
The Python/C API
Release 3.7.17

Guido van Rossum
and the Python development team

June 28, 2023

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3
1.1 Coding standards . 3
1.2 Include Files . 3
1.3 Useful macros . 4
1.4 Objects, Types and Reference Counts . 5
1.5 Exceptions . 9
1.6 Embedding Python . 11
1.7 Debugging Builds . 11

2 Stable Application Binary Interface 13

3 The Very High Level Layer 15

4 Reference Counting 21

5 Exception Handling 23
5.1 Printing and clearing . 23
5.2 Raising exceptions . 24
5.3 Issuing warnings . 26
5.4 Querying the error indicator . 27
5.5 Signal Handling . 29
5.6 Exception Classes . 29
5.7 Exception Objects . 30
5.8 Unicode Exception Objects . 30
5.9 Recursion Control . 31
5.10 Standard Exceptions . 32
5.11 Standard Warning Categories . 34

6 Utilities 35
6.1 Operating System Utilities . 35
6.2 System Functions . 37
6.3 Process Control . 38
6.4 Importing Modules . 39
6.5 Data marshalling support . 42
6.6 Parsing arguments and building values . 43
6.7 String conversion and formatting . 51
6.8 Reflection . 52
6.9 Codec registry and support functions . 53

7 Abstract Objects Layer 55
7.1 Object Protocol . 55

i

7.2 Number Protocol . 60
7.3 Sequence Protocol . 63
7.4 Mapping Protocol . 64
7.5 Iterator Protocol . 65
7.6 Buffer Protocol . 66
7.7 Old Buffer Protocol . 73

8 Concrete Objects Layer 75
8.1 Fundamental Objects . 75
8.2 Numeric Objects . 77
8.3 Sequence Objects . 82
8.4 Container Objects . 108
8.5 Function Objects . 112
8.6 Other Objects . 116

9 Initialization, Finalization, and Threads 135
9.1 Before Python Initialization . 135
9.2 Global configuration variables . 136
9.3 Initializing and finalizing the interpreter . 138
9.4 Process-wide parameters . 139
9.5 Thread State and the Global Interpreter Lock . 142
9.6 Sub-interpreter support . 147
9.7 Asynchronous Notifications . 148
9.8 Profiling and Tracing . 149
9.9 Advanced Debugger Support . 150
9.10 Thread Local Storage Support . 150

10 Memory Management 153
10.1 Overview . 153
10.2 Raw Memory Interface . 154
10.3 Memory Interface . 155
10.4 Object allocators . 156
10.5 Default Memory Allocators . 157
10.6 Customize Memory Allocators . 157
10.7 The pymalloc allocator . 159
10.8 tracemalloc C API . 160
10.9 Examples . 160

11 Object Implementation Support 163
11.1 Allocating Objects on the Heap . 163
11.2 Common Object Structures . 164
11.3 Type Objects . 168
11.4 Number Object Structures . 182
11.5 Mapping Object Structures . 183
11.6 Sequence Object Structures . 183
11.7 Buffer Object Structures . 184
11.8 Async Object Structures . 185
11.9 Supporting Cyclic Garbage Collection . 186

12 API and ABI Versioning 189

A Glossary 191

B About these documents 205
B.1 Contributors to the Python Documentation . 205

ii

C History and License 207
C.1 History of the software . 207
C.2 Terms and conditions for accessing or otherwise using Python . 208
C.3 Licenses and Acknowledgements for Incorporated Software . 211

D Copyright 223

Index 225

iii

iv

The Python/C API, Release 3.7.17

This manual documents the API used by C and C++ programmers who want to write extension modules or embed Python.
It is a companion to extending-index, which describes the general principles of extension writing but does not document
the API functions in detail.

CONTENTS 1

The Python/C API, Release 3.7.17

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter at a
variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C API.
There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension modules
for specific purposes; these are C modules that extend the Python interpreter. This is probably the most common use. The
second reason is to use Python as a component in a larger application; this technique is generally referred to as embedding
Python in an application.
Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There are
several tools that automate the process to some extent. While people have embedded Python in other applications since
its early existence, the process of embedding Python is less straightforward than writing an extension.
Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most applica-
tions that embed Python will need to provide a custom extension as well, so it’s probably a good idea to become familiar
with writing an extension before attempting to embed Python in a real application.

1.1 Coding standards

If you’re writing C code for inclusion in CPython, youmust follow the guidelines and standards defined in PEP 7. These
guidelines apply regardless of the version of Python you are contributing to. Following these conventions is not necessary
for your own third party extension modules, unless you eventually expect to contribute them to Python.

1.2 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following line:

#define PY_SSIZE_T_CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>, <limits.h>,
<assert.h> and <stdlib.h> (if available).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python.h before any standard headers are included.
It is recommended to always define PY_SSIZE_T_CLEAN before including Python.h. See Parsing arguments and
building values for a description of this macro.

3

https://www.python.org/dev/peps/pep-0007

The Python/C API, Release 3.7.17

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the prefixes
Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not be used by
extension writers. Structure member names do not have a reserved prefix.

Note: User code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes the
portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec_prefix/include/pythonversion/, where prefix and exec_prefix
are defined by the corresponding parameters to Python’s configure script and version is '%d.%d' % sys.
version_info[:2]. On Windows, the headers are installed in prefix/include, where prefix is the in-
stallation directory specified to the installer.
To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under prefix include the platform specific headers from
exec_prefix.
C++ users should note that although the API is defined entirely using C, the header files properly declare the entry points
to be extern "C". As a result, there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.
Py_UNREACHABLE()

Use this when you have a code path that you do not expect to be reached. For example, in the default: clause
in a switch statement for which all possible values are covered in case statements. Use this in places where you
might be tempted to put an assert(0) or abort() call.
New in version 3.7.

Py_ABS(x)
Return the absolute value of x.
New in version 3.3.

Py_MIN(x, y)
Return the minimum value between x and y.
New in version 3.3.

Py_MAX(x, y)
Return the maximum value between x and y.
New in version 3.3.

Py_STRINGIFY(x)
Convert x to a C string. E.g. Py_STRINGIFY(123) returns "123".
New in version 3.4.

Py_MEMBER_SIZE(type, member)
Return the size of a structure (type) member in bytes.
New in version 3.6.

4 Chapter 1. Introduction

The Python/C API, Release 3.7.17

Py_CHARMASK(c)
Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to an
unsigned char.

Py_GETENV(s)
Like getenv(s), but returns NULL if -E was passed on the command line (i.e. if
Py_IgnoreEnvironmentFlag is set).

Py_UNUSED(arg)
Use this for unused arguments in a function definition to silence compiler warnings, e.g. PyObject*
func(PyObject *Py_UNUSED(ignored)).
New in version 3.4.

PyDoc_STRVAR(name, str)
Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the value
will be empty.
Use PyDoc_STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.
Example:

PyDoc_STRVAR(pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods[] = {
// ...
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
// ...

}

PyDoc_STR(str)
Creates a docstring for the given input string or an empty string if docstrings are disabled.
Use PyDoc_STR in specifying docstrings to support building Python without docstrings, as specified in PEP 7.
Example:

static PyMethodDef pysqlite_row_methods[] = {
{"keys", (PyCFunction)pysqlite_row_keys, METH_NOARGS,

PyDoc_STR("Returns the keys of the row.")},
{NULL, NULL}

};

1.4 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyObject*. This type is a
pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the same
way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only fitting that
they should be represented by a single C type. Almost all Python objects live on the heap: you never declare an automatic
or static variable of type PyObject, only pointer variables of type PyObject* can be declared. The sole exception
are the type objects; since these must never be deallocated, they are typically static PyTypeObject objects.
All Python objects (even Python integers) have a type and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of the
well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check(a) is true
if (and only if) the object pointed to by a is a Python list.

1.4. Objects, Types and Reference Counts 5

https://www.python.org/dev/peps/pep-0007
https://www.python.org/dev/peps/pep-0007

The Python/C API, Release 3.7.17

1.4.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or a
global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero, the
object is deallocated. If it contains references to other objects, their reference count is decremented. Those other objects
may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an obvious
problem with objects that reference each other here; for now, the solution is “don’t do that.”)
Reference counts are always manipulated explicitly. The normal way is to use the macro Py_INCREF() to increment an
object’s reference count by one, and Py_DECREF() to decrement it by one. The Py_DECREF()macro is considerably
more complex than the incref one, since it must check whether the reference count becomes zero and then cause the
object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure. The type-
specific deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a
compound object type, such as a list, as well as performing any additional finalization that’s needed. There’s no chance that
the reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory
locations in virtual memory (assuming sizeof(Py_ssize_t) >= sizeof(void*)). Thus, the reference count
increment is a simple operation.
It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object. In
theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by one when
the variable goes out of scope. However, these two cancel each other out, so at the end the reference count hasn’t changed.
The only real reason to use the reference count is to prevent the object from being deallocated as long as our variable is
pointing to it. If we know that there is at least one other reference to the object that lives at least as long as our variable,
there is no need to increment the reference count temporarily. An important situation where this arises is in objects that
are passed as arguments to C functions in an extension module that are called from Python; the call mechanism guarantees
to hold a reference to every argument for the duration of the call.
However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code
which could do this; there is a code path which allows control to flow back to the user from a Py_DECREF(), so almost
any operation is potentially dangerous.
A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always increment the reference count of the object they return.
This leaves the caller with the responsibility to call Py_DECREF()when they are done with the result; this soon becomes
second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a reference”
means being responsible for calling Py_DECREF on it when the reference is no longer needed. Ownership can also
be transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually
decref’ing it by callingPy_DECREF() orPy_XDECREF()when it’s no longer needed—or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.
Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals a
reference to the object, or it does not. Stealing a referencemeans that when you pass a reference to a function, that function
assumes that it now owns that reference, and you are not responsible for it any longer.
Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple_SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed

6 Chapter 1. Introduction

The Python/C API, Release 3.7.17

to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyLong_FromLong(1L));
PyTuple_SetItem(t, 1, PyLong_FromLong(2L));
PyTuple_SetItem(t, 2, PyUnicode_FromString("three"));

Here, PyLong_FromLong() returns a new reference which is immediately stolen by PyTuple_SetItem(). When
you want to keep using an object although the reference to it will be stolen, use Py_INCREF() to grab another reference
before calling the reference-stealing function.
Incidentally, PyTuple_SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem() for tuples that you are creating yourself.
Equivalent code for populating a list can be written using PyList_New() and PyList_SetItem().
However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic function,
Py_BuildValue(), that can create most common objects from C values, directed by a format string. For example,
the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_BuildValue("(iis)", 1, 2, "three");
list = Py_BuildValue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem() and friends with items whose references you are only borrow-
ing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don’t have to increment a reference count so you can give a reference away (“have it be
stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all(PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length(target);
if (n < 0)

return -1;
for (i = 0; i < n; i++) {

PyObject *index = PyLong_FromSsize_t(i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {

Py_DECREF(index);
return -1;

}
Py_DECREF(index);

}
return 0;

}

The situation is slightly different for function return values. While passing a reference to most functions does not change
your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the

1.4. Objects, Types and Reference Counts 7

The Python/C API, Release 3.7.17

only reference to the object. Therefore, the generic functions that return object references, likePyObject_GetItem()
and PySequence_GetItem(), always return a new reference (the caller becomes the owner of the reference).
It is important to realize that whether you own a reference returned by a function depends on which function you call only
— the plumage (the type of the object passed as an argument to the function) doesn’t enter into it! Thus, if you extract
an item from a list using PyList_GetItem(), you don’t own the reference — but if you obtain the same item from
the same list using PySequence_GetItem() (which happens to take exactly the same arguments), you do own a
reference to the returned object.
Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem(), and once using PySequence_GetItem().

long
sum_list(PyObject *list)
{

Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)

return -1; /* Not a list */
for (i = 0; i < n; i++) {

item = PyList_GetItem(list, i); /* Can't fail */
if (!PyLong_Check(item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())

/* Integer too big to fit in a C long, bail out */
return -1;

total += value;
}
return total;

}

long
sum_sequence(PyObject *sequence)
{

Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)

return -1; /* Has no length */
for (i = 0; i < n; i++) {

item = PySequence_GetItem(sequence, i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check(item)) {

value = PyLong_AsLong(item);
Py_DECREF(item);
if (value == -1 && PyErr_Occurred())

/* Integer too big to fit in a C long, bail out */
return -1;

total += value;
}
else {

Py_DECREF(item); /* Discard reference ownership */
}

(continues on next page)

8 Chapter 1. Introduction

The Python/C API, Release 3.7.17

(continued from previous page)
}
return total;

}

1.4.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.5 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.
For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function en-
counters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not
documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few functions
return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errors with PyErr_Occurred(). These exceptions
are always explicitly documented.
Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred() can be used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL
otherwise. There are a number of functions to set the exception state: PyErr_SetString() is the most common
(though not the most general) function to set the exception state, and PyErr_Clear() clears the exception state.
The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the samemeanings as the Python result of sys.exc_info(); however,
they are not the same: the Python objects represent the last exception being handled by a Python try … except
statement, while the C level exception state only exists while an exception is being passed on between C functions until
it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_info() and
friends.
Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call
the function sys.exc_info(), which returns the per-thread exception state for Python code. Also, the semantics of
both ways to access the exception state have changed so that a function which catches an exception will save and restore
its thread’s exception state so as to preserve the exception state of its caller. This prevents common bugs in exception
handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.
As a general principle, a function that calls another function to perform some task should check whether the called function
raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns,
and return an error indicator, but it should not set another exception — that would overwrite the exception that was just
raised, and lose important information about the exact cause of the error.
A simple example of detecting exceptions and passing them on is shown in the sum_sequence() example above. It so
happens that this example doesn’t need to clean up any owned references when it detects an error. The following example
function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python code:

1.5. Exceptions 9

The Python/C API, Release 3.7.17

def incr_item(dict, key):
try:

item = dict[key]
except KeyError:

item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int
incr_item(PyObject *dict, PyObject *key)
{

/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {

/* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError))

goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong(0L);
if (item == NULL)

goto error;
}
const_one = PyLong_FromLong(1L);
if (const_one == NULL)

goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)

goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */
/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF() to ignore NULL references */
Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, 0 for success */
}

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches() and PyErr_Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that may be NULL (note the 'X' in the name; Py_DECREF()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to -1 (failure) and only set to
success after the final call made is successful.

10 Chapter 1. Introduction

The Python/C API, Release 3.7.17

1.6 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.
The basic initialization function is Py_Initialize(). This initializes the table of loaded modules, and creates the
fundamental modules builtins, __main__, and sys. It also initializes the module search path (sys.path).
Py_Initialize() does not set the “script argument list” (sys.argv). If this variable is needed by Python code that
will be executed later, it must be set explicitly with a call to PySys_SetArgvEx(argc, argv, updatepath)
after the call to Py_Initialize().
On most systems (in particular, on Unix and Windows, although the details are slightly different), Py_Initialize()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,
assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named lib/pythonX.Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).
For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX.Y. (In fact, this particular path is also the “fallback” location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.
The embedding application can steer the search by calling Py_SetProgramName(file) before calling
Py_Initialize(). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath(),
Py_GetPrefix(), Py_GetExecPrefix(), and Py_GetProgramFullPath() (all defined in Modules/
getpath.c).
Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another call
to Py_Initialize()) or the application is simply done with its use of Python and wants to free memory allocated by
Python. This can be accomplished by calling Py_FinalizeEx(). The function Py_IsInitialized() returns
true if Python is currently in the initialized state. More information about these functions is given in a later chapter.
Notice that Py_FinalizeEx() does not free all memory allocated by the Python interpreter, e.g. memory allocated
by extension modules currently cannot be released.

1.7 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.
A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level
profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of this
section.
Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by “a debug build” of
Python. Py_DEBUG is enabled in the Unix build by adding --with-pydebug to the ./configure command. It is
also implied by the presence of the not-Python-specific _DEBUGmacro. When Py_DEBUG is enabled in the Unix build,
compiler optimization is disabled.
In addition to the reference count debugging described below, the following extra checks are performed:

• Extra checks are added to the object allocator.
• Extra checks are added to the parser and compiler.

1.6. Embedding Python 11

The Python/C API, Release 3.7.17

• Downcasts from wide types to narrow types are checked for loss of information.
• A number of assertions are added to the dictionary and set implementations. In addition, the set object acquires a
test_c_api() method.

• Sanity checks of the input arguments are added to frame creation.
• The storage for ints is initialized with a known invalid pattern to catch reference to uninitialized digits.
• Low-level tracing and extra exception checking are added to the runtime virtual machine.
• Extra checks are added to the memory arena implementation.
• Extra debugging is added to the thread module.

There may be additional checks not mentioned here.
Defining Py_TRACE_REFS enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.
Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

12 Chapter 1. Introduction

CHAPTER

TWO

STABLE APPLICATION BINARY INTERFACE

Traditionally, the C API of Python will change with every release. Most changes will be source-compatible, typically
by only adding API, rather than changing existing API or removing API (although some interfaces do get removed after
being deprecated first).
Unfortunately, the API compatibility does not extend to binary compatibility (the ABI). The reason is primarily the
evolution of struct definitions, where addition of a new field, or changing the type of a field, might not break the API, but
can break the ABI. As a consequence, extension modules need to be recompiled for every Python release (although an
exception is possible on Unix when none of the affected interfaces are used). In addition, onWindows, extension modules
link with a specific pythonXY.dll and need to be recompiled to link with a newer one.
Since Python 3.2, a subset of the API has been declared to guarantee a stable ABI. Extension modules wishing to use
this API (called “limited API”) need to define Py_LIMITED_API. A number of interpreter details then become hidden
from the extension module; in return, a module is built that works on any 3.x version (x>=2) without recompilation.
In some cases, the stable ABI needs to be extended with new functions. Extension modules wishing to use these new
APIs need to set Py_LIMITED_API to the PY_VERSION_HEX value (see API and ABI Versioning) of the minimum
Python version they want to support (e.g. 0x03030000 for Python 3.3). Such modules will work on all subsequent
Python releases, but fail to load (because of missing symbols) on the older releases.
As of Python 3.2, the set of functions available to the limitedAPI is documented inPEP384. In the CAPI documentation,
API elements that are not part of the limited API are marked as “Not part of the limited API.”

13

https://www.python.org/dev/peps/pep-0384

The Python/C API, Release 3.7.17

14 Chapter 2. Stable Application Binary Interface

CHAPTER

THREE

THE VERY HIGH LEVEL LAYER

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.
Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input, and Py_single_input. These are described following the functions which
accept them as parameters.
Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled carefully
is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least), it
is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.
int Py_Main(int argc, wchar_t **argv)

The main program for the standard interpreter. This is made available for programs which embed Python. The
argc and argv parameters should be prepared exactly as those which are passed to a C program’s main() function
(converted to wchar_t according to the user’s locale). It is important to note that the argument list may be modified
(but the contents of the strings pointed to by the argument list are not). The return value will be 0 if the interpreter
exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or 2 if the parameter list
does not represent a valid Python command line.
Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
as long as Py_InspectFlag is not set.

int PyRun_AnyFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),
return the value of PyRun_InteractiveLoop(), otherwise return the result of PyRun_SimpleFile().
filename is decoded from the filesystem encoding (sys.getfilesystemencoding()). If filename is NULL,
this function uses "???" as the filename.

int PyRun_SimpleString(const char *command)
This is a simplified interface to PyRun_SimpleStringFlags() below, leaving the PyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags(const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main__ module according to the flags argument. If

15

The Python/C API, Release 3.7.17

__main__ does not already exist, it is created. Returns 0 on success or -1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.
Note that if an otherwise unhandled SystemExit is raised, this function will not return -1, but exit the process,
as long as Py_InspectFlag is not set.

int PyRun_SimpleFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags() below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags() below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags(), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from the filesystem encoding (sys.
getfilesystemencoding()). If closeit is true, the file is closed before PyRun_SimpleFileExFlags returns.

Note: On Windows, fp should be opened as binary mode (e.g. fopen(filename, "rb"). Otherwise,
Python may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags() below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys.ps1 and sys.ps2. filename is decoded from the filesystem encoding
(sys.getfilesystemencoding()).
Returns 0 when the input was executed successfully, -1 if there was an exception, or an error code from the
errcode.h include file distributed as part of Python if there was a parse error. (Note that errcode.h is not
included by Python.h, so must be included specifically if needed.)

int PyRun_InteractiveLoop(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags() below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.ps1 and sys.ps2. filename is decoded from the filesystem encoding (sys.
getfilesystemencoding()). Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook)(void)
Can be set to point to a function with the prototype int func(void). The function will be called when
Python’s interpreter prompt is about to become idle and wait for user input from the terminal. The return value is
ignored. Overriding this hook can be used to integrate the interpreter’s prompt with other event loops, as done in
the Modules/_tkinter.c in the Python source code.

char* (*PyOS_ReadlineFunctionPointer)(FILE *, FILE *, const char *)
Can be set to point to a function with the prototype char *func(FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’s prompt.
The function is expected to output the string prompt if it’s not NULL, and then read a line of input from the provided
standard input file, returning the resulting string. For example, The readline module sets this hook to provide
line-editing and tab-completion features.
The result must be a string allocated by PyMem_RawMalloc() or PyMem_RawRealloc(), or NULL if an
error occurred.
Changed in version 3.4: The result must be allocated by PyMem_RawMalloc() or PyMem_RawRealloc(),
instead of being allocated by PyMem_Malloc() or PyMem_Realloc().

16 Chapter 3. The Very High Level Layer

The Python/C API, Release 3.7.17

struct _node* PyParser_SimpleParseString(const char *str, int start)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename() below, leaving file-
name set to NULL and flags set to 0.

struct _node* PyParser_SimpleParseStringFlags(const char *str, int start, int flags)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename() below, leaving file-
name set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename(const char *str, const char *filename,
int start, int flags)

Parse Python source code from str using the start token start according to the flags argument. The result can be
used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times. filename is decoded from the filesystem encoding (sys.getfilesystemencoding()).

struct _node* PyParser_SimpleParseFile(FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser_SimpleParseFileFlags() below, leaving flags set to 0.

struct _node* PyParser_SimpleParseFileFlags(FILE *fp, const char *filename, int start, int flags)
Similar to PyParser_SimpleParseStringFlagsFilename(), but the Python source code is read from
fp instead of an in-memory string.

PyObject* PyRun_String(const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags() below, leaving flags set
to NULL.

PyObject* PyRun_StringFlags(const char *str, int start, PyObject *globals, PyObject *locals, PyCompiler-
Flags *flags)

Return value: New reference. Execute Python source code from str in the context specified by the objects globals
and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any object that
implements the mapping protocol. The parameter start specifies the start token that should be used to parse the
source code.
Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving closeit
set to 0 and flags set to NULL.

PyObject* PyRun_FileEx(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
int closeit)

Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving flags set
to NULL.

PyObject* PyRun_FileFlags(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)

Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving closeit
set to 0.

PyObject* PyRun_FileExFlags(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit, PyCompilerFlags *flags)

Return value: New reference. Similar to PyRun_StringFlags(), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding
(sys.getfilesystemencoding()). If closeit is true, the file is closed before PyRun_FileExFlags()
returns.

PyObject* Py_CompileString(const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py_CompileStringFlags() below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags(const char *str, const char *filename, int start, PyCompiler-
Flags *flags)

17

The Python/C API, Release 3.7.17

Return value: New reference. This is a simplified interface to Py_CompileStringExFlags() below, with
optimize set to -1.

PyObject* Py_CompileStringObject(const char *str, PyObject *filename, int start, PyCompiler-
Flags *flags, int optimize)

Return value: New reference. Parse and compile the Python source code in str, returning the resulting code object.
The start token is given by start; this can be used to constrain the code which can be compiled and should be
Py_eval_input, Py_file_input, or Py_single_input. The filename specified by filename is used
to construct the code object and may appear in tracebacks or SyntaxError exception messages. This returns
NULL if the code cannot be parsed or compiled.
The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization level of
the interpreter as given by -O options. Explicit levels are 0 (no optimization; __debug__ is true), 1 (asserts are
removed, __debug__ is false) or 2 (docstrings are removed too).
New in version 3.4.

PyObject* Py_CompileStringExFlags(const char *str, const char *filename, int start, PyCompiler-
Flags *flags, int optimize)

Return value: New reference. Like Py_CompileStringObject(), but filename is a byte string decoded from
the filesystem encoding (os.fsdecode()).
New in version 3.2.

PyObject* PyEval_EvalCode(PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_EvalCodeEx(), with just the code
object, and global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx(PyObject *co, PyObject *globals, PyObject *locals, PyObject *const *args,
int argcount, PyObject *const *kws, int kwcount, PyObject *const *defs,
int defcount, PyObject *kwdefs, PyObject *closure)

Return value: New reference. Evaluate a precompiled code object, given a particular environment for its evalua-
tion. This environment consists of a dictionary of global variables, a mapping object of local variables, arrays of
arguments, keywords and defaults, a dictionary of default values for keyword-only arguments and a closure tuple
of cells.

PyFrameObject
The C structure of the objects used to describe frame objects. The fields of this type are subject to change at any
time.

PyObject* PyEval_EvalFrame(PyFrameObject *f)
Return value: New reference. Evaluate an execution frame. This is a simplified interface to
PyEval_EvalFrameEx(), for backward compatibility.

PyObject* PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
Return value: New reference. This is the main, unvarnished function of Python interpretation. It is literally 2000
lines long. The code object associated with the execution frame f is executed, interpreting bytecode and executing
calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes an exception to
immediately be thrown; this is used for the throw() methods of generator objects.
Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

int PyEval_MergeCompilerFlags(PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py_CompileString().

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use

18 Chapter 3. The Very High Level Layer

The Python/C API, Release 3.7.17

with Py_CompileString(). This is the symbol to use when compiling arbitrarily long Python source code.
int Py_single_input

The start symbol from the Python grammar for a single statement; for use with Py_CompileString(). This
is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int
flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __future__ import can modify flags.
Whenever PyCompilerFlags *flags is NULL, cf_flags is treated as equal to 0, and any modification
due to from __future__ import is discarded.

struct PyCompilerFlags {
int cf_flags;

}

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as “true division” according to PEP 238.

19

https://www.python.org/dev/peps/pep-0238

The Python/C API, Release 3.7.17

20 Chapter 3. The Very High Level Layer

CHAPTER

FOUR

REFERENCE COUNTING

The macros in this section are used for managing reference counts of Python objects.
void Py_INCREF(PyObject *o)

Increment the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL, use
Py_XINCREF().

void Py_XINCREF(PyObject *o)
Increment the reference count for object o. The object may be NULL, in which case the macro has no effect.

void Py_DECREF(PyObject *o)
Decrement the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL, use
Py_XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function (which must not
be NULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance
with a __del__() method is deallocated). While exceptions in such code are not propagated, the executed
code has free access to all Python global variables. This means that any object that is reachable from a global
variable should be in a consistent state before Py_DECREF() is invoked. For example, code to delete an object
from a list should copy a reference to the deleted object in a temporary variable, update the list data structure,
and then call Py_DECREF() for the temporary variable.

void Py_XDECREF(PyObject *o)
Decrement the reference count for object o. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF(), and the same warning applies.

void Py_CLEAR(PyObject *o)
Decrement the reference count for object o. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF(), except that the argument is also set to NULL. The warning
for Py_DECREF() does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before decrementing its reference count.
It is a good idea to use this macro whenever decrementing the value of a variable that might be traversed during
garbage collection.

The following functions are for runtime dynamic embedding of Python: Py_IncRef(PyObject *o),
Py_DecRef(PyObject *o). They are simply exported function versions of Py_XINCREF() and
Py_XDECREF(), respectively.
The following functions or macros are only for use within the interpreter core: _Py_Dealloc(),
_Py_ForgetReference(), _Py_NewReference(), as well as the global variable _Py_RefTotal.

21

The Python/C API, Release 3.7.17

22 Chapter 4. Reference Counting

CHAPTER

FIVE

EXCEPTION HANDLING

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will set it to
indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if they are
supposed to return a pointer, or -1 if they return an integer (exception: the PyArg_*() functions return 1 for success
and 0 for failure).
Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for example
you can’t have a non-NULL traceback if the exception type is NULL).
When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the function
it called already set it. It is responsible for either handling the error and clearing the exception or returning after cleaning
up any resources it holds (such as object references or memory allocations); it should not continue normally if it is not
prepared to handle the error. If returning due to an error, it is important to indicate to the caller that an error has been
set. If the error is not handled or carefully propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.

Note: The error indicator is not the result of sys.exc_info(). The former corresponds to an exception that is not
yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

5.1 Printing and clearing

void PyErr_Clear()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx(int set_sys_last_vars)
Print a standard traceback to sys.stderr and clear the error indicator. Unless the error is a SystemExit. In
that case the no traceback is printed and Python process will exit with the error code specified by the SystemExit
instance.
Call this function only when the error indicator is set. Otherwise it will cause a fatal error!
If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print()
Alias for PyErr_PrintEx(1).

23

The Python/C API, Release 3.7.17

void PyErr_WriteUnraisable(PyObject *obj)
This utility function prints a warning message to sys.stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del__() method.
The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.
An exception must be set when calling this function.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.
void PyErr_SetString(PyObject *type, const char *message)

This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is decoded from 'utf-8’.

void PyErr_SetObject(PyObject *type, PyObject *value)
This function is similar to PyErr_SetString() but lets you specify an arbitrary Python object for the “value”
of the exception.

PyObject* PyErr_Format(PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a Python
exception class. The format and subsequent parameters help format the error message; they have the same meaning
and values as in PyUnicode_FromFormat(). format is an ASCII-encoded string.

PyObject* PyErr_FormatV(PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Same as PyErr_Format(), but taking a va_list argument rather than a variable
number of arguments.
New in version 3.5.

void PyErr_SetNone(PyObject *type)
This is a shorthand for PyErr_SetObject(type, Py_None).

int PyErr_BadArgument()
This is a shorthand for PyErr_SetString(PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory()
Return value: Always NULL. This is a shorthand for PyErr_SetNone(PyExc_MemoryError); it returns
NULL so an object allocation function can write return PyErr_NoMemory(); when it runs out of memory.

PyObject* PyErr_SetFromErrno(PyObject *type)
Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the inte-
ger errno value and whose second item is the corresponding error message (gotten from strerror()), and
then calls PyErr_SetObject(type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr_CheckSignals(), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno(type); when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject(PyObject *type, PyObject *filenameObject)
Return value: Always NULL. Similar to PyErr_SetFromErrno(), with the additional behavior that if file-

24 Chapter 5. Exception Handling

The Python/C API, Release 3.7.17

nameObject is not NULL, it is passed to the constructor of type as a third parameter. In the case of OSError
exception, this is used to define the filename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilenameObjects(PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)

Return value: Always NULL. Similar to PyErr_SetFromErrnoWithFilenameObject(), but takes a sec-
ond filename object, for raising errors when a function that takes two filenames fails.
New in version 3.4.

PyObject* PyErr_SetFromErrnoWithFilename(PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromErrnoWithFilenameObject(), but the file-
name is given as a C string. filename is decoded from the filesystem encoding (os.fsdecode()).

PyObject* PyErr_SetFromWindowsErr(int ierr)
Return value: Always NULL. This is a convenience function to raise WindowsError. If called
with ierr of 0, the error code returned by a call to GetLastError() is used instead. It calls
the Win32 function FormatMessage() to retrieve the Windows description of error code given by
ierr or GetLastError(), then it constructs a tuple object whose first item is the ierr value and
whose second item is the corresponding error message (gotten from FormatMessage()), and then calls
PyErr_SetObject(PyExc_WindowsError, object). This function always returns NULL.
Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErr(PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErr(), with an additional parameter spec-
ifying the exception type to be raised.
Availability: Windows.

PyObject* PyErr_SetFromWindowsErrWithFilename(int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject(), but the
filename is given as a C string. filename is decoded from the filesystem encoding (os.fsdecode()).
Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject(PyObject *type, int ierr, PyOb-
ject *filename)

Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject(), with an
additional parameter specifying the exception type to be raised.
Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObjects(PyObject *type, int ierr, PyOb-
ject *filename, PyObject *file-
name2)

Return value: Always NULL. Similar toPyErr_SetExcFromWindowsErrWithFilenameObject(), but
accepts a second filename object.
Availability: Windows.
New in version 3.4.

PyObject* PyErr_SetExcFromWindowsErrWithFilename(PyObject *type, int ierr, const char *file-
name)

Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilename(), with an addi-
tional parameter specifying the exception type to be raised.
Availability: Windows.

