction. from_number (). (Contributed by Serhiy Storchaka in
gh-121797.)
t=}

https://peps.python.org/pep-0734/
https://github.com/python/cpython/issues/124548
https://github.com/python/cpython/issues/84559
https://github.com/python/cpython/issues/97702
https://github.com/python/cpython/issues/97702
https://github.com/python/cpython/issues/126686
https://github.com/python/cpython/issues/127275
https://github.com/python/cpython/issues/41431
https://github.com/python/cpython/issues/121798
https://github.com/python/cpython/issues/121798
https://github.com/python/cpython/issues/123165
https://github.com/python/cpython/issues/127413
https://github.com/python/cpython/issues/126585
https://github.com/python/cpython/issues/82017
https://github.com/python/cpython/issues/121797

5.10 functools

e Add support to functools.partial() and functools.partialmethod() for functools.
Placeholder sentinels to reserve a place for positional arguments. (Contributed by Dominykas Grigonis in
gh-119127.)

« Allow the initial parameter of functools.reduce () to be passed as a keyword argument. (Contributed by
Sayandip Dutta in gh-125916.)

5.11 getopt
 Add support for options with optional arguments. (Contributed by Serhiy Storchaka in gh-126374.)

« Add support for returning intermixed options and non-option arguments in order. (Contributed by Serhiy
Storchaka in gh-126390.)

5.12 http

« Directory lists and error pages generated by the http.server module allow the browser to apply its default
dark mode. (Contributed by Yorik Hansen in gh-123430.)

5.13 inspect

e inspect.signature () takes a new argument annotation_format to control the annotationlib.Format
used for representing annotations. (Contributed by Jelle Zijlstra in gh-101552.)

e inspect.Signature.format () takes a new argument unquote_annotations. If true, string annotations are
displayed without surrounding quotes. (Contributed by Jelle Zijlstra in gh-101552.)

o Add function inspect.ispackage () to determine whether an object is a package or not. (Contributed by
Zhikang Yan in gh-125634.)

5.14 io

» Reading text from a non-blocking stream with read may now raise a BlockingIOError if the operation
cannot immediately return bytes. (Contributed by Giovanni Siragusa in gh-109523.)

5.15 json

« Add notes for JSON serialization errors that allow to identify the source of the error. (Contributed by Serhiy
Storchaka in gh-122163.)

« Enable the json module to work as a script using the —m switch: python -m json. See the JSON command-
line interface documentation. (Contributed by Trey Hunner in gh-122873.)

5.16 mimetypes
¢ Add MS and RFC 8081 MIME types for fonts:

Embedded OpenType: application/vnd.ms-fontobject

OpenType Layout (OTF) font/otf

TrueType: font/ttf
WOFF 1.0 font/woff
- WOFF 2.0 font /woff2

(Contributed by Sahil Prajapati and Hugo van Kemenade in gh-84852.)
¢ Add RFC 9559 MIME types for Matroska audiovisual data container structures, containing:
- audio with no video: audio/matroska (.mka)

- video: video/matroska (.mkv)

https://github.com/python/cpython/issues/119127
https://github.com/python/cpython/issues/125916
https://github.com/python/cpython/issues/126374
https://github.com/python/cpython/issues/126390
https://github.com/python/cpython/issues/123430
https://github.com/python/cpython/issues/101552
https://github.com/python/cpython/issues/101552
https://github.com/python/cpython/issues/125634
https://github.com/python/cpython/issues/109523
https://github.com/python/cpython/issues/122163
https://github.com/python/cpython/issues/122873
https://datatracker.ietf.org/doc/html/rfc8081.html
https://github.com/python/cpython/issues/84852
https://datatracker.ietf.org/doc/html/rfc9559.html

- stereoscopic video: video/matroska-3d (.mk3d)
(Contributed by Hugo van Kemenade in gh-89416.)
» Add MIME types for images with RFCs:
- RFC 1494: CCITT Group 3 (.g3)
- RFC 3362: Real-time Facsimile, T.38 (.t38)
- RFC 3745: JPEG 2000 (. 35p2), extension (. jpx) and compound (. jpm)
RFC 3950: Tag Image File Format Fax eXtended, TIFF-FX (.t £x)

RFC 4047: Flexible Image Transport System (. fits)
RFC 7903: Enhanced Metafile (.emf) and Windows Metafile (. wmf)

(Contributed by Hugo van Kemenade in gh-85957.)

5.17 multiprocessing

o The default start method (see multiprocessing-start-methods) changed from fork to forkserver on platforms
other than macOS & Windows where it was already spawn. If you require the threading incompatible fork start
method you must explicitly request it using a context frommultiprocessing.get_context () (preferred)
or change the default via multiprocessing.set_start_method (). (Contributed by Gregory P. Smith
in gh-84559.)

e multiprocessing’s "forkserver" start method now authenticates its control socket to avoid solely relying
on filesystem permissions to restrict what other processes could cause the forkserver to spawn workers and run
code. (Contributed by Gregory P. Smith for gh-97514.)

» The multiprocessing proxy objects for list and dict types gain previously overlooked missing methods:
- clear () and copy () for proxies of list.
- fromkeys (), reversed(d),d | {},{} | d,d |= {'b': 2} for proxies of dict.

(Contributed by Roy Hyunjin Han for gh-103134.)

5.18 operator

e Two new functions operator.is_none () and operator.is_not_none () have been added, such that
operator.is_none (obj) is equivalent to obj is None and operator.is_not_none (obj) is equiv-
alent to obj is not None. (Contributed by Raymond Hettinger and Nico Mexis in gh-115808.)

