Porting Extension Modules to Python
3

Release 3.7.17

Guido van Rossum
and the Python development team

June 28, 2023

Python Software Foundation
Email: docs@python.org

Contents
1 Conditional compilation 2
2 Changes to Object APIs 2
2.1 str/funicode Unification. o Lo e e e e e e e e 2
2.2 long/int Unification o L e e e e e e e e e 3
3 Module initialization and state 3
4 CObject replaced with Capsule 4
5 Other options 7
Index 8

author Benjamin Peterson

Abstract

Although changing the C-API was not one of Python 3’s objectives, the many Python-level changes made leaving

Python 2’s API intact impossible. In fact, some changes such as int () and 1ong () unification are more obvious
on the C level. This document endeavors to document incompatibilities and how they can be worked around.

1 Conditional compilation

The easiest way to compile only some code for Python 3 is to check if PY_MAJOR_VERSION is greater than or
equal to 3.

#if PY MAJOR_VERSION >= 3
#define IS PY3K
#endif

API functions that are not present can be aliased to their equivalents within conditional blocks.

2 Changes to Object APIs

Python 3 merged together some types with similar functions while cleanly separating others.

2.1 str/unicode Unification

Python 3’s st r () typeis equivalent to Python 2’s unicode () ; the C functions are called PyUnicode_* for both.
The old 8-bit string type has become bytes (), with C functions called PyBytes_ *. Python 2.6 and later provide
a compatibility header, bytesobject . h, mapping PyBytes names to PySt ring ones. For best compatibility
with Python 3, PyUnicode should be used for textual data and PyBytes for binary data. It’s also important to re-
member that PyBytes and PyUnicode in Python 3 are not interchangeable like PySt ring and PyUnicode are
in Python 2. The following example shows best practices with regards to PyUnicode, PyString,and PyBytes.

#include "stdlib.h"
#include "Python.h"
#include "bytesobject.h"

/* text example */

static PyObject *

say_hello (PyObject *self, PyObject *args) {
PyObject *name, *result;

if (!PyArg_ParseTuple(args, "U:say_hello", &name))
return NULL;

result = PyUnicode_FromFormat ("Hello, %S!", name);
return result;

/* just a forward */
static char * do_encode (PyObject *);

/* bytes example */

static PyObject *

encode_object (PyObject *self, PyObject *args) {
char *encoded;
PyObject *result, *myobi;

if (!PyArg_ParseTuple(args, "O:encode_object", &myobj))
return NULL;

encoded = do_encode (myobj) ;
if (encoded == NULL)
return NULL;
result = PyBytes_FromString (encoded) ;
free (encoded) ;

(continues on next page)

(continued from previous page)

return result;

2.2 long/int Unification

Python 3 has only one integer type, int (). But it actually corresponds to Python 2’s 1ong () type—the int ()
type used in Python 2 was removed. In the C-API, PyInt_ * functions are replaced by their PyLong_* equivalents.

3 Module initialization and state

Python 3 has a revamped extension module initialization system. (See PEP 3121.) Instead of storing module state in
globals, they should be stored in an interpreter specific structure. Creating modules that act correctly in both Python
2 and Python 3 is tricky. The following simple example demonstrates how.

#include "Python.h"

struct module_state {
PyObject *error;

bi

#if PY MAJOR _VERSION >= 3

#define GETSTATE (m) ((struct module_state*)PyModule_GetState (m))
#else

#define GETSTATE (m) (&_state)

static struct module_state _state;

#endif

static PyObject *

error_out (PyObject *m) {
struct module_state *st = GETSTATE (m);
PyErr_SetString(st->error, "something bad happened") ;
return NULL;

static PyMethodDef myextension_methods[] = {
{"error_out", (PyCFunction)error_out, METH_NOARGS, NULL},
{NULL, NULL}

bi

#if PY_MAJOR_VERSION >= 3

static int myextension_traverse (PyObject *m, visitproc visit, wvoid *arg) {
Py_VISIT(GETSTATE (m) —>error);
return 0O;

static int myextension_clear (PyObject *m) {
Py_CLEAR (GETSTATE (m) —>error) ;
return 0O;

static struct PyModuleDef moduledef = {
PyModuleDef_ HEAD_INIT,
"myextension",
NULL,
sizeof (struct module_state),

(continues on next page)

https://www.python.org/dev/peps/pep-3121

(continued from previous page)

myextension_methods,
NULL,
myextension_traverse,
myextension_clear,
NULL

bi

#define INITERROR return NULL

PyMODINIT_FUNC
PyInit_myextension (void)

#else
#define INITERROR return

void
initmyextension (void)
#endif
{
#1if PY _MAJOR_VERSION >= 3
PyObject *module = PyModule_Create (&moduledef);
#else
PyObject *module = Py_InitModule ("myextension", myextension_methods);
#endif

if (module == NULL)
INITERROR;
struct module_state *st = GETSTATE (module) ;

st—->error = PyErr_NewException ("myextension.Error", NULL, NULL);

if (st->error == NULL) {
Py_DECREF (module) ;
INITERROR;

#if PY MAJOR_VERSION >= 3
return module;

#endif

}

4 CObiject replaced with Capsule

The Capsule object was introduced in Python 3.1 and 2.7 to replace CObject. CObjects were useful, but the
CObject API was problematic: it didn’t permit distinguishing between valid CObjects, which allowed mismatched
COpbjects to crash the interpreter, and some of its APIs relied on undefined behavior in C. (For further reading on the
rationale behind Capsules, please see bpo-5630.)