PyObject* PyErr_SetImportError(PyObject *msg, PyObject *name, PyObject *path)
Return value: Always NULL. This is a convenience function to raise ImportError. msg will be set as the

5.2. Raising exceptions 25

The Python/C API, Release 3.7.17

exception’s message string. name and path, both of which can be NULL, will be set as the ImportError’s
respective name and path attributes.
New in version 3.3.

void PyErr_SyntaxLocationObject(PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exception is not a SyntaxError, then
it sets additional attributes, which make the exception printing subsystem think the exception is a SyntaxError.
New in version 3.4.

void PyErr_SyntaxLocationEx(const char *filename, int lineno, int col_offset)
Like PyErr_SyntaxLocationObject(), but filename is a byte string decoded from the filesystem encoding
(os.fsdecode()).
New in version 3.2.

void PyErr_SyntaxLocation(const char *filename, int lineno)
Like PyErr_SyntaxLocationEx(), but the col_offset parameter is omitted.

void PyErr_BadInternalCall()
This is a shorthand for PyErr_SetString(PyExc_SystemError, message), wheremessage indicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified that
warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the functions
raise an exception because of a problem with the warning machinery. The return value is 0 if no exception is raised, or
-1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor what the
reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling
(for example, Py_DECREF() owned references and return an error value).
int PyErr_WarnEx(PyObject *category, const char *message, Py_ssize_t stack_level)

Issue a warning message. The category argument is a warning category (see below) or NULL; themessage argument
is a UTF-8 encoded string. stack_level is a positive number giving a number of stack frames; the warning will be
issued from the currently executing line of code in that stack frame. A stack_level of 1 is the function calling
PyErr_WarnEx(), 2 is the function above that, and so forth.
Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_RuntimeWarning. The standard Python warn-
ing categories are available as global variables whose names are enumerated at Standard Warning Categories.
For information about warning control, see the documentation for the warnings module and the -W option in
the command line documentation. There is no C API for warning control.

PyObject* PyErr_SetImportErrorSubclass(PyObject *exception, PyObject *msg, PyObject *name, Py-
Object *path)

Return value: Always NULL.Much like PyErr_SetImportError() but this function allows for specifying a
subclass of ImportError to raise.
New in version 3.6.

int PyErr_WarnExplicitObject(PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around

26 Chapter 5. Exception Handling

The Python/C API, Release 3.7.17

the Python function warnings.warn_explicit(), see there for more information. Themodule and registry
arguments may be set to NULL to get the default effect described there.
New in version 3.4.

int PyErr_WarnExplicit(PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)

Similar to PyErr_WarnExplicitObject() except thatmessage andmodule are UTF-8 encoded strings, and
filename is decoded from the filesystem encoding (os.fsdecode()).

int PyErr_WarnFormat(PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnEx(), but use PyUnicode_FromFormat() to format the warning mes-
sage. format is an ASCII-encoded string.
New in version 3.2.

int PyErr_ResourceWarning(PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnFormat(), but category is ResourceWarning and it passes source to
warnings.WarningMessage().
New in version 3.6.

5.4 Querying the error indicator

PyObject* PyErr_Occurred()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception type (the first
argument to the last call to one of the PyErr_Set*() functions or to PyErr_Restore()). If not set, return
NULL. You do not own a reference to the return value, so you do not need to Py_DECREF() it.

Note: Do not compare the return value to a specific exception; use PyErr_ExceptionMatches() instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches(PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches(PyErr_Occurred(), exc). This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches(PyObject *given, PyObject *exc)
Return true if the given exception matches the exception type in exc. If exc is a class object, this also returns true
when given is an instance of a subclass. If exc is a tuple, all exception types in the tuple (and recursively in subtuples)
are searched for a match.

void PyErr_Fetch(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set all
three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The value
and traceback object may be NULL even when the type object is not.

Note: This function is normally only used by code that needs to catch exceptions or by code that needs to save
and restore the error indicator temporarily, e.g.:

{
PyObject *type, *value, *traceback;
PyErr_Fetch(&type, &value, &traceback);

/* ... code that might produce other errors ... */
(continues on next page)

5.4. Querying the error indicator 27

The Python/C API, Release 3.7.17

(continued from previous page)

PyErr_Restore(type, value, traceback);
}

void PyErr_Restore(PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects are
NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback. The exception
type should be a class. Do not pass an invalid exception type or value. (Violating these rules will cause subtle
problems later.) This call takes away a reference to each object: you must own a reference to each object before
the call and after the call you no longer own these references. (If you don’t understand this, don’t use this function.
I warned you.)

Note: This function is normally only used by code that needs to save and restore the error indicator temporarily.
Use PyErr_Fetch() to save the current error indicator.

void PyErr_NormalizeException(PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr_Fetch() below can be “unnormalized”, meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate the
class in that case. If the values are already normalized, nothing happens. The delayed normalization is implemented
to improve performance.

Note: This function does not implicitly set the __traceback__ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback(val, tb);

}

void PyErr_GetExcInfo(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the exception info, as known from sys.exc_info(). This refers to an exception that was already
caught, not to an exception that was freshly raised. Returns new references for the three objects, any of which may
be NULL. Does not modify the exception info state.

Note: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr_SetExcInfo() to restore or clear
the exception state.

New in version 3.3.
void PyErr_SetExcInfo(PyObject *type, PyObject *value, PyObject *traceback)

Set the exception info, as known fromsys.exc_info(). This refers to an exception that was already caught, not
to an exception that was freshly raised. This function steals the references of the arguments. To clear the exception
state, pass NULL for all three arguments. For general rules about the three arguments, see PyErr_Restore().

Note: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code
needs to save and restore the exception state temporarily. Use PyErr_GetExcInfo() to read the exception
state.

28 Chapter 5. Exception Handling

The Python/C API, Release 3.7.17

New in version 3.3.

5.5 Signal Handling

int PyErr_CheckSignals()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for SIGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns -1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt()
Simulate the effect of a SIGINT signal arriving. The next time PyErr_CheckSignals() is called, the Python
signal handler for SIGINT will be called.
If SIGINT isn’t handled by Python (it was set to signal.SIG_DFL or signal.SIG_IGN), this function does
nothing.

int PySignal_SetWakeupFd(int fd)
This utility function specifies a file descriptor to which the signal number is written as a single byte whenever a
signal is received. fd must be non-blocking. It returns the previous such file descriptor.
The value -1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_fd()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be called
from the main thread.
Changed in version 3.5: On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject* PyErr_NewException(const char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argu-
ment must be the name of the new exception, a C string of the form module.classname. The base and
dict arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).
The __module__ attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). The base argument can be used to specify alternate base
classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a dictionary
of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc(const char *name, const char *doc, PyObject *base, PyOb-
ject *dict)

Return value: New reference. Same as PyErr_NewException(), except that the new exception class can easily
be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.
New in version 3.2.

5.5. Signal Handling 29

The Python/C API, Release 3.7.17

5.7 Exception Objects

PyObject* PyException_GetTraceback(PyObject *ex)
Return value: New reference. Return the traceback associated with the exception as a new reference, as accessible
from Python through __traceback__. If there is no traceback associated, this returns NULL.

int PyException_SetTraceback(PyObject *ex, PyObject *tb)
Set the traceback associated with the exception to tb. Use Py_None to clear it.

PyObject* PyException_GetContext(PyObject *ex)
Return value: New reference. Return the context (another exception instance during whose handling ex was raised)
associated with the exception as a new reference, as accessible from Python through __context__. If there is
no context associated, this returns NULL.

void PyException_SetContext(PyObject *ex, PyObject *ctx)
Set the context associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure that
ctx is an exception instance. This steals a reference to ctx.

PyObject* PyException_GetCause(PyObject *ex)
Return value: New reference. Return the cause (either an exception instance, or None, set by raise ... from
...) associated with the exception as a new reference, as accessible from Python through __cause__.

void PyException_SetCause(PyObject *ex, PyObject *cause)
Set the cause associated with the exception to cause. Use NULL to clear it. There is no type check to make sure
that cause is either an exception instance or None. This steals a reference to cause.
__suppress_context__ is implicitly set to True by this function.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.
PyObject* PyUnicodeDecodeError_Create(const char *encoding, const char *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Return value: New reference. Create aUnicodeDecodeError object with the attributes encoding, object, length,
start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeEncodeError_Create(const char *encoding, const Py_UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const
char *reason)

Return value: New reference. Create aUnicodeEncodeError object with the attributes encoding, object, length,
start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeTranslateError_Create(const Py_UNICODE *object, Py_ssize_t length,
Py_ssize_t start, Py_ssize_t end, const char *reason)

Return value: New reference. Create a UnicodeTranslateError object with the attributes object, length,
start, end and reason. reason is a UTF-8 encoded string.

PyObject* PyUnicodeDecodeError_GetEncoding(PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding(PyObject *exc)

Return value: New reference. Return the encoding attribute of the given exception object.
PyObject* PyUnicodeDecodeError_GetObject(PyObject *exc)
PyObject* PyUnicodeEncodeError_GetObject(PyObject *exc)
PyObject* PyUnicodeTranslateError_GetObject(PyObject *exc)

Return value: New reference. Return the object attribute of the given exception object.
int PyUnicodeDecodeError_GetStart(PyObject *exc, Py_ssize_t *start)

30 Chapter 5. Exception Handling

The Python/C API, Release 3.7.17

int PyUnicodeEncodeError_GetStart(PyObject *exc, Py_ssize_t *start)
int PyUnicodeTranslateError_GetStart(PyObject *exc, Py_ssize_t *start)

Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0 on
success, -1 on failure.

int PyUnicodeDecodeError_SetStart(PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart(PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart(PyObject *exc, Py_ssize_t start)

Set the start attribute of the given exception object to start. Return 0 on success, -1 on failure.
int PyUnicodeDecodeError_GetEnd(PyObject *exc, Py_ssize_t *end)
int PyUnicodeEncodeError_GetEnd(PyObject *exc, Py_ssize_t *end)
int PyUnicodeTranslateError_GetEnd(PyObject *exc, Py_ssize_t *end)

Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return 0 on
success, -1 on failure.

int PyUnicodeDecodeError_SetEnd(PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd(PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd(PyObject *exc, Py_ssize_t end)

Set the end attribute of the given exception object to end. Return 0 on success, -1 on failure.
PyObject* PyUnicodeDecodeError_GetReason(PyObject *exc)
PyObject* PyUnicodeEncodeError_GetReason(PyObject *exc)
PyObject* PyUnicodeTranslateError_GetReason(PyObject *exc)

Return value: New reference. Return the reason attribute of the given exception object.
int PyUnicodeDecodeError_SetReason(PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason(PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason(PyObject *exc, const char *reason)

Set the reason attribute of the given exception object to reason. Return 0 on success, -1 on failure.

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension mod-
ules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion depth
automatically).
int Py_EnterRecursiveCall(const char *where)

Marks a point where a recursive C-level call is about to be performed.
If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using PyOS_CheckStack().
In this is the case, it sets a MemoryError and returns a nonzero value.
The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and a
nonzero value is returned. Otherwise, zero is returned.
where should be a string such as " in instance check" to be concatenated to the RecursionError
message caused by the recursion depth limit.

void Py_LeaveRecursiveCall()
Ends a Py_EnterRecursiveCall(). Must be called once for each successful invocation of
Py_EnterRecursiveCall().

Properly implementing tp_repr for container types requires special recursion handling. In addition to protecting the
stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr().

5.9. Recursion Control 31

The Python/C API, Release 3.7.17

int Py_ReprEnter(PyObject *object)
Called at the beginning of the tp_repr implementation to detect cycles.
If the object has already been processed, the function returns a positive integer. In that case the tp_repr imple-
mentation should return a string object indicating a cycle. As examples, dict objects return {...} and list
objects return [...].
The function will return a negative integer if the recursion limit is reached. In that case the tp_repr implemen-
tation should typically return NULL.
Otherwise, the function returns zero and the tp_repr implementation can continue normally.

void Py_ReprLeave(PyObject *object)
Ends a Py_ReprEnter(). Must be called once for each invocation of Py_ReprEnter() that returns zero.

5.10 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python ex-
ception name. These have the type PyObject*; they are all class objects. For completeness, here are all the variables:

C Name Python Name Notes
PyExc_BaseException BaseException (1)
PyExc_Exception Exception (1)
PyExc_ArithmeticError ArithmeticError (1)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError
PyExc_ChildProcessError ChildProcessError
PyExc_ConnectionAbortedError ConnectionAbortedError
PyExc_ConnectionError ConnectionError
PyExc_ConnectionRefusedError ConnectionRefusedError
PyExc_ConnectionResetError ConnectionResetError
PyExc_EOFError EOFError
PyExc_FileExistsError FileExistsError
PyExc_FileNotFoundError FileNotFoundError
PyExc_FloatingPointError FloatingPointError
PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError
PyExc_IsADirectoryError IsADirectoryError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError (1)
PyExc_MemoryError MemoryError
PyExc_ModuleNotFoundError ModuleNotFoundError
PyExc_NameError NameError
PyExc_NotADirectoryError NotADirectoryError
PyExc_NotImplementedError NotImplementedError

Continued on next page

32 Chapter 5. Exception Handling

The Python/C API, Release 3.7.17

Table 1 – continued from previous page
C Name Python Name Notes
PyExc_OSError OSError (1)
PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError ProcessLookupError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceError (2)
PyExc_RuntimeError RuntimeError
PyExc_StopAsyncIteration StopAsyncIteration
PyExc_StopIteration StopIteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TabError TabError
PyExc_TimeoutError TimeoutError
PyExc_TypeError TypeError
PyExc_UnboundLocalError UnboundLocalError
PyExc_UnicodeDecodeError UnicodeDecodeError
PyExc_UnicodeEncodeError UnicodeEncodeError
PyExc_UnicodeError UnicodeError
PyExc_UnicodeTranslateError UnicodeTranslateError
PyExc_ValueError ValueError
PyExc_ZeroDivisionError ZeroDivisionError

New in version 3.3: PyExc_BlockingIOError, PyExc_BrokenPipeError,
PyExc_ChildProcessError, PyExc_ConnectionError, PyExc_ConnectionAbortedError,
PyExc_ConnectionRefusedError, PyExc_ConnectionResetError, PyExc_FileExistsError,
PyExc_FileNotFoundError, PyExc_InterruptedError, PyExc_IsADirectoryError,
PyExc_NotADirectoryError, PyExc_PermissionError, PyExc_ProcessLookupError and
PyExc_TimeoutError were introduced following PEP 3151.
New in version 3.5: PyExc_StopAsyncIteration and PyExc_RecursionError.
New in version 3.6: PyExc_ModuleNotFoundError.
These are compatibility aliases to PyExc_OSError:

C Name Notes
PyExc_EnvironmentError
PyExc_IOError
PyExc_WindowsError (3)

Changed in version 3.3: These aliases used to be separate exception types.
Notes:
(1) This is a base class for other standard exceptions.
(2) Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is

defined.

5.10. Standard Exceptions 33

https://www.python.org/dev/peps/pep-3151

The Python/C API, Release 3.7.17

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyObject*; they are all class objects. For completeness, here are all the variables:

C Name Python Name Notes
PyExc_Warning Warning (1)
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning PendingDeprecationWarning
PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

New in version 3.2: PyExc_ResourceWarning.
Notes:
(1) This is a base class for other standard warning categories.

34 Chapter 5. Exception Handling

CHAPTER

SIX

UTILITIES

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across platforms,
using Python modules from C, and parsing function arguments and constructing Python values from C values.

6.1 Operating System Utilities

PyObject* PyOS_FSPath(PyObject *path)
Return value: New reference. Return the file system representation for path. If the object is a str or bytes
object, then its reference count is incremented. If the object implements the os.PathLike interface, then
__fspath__() is returned as long as it is a str or bytes object. Otherwise TypeError is raised and
NULL is returned.
New in version 3.6.

int Py_FdIsInteractive(FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty(fileno(fp)) is true. If the global flag Py_InteractiveFlag is true, this function
also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>' or
'???'.

void PyOS_BeforeFork()
Function to prepare some internal state before a process fork. This should be called before calling fork() or any
similar function that clones the current process. Only available on systems where fork() is defined.
New in version 3.7.

void PyOS_AfterFork_Parent()
Function to update some internal state after a process fork. This should be called from the parent process after
calling fork() or any similar function that clones the current process, regardless of whether process cloning was
successful. Only available on systems where fork() is defined.
New in version 3.7.

void PyOS_AfterFork_Child()
Function to update internal interpreter state after a process fork. This must be called from the child process after
calling fork(), or any similar function that clones the current process, if there is any chance the process will call
back into the Python interpreter. Only available on systems where fork() is defined.
New in version 3.7.
See also:
os.register_at_fork() allows registering custom Python functions to be called by
PyOS_BeforeFork(), PyOS_AfterFork_Parent() and PyOS_AfterFork_Child().

35

The Python/C API, Release 3.7.17

void PyOS_AfterFork()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not need
to be called.
Deprecated since version 3.7: This function is superseded by PyOS_AfterFork_Child().

int PyOS_CheckStack()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only avail-
able when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig(int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction() or signal().
Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void (*)(int).

PyOS_sighandler_t PyOS_setsig(int i, PyOS_sighandler_t h)
Set the signal handler for signal i to be h; return the old signal handler. This is a thin wrapper around either
sigaction() or signal(). Do not call those functions directly! PyOS_sighandler_t is a typedef alias
for void (*)(int).

wchar_t* Py_DecodeLocale(const char* arg, size_t *size)
Decode a byte string from the locale encoding with the surrogateescape error handler: undecodable bytes are
decoded as characters in range U+DC80..U+DCFF. If a byte sequence can be decoded as a surrogate character,
escape the bytes using the surrogateescape error handler instead of decoding them.
Encoding, highest priority to lowest priority:

• UTF-8 on macOS and Android;
• UTF-8 if the Python UTF-8 mode is enabled;
• ASCII if the LC_CTYPE locale is "C", nl_langinfo(CODESET) returns the ASCII encoding (or an
alias), and mbstowcs() and wcstombs() functions uses the ISO-8859-1 encoding.

• the current locale encoding.
Return a pointer to a newly allocated wide character string, use PyMem_RawFree() to free the memory. If size
is not NULL, write the number of wide characters excluding the null character into *size
Return NULL on decoding error or memory allocation error. If size is not NULL, *size is set to (size_t)-1
on memory error or set to (size_t)-2 on decoding error.
Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale() function to encode the character string back to a byte string.
See also:
The PyUnicode_DecodeFSDefaultAndSize() and PyUnicode_DecodeLocaleAndSize()
functions.
New in version 3.5.
Changed in version 3.7: The function now uses the UTF-8 encoding in the UTF-8 mode.

char* Py_EncodeLocale(const wchar_t *text, size_t *error_pos)
Encode a wide character string to the locale encoding with the surrogateescape error handler: surrogate characters
in the range U+DC80..U+DCFF are converted to bytes 0x80..0xFF.
Encoding, highest priority to lowest priority:

• UTF-8 on macOS and Android;
• UTF-8 if the Python UTF-8 mode is enabled;

36 Chapter 6. Utilities

The Python/C API, Release 3.7.17

• ASCII if the LC_CTYPE locale is "C", nl_langinfo(CODESET) returns the ASCII encoding (or an
alias), and mbstowcs() and wcstombs() functions uses the ISO-8859-1 encoding.

• the current locale encoding.
The function uses the UTF-8 encoding in the Python UTF-8 mode.
Return a pointer to a newly allocated byte string, use PyMem_Free() to free the memory. Return NULL on
encoding error or memory allocation error
If error_pos is not NULL, *error_pos is set to (size_t)-1 on success, or set to the index of the invalid
character on encoding error.
Use the Py_DecodeLocale() function to decode the bytes string back to a wide character string.
Changed in version 3.7: The function now uses the UTF-8 encoding in the UTF-8 mode.
See also:
The PyUnicode_EncodeFSDefault() and PyUnicode_EncodeLocale() functions.
New in version 3.5.
Changed in version 3.7: The function now supports the UTF-8 mode.

6.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with the
current interpreter thread’s sys module’s dict, which is contained in the internal thread state structure.
PyObject *PySys_GetObject(const char *name)

Return value: Borrowed reference. Return the object name from the sys module or NULL if it does not exist,
without setting an exception.

int PySys_SetObject(const char *name, PyObject *v)
Set name in the sys module to v unless v is NULL, in which case name is deleted from the sys module. Returns 0
on success, -1 on error.

void PySys_ResetWarnOptions()
Reset sys.warnoptions to an empty list. This function may be called prior to Py_Initialize().

void PySys_AddWarnOption(const wchar_t *s)
Append s to sys.warnoptions. This function must be called prior to Py_Initialize() in order to affect
the warnings filter list.

void PySys_AddWarnOptionUnicode(PyObject *unicode)
Append unicode to sys.warnoptions.
Note: this function is not currently usable from outside the CPython implementation, as it must be called prior to
the implicit import of warnings in Py_Initialize() to be effective, but can’t be called until enough of the
runtime has been initialized to permit the creation of Unicode objects.

void PySys_SetPath(const wchar_t *path)
Set sys.path to a list object of paths found in path which should be a list of paths separated with the platform’s
search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout(const char *format, ...)
Write the output string described by format to sys.stdout. No exceptions are raised, even if truncation occurs
(see below).
format should limit the total size of the formatted output string to 1000 bytes or less – after 1000 bytes, the output
string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should be limited

6.2. System Functions 37

The Python/C API, Release 3.7.17

using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of other formatted
text does not exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of digits for very large numbers.
If a problem occurs, or sys.stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr(const char *format, ...)
As PySys_WriteStdout(), but write to sys.stderr or stderr instead.

void PySys_FormatStdout(const char *format, ...)
Function similar to PySys_WriteStdout() but format the message using PyUnicode_FromFormatV() and
don’t truncate the message to an arbitrary length.
New in version 3.2.

void PySys_FormatStderr(const char *format, ...)
As PySys_FormatStdout(), but write to sys.stderr or stderr instead.
New in version 3.2.

void PySys_AddXOption(const wchar_t *s)
Parse s as a set of -X options and add them to the current options mapping as returned by
PySys_GetXOptions(). This function may be called prior to Py_Initialize().
New in version 3.2.

PyObject *PySys_GetXOptions()
Return value: Borrowed reference. Return the current dictionary of -X options, similarly to sys._xoptions.
On error, NULL is returned and an exception is set.
New in version 3.2.

6.3 Process Control

void Py_FatalError(const char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when the
object administration appears to be corrupted. On Unix, the standard C library function abort() is called which
will attempt to produce a core file.

void Py_Exit(int status)
Exit the current process. This calls Py_FinalizeEx() and then calls the standard C library function
exit(status). If Py_FinalizeEx() indicates an error, the exit status is set to 120.
Changed in version 3.6: Errors from finalization no longer ignored.

int Py_AtExit(void (*func)())
Register a cleanup function to be called by Py_FinalizeEx(). The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration is
successful, Py_AtExit() returns 0; on failure, it returns -1. The cleanup function registered last is called first.
Each cleanup function will be called at most once. Since Python’s internal finalization will have completed before
the cleanup function, no Python APIs should be called by func.

38 Chapter 6. Utilities

The Python/C API, Release 3.7.17

6.4 Importing Modules

PyObject* PyImport_ImportModule(const char *name)
Return value: New reference. This is a simplified interface to PyImport_ImportModuleEx() below, leaving
the globals and locals arguments set to NULL and level set to 0. When the name argument contains a dot (when
it specifies a submodule of a package), the fromlist argument is set to the list ['*'] so that the return value is
the named module rather than the top-level package containing it as would otherwise be the case. (Unfortunately,
this has an additional side effect when name in fact specifies a subpackage instead of a submodule: the submodules
specified in the package’s __all__ variable are loaded.) Return a new reference to the imported module, or
NULL with an exception set on failure. A failing import of a module doesn’t leave the module in sys.modules.
This function always uses absolute imports.

PyObject* PyImport_ImportModuleNoBlock(const char *name)
Return value: New reference. This function is a deprecated alias of PyImport_ImportModule().
Changed in version 3.3: This function used to fail immediately when the import lock was held by another thread. In
Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this function’s special
behaviour isn’t needed anymore.

PyObject* PyImport_ImportModuleEx(const char *name, PyObject *globals, PyObject *locals, PyOb-
ject *fromlist)

Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__().
The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__(), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.
Failing imports remove incomplete module objects, like with PyImport_ImportModule().

PyObject* PyImport_ImportModuleLevelObject(PyObject *name, PyObject *globals, PyObject *lo-
cals, PyObject *fromlist, int level)

Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__(), as the standard __import__() function calls this function directly.
The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__(), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.
New in version 3.3.

PyObject* PyImport_ImportModuleLevel(const char *name, PyObject *globals, PyObject *locals, PyOb-
ject *fromlist, int level)

Return value: New reference. Similar to PyImport_ImportModuleLevelObject(), but the name is a
UTF-8 encoded string instead of a Unicode object.
Changed in version 3.3: Negative values for level are no longer accepted.

PyObject* PyImport_Import(PyObject *name)
Return value: New reference. This is a higher-level interface that calls the current “import hook function” (with an
explicit level of 0, meaning absolute import). It invokes the __import__() function from the __builtins__
of the current globals. This means that the import is done using whatever import hooks are installed in the current
environment.
This function always uses absolute imports.

PyObject* PyImport_ReloadModule(PyObject *m)
Return value: New reference. Reload a module. Return a new reference to the reloaded module, or NULL with an
exception set on failure (the module still exists in this case).

6.4. Importing Modules 39

The Python/C API, Release 3.7.17

PyObject* PyImport_AddModuleObject(PyObject *name)
Return value: Borrowed reference. Return the module object corresponding to a module name. The name argument
may be of the form package.module. First check the modules dictionary if there’s one there, and if not, create
a new one and insert it in the modules dictionary. Return NULL with an exception set on failure.

Note: This function does not load or import the module; if the module wasn’t already loaded, you will get an
empty module object. Use PyImport_ImportModule() or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

New in version 3.3.
PyObject* PyImport_AddModule(const char *name)

Return value: Borrowed reference. Similar to PyImport_AddModuleObject(), but the name is a UTF-8
encoded string instead of a Unicode object.

PyObject* PyImport_ExecCodeModule(const char *name, PyObject *co)
Return value: New reference. Given a module name (possibly of the form package.module) and a code
object read from a Python bytecode file or obtained from the built-in function compile(), load the mod-
ule. Return a new reference to the module object, or NULL with an exception set if an error occurred. name
is removed from sys.modules in error cases, even if name was already in sys.modules on entry to
PyImport_ExecCodeModule(). Leaving incompletely initialized modules in sys.modules is dangerous,
as imports of such modules have no way to know that the module object is an unknown (and probably damaged
with respect to the module author’s intents) state.
The module’s __spec__ and __loader__will be set, if not set already, with the appropriate values. The spec’s
loader will be set to the module’s __loader__ (if set) and to an instance of SourceFileLoader otherwise.
The module’s __file__ attribute will be set to the code object’s co_filename. If applicable, __cached__
will also be set.
This function will reload the module if it was already imported. See PyImport_ReloadModule() for the
intended way to reload a module.
If name points to a dotted name of the form package.module, any package structures not already created will
still not be created.
See also PyImport_ExecCodeModuleEx() and PyImport_ExecCodeModuleWithPathnames().

PyObject* PyImport_ExecCodeModuleEx(const char *name, PyObject *co, const char *pathname)
Return value: New reference. Like PyImport_ExecCodeModule(), but the __file__ attribute of the
module object is set to pathname if it is non-NULL.
See also PyImport_ExecCodeModuleWithPathnames().

PyObject* PyImport_ExecCodeModuleObject(PyObject *name, PyObject *co, PyObject *pathname, Py-
Object *cpathname)

Return value: New reference. Like PyImport_ExecCodeModuleEx(), but the __cached__ attribute of
the module object is set to cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.
New in version 3.3.

PyObject* PyImport_ExecCodeModuleWithPathnames(const char *name, PyObject *co, const
char *pathname, const char *cpathname)

Return value: New reference. Like PyImport_ExecCodeModuleObject(), but name, pathname and cpath-
name are UTF-8 encoded strings. Attempts are also made to figure out what the value for pathname should be from
cpathname if the former is set to NULL.
New in version 3.2.

40 Chapter 6. Utilities

The Python/C API, Release 3.7.17

Changed in version 3.3: Uses imp.source_from_cache() in calculating the source path if only the bytecode
path is provided.

long PyImport_GetMagicNumber()
Return the magic number for Python bytecode files (a.k.a. .pyc file). The magic number should be present in the
first four bytes of the bytecode file, in little-endian byte order. Returns -1 on error.
Changed in version 3.3: Return value of -1 upon failure.

const char * PyImport_GetMagicTag()
Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in mind that the value at
sys.implementation.cache_tag is authoritative and should be used instead of this function.
New in version 3.2.

PyObject* PyImport_GetModuleDict()
Return value: Borrowed reference. Return the dictionary used for the module administration (a.k.a. sys.
modules). Note that this is a per-interpreter variable.

PyObject* PyImport_GetModule(PyObject *name)
Return value: New reference. Return the already imported module with the given name. If the module has not been
imported yet then returns NULL but does not set an error. Returns NULL and sets an error if the lookup failed.
New in version 3.7.

PyObject* PyImport_GetImporter(PyObject *path)
Return value: New reference. Return a finder object for a sys.path/pkg.__path__ item path, possibly by
fetching it from the sys.path_importer_cache dict. If it wasn’t yet cached, traverse sys.path_hooks
until a hook is found that can handle the path item. Return None if no hook could; this tells our caller that the
path based finder could not find a finder for this path item. Cache the result in sys.path_importer_cache.
Return a new reference to the finder object.

void _PyImport_Init()
Initialize the import mechanism. For internal use only.

void PyImport_Cleanup()
Empty the module table. For internal use only.

void _PyImport_Fini()
Finalize the import mechanism. For internal use only.

int PyImport_ImportFrozenModuleObject(PyObject *name)
Return value: New reference. Load a frozen module named name. Return 1 for success, 0 if the module is not
found, and -1 with an exception set if the initialization failed. To access the imported module on a successful load,
use PyImport_ImportModule(). (Note the misnomer — this function would reload the module if it was
already imported.)
New in version 3.3.
Changed in version 3.4: The __file__ attribute is no longer set on the module.

int PyImport_ImportFrozenModule(const char *name)
Similar to PyImport_ImportFrozenModuleObject(), but the name is a UTF-8 encoded string instead
of a Unicode object.

struct _frozen
This is the structure type definition for frozenmodule descriptors, as generated by the freeze utility (see Tools/
freeze/ in the Python source distribution). Its definition, found in Include/import.h, is:

struct _frozen {
const char *name;

(continues on next page)

6.4. Importing Modules 41

https://www.python.org/dev/peps/pep-3147

The Python/C API, Release 3.7.17

(continued from previous page)
const unsigned char *code;
int size;

};

const struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _frozen records, terminated by one whose members
are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play
tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab(const char *name, PyObject* (*initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab(), returning -1 if the table could not be extended. The new module can be
imported by the name name, and uses the function initfunc as the initialization function called on the first attempted
import. This should be called before Py_Initialize().

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. The name is an ASCII encoded string. Programs
which embed Python may use an array of these structures in conjunction with PyImport_ExtendInittab()
to provide additional built-in modules. The structure is defined in Include/import.h as:

struct _inittab {
const char *name; /* ASCII encoded string */
PyObject* (*initfunc)(void);

};

int PyImport_ExtendInittab(struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry which
contains NULL for the name field; failure to provide the sentinel value can result in a memory fault. Returns 0
on success or -1 if insufficient memory could be allocated to extend the internal table. In the event of failure, no
modules are added to the internal table. This should be called before Py_Initialize().

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module. There
are functions to write data into the serialization format, and additional functions that can be used to read the data back.
Files used to store marshalled data must be opened in binary mode.
Numeric values are stored with the least significant byte first.
The module supports two versions of the data format: version 0 is the historical version, version 1 shares interned strings in
the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers. Py_MARSHAL_VERSION
indicates the current file format (currently 2).
void PyMarshal_WriteLongToFile(long value, FILE *file, int version)

Marshal a long integer, value, to file. This will only write the least-significant 32 bits of value; regardless of the
size of the native long type. version indicates the file format.
This function can fail, in which case it sets the error indicator. Use PyErr_Occurred() to check for that.

void PyMarshal_WriteObjectToFile(PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file. version indicates the file format.
This function can fail, in which case it sets the error indicator. Use PyErr_Occurred() to check for that.

42 Chapter 6. Utilities

The Python/C API, Release 3.7.17

PyObject* PyMarshal_WriteObjectToString(PyObject *value, int version)
Return value: New reference. Return a bytes object containing the marshalled representation of value. version
indicates the file format.

The following functions allow marshalled values to be read back in.
long PyMarshal_ReadLongFromFile(FILE *file)

Return a C long from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native size of long.
On error, sets the appropriate exception (EOFError) and returns -1.

int PyMarshal_ReadShortFromFile(FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in using
this function, regardless of the native size of short.
On error, sets the appropriate exception (EOFError) and returns -1.

PyObject* PyMarshal_ReadObjectFromFile(FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading.
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadLastObjectFromFile(FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading. Unlike
PyMarshal_ReadObjectFromFile(), this function assumes that no further objects will be read from the
file, allowing it to aggressively load file data into memory so that the de-serialization can operate from data in
memory rather than reading a byte at a time from the file. Only use these variant if you are certain that you won’t
be reading anything else from the file.
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadObjectFromString(const char *data, Py_ssize_t len)
Return value: New reference. Return a Python object from the data stream in a byte buffer containing len bytes
pointed to by data.
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

6.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and exam-
ples are available in extending-index.
The first three of these functions described, PyArg_ParseTuple(), PyArg_ParseTupleAndKeywords(),
and PyArg_Parse(), all use format strings which are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.