5.19 os

e Add the os.reload_environ () function to update os.environ and os.environb with changes to the
environment made by os.putenv (), by os.unsetenv (), or made outside Python in the same process.
(Contributed by Victor Stinner in gh-120057.)

o Add the SCHED_DEADLINE and SCHED_NORMAL constants to the os module. (Contributed by James Roy in
gh-127688.)

5.20 pathlib

o Add methods to pathlib.Path to recursively copy or move files and directories:
- copy () copies a file or directory tree to a destination.
- copy_into () copies info a destination directory.
- move () moves a file or directory tree to a destination.
- move_into () moves into a destination directory.

(Contributed by Barney Gale in gh-73991.)

https://github.com/python/cpython/issues/89416
https://datatracker.ietf.org/doc/html/rfc1494.html
https://datatracker.ietf.org/doc/html/rfc3362.html
https://datatracker.ietf.org/doc/html/rfc3745.html
https://datatracker.ietf.org/doc/html/rfc3950.html
https://datatracker.ietf.org/doc/html/rfc4047.html
https://datatracker.ietf.org/doc/html/rfc7903.html
https://github.com/python/cpython/issues/85957
https://github.com/python/cpython/issues/84559
https://github.com/python/cpython/issues/97514
https://github.com/python/cpython/issues/103134
https://github.com/python/cpython/issues/115808
https://github.com/python/cpython/issues/120057
https://github.com/python/cpython/issues/127688
https://github.com/python/cpython/issues/73991

5.21 pdb

o Hardcoded breakpoints (breakpoint () and pdb.set_trace ()) now reuse the most recent Pdb instance
that calls set_trace (), instead of creating a new one each time. As a result, all the instance specific data
like display and commands are preserved across hardcoded breakpoints. (Contributed by Tian Gao in gh-
121450.)

e Add a new argument mode to pdb.Pdb. Disable the restart command when pdb is in inline mode.
(Contributed by Tian Gao in gh-123757.)

5.22 platform
e Addplatform.invalidate_caches () to invalidate the cached results.

(Contributed by Bénédikt Tran in gh-122549.)

5.23 pickle

« Set the default protocol version on the pickle module to 5. For more details, see pickle protocols.

» Add notes for pickle serialization errors that allow to identify the source of the error. (Contributed by Serhiy
Storchaka in gh-122213.)

5.24 pydoc

« Annotations in help output are now usually displayed in a format closer to that in the original source. (Con-
tributed by Jelle Zijlstra in gh-101552.)

5.25 ssl

« Indicate through ss1.HAS_PHA whether the ss1 module supports TLSv1.3 post-handshake client authenti-
cation (PHA). (Contributed by Will Childs-Klein in gh-128036.)

5.26 symtable
« Expose the following symtable.Symbol methods:
- is_comp_cell()
- is_comp_iter ()
— 1s_free_class|()

(Contributed by Bénédikt Tran in gh-120029.)

5.27 sys

» The previously undocumented special function sys.getobjects (), which only exists in specialized builds
of Python, may now return objects from other interpreters than the one it’s called in.

5.28 sys.monitoring

« Two new events are added: BRANCH_LEFT and BRANCH_RIGHT. The BRANCH event is deprecated.

5.29 tkinter

o Make tkinter widget methods after () and after_idle () accept arguments passed by keyword. (Con-
tributed by Zhikang Yan in gh-126899.)

https://github.com/python/cpython/issues/121450
https://github.com/python/cpython/issues/121450
https://github.com/python/cpython/issues/123757
https://github.com/python/cpython/issues/122549
https://github.com/python/cpython/issues/122213
https://github.com/python/cpython/issues/101552
https://github.com/python/cpython/issues/128036
https://github.com/python/cpython/issues/120029
https://github.com/python/cpython/issues/126899

5.30 unicodedata
o The Unicode database has been updated to Unicode 16.0.0.

5.31 unittest

e unittest output is now colored by default. This can be controlled via the PYTHON_COLORS environment
variable as well as the canonical NO_COLOR and FORCE_COLOR environment variables. See also using-on-
controlling-color. (Contributed by Hugo van Kemenade in gh-127221.)

« unittest discovery supports namespace package as start directory again. It was removed in Python 3.11. (Con-
tributed by Jacob Walls in gh-80958.)

5.32 urllib

o Upgrade HTTP digest authentication algorithm for ur11ib. request by supporting SHA-256 digest authen-
tication as specified in RFC 7616. (Contributed by Calvin Bui in gh-128193.)

5.33 uuid

» Add support for UUID version 8 via uuid.uuid8 () as specified in RFC 9562. (Contributed by Bénédikt
Tran in gh-89083.)

5.34 zipinfo

e Added zipInfo._ for_archive to resolve suitable defaults for a zipInfo object as used by ZipFile.
writestr.

(Contributed by Bénédikt Tran in gh-123424.)

6 Optimizations

6.1 asyncio

e asyncio now uses double linked list implementation for native tasks which speeds up execution by 10%
on standard pyperformance benchmarks and reduces memory usage. (Contributed by Kumar Aditya in gh-
107803.)

6.2 io

e io which provides the built-in open () makes less system calls when opening regular files as well as read-
ing whole files. Reading a small operating system cached file in full is up to 15% faster. pathlib.Path.
read_bytes () has the most optimizations for reading a file’s bytes in full. (Contributed by Cody Maloney
and Victor Stinner in gh-120754 and gh-90102.)

7 Deprecated

e argparse:

- Passing the undocumented keyword argument prefix_chars to add_argument_group () is now depre-
cated. (Contributed by Savannah Ostrowski in gh-125563.)