If you're currently using CObjects, and you want to migrate to 3.1 or newer, you’ll need to switch to Capsules.
CObject was deprecated in 3.1 and 2.7 and completely removed in Python 3.2. If you only support 2.7, or 3.1 and
above, you can simply switch to Capsule. If you need to support Python 3.0, or versions of Python earlier than
2.7, you’ll have to support both CObjects and Capsules. (Note that Python 3.0 is no longer supported, and it is not
recommended for production use.)

The following example header file capsulethunk .h may solve the problem for you. Simply write your code
against the Capsule API and include this header file after Python . h. Your code will automatically use Capsules
in versions of Python with Capsules, and switch to CObjects when Capsules are unavailable.

capsulethunk.h simulates Capsules using CObjects. However, CObject provides no place to store the cap-

S ¢

sule’s “name”. As a result the simulated Capsule objects created by capsulethunk.h behave slightly differ-

https://bugs.python.org/issue?@action=redirect&bpo=5630

ently from real Capsules. Specifically:
* The name parameter passed in to PyCapsule_New () isignored.

e The name parameter passed in to PyCapsule_IsValid () and PyCapsule_GetPointer () is ig-
nored, and no error checking of the name is performed.

* PyCapsule_GetName () always returns NULL.

e PyCapsule_SetName () always raises an exception and returns failure. (Since there’s no way to store a
name in a CObject, noisy failure of PyCapsule_SetName () was deemed preferable to silent failure here.
If this is inconvenient, feel free to modify your local copy as you see fit.)

You can find capsulethunk . h in the Python source distribution as Doc/includes/capsulethunk.h. We also include
it here for your convenience:

#ifndef _ CAPSULETHUNK_H
#define __ CAPSULETHUNK_H

#if ((PY_VERSION_HEX < 0x02070000) \
/| ((PY_VERSION_HEX >= 0x03000000) \
&& (PY_VERSION_HEX < 0x03010000)))

#define __ PyCapsule_GetField(capsule, field, default_value) \
(PyCapsule_CheckExact (capsule) \
? (((PyCObject *)capsule)->field) \
(default_value) \

#define __ PyCapsule_SetField(capsule, field, value) \
(PyCapsule_CheckExact (capsule) \
? (((PyCObject *)capsule)->field = value), 1 \
0 \

#define PyCapsule_Type PyCObject_Type

#define PyCapsule_CheckExact (capsule) (PyCObject_Check (capsule))
#define PyCapsule_IsValid(capsule, name) (PyCObject_Check (capsule))

#define PyCapsule_New (pointer, name, destructor) |\
(PyCObject_FromVoidPtr (pointer, destructor))

#define PyCapsule_GetPointer (capsule, name) \
(PyCObject_AsVoidPtr (capsule))

/* Don't call PyCObject_SetPointer here, it fails if there's a destructor */
#define PyCapsule_SetPointer (capsule, pointer) \
__PyCapsule_SetField(capsule, cobject, pointer)

#define PyCapsule_GetDestructor (capsule) \
__PyCapsule_GetField (capsule, destructor)

#define PyCapsule_SetDestructor (capsule, dtor) \
__PyCapsule_SetField(capsule, destructor, dtor)

/*
* Sorry, there's simply no place
* to store a Capsule "name" in a CObject.

(continues on next page)

https://github.com/python/cpython/tree/3.7/Doc/includes/capsulethunk.h

(continued from previous page)

*/
#define PyCapsule_GetName (capsule) NULL

static int
PyCapsule_SetName (PyObject *capsule,
{

const char *unused)

unused = unused;
PyErr_SetString (PyExc_NotImplementedError,

"can't use PyCapsule_SetName with CObjects");
return 1;

#define PyCapsule_GetContext (capsule) |\
__PyCapsule_GetField (capsule, descr)

context) \
context)

#define PyCapsule_SetContext (capsule,
__PyCapsule_SetField(capsule, descr,

static void *
PyCapsule_TImport (const
{

char *name, int no_block)
PyObject *object =
void *return_value =
char *trace;

size_t name_length = (strlen(name) + 1) * sizeof (char);
char *name_dup = (char *)PyMem_MALLOC (name_length) ;

NULL;
NULL;

if (!name_dup) {

return NULL;

memcpy (name_dup, name, name_length);

trace = name_dup;
while (trace) {
char *dot = strchr(trace, '.'");
if (dot) {
*dot++ = "\O';
}
if (object == NULL) {
if (no_block) {
object = PyImport_ImportModuleNoBlock (trace);
} else {
object = PyImport_ImportModule (trace);
if (!object) {
PyErr_Format (PyExc_ImportError,
"PyCapsule_Import could not "
"import module \"%s\"", trace);
}
}
} else {
PyObject *object2 = PyObject_GetAttrString (object,
Py_DECREF (object) ;
object = object2;
}
if (!object) {
goto EXIT;

trace);

(continues on next page)

(continued from previous page)

trace = dot;

if (PyCObject_Check (object)) {

PyCObject *cobject = (PyCObject *)object;
return_value = cobject->cobject;
} else {

PyErr_Format (PyExc_AttributeError,
"PyCapsule_Import \"%s\" is not valid",
name) ;

EXIT:
Py_XDECREF (object) ;
if (name_dup) {
PyMem_FREE (name_dup) ;
3

return return_value;

#endif /* #if PY _VERSION_HEX < 0x02070000 */

#endif /* __ CAPSULETHUNK_H */

5 Other options

If you are writing a new extension module, you might consider Cython. It translates a Python-like language to C. The
extension modules it creates are compatible with Python 3 and Python 2.

http://cython.org/

Index
F)

Python Enhancement Proposals
PEP 3121,3

	Conditional compilation
	Changes to Object APIs
	str/unicode Unification
	long/int Unification

	Module initialization and state
	CObject replaced with Capsule
	Other options
	Index