6.6.1 Parsing arguments

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the quoted
form is the format unit; the entry in (round) parentheses is the Python object type that matches the format unit; and the
entry in [square] brackets is the type of the C variable(s) whose address should be passed.

6.6. Parsing arguments and building values 43

The Python/C API, Release 3.7.17

Strings and buffers

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage for the
returned unicode or bytes area.
In general, when a format sets a pointer to a buffer, the buffer is managed by the corresponding Python object, and the
buffer shares the lifetime of this object. You won’t have to release any memory yourself. The only exceptions are es,
es#, et and et#.
However, when a Py_buffer structure gets filled, the underlying buffer is locked so that the caller can subsequently
use the buffer even inside a Py_BEGIN_ALLOW_THREADS block without the risk of mutable data being resized or
destroyed. As a result, you have to call PyBuffer_Release() after you have finished processing the data (or in any
early abort case).
Unless otherwise stated, buffers are not NUL-terminated.
Some formats require a read-only bytes-like object, and set a pointer instead of a buffer structure. They work by checking
that the object’s PyBufferProcs.bf_releasebuffer field is NULL, which disallows mutable objects such as
bytearray.

Note: For all # variants of formats (s#, y#, etc.), the type of the length argument (int or Py_ssize_t) is con-
trolled by defining the macro PY_SSIZE_T_CLEAN before including Python.h. If the macro was defined, length is
a Py_ssize_t rather than an int. This behavior will change in a future Python version to only support Py_ssize_t
and drop int support. It is best to always define PY_SSIZE_T_CLEAN.

s (str) [const char *] Convert a Unicode object to a C pointer to a character string. A pointer to an existing string
is stored in the character pointer variable whose address you pass. The C string is NUL-terminated. The Python
string must not contain embedded null code points; if it does, a ValueError exception is raised. Unicode objects
are converted to C strings using 'utf-8' encoding. If this conversion fails, a UnicodeError is raised.

Note: This format does not accept bytes-like objects. If you want to accept filesystem paths and convert them to C
character strings, it is preferable to use the O& format with PyUnicode_FSConverter() as converter.

Changed in version 3.5: Previously, TypeError was raised when embedded null code points were encountered
in the Python string.

s* (str or bytes-like object) [Py_buffer] This format accepts Unicode objects as well as bytes-like objects. It fills a
Py_buffer structure provided by the caller. In this case the resulting C string may contain embedded NUL
bytes. Unicode objects are converted to C strings using 'utf-8' encoding.

s# (str, read-only bytes-like object) [const char *, int or Py_ssize_t] Like s*, except that it doesn’t accept mu-
table objects. The result is stored into two C variables, the first one a pointer to a C string, the second one its
length. The string may contain embedded null bytes. Unicode objects are converted to C strings using 'utf-8'
encoding.

z (str or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is set to
NULL.

z* (str, bytes-like object or None) [Py_buffer] Like s*, but the Python object may also be None, in which case the
buf member of the Py_buffer structure is set to NULL.

z# (str, read-only bytes-like object or None) [const char *, int or Py_ssize_t] Like s#, but the Python object
may also be None, in which case the C pointer is set to NULL.

y (read-only bytes-like object) [const char *] This format converts a bytes-like object to a C pointer to a character
string; it does not accept Unicode objects. The bytes buffer must not contain embedded null bytes; if it does, a
ValueError exception is raised.

44 Chapter 6. Utilities

The Python/C API, Release 3.7.17

Changed in version 3.5: Previously, TypeError was raised when embedded null bytes were encountered in the
bytes buffer.

y* (bytes-like object) [Py_buffer] This variant on s* doesn’t accept Unicode objects, only bytes-like objects. This is
the recommended way to accept binary data.

y# (read-only bytes-like object) [const char *, int or Py_ssize_t] This variant on s# doesn’t accept Unicode ob-
jects, only bytes-like objects.

S (bytes) [PyBytesObject *] Requires that the Python object is a bytes object, without attempting any conversion.
Raises TypeError if the object is not a bytes object. The C variable may also be declared as PyObject*.

Y (bytearray) [PyByteArrayObject *] Requires that the Python object is a bytearray object, without attempting
any conversion. RaisesTypeError if the object is not abytearray object. The C variablemay also be declared
as PyObject*.

u (str) [const Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of Uni-
code characters. You must pass the address of a Py_UNICODE pointer variable, which will be filled with the
pointer to an existing Unicode buffer. Please note that the width of a Py_UNICODE character depends on compi-
lation options (it is either 16 or 32 bits). The Python string must not contain embedded null code points; if it does,
a ValueError exception is raised.
Changed in version 3.5: Previously, TypeError was raised when embedded null code points were encountered
in the Python string.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsWideCharString().

u# (str) [const Py_UNICODE *, int or Py_ssize_t] This variant on u stores into two C variables, the first one a
pointer to a Unicode data buffer, the second one its length. This variant allows null code points.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsWideCharString().

Z (str or None) [const Py_UNICODE *] Like u, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsWideCharString().

Z# (str or None) [const Py_UNICODE *, int or Py_ssize_t] Like u#, but the Python object may also be
None, in which case the Py_UNICODE pointer is set to NULL.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsWideCharString().

U (str) [PyObject *] Requires that the Python object is a Unicode object, without attempting any conversion. Raises
TypeError if the object is not a Unicode object. The C variable may also be declared as PyObject*.

w* (read-write bytes-like object) [Py_buffer] This format accepts any object which implements the read-write buffer
interface. It fills a Py_buffer structure provided by the caller. The buffer may contain embedded null bytes.
The caller have to call PyBuffer_Release() when it is done with the buffer.

es (str) [const char *encoding, char **buffer] This variant on s is used for encoding Unicode into a character
buffer. It only works for encoded data without embedded NUL bytes.
This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case 'utf-8' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char**; the
value of the pointer it references will be set to a buffer with the contents of the argument text. The text will be
encoded in the encoding specified by the first argument.

6.6. Parsing arguments and building values 45

The Python/C API, Release 3.7.17

PyArg_ParseTuple() will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem_Free() to
free the allocated buffer after use.

et (str, bytes or bytearray) [const char *encoding, char **buffer] Same as es except that byte string objects
are passed through without recoding them. Instead, the implementation assumes that the byte string object uses the
encoding passed in as parameter.

es# (str) [const char *encoding, char **buffer, int or Py_ssize_t *buffer_length] This variant on s# is used
for encoding Unicode into a character buffer. Unlike the es format, this variant allows input data which contains
NUL characters.
It requires three arguments. The first is only used as input, and must be a const char*which points to the name
of an encoding as a NUL-terminated string, or NULL, in which case 'utf-8' encoding is used. An exception is
raised if the named encoding is not known to Python. The second argument must be a char**; the value of the
pointer it references will be set to a buffer with the contents of the argument text. The text will be encoded in the
encoding specified by the first argument. The third argument must be a pointer to an integer; the referenced integer
will be set to the number of bytes in the output buffer.
There are two modes of operation:
If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free() to free the allocated buffer after usage.
If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg_ParseTuple() will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be set.
In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

et# (str, bytes or bytearray) [const char *encoding, char **buffer, int or Py_ssize_t *buffer_length]
Same as es# except that byte string objects are passed through without recoding them. Instead, the implementation
assumes that the byte string object uses the encoding passed in as parameter.

Numbers

b (int) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned
char.

B (int) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C unsigned
char.

h (int) [short int] Convert a Python integer to a C short int.
H (int) [unsigned short int] Convert a Python integer to a C unsigned short int, without overflow checking.
i (int) [int] Convert a Python integer to a plain C int.
I (int) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.
l (int) [long int] Convert a Python integer to a C long int.
k (int) [unsigned long] Convert a Python integer to a C unsigned long without overflow checking.
L (int) [long long] Convert a Python integer to a C long long.
K (int) [unsigned long long] Convert a Python integer to a C unsigned long long without overflow checking.
n (int) [Py_ssize_t] Convert a Python integer to a C Py_ssize_t.

46 Chapter 6. Utilities

The Python/C API, Release 3.7.17

c (bytes or bytearray of length 1) [char] Convert a Python byte, represented as a bytes or bytearray object
of length 1, to a C char.
Changed in version 3.3: Allow bytearray objects.

C (str of length 1) [int] Convert a Python character, represented as a str object of length 1, to a C int.
f (float) [float] Convert a Python floating point number to a C float.
d (float) [double] Convert a Python floating point number to a C double.
D (complex) [Py_complex] Convert a Python complex number to a C Py_complex structure.

Other objects

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is not
NULL.

O! (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to O, but takes two
C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyObject*) into which the object pointer is stored. If the Python object does not have the required type,
TypeError is raised.

O& (object) [converter, anything] Convert a Python object to a C variable through a converter function. This takes two
arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to void
*. The converter function in turn is called as follows:

status = converter(object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg_Parse*() function. The returned status should be 1 for a successful conversion and 0 if the conversion
has failed. When the conversion fails, the converter function should raise an exception and leave the content of
address unmodified.
If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this second
call, the object parameter will be NULL; address will have the same value as in the original call.
Changed in version 3.1: Py_CLEANUP_SUPPORTED was added.

p (bool) [int] Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C
true/false integer value. Sets the int to 1 if the expression was true and 0 if it was false. This accepts any valid
Python value. See truth for more information about how Python tests values for truth.
New in version 3.3.

(items) (tuple) [matching-items] The object must be a Python sequence whose length is the number of format
units in items. The C arguments must correspond to the individual format units in items. Format units for sequences
may be nested.

It is possible to pass “long” integers (integers whose value exceeds the platform’s LONG_MAX) however no proper range
checking is done— the most significant bits are silently truncated when the receiving field is too small to receive the value
(actually, the semantics are inherited from downcasts in C — your mileage may vary).
A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:
| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding to

optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg_ParseTuple() does not touch the contents of the corresponding C variable(s).

6.6. Parsing arguments and building values 47

The Python/C API, Release 3.7.17

$ PyArg_ParseTupleAndKeywords() only: Indicates that the remaining arguments in the Python argument list
are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so | must always be
specified before $ in the format string.
New in version 3.3.

: The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception that PyArg_ParseTuple() raises).

; The list of format units ends here; the string after the semicolon is used as the error message instead of the default
error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not decrement their
reference count!
Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding format
unit in that case.
For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success,
the PyArg_Parse*() functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parse*() functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

API Functions

int PyArg_ParseTuple(PyObject *args, const char *format, ...)
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on success;
on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse(PyObject *args, const char *format, va_list vargs)
Identical to PyArg_ParseTuple(), except that it accepts a va_list rather than a variable number of arguments.

int PyArg_ParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *key-
words[], ...)

Parse the parameters of a function that takes both positional and keyword parameters into local variables. The
keywords argument is a NULL-terminated array of keyword parameter names. Empty names denote positional-
only parameters. Returns true on success; on failure, it returns false and raises the appropriate exception.
Changed in version 3.6: Added support for positional-only parameters.

int PyArg_VaParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *key-
words[], va_list vargs)

Identical to PyArg_ParseTupleAndKeywords(), except that it accepts a va_list rather than a variable num-
ber of arguments.

int PyArg_ValidateKeywordArguments(PyObject *)
Ensure that the keys in the keywords argument dictionary are strings. This is only needed if
PyArg_ParseTupleAndKeywords() is not used, since the latter already does this check.
New in version 3.2.

int PyArg_Parse(PyObject *args, const char *format, ...)
Function used to deconstruct the argument lists of “old-style” functions — these are functions which use the
METH_OLDARGS parameter parsing method, which has been removed in Python 3. This is not recommended
for use in parameter parsing in new code, and most code in the standard interpreter has been modified to no longer
use this for that purpose. It does remain a convenient way to decompose other tuples, however, and may continue
to be used for that purpose.

48 Chapter 6. Utilities

The Python/C API, Release 3.7.17

int PyArg_UnpackTuple(PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)
A simpler form of parameter retrieval which does not use a format string to specify the types of the arguments.
Functions which use this method to retrieve their parameters should be declared as METH_VARARGS in function or
method tables. The tuple containing the actual parameters should be passed as args; it must actually be a tuple. The
length of the tuple must be at least min and no more than max; min and max may be equal. Additional arguments
must be passed to the function, each of which should be a pointer to a PyObject* variable; these will be filled
in with the values from args; they will contain borrowed references. The variables which correspond to optional
parameters not given by args will not be filled in; these should be initialized by the caller. This function returns
true on success and false if args is not a tuple or contains the wrong number of elements; an exception will be set
if there was a failure.
This is an example of the use of this function, taken from the sources for the _weakref helper module for weak
references:

static PyObject *
weakref_ref(PyObject *self, PyObject *args)
{

PyObject *object;
PyObject *callback = NULL;
PyObject *result = NULL;

if (PyArg_UnpackTuple(args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_NewRef(object, callback);

}
return result;

}

The call to PyArg_UnpackTuple() in this example is entirely equivalent to this call to
PyArg_ParseTuple():

PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

6.6.2 Building values

PyObject* Py_BuildValue(const char *format, ...)
Return value: New reference. Create a new value based on a format string similar to those accepted by the
PyArg_Parse*() family of functions and a sequence of values. Returns the value or NULL in the case of
an error; an exception will be raised if NULL is returned.
Py_BuildValue() does not always build a tuple. It builds a tuple only if its format string contains two or more
format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns whatever
object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the format string.
When memory buffers are passed as parameters to supply data to build objects, as for the s and s# formats,
the required data is copied. Buffers provided by the caller are never referenced by the objects created by
Py_BuildValue(). In other words, if your code invokes malloc() and passes the allocated memory to
Py_BuildValue(), your code is responsible for calling free() for that memory once Py_BuildValue()
returns.
In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be
passed.
The characters space, tab, colon and comma are ignored in format strings (but not within format units such as s#).
This can be used to make long format strings a tad more readable.

6.6. Parsing arguments and building values 49

The Python/C API, Release 3.7.17

s (str or None) [const char *] Convert a null-terminated C string to a Python str object using 'utf-8'
encoding. If the C string pointer is NULL, None is used.

s# (str or None) [const char *, int or Py_ssize_t] Convert a C string and its length to a Python str ob-
ject using 'utf-8' encoding. If the C string pointer is NULL, the length is ignored and None is returned.

y (bytes) [const char *] This converts a C string to a Python bytes object. If the C string pointer is NULL,
None is returned.

y# (bytes) [const char *, int or Py_ssize_t] This converts a C string and its lengths to a Python object. If
the C string pointer is NULL, None is returned.

z (str or None) [const char *] Same as s.
z# (str or None) [const char *, int or Py_ssize_t] Same as s#.
u (str) [const wchar_t *] Convert a null-terminated wchar_t buffer of Unicode (UTF-16 or UCS-4) data to

a Python Unicode object. If the Unicode buffer pointer is NULL, None is returned.
u# (str) [const wchar_t *, int or Py_ssize_t] Convert a Unicode (UTF-16 or UCS-4) data buffer and its

length to a Python Unicode object. If the Unicode buffer pointer is NULL, the length is ignored and None is
returned.

U (str or None) [const char *] Same as s.
U# (str or None) [const char *, int or Py_ssize_t] Same as s#.
i (int) [int] Convert a plain C int to a Python integer object.
b (int) [char] Convert a plain C char to a Python integer object.
h (int) [short int] Convert a plain C short int to a Python integer object.
l (int) [long int] Convert a C long int to a Python integer object.
B (int) [unsigned char] Convert a C unsigned char to a Python integer object.
H (int) [unsigned short int] Convert a C unsigned short int to a Python integer object.
I (int) [unsigned int] Convert a C unsigned int to a Python integer object.
k (int) [unsigned long] Convert a C unsigned long to a Python integer object.
L (int) [long long] Convert a C long long to a Python integer object.
K (int) [unsigned long long] Convert a C unsigned long long to a Python integer object.
n (int) [Py_ssize_t] Convert a C Py_ssize_t to a Python integer.
c (bytes of length 1) [char] Convert a C int representing a byte to a Python bytes object of length 1.
C (str of length 1) [int] Convert a C int representing a character to Python str object of length 1.
d (float) [double] Convert a C double to a Python floating point number.
f (float) [float] Convert a C float to a Python floating point number.
D (complex) [Py_complex *] Convert a C Py_complex structure to a Python complex number.
O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented by

one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call producing
the argument found an error and set an exception. Therefore, Py_BuildValue() will return NULL but
won’t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] Same as O.
N (object) [PyObject *] Same as O, except it doesn’t increment the reference count on the object. Useful when

the object is created by a call to an object constructor in the argument list.

50 Chapter 6. Utilities

The Python/C API, Release 3.7.17

O& (object) [converter, anything] Convert anything to a Python object through a converter function. The function
is called with anything (which should be compatible with void *) as its argument and should return a “new”
Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same number
of items.

[items] (list) [matching-items] Convert a sequence of C values to a Python list with the same number of
items.

{items} (dict) [matching-items] Convert a sequence of C values to a Python dictionary. Each pair of con-
secutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.
PyObject* Py_VaBuildValue(const char *format, va_list vargs)

Return value: New reference. Identical to Py_BuildValue(), except that it accepts a va_list rather than a
variable number of arguments.

6.7 String conversion and formatting

Functions for number conversion and formatted string output.
int PyOS_snprintf(char *str, size_t size, const char *format, ...)

Output not more than size bytes to str according to the format string format and the extra arguments. See the Unix
man page snprintf(2).

int PyOS_vsnprintf(char *str, size_t size, const char *format, va_list va)
Output not more than size bytes to str according to the format string format and the variable argument list va. Unix
man page vsnprintf(2).

PyOS_snprintf() and PyOS_vsnprintf() wrap the Standard C library functions snprintf() and
vsnprintf(). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.
The wrappers ensure that str*[*size-1] is always '\0' upon return. They never write more than size bytes (including the
trailing '\0') into str. Both functions require that str != NULL, size > 0 and format != NULL.
If the platform doesn’t have vsnprintf() and the buffer size needed to avoid truncation exceeds size by more than
512 bytes, Python aborts with a Py_FatalError().
The return value (rv) for these functions should be interpreted as follows:

• When 0 <= rv < size, the output conversion was successful and rv characters were written to str (excluding
the trailing '\0' byte at str*[*rv]).

• When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have been
needed to succeed. str*[*size-1] is '\0' in this case.

• When rv < 0, “something bad happened.” str*[*size-1] is '\0' in this case too, but the rest of str is undefined.
The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.
double PyOS_string_to_double(const char *s, char **endptr, PyObject *overflow_exception)

Convert a string s to a double, raising a Python exception on failure. The set of accepted strings corresponds
to the set of strings accepted by Python’s float() constructor, except that s must not have leading or trailing
whitespace. The conversion is independent of the current locale.
If endptr is NULL, convert the whole string. Raise ValueError and return -1.0 if the string is not a valid
representation of a floating-point number.

6.7. String conversion and formatting 51

The Python/C API, Release 3.7.17

If endptr is not NULL, convert as much of the string as possible and set *endptr to point to the first unconverted
character. If no initial segment of the string is the valid representation of a floating-point number, set *endptr
to point to the beginning of the string, raise ValueError, and return -1.0.
If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many platforms)
then if overflow_exception is NULL return Py_HUGE_VAL (with an appropriate sign) and don’t set any
exception. Otherwise, overflow_exception must point to a Python exception object; raise that exception
and return -1.0. In both cases, set *endptr to point to the first character after the converted value.
If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate Python
exception and return -1.0.
New in version 3.1.

char* PyOS_double_to_string(double val, char format_code, int precision, int flags, int *ptype)
Convert a double val to a string using supplied format_code, precision, and flags.
format_code must be one of 'e', 'E', 'f', 'F', 'g', 'G' or 'r'. For 'r', the supplied precision must be 0
and is ignored. The 'r' format code specifies the standard repr() format.
flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed
together:

• Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

• Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.
• Py_DTSF_ALT means to apply “alternate” formatting rules. See the documentation for the
PyOS_snprintf() '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one ofPy_DTST_FINITE,Py_DTST_INFINITE,
or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.
The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem_Free().
New in version 3.1.

int PyOS_stricmp(const char *s1, const char *s2)
Case insensitive comparison of strings. The function works almost identically to strcmp() except that it ignores
the case.

int PyOS_strnicmp(const char *s1, const char *s2, Py_ssize_t size)
Case insensitive comparison of strings. The function works almost identically to strncmp() except that it ignores
the case.

6.8 Reflection

PyObject* PyEval_GetBuiltins()
Return value: Borrowed reference. Return a dictionary of the builtins in the current execution frame, or the inter-
preter of the thread state if no frame is currently executing.

PyObject* PyEval_GetLocals()
Return value: Borrowed reference. Return a dictionary of the local variables in the current execution frame, or
NULL if no frame is currently executing.

PyObject* PyEval_GetGlobals()
Return value: Borrowed reference. Return a dictionary of the global variables in the current execution frame, or
NULL if no frame is currently executing.

52 Chapter 6. Utilities

The Python/C API, Release 3.7.17

PyFrameObject* PyEval_GetFrame()
Return value: Borrowed reference. Return the current thread state’s frame, which is NULL if no frame is currently
executing.

int PyFrame_GetLineNumber(PyFrameObject *frame)
Return the line number that frame is currently executing.

const char* PyEval_GetFuncName(PyObject *func)
Return the name of func if it is a function, class or instance object, else the name of funcs type.

const char* PyEval_GetFuncDesc(PyObject *func)
Return a description string, depending on the type of func. Return values include “()” for functions and methods, ”
constructor”, ” instance”, and ” object”. Concatenated with the result of PyEval_GetFuncName(), the result
will be a description of func.

6.9 Codec registry and support functions

int PyCodec_Register(PyObject *search_function)
Register a new codec search function.
As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first in the
list of search functions.

int PyCodec_KnownEncoding(const char *encoding)
Return 1 or 0 depending on whether there is a registered codec for the given encoding. This function always
succeeds.

PyObject* PyCodec_Encode(PyObject *object, const char *encoding, const char *errors)
Return value: New reference. Generic codec based encoding API.
object is passed through the encoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

PyObject* PyCodec_Decode(PyObject *object, const char *encoding, const char *errors)
Return value: New reference. Generic codec based decoding API.
object is passed through the decoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

6.9.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes encodings
looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set and NULL
returned.
PyObject* PyCodec_Encoder(const char *encoding)

Return value: New reference. Get an encoder function for the given encoding.
PyObject* PyCodec_Decoder(const char *encoding)

Return value: New reference. Get a decoder function for the given encoding.
PyObject* PyCodec_IncrementalEncoder(const char *encoding, const char *errors)

Return value: New reference. Get an IncrementalEncoder object for the given encoding.
PyObject* PyCodec_IncrementalDecoder(const char *encoding, const char *errors)

Return value: New reference. Get an IncrementalDecoder object for the given encoding.

6.9. Codec registry and support functions 53

The Python/C API, Release 3.7.17

PyObject* PyCodec_StreamReader(const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. Get a StreamReader factory function for the given encoding.

PyObject* PyCodec_StreamWriter(const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. Get a StreamWriter factory function for the given encoding.

6.9.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError(const char *name, PyObject *error)
Register the error handling callback function error under the given name. This callback function will be called by a
codec when it encounters unencodable characters/undecodable bytes and name is specified as the error parameter
in the call to the encode/decode function.
The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes and
their offset in the original string (see Unicode Exception Objects for functions to extract this information). The call-
backmust either raise the given exception, or return a two-item tuple containing the replacement for the problematic
sequence, and an integer giving the offset in the original string at which encoding/decoding should be resumed.
Return 0 on success, -1 on error.

PyObject* PyCodec_LookupError(const char *name)
Return value: New reference. Lookup the error handling callback function registered under name. As a special case
NULL can be passed, in which case the error handling callback for “strict” will be returned.

PyObject* PyCodec_StrictErrors(PyObject *exc)
Return value: Always NULL. Raise exc as an exception.

PyObject* PyCodec_IgnoreErrors(PyObject *exc)
Return value: New reference. Ignore the unicode error, skipping the faulty input.

PyObject* PyCodec_ReplaceErrors(PyObject *exc)
Return value: New reference. Replace the unicode encode error with ? or U+FFFD.

PyObject* PyCodec_XMLCharRefReplaceErrors(PyObject *exc)
Return value: New reference. Replace the unicode encode error with XML character references.

PyObject* PyCodec_BackslashReplaceErrors(PyObject *exc)
Return value: New reference. Replace the unicode encode error with backslash escapes (\x, \u and \U).

PyObject* PyCodec_NameReplaceErrors(PyObject *exc)
Return value: New reference. Replace the unicode encode error with \N{...} escapes.
New in version 3.5.

54 Chapter 6. Utilities

CHAPTER

SEVEN

ABSTRACT OBJECTS LAYER

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will raise a
Python exception.
It is not possible to use these functions on objects that are not properly initialized, such as a list object that has been created
by PyList_New(), but whose items have not been set to some non-NULL value yet.

7.1 Object Protocol

PyObject* Py_NotImplemented
The NotImplemented singleton, used to signal that an operation is not implemented for the given type combi-
nation.

Py_RETURN_NOTIMPLEMENTED
Properly handle returning Py_NotImplemented from within a C function (that is, increment the reference
count of NotImplemented and return it).

int PyObject_Print(PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW; if given, the str() of the object is written instead of
the repr().

int PyObject_HasAttr(PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr(o, attr_name). This function always succeeds.
Note that exceptions which occur while calling __getattr__() and __getattribute__() methods will
get suppressed. To get error reporting use PyObject_GetAttr() instead.

int PyObject_HasAttrString(PyObject *o, const char *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr(o, attr_name). This function always succeeds.
Note that exceptions which occur while calling __getattr__() and __getattribute__()
methods and creating a temporary string object will get suppressed. To get error reporting use
PyObject_GetAttrString() instead.

PyObject* PyObject_GetAttr(PyObject *o, PyObject *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GetAttrString(PyObject *o, const char *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

55

The Python/C API, Release 3.7.17

PyObject* PyObject_GenericGetAttr(PyObject *o, PyObject *name)
Return value: New reference. Generic attribute getter function that is meant to be put into a type object’s
tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s MRO as well as an
attribute in the object’s __dict__ (if present). As outlined in descriptors, data descriptors take preference over
instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError is raised.

int PyObject_SetAttr(PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return -1 on
failure; return 0 on success. This is the equivalent of the Python statement o.attr_name = v.
If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttr().

int PyObject_SetAttrString(PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return -1 on
failure; return 0 on success. This is the equivalent of the Python statement o.attr_name = v.
If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttrString().

int PyObject_GenericSetAttr(PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter and deleter function that is meant to be put into a type object’s tp_setattro slot. It
looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found it takes preference over
setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or deleted in the object’s
__dict__ (if present). On success, 0 is returned, otherwise an AttributeError is raised and -1 is returned.

int PyObject_DelAttr(PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object o. Returns-1 on failure. This is the equivalent of the Python statement
del o.attr_name.

int PyObject_DelAttrString(PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object o. Returns-1 on failure. This is the equivalent of the Python statement
del o.attr_name.

PyObject* PyObject_GenericGetDict(PyObject *o, void *context)
Return value: New reference. A generic implementation for the getter of a __dict__ descriptor. It creates the
dictionary if necessary.
New in version 3.3.

int PyObject_GenericSetDict(PyObject *o, PyObject *value, void *context)
A generic implementation for the setter of a __dict__ descriptor. This implementation does not allow the
dictionary to be deleted.
New in version 3.3.

PyObject* PyObject_RichCompare(PyObject *o1, PyObject *o2, int opid)
Return value: New reference. Compare the values of o1 and o2 using the operation specified by opid, which must
be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >=
respectively. This is the equivalent of the Python expression o1 op o2, where op is the operator corresponding
to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool(PyObject *o1, PyObject *o2, int opid)
Compare the values of o1 and o2 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >= respectively. Returns -1 on error,
0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op o2, where op is the
operator corresponding to opid.

Note: If o1 and o2 are the same object, PyObject_RichCompareBool() will always return 1 for Py_EQ and 0

56 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.17

for Py_NE.

PyObject* PyObject_Repr(PyObject *o)
Return value: New reference. Compute a string representation of object o. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression repr(o). Called by the repr()
built-in function.
Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

PyObject* PyObject_ASCII(PyObject *o)
Return value: New reference. As PyObject_Repr(), compute a string representation of object o, but escape the
non-ASCII characters in the string returned by PyObject_Repr() with \x, \u or \U escapes. This generates
a string similar to that returned by PyObject_Repr() in Python 2. Called by the ascii() built-in function.

PyObject* PyObject_Str(PyObject *o)
Return value: New reference. Compute a string representation of object o. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression str(o). Called by the str() built-in
function and, therefore, by the print() function.
Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

PyObject* PyObject_Bytes(PyObject *o)
Return value: New reference. Compute a bytes representation of object o. NULL is returned on failure and a
bytes object on success. This is equivalent to the Python expression bytes(o), when o is not an integer. Unlike
bytes(o), a TypeError is raised when o is an integer instead of a zero-initialized bytes object.

int PyObject_IsSubclass(PyObject *derived, PyObject *cls)
Return 1 if the class derived is identical to or derived from the class cls, otherwise return 0. In case of an error,
return -1.
If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.
If cls has a __subclasscheck__() method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in cls.
__mro__.
Normally only class objects, i.e. instances of type or a derived class, are considered classes. However, objects
can override this by having a __bases__ attribute (which must be a tuple of base classes).

int PyObject_IsInstance(PyObject *inst, PyObject *cls)
Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns -1 and sets an
exception.
If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.
If cls has a __instancecheck__() method, it will be called to determine the subclass status as described in
PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cls.
An instance inst can override what is considered its class by having a __class__ attribute.
An object cls can override if it is considered a class, and what its base classes are, by having a __bases__ attribute
(which must be a tuple of base classes).

int PyCallable_Check(PyObject *o)
Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise. This function always
succeeds.

7.1. Object Protocol 57

https://www.python.org/dev/peps/pep-3119
https://www.python.org/dev/peps/pep-3119

The Python/C API, Release 3.7.17

PyObject* PyObject_Call(PyObject *callable, PyObject *args, PyObject *kwargs)
Return value: New reference. Call a callable Python object callable, with arguments given by the tuple args, and
named arguments given by the dictionary kwargs.
argsmust not be NULL, use an empty tuple if no arguments are needed. If no named arguments are needed, kwargs
can be NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(*args, **kwargs).

PyObject* PyObject_CallObject(PyObject *callable, PyObject *args)
Return value: New reference. Call a callable Python object callable, with arguments given by the tuple args. If no
arguments are needed, then args can be NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(*args).

PyObject* PyObject_CallFunction(PyObject *callable, const char *format, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of C arguments. The C
arguments are described using a Py_BuildValue() style format string. The format can be NULL, indicating
that no arguments are provided.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(*args).
Note that if you only pass PyObject * args, PyObject_CallFunctionObjArgs() is a faster alternative.
Changed in version 3.4: The type of format was changed from char *.

PyObject* PyObject_CallMethod(PyObject *obj, const char *name, const char *format, ...)
Return value: New reference. Call the method named name of object obj with a variable number of C arguments.
The C arguments are described by a Py_BuildValue() format string that should produce a tuple.
The format can be NULL, indicating that no arguments are provided.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: obj.name(arg1, arg2, ...).
Note that if you only pass PyObject * args, PyObject_CallMethodObjArgs() is a faster alternative.
Changed in version 3.4: The types of name and format were changed from char *.

PyObject* PyObject_CallFunctionObjArgs(PyObject *callable, ..., NULL)
Return value: New reference. Call a callable Python object callable, with a variable number of PyObject*
arguments. The arguments are provided as a variable number of parameters followed by NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(arg1, arg2, ...).

PyObject* PyObject_CallMethodObjArgs(PyObject *obj, PyObject *name, ..., NULL)
Return value: New reference. Calls a method of the Python object obj, where the name of the method is given as a
Python string object in name. It is called with a variable number of PyObject* arguments. The arguments are
provided as a variable number of parameters followed by NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.

Py_hash_t PyObject_Hash(PyObject *o)
Compute and return the hash value of an object o. On failure, return -1. This is the equivalent of the Python
expression hash(o).
Changed in version 3.2: The return type is now Py_hash_t. This is a signed integer the same size as Py_ssize_t.

58 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.17

Py_hash_t PyObject_HashNotImplemented(PyObject *o)
Set aTypeError indicating thattype(o) is not hashable and return-1. This function receives special treatment
when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not hashable.

int PyObject_IsTrue(PyObject *o)
Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python expression not
not o. On failure, return -1.

int PyObject_Not(PyObject *o)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression not
o. On failure, return -1.