- Deprecated the argparse.FileType type converter. Anything with resource management should be
done downstream after the arguments are parsed. (Contributed by Serhiy Storchaka in gh-58032.)

e asyncio:

- asyncio.iscoroutinefunction() is deprecated and will be removed in Python 3.16; use
inspect.iscoroutinefunction () instead. (Contributed by Jiahao Li and Kumar Aditya in gh-
122875.)

10

https://no-color.org/
https://force-color.org/
https://github.com/python/cpython/issues/127221
https://github.com/python/cpython/issues/80958
https://datatracker.ietf.org/doc/html/rfc7616.html
https://github.com/python/cpython/issues/128193
https://datatracker.ietf.org/doc/html/rfc9562.html
https://github.com/python/cpython/issues/89083
https://github.com/python/cpython/issues/123424
https://github.com/python/cpython/issues/107803
https://github.com/python/cpython/issues/107803
https://github.com/python/cpython/issues/120754
https://github.com/python/cpython/issues/90102
https://github.com/python/cpython/issues/125563
https://github.com/python/cpython/issues/58032
https://github.com/python/cpython/issues/122875
https://github.com/python/cpython/issues/122875

7.1

- asyncio policy system is deprecated and will be removed in Python 3.16. In particular, the following
classes and functions are deprecated:

* asyncio.AbstractEventLoopPolicy

* asyncio.DefaultEventLoopPolicy

* asyncio.WindowsSelectorEventLoopPolicy
* asyncio.WindowsProactorEventLoopPolicy
* asyncio.get_event_loop_policy ()

* asyncio.set_event_loop_policy ()

* asyncio.set_event_loop ()

Users should use asyncio.run () or asyncio.Runner with loop_factory to use the desired event loop
implementation.

For example, to use asyncio.SelectorEventLoop on Windows:

import asyncio

async def main() :

asyncio.run (main (), loop_factory=asyncio.SelectorEventLoop)

(Contributed by Kumar Aditya in gh-127949.)

builtins: Passing a complex number as the real or imag argument in the complex () constructor is now
deprecated; it should only be passed as a single positional argument. (Contributed by Serhiy Storchaka in
¢h-109218.)

functools: Calling the Python implementation of functools.reduce () with function or sequence as
keyword arguments is now deprecated. (Contributed by Kirill Podoprigora in gh-121676.)

os: Soft deprecate os . popen () and os . spawn* functions. They should no longer be used to write new code.
The subprocess module is recommended instead. (Contributed by Victor Stinner in gh-120743.)

symtable: Deprecate symtable.Class.get_methods () due to the lack of interest. (Contributed by
Bénédikt Tran in gh-119698.)

urllib.parse: Accepting objects with false values (like 0 and []) except empty strings, byte-like objects
and None inurllib.parse functions parse_gs1 () and parse_gs () is now deprecated. (Contributed by
Serhiy Storchaka in gh-116897.)

Pending removal in Python 3.15
o The import system:

- Setting __cached__ on a module while failing to set __spec__.cached is deprecated. In Python
3.15, __cached__ will cease to be set or take into consideration by the import system or standard
library. (gh-97879)

- Setting __package__ on a module while failing to set __spec__.parent is deprecated. In Python
3.15, _ _package___ will cease to be set or take into consideration by the import system or standard
library. (gh-97879)

e ctypes:

- The undocumented ctypes.SetPointerType () function has been deprecated since Python 3.13.
e http.server:

— The obsolete and rarely used CGTHTTPRequestHandler has been deprecated since Python 3.13. No
direct replacement exists. Anything is better than CGI to interface a web server with a request handler.

11

https://github.com/python/cpython/issues/127949
https://github.com/python/cpython/issues/109218
https://github.com/python/cpython/issues/121676
https://github.com/python/cpython/issues/120743
https://github.com/python/cpython/issues/119698
https://github.com/python/cpython/issues/116897
https://github.com/python/cpython/issues/97879
https://github.com/python/cpython/issues/97879

— The —-cgi flag to the python -m http.server command-line interface has been deprecated since
Python 3.13.

locale:

- The getdefaultlocale () function has been deprecated since Python 3.11. Its removal was origi-
nally planned for Python 3.13 (gh-90817), but has been postponed to Python 3.15. Use getlocale (),
setlocale (), and getencoding () instead. (Contributed by Hugo van Kemenade in gh-111187.)

pathlib:

- PurePath.is_reserved () has been deprecated since Python 3.13. Use os.path.isreserved()
to detect reserved paths on Windows.

platform:

- java_ver () has been deprecated since Python 3.13. This function is only useful for Jython support,
has a confusing API, and is largely untested.

threading:

- RLock () will take no arguments in Python 3.15. Passing any arguments has been deprecated since
Python 3.14, as the Python version does not permit any arguments, but the C version allows any number
of positional or keyword arguments, ignoring every argument.

types:

- types.CodeType: Accessing co_lnotab was deprecated in PEP 626 since 3.10 and was planned to
be removed in 3.12, but it only got a proper DeprecationWarning in 3.12. May be removed in 3.15.
(Contributed by Nikita Sobolev in gh-101866.)

typing:

— The undocumented keyword argument syntax for creating NamedTuple classes (for example, Point
= NamedTuple ("Point", x=int, y=int)) has been deprecated since Python 3.13. Use the class-
based syntax or the functional syntax instead.

- The typing.no_type_check_decorator () decorator function has been deprecated since Python
3.13. After eight years in the t yping module, it has yet to be supported by any major type checker.

wave:

— The getmark (), setmark (), and getmarkers () methods of the Wave_read and Wave_write
classes have been deprecated since Python 3.13.