PyObject* PyObject_Type(PyObject *o)
Return value: New reference. When o is non-NULL, returns a type object corresponding to the object type of object
o. On failure, raises SystemError and returns NULL. This is equivalent to the Python expression type(o).
This function increments the reference count of the return value. There’s really no reason to use this function instead
of the common expression o->ob_type, which returns a pointer of type PyTypeObject*, except when the
incremented reference count is needed.

int PyObject_TypeCheck(PyObject *o, PyTypeObject *type)
Return true if the object o is of type type or a subtype of type. Both parameters must be non-NULL.

Py_ssize_t PyObject_Size(PyObject *o)
Py_ssize_t PyObject_Length(PyObject *o)

Return the length of object o. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, -1 is returned. This is the equivalent to the Python expression len(o).

Py_ssize_t PyObject_LengthHint(PyObject *o, Py_ssize_t default)
Return an estimated length for the object o. First try to return its actual length, then an estimate using
__length_hint__(), and finally return the default value. On error return -1. This is the equivalent to the
Python expression operator.length_hint(o, default).
New in version 3.4.

PyObject* PyObject_GetItem(PyObject *o, PyObject *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is the
equivalent of the Python expression o[key].

int PyObject_SetItem(PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Raise an exception and return -1 on failure; return 0 on success. This is the
equivalent of the Python statement o[key] = v.

int PyObject_DelItem(PyObject *o, PyObject *key)
Remove the mapping for the object key from the object o. Return -1 on failure. This is equivalent to the Python
statement del o[key].

PyObject* PyObject_Dir(PyObject *o)
Return value: New reference. This is equivalent to the Python expression dir(o), returning a (possibly empty)
list of strings appropriate for the object argument, or NULL if there was an error. If the argument is NULL, this is
like the Python dir(), returning the names of the current locals; in this case, if no execution frame is active then
NULL is returned but PyErr_Occurred() will return false.

PyObject* PyObject_GetIter(PyObject *o)
Return value: New reference. This is equivalent to the Python expression iter(o). It returns a new iterator for
the object argument, or the object itself if the object is already an iterator. Raises TypeError and returns NULL
if the object cannot be iterated.

7.1. Object Protocol 59

The Python/C API, Release 3.7.17

7.2 Number Protocol

int PyNumber_Check(PyObject *o)
Returns 1 if the object o provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of adding o1 and o2, or NULL on failure. This is the equivalent of
the Python expression o1 + o2.

PyObject* PyNumber_Subtract(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of subtracting o2 from o1, or NULL on failure. This is the equivalent
of the Python expression o1 - o2.

PyObject* PyNumber_Multiply(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of multiplying o1 and o2, or NULL on failure. This is the equivalent
of the Python expression o1 * o2.

PyObject* PyNumber_MatrixMultiply(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of matrix multiplication on o1 and o2, or NULL on failure. This is
the equivalent of the Python expression o1 @ o2.
New in version 3.5.

PyObject* PyNumber_FloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Return the floor of o1 divided by o2, or NULL on failure. This is equivalent to the
“classic” division of integers.

PyObject* PyNumber_TrueDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Return a reasonable approximation for the mathematical value of o1 divided by o2,
or NULL on failure. The return value is “approximate” because binary floating point numbers are approximate; it is
not possible to represent all real numbers in base two. This function can return a floating point value when passed
two integers.

PyObject* PyNumber_Remainder(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the remainder of dividing o1 by o2, or NULL on failure. This is the equivalent
of the Python expression o1 % o2.

PyObject* PyNumber_Divmod(PyObject *o1, PyObject *o2)
Return value: New reference. See the built-in function divmod(). Returns NULL on failure. This is the equivalent
of the Python expression divmod(o1, o2).

PyObject* PyNumber_Power(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference. See the built-in function pow(). Returns NULL on failure. This is the equivalent of
the Python expression pow(o1, o2, o3), where o3 is optional. If o3 is to be ignored, pass Py_None in its
place (passing NULL for o3 would cause an illegal memory access).

PyObject* PyNumber_Negative(PyObject *o)
Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the equivalent of
the Python expression -o.

PyObject* PyNumber_Positive(PyObject *o)
Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the Python
expression +o.

PyObject* PyNumber_Absolute(PyObject *o)
Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the equivalent of the
Python expression abs(o).

60 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.17

PyObject* PyNumber_Invert(PyObject *o)
Return value: New reference. Returns the bitwise negation of o on success, orNULL on failure. This is the equivalent
of the Python expression ~o.

PyObject* PyNumber_Lshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of left shifting o1 by o2 on success, or NULL on failure. This is the
equivalent of the Python expression o1 << o2.

PyObject* PyNumber_Rshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of right shifting o1 by o2 on success, or NULL on failure. This is
the equivalent of the Python expression o1 >> o2.

PyObject* PyNumber_And(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the “bitwise and” of o1 and o2 on success and NULL on failure. This is the
equivalent of the Python expression o1 & o2.

PyObject* PyNumber_Xor(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the “bitwise exclusive or” of o1 by o2 on success, or NULL on failure. This
is the equivalent of the Python expression o1 ^ o2.

PyObject* PyNumber_Or(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the “bitwise or” of o1 and o2 on success, or NULL on failure. This is the
equivalent of the Python expression o1 | o2.

PyObject* PyNumber_InPlaceAdd(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of adding o1 and o2, or NULL on failure. The operation is done
in-place when o1 supports it. This is the equivalent of the Python statement o1 += o2.

PyObject* PyNumber_InPlaceSubtract(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of subtracting o2 from o1, or NULL on failure. The operation is
done in-place when o1 supports it. This is the equivalent of the Python statement o1 -= o2.

PyObject* PyNumber_InPlaceMultiply(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of multiplying o1 and o2, or NULL on failure. The operation is
done in-place when o1 supports it. This is the equivalent of the Python statement o1 *= o2.

PyObject* PyNumber_InPlaceMatrixMultiply(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of matrix multiplication on o1 and o2, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 @= o2.
New in version 3.5.

PyObject* PyNumber_InPlaceFloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the mathematical floor of dividing o1 by o2, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 //= o2.

PyObject* PyNumber_InPlaceTrueDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Return a reasonable approximation for the mathematical value of o1 divided by o2,
or NULL on failure. The return value is “approximate” because binary floating point numbers are approximate; it is
not possible to represent all real numbers in base two. This function can return a floating point value when passed
two integers. The operation is done in-place when o1 supports it.

PyObject* PyNumber_InPlaceRemainder(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the remainder of dividing o1 by o2, or NULL on failure. The operation is
done in-place when o1 supports it. This is the equivalent of the Python statement o1 %= o2.

PyObject* PyNumber_InPlacePower(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference. See the built-in function pow(). Returns NULL on failure. The operation is done
in-placewhen o1 supports it. This is the equivalent of the Python statement o1 **= o2when o3 is Py_None, or
an in-place variant of pow(o1, o2, o3) otherwise. If o3 is to be ignored, pass Py_None in its place (passing
NULL for o3 would cause an illegal memory access).

7.2. Number Protocol 61

The Python/C API, Release 3.7.17

PyObject* PyNumber_InPlaceLshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of left shifting o1 by o2 on success, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 <<= o2.

PyObject* PyNumber_InPlaceRshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of right shifting o1 by o2 on success, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 >>= o2.

PyObject* PyNumber_InPlaceAnd(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the “bitwise and” of o1 and o2 on success and NULL on failure. The operation
is done in-place when o1 supports it. This is the equivalent of the Python statement o1 &= o2.

PyObject* PyNumber_InPlaceXor(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the “bitwise exclusive or” of o1 by o2 on success, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 ^= o2.

PyObject* PyNumber_InPlaceOr(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the “bitwise or” of o1 and o2 on success, or NULL on failure. The operation
is done in-place when o1 supports it. This is the equivalent of the Python statement o1 |= o2.

PyObject* PyNumber_Long(PyObject *o)
Return value: New reference. Returns the o converted to an integer object on success, or NULL on failure. This is
the equivalent of the Python expression int(o).

PyObject* PyNumber_Float(PyObject *o)
Return value: New reference. Returns the o converted to a float object on success, or NULL on failure. This is the
equivalent of the Python expression float(o).

PyObject* PyNumber_Index(PyObject *o)
Return value: New reference. Returns the o converted to a Python int on success or NULL with a TypeError
exception raised on failure.

PyObject* PyNumber_ToBase(PyObject *n, int base)
Return value: New reference. Returns the integer n converted to base base as a string. The base argument must be
one of 2, 8, 10, or 16. For base 2, 8, or 16, the returned string is prefixed with a base marker of '0b', '0o', or
'0x', respectively. If n is not a Python int, it is converted with PyNumber_Index() first.

Py_ssize_t PyNumber_AsSsize_t(PyObject *o, PyObject *exc)
Returns o converted to a Py_ssize_t value if o can be interpreted as an integer. If the call fails, an exception is
raised and -1 is returned.
If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError or
OverflowError). If exc is NULL, then the exception is cleared and the value is clipped to PY_SSIZE_T_MIN
for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check(PyObject *o)
Returns 1 if o is an index integer (has the nb_index slot of the tp_as_number structure filled in), and 0 otherwise.
This function always succeeds.

62 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.17

7.3 Sequence Protocol

int PySequence_Check(PyObject *o)
Return 1 if the object provides sequence protocol, and 0 otherwise. Note that it returns 1 for Python classes with
a __getitem__() method unless they are dict subclasses since in general case it is impossible to determine
what the type of keys it supports. This function always succeeds.

Py_ssize_t PySequence_Size(PyObject *o)
Py_ssize_t PySequence_Length(PyObject *o)

Returns the number of objects in sequence o on success, and -1 on failure. This is equivalent to the Python
expression len(o).

PyObject* PySequence_Concat(PyObject *o1, PyObject *o2)
Return value: New reference. Return the concatenation of o1 and o2 on success, and NULL on failure. This is the
equivalent of the Python expression o1 + o2.

PyObject* PySequence_Repeat(PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
This is the equivalent of the Python expression o * count.

PyObject* PySequence_InPlaceConcat(PyObject *o1, PyObject *o2)
Return value: New reference. Return the concatenation of o1 and o2 on success, and NULL on failure. The operation
is done in-place when o1 supports it. This is the equivalent of the Python expression o1 += o2.

PyObject* PySequence_InPlaceRepeat(PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
The operation is done in-place when o supports it. This is the equivalent of the Python expression o *= count.

PyObject* PySequence_GetItem(PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o, or NULL on failure. This is the equivalent of the Python
expression o[i].

PyObject* PySequence_GetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Return value: New reference. Return the slice of sequence object o between i1 and i2, or NULL on failure. This is
the equivalent of the Python expression o[i1:i2].

int PySequence_SetItem(PyObject *o, Py_ssize_t i, PyObject *v)
Assign object v to the ith element of o. Raise an exception and return -1 on failure; return 0 on success. This is
the equivalent of the Python statement o[i] = v. This function does not steal a reference to v.
If v is NULL, the element is deleted, however this feature is deprecated in favour of using
PySequence_DelItem().

int PySequence_DelItem(PyObject *o, Py_ssize_t i)
Delete the ith element of object o. Returns -1 on failure. This is the equivalent of the Python statement del
o[i].

int PySequence_SetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2, PyObject *v)
Assign the sequence object v to the slice in sequence object o from i1 to i2. This is the equivalent of the Python
statement o[i1:i2] = v.

int PySequence_DelSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Delete the slice in sequence object o from i1 to i2. Returns -1 on failure. This is the equivalent of the Python
statement del o[i1:i2].

Py_ssize_t PySequence_Count(PyObject *o, PyObject *value)
Return the number of occurrences of value in o, that is, return the number of keys for which o[key] == value.
On failure, return -1. This is equivalent to the Python expression o.count(value).

7.3. Sequence Protocol 63

The Python/C API, Release 3.7.17

int PySequence_Contains(PyObject *o, PyObject *value)
Determine if o contains value. If an item in o is equal to value, return 1, otherwise return 0. On error, return -1.
This is equivalent to the Python expression value in o.

Py_ssize_t PySequence_Index(PyObject *o, PyObject *value)
Return the first index i for which o[i] == value. On error, return -1. This is equivalent to the Python
expression o.index(value).

PyObject* PySequence_List(PyObject *o)
Return value: New reference. Return a list object with the same contents as the sequence or iterable o, or NULL on
failure. The returned list is guaranteed to be new. This is equivalent to the Python expression list(o).

PyObject* PySequence_Tuple(PyObject *o)
Return value: New reference. Return a tuple object with the same contents as the sequence or iterable o, or NULL on
failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed with the appropriate
contents. This is equivalent to the Python expression tuple(o).

PyObject* PySequence_Fast(PyObject *o, const char *m)
Return value: New reference. Return the sequence or iterable o as an object usable by the other
PySequence_Fast* family of functions. If the object is not a sequence or iterable, raises TypeError with
m as the message text. Returns NULL on failure.
The PySequence_Fast* functions are thus named because they assume o is a PyTupleObject or a
PyListObject and access the data fields of o directly.
As a CPython implementation detail, if o is already a sequence or list, it will be returned.

Py_ssize_t PySequence_Fast_GET_SIZE(PyObject *o)
Returns the length of o, assuming that o was returned by PySequence_Fast() and that o is not NULL. The
size can also be gotten by calling PySequence_Size() on o, but PySequence_Fast_GET_SIZE() is
faster because it can assume o is a list or tuple.

PyObject* PySequence_Fast_GET_ITEM(PyObject *o, Py_ssize_t i)
Return value: Borrowed reference. Return the ith element of o, assuming that o was returned by
PySequence_Fast(), o is not NULL, and that i is within bounds.

PyObject** PySequence_Fast_ITEMS(PyObject *o)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence_Fast() and
o is not NULL.
Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array pointer
in contexts where the sequence cannot change.

PyObject* PySequence_ITEM(PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o or NULL on failure. Faster form of
PySequence_GetItem() but without checking that PySequence_Check() on o is true and without ad-
justment for negative indices.

7.4 Mapping Protocol

See also PyObject_GetItem(), PyObject_SetItem() and PyObject_DelItem().
int PyMapping_Check(PyObject *o)

Return 1 if the object provides mapping protocol or supports slicing, and 0 otherwise. Note that it returns 1 for
Python classes with a __getitem__() method since in general case it is impossible to determine what type of
keys it supports. This function always succeeds.

Py_ssize_t PyMapping_Size(PyObject *o)

64 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.17

Py_ssize_t PyMapping_Length(PyObject *o)
Returns the number of keys in object o on success, and -1 on failure. This is equivalent to the Python expression
len(o).

PyObject* PyMapping_GetItemString(PyObject *o, const char *key)
Return value: New reference. Return element of o corresponding to the string key or NULL on failure. This is the
equivalent of the Python expression o[key]. See also PyObject_GetItem().

int PyMapping_SetItemString(PyObject *o, const char *key, PyObject *v)
Map the string key to the value v in object o. Returns -1 on failure. This is the equivalent of the Python statement
o[key] = v. See also PyObject_SetItem().

int PyMapping_DelItem(PyObject *o, PyObject *key)
Remove the mapping for the object key from the object o. Return -1 on failure. This is equivalent to the Python
statement del o[key]. This is an alias of PyObject_DelItem().

int PyMapping_DelItemString(PyObject *o, const char *key)
Remove the mapping for the string key from the object o. Return -1 on failure. This is equivalent to the Python
statement del o[key].

int PyMapping_HasKey(PyObject *o, PyObject *key)
Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the Python expression key
in o. This function always succeeds.
Note that exceptions which occur while calling the __getitem__() method will get suppressed. To get error
reporting use PyObject_GetItem() instead.

int PyMapping_HasKeyString(PyObject *o, const char *key)
Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the Python expression key
in o. This function always succeeds.
Note that exceptions which occur while calling the __getitem__() method and creating a temporary string
object will get suppressed. To get error reporting use PyMapping_GetItemString() instead.

PyObject* PyMapping_Keys(PyObject *o)
Return value: New reference. On success, return a list of the keys in object o. On failure, return NULL.
Changed in version 3.7: Previously, the function returned a list or a tuple.

PyObject* PyMapping_Values(PyObject *o)
Return value: New reference. On success, return a list of the values in object o. On failure, return NULL.
Changed in version 3.7: Previously, the function returned a list or a tuple.

PyObject* PyMapping_Items(PyObject *o)
Return value: New reference. On success, return a list of the items in object o, where each item is a tuple containing
a key-value pair. On failure, return NULL.
Changed in version 3.7: Previously, the function returned a list or a tuple.

7.5 Iterator Protocol

There are two functions specifically for working with iterators.
int PyIter_Check(PyObject *o)

Return true if the object o supports the iterator protocol.
PyObject* PyIter_Next(PyObject *o)

Return value: New reference. Return the next value from the iteration o. The object must be an iterator (it is up to

7.5. Iterator Protocol 65

The Python/C API, Release 3.7.17

the caller to check this). If there are no remaining values, returns NULL with no exception set. If an error occurs
while retrieving the item, returns NULL and passes along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_GetIter(obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while ((item = PyIter_Next(iterator))) {
/* do something with item */
...
/* release reference when done */
Py_DECREF(item);

}

Py_DECREF(iterator);

if (PyErr_Occurred()) {
/* propagate error */

}
else {

/* continue doing useful work */
}

7.6 Buffer Protocol

Certain objects available in Python wrap access to an underlying memory array or buffer. Such objects include the built-in
bytes and bytearray, and some extension types like array.array. Third-party libraries may define their own
types for special purposes, such as image processing or numeric analysis.
While each of these types have their own semantics, they share the common characteristic of being backed by a possibly
large memory buffer. It is then desirable, in some situations, to access that buffer directly and without intermediate
copying.
Python provides such a facility at the C level in the form of the buffer protocol. This protocol has two sides:

• on the producer side, a type can export a “buffer interface” which allows objects of that type to expose information
about their underlying buffer. This interface is described in the section Buffer Object Structures;

• on the consumer side, several means are available to obtain a pointer to the raw underlying data of an object (for
example a method parameter).

Simple objects such as bytes and bytearray expose their underlying buffer in byte-oriented form. Other forms are
possible; for example, the elements exposed by an array.array can be multi-byte values.
An example consumer of the buffer interface is the write() method of file objects: any object that can export a series
of bytes through the buffer interface can be written to a file. While write() only needs read-only access to the internal
contents of the object passed to it, other methods such as readinto() need write access to the contents of their
argument. The buffer interface allows objects to selectively allow or reject exporting of read-write and read-only buffers.
There are two ways for a consumer of the buffer interface to acquire a buffer over a target object:

• call PyObject_GetBuffer() with the right parameters;
• call PyArg_ParseTuple() (or one of its siblings) with one of the y*, w* or s* format codes.

66 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.17

In both cases, PyBuffer_Release() must be called when the buffer isn’t needed anymore. Failure to do so could
lead to various issues such as resource leaks.

7.6.1 Buffer structure

Buffer structures (or simply “buffers”) are useful as a way to expose the binary data from another object to the Python
programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory,
it is possible to expose any data to the Python programmer quite easily. The memory could be a large, constant array in
a C extension, it could be a raw block of memory for manipulation before passing to an operating system library, or it
could be used to pass around structured data in its native, in-memory format.
Contrary to most data types exposed by the Python interpreter, buffers are not PyObject pointers but rather simple C
structures. This allows them to be created and copied very simply. When a generic wrapper around a buffer is needed, a
memoryview object can be created.
For short instructions how to write an exporting object, see Buffer Object Structures. For obtaining a buffer, see
PyObject_GetBuffer().
Py_buffer

void *buf
A pointer to the start of the logical structure described by the buffer fields. This can be any location within
the underlying physical memory block of the exporter. For example, with negative strides the value may
point to the end of the memory block.
For contiguous arrays, the value points to the beginning of the memory block.

void *obj
A new reference to the exporting object. The reference is owned by the consumer and automatically decre-
mented and set to NULL by PyBuffer_Release(). The field is the equivalent of the return value of any
standard C-API function.
As a special case, for temporary buffers that are wrapped by PyMemoryView_FromBuffer() or
PyBuffer_FillInfo() this field is NULL. In general, exporting objects MUST NOT use this scheme.

Py_ssize_t len
product(shape) * itemsize. For contiguous arrays, this is the length of the underlying memory
block. For non-contiguous arrays, it is the length that the logical structure would have if it were copied to a
contiguous representation.
Accessing ((char *)buf)[0] up to ((char *)buf)[len-1] is only valid if the buffer has
been obtained by a request that guarantees contiguity. In most cases such a request will be PyBUF_SIMPLE
or PyBUF_WRITABLE.

int readonly
An indicator of whether the buffer is read-only. This field is controlled by the PyBUF_WRITABLE flag.

Py_ssize_t itemsize
Item size in bytes of a single element. Same as the value of struct.calcsize() called on non-NULL
format values.
Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will be
set to NULL, but itemsize still has the value for the original format.
If shape is present, the equality product(shape) * itemsize == len still holds and the con-
sumer can use itemsize to navigate the buffer.
If shape is NULL as a result of a PyBUF_SIMPLE or a PyBUF_WRITABLE request, the consumer must
disregard itemsize and assume itemsize == 1.

7.6. Buffer Protocol 67

The Python/C API, Release 3.7.17

const char *format
A NUL terminated string in struct module style syntax describing the contents of a single item. If this is
NULL, "B" (unsigned bytes) is assumed.
This field is controlled by the PyBUF_FORMAT flag.

int ndim
The number of dimensions the memory represents as an n-dimensional array. If it is 0, buf points to a single
item representing a scalar. In this case, shape, strides and suboffsetsMUST be NULL.
The macro PyBUF_MAX_NDIM limits the maximum number of dimensions to 64. Exporters MUST respect
this limit, consumers of multi-dimensional buffers SHOULD be able to handle up to PyBUF_MAX_NDIM
dimensions.

Py_ssize_t *shape
An array of Py_ssize_t of length ndim indicating the shape of the memory as an n-dimensional array.
Note that shape[0] * ... * shape[ndim-1] * itemsizeMUST be equal to len.
Shape values are restricted to shape[n] >= 0. The case shape[n] == 0 requires special attention.
See complex arrays for further information.
The shape array is read-only for the consumer.

Py_ssize_t *strides
An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element in
each dimension.
Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST be
able to handle the case strides[n] <= 0. See complex arrays for further information.
The strides array is read-only for the consumer.

Py_ssize_t *suboffsets
An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the nth
dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after de-
referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding in a
contiguous memory block).
If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).
This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for further
information how to access elements of such an array.
The suboffsets array is read-only for the consumer.

void *internal
This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be freed
when the buffer is released. The consumer MUST NOT alter this value.

68 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.17

7.6.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyObject_GetBuffer(). Since
the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument to specify
the exact buffer type it can handle.
All Py_buffer fields are unambiguously defined by the request type.

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: obj, buf, len,
itemsize, ndim.

readonly, format

PyBUF_WRITABLE
Controls the readonly field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers.

PyBUF_FORMAT
Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field MUST
be NULL.

PyBUF_WRITABLE can be |’d to any of the flags in the next section. Since PyBUF_SIMPLE is defined as 0,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.
PyBUF_FORMAT can be |’d to any of the flags except PyBUF_SIMPLE. The latter already implies format B (unsigned
bytes).

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each flag
contains all bits of the flags below it.

Request shape strides suboffsets
PyBUF_INDIRECT

yes yes if needed

PyBUF_STRIDES
yes yes NULL

PyBUF_ND
yes NULL NULL

PyBUF_SIMPLE
NULL NULL NULL

7.6. Buffer Protocol 69

The Python/C API, Release 3.7.17

contiguity requests

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information, the
buffer must be C-contiguous.

Request shape strides suboffsets contig
PyBUF_C_CONTIGUOUS

yes yes NULL C

PyBUF_F_CONTIGUOUS
yes yes NULL F

PyBUF_ANY_CONTIGUOUS
yes yes NULL C or F

PyBUF_ND
yes NULL NULL C

compound requests

All possible requests are fully defined by some combination of the flags in the previous section. For convenience, the
buffer protocol provides frequently used combinations as single flags.
In the following table U stands for undefined contiguity. The consumer would have to call
PyBuffer_IsContiguous() to determine contiguity.

Request shape strides suboffsets contig readonly format
PyBUF_FULL

yes yes if needed U 0 yes

PyBUF_FULL_RO
yes yes if needed U 1 or 0 yes

PyBUF_RECORDS
yes yes NULL U 0 yes

PyBUF_RECORDS_RO
yes yes NULL U 1 or 0 yes

PyBUF_STRIDED
yes yes NULL U 0 NULL

PyBUF_STRIDED_RO
yes yes NULL U 1 or 0 NULL

PyBUF_CONTIG
yes NULL NULL C 0 NULL

PyBUF_CONTIG_RO
yes NULL NULL C 1 or 0 NULL

70 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.17

7.6.3 Complex arrays

NumPy-style: shape and strides

The logical structure of NumPy-style arrays is defined by itemsize, ndim, shape and strides.
If ndim == 0, the memory location pointed to by buf is interpreted as a scalar of size itemsize. In that case, both
shape and strides are NULL.
If strides is NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must access
an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1];
item = *((typeof(item) *)ptr);

As noted above, buf can point to any location within the actual memory block. An exporter can check the validity of a
buffer with this function:

def verify_structure(memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within

the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem

"""
if offset % itemsize:

return False
if offset < 0 or offset+itemsize > memlen:

return False
if any(v % itemsize for v in strides):

return False

if ndim <= 0:
return ndim == 0 and not shape and not strides

if 0 in shape:
return True

imin = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] <= 0)

imax = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] > 0)

return 0 <= offset+imin and offset+imax+itemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the next
element in a dimension. For example, the regular three-dimensional C-array char v[2][2][3] can also be viewed
as an array of 2 pointers to 2 two-dimensional arrays: char (*v[2])[2][3]. In suboffsets representation, those two
pointers can be embedded at the start of buf, pointing to two char x[2][3] arrays that can be located anywhere in
memory.
Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when there
are both non-NULL strides and suboffsets:

7.6. Buffer Protocol 71

The Python/C API, Release 3.7.17

void *get_item_pointer(int ndim, void *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; i++) {

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {

pointer = *((char**)pointer) + suboffsets[i];
}

}
return (void*)pointer;

}

7.6.4 Buffer-related functions

int PyObject_CheckBuffer(PyObject *obj)
Return 1 if obj supports the buffer interface otherwise 0. When 1 is returned, it doesn’t guarantee that
PyObject_GetBuffer() will succeed. This function always succeeds.

int PyObject_GetBuffer(PyObject *exporter, Py_buffer *view, int flags)
Send a request to exporter to fill in view as specified by flags. If the exporter cannot provide a buffer of the exact
type, it MUST raise PyExc_BufferError, set view->obj to NULL and return -1.
On success, fill in view, set view->obj to a new reference to exporter and return 0. In the case of chained buffer
providers that redirect requests to a single object, view->objMAY refer to this object instead of exporter (See
Buffer Object Structures).
Successful calls to PyObject_GetBuffer()must be paired with calls to PyBuffer_Release(), similar
to malloc() and free(). Thus, after the consumer is done with the buffer, PyBuffer_Release() must
be called exactly once.

void PyBuffer_Release(Py_buffer *view)
Release the buffer view and decrement the reference count for view->obj. This function MUST be called when
the buffer is no longer being used, otherwise reference leaks may occur.
It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer().

Py_ssize_t PyBuffer_SizeFromFormat(const char *)
Return the implied itemsize from format. This function is not yet implemented.

int PyBuffer_IsContiguous(Py_buffer *view, char order)
Return 1 if the memory defined by the view is C-style (order is 'C') or Fortran-style (order is 'F') contiguous or
either one (order is 'A'). Return 0 otherwise. This function always succeeds.

void* PyBuffer_GetPointer(Py_buffer *view, Py_ssize_t *indices)
Get thememory area pointed to by the indices inside the given view. indicesmust point to an array ofview->ndim
indices.

int PyBuffer_FromContiguous(Py_buffer *view, void *buf, Py_ssize_t len, char fort)
Copy contiguous len bytes from buf to view. fort can be 'C' or 'F' (for C-style or Fortran-style ordering). 0 is
returned on success, -1 on error.

int PyBuffer_ToContiguous(void *buf, Py_buffer *src, Py_ssize_t len, char order)
Copy len bytes from src to its contiguous representation in buf. order can be 'C' or 'F' or 'A' (for C-style or
Fortran-style ordering or either one). 0 is returned on success, -1 on error.
This function fails if len != src->len.

72 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.17

void PyBuffer_FillContiguousStrides(int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize,
char order)

Fill the strides array with byte-strides of a contiguous (C-style if order is 'C' or Fortran-style if order is 'F') array
of the given shape with the given number of bytes per element.

int PyBuffer_FillInfo(Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly,
int flags)

Handle buffer requests for an exporter that wants to expose buf of size lenwith writability set according to readonly.
buf is interpreted as a sequence of unsigned bytes.
The flags argument indicates the request type. This function always fills in view as specified by flags, unless buf has
been designated as read-only and PyBUF_WRITABLE is set in flags.
On success, set view->obj to a new reference to exporter and return 0. Otherwise, raise
PyExc_BufferError, set view->obj to NULL and return -1;
If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must be
passed unmodified. Otherwise, exporter MUST be NULL.

7.7 Old Buffer Protocol

Deprecated since version 3.0.
These functions were part of the “old buffer protocol” API in Python 2. In Python 3, this protocol doesn’t exist anymore
but the functions are still exposed to ease porting 2.x code. They act as a compatibility wrapper around the new buffer
protocol, but they don’t give you control over the lifetime of the resources acquired when a buffer is exported.
Therefore, it is recommended that you call PyObject_GetBuffer() (or the y* or w* format codes with the
PyArg_ParseTuple() family of functions) to get a buffer view over an object, and PyBuffer_Release()
when the buffer view can be released.
int PyObject_AsCharBuffer(PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)

Returns a pointer to a read-only memory location usable as character-based input. The obj argument must sup-
port the single-segment character buffer interface. On success, returns 0, sets buffer to the memory location and
buffer_len to the buffer length. Returns -1 and sets a TypeError on error.

int PyObject_AsReadBuffer(PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a read-only memory location containing arbitrary data. The obj argument must support the
single-segment readable buffer interface. On success, returns 0, sets buffer to the memory location and buffer_len
to the buffer length. Returns -1 and sets a TypeError on error.

int PyObject_CheckReadBuffer(PyObject *o)
Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns 0. This function always
succeeds.
Note that this function tries to get and release a buffer, and exceptions which occur while calling corresponding
functions will get suppressed. To get error reporting use PyObject_GetBuffer() instead.

int PyObject_AsWriteBuffer(PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a writable memory location. The obj argument must support the single-segment, character
buffer interface. On success, returns 0, sets buffer to the memory location and buffer_len to the buffer length.
Returns -1 and sets a TypeError on error.

7.7. Old Buffer Protocol 73

The Python/C API, Release 3.7.17

74 Chapter 7. Abstract Objects Layer

CHAPTER

EIGHT

CONCRETE OBJECTS LAYER

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is not
a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you must
perform a type check first; for example, to check that an object is a dictionary, use PyDict_Check(). The chapter is
structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects which are passed
in, many of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can
cause memory access violations and immediate termination of the interpreter.

8.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

8.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType_Type
This is the type object for type objects; it is the same object as type in the Python layer.

int PyType_Check(PyObject *o)
Return true if the object o is a type object, including instances of types derived from the standard type object.
Return false in all other cases.

int PyType_CheckExact(PyObject *o)
Return true if the object o is a type object, but not a subtype of the standard type object. Return false in all other
cases.

unsigned int PyType_ClearCache()
Clear the internal lookup cache. Return the current version tag.

unsigned long PyType_GetFlags(PyTypeObject* type)
Return the tp_flags member of type. This function is primarily meant for use with Py_LIMITED_API; the
individual flag bits are guaranteed to be stable across Python releases, but access to tp_flags itself is not part
of the limited API.
New in version 3.2.
Changed in version 3.4: The return type is now unsigned long rather than long.

75

The Python/C API, Release 3.7.17

void PyType_Modified(PyTypeObject *type)
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after any
manual modification of the attributes or base classes of the type.

int PyType_HasFeature(PyTypeObject *o, int feature)
Return true if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC(PyTypeObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py_TPFLAGS_HAVE_GC.

int PyType_IsSubtype(PyTypeObject *a, PyTypeObject *b)
Return true if a is a subtype of b.
This function only checks for actual subtypes, which means that __subclasscheck__() is not called on b.
Call PyObject_IsSubclass() to do the same check that issubclass() would do.

PyObject* PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. Generic handler for the tp_alloc slot of a type object. Use Python’s default
memory allocation mechanism to allocate a new instance and initialize all its contents to NULL.

PyObject* PyType_GenericNew(PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. Generic handler for the tp_new slot of a type object. Create a new instance using
the type’s tp_alloc slot.

int PyType_Ready(PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’s base class. Return 0 on success, or return -1 and sets an
exception on error.

PyObject* PyType_FromSpec(PyType_Spec *spec)
Return value: New reference. Creates and returns a heap type object from the spec passed to the function.

PyObject* PyType_FromSpecWithBases(PyType_Spec *spec, PyObject *bases)
Return value: New reference. Creates and returns a heap type object from the spec. In addition to that, the created
heap type contains all types contained by the bases tuple as base types. This allows the caller to reference other
heap types as base types.
New in version 3.3.

void* PyType_GetSlot(PyTypeObject *type, int slot)
Return the function pointer stored in the given slot. If the result is NULL, this indicates that either the slot is
NULL, or that the function was called with invalid parameters. Callers will typically cast the result pointer into the
appropriate function type.
New in version 3.4.

8.1.2 The None Object

Note that the PyTypeObject for None is not directly exposed in the Python/C API. Since None is a singleton, testing
for object identity (using == in C) is sufficient. There is no PyNone_Check() function for the same reason.
PyObject* Py_None

The Python None object, denoting lack of value. This object has no methods. It needs to be treated just like any
other object with respect to reference counts.

Py_RETURN_NONE
Properly handle returning Py_None from within a C function (that is, increment the reference count of None and
return it.)

76 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

8.2 Numeric Objects

8.2.1 Integer Objects

All integers are implemented as “long” integer objects of arbitrary size.
On error, most PyLong_As* APIs return (return type)-1 which cannot be distinguished from a number. Use
PyErr_Occurred() to disambiguate.
PyLongObject

This subtype of PyObject represents a Python integer object.
PyTypeObject PyLong_Type

This instance of PyTypeObject represents the Python integer type. This is the same object as int in the Python
layer.

int PyLong_Check(PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongObject.

int PyLong_CheckExact(PyObject *p)
Return true if its argument is a PyLongObject, but not a subtype of PyLongObject.

PyObject* PyLong_FromLong(long v)
Return value: New reference. Return a new PyLongObject object from v, or NULL on failure.
The current implementation keeps an array of integer objects for all integers between -5 and 256, when you create
an int in that range you actually just get back a reference to the existing object. So it should be possible to change
the value of 1. I suspect the behaviour of Python in this case is undefined. :-)

PyObject* PyLong_FromUnsignedLong(unsigned long v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long, or NULL on
failure.

PyObject* PyLong_FromSsize_t(Py_ssize_t v)
Return value: New reference. Return a new PyLongObject object from a C Py_ssize_t, or NULL on failure.

PyObject* PyLong_FromSize_t(size_t v)
Return value: New reference. Return a new PyLongObject object from a C size_t, or NULL on failure.

PyObject* PyLong_FromLongLong(long long v)
Return value: New reference. Return a new PyLongObject object from a C long long, or NULL on failure.

PyObject* PyLong_FromUnsignedLongLong(unsigned long long v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long long, or
NULL on failure.

PyObject* PyLong_FromDouble(double v)
Return value: New reference. Return a new PyLongObject object from the integer part of v, or NULL on failure.

PyObject* PyLong_FromString(const char *str, char **pend, int base)
Return value: New reference. Return a new PyLongObject based on the string value in str, which is interpreted
according to the radix in base. If pend is non-NULL, *pend will point to the first character in str which follows the
representation of the number. If base is 0, str is interpreted using the integers definition; in this case, leading zeros
in a non-zero decimal number raises a ValueError. If base is not 0, it must be between 2 and 36, inclusive.
Leading spaces and single underscores after a base specifier and between digits are ignored. If there are no digits,
ValueError will be raised.

PyObject* PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference. Convert a sequence of Unicode digits to a Python integer value. The Unicode

8.2. Numeric Objects 77

The Python/C API, Release 3.7.17

string is first encoded to a byte string using PyUnicode_EncodeDecimal() and then converted using
PyLong_FromString().
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyLong_FromUnicodeObject().

PyObject* PyLong_FromUnicodeObject(PyObject *u, int base)
Return value: New reference. Convert a sequence of Unicode digits in the string u to a Python integer value. The
Unicode string is first encoded to a byte string using PyUnicode_EncodeDecimal() and then converted
using PyLong_FromString().
New in version 3.3.

PyObject* PyLong_FromVoidPtr(void *p)
Return value: New reference. Create a Python integer from the pointer p. The pointer value can be retrieved from
the resulting value using PyLong_AsVoidPtr().

long PyLong_AsLong(PyObject *obj)
Return a C long representation of obj. If obj is not an instance of PyLongObject, first call its __int__()
method (if present) to convert it to a PyLongObject.
Raise OverflowError if the value of obj is out of range for a long.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.

long PyLong_AsLongAndOverflow(PyObject *obj, int *overflow)
Return a C long representation of obj. If obj is not an instance of PyLongObject, first call its __int__()
method (if present) to convert it to a PyLongObject.
If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or -1, respectively, and
return -1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return -1 as usual.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.

long long PyLong_AsLongLong(PyObject *obj)
Return a C long long representation of obj. If obj is not an instance of PyLongObject, first call its
__int__() method (if present) to convert it to a PyLongObject.
Raise OverflowError if the value of obj is out of range for a long long.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.

long long PyLong_AsLongLongAndOverflow(PyObject *obj, int *overflow)
Return a C long long representation of obj. If obj is not an instance of PyLongObject, first call its
__int__() method (if present) to convert it to a PyLongObject.
If the value of obj is greater than PY_LLONG_MAX or less than PY_LLONG_MIN, set *overflow to 1 or -1,
respectively, and return -1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and
return -1 as usual.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.
New in version 3.2.

Py_ssize_t PyLong_AsSsize_t(PyObject *pylong)
Return a C Py_ssize_t representation of pylong. pylong must be an instance of PyLongObject.
Raise OverflowError if the value of pylong is out of range for a Py_ssize_t.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.

unsigned long PyLong_AsUnsignedLong(PyObject *pylong)
Return a C unsigned long representation of pylong. pylong must be an instance of PyLongObject.
Raise OverflowError if the value of pylong is out of range for a unsigned long.

78 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

Returns (unsigned long)-1 on error. Use PyErr_Occurred() to disambiguate.
size_t PyLong_AsSize_t(PyObject *pylong)

Return a C size_t representation of pylong. pylong must be an instance of PyLongObject.
Raise OverflowError if the value of pylong is out of range for a size_t.
Returns (size_t)-1 on error. Use PyErr_Occurred() to disambiguate.

unsigned long long PyLong_AsUnsignedLongLong(PyObject *pylong)
Return a C unsigned long long representation of pylong. pylongmust be an instance of PyLongObject.
Raise OverflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long)-1 on error. Use PyErr_Occurred() to disambiguate.
Changed in version 3.1: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask(PyObject *obj)
Return a C unsigned long representation of obj. If obj is not an instance of PyLongObject, first call its
__int__() method (if present) to convert it to a PyLongObject.
If the value of obj is out of range for anunsigned long, return the reduction of that valuemoduloULONG_MAX
+ 1.
Returns (unsigned long)-1 on error. Use PyErr_Occurred() to disambiguate.

unsigned long long PyLong_AsUnsignedLongLongMask(PyObject *obj)
Return a C unsigned long long representation of obj. If obj is not an instance of PyLongObject, first
call its __int__() method (if present) to convert it to a PyLongObject.
If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
PY_ULLONG_MAX + 1.
Returns (unsigned long long)-1 on error. Use PyErr_Occurred() to disambiguate.

double PyLong_AsDouble(PyObject *pylong)
Return a C double representation of pylong. pylong must be an instance of PyLongObject.
Raise OverflowError if the value of pylong is out of range for a double.
Returns -1.0 on error. Use PyErr_Occurred() to disambiguate.

void* PyLong_AsVoidPtr(PyObject *pylong)
Convert a Python integer pylong to a C void pointer. If pylong cannot be converted, an OverflowError
will be raised. This is only assured to produce a usable void pointer for values created with
PyLong_FromVoidPtr().
Returns NULL on error. Use PyErr_Occurred() to disambiguate.

8.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two booleans, Py_False and Py_True.
As such, the normal creation and deletion functions don’t apply to booleans. The following macros are available, however.

int PyBool_Check(PyObject *o)
Return true if o is of type PyBool_Type.

PyObject* Py_False
The Python False object. This object has no methods. It needs to be treated just like any other object with respect
to reference counts.

8.2. Numeric Objects 79

The Python/C API, Release 3.7.17

PyObject* Py_True
The Python True object. This object has no methods. It needs to be treated just like any other object with respect
to reference counts.

Py_RETURN_FALSE
Return Py_False from a function, properly incrementing its reference count.

Py_RETURN_TRUE
Return Py_True from a function, properly incrementing its reference count.

PyObject* PyBool_FromLong(long v)
Return value: New reference. Return a new reference to Py_True or Py_False depending on the truth value of
v.

8.2.3 Floating Point Objects

PyFloatObject
This subtype of PyObject represents a Python floating point object.

PyTypeObject PyFloat_Type
This instance of PyTypeObject represents the Python floating point type. This is the same object as float in
the Python layer.

int PyFloat_Check(PyObject *p)
Return true if its argument is a PyFloatObject or a subtype of PyFloatObject.

int PyFloat_CheckExact(PyObject *p)
Return true if its argument is a PyFloatObject, but not a subtype of PyFloatObject.

PyObject* PyFloat_FromString(PyObject *str)
Return value: New reference. Create a PyFloatObject object based on the string value in str, or NULL on
failure.

PyObject* PyFloat_FromDouble(double v)
Return value: New reference. Create a PyFloatObject object from v, or NULL on failure.

double PyFloat_AsDouble(PyObject *pyfloat)
Return a C double representation of the contents of pyfloat. If pyfloat is not a Python floating point object but
has a __float__() method, this method will first be called to convert pyfloat into a float. This method returns
-1.0 upon failure, so one should call PyErr_Occurred() to check for errors.

double PyFloat_AS_DOUBLE(PyObject *pyfloat)
Return a C double representation of the contents of pyfloat, but without error checking.

PyObject* PyFloat_GetInfo(void)
Return value: New reference. Return a structseq instance which contains information about the precision, minimum
and maximum values of a float. It’s a thin wrapper around the header file float.h.

double PyFloat_GetMax()
Return the maximum representable finite float DBL_MAX as C double.

double PyFloat_GetMin()
Return the minimum normalized positive float DBL_MIN as C double.

int PyFloat_ClearFreeList()
Clear the float free list. Return the number of items that could not be freed.

80 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

8.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the Python
object exposed to Python programs, and the other is a C structure which represents the actual complex number value.
The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by value rather than
dereferencing them through pointers. This is consistent throughout the API.
Py_complex

The C structure which corresponds to the value portion of a Python complex number object. Most of the functions
for dealing with complex number objects use structures of this type as input or output values, as appropriate. It is
defined as:

typedef struct {
double real;
double imag;

} Py_complex;

Py_complex _Py_c_sum(Py_complex left, Py_complex right)
Return the sum of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_diff(Py_complex left, Py_complex right)
Return the difference between two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_neg(Py_complex complex)
Return the negation of the complex number complex, using the C Py_complex representation.

Py_complex _Py_c_prod(Py_complex left, Py_complex right)
Return the product of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_quot(Py_complex dividend, Py_complex divisor)
Return the quotient of two complex numbers, using the C Py_complex representation.
If divisor is null, this method returns zero and sets errno to EDOM.

Py_complex _Py_c_pow(Py_complex num, Py_complex exp)
Return the exponentiation of num by exp, using the C Py_complex representation.
If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

Complex Numbers as Python Objects

PyComplexObject
This subtype of PyObject represents a Python complex number object.

PyTypeObject PyComplex_Type
This instance of PyTypeObject represents the Python complex number type. It is the same object as complex
in the Python layer.

int PyComplex_Check(PyObject *p)
Return true if its argument is a PyComplexObject or a subtype of PyComplexObject.

int PyComplex_CheckExact(PyObject *p)
Return true if its argument is a PyComplexObject, but not a subtype of PyComplexObject.

8.2. Numeric Objects 81

The Python/C API, Release 3.7.17

PyObject* PyComplex_FromCComplex(Py_complex v)
Return value: New reference. Create a new Python complex number object from a C Py_complex value.

PyObject* PyComplex_FromDoubles(double real, double imag)
Return value: New reference. Return a new PyComplexObject object from real and imag.

double PyComplex_RealAsDouble(PyObject *op)
Return the real part of op as a C double.

double PyComplex_ImagAsDouble(PyObject *op)
Return the imaginary part of op as a C double.

Py_complex PyComplex_AsCComplex(PyObject *op)
Return the Py_complex value of the complex number op.
If op is not a Python complex number object but has a __complex__()method, this method will first be called
to convert op to a Python complex number object. Upon failure, this method returns -1.0 as a real value.

8.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific kinds
of sequence objects that are intrinsic to the Python language.

8.3.1 Bytes Objects

These functions raise TypeError when expecting a bytes parameter and are called with a non-bytes parameter.
PyBytesObject

This subtype of PyObject represents a Python bytes object.
PyTypeObject PyBytes_Type

This instance of PyTypeObject represents the Python bytes type; it is the same object as bytes in the Python
layer.

int PyBytes_Check(PyObject *o)
Return true if the object o is a bytes object or an instance of a subtype of the bytes type.

int PyBytes_CheckExact(PyObject *o)
Return true if the object o is a bytes object, but not an instance of a subtype of the bytes type.

PyObject* PyBytes_FromString(const char *v)
Return value: New reference. Return a new bytes object with a copy of the string v as value on success, and NULL
on failure. The parameter v must not be NULL; it will not be checked.

PyObject* PyBytes_FromStringAndSize(const char *v, Py_ssize_t len)
Return value: New reference. Return a new bytes object with a copy of the string v as value and length len on
success, and NULL on failure. If v is NULL, the contents of the bytes object are uninitialized.

PyObject* PyBytes_FromFormat(const char *format, ...)
Return value: New reference. Take a C printf()-style format string and a variable number of arguments,
calculate the size of the resulting Python bytes object and return a bytes object with the values formatted into it.
The variable arguments must be C types and must correspond exactly to the format characters in the format string.
The following format characters are allowed:

82 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

Format Characters Type Comment
%% n/a The literal % character.
%c int A single byte, represented as a C int.
%d int Equivalent to printf("%d").1
%u unsigned int Equivalent to printf("%u").1
%ld long Equivalent to printf("%ld").1
%lu unsigned long Equivalent to printf("%lu").1
%zd Py_ssize_t Equivalent to printf("%zd").1
%zu size_t Equivalent to printf("%zu").1
%i int Equivalent to printf("%i").1
%x int Equivalent to printf("%x").1
%s const char* A null-terminated C character array.
%p const void* The hex representation of a C pointer. Mostly equivalent to

printf("%p") except that it is guaranteed to start with the literal
0x regardless of what the platform’s printf yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result object, and
any extra arguments discarded.

PyObject* PyBytes_FromFormatV(const char *format, va_list vargs)
Return value: New reference. Identical to PyBytes_FromFormat() except that it takes exactly two arguments.

PyObject* PyBytes_FromObject(PyObject *o)
Return value: New reference. Return the bytes representation of object o that implements the buffer protocol.

Py_ssize_t PyBytes_Size(PyObject *o)
Return the length of the bytes in bytes object o.

Py_ssize_t PyBytes_GET_SIZE(PyObject *o)
Macro form of PyBytes_Size() but without error checking.

char* PyBytes_AsString(PyObject *o)
Return a pointer to the contents of o. The pointer refers to the internal buffer of o, which consists of len(o) + 1
bytes. The last byte in the buffer is always null, regardless of whether there are any other null bytes. The data must
not be modified in any way, unless the object was just created using PyBytes_FromStringAndSize(NULL,
size). It must not be deallocated. If o is not a bytes object at all, PyBytes_AsString() returns NULL and
raises TypeError.

char* PyBytes_AS_STRING(PyObject *string)
Macro form of PyBytes_AsString() but without error checking.

int PyBytes_AsStringAndSize(PyObject *obj, char **buffer, Py_ssize_t *length)
Return the null-terminated contents of the object obj through the output variables buffer and length.
If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns -1 and a
ValueError is raised.
The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not
counted in length). The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize(NULL, size). It must not be deallocated. If obj is not a bytes object at
all, PyBytes_AsStringAndSize() returns -1 and raises TypeError.
Changed in version 3.5: Previously, TypeError was raised when embedded null bytes were encountered in the
bytes object.

void PyBytes_Concat(PyObject **bytes, PyObject *newpart)
Create a new bytes object in *bytes containing the contents of newpart appended to bytes; the caller will own the

1 For integer specifiers (d, u, ld, lu, zd, zu, i, x): the 0-conversion flag has effect even when a precision is given.

8.3. Sequence Objects 83

The Python/C API, Release 3.7.17

new reference. The reference to the old value of bytes will be stolen. If the new object cannot be created, the old
reference to bytes will still be discarded and the value of *bytes will be set to NULL; the appropriate exception will
be set.

void PyBytes_ConcatAndDel(PyObject **bytes, PyObject *newpart)
Create a new bytes object in *bytes containing the contents of newpart appended to bytes. This version decrements
the reference count of newpart.

int _PyBytes_Resize(PyObject **bytes, Py_ssize_t newsize)
A way to resize a bytes object even though it is “immutable”. Only use this to build up a brand new bytes object;
don’t use this if the bytes may already be known in other parts of the code. It is an error to call this function if
the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an lvalue (it may
be written into), and the new size desired. On success, *bytes holds the resized bytes object and 0 is returned;
the address in *bytes may differ from its input value. If the reallocation fails, the original bytes object at *bytes is
deallocated, *bytes is set to NULL, MemoryError is set, and -1 is returned.

8.3.2 Byte Array Objects

PyByteArrayObject
This subtype of PyObject represents a Python bytearray object.

PyTypeObject PyByteArray_Type
This instance of PyTypeObject represents the Python bytearray type; it is the same object as bytearray in
the Python layer.

Type check macros

int PyByteArray_Check(PyObject *o)
Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type.

int PyByteArray_CheckExact(PyObject *o)
Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type.

Direct API functions

PyObject* PyByteArray_FromObject(PyObject *o)
Return value: New reference. Return a new bytearray object from any object, o, that implements the buffer protocol.

PyObject* PyByteArray_FromStringAndSize(const char *string, Py_ssize_t len)
Return value: New reference. Create a new bytearray object from string and its length, len. On failure, NULL is
returned.

PyObject* PyByteArray_Concat(PyObject *a, PyObject *b)
Return value: New reference. Concat bytearrays a and b and return a new bytearray with the result.

Py_ssize_t PyByteArray_Size(PyObject *bytearray)
Return the size of bytearray after checking for a NULL pointer.

char* PyByteArray_AsString(PyObject *bytearray)
Return the contents of bytearray as a char array after checking for a NULL pointer. The returned array always has
an extra null byte appended.

int PyByteArray_Resize(PyObject *bytearray, Py_ssize_t len)
Resize the internal buffer of bytearray to len.

84 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

Macros

These macros trade safety for speed and they don’t check pointers.
char* PyByteArray_AS_STRING(PyObject *bytearray)

Macro version of PyByteArray_AsString().
Py_ssize_t PyByteArray_GET_SIZE(PyObject *bytearray)

Macro version of PyByteArray_Size().

8.3.3 Unicode Objects and Codecs

Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in order
to allow handling the complete range of Unicode characters while staying memory efficient. There are special cases for
strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112 (which is the
full Unicode range).
Py_UNICODE* and UTF-8 representations are created on demand and cached in the Unicode object. The
Py_UNICODE* representation is deprecated and inefficient; it should be avoided in performance- or memory-sensitive
situations.
Due to the transition between the old APIs and the new APIs, Unicode objects can internally be in two states depending
on how they were created:

• “canonical” Unicode objects are all objects created by a non-deprecated Unicode API. They use the most efficient
representation allowed by the implementation.

• “legacy” Unicode objects have been created through one of the deprecated APIs (typically
PyUnicode_FromUnicode()) and only bear the Py_UNICODE* representation; you will have to call
PyUnicode_READY() on them before calling any other API.

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:
Py_UCS4
Py_UCS2
Py_UCS1

These types are typedefs for unsigned integer types wide enough to contain characters of 32 bits, 16 bits and 8 bits,
respectively. When dealing with single Unicode characters, use Py_UCS4.
New in version 3.3.

Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.
Changed in version 3.3: In previous versions, this was a 16-bit type or a 32-bit type depending on whether you
selected a “narrow” or “wide” Unicode version of Python at build time.

PyASCIIObject
PyCompactUnicodeObject
PyUnicodeObject

These subtypes of PyObject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return PyObject pointers.
New in version 3.3.

8.3. Sequence Objects 85

https://www.python.org/dev/peps/pep-0393

The Python/C API, Release 3.7.17

PyTypeObject PyUnicode_Type
This instance of PyTypeObject represents the Python Unicode type. It is exposed to Python code as str.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of Unicode
objects:
int PyUnicode_Check(PyObject *o)

Return true if the object o is a Unicode object or an instance of a Unicode subtype.
int PyUnicode_CheckExact(PyObject *o)

Return true if the object o is a Unicode object, but not an instance of a subtype.
int PyUnicode_READY(PyObject *o)

Ensure the string object o is in the “canonical” representation. This is required before using any of the access
macros described below.
Returns 0 on success and -1 with an exception set on failure, which in particular happens if memory allocation
fails.
New in version 3.3.

Py_ssize_t PyUnicode_GET_LENGTH(PyObject *o)
Return the length of the Unicode string, in code points. o has to be a Unicode object in the “canonical” represen-
tation (not checked).
New in version 3.3.

Py_UCS1* PyUnicode_1BYTE_DATA(PyObject *o)
Py_UCS2* PyUnicode_2BYTE_DATA(PyObject *o)
Py_UCS4* PyUnicode_4BYTE_DATA(PyObject *o)

Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct char-
acter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_KIND() to select the right macro. Make sure PyUnicode_READY() has been called before
accessing this.
New in version 3.3.

PyUnicode_WCHAR_KIND
PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND

Return values of the PyUnicode_KIND() macro.
New in version 3.3.

int PyUnicode_KIND(PyObject *o)
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Unicode
object uses to store its data. o has to be a Unicode object in the “canonical” representation (not checked).
New in version 3.3.

void* PyUnicode_DATA(PyObject *o)
Return a void pointer to the raw Unicode buffer. o has to be a Unicode object in the “canonical” representation
(not checked).
New in version 3.3.

void PyUnicode_WRITE(int kind, void *data, Py_ssize_t index, Py_UCS4 value)
Write into a canonical representation data (as obtained with PyUnicode_DATA()). This macro does not do
any sanity checks and is intended for usage in loops. The caller should cache the kind value and data pointer as
obtained from other macro calls. index is the index in the string (starts at 0) and value is the new code point value
which should be written to that location.

86 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

New in version 3.3.
Py_UCS4 PyUnicode_READ(int kind, void *data, Py_ssize_t index)

Read a code point from a canonical representation data (as obtained with PyUnicode_DATA()). No checks or
ready calls are performed.
New in version 3.3.

Py_UCS4 PyUnicode_READ_CHAR(PyObject *o, Py_ssize_t index)
Read a character from a Unicode object o, which must be in the “canonical” representation. This is less efficient
than PyUnicode_READ() if you do multiple consecutive reads.
New in version 3.3.

PyUnicode_MAX_CHAR_VALUE(PyObject *o)
Return the maximum code point that is suitable for creating another string based on o, which must be in the
“canonical” representation. This is always an approximation but more efficient than iterating over the string.
New in version 3.3.

int PyUnicode_ClearFreeList()
Clear the free list. Return the total number of freed items.

Py_ssize_t PyUnicode_GET_SIZE(PyObject *o)
Return the size of the deprecated Py_UNICODE representation, in code units (this includes surrogate pairs as 2
units). o has to be a Unicode object (not checked).
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using PyUnicode_GET_LENGTH().

Py_ssize_t PyUnicode_GET_DATA_SIZE(PyObject *o)
Return the size of the deprecatedPy_UNICODE representation in bytes. o has to be aUnicode object (not checked).
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using PyUnicode_GET_LENGTH().

Py_UNICODE* PyUnicode_AS_UNICODE(PyObject *o)
const char* PyUnicode_AS_DATA(PyObject *o)

Return a pointer to a Py_UNICODE representation of the object. The returned buffer is always terminated with an
extra null code point. It may also contain embedded null code points, which would cause the string to be truncated
when used in most C functions. The AS_DATA form casts the pointer to const char *. The o argument has
to be a Unicode object (not checked).
Changed in version 3.3: This macro is now inefficient – because in many cases the Py_UNICODE representation
does not exist and needs to be created – and can fail (return NULLwith an exception set). Try to port the code to use
the new PyUnicode_nBYTE_DATA() macros or use PyUnicode_WRITE() or PyUnicode_READ().
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using the PyUnicode_nBYTE_DATA() family of macros.

Unicode Character Properties

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.
int Py_UNICODE_ISSPACE(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a whitespace character.
int Py_UNICODE_ISLOWER(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a lowercase character.

8.3. Sequence Objects 87

The Python/C API, Release 3.7.17

int Py_UNICODE_ISUPPER(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is an uppercase character.

int Py_UNICODE_ISTITLE(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a titlecase character.

int Py_UNICODE_ISLINEBREAK(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a linebreak character.

int Py_UNICODE_ISDECIMAL(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a decimal character.

int Py_UNICODE_ISDIGIT(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a digit character.

int Py_UNICODE_ISNUMERIC(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a numeric character.

int Py_UNICODE_ISALPHA(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is an alphabetic character.

int Py_UNICODE_ISALNUM(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is an alphanumeric character.

int Py_UNICODE_ISPRINTABLE(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space (0x20) which is
considered printable. (Note that printable characters in this context are those which should not be escaped when
repr() is invoked on a string. It has no bearing on the handling of strings written to sys.stdout or sys.
stderr.)

These APIs can be used for fast direct character conversions:
Py_UNICODE Py_UNICODE_TOLOWER(Py_UNICODE ch)

Return the character ch converted to lower case.
Deprecated since version 3.3: This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOUPPER(Py_UNICODE ch)
Return the character ch converted to upper case.
Deprecated since version 3.3: This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOTITLE(Py_UNICODE ch)
Return the character ch converted to title case.
Deprecated since version 3.3: This function uses simple case mappings.

int Py_UNICODE_TODECIMAL(Py_UNICODE ch)
Return the character ch converted to a decimal positive integer. Return -1 if this is not possible. This macro does
not raise exceptions.

int Py_UNICODE_TODIGIT(Py_UNICODE ch)
Return the character ch converted to a single digit integer. Return -1 if this is not possible. This macro does not
raise exceptions.

double Py_UNICODE_TONUMERIC(Py_UNICODE ch)
Return the character ch converted to a double. Return -1.0 if this is not possible. This macro does not raise
exceptions.

These APIs can be used to work with surrogates:
Py_UNICODE_IS_SURROGATE(ch)

Check if ch is a surrogate (0xD800 <= ch <= 0xDFFF).

88 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

Py_UNICODE_IS_HIGH_SURROGATE(ch)
Check if ch is a high surrogate (0xD800 <= ch <= 0xDBFF).

Py_UNICODE_IS_LOW_SURROGATE(ch)
Check if ch is a low surrogate (0xDC00 <= ch <= 0xDFFF).

Py_UNICODE_JOIN_SURROGATES(high, low)
Join two surrogate characters and return a single Py_UCS4 value. high and low are respectively the leading and
trailing surrogates in a surrogate pair.

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:
PyObject* PyUnicode_New(Py_ssize_t size, Py_UCS4 maxchar)

Return value: New reference. Create a new Unicode object. maxchar should be the true maximum code point to
be placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence 127, 255,
65535, 1114111.
This is the recommended way to allocate a newUnicode object. Objects created using this function are not resizable.
New in version 3.3.

PyObject* PyUnicode_FromKindAndData(int kind, const void *buffer, Py_ssize_t size)
Return value: New reference. Create a new Unicode object with the given kind (possible values are
PyUnicode_1BYTE_KIND etc., as returned by PyUnicode_KIND()). The buffer must point to an array
of size units of 1, 2 or 4 bytes per character, as given by the kind.
New in version 3.3.

PyObject* PyUnicode_FromStringAndSize(const char *u, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the char buffer u. The bytes will be interpreted as being
UTF-8 encoded. The buffer is copied into the new object. If the buffer is not NULL, the return value might be a
shared object, i.e. modification of the data is not allowed.
If u is NULL, this function behaves like PyUnicode_FromUnicode() with the buffer set to NULL. This usage
is deprecated in favor of PyUnicode_New().

PyObject *PyUnicode_FromString(const char *u)
Return value: New reference. Create a Unicode object from a UTF-8 encoded null-terminated char buffer u.

PyObject* PyUnicode_FromFormat(const char *format, ...)
Return value: New reference. Take a C printf()-style format string and a variable number of arguments,
calculate the size of the resulting Python Unicode string and return a string with the values formatted into it. The
variable arguments must be C types and must correspond exactly to the format characters in the format ASCII-
encoded string. The following format characters are allowed:

8.3. Sequence Objects 89

The Python/C API, Release 3.7.17

Format Characters Type Comment
%% n/a The literal % character.
%c int A single character, represented as a C int.
%d int Equivalent to printf("%d").1
%u unsigned int Equivalent to printf("%u").1
%ld long Equivalent to printf("%ld").1
%li long Equivalent to printf("%li").1
%lu unsigned long Equivalent to printf("%lu").1
%lld long long Equivalent to printf("%lld").1
%lli long long Equivalent to printf("%lli").1
%llu unsigned long long Equivalent to printf("%llu").1
%zd Py_ssize_t Equivalent to printf("%zd").1
%zi Py_ssize_t Equivalent to printf("%zi").1
%zu size_t Equivalent to printf("%zu").1
%i int Equivalent to printf("%i").1
%x int Equivalent to printf("%x").1
%s const char* A null-terminated C character array.
%p const void* The hex representation of a C pointer. Mostly equivalent to

printf("%p") except that it is guaranteed to start with
the literal 0x regardless of what the platform’s printf
yields.

%A PyObject* The result of calling ascii().
%U PyObject* A Unicode object.
%V PyObject*, const char* A Unicode object (which may be NULL) and a

null-terminated C character array as a second parameter
(which will be used, if the first parameter is NULL).

%S PyObject* The result of calling PyObject_Str().
%R PyObject* The result of calling PyObject_Repr().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string, and
any extra arguments discarded.

Note: The width formatter unit is number of characters rather than bytes. The precision formatter unit is number
of bytes for "%s" and "%V" (if the PyObject* argument is NULL), and a number of characters for "%A",
"%U", "%S", "%R" and "%V" (if the PyObject* argument is not NULL).

Changed in version 3.2: Support for "%lld" and "%llu" added.
Changed in version 3.3: Support for "%li", "%lli" and "%zi" added.
Changed in version 3.4: Support width and precision formatter for "%s", "%A", "%U", "%V", "%S", "%R"
added.

PyObject* PyUnicode_FromFormatV(const char *format, va_list vargs)
Return value: New reference. Identical to PyUnicode_FromFormat() except that it takes exactly two argu-
ments.

PyObject* PyUnicode_FromEncodedObject(PyObject *obj, const char *encoding, const char *errors)
Return value: New reference. Decode an encoded object obj to a Unicode object.
bytes, bytearray and other bytes-like objects are decoded according to the given encoding and using the error
handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in Codecs for

1 For integer specifiers (d, u, ld, li, lu, lld, lli, llu, zd, zi, zu, i, x): the 0-conversion flag has effect even when a precision is given.

90 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

details).
All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

Py_ssize_t PyUnicode_GetLength(PyObject *unicode)
Return the length of the Unicode object, in code points.
New in version 3.3.

Py_ssize_t PyUnicode_CopyCharacters(PyObject *to, Py_ssize_t to_start, PyObject *from,
Py_ssize_t from_start, Py_ssize_t how_many)

Copy characters from oneUnicode object into another. This function performs character conversionwhen necessary
and falls back to memcpy() if possible. Returns -1 and sets an exception on error, otherwise returns the number
of copied characters.
New in version 3.3.

Py_ssize_t PyUnicode_Fill(PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode[start:start+length].
Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return -1 and raise an exception on error.
New in version 3.3.

int PyUnicode_WriteChar(PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
Write a character to a string. The string must have been created through PyUnicode_New(). Since Unicode
strings are supposed to be immutable, the string must not be shared, or have been hashed yet.
This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object can
be modified safely (i.e. that it its reference count is one).
New in version 3.3.

Py_UCS4 PyUnicode_ReadChar(PyObject *unicode, Py_ssize_t index)
Read a character from a string. This function checks that unicode is a Unicode object and the index is not out of
bounds, in contrast to the macro version PyUnicode_READ_CHAR().
New in version 3.3.

PyObject* PyUnicode_Substring(PyObject *str, Py_ssize_t start, Py_ssize_t end)
Return value: New reference. Return a substring of str, from character index start (included) to character index end
(excluded). Negative indices are not supported.
New in version 3.3.

Py_UCS4* PyUnicode_AsUCS4(PyObject *u, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)
Copy the string u into a UCS4 buffer, including a null character, if copy_null is set. Returns NULL and sets an
exception on error (in particular, a SystemError if buflen is smaller than the length of u). buffer is returned on
success.
New in version 3.3.