7.2 Pending removal in Python 3.16

The import system:

- Setting __loader__ on a module while failing to set __spec__.loader is deprecated. In Python
3.16, _ loader__ will cease to be set or taken into consideration by the import system or the standard
library.

array:

— The 'u' format code (wchar_t) has been deprecated in documentation since Python 3.3 and at runtime
since Python 3.13. Use the 'w' format code (Py_ucs4) for Unicode characters instead.

asyncio:

- asyncio.iscoroutinefunction() is deprecated and will be removed in Python 3.16; use
inspect.iscoroutinefunction () instead. (Contributed by Jiahao Li and Kumar Aditya in gh-
122875.)

- asyncio policy system is deprecated and will be removed in Python 3.16. In particular, the following
classes and functions are deprecated:

* asyncio.AbstractEventLoopPolicy

* asyncio.DefaultEventLoopPolicy

12

https://github.com/python/cpython/issues/90817
https://github.com/python/cpython/issues/111187
https://peps.python.org/pep-0626/
https://github.com/python/cpython/issues/101866
https://github.com/python/cpython/issues/122875
https://github.com/python/cpython/issues/122875

* asyncio.WindowsSelectorEventLoopPolicy
* asyncio.WindowsProactorEventLoopPolicy
* asyncio.get_event_loop_policy ()

* asyncio.set_event_loop_policy ()

* asyncio.set_event_loop ()

Users should use asyncio.run () or asyncio.Runner with loop_factory to use the desired event loop
implementation.

For example, to use asyncio.SelectorEventLoop on Windows:

import asyncio

async def main() :

asyncio.run (main (), loop_factory=asyncio.SelectorEventLoop)

(Contributed by Kumar Aditya in gh-127949.)
e builtins:

- Bitwise inversion on boolean types, ~True or ~False has been deprecated since Python 3.12, as it
produces surprising and unintuitive results (-2 and -1). Use not x instead for the logical negation of a
Boolean. In the rare case that you need the bitwise inversion of the underlying integer, convert to int
explicitly (~int (x)).

e shutil:

- The ExecError exception has been deprecated since Python 3.14. It has not been used by any function
in shutil since Python 3.4, and is now an alias of RuntimeError.

e symtable:
- The Class.get_methods method has been deprecated since Python 3.14.
e sys:

- The _enablelegacywindowsfsencoding () function has been deprecated since Python 3.13. Use
the PYTHONLEGACYWINDOWSFSENCODING environment variable instead.

e tarfile
— The undocumented and unused TarFile.tarfile attribute has been deprecated since Python 3.13.
e functools:

- Calling the Python implementation of functools.reduce () with function or sequence as keyword
arguments has been deprecated since Python 3.14.

7.3 Pending removal in future versions
The following APIs will be removed in the future, although there is currently no date scheduled for their removal.
e argparse:
- Nesting argument groups and nesting mutually exclusive groups are deprecated.

- Passing the undocumented keyword argument prefix_chars to add_argument_group () is now depre-
cated.

- The argparse.FileType type converter is deprecated.
e array’s 'u' format code (gh-57281)

e builtins:

13

https://github.com/python/cpython/issues/127949
https://github.com/python/cpython/issues/57281

— bool (NotImplemented).

- Generators: throw (type, exc, tb) and athrow(type, exc, tb) signature is deprecated: use
throw (exc) and athrow (exc) instead, the single argument signature.

— Currently Python accepts numeric literals immediately followed by keywords, for example 0in x, 1or
x, 01f lelse 2. It allows confusing and ambiguous expressions like [0x1for x in y] (which can
be interpreted as [0x1 for x in y] or [0x1f or x in y]). A syntax warning is raised if the
numeric literal is immediately followed by one of keywords and, else, for, if, in, is and or. Ina
future release it will be changed to a syntax error. (gh-87999)

— Support for __index__ () and __int__ () method returning non-int type: these methods will be re-
quired to return an instance of a strict subclass of int.

— Support for __float__ () method returning a strict subclass of float: these methods will be required
to return an instance of float.

— Support for __complex_ () method returning a strict subclass of complex: these methods will be
required to return an instance of complex.

- Delegation of int () to __trunc__ () method.

- Passing a complex number as the real or imag argument in the complex () constructor is now deprecated;
it should only be passed as a single positional argument. (Contributed by Serhiy Storchaka in gh-109218.)

calendar: calendar.January and calendar.February constants are deprecated and replaced by
calendar.JANUARY and calendar.FEBRUARY. (Contributed by Prince Roshan in gh-103636.)

codeobject.co_lnotab: use the codeobject.co_lines () method instead.
datetime:
— utcnow (): use datetime.datetime.now (tz=datetime.UTC).

- utcfromtimestamp (): use datetime.datetime.fromtimestamp (timestamp,
tz=datetime.UTC).

gettext: Plural value must be an integer.
importlib:
— load_module () method: use exec_module () instead.

- cache_from_source () debug_override parameter is deprecated: use the optimization parameter in-
stead.

importlib.metadata:
- EntryPoints tuple interface.
- Implicit None on return values.
logging: the warn () method has been deprecated since Python 3.3, use warning () instead.
mailbox: Use of StringlO input and text mode is deprecated, use BytesIO and binary mode instead.
os: Calling os.register_at_fork () in multi-threaded process.
pydoc.ErrorDuringImport: A tuple value for exc_info parameter is deprecated, use an exception instance.

re: More strict rules are now applied for numerical group references and group names in regular expressions.
Only sequence of ASCII digits is now accepted as a numerical reference. The group name in bytes patterns
and replacement strings can now only contain ASCII letters and digits and underscore. (Contributed by Serhiy
Storchaka in gh-91760.)

sre_compile, sre_constants and sre_parse modules.
shutil: rmtree ()’s onerror parameter is deprecated in Python 3.12; use the onexc parameter instead.
ss1 options and protocols:

- ssl.SSLContext without protocol argument is deprecated.