Py_UCS4* PyUnicode_AsUCS4Copy(PyObject *u)
Copy the string u into a newUCS4 buffer that is allocated usingPyMem_Malloc(). If this fails, NULL is returned
with a MemoryError set. The returned buffer always has an extra null code point appended.
New in version 3.3.

8.3. Sequence Objects 91

The Python/C API, Release 3.7.17

Deprecated Py_UNICODE APIs

Deprecated since version 3.3, will be removed in version 4.0.
These API functions are deprecated with the implementation of PEP 393. Extension modules can continue using them,
as they will not be removed in Python 3.x, but need to be aware that their use can now cause performance and memory
hits.
PyObject* PyUnicode_FromUnicode(const Py_UNICODE *u, Py_ssize_t size)

Return value: New reference. Create a Unicode object from the Py_UNICODE buffer u of the given size. u may
be NULL which causes the contents to be undefined. It is the user’s responsibility to fill in the needed data. The
buffer is copied into the new object.
If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting
Unicode object is only allowed when u is NULL.
If the buffer is NULL, PyUnicode_READY()must be called once the string content has been filled before using
any of the access macros such as PyUnicode_KIND().
Please migrate to using PyUnicode_FromKindAndData(), PyUnicode_FromWideChar() or
PyUnicode_New().

Py_UNICODE* PyUnicode_AsUnicode(PyObject *unicode)
Return a read-only pointer to the Unicode object’s internal Py_UNICODE buffer, or NULL on error. This will
create the Py_UNICODE* representation of the object if it is not yet available. The buffer is always terminated
with an extra null code point. Note that the resulting Py_UNICODE string may also contain embedded null code
points, which would cause the string to be truncated when used in most C functions.
Please migrate to using PyUnicode_AsUCS4(), PyUnicode_AsWideChar(),
PyUnicode_ReadChar() or similar new APIs.

PyObject* PyUnicode_TransformDecimalToASCII(Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Create a Unicode object by replacing all decimal digits in Py_UNICODE buffer of
the given size by ASCII digits 0–9 according to their decimal value. Return NULL if an exception occurs.

Py_UNICODE* PyUnicode_AsUnicodeAndSize(PyObject *unicode, Py_ssize_t *size)
Like PyUnicode_AsUnicode(), but also saves the Py_UNICODE() array length (excluding the extra null
terminator) in size. Note that the resulting Py_UNICODE* string may contain embedded null code points, which
would cause the string to be truncated when used in most C functions.
New in version 3.3.

Py_UNICODE* PyUnicode_AsUnicodeCopy(PyObject *unicode)
Create a copy of a Unicode string ending with a null code point. Return NULL and raise a MemoryError
exception on memory allocation failure, otherwise return a new allocated buffer (use PyMem_Free() to free the
buffer). Note that the resulting Py_UNICODE* string may contain embedded null code points, which would cause
the string to be truncated when used in most C functions.
New in version 3.2.
Please migrate to using PyUnicode_AsUCS4Copy() or similar new APIs.

Py_ssize_t PyUnicode_GetSize(PyObject *unicode)
Return the size of the deprecated Py_UNICODE representation, in code units (this includes surrogate pairs as 2
units).
Please migrate to using PyUnicode_GetLength().

PyObject* PyUnicode_FromObject(PyObject *obj)
Return value: New reference. Copy an instance of a Unicode subtype to a new true Unicode object if necessary. If
obj is already a true Unicode object (not a subtype), return the reference with incremented refcount.

92 Chapter 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0393

The Python/C API, Release 3.7.17

Objects other than Unicode or its subtypes will cause a TypeError.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.
PyObject* PyUnicode_DecodeLocaleAndSize(const char *str, Py_ssize_t len, const char *errors)

Return value: New reference. Decode a string from UTF-8 on Android, or from the current locale encoding on
other platforms. The supported error handlers are "strict" and "surrogateescape" (PEP 383). The
decoder uses "strict" error handler if errors is NULL. str must end with a null character but cannot contain
embedded null characters.
Use PyUnicode_DecodeFSDefaultAndSize() to decode a string from
Py_FileSystemDefaultEncoding (the locale encoding read at Python startup).
This function ignores the Python UTF-8 mode.
See also:
The Py_DecodeLocale() function.
New in version 3.3.
Changed in version 3.7: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py_DecodeLocale() was used for the surrogateescape,
and the current locale encoding was used for strict.

PyObject* PyUnicode_DecodeLocale(const char *str, const char *errors)
Return value: New reference. Similar to PyUnicode_DecodeLocaleAndSize(), but compute the string
length using strlen().
New in version 3.3.

PyObject* PyUnicode_EncodeLocale(PyObject *unicode, const char *errors)
Return value: New reference. Encode a Unicode object to UTF-8 on Android, or to the current locale encoding on
other platforms. The supported error handlers are "strict" and "surrogateescape" (PEP 383). The en-
coder uses "strict" error handler if errors is NULL. Return a bytes object. unicode cannot contain embedded
null characters.
UsePyUnicode_EncodeFSDefault() to encode a string toPy_FileSystemDefaultEncoding (the
locale encoding read at Python startup).
This function ignores the Python UTF-8 mode.
See also:
The Py_EncodeLocale() function.
New in version 3.3.
Changed in version 3.7: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py_EncodeLocale() was used for the surrogateescape,
and the current locale encoding was used for strict.

8.3. Sequence Objects 93

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383

The Python/C API, Release 3.7.17

File System Encoding

To encode and decode file names and other environment strings, Py_FileSystemDefaultEncoding should be
used as the encoding, and Py_FileSystemDefaultEncodeErrors should be used as the error handler (PEP
383 and PEP 529). To encode file names to bytes during argument parsing, the "O&" converter should be used,
passing PyUnicode_FSConverter() as the conversion function:
int PyUnicode_FSConverter(PyObject* obj, void* result)

ParseTuple converter: encode str objects – obtained directly or through the os.PathLike interface –
to bytes using PyUnicode_EncodeFSDefault(); bytes objects are output as-is. result must be a
PyBytesObject* which must be released when it is no longer used.
New in version 3.1.
Changed in version 3.6: Accepts a path-like object.

To decode file names to str during argument parsing, the "O&" converter should be used, passing
PyUnicode_FSDecoder() as the conversion function:
int PyUnicode_FSDecoder(PyObject* obj, void* result)

ParseTuple converter: decode bytes objects – obtained either directly or indirectly through the os.PathLike
interface – to str using PyUnicode_DecodeFSDefaultAndSize(); str objects are output as-is. result
must be a PyUnicodeObject* which must be released when it is no longer used.
New in version 3.2.
Changed in version 3.6: Accepts a path-like object.

PyObject* PyUnicode_DecodeFSDefaultAndSize(const char *s, Py_ssize_t size)
Return value: New reference. Decode a string using Py_FileSystemDefaultEncoding and the
Py_FileSystemDefaultEncodeErrors error handler.
If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-
not be modified later. If you need to decode a string from the current locale encoding, use
PyUnicode_DecodeLocaleAndSize().
See also:
The Py_DecodeLocale() function.
Changed in version 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_DecodeFSDefault(const char *s)
Return value: New reference. Decode a null-terminated string using Py_FileSystemDefaultEncoding
and the Py_FileSystemDefaultEncodeErrors error handler.
If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Use PyUnicode_DecodeFSDefaultAndSize() if you know the string length.
Changed in version 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_EncodeFSDefault(PyObject *unicode)
Return value: New reference. Encode a Unicode object to Py_FileSystemDefaultEncoding with the
Py_FileSystemDefaultEncodeErrors error handler, and return bytes. Note that the resulting bytes
object may contain null bytes.
If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and cannot be modified
later. If you need to encode a string to the current locale encoding, use PyUnicode_EncodeLocale().

94 Chapter 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0529

The Python/C API, Release 3.7.17

See also:
The Py_EncodeLocale() function.
New in version 3.2.
Changed in version 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

wchar_t Support

wchar_t support for platforms which support it:
PyObject* PyUnicode_FromWideChar(const wchar_t *w, Py_ssize_t size)

Return value: New reference. Create a Unicode object from the wchar_t buffer w of the given size. Passing -1
as the size indicates that the function must itself compute the length, using wcslen. Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar(PyObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied
(excluding a possibly trailing null termination character). Return the number of wchar_t characters copied or
-1 in case of an error. Note that the resulting wchar_t* string may or may not be null-terminated. It is the
responsibility of the caller to make sure that the wchar_t* string is null-terminated in case this is required by the
application. Also, note that the wchar_t* string might contain null characters, which would cause the string to
be truncated when used with most C functions.

wchar_t* PyUnicode_AsWideCharString(PyObject *unicode, Py_ssize_t *size)
Convert the Unicode object to a wide character string. The output string always ends with a null character. If size is
not NULL, write the number of wide characters (excluding the trailing null termination character) into *size. Note
that the resulting wchar_t string might contain null characters, which would cause the string to be truncated when
used with most C functions. If size is NULL and the wchar_t* string contains null characters a ValueError
is raised.
Returns a buffer allocated by PyMem_Alloc() (use PyMem_Free() to free it) on success. On error, returns
NULL and *size is undefined. Raises a MemoryError if memory allocation is failed.
New in version 3.2.
Changed in version 3.7: Raises a ValueError if size is NULL and the wchar_t* string contains null characters.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.
Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones of
the built-in str() string object constructor.
Setting encoding to NULL causes the default encoding to be used which is ASCII. The file system
calls should use PyUnicode_FSConverter() for encoding file names. This uses the variable
Py_FileSystemDefaultEncoding internally. This variable should be treated as read-only: on some sys-
tems, it will be a pointer to a static string, on others, it will change at run-time (such as when the application invokes
setlocale).
Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the codec.
Default error handling for all built-in codecs is “strict” (ValueError is raised).
The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.

8.3. Sequence Objects 95

The Python/C API, Release 3.7.17

Generic Codecs

These are the generic codec APIs:
PyObject* PyUnicode_Decode(const char *s, Py_ssize_t size, const char *encoding, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s. encoding and
errors have the same meaning as the parameters of the same name in the str() built-in function. The codec to
be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsEncodedString(PyObject *unicode, const char *encoding, const char *errors)
Return value: New reference. Encode a Unicode object and return the result as Python bytes object. encoding and
errors have the same meaning as the parameters of the same name in the Unicode encode()method. The codec
to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_Encode(const Py_UNICODE *s, Py_ssize_t size, const char *encoding, const char *er-
rors)

Return value: New reference. Encode the Py_UNICODE buffer s of the given size and return a Python bytes object.
encoding and errors have the samemeaning as the parameters of the same name in theUnicodeencode()method.
The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsEncodedString().

UTF-8 Codecs

These are the UTF-8 codec APIs:
PyObject* PyUnicode_DecodeUTF8(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-8 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF8Stateful(const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF8(). If consumed
is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF8String(PyObject *unicode)
Return value: New reference. Encode a Unicode object using UTF-8 and return the result as Python bytes object.
Error handling is “strict”. Return NULL if an exception was raised by the codec.

const char* PyUnicode_AsUTF8AndSize(PyObject *unicode, Py_ssize_t *size)
Return a pointer to the UTF-8 encoding of the Unicode object, and store the size of the encoded representation (in
bytes) in size. The size argument can be NULL; in this case no size will be stored. The returned buffer always has
an extra null byte appended (not included in size), regardless of whether there are any other null code points.
In the case of an error, NULL is returned with an exception set and no size is stored.
This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a pointer
to the same buffer. The caller is not responsible for deallocating the buffer.
New in version 3.3.
Changed in version 3.7: The return type is now const char * rather of char *.

const char* PyUnicode_AsUTF8(PyObject *unicode)
As PyUnicode_AsUTF8AndSize(), but does not store the size.
New in version 3.3.

96 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

Changed in version 3.7: The return type is now const char * rather of char *.
PyObject* PyUnicode_EncodeUTF8(const Py_UNICODE *s, Py_ssize_t size, const char *errors)

Return value: New reference. Encode the Py_UNICODE buffer s of the given size using UTF-8 and return a Python
bytes object. Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE
API; please migrate to using PyUnicode_AsUTF8String(), PyUnicode_AsUTF8AndSize() or
PyUnicode_AsEncodedString().

UTF-32 Codecs

These are the UTF-32 codec APIs:
PyObject* PyUnicode_DecodeUTF32(const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Return value: New reference. Decode size bytes from a UTF-32 encoded buffer string and return the corresponding
Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.
If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is -1 or
1, any byte order mark is copied to the output.
After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF32Stateful(const char *s, Py_ssize_t size, const char *errors, int *by-
teorder, Py_ssize_t *consumed)

Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF32(). If consumed
is not NULL, PyUnicode_DecodeUTF32Stateful() will not treat trailing incomplete UTF-32 byte se-
quences (such as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the
number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF32String(PyObject *unicode)
Return value: New reference. Return a Python byte string using the UTF-32 encoding in native byte order. The
string always starts with a BOM mark. Error handling is “strict”. Return NULL if an exception was raised by the
codec.

PyObject* PyUnicode_EncodeUTF32(const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-
order)

Return value: New reference. Return a Python bytes object holding the UTF-32 encoded value of the Unicode data
in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.
If Py_UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.

8.3. Sequence Objects 97

The Python/C API, Release 3.7.17

Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsUTF32String() or PyUnicode_AsEncodedString().

UTF-16 Codecs

These are the UTF-16 codec APIs:
PyObject* PyUnicode_DecodeUTF16(const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Return value: New reference. Decode size bytes from a UTF-16 encoded buffer string and return the corresponding
Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.
If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is -1 or
1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \ufffe character).
After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF16Stateful(const char *s, Py_ssize_t size, const char *errors, int *by-
teorder, Py_ssize_t *consumed)

Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF16(). If consumed
is not NULL, PyUnicode_DecodeUTF16Stateful() will not treat trailing incomplete UTF-16 byte se-
quences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and
the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF16String(PyObject *unicode)
Return value: New reference. Return a Python byte string using the UTF-16 encoding in native byte order. The
string always starts with a BOM mark. Error handling is “strict”. Return NULL if an exception was raised by the
codec.

PyObject* PyUnicode_EncodeUTF16(const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-
order)

Return value: New reference. Return a Python bytes object holding the UTF-16 encoded value of the Unicode data
in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.
If Py_UNICODE_WIDE is defined, a single Py_UNICODE value may get represented as a surrogate pair. If it is
not defined, each Py_UNICODE values is interpreted as a UCS-2 character.
Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsUTF16String() or PyUnicode_AsEncodedString().

98 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

UTF-7 Codecs

These are the UTF-7 codec APIs:
PyObject* PyUnicode_DecodeUTF7(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-7 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF7Stateful(const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF7(). If consumed
is not NULL, trailing incomplete UTF-7 base-64 sections will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF7(const Py_UNICODE *s, Py_ssize_t size, int base64SetO,
int base64WhiteSpace, const char *errors)

Return value: New reference. Encode the Py_UNICODE buffer of the given size using UTF-7 and return a Python
bytes object. Return NULL if an exception was raised by the codec.
If base64SetO is nonzero, “Set O” (punctuation that has no otherwise special meaning) will be encoded in base-64.
If base64WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to zero for the Python “utf-7”
codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsEncodedString().

Unicode-Escape Codecs

These are the “Unicode Escape” codec APIs:
PyObject* PyUnicode_DecodeUnicodeEscape(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the Unicode-Escape encoded string
s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUnicodeEscapeString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using Unicode-Escape and return the result as a bytes object.
Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeUnicodeEscape(const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using Unicode-Escape and return
a bytes object. Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsUnicodeEscapeString().

Raw-Unicode-Escape Codecs

These are the “Raw Unicode Escape” codec APIs:
PyObject* PyUnicode_DecodeRawUnicodeEscape(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape encoded
string s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsRawUnicodeEscapeString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using Raw-Unicode-Escape and return the result as a bytes
object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

8.3. Sequence Objects 99

The Python/C API, Release 3.7.17

PyObject* PyUnicode_EncodeRawUnicodeEscape(const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using Raw-Unicode-Escape and
return a bytes object. Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style
Py_UNICODE API; please migrate to using PyUnicode_AsRawUnicodeEscapeString() or
PyUnicode_AsEncodedString().

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by
the codecs during encoding.
PyObject* PyUnicode_DecodeLatin1(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the Latin-1 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsLatin1String(PyObject *unicode)
Return value: New reference. Encode a Unicode object using Latin-1 and return the result as Python bytes object.
Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeLatin1(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using Latin-1 and return a Python
bytes object. Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsLatin1String() or PyUnicode_AsEncodedString().

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.
PyObject* PyUnicode_DecodeASCII(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the ASCII encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsASCIIString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using ASCII and return the result as Python bytes object.
Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeASCII(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using ASCII and return a Python
bytes object. Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsASCIIString() or PyUnicode_AsEncodedString().

100 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mapping to encode and
decode characters. The mapping objects provided must support the __getitem__() mapping interface; dictionaries
and sequences work well.
These are the mapping codec APIs:
PyObject* PyUnicode_DecodeCharmap(const char *data, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s using the given
mapping object. Return NULL if an exception was raised by the codec.
Ifmapping is NULL, Latin-1 decoding will be applied. Elsemappingmust map bytes ordinals (integers in the range
from 0 to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None. Unmapped
data bytes – ones which cause a LookupError, as well as ones which get mapped to None, 0xFFFE or '\
ufffe', are treated as undefined mappings and cause an error.

PyObject* PyUnicode_AsCharmapString(PyObject *unicode, PyObject *mapping)
Return value: New reference. Encode a Unicode object using the given mapping object and return the result as a
bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.
The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255 or
None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are treated
as “undefined mapping” and cause an error.

PyObject* PyUnicode_EncodeCharmap(const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping, const
char *errors)

Return value: New reference. Encode the Py_UNICODE buffer of the given size using the given mapping object
and return the result as a bytes object. Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsCharmapString() or PyUnicode_AsEncodedString().

The following codec API is special in that maps Unicode to Unicode.
PyObject* PyUnicode_Translate(PyObject *unicode, PyObject *mapping, const char *errors)

Return value: New reference. Translate a Unicode object using the given mapping object and return the resulting
Unicode object. Return NULL if an exception was raised by the codec.
The mapping object must map Unicode ordinal integers to Unicode strings, integers (which are then interpreted as
Unicode ordinals) or None (causing deletion of the character). Unmapped character ordinals (ones which cause a
LookupError) are left untouched and are copied as-is.

PyObject* PyUnicode_TranslateCharmap(const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping,
const char *errors)

Return value: New reference. Translate a Py_UNICODE buffer of the given size by applying a character mapping
table to it and return the resulting Unicode object. Return NULL when an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_Translate(). or generic codec based API

8.3. Sequence Objects 101

The Python/C API, Release 3.7.17

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding is
defined by the user settings on the machine running the codec.
PyObject* PyUnicode_DecodeMBCS(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of theMBCS encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeMBCSStateful(const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeMBCS(). If consumed
is not NULL, PyUnicode_DecodeMBCSStateful() will not decode trailing lead byte and the number of
bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsMBCSString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using MBCS and return the result as Python bytes object.
Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeCodePage(int code_page, PyObject *unicode, const char *errors)
Return value: New reference. Encode the Unicode object using the specified code page and return a Python bytes
object. Return NULL if an exception was raised by the codec. Use CP_ACP code page to get the MBCS encoder.
New in version 3.3.

PyObject* PyUnicode_EncodeMBCS(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using MBCS and return a Python
bytes object. Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE
API; please migrate to using PyUnicode_AsMBCSString(), PyUnicode_EncodeCodePage() or
PyUnicode_AsEncodedString().

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.
They all return NULL or -1 if an exception occurs.
PyObject* PyUnicode_Concat(PyObject *left, PyObject *right)

Return value: New reference. Concat two strings giving a new Unicode string.
PyObject* PyUnicode_Split(PyObject *s, PyObject *sep, Py_ssize_t maxsplit)

Return value: New reference. Split a string giving a list of Unicode strings. If sep is NULL, splitting will be done
at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will be done. If
negative, no limit is set. Separators are not included in the resulting list.

PyObject* PyUnicode_Splitlines(PyObject *s, int keepend)
Return value: New reference. Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is
considered to be one line break. If keepend is 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode_Translate(PyObject *str, PyObject *table, const char *errors)
Translate a string by applying a character mapping table to it and return the resulting Unicode object.

102 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).
Mapping tables need only provide the __getitem__() interface; dictionaries and sequences work well. Un-
mapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.
errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

PyObject* PyUnicode_Join(PyObject *separator, PyObject *seq)
Return value: New reference. Join a sequence of strings using the given separator and return the resulting Unicode
string.

Py_ssize_t PyUnicode_Tailmatch(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int di-
rection)

Return 1 if substr matches str[start:end] at the given tail end (direction == -1means to do a prefix match,
direction == 1 a suffix match), 0 otherwise. Return -1 if an error occurred.

Py_ssize_t PyUnicode_Find(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of substr in str[start:end] using the given direction (direction == 1 means to do a
forward search, direction == -1 a backward search). The return value is the index of the first match; a value of -1
indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

Py_ssize_t PyUnicode_FindChar(PyObject *str, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of the character ch in str[start:end] using the given direction (direction == 1means
to do a forward search, direction == -1 a backward search). The return value is the index of the first match; a value
of -1 indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.
New in version 3.3.
Changed in version 3.7: start and end are now adjusted to behave like str[start:end].

Py_ssize_t PyUnicode_Count(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences of substr in str[start:end]. Return -1 if an error oc-
curred.

PyObject* PyUnicode_Replace(PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Return value: New reference. Replace at most maxcount occurrences of substr in str with replstr and return the
resulting Unicode object. maxcount == -1 means replace all occurrences.

int PyUnicode_Compare(PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.
This function returns -1 upon failure, so one should call PyErr_Occurred() to check for errors.

int PyUnicode_CompareWithASCIIString(PyObject *uni, const char *string)
Compare a Unicode object, uni, with string and return -1, 0, 1 for less than, equal, and greater than, respectively.
It is best to pass only ASCII-encoded strings, but the function interprets the input string as ISO-8859-1 if it contains
non-ASCII characters.
This function does not raise exceptions.

PyObject* PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)
Return value: New reference. Rich compare two Unicode strings and return one of the following:

• NULL in case an exception was raised
• Py_True or Py_False for successful comparisons
• Py_NotImplemented in case the type combination is unknown

Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_LE.

8.3. Sequence Objects 103

The Python/C API, Release 3.7.17

PyObject* PyUnicode_Format(PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args; this is analogous to format %
args.

int PyUnicode_Contains(PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.
element has to coerce to a one element Unicode string. -1 is returned if there was an error.

void PyUnicode_InternInPlace(PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable pointing to a Python
Unicode string object. If there is an existing interned string that is the same as *string, it sets *string to it (decre-
menting the reference count of the old string object and incrementing the reference count of the interned string
object), otherwise it leaves *string alone and interns it (incrementing its reference count). (Clarification: even
though there is a lot of talk about reference counts, think of this function as reference-count-neutral; you own the
object after the call if and only if you owned it before the call.)

PyObject* PyUnicode_InternFromString(const char *v)
Return value: New reference. A combination of PyUnicode_FromString() and
PyUnicode_InternInPlace(), returning either a new Unicode string object that has been interned,
or a new (“owned”) reference to an earlier interned string object with the same value.

8.3.4 Tuple Objects

PyTupleObject
This subtype of PyObject represents a Python tuple object.

PyTypeObject PyTuple_Type
This instance of PyTypeObject represents the Python tuple type; it is the same object as tuple in the Python
layer.

int PyTuple_Check(PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type.

int PyTuple_CheckExact(PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type.

PyObject* PyTuple_New(Py_ssize_t len)
Return value: New reference. Return a new tuple object of size len, or NULL on failure.

PyObject* PyTuple_Pack(Py_ssize_t n, ...)
Return value: New reference. Return a new tuple object of size n, orNULL on failure. The tuple values are initialized
to the subsequent n C arguments pointing to Python objects. PyTuple_Pack(2, a, b) is equivalent to
Py_BuildValue("(OO)", a, b).

Py_ssize_t PyTuple_Size(PyObject *p)
Take a pointer to a tuple object, and return the size of that tuple.

Py_ssize_t PyTuple_GET_SIZE(PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.

PyObject* PyTuple_GetItem(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the tuple pointed to by p. If pos is out of
bounds, return NULL and set an IndexError exception.

PyObject* PyTuple_GET_ITEM(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Like PyTuple_GetItem(), but does no checking of its arguments.

PyObject* PyTuple_GetSlice(PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return the slice of the tuple pointed to by p between low and high, or NULL on

104 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

failure. This is the equivalent of the Python expression p[low:high]. Indexing from the end of the list is not
supported.

int PyTuple_SetItem(PyObject *p, Py_ssize_t pos, PyObject *o)
Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on success. If pos is out of
bounds, return -1 and set an IndexError exception.

Note: This function “steals” a reference to o and discards a reference to an item already in the tuple at the affected
position.

void PyTuple_SET_ITEM(PyObject *p, Py_ssize_t pos, PyObject *o)
Like PyTuple_SetItem(), but does no error checking, and should only be used to fill in brand new tuples.

Note: This macro “steals” a reference to o, and, unlike PyTuple_SetItem(), does not discard a reference to
any item that is being replaced; any reference in the tuple at position pos will be leaked.

int _PyTuple_Resize(PyObject **p, Py_ssize_t newsize)
Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of
this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client code
should never assume that the resulting value of *p will be the same as before calling this function. If the object
referenced by *p is replaced, the original *p is destroyed. On failure, returns -1 and sets *p to NULL, and raises
MemoryError or SystemError.

int PyTuple_ClearFreeList()
Clear the free list. Return the total number of freed items.

8.3.5 Struct Sequence Objects

Struct sequence objects are the C equivalent of namedtuple() objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.
PyTypeObject* PyStructSequence_NewType(PyStructSequence_Desc *desc)

Return value: New reference. Create a new struct sequence type from the data in desc, described below. Instances
of the resulting type can be created with PyStructSequence_New().

void PyStructSequence_InitType(PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type type from desc in place.

int PyStructSequence_InitType2(PyTypeObject *type, PyStructSequence_Desc *desc)
The same as PyStructSequence_InitType, but returns 0 on success and -1 on failure.
New in version 3.4.

PyStructSequence_Desc
Contains the meta information of a struct sequence type to create.

8.3. Sequence Objects 105

The Python/C API, Release 3.7.17

Field C Type Meaning
name const char * name of the struct sequence type
doc const char * pointer to docstring for the type or NULL to omit
fields PyStructSequence_Field

*
pointer to NULL-terminated array with field names of the
new type

n_in_sequenceint number of fields visible to the Python side (if used as
tuple)

PyStructSequence_Field
Describes a field of a struct sequence. As a struct sequence is modeled as a tuple, all fields are typed as
PyObject*. The index in the fields array of the PyStructSequence_Desc determines which field
of the struct sequence is described.

Field C Type Meaning
name const

char *
name for the field or NULL to end the list of named fields, set to
PyStructSequence_UnnamedField to leave unnamed

doc const
char *

field docstring or NULL to omit

char* PyStructSequence_UnnamedField
Special value for a field name to leave it unnamed.

PyObject* PyStructSequence_New(PyTypeObject *type)
Return value: New reference. Creates an instance of type, which must have been created with
PyStructSequence_NewType().

PyObject* PyStructSequence_GetItem(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the struct sequence pointed to by p. No
bounds checking is performed.

PyObject* PyStructSequence_GET_ITEM(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Macro equivalent of PyStructSequence_GetItem().

void PyStructSequence_SetItem(PyObject *p, Py_ssize_t pos, PyObject *o)
Sets the field at index pos of the struct sequence p to value o. Like PyTuple_SET_ITEM(), this should only be
used to fill in brand new instances.

Note: This function “steals” a reference to o.

void PyStructSequence_SET_ITEM(PyObject *p, Py_ssize_t *pos, PyObject *o)
Macro equivalent of PyStructSequence_SetItem().

Note: This function “steals” a reference to o.

106 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

8.3.6 List Objects

PyListObject
This subtype of PyObject represents a Python list object.

PyTypeObject PyList_Type
This instance of PyTypeObject represents the Python list type. This is the same object as list in the Python
layer.

int PyList_Check(PyObject *p)
Return true if p is a list object or an instance of a subtype of the list type.

int PyList_CheckExact(PyObject *p)
Return true if p is a list object, but not an instance of a subtype of the list type.

PyObject* PyList_New(Py_ssize_t len)
Return value: New reference. Return a new list of length len on success, or NULL on failure.

Note: If len is greater than zero, the returned list object’s items are set to NULL. Thus you cannot use abstract
API functions such as PySequence_SetItem() or expose the object to Python code before setting all items
to a real object with PyList_SetItem().

Py_ssize_t PyList_Size(PyObject *list)
Return the length of the list object in list; this is equivalent to len(list) on a list object.

Py_ssize_t PyList_GET_SIZE(PyObject *list)
Macro form of PyList_Size() without error checking.

PyObject* PyList_GetItem(PyObject *list, Py_ssize_t index)
Return value: Borrowed reference. Return the object at position index in the list pointed to by list. The position must
be non-negative; indexing from the end of the list is not supported. If index is out of bounds (<0 or >=len(list)),
return NULL and set an IndexError exception.

PyObject* PyList_GET_ITEM(PyObject *list, Py_ssize_t i)
Return value: Borrowed reference. Macro form of PyList_GetItem() without error checking.

int PyList_SetItem(PyObject *list, Py_ssize_t index, PyObject *item)
Set the item at index index in list to item. Return 0 on success. If index is out of bounds, return -1 and set an
IndexError exception.

Note: This function “steals” a reference to item and discards a reference to an item already in the list at the affected
position.

void PyList_SET_ITEM(PyObject *list, Py_ssize_t i, PyObject *o)
Macro form of PyList_SetItem()without error checking. This is normally only used to fill in new lists where
there is no previous content.

Note: This macro “steals” a reference to item, and, unlike PyList_SetItem(), does not discard a reference
to any item that is being replaced; any reference in list at position i will be leaked.

int PyList_Insert(PyObject *list, Py_ssize_t index, PyObject *item)
Insert the item item into list list in front of index index. Return 0 if successful; return -1 and set an exception if
unsuccessful. Analogous to list.insert(index, item).

8.3. Sequence Objects 107

The Python/C API, Release 3.7.17

int PyList_Append(PyObject *list, PyObject *item)
Append the object item at the end of list list. Return 0 if successful; return -1 and set an exception if unsuccessful.
Analogous to list.append(item).

PyObject* PyList_GetSlice(PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return a list of the objects in list containing the objects between low and high. Return
NULL and set an exception if unsuccessful. Analogous to list[low:high]. Indexing from the end of the list
is not supported.

int PyList_SetSlice(PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Set the slice of list between low and high to the contents of itemlist. Analogous to list[low:high] =
itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice deletion). Return 0
on success, -1 on failure. Indexing from the end of the list is not supported.

int PyList_Sort(PyObject *list)
Sort the items of list in place. Return 0 on success, -1 on failure. This is equivalent to list.sort().

int PyList_Reverse(PyObject *list)
Reverse the items of list in place. Return0 on success, -1 on failure. This is the equivalent oflist.reverse().

PyObject* PyList_AsTuple(PyObject *list)
Return value: New reference. Return a new tuple object containing the contents of list; equivalent to
tuple(list).

int PyList_ClearFreeList()
Clear the free list. Return the total number of freed items.
New in version 3.3.

8.4 Container Objects

8.4.1 Dictionary Objects

PyDictObject
This subtype of PyObject represents a Python dictionary object.

PyTypeObject PyDict_Type
This instance of PyTypeObject represents the Python dictionary type. This is the same object as dict in the
Python layer.

int PyDict_Check(PyObject *p)
Return true if p is a dict object or an instance of a subtype of the dict type.

int PyDict_CheckExact(PyObject *p)
Return true if p is a dict object, but not an instance of a subtype of the dict type.

PyObject* PyDict_New()
Return value: New reference. Return a new empty dictionary, or NULL on failure.

PyObject* PyDictProxy_New(PyObject *mapping)
Return value: New reference. Return a types.MappingProxyType object for a mapping which enforces read-
only behavior. This is normally used to create a view to prevent modification of the dictionary for non-dynamic
class types.

void PyDict_Clear(PyObject *p)
Empty an existing dictionary of all key-value pairs.

108 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

int PyDict_Contains(PyObject *p, PyObject *key)
Determine if dictionary p contains key. If an item in p is matches key, return 1, otherwise return 0. On error,
return -1. This is equivalent to the Python expression key in p.

PyObject* PyDict_Copy(PyObject *p)
Return value: New reference. Return a new dictionary that contains the same key-value pairs as p.

int PyDict_SetItem(PyObject *p, PyObject *key, PyObject *val)
Insert value into the dictionary p with a key of key. key must be hashable; if it isn’t, TypeError will be raised.
Return 0 on success or -1 on failure.

int PyDict_SetItemString(PyObject *p, const char *key, PyObject *val)
Insert value into the dictionary p using key as a key. key should be a const char*. The key object is created
using PyUnicode_FromString(key). Return 0 on success or -1 on failure.

int PyDict_DelItem(PyObject *p, PyObject *key)
Remove the entry in dictionary p with key key. key must be hashable; if it isn’t, TypeError is raised. Return 0
on success or -1 on failure.

int PyDict_DelItemString(PyObject *p, const char *key)
Remove the entry in dictionary p which has a key specified by the string key. Return 0 on success or -1 on failure.