14

https://github.com/python/cpython/issues/87999
https://github.com/python/cpython/issues/109218
https://github.com/python/cpython/issues/103636
https://github.com/python/cpython/issues/91760

- ssl.SSLContext: set_npn_protocols () and selected_npn_protocol () are deprecated: use
ALPN instead.

- ss1.0P_NO_SSL* options

- ss1.0P_NO_TLS* options

- s$s1.PROTOCOL_SSLv3

— ss1.PROTOCOL_TLS

- ss1.PROTOCOL_TLSv1

— ss1.PROTOCOL_TLSv1_1

— s$s1.PROTOCOL_TLSv1_2

- ssl.TLSVersion.SSLv3

- ssl.TLSVersion.TLSv1l

— ssl.TLSVersion.TLSv1_ 1
e sysconfig.is_python_build() check_home parameter is deprecated and ignored.
e threading methods:

— threading.Condition.notifyAll ():use notify_all().

— threading.Event.isSet (): use is_set ().

— threading.Thread.isDaemon (), threading.Thread.setDaemon (): use threading.
Thread.daemon attribute.

— threading.Thread.getName (), threading.Thread.setName (): use threading.Thread.
name attribute.

— threading.currentThread(): use threading.current_thread().
— threading.activeCount (): use threading.active_count ().
e typing.Text (gh-92332).

e unittest.IsolatedAsyncioTestCase: it is deprecated to return a value that is not None from a test
case.

e urllib.parse deprecated functions: urlparse () instead
- splitattr()
— splithost ()
- splitnport ()
- splitpasswd()
— splitport ()
— splitquery ()
- splittagl()
- splittype ()
— splituser ()
- splitvalue()
- to_bytes ()
e wsgiref: SimpleHandler.stdout.write () should not do partial writes.

e xml.etree.ElementTree: Testing the truth value of an Element is deprecated. In a future release it will
always return True. Prefer explicit 1en (elem) or elem is not None tests instead.

e zipimport.zipimporter.load_module () is deprecated: use exec_module () instead.

15

https://github.com/python/cpython/issues/92332

8 Removed

8.1 argparse

Remove the type, choices, and metavar parameters of argparse.BooleanOptionalAction. They were
deprecated since 3.12.

Calling add_argument_group () on an argument group, and calling add_argument_group() or
add_mutually exclusive_group () on a mutually exclusive group now raise exceptions. This nesting
was never supported, often failed to work correctly, and was unintentionally exposed through inheritance. This
functionality has been deprecated since Python 3.11. (Contributed by Savannah Ostrowski in gh-127186.)

8.2 ast

Remove the following classes. They were all deprecated since Python 3.8, and have emitted deprecation warn-
ings since Python 3.12:

— ast.Bytes

- ast.Ellipsis

— ast.NameConstant
— ast.Num

- ast.Str

Use ast.Constant instead. As a consequence of these removals, user-defined visit_Num, visit_Str,
visit_Bytes, visit_NameConstant and visit_Ellipsis methods on custom ast.NodeVisitor
subclasses will no longer be called when the Nodevisitor subclass is visiting an AST. Define a
visit_Constant method instead.

Also, remove the following deprecated properties on ast .Constant, which were present for compatibility
with the now-removed AST classes:

— ast.Constant.n
— ast.Constant.s
Use ast .Constant .value instead.

(Contributed by Alex Waygood in gh-119562.)

8.3 asyncio

Remove the following classes and functions. They were all deprecated and emitted deprecation warnings since
Python 3.12:

— asyncio.get_child_watcher ()

— asyncio.set_child_watcher ()

— asyncio.AbstractEventLoopPolicy.get_child_watcher ()
— asyncio.AbstractEventLoopPolicy.set_child_watcher ()
— asyncio.AbstractChildWatcher

— asyncio.FastChildWatcher

— asyncio.MultiLoopChildWatcher

— asyncio.PidfdChildWatcher

— asyncio.SafeChildWatcher

— asyncio.ThreadedChildWatcher

(Contributed by Kumar Aditya in gh-120804.)

16

https://github.com/python/cpython/issues/127186
https://github.com/python/cpython/issues/119562
https://github.com/python/cpython/issues/120804

« Removed implicit creation of event loop by asyncio.get_event_loop (). It now raises a Runt imeError
if there is no current event loop. (Contributed by Kumar Aditya in gh-126353.)

There’s a few patterns that use asyncio.get_event_loop (), mostof them can be replaced with asyncio.

run ().
If you’re running an async function, simply use asyncio.run ().

Before:

(2
async def main():

loop = asyncio.get_event_loop ()
try:
loop.run_until_complete (main())
finally:
loop.close ()

After:

async def main():

asyncio.run(main())

If you need to start something, e.g. a server listening on a socket and then run forever, use asyncio.run ()
and an asyncio.Event.

Before:

def start_server (loop) :

loop = asyncio.get_event_loop ()
try:
start_server (loop)
loop.run_forever ()
finally:

loop.close ()

L J

After:

e B
def start_server (loop) :

async def main():
start_server (asyncio.get_running_ loop())
await asyncio.Event () .wait ()

asyncio.run (main())
. J

If you need to run something in an event loop, then run some blocking code around it, use asyncio.Runner.

Before:

async def operation_one():

def blocking_ code() :
(continues on next page)

17

https://github.com/python/cpython/issues/126353

async def operation_two():

loop = asyncio.get_event_loop ()
try:
loop.run_until_complete (operation_one())
blocking_code ()
loop.run_until_complete (operation_two())
finally:
loop.close ()

(continued from previous page)

After:

async def operation_one():

def blocking_ code() :

async def operation_two():

with asyncio.Runner () as runner:
runner.run (operation_one())
blocking_code ()

runner.run (operation_two ())

8.4 collections.abc

e Remove collections.abc.ByteString. It had previously raised a DeprecationWarning since Python

3.12.

8.5 email

» Remove the isdst parameter from email.utils.localtime (). (Contributed by Hugo van Kemenade in

gh-118798.)

8.6 importlib
« Remove deprecated importlib.abc classes:

— importlib.abc.ResourceReader
— importlib.abc.Traversable
— importlib.abc.TraversableResources

Use importlib.resources.abc classes instead
— importlib.resources.abc.Traversable
— importlib.resources.abc.TraversableResources

(Contributed by Jason R. Coombs and Hugo van Kemenade in gh-93963.)

18

https://github.com/python/cpython/issues/118798
https://github.com/python/cpython/issues/93963

8.7 itertools

» Remove itertools support for copy, deepcopy, and pickle operations. These had previously raised a
DeprecationWarning since Python 3.12. (Contributed by Raymond Hettinger in gh-101588.)

8.8 pathlib

« Remove support for passing additional keyword arguments to pathlib.Path. In previous versions, any such
arguments are ignored.

« Remove support for passing additional positional arguments to pathlib.PurePath.relative_to () and
is_relative_to (). In previous versions, any such arguments are joined onto other.

8.9 pkgutil

« Remove deprecated pkgutil.get_loader () and pkgutil.find_loader (). These had previously
raised a DeprecationWarning since Python 3.12. (Contributed by Bénédikt Tran in gh-97850.)

8.10 pty

e Remove deprecated pty.master_open() and pty.slave_open(). They had previously raised a
DeprecationWarning since Python 3.12. Use pty.openpty () instead. (Contributed by Nikita Sobolev
in gh-118824.)

8.11 sqlite3

e Remove versionand version_info from sqlite3. (Contributed by Hugo van Kemenade in gh-118924.)

 Disallow using a sequence of parameters with named placeholders. This had previously raised a
DeprecationWarning since Python 3.12; it will now raise a sqglite3.ProgrammingError. (Contributed
by Erlend E. Aasland in gh-118928 and gh-101693.)

8.12 typing

e Remove typing.ByteString. It had previously raised a DeprecationWarning since Python 3.12.

8.13 urllib

o Remove deprecated Quoter class from ur11lib.parse. It had previously raised a DeprecationWarning
since Python 3.11. (Contributed by Nikita Sobolev in gh-118827.)

« Remove deprecated URLopener and FancyURLopener classes from urllib.request. They had previ-
ously raised a DeprecationWarning since Python 3.3.

myopener.open () can be replaced with urlopen (), and myopener.retrieve () can be replaced with
urlretrieve (). Customizations to the opener classes can be replaced by passing customized handlers to
build_opener ().

(Contributed by Barney Gale in gh-84850.)

8.14 Others

o Using Not Implemented in a boolean context will now raise a TypeError. It had previously raised a
DeprecationWarning since Python 3.9. (Contributed by Jelle Zijlstra in gh-118767.)

e The int () built-in no longer delegates to __trunc__ (). Classes that want to support conversion to integer
must implement either __int_ () or __index__ (). (Contributed by Mark Dickinson in gh-119743.)

19

https://github.com/python/cpython/issues/101588
https://github.com/python/cpython/issues/97850
https://github.com/python/cpython/issues/118824
https://github.com/python/cpython/issues/118924
https://github.com/python/cpython/issues/118928
https://github.com/python/cpython/issues/101693
https://github.com/python/cpython/issues/118827
https://github.com/python/cpython/issues/84850
https://github.com/python/cpython/issues/118767
https://github.com/python/cpython/issues/119743

9 Porting to Python 3.14

This section lists previously described changes and other bugfixes that may require changes to your code.

9.1 Changes in the Python API

e functools.partial is now a method descriptor. Wrap it in staticmethod () if you want to preserve the
old behavior. (Contributed by Serhiy Storchaka and Dominykas Grigonis in gh-121027.)

e The 1ocale.nl_langinfo () function now sets temporarily the 1L.C_CTYPE locale in some cases. This tem-
porary change affects other threads. (Contributed by Serhiy Storchaka in gh-69998.)

10 Build changes

10.1 PEP 761: Discontinuation of PGP signatures

PGP signatures will not be available for CPython 3.14 and onwards. Users verifying artifacts must use Sigstore
verification materials for verifying CPython artifacts. This change in release process is specified in PEP 761.

11 C API changes

11.1 New features

e Add PyLong_GetSign () function to get the sign of int objects. (Contributed by Sergey B Kirpichev in
¢h-116560.)

e Add a new PyUnicodeWriter API to create a Python str object:
— PyUnicodeWriter_Create ()
— PyUnicodeWriter_DecodeUTF8Stateful ()
— PyUnicodeWriter_Discard()
— PyUnicodeWriter_Finish()
— PyUnicodeWriter_Format ()
— PyUnicodeWriter_WriteChar ()
— PyUnicodeWriter_WriteRepr ()
— PyUnicodeWriter_ WriteStr ()
— PyUnicodeWriter_WriteSubstring()
— PyUnicodeWriter_ WriteUCS4 ()
— PyUnicodeWriter_ WriteUTFS8 ()
— PyUnicodeWriter_WriteWideChar ()
(Contributed by Victor Stinner in gh-119182.)

e AddPyIter NextItem() toreplace PyIter_ Next (), which has an ambiguous return value. (Contributed
by Irit Katriel and Erlend Aasland in gh-105201.)

e Py_Finalize () now deletes all interned strings. This is backwards incompatible to any C-Extension
that holds onto an interned string after a call to Py_Finalize () and is then reused after a call to
Py _Initialize(). Any issues arising from this behavior will normally result in crashes during the exe-
cution of the subsequent call to Py_Initialize () from accessing uninitialized memory. To fix, use an
address sanitizer to identify any use-after-free coming from an interned string and deallocate it during module
shutdown. (Contributed by Eddie Elizondo in gh-113601.)