PyObject* PyDict_GetItem(PyObject *p, PyObject *key)
Return value: Borrowed reference. Return the object from dictionary p which has a key key. Return NULL if the
key key is not present, but without setting an exception.
Note that exceptions which occur while calling __hash__() and __eq__() methods will get suppressed. To
get error reporting use PyDict_GetItemWithError() instead.

PyObject* PyDict_GetItemWithError(PyObject *p, PyObject *key)
Return value: Borrowed reference. Variant of PyDict_GetItem() that does not suppress exceptions. Return
NULL with an exception set if an exception occurred. Return NULL without an exception set if the key wasn’t
present.

PyObject* PyDict_GetItemString(PyObject *p, const char *key)
Return value: Borrowed reference. This is the same as PyDict_GetItem(), but key is specified as a const
char*, rather than a PyObject*.
Note that exceptions which occur while calling __hash__() and __eq__()methods and creating a temporary
string object will get suppressed. To get error reporting use PyDict_GetItemWithError() instead.

PyObject* PyDict_SetDefault(PyObject *p, PyObject *key, PyObject *defaultobj)
Return value: Borrowed reference. This is the same as the Python-level dict.setdefault(). If present,
it returns the value corresponding to key from the dictionary p. If the key is not in the dict, it is inserted with
value defaultobj and defaultobj is returned. This function evaluates the hash function of key only once, instead of
evaluating it independently for the lookup and the insertion.
New in version 3.4.

PyObject* PyDict_Items(PyObject *p)
Return value: New reference. Return a PyListObject containing all the items from the dictionary.

PyObject* PyDict_Keys(PyObject *p)
Return value: New reference. Return a PyListObject containing all the keys from the dictionary.

PyObject* PyDict_Values(PyObject *p)
Return value: New reference. Return a PyListObject containing all the values from the dictionary p.

Py_ssize_t PyDict_Size(PyObject *p)
Return the number of items in the dictionary. This is equivalent to len(p) on a dictionary.

8.4. Container Objects 109

The Python/C API, Release 3.7.17

int PyDict_Next(PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by ppos must be initialized to 0
prior to the first call to this function to start the iteration; the function returns true for each pair in the dictionary,
and false once all pairs have been reported. The parameters pkey and pvalue should either point to PyObject*
variables that will be filled in with each key and value, respectively, or may be NULL. Any references returned
through them are borrowed. ppos should not be altered during iteration. Its value represents offsets within the
internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.
For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */
...

}

The dictionary p should not be mutated during iteration. It is safe to modify the values of the keys as you iterate
over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) {

return -1;
}
PyObject *o = PyLong_FromLong(i + 1);
if (o == NULL)

return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {

Py_DECREF(o);
return -1;

}
Py_DECREF(o);

}

int PyDict_Merge(PyObject *a, PyObject *b, int override)
Iterate over mapping object b adding key-value pairs to dictionary a. bmay be a dictionary, or any object supporting
PyMapping_Keys() and PyObject_GetItem(). If override is true, existing pairs in a will be replaced if
a matching key is found in b, otherwise pairs will only be added if there is not a matching key in a. Return 0 on
success or -1 if an exception was raised.

int PyDict_Update(PyObject *a, PyObject *b)
This is the same as PyDict_Merge(a, b, 1) in C, and is similar to a.update(b) in Python except that
PyDict_Update() doesn’t fall back to the iterating over a sequence of key value pairs if the second argument
has no “keys” attribute. Return 0 on success or -1 if an exception was raised.

int PyDict_MergeFromSeq2(PyObject *a, PyObject *seq2, int override)
Update or merge into dictionary a, from the key-value pairs in seq2. seq2 must be an iterable object producing
iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the last wins if override is true,
else the first wins. Return 0 on success or -1 if an exception was raised. Equivalent Python (except for the return
value):

110 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

def PyDict_MergeFromSeq2(a, seq2, override):
for key, value in seq2:

if override or key not in a:
a[key] = value

int PyDict_ClearFreeList()
Clear the free list. Return the total number of freed items.
New in version 3.3.

8.4.2 Set Objects

This section details the public API for set and frozenset objects. Any functionality not listed be-
low is best accessed using the either the abstract object protocol (including PyObject_CallMethod(),
PyObject_RichCompareBool(), PyObject_Hash(), PyObject_Repr(), PyObject_IsTrue(),
PyObject_Print(), and PyObject_GetIter()) or the abstract number protocol (includ-
ing PyNumber_And(), PyNumber_Subtract(), PyNumber_Or(), PyNumber_Xor(),
PyNumber_InPlaceAnd(), PyNumber_InPlaceSubtract(), PyNumber_InPlaceOr(), and
PyNumber_InPlaceXor()).
PySetObject

This subtype of PyObject is used to hold the internal data for both set and frozenset objects. It is like
a PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of this
structure should be considered public and are subject to change. All access should be done through the documented
API rather than by manipulating the values in the structure.

PyTypeObject PySet_Type
This is an instance of PyTypeObject representing the Python set type.

PyTypeObject PyFrozenSet_Type
This is an instance of PyTypeObject representing the Python frozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work with
any iterable Python object.
int PySet_Check(PyObject *p)

Return true if p is a set object or an instance of a subtype.
int PyFrozenSet_Check(PyObject *p)

Return true if p is a frozenset object or an instance of a subtype.
int PyAnySet_Check(PyObject *p)

Return true if p is a set object, a frozenset object, or an instance of a subtype.
int PyAnySet_CheckExact(PyObject *p)

Return true if p is a set object or a frozenset object but not an instance of a subtype.
int PyFrozenSet_CheckExact(PyObject *p)

Return true if p is a frozenset object but not an instance of a subtype.
PyObject* PySet_New(PyObject *iterable)

Return value: New reference. Return a new set containing objects returned by the iterable. The iterable may be
NULL to create a new empty set. Return the new set on success or NULL on failure. Raise TypeError if iterable
is not actually iterable. The constructor is also useful for copying a set (c=set(s)).

PyObject* PyFrozenSet_New(PyObject *iterable)
Return value: New reference. Return a new frozenset containing objects returned by the iterable. The iter-

8.4. Container Objects 111

The Python/C API, Release 3.7.17

able may be NULL to create a new empty frozenset. Return the new set on success or NULL on failure. Raise
TypeError if iterable is not actually iterable.

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.
Py_ssize_t PySet_Size(PyObject *anyset)

Return the length of a set or frozenset object. Equivalent to len(anyset). Raises a
PyExc_SystemError if anyset is not a set, frozenset, or an instance of a subtype.

Py_ssize_t PySet_GET_SIZE(PyObject *anyset)
Macro form of PySet_Size() without error checking.

int PySet_Contains(PyObject *anyset, PyObject *key)
Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the Python __contains__()
method, this function does not automatically convert unhashable sets into temporary frozensets. Raise a
TypeError if the key is unhashable. Raise PyExc_SystemError if anyset is not a set, frozenset,
or an instance of a subtype.

int PySet_Add(PyObject *set, PyObject *key)
Add key to a set instance. Also works with frozenset instances (like PyTuple_SetItem() it can be used
to fill-in the values of brand new frozensets before they are exposed to other code). Return 0 on success or -1 on
failure. Raise a TypeError if the key is unhashable. Raise a MemoryError if there is no room to grow. Raise
a SystemError if set is not an instance of set or its subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or its
subtypes.
int PySet_Discard(PyObject *set, PyObject *key)

Return 1 if found and removed, 0 if not found (no action taken), and -1 if an error is encountered. Does
not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike the Python
discard() method, this function does not automatically convert unhashable sets into temporary frozensets.
Raise PyExc_SystemError if set is not an instance of set or its subtype.

PyObject* PySet_Pop(PyObject *set)
Return value: New reference. Return a new reference to an arbitrary object in the set, and removes the object from
the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a SystemError if set is not an
instance of set or its subtype.

int PySet_Clear(PyObject *set)
Empty an existing set of all elements.

int PySet_ClearFreeList()
Clear the free list. Return the total number of freed items.
New in version 3.3.

8.5 Function Objects

8.5.1 Function Objects

There are a few functions specific to Python functions.
PyFunctionObject

The C structure used for functions.
PyTypeObject PyFunction_Type

This is an instance of PyTypeObject and represents the Python function type. It is exposed to Python program-
mers as types.FunctionType.

112 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

int PyFunction_Check(PyObject *o)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL.

PyObject* PyFunction_New(PyObject *code, PyObject *globals)
Return value: New reference. Return a new function object associated with the code object code. globals must be
a dictionary with the global variables accessible to the function.
The function’s docstring and name are retrieved from the code object. __module__ is retrieved from globals. The
argument defaults, annotations and closure are set to NULL. __qualname__ is set to the same value as the function’s
name.

PyObject* PyFunction_NewWithQualName(PyObject *code, PyObject *globals, PyObject *qualname)
Return value: New reference. As PyFunction_New(), but also allows setting the function object’s
__qualname__ attribute. qualname should be a unicode object or NULL; if NULL, the __qualname__
attribute is set to the same value as its __name__ attribute.
New in version 3.3.

PyObject* PyFunction_GetCode(PyObject *op)
Return value: Borrowed reference. Return the code object associated with the function object op.

PyObject* PyFunction_GetGlobals(PyObject *op)
Return value: Borrowed reference. Return the globals dictionary associated with the function object op.

PyObject* PyFunction_GetModule(PyObject *op)
Return value: Borrowed reference. Return the __module__ attribute of the function object op. This is normally a
string containing the module name, but can be set to any other object by Python code.

PyObject* PyFunction_GetDefaults(PyObject *op)
Return value: Borrowed reference. Return the argument default values of the function object op. This can be a
tuple of arguments or NULL.

int PyFunction_SetDefaults(PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.
Raises SystemError and returns -1 on failure.

PyObject* PyFunction_GetClosure(PyObject *op)
Return value: Borrowed reference. Return the closure associated with the function object op. This can be NULL or
a tuple of cell objects.

int PyFunction_SetClosure(PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.
Raises SystemError and returns -1 on failure.

PyObject *PyFunction_GetAnnotations(PyObject *op)
Return value: Borrowed reference. Return the annotations of the function object op. This can be a mutable dictio-
nary or NULL.

int PyFunction_SetAnnotations(PyObject *op, PyObject *annotations)
Set the annotations for the function object op. annotations must be a dictionary or Py_None.
Raises SystemError and returns -1 on failure.

8.5. Function Objects 113

The Python/C API, Release 3.7.17

8.5.2 Instance Method Objects

An instance method is a wrapper for a PyCFunction and the new way to bind a PyCFunction to a class object. It
replaces the former call PyMethod_New(func, NULL, class).
PyTypeObject PyInstanceMethod_Type

This instance of PyTypeObject represents the Python instance method type. It is not exposed to Python pro-
grams.

int PyInstanceMethod_Check(PyObject *o)
Return true if o is an instance method object (has type PyInstanceMethod_Type). The parameter must not
be NULL.

PyObject* PyInstanceMethod_New(PyObject *func)
Return value: New reference. Return a new instance method object, with func being any callable object func is the
function that will be called when the instance method is called.

PyObject* PyInstanceMethod_Function(PyObject *im)
Return value: Borrowed reference. Return the function object associated with the instance method im.

PyObject* PyInstanceMethod_GET_FUNCTION(PyObject *im)
Return value: Borrowed reference. Macro version of PyInstanceMethod_Function() which avoids error
checking.

8.5.3 Method Objects

Methods are bound function objects. Methods are always bound to an instance of a user-defined class. Unbound methods
(methods bound to a class object) are no longer available.
PyTypeObject PyMethod_Type

This instance of PyTypeObject represents the Python method type. This is exposed to Python programs as
types.MethodType.

int PyMethod_Check(PyObject *o)
Return true if o is a method object (has type PyMethod_Type). The parameter must not be NULL.

PyObject* PyMethod_New(PyObject *func, PyObject *self)
Return value: New reference. Return a new method object, with func being any callable object and self the instance
the method should be bound. func is the function that will be called when the method is called. self must not be
NULL.

PyObject* PyMethod_Function(PyObject *meth)
Return value: Borrowed reference. Return the function object associated with the method meth.

PyObject* PyMethod_GET_FUNCTION(PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Function() which avoids error checking.

PyObject* PyMethod_Self(PyObject *meth)
Return value: Borrowed reference. Return the instance associated with the method meth.

PyObject* PyMethod_GET_SELF(PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Self() which avoids error checking.

int PyMethod_ClearFreeList()
Clear the free list. Return the total number of freed items.

114 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

8.5.4 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object is
created to store the value; the local variables of each stack frame that references the value contains a reference to the cells
from outer scopes which also use that variable. When the value is accessed, the value contained in the cell is used instead
of the cell object itself. This de-referencing of the cell object requires support from the generated byte-code; these are
not automatically de-referenced when accessed. Cell objects are not likely to be useful elsewhere.
PyCellObject

The C structure used for cell objects.
PyTypeObject PyCell_Type

The type object corresponding to cell objects.
int PyCell_Check(ob)

Return true if ob is a cell object; ob must not be NULL.
PyObject* PyCell_New(PyObject *ob)

Return value: New reference. Create and return a new cell object containing the value ob. The parameter may be
NULL.

PyObject* PyCell_Get(PyObject *cell)
Return value: New reference. Return the contents of the cell cell.

PyObject* PyCell_GET(PyObject *cell)
Return value: Borrowed reference. Return the contents of the cell cell, but without checking that cell is non-NULL
and a cell object.

int PyCell_Set(PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell. value
may be NULL. cellmust be non-NULL; if it is not a cell object, -1 will be returned. On success, 0 will be returned.

void PyCell_SET(PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for safety;
cell must be non-NULL and must be a cell object.

8.5.5 Code Objects

Code objects are a low-level detail of the CPython implementation. Each one represents a chunk of executable code that
hasn’t yet been bound into a function.
PyCodeObject

The C structure of the objects used to describe code objects. The fields of this type are subject to change at any
time.

PyTypeObject PyCode_Type
This is an instance of PyTypeObject representing the Python code type.

int PyCode_Check(PyObject *co)
Return true if co is a code object.

int PyCode_GetNumFree(PyCodeObject *co)
Return the number of free variables in co.

PyCodeObject* PyCode_New(int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags, PyOb-
ject *code, PyObject *consts, PyObject *names, PyObject *varnames, PyOb-
ject *freevars, PyObject *cellvars, PyObject *filename, PyObject *name, int first-
lineno, PyObject *lnotab)

Return value: New reference. Return a new code object. If you need a dummy code object to create a frame, use

8.5. Function Objects 115

The Python/C API, Release 3.7.17

PyCode_NewEmpty() instead. Calling PyCode_New() directly can bind you to a precise Python version
since the definition of the bytecode changes often.

PyCodeObject* PyCode_NewEmpty(const char *filename, const char *funcname, int firstlineno)
Return value: New reference. Return a new empty code object with the specified filename, function name, and first
line number. It is illegal to exec() or eval() the resulting code object.

8.6 Other Objects

8.6.1 File Objects

These APIs are a minimal emulation of the Python 2 C API for built-in file objects, which used to rely on the buffered
I/O (FILE*) support from the C standard library. In Python 3, files and streams use the new io module, which defines
several layers over the low-level unbuffered I/O of the operating system. The functions described below are convenience
C wrappers over these new APIs, and meant mostly for internal error reporting in the interpreter; third-party code is
advised to access the io APIs instead.
PyFile_FromFd(int fd, const char *name, const char *mode, int buffering, const char *encoding, const char *er-

rors, const char *newline, int closefd)
Return value: New reference. Create a Python file object from the file descriptor of an already opened file fd. The
arguments name, encoding, errors and newline can be NULL to use the defaults; buffering can be -1 to use the
default. name is ignored and kept for backward compatibility. Return NULL on failure. For a more comprehensive
description of the arguments, please refer to the io.open() function documentation.

Warning: Since Python streams have their own buffering layer, mixing them with OS-level file descriptors
can produce various issues (such as unexpected ordering of data).

Changed in version 3.2: Ignore name attribute.
int PyObject_AsFileDescriptor(PyObject *p)

Return the file descriptor associated with p as an int. If the object is an integer, its value is returned. If not, the
object’s fileno() method is called if it exists; the method must return an integer, which is returned as the file
descriptor value. Sets an exception and returns -1 on failure.

PyObject* PyFile_GetLine(PyObject *p, int n)
Return value: New reference. Equivalent to p.readline([n]), this function reads one line from the object p.
p may be a file object or any object with a readline() method. If n is 0, exactly one line is read, regardless
of the length of the line. If n is greater than 0, no more than n bytes will be read from the file; a partial line can
be returned. In both cases, an empty string is returned if the end of the file is reached immediately. If n is less
than 0, however, one line is read regardless of length, but EOFError is raised if the end of the file is reached
immediately.

int PyFile_WriteObject(PyObject *obj, PyObject *p, int flags)
Write object obj to file object p. The only supported flag for flags is Py_PRINT_RAW; if given, the str() of the
object is written instead of the repr(). Return 0 on success or -1 on failure; the appropriate exception will be
set.

int PyFile_WriteString(const char *s, PyObject *p)
Write string s to file object p. Return 0 on success or -1 on failure; the appropriate exception will be set.

116 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

8.6.2 Module Objects

PyTypeObject PyModule_Type
This instance of PyTypeObject represents the Python module type. This is exposed to Python programs as
types.ModuleType.

int PyModule_Check(PyObject *p)
Return true if p is a module object, or a subtype of a module object.

int PyModule_CheckExact(PyObject *p)
Return true if p is a module object, but not a subtype of PyModule_Type.

PyObject* PyModule_NewObject(PyObject *name)
Return value: New reference. Return a newmodule object with the __name__ attribute set to name. The module’s
__name__, __doc__, __package__, and __loader__ attributes are filled in (all but __name__ are set
to None); the caller is responsible for providing a __file__ attribute.
New in version 3.3.
Changed in version 3.4: __package__ and __loader__ are set to None.

PyObject* PyModule_New(const char *name)
Return value: New reference. Similar to PyModule_NewObject(), but the name is a UTF-8 encoded string
instead of a Unicode object.

PyObject* PyModule_GetDict(PyObject *module)
Return value: Borrowed reference. Return the dictionary object that implements module’s namespace; this object
is the same as the __dict__ attribute of the module object. If module is not a module object (or a subtype of a
module object), SystemError is raised and NULL is returned.
It is recommended extensions use other PyModule_*() and PyObject_*() functions rather than directly
manipulate a module’s __dict__.

PyObject* PyModule_GetNameObject(PyObject *module)
Return value: New reference. Return module’s __name__ value. If the module does not provide one, or if it is
not a string, SystemError is raised and NULL is returned.
New in version 3.3.

const char* PyModule_GetName(PyObject *module)
Similar to PyModule_GetNameObject() but return the name encoded to 'utf-8'.

void* PyModule_GetState(PyObject *module)
Return the “state” of the module, that is, a pointer to the block of memory allocated at module creation time, or
NULL. See PyModuleDef.m_size.

PyModuleDef* PyModule_GetDef(PyObject *module)
Return a pointer to the PyModuleDef struct from which the module was created, or NULL if the module wasn’t
created from a definition.

PyObject* PyModule_GetFilenameObject(PyObject *module)
Return value: New reference. Return the name of the file fromwhichmodulewas loaded usingmodule’s__file__
attribute. If this is not defined, or if it is not a unicode string, raise SystemError and return NULL; otherwise
return a reference to a Unicode object.
New in version 3.2.

const char* PyModule_GetFilename(PyObject *module)
Similar to PyModule_GetFilenameObject() but return the filename encoded to ‘utf-8’.
Deprecated since version 3.2: PyModule_GetFilename() raises UnicodeEncodeError on unencodable
filenames, use PyModule_GetFilenameObject() instead.

8.6. Other Objects 117

The Python/C API, Release 3.7.17

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization function), or
compiled-in modules (where the initialization function is added using PyImport_AppendInittab()). See building
or extending-with-embedding for details.
The initialization function can either pass a module definition instance to PyModule_Create(), and return the re-
sulting module object, or request “multi-phase initialization” by returning the definition struct itself.
PyModuleDef

The module definition struct, which holds all information needed to create a module object. There is usually only
one statically initialized variable of this type for each module.
PyModuleDef_Base m_base

Always initialize this member to PyModuleDef_HEAD_INIT.
const char *m_name

Name for the new module.
const char *m_doc

Docstring for the module; usually a docstring variable created with PyDoc_STRVAR is used.
Py_ssize_t m_size

Module state may be kept in a per-module memory area that can be retrieved with
PyModule_GetState(), rather than in static globals. This makes modules safe for use in multi-
ple sub-interpreters.
This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m_free function has been called, if present.
Setting m_size to -1 means that the module does not support sub-interpreters, because it has global state.
Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m_size is required for multi-phase initialization.
See PEP 3121 for more details.

PyMethodDef* m_methods
A pointer to a table of module-level functions, described by PyMethodDef values. Can be NULL if no
functions are present.

PyModuleDef_Slot* m_slots
An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When using
single-phase initialization, m_slots must be NULL.
Changed in version 3.5: Prior to version 3.5, this member was always set to NULL, and was defined as:

inquiry m_reload

traverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed. This function
may be called before module state is allocated (PyModule_GetState() may return NULL), and before
the Py_mod_exec function is executed.

inquiry m_clear
A clear function to call during GC clearing of the module object, or NULL if not needed. This function may
be called before module state is allocated (PyModule_GetState() may return NULL), and before the
Py_mod_exec function is executed.

freefunc m_free
A function to call during deallocation of the module object, or NULL if not needed. This function may

118 Chapter 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-3121

The Python/C API, Release 3.7.17

be called before module state is allocated (PyModule_GetState() may return NULL), and before the
Py_mod_exec function is executed.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as “single-phase
initialization”, and uses one of the following two module creation functions:
PyObject* PyModule_Create(PyModuleDef *def)

Return value: New reference. Create a new module object, given the definition in def. This behaves like
PyModule_Create2() with module_api_version set to PYTHON_API_VERSION.

PyObject* PyModule_Create2(PyModuleDef *def, int module_api_version)
Return value: New reference. Create a new module object, given the definition in def, assuming the API version
module_api_version. If that version does not match the version of the running interpreter, a RuntimeWarning
is emitted.

Note: Most uses of this function should be using PyModule_Create() instead; only use this if you are sure
you need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using functions
like PyModule_AddObject().

Multi-phase initialization

An alternate way to specify extensions is to request “multi-phase initialization”. Extensionmodules created this way behave
more like Python modules: the initialization is split between the creation phase, when the module object is created, and
the execution phase, when it is populated. The distinction is similar to the __new__() and __init__() methods of
classes.
Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry is
removed and the module is re-imported, a new module object is created, and the old module is subject to normal garbage
collection – as with Pythonmodules. By default, multiple modules created from the same definition should be independent:
changes to one should not affect the others. This means that all state should be specific to the module object (using e.g.
using PyModule_GetState()), or its contents (such as the module’s __dict__ or individual classes created with
PyType_FromSpec()).
All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple mod-
ules are independent is typically enough to achieve this.
To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDef instance
with non-empty m_slots. Before it is returned, the PyModuleDef instance must be initialized with the following
function:
PyObject* PyModuleDef_Init(PyModuleDef *def)

Return value: Borrowed reference. Ensures a module definition is a properly initialized Python object that correctly
reports its type and reference count.
Returns def cast to PyObject*, or NULL if an error occurred.
New in version 3.5.

The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:
PyModuleDef_Slot

8.6. Other Objects 119

The Python/C API, Release 3.7.17

int slot
A slot ID, chosen from the available values explained below.

void* value
Value of the slot, whose meaning depends on the slot ID.

New in version 3.5.
The m_slots array must be terminated by a slot with id 0.
The available slot types are:
Py_mod_create

Specifies a function that is called to create the module object itself. The value pointer of this slot must point to a
function of the signature:
PyObject* create_module(PyObject *spec, PyModuleDef *def)
The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should return
a new module object, or set an error and return NULL.
This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import
the same module again may result in an infinite loop.
Multiple Py_mod_create slots may not be specified in one module definition.
If Py_mod_create is not specified, the import machinery will create a normal module object using
PyModule_New(). The name is taken from spec, not the definition, to allow extension modules to dynami-
cally adjust to their place in the module hierarchy and be imported under different names through symlinks, all
while sharing a single module definition.
There is no requirement for the returned object to be an instance of PyModule_Type. Any type can be used, as
long as it supports setting and getting import-related attributes. However, only PyModule_Type instances may
be returned if the PyModuleDef has non-NULL m_traverse, m_clear, m_free; non-zero m_size; or
slots other than Py_mod_create.

Py_mod_exec
Specifies a function that is called to execute the module. This is equivalent to executing the code of a Pythonmodule:
typically, this function adds classes and constants to the module. The signature of the function is:
int exec_module(PyObject* module)
If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.

See PEP 489 for more details on multi-phase initialization.

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used di-
rectly, for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.
PyObject * PyModule_FromDefAndSpec(PyModuleDef *def, PyObject *spec)

Return value: New reference. Create a new module object, given the definition in module and the
ModuleSpec spec. This behaves like PyModule_FromDefAndSpec2() with module_api_version set to
PYTHON_API_VERSION.
New in version 3.5.

PyObject * PyModule_FromDefAndSpec2(PyModuleDef *def, PyObject *spec, int module_api_version)
Return value: New reference. Create a new module object, given the definition inmodule and the ModuleSpec spec,

120 Chapter 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0489

The Python/C API, Release 3.7.17

assuming the API versionmodule_api_version. If that version does not match the version of the running interpreter,
a RuntimeWarning is emitted.

Note: Most uses of this function should be using PyModule_FromDefAndSpec() instead; only use this if
you are sure you need it.

New in version 3.5.
int PyModule_ExecDef(PyObject *module, PyModuleDef *def)

Process any execution slots (Py_mod_exec) given in def.
New in version 3.5.

int PyModule_SetDocString(PyObject *module, const char *docstring)
Set the docstring for module to docstring. This function is called automatically when creating a module from
PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.
New in version 3.5.

int PyModule_AddFunctions(PyObject *module, PyMethodDef *functions)
Add the functions from the NULL terminated functions array to module. Refer to the PyMethodDef documen-
tation for details on individual entries (due to the lack of a shared module namespace, module level “functions”
implemented in C typically receive the module as their first parameter, making them similar to instance methods
on Python classes). This function is called automatically when creating a module from PyModuleDef, using
either PyModule_Create or PyModule_FromDefAndSpec.
New in version 3.5.

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution slot
(if using multi-phase initialization), can use the following functions to help initialize the module state:
int PyModule_AddObject(PyObject *module, const char *name, PyObject *value)

Add an object tomodule as name. This is a convenience function which can be used from the module’s initialization
function. This steals a reference to value on success. Return -1 on error, 0 on success.

Note: Unlike other functions that steal references, PyModule_AddObject() only decrements the reference
count of value on success.
This means that its return value must be checked, and calling code must Py_DECREF() valuemanually on error.
Example usage:

Py_INCREF(spam);
if (PyModule_AddObject(module, "spam", spam) < 0) {

Py_DECREF(module);
Py_DECREF(spam);
return NULL;

}

int PyModule_AddIntConstant(PyObject *module, const char *name, long value)
Add an integer constant to module as name. This convenience function can be used from the module’s initialization
function. Return -1 on error, 0 on success.

8.6. Other Objects 121

The Python/C API, Release 3.7.17

int PyModule_AddStringConstant(PyObject *module, const char *name, const char *value)
Add a string constant to module as name. This convenience function can be used from the module’s initialization
function. The string value must be NULL-terminated. Return -1 on error, 0 on success.

int PyModule_AddIntMacro(PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro(module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return -1 on error, 0 on success.

int PyModule_AddStringMacro(PyObject *module, macro)
Add a string constant to module.

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter. This
allows the module object to be retrieved later with only a reference to the module definition.
These functions will not work on modules created using multi-phase initialization, since multiple such modules can be
created from a single definition.
PyObject* PyState_FindModule(PyModuleDef *def)

Return value: Borrowed reference. Returns the module object that was created from def for the current
interpreter. This method requires that the module object has been attached to the interpreter state with
PyState_AddModule() beforehand. In case the corresponding module object is not found or has not been
attached to the interpreter state yet, it returns NULL.

int PyState_AddModule(PyObject *module, PyModuleDef *def)
Attaches the module object passed to the function to the interpreter state. This allows the module object to be
accessible via PyState_FindModule().
Only effective on modules created using single-phase initialization.
Python calls PyState_AddModule automatically after importing a module, so it is unnecessary (but harmless)
to call it from module initialization code. An explicit call is needed only if the module’s own init code subsequently
calls PyState_FindModule. The function is mainly intended for implementing alternative import mechanisms
(either by calling it directly, or by referring to its implementation for details of the required state updates).
Return 0 on success or -1 on failure.
New in version 3.3.

int PyState_RemoveModule(PyModuleDef *def)
Removes the module object created from def from the interpreter state. Return 0 on success or -1 on failure.
New in version 3.3.

8.6.3 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the __getitem__() method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.
PyTypeObject PySeqIter_Type

Type object for iterator objects returned by PySeqIter_New() and the one-argument form of the iter()
built-in function for built-in sequence types.

int PySeqIter_Check(op)
Return true if the type of op is PySeqIter_Type.

122 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

PyObject* PySeqIter_New(PyObject *seq)
Return value: New reference. Return an iterator that works with a general sequence object, seq. The iteration ends
when the sequence raises IndexError for the subscripting operation.

PyTypeObject PyCallIter_Type
Type object for iterator objects returned by PyCallIter_New() and the two-argument form of the iter()
built-in function.

int PyCallIter_Check(op)
Return true if the type of op is PyCallIter_Type.

PyObject* PyCallIter_New(PyObject *callable, PyObject *sentinel)
Return value: New reference. Return a new iterator. The first parameter, callable, can be any Python callable object
that can be called with no parameters; each call to it should return the next item in the iteration. When callable
returns a value equal to sentinel, the iteration will be terminated.

8.6.4 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.
PyTypeObject PyProperty_Type

The type object for the built-in descriptor types.
PyObject* PyDescr_NewGetSet(PyTypeObject *type, struct PyGetSetDef *getset)

Return value: New reference.

PyObject* PyDescr_NewMember(PyTypeObject *type, struct PyMemberDef *meth)
Return value: New reference.

PyObject* PyDescr_NewMethod(PyTypeObject *type, struct PyMethodDef *meth)
Return value: New reference.

PyObject* PyDescr_NewWrapper(PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value: New reference.

PyObject* PyDescr_NewClassMethod(PyTypeObject *type, PyMethodDef *method)
Return value: New reference.

int PyDescr_IsData(PyObject *descr)
Return true if the descriptor objects descr describes a data attribute, or false if it describes a method. descr must
be a descriptor object; there is no error checking.

PyObject* PyWrapper_New(PyObject *, PyObject *)
Return value: New reference.

8.6.5 Slice Objects

PyTypeObject PySlice_Type
The type object for slice objects. This is the same as slice in the Python layer.

int PySlice_Check(PyObject *ob)
Return true if ob is a slice object; ob must not be NULL.

PyObject* PySlice_New(PyObject *start, PyObject *stop, PyObject *step)
Return value: New reference. Return a new slice object with the given values. The start, stop, and step parameters
are used as the values of the slice object attributes of the same names. Any of the values may be NULL, in which
case the None will be used for the corresponding attribute. Return NULL if the new object could not be allocated.

8.6. Other Objects 123

The Python/C API, Release 3.7.17

int PySlice_GetIndices(PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step)

Retrieve the start, stop and step indices from the slice object slice, assuming a sequence of length length. Treats
indices greater than length as errors.
Returns 0 on success and -1 on error with no exception set (unless one of the indices was not None and failed to
be converted to an integer, in which case -1 is returned with an exception set).
You probably do not want to use this function.
Changed in version 3.2: The parameter type for the slice parameter was PySliceObject* before.

int PySlice_GetIndicesEx(PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step, Py_ssize_t *slicelength)

Usable replacement for PySlice_GetIndices(). Retrieve the start, stop, and step indices from the slice
object slice assuming a sequence of length length, and store the length of the slice in slicelength. Out of bounds
indices are clipped in a manner consistent with the handling of normal slices.
Returns 0 on success and -1 on error with exception set.