20

https://github.com/python/cpython/issues/121027
https://github.com/python/cpython/issues/69998
https://www.python.org/downloads/metadata/sigstore/
https://www.python.org/downloads/metadata/sigstore/
https://peps.python.org/pep-0761/
https://github.com/python/cpython/issues/116560
https://github.com/python/cpython/issues/119182
https://github.com/python/cpython/issues/105201
https://github.com/python/cpython/issues/113601

e Add PyLong_IsPositive(), PyLong_IsNegative() and PyLong_IsZero() for checking if
PyLongObject is positive, negative, or zero, respectively. (Contributed by James Roy and Sergey B Kir-
pichev in gh-126061.)

« Add new functions to convert C <stdint .h> numbers from/to Python int:
— PyLong_AsInt32()
— PyLong_AsInt64 ()
— PyLong_AsUInt32()
— PyLong_AsUInté64 ()
— PyLong_FromInt32 ()
— PyLong_FromInté64 ()
— PyLong_FromUInt32 ()
— PyLong_FromUInt64 ()
(Contributed by Victor Stinner in gh-120389.)

e Add PyBytes_Join (sep, iterable) function, similar to sep.join(iterable) in Python. (Con-
tributed by Victor Stinner in gh-121645.)

e Add py_HashBuffer () to compute and return the hash value of a buffer. (Contributed by Antoine Pitrou
and Victor Stinner in gh-122854.)

« Add functions to get and set the current runtime Python configuration (PEP 741):

— PyConfig_ Get ()

PyConfig_GetInt ()

PyConfig_Set ()

— PyConfig_Names ()
(Contributed by Victor Stinner in gh-107954.)

 Add functions to configure the Python initialization (PEP 741):
— Py_TInitializeFromInitConfig()
— PyInitConfig_AddModule ()
— PyInitConfig_Create ()
— PyInitConfig_Free()
— PyInitConfig FreeStrList ()
— PyInitConfig_GetError ()
— PyInitConfig_GetExitCode ()
— PyInitConfig_GetInt ()
— PyInitConfig_GetStr ()
— PyInitConfig_GetStrList ()
— PyInitConfig_HasOption ()
— PyInitConfig_SetInt ()
— PyInitConfig_SetStr ()
— PyInitConfig_SetStrList ()

(Contributed by Victor Stinner in gh-107954.)
» Add a new import and export API for Python int objects (PEP 757):

21

https://github.com/python/cpython/issues/126061
https://github.com/python/cpython/issues/120389
https://github.com/python/cpython/issues/121645
https://github.com/python/cpython/issues/122854
https://peps.python.org/pep-0741/
https://github.com/python/cpython/issues/107954
https://peps.python.org/pep-0741/
https://github.com/python/cpython/issues/107954
https://peps.python.org/pep-0757/

— PyLong_GetNativeLayout ();

— PyLong_Export ();

— PyLong_FreeExport ();

— PyLongWriter_Create();

— PyLongWriter_Finish();

— PyLongWriter_Discard().
(Contributed by Victor Stinner in gh-102471.)

Add PyType_GetBaseByToken () and Py_tp_token slot for easier superclass identification, which at-
tempts to resolve the type checking issue mentioned in PEP 630 (gh-124153).

Add PyUnicode_Equal () function to the limited C API: test if two strings are equal. (Contributed by Victor
Stinner in gh-124502.)

Add PpyType_Freeze () function to make a type immutable. (Contributed by Victor Stinner in gh-121654.)

Add PyUnstable_Object_EnableDeferredRefcount () for enabling deferred reference counting, as
outlined in PEP 703.

The Unicode Exception Objects C API now raises a TypeError if its exception argument is not a
UnicodeError object. (Contributed by Bénédikt Tran in gh-127691.)

Add PyMonitoring_FireBranchLeftEvent () and PyMonitoring_FireBranchRightEvent () for
generating BRANCH_LEFT and BRANCH_RIGHT events, respectively.

11.2 Porting to Python 3.14

In the limited C API 3.14 and newer, Py_TYPE () and Py_REFCNT () are now implemented as an opaque
function call to hide implementation details. (Contributed by Victor Stinner in gh-120600 and gh-124127.)

11.3 Deprecated

The py_HUGE_VAL macro is soft deprecated, use Py_INFINITY instead. (Contributed by Sergey B Kirpichev
in gh-120026.)

Macros Py_IS_NAN,Py IS_INFINITY and Py IS_FINITE are soft deprecated, use instead i snan, isinf
and isfinite available from math.h since C99. (Contributed by Sergey B Kirpichev in gh-119613.)

The previously undocumented function PySequence_In() is soft deprecated. Use
PySequence_Contains () instead. (Contributed by Yuki Kobayashi in gh-127896.)

Pending removal in Python 3.15

The bundled copy of 1ibmpdecimal.
The PyImport_ImportModuleNoBlock (): Use PyImport_ImportModule () instead.
PyWeakref_GetObject () and PyWeakref GET_OBJECT (): Use PyWleakref_ GetRef () instead.
Py_UNICODE type and the Py_UNICODE_WIDE macro: Use wchar_t instead.
Python initialization functions:

- PySys_ResetWarnOptions (): Clear sys.warnoptions and warnings.filters instead.

- Py_GetExecPrefix(): Get sys.base_exec_prefixand sys.exec_prefix instead.

Py_GetPath (): Get sys.path instead.

Py_GetPrefix(): Get sys.base_prefixand sys.prefix instead.

Py_GetProgramFullPath (): Get sys.executable instead.

Py_GetProgramName (): Get sys.executable instead.

22

https://github.com/python/cpython/issues/102471
https://peps.python.org/pep-0630/#type-checking
https://peps.python.org/pep-0630/
https://github.com/python/cpython/issues/124153
https://github.com/python/cpython/issues/124502
https://github.com/python/cpython/issues/121654
https://peps.python.org/pep-0703/
https://github.com/python/cpython/issues/127691
https://github.com/python/cpython/issues/120600
https://github.com/python/cpython/issues/124127
https://github.com/python/cpython/issues/120026
https://github.com/python/cpython/issues/119613
https://github.com/python/cpython/issues/127896

- Py_GetPythonHome (): Get PyConfig.home or the PYTHONHOME environment variable instead.

Pending removal in future versions

The following APIs are deprecated and will be removed, although there is currently no date scheduled for their
removal.

e Py_TPFLAGS_HAVE_FINALIZE: Unneeded since Python 3.8.
e PyErr_Fetch(): Use PyErr_GetRaisedException () instead.
. PyErrfNormalizeException():LkePyErrfGetRaisedException()inﬂemi
e PyErr_Restore(): Use PyErr_SetRaisedException () instead.
e PyModule_GetFilename (): Use PyModule_GetFilenameObject () instead.
e PyOS_AfterFork (): Use PyOS_AfterFork_Child () instead.
e PySlice_GetIndicesEx(): Use PySlice_Unpack () and PySlice_AdjustIndices () instead.
e PyUnicode_AsDecodedObject (): Use PyCodec_Decode () instead.
e PyUnicode_AsDecodedUnicode (): Use PyCodec_Decode () instead.
e PyUnicode_AsEncodedObject (): Use PyCodec_Encode () instead.
e PyUnicode_AsEncodedUnicode (): Use PyCodec_Encode () instead.
e PyUnicode_READY (): Unneeded since Python 3.12
e PyErr_Display(): Use PyErr_DisplayException () instead.
. _PyErr_ChainExceptions():[ke_PyErr_ChainExceptionsl()inﬁeml
e PyBytesObject.ob_shash member: call PyObject_Hash () instead.
e PyDictObject.ma_version_tag member.
o Thread Local Storage (TLS) API:
- PyThread_create_key (): Use PyThread_tss_alloc () instead.
— PyThread_delete_key (): Use PyThread_tss_free () instead.
- PyThread_set_key_value(): Use PyThread_tss_set () instead.
- PyThread_get_key_value (): Use PyThread_tss_get () instead.
- PyThread_delete_key_value (): Use PyThread_tss_delete () instead.
- PyThread_ReInitTLS (): Unneeded since Python 3.7.

e The PyMonitoring FireBranchEvent function is deprecated and should be replaced with calls to
PyMonitorinngireBranchLeftEvent()andPyMonitoringiFireBranchRightEvent(L

11.4 Removed

o Creating immutable types with mutable bases was deprecated since 3.12 and now raises a TypeError.

23

Index
E

environment variable
PYTHON_COLORS, 10
PYTHONHOME, 23
PYTHONLEGACYWINDOWSFSENCODING, 13

P

Python Enhancement Proposals

PEP 563,4

PEP 587,4

PEP 626, 12

PEP 630,22

PEP 649,3

PEP 703,22

PEP 734,06

PEP 741, 4,21

PEP 749,3,5

PEP 757,21

PEP 761,20
PYTHON_COLORS, 10
PYTHONHOME, 23
PYTHONLEGACYWINDOWSFSENCODING, 13

R

RFC
RFC 1494, 8
RFC 3362, 8
RFC 3745, 8
RFC 3950, 8
RFC 4047,8
RFC 7616, 10
RFC 7903, 8
RFC 8081, 7
RFC 9559, 7
RFC 9562, 10

	Summary – release highlights
	New features
	PEP 649: deferred evaluation of annotations
	Implications for annotated code
	Implications for readers of __annotations__
	Related changes
	from __future__ import annotations

	Improved error messages
	PEP 741: Python Configuration C API

	Other language changes
	New modules
	Improved modules
	argparse
	ast
	concurrent.futures
	ctypes
	datetime
	decimal
	dis
	errno
	fractions
	functools
	getopt
	http
	inspect
	io
	json
	mimetypes
	multiprocessing
	operator
	os
	pathlib
	pdb
	platform
	pickle
	pydoc
	ssl
	symtable
	sys
	sys.monitoring
	tkinter
	unicodedata
	unittest
	urllib
	uuid
	zipinfo

	Optimizations
	asyncio
	io

	Deprecated
	Pending removal in Python 3.15
	Pending removal in Python 3.16
	Pending removal in future versions

	Removed
	argparse
	ast
	asyncio
	collections.abc
	email
	importlib
	itertools
	pathlib
	pkgutil
	pty
	sqlite3
	typing
	urllib
	Others

	Porting to Python 3.14
	Changes in the Python API

	Build changes
	PEP 761: Discontinuation of PGP signatures

	C API changes
	New features
	Porting to Python 3.14
	Deprecated
	Pending removal in Python 3.15
	Pending removal in future versions

	Removed

	Index