Note: This function is considered not safe for resizable sequences. Its invocation should be replaced by a combi-
nation of PySlice_Unpack() and PySlice_AdjustIndices() where

if (PySlice_GetIndicesEx(slice, length, &start, &stop, &step, &slicelength) < 0) {
// return error

}

is replaced by

if (PySlice_Unpack(slice, &start, &stop, &step) < 0) {
// return error

}
slicelength = PySlice_AdjustIndices(length, &start, &stop, step);

Changed in version 3.2: The parameter type for the slice parameter was PySliceObject* before.
Changed in version 3.6.1: If Py_LIMITED_API is not set or set to the value between 0x03050400 and
0x03060000 (not including) or 0x03060100 or higher PySlice_GetIndicesEx() is implemented as a
macro using PySlice_Unpack() and PySlice_AdjustIndices(). Arguments start, stop and step are
evaluated more than once.
Deprecated since version 3.6.1: If Py_LIMITED_API is set to the value less than 0x03050400 or between
0x03060000 and 0x03060100 (not including) PySlice_GetIndicesEx() is a deprecated function.

int PySlice_Unpack(PyObject *slice, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
Extract the start, stop and step data members from a slice object as C integers. Silently reduce values
larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX, silently boost the start and stop values less than
PY_SSIZE_T_MIN to PY_SSIZE_T_MIN, and silently boost the step values less than -PY_SSIZE_T_MAX
to -PY_SSIZE_T_MAX.
Return -1 on error, 0 on success.
New in version 3.6.1.

Py_ssize_t PySlice_AdjustIndices(Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t step)

Adjust start/end slice indices assuming a sequence of the specified length. Out of bounds indices are clipped in a
manner consistent with the handling of normal slices.
Return the length of the slice. Always successful. Doesn’t call Python code.

124 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

New in version 3.6.1.

8.6.6 Ellipsis Object

PyObject *Py_Ellipsis
The Python Ellipsis object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts. Like Py_None it is a singleton object.

8.6.7 MemoryView objects

A memoryview object exposes the C level buffer interface as a Python object which can then be passed around like any
other object.
PyObject *PyMemoryView_FromObject(PyObject *obj)

Return value: New reference. Create a memoryview object from an object that provides the buffer interface. If obj
supports writable buffer exports, the memoryview object will be read/write, otherwise it may be either read-only
or read/write at the discretion of the exporter.

PyObject *PyMemoryView_FromMemory(char *mem, Py_ssize_t size, int flags)
Return value: New reference. Create a memoryview object using mem as the underlying buffer. flags can be one of
PyBUF_READ or PyBUF_WRITE.
New in version 3.3.

PyObject *PyMemoryView_FromBuffer(Py_buffer *view)
Return value: New reference. Create a memoryview object wrapping the given buffer structure view. For simple
byte buffers, PyMemoryView_FromMemory() is the preferred function.

PyObject *PyMemoryView_GetContiguous(PyObject *obj, int buffertype, char order)
Return value: New reference. Create a memoryview object to a contiguous chunk of memory (in either ‘C’ or
‘F’ortran order) from an object that defines the buffer interface. If memory is contiguous, the memoryview object
points to the original memory. Otherwise, a copy is made and the memoryview points to a new bytes object.

int PyMemoryView_Check(PyObject *obj)
Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses of
memoryview.

Py_buffer *PyMemoryView_GET_BUFFER(PyObject *mview)
Return a pointer to the memoryview’s private copy of the exporter’s buffer. mviewmust be a memoryview instance;
this macro doesn’t check its type, you must do it yourself or you will risk crashes.

Py_buffer *PyMemoryView_GET_BASE(PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if
the memoryview has been created by one of the functions PyMemoryView_FromMemory() or
PyMemoryView_FromBuffer(). mview must be a memoryview instance.

8.6. Other Objects 125

The Python/C API, Release 3.7.17

8.6.8 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly implement weak
references. The first is a simple reference object, and the second acts as a proxy for the original object as much as it can.
int PyWeakref_Check(ob)

Return true if ob is either a reference or proxy object.
int PyWeakref_CheckRef(ob)

Return true if ob is a reference object.
int PyWeakref_CheckProxy(ob)

Return true if ob is a proxy object.
PyObject* PyWeakref_NewRef(PyObject *ob, PyObject *callback)

Return value: New reference. Return a weak reference object for the object ob. This will always return a new
reference, but is not guaranteed to create a new object; an existing reference object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If ob is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.

PyObject* PyWeakref_NewProxy(PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference proxy object for the object ob. This will always return a
new reference, but is not guaranteed to create a new object; an existing proxy object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If ob is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.

PyObject* PyWeakref_GetObject(PyObject *ref)
Return value: Borrowed reference. Return the referenced object from a weak reference, ref. If the referent is no
longer live, returns Py_None.

Note: This function returns a borrowed reference to the referenced object. This means that you should always
call Py_INCREF() on the object except if you know that it cannot be destroyed while you are still using it.

PyObject* PyWeakref_GET_OBJECT(PyObject *ref)
Return value: Borrowed reference. Similar to PyWeakref_GetObject(), but implemented as a macro that
does no error checking.

8.6.9 Capsules

Refer to using-capsules for more information on using these objects.
New in version 3.1.
PyCapsule

This subtype of PyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to access
C APIs defined in dynamically loaded modules.

PyCapsule_Destructor
The type of a destructor callback for a capsule. Defined as:

126 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

typedef void (*PyCapsule_Destructor)(PyObject *);

See PyCapsule_New() for the semantics of PyCapsule_Destructor callbacks.
int PyCapsule_CheckExact(PyObject *p)

Return true if its argument is a PyCapsule.
PyObject* PyCapsule_New(void *pointer, const char *name, PyCapsule_Destructor destructor)

Return value: New reference. Create a PyCapsule encapsulating the pointer. The pointer argument may not be
NULL.
On failure, set an exception and return NULL.
The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)
If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.
If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule_Import().

void* PyCapsule_GetPointer(PyObject *capsule, const char *name)
Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.
The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule is
NULL, the name passed in must also be NULL. Python uses the C function strcmp() to compare capsule names.

PyCapsule_Destructor PyCapsule_GetDestructor(PyObject *capsule)
Return the current destructor stored in the capsule. On failure, set an exception and return NULL.
It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

void* PyCapsule_GetContext(PyObject *capsule)
Return the current context stored in the capsule. On failure, set an exception and return NULL.
It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

const char* PyCapsule_GetName(PyObject *capsule)
Return the current name stored in the capsule. On failure, set an exception and return NULL.
It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

void* PyCapsule_Import(const char *name, int no_block)
Import a pointer to a C object from a capsule attribute in a module. The name parameter should specify the full
name to the attribute, as in module.attribute. The name stored in the capsule must match this string exactly.
If no_block is true, import the module without blocking (using PyImport_ImportModuleNoBlock()). If
no_block is false, import the module conventionally (using PyImport_ImportModule()).
Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.

int PyCapsule_IsValid(PyObject *capsule, const char *name)
Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact(), has a non-NULL pointer stored in it, and its internal name matches the
name parameter. (See PyCapsule_GetPointer() for information on how capsule names are compared.)
In other words, if PyCapsule_IsValid() returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get()) are guaranteed to succeed.
Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

8.6. Other Objects 127

The Python/C API, Release 3.7.17

int PyCapsule_SetContext(PyObject *capsule, void *context)
Set the context pointer inside capsule to context.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor(PyObject *capsule, PyCapsule_Destructor destructor)
Set the destructor inside capsule to destructor.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName(PyObject *capsule, const char *name)
Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If the previous name stored
in the capsule was not NULL, no attempt is made to free it.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer(PyObject *capsule, void *pointer)
Set the void pointer inside capsule to pointer. The pointer may not be NULL.
Return 0 on success. Return nonzero and set an exception on failure.

8.6.10 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over a
function that yields values, rather than explicitly calling PyGen_New() or PyGen_NewWithQualName().
PyGenObject

The C structure used for generator objects.
PyTypeObject PyGen_Type

The type object corresponding to generator objects.
int PyGen_Check(PyObject *ob)

Return true if ob is a generator object; ob must not be NULL.
int PyGen_CheckExact(PyObject *ob)

Return true if ob’s type is PyGen_Type; ob must not be NULL.
PyObject* PyGen_New(PyFrameObject *frame)

Return value: New reference. Create and return a new generator object based on the frame object. A reference to
frame is stolen by this function. The argument must not be NULL.

PyObject* PyGen_NewWithQualName(PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new generator object based on the frame object, with __name__
and __qualname__ set to name and qualname. A reference to frame is stolen by this function. The frame
argument must not be NULL.

8.6.11 Coroutine Objects

New in version 3.5.
Coroutine objects are what functions declared with an async keyword return.
PyCoroObject

The C structure used for coroutine objects.
PyTypeObject PyCoro_Type

The type object corresponding to coroutine objects.
int PyCoro_CheckExact(PyObject *ob)

Return true if ob’s type is PyCoro_Type; ob must not be NULL.

128 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

PyObject* PyCoro_New(PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new coroutine object based on the frame object, with __name__
and __qualname__ set to name and qualname. A reference to frame is stolen by this function. The frame
argument must not be NULL.

8.6.12 Context Variables Objects

Note: Changed in version 3.7.1: In Python 3.7.1 the signatures of all context variables C APIs were changed to use
PyObject pointers instead of PyContext, PyContextVar, and PyContextToken, e.g.:

// in 3.7.0:
PyContext *PyContext_New(void);

// in 3.7.1+:
PyObject *PyContext_New(void);

See bpo-34762 for more details.

New in version 3.7.
This section details the public C API for the contextvars module.
PyContext

The C structure used to represent a contextvars.Context object.
PyContextVar

The C structure used to represent a contextvars.ContextVar object.
PyContextToken

The C structure used to represent a contextvars.Token object.
PyTypeObject PyContext_Type

The type object representing the context type.
PyTypeObject PyContextVar_Type

The type object representing the context variable type.
PyTypeObject PyContextToken_Type

The type object representing the context variable token type.
Type-check macros:
int PyContext_CheckExact(PyObject *o)

Return true if o is of type PyContext_Type. o must not be NULL. This function always succeeds.
int PyContextVar_CheckExact(PyObject *o)

Return true if o is of type PyContextVar_Type. o must not be NULL. This function always succeeds.
int PyContextToken_CheckExact(PyObject *o)

Return true if o is of type PyContextToken_Type. o must not be NULL. This function always succeeds.
Context object management functions:
PyObject *PyContext_New(void)

Return value: New reference. Create a new empty context object. Returns NULL if an error has occurred.
PyObject *PyContext_Copy(PyObject *ctx)

Return value: New reference. Create a shallow copy of the passed ctx context object. Returns NULL if an error has
occurred.

8.6. Other Objects 129

https://bugs.python.org/issue?@action=redirect&bpo=34762

The Python/C API, Release 3.7.17

PyObject *PyContext_CopyCurrent(void)
Return value: New reference. Create a shallow copy of the current thread context. Returns NULL if an error has
occurred.

int PyContext_Enter(PyObject *ctx)
Set ctx as the current context for the current thread. Returns 0 on success, and -1 on error.

int PyContext_Exit(PyObject *ctx)
Deactivate the ctx context and restore the previous context as the current context for the current thread. Returns 0
on success, and -1 on error.

int PyContext_ClearFreeList()
Clear the context variable free list. Return the total number of freed items. This function always succeeds.

Context variable functions:
PyObject *PyContextVar_New(const char *name, PyObject *def)

Return value: New reference. Create a new ContextVar object. The name parameter is used for introspection
and debug purposes. The def parameter may optionally specify the default value for the context variable. If an
error has occurred, this function returns NULL.

int PyContextVar_Get(PyObject *var, PyObject *default_value, PyObject **value)
Get the value of a context variable. Returns -1 if an error has occurred during lookup, and 0 if no error occurred,
whether or not a value was found.
If the context variable was found, value will be a pointer to it. If the context variable was not found, value will
point to:

• default_value, if not NULL;
• the default value of var, if not NULL;
• NULL

If the value was found, the function will create a new reference to it.
PyObject *PyContextVar_Set(PyObject *var, PyObject *value)

Return value: New reference. Set the value of var to value in the current context. Returns a pointer to a PyObject
object, or NULL if an error has occurred.

int PyContextVar_Reset(PyObject *var, PyObject *token)
Reset the state of the var context variable to that it was in before PyContextVar_Set() that returned the token
was called. This function returns 0 on success and -1 on error.

8.6.13 DateTime Objects

Various date and time objects are supplied by the datetime module. Before using any of these functions, the header
file datetime.h must be included in your source (note that this is not included by Python.h), and the macro
PyDateTime_IMPORTmust be invoked, usually as part of the module initialisation function. The macro puts a pointer
to a C structure into a static variable, PyDateTimeAPI, that is used by the following macros.
Macro for access to the UTC singleton:
PyObject* PyDateTime_TimeZone_UTC

Returns the time zone singleton representing UTC, the same object as datetime.timezone.utc.
New in version 3.7.

Type-check macros:

130 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

int PyDate_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DateType or a subtype of PyDateTime_DateType. ob must
not be NULL.

int PyDate_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL.

int PyDateTime_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType or a subtype of PyDateTime_DateTimeType.
ob must not be NULL.

int PyDateTime_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL.

int PyTime_Check(PyObject *ob)
Return true if ob is of type PyDateTime_TimeType or a subtype of PyDateTime_TimeType. ob must
not be NULL.

int PyTime_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL.

int PyDelta_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType or a subtype of PyDateTime_DeltaType. obmust
not be NULL.

int PyDelta_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL.

int PyTZInfo_Check(PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType. ob
must not be NULL.

int PyTZInfo_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType. ob must not be NULL.

Macros to create objects:
PyObject* PyDate_FromDate(int year, int month, int day)

Return value: New reference. Return a datetime.date object with the specified year, month and day.
PyObject* PyDateTime_FromDateAndTime(int year, int month, int day, int hour, int minute, int second,

int usecond)
Return value: New reference. Return a datetime.datetime object with the specified year, month, day, hour,
minute, second and microsecond.

PyObject* PyDateTime_FromDateAndTimeAndFold(int year, int month, int day, int hour, int minute,
int second, int usecond, int fold)

Return value: New reference. Return a datetime.datetime object with the specified year, month, day, hour,
minute, second, microsecond and fold.
New in version 3.6.

PyObject* PyTime_FromTime(int hour, int minute, int second, int usecond)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second and
microsecond.

PyObject* PyTime_FromTimeAndFold(int hour, int minute, int second, int usecond, int fold)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second, mi-
crosecond and fold.
New in version 3.6.

8.6. Other Objects 131

The Python/C API, Release 3.7.17

PyObject* PyDelta_FromDSU(int days, int seconds, int useconds)
Return value: New reference. Return a datetime.timedelta object representing the given number of days,
seconds and microseconds. Normalization is performed so that the resulting number of microseconds and seconds
lie in the ranges documented for datetime.timedelta objects.

PyObject* PyTimeZone_FromOffset(PyDateTime_DeltaType* offset)
Return value: New reference. Return a datetime.timezone object with an unnamed fixed offset represented
by the offset argument.
New in version 3.7.

PyObject* PyTimeZone_FromOffsetAndName(PyDateTime_DeltaType* offset, PyUnicode* name)
Return value: New reference. Return a datetime.timezone object with a fixed offset represented by the offset
argument and with tzname name.
New in version 3.7.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including sub-
classes (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:
int PyDateTime_GET_YEAR(PyDateTime_Date *o)

Return the year, as a positive int.
int PyDateTime_GET_MONTH(PyDateTime_Date *o)

Return the month, as an int from 1 through 12.
int PyDateTime_GET_DAY(PyDateTime_Date *o)

Return the day, as an int from 1 through 31.
Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime, in-
cluding subclasses. The argument must not be NULL, and the type is not checked:
int PyDateTime_DATE_GET_HOUR(PyDateTime_DateTime *o)

Return the hour, as an int from 0 through 23.
int PyDateTime_DATE_GET_MINUTE(PyDateTime_DateTime *o)

Return the minute, as an int from 0 through 59.
int PyDateTime_DATE_GET_SECOND(PyDateTime_DateTime *o)

Return the second, as an int from 0 through 59.
int PyDateTime_DATE_GET_MICROSECOND(PyDateTime_DateTime *o)

Return the microsecond, as an int from 0 through 999999.
int PyDateTime_DATE_GET_FOLD(PyDateTime_DateTime *o)

Return the fold, as an int from 0 through 1.
New in version 3.6.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including sub-
classes. The argument must not be NULL, and the type is not checked:
int PyDateTime_TIME_GET_HOUR(PyDateTime_Time *o)

Return the hour, as an int from 0 through 23.
int PyDateTime_TIME_GET_MINUTE(PyDateTime_Time *o)

Return the minute, as an int from 0 through 59.
int PyDateTime_TIME_GET_SECOND(PyDateTime_Time *o)

Return the second, as an int from 0 through 59.
int PyDateTime_TIME_GET_MICROSECOND(PyDateTime_Time *o)

Return the microsecond, as an int from 0 through 999999.

132 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.17

int PyDateTime_TIME_GET_FOLD(PyDateTime_Time *o)
Return the fold, as an int from 0 through 1.
New in version 3.6.

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta, including
subclasses. The argument must not be NULL, and the type is not checked:
int PyDateTime_DELTA_GET_DAYS(PyDateTime_Delta *o)

Return the number of days, as an int from -999999999 to 999999999.
New in version 3.3.

int PyDateTime_DELTA_GET_SECONDS(PyDateTime_Delta *o)
Return the number of seconds, as an int from 0 through 86399.
New in version 3.3.

int PyDateTime_DELTA_GET_MICROSECONDS(PyDateTime_Delta *o)
Return the number of microseconds, as an int from 0 through 999999.
New in version 3.3.

Macros for the convenience of modules implementing the DB API:
PyObject* PyDateTime_FromTimestamp(PyObject *args)

Return value: New reference. Create and return a new datetime.datetime object given an argument tuple
suitable for passing to datetime.datetime.fromtimestamp().

PyObject* PyDate_FromTimestamp(PyObject *args)
Return value: New reference. Create and return a new datetime.date object given an argument tuple suitable
for passing to datetime.date.fromtimestamp().

8.6. Other Objects 133

The Python/C API, Release 3.7.17

134 Chapter 8. Concrete Objects Layer

CHAPTER

NINE

INITIALIZATION, FINALIZATION, AND THREADS

9.1 Before Python Initialization

In an application embedding Python, the Py_Initialize() function must be called before using any other Python/C
API functions; with the exception of a few functions and the global configuration variables.
The following functions can be safely called before Python is initialized:

• Configuration functions:
– PyImport_AppendInittab()

– PyImport_ExtendInittab()

– PyInitFrozenExtensions()

– PyMem_SetAllocator()

– PyMem_SetupDebugHooks()

– PyObject_SetArenaAllocator()

– Py_SetPath()

– Py_SetProgramName()

– Py_SetPythonHome()

– Py_SetStandardStreamEncoding()

– PySys_AddWarnOption()

– PySys_AddXOption()

– PySys_ResetWarnOptions()

• Informative functions:
– Py_IsInitialized()

– PyMem_GetAllocator()

– PyObject_GetArenaAllocator()

– Py_GetBuildInfo()

– Py_GetCompiler()

– Py_GetCopyright()

– Py_GetPlatform()

– Py_GetVersion()

135

The Python/C API, Release 3.7.17

• Utilities:
– Py_DecodeLocale()

• Memory allocators:
– PyMem_RawMalloc()

– PyMem_RawRealloc()

– PyMem_RawCalloc()

– PyMem_RawFree()

Note: The following functions should not be called before Py_Initialize(): Py_EncodeLocale(),
Py_GetPath(), Py_GetPrefix(), Py_GetExecPrefix(), Py_GetProgramFullPath(),
Py_GetPythonHome(), Py_GetProgramName() and PyEval_InitThreads().

9.2 Global configuration variables

Python has variables for the global configuration to control different features and options. By default, these flags are
controlled by command line options.
When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, -b sets
Py_BytesWarningFlag to 1 and -bb sets Py_BytesWarningFlag to 2.
Py_BytesWarningFlag

Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if greater
or equal to 2.
Set by the -b option.

Py_DebugFlag
Turn on parser debugging output (for expert only, depending on compilation options).
Set by the -d option and the PYTHONDEBUG environment variable.

Py_DontWriteBytecodeFlag
If set to non-zero, Python won’t try to write .pyc files on the import of source modules.
Set by the -B option and the PYTHONDONTWRITEBYTECODE environment variable.

Py_FrozenFlag
Suppress error messages when calculating the module search path in Py_GetPath().
Private flag used by _freeze_importlib and frozenmain programs.

Py_HashRandomizationFlag
Set to 1 if the PYTHONHASHSEED environment variable is set to a non-empty string.
If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.

Py_IgnoreEnvironmentFlag
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.
Set by the -E and -I options.

Py_InspectFlag
When a script is passed as first argument or the -c option is used, enter interactive mode after executing the script
or the command, even when sys.stdin does not appear to be a terminal.

136 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.17

Set by the -i option and the PYTHONINSPECT environment variable.
Py_InteractiveFlag

Set by the -i option.
Py_IsolatedFlag

Run Python in isolated mode. In isolated mode sys.path contains neither the script’s directory nor the user’s
site-packages directory.
Set by the -I option.
New in version 3.4.

Py_LegacyWindowsFSEncodingFlag
If the flag is non-zero, use the mbcs encoding instead of the UTF-8 encoding for the filesystem encoding.
Set to 1 if the PYTHONLEGACYWINDOWSFSENCODING environment variable is set to a non-empty string.
See PEP 529 for more details.
Availability: Windows.

Py_LegacyWindowsStdioFlag
If the flag is non-zero, use io.FileIO instead of WindowsConsoleIO for sys standard streams.
Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
See PEP 528 for more details.
Availability: Windows.

Py_NoSiteFlag
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails. Also
disable these manipulations if site is explicitly imported later (call site.main() if you want them to be
triggered).
Set by the -S option.

Py_NoUserSiteDirectory
Don’t add the user site-packages directory to sys.path.
Set by the -s and -I options, and the PYTHONNOUSERSITE environment variable.

Py_OptimizeFlag
Set by the -O option and the PYTHONOPTIMIZE environment variable.

Py_QuietFlag
Don’t display the copyright and version messages even in interactive mode.
Set by the -q option.
New in version 3.2.

Py_UnbufferedStdioFlag
Force the stdout and stderr streams to be unbuffered.
Set by the -u option and the PYTHONUNBUFFERED environment variable.

Py_VerboseFlag
Print a message each time a module is initialized, showing the place (filename or built-in module) from which it is
loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a module. Also
provides information on module cleanup at exit.
Set by the -v option and the PYTHONVERBOSE environment variable.

9.2. Global configuration variables 137

https://www.python.org/dev/peps/pep-0529
https://www.python.org/dev/peps/pep-0528

The Python/C API, Release 3.7.17

9.3 Initializing and finalizing the interpreter

void Py_Initialize()
Initialize the Python interpreter. In an application embedding Python, this should be called before using any other
Python/C API functions; see Before Python Initialization for the few exceptions.
This initializes the table of loaded modules (sys.modules), and creates the fundamental modules builtins,
__main__ and sys. It also initializes the module search path (sys.path). It does not set sys.
argv; use PySys_SetArgvEx() for that. This is a no-op when called for a second time (without calling
Py_FinalizeEx() first). There is no return value; it is a fatal error if the initialization fails.

Note: On Windows, changes the console mode from O_TEXT to O_BINARY, which will also affect non-Python
uses of the console using the C Runtime.

void Py_InitializeEx(int initsigs)
This function works like Py_Initialize() if initsigs is 1. If initsigs is 0, it skips initialization registration of
signal handlers, which might be useful when Python is embedded.

int Py_IsInitialized()
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py_FinalizeEx() is called, this returns false until Py_Initialize() is called again.

int Py_FinalizeEx()
Undo all initializations made by Py_Initialize() and subsequent use of Python/C API functions, and destroy
all sub-interpreters (see Py_NewInterpreter() below) that were created and not yet destroyed since the last
call to Py_Initialize(). Ideally, this frees all memory allocated by the Python interpreter. This is a no-op
when called for a second time (without calling Py_Initialize() again first). Normally the return value is 0.
If there were errors during finalization (flushing buffered data), -1 is returned.
This function is provided for a number of reasons. An embedding application might want to restart Python without
having to restart the application itself. An application that has loaded the Python interpreter from a dynamically
loadable library (or DLL) might want to free all memory allocated by Python before unloading the DLL. During
a hunt for memory leaks in an application a developer might want to free all memory allocated by Python before
exiting from the application.
Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause
destructors (__del__() methods) to fail when they depend on other objects (even functions) or modules. Dy-
namically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated by
the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular references
between objects is not freed. Some memory allocated by extension modules may not be freed. Some extensions
may not work properly if their initialization routine is called more than once; this can happen if an application calls
Py_Initialize() and Py_FinalizeEx() more than once.
New in version 3.6.

void Py_Finalize()
This is a backwards-compatible version of Py_FinalizeEx() that disregards the return value.

138 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.17

9.4 Process-wide parameters

int Py_SetStandardStreamEncoding(const char *encoding, const char *errors)
This function should be called before Py_Initialize(), if it is called at all. It specifies which encoding and
error handling to use with standard IO, with the same meanings as in str.encode().
It overrides PYTHONIOENCODING values, and allows embedding code to control IO encoding when the environ-
ment variable does not work.
encoding and/or errors may be NULL to use PYTHONIOENCODING and/or default values (depending on other
settings).
Note that sys.stderr always uses the “backslashreplace” error handler, regardless of this (or any other) setting.
If Py_FinalizeEx() is called, this function will need to be called again in order to affect subsequent calls to
Py_Initialize().
Returns 0 if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).
New in version 3.4.

void Py_SetProgramName(const wchar_t *name)
This function should be called before Py_Initialize() is called for the first time, if it is called at all. It
tells the interpreter the value of the argv[0] argument to the main() function of the program (converted to
wide characters). This is used by Py_GetPath() and some other functions below to find the Python run-time
libraries relative to the interpreter executable. The default value is 'python'. The argument should point to
a zero-terminated wide character string in static storage whose contents will not change for the duration of the
program’s execution. No code in the Python interpreter will change the contents of this storage.
Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.

wchar* Py_GetProgramName()
Return the program name set with Py_SetProgramName(), or the default. The returned string points into
static storage; the caller should not modify its value.

wchar_t* Py_GetPrefix()
Return the prefix for installed platform-independent files. This is derived through a number of complicated rules
from the program name set with Py_SetProgramName() and some environment variables; for example, if the
program name is '/usr/local/bin/python', the prefix is '/usr/local'. The returned string points
into static storage; the caller should not modify its value. This corresponds to the prefix variable in the top-
level Makefile and the --prefix argument to the configure script at build time. The value is available to
Python code as sys.prefix. It is only useful on Unix. See also the next function.

wchar_t* Py_GetExecPrefix()
Return the exec-prefix for installed platform-dependent files. This is derived through a number of complicated rules
from the program name set with Py_SetProgramName() and some environment variables; for example, if
the program name is '/usr/local/bin/python', the exec-prefix is '/usr/local'. The returned string
points into static storage; the caller should not modify its value. This corresponds to the exec_prefix variable
in the top-level Makefile and the --exec-prefix argument to the configure script at build time. The
value is available to Python code as sys.exec_prefix. It is only useful on Unix.
Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared
libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed
in the /usr/local/plat subtree while platform independent may be installed in /usr/local.
Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running
the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are
another platform, and Intel machines running Linux are yet another platform. Different major revisions of the
same operating system generally also form different platforms. Non-Unix operating systems are a different story;
the installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set

9.4. Process-wide parameters 139

The Python/C API, Release 3.7.17

to the empty string. Note that compiled Python bytecode files are platform independent (but not independent from
the Python version by which they were compiled!).
System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.

wchar_t* Py_GetProgramFullPath()
Return the full program name of the Python executable; this is computed as a side-effect of deriving the default
module search path from the program name (set by Py_SetProgramName() above). The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as sys.
executable.

wchar_t* Py_GetPath()
Return the default module search path; this is computed from the program name (set by
Py_SetProgramName() above) and some environment variables. The returned string consists of a se-
ries of directory names separated by a platform dependent delimiter character. The delimiter character is ':'
on Unix and Mac OS X, ';' on Windows. The returned string points into static storage; the caller should not
modify its value. The list sys.path is initialized with this value on interpreter startup; it can be (and usually is)
modified later to change the search path for loading modules.

void Py_SetPath(const wchar_t *)
Set the default module search path. If this function is called before Py_Initialize(), then Py_GetPath()
won’t attempt to compute a default search path but uses the one provided instead. This is useful if Python is
embedded by an application that has full knowledge of the location of all modules. The path components should be
separated by the platform dependent delimiter character, which is ':' on Unix and Mac OS X, ';' onWindows.
This also causes sys.executable to be set only to the raw program name (see Py_SetProgramName())
and for sys.prefix and sys.exec_prefix to be empty. It is up to the caller to modify these if required
after calling Py_Initialize().
Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.
The path argument is copied internally, so the caller may free it after the call completes.

const char* Py_GetVersion()
Return the version of this Python interpreter. This is a string that looks something like

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

The first word (up to the first space character) is the current Python version; the first three characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not modify
its value. The value is available to Python code as sys.version.

const char* Py_GetPlatform()
Return the platform identifier for the current platform. On Unix, this is formed from the “official” name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is
also known as SunOS 5.x, the value is 'sunos5'. On Mac OS X, it is 'darwin'. On Windows, it is 'win'.
The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.platform.

const char* Py_GetCopyright()
Return the official copyright string for the current Python version, for example
'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.copyright.

const char* Py_GetCompiler()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

140 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.17

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

const char* Py_GetBuildInfo()
Return information about the sequence number and build date and time of the current Python interpreter instance,
for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

void PySys_SetArgvEx(int argc, wchar_t **argv, int updatepath)
Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s main()
function with the difference that the first entry should refer to the script file to be executed rather than the executable
hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argv can be an empty string.
If this function fails to initialize sys.argv, a fatal condition is signalled using Py_FatalError().
If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys.path
according to the following algorithm:

• If the name of an existing script is passed in argv[0], the absolute path of the directory where the script
is located is prepended to sys.path.

• Otherwise (that is, if argc is 0 or argv[0] doesn’t point to an existing file name), an empty string is
prepended to sys.path, which is the same as prepending the current working directory (".").

Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.

Note: It is recommended that applications embedding the Python interpreter for purposes other than executing a
single script pass 0 as updatepath, and update sys.path themselves if desired. See CVE-2008-5983.
On versions before 3.1.3, you can achieve the same effect by manually popping the first sys.path element after
having called PySys_SetArgv(), for example using:

PyRun_SimpleString("import sys; sys.path.pop(0)\n");

New in version 3.1.3.
void PySys_SetArgv(int argc, wchar_t **argv)

This function works like PySys_SetArgvEx() with updatepath set to 1 unless the python interpreter was
started with the -I.
Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.
Changed in version 3.4: The updatepath value depends on -I.

void Py_SetPythonHome(const wchar_t *home)
Set the default “home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for the
meaning of the argument string.
The argument should point to a zero-terminated character string in static storage whose contents will not change for
the duration of the program’s execution. No code in the Python interpreter will change the contents of this storage.
Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.

9.4. Process-wide parameters 141

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, Release 3.7.17

w_char* Py_GetPythonHome()
Return the default “home”, that is, the value set by a previous call to Py_SetPythonHome(), or the value of
the PYTHONHOME environment variable if it is set.

9.5 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global lock,
called the global interpreter lock or GIL, that must be held by the current thread before it can safely access Python objects.
Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example, when
two threads simultaneously increment the reference count of the same object, the reference count could end up being
incremented only once instead of twice.
Therefore, the rule exists that only the thread that has acquired the GIL may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see sys.
setswitchinterval()). The lock is also released around potentially blocking I/O operations like reading or writing
a file, so that other Python threads can run in the meantime.
The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current PyThreadState: it can be retrieved
using PyThreadState_Get().

9.5.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
... Do some blocking I/O operation ...
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
... Do some blocking I/O operation ...
Py_END_ALLOW_THREADS

The Py_BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block.
The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
... Do some blocking I/O operation ...
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is
released (since another thread could immediately acquire the lock and store its own thread state in the global variable).
Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread
state pointer.

142 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.17

Note: Calling system I/O functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’t need access to Python objects, such as compression or cryptographic
functions operating over memory buffers. For example, the standard zlib and hashlib modules release the GIL
when compressing or hashing data.

9.5.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is auto-
matically associated to them and the code showed above is therefore correct. However, when threads are created from
C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there a thread
state structure for them.
If you need to call Python code from these threads (often this will be part of a callbackAPI provided by the aforementioned
third-party library), you must first register these threads with the interpreter by creating a thread state data structure, then
acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C API. When you
are done, you should reset the thread state pointer, release the GIL, and finally free the thread state data structure.
The PyGILState_Ensure() and PyGILState_Release() functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release(gstate);

Note that the PyGILState_*() functions assume there is only one global interpreter (created automatically by
Py_Initialize()). Python supports the creation of additional interpreters (using Py_NewInterpreter()),
but mixing multiple interpreters and the PyGILState_*() API is unsupported.
Another important thing to note about threads is their behaviour in the face of the C fork() call. On most systems with
fork(), after a process forks only the thread that issued the fork will exist. That also means any locks held by other
threads will never be released. Python solves this for os.fork() by acquiring the locks it uses internally before the
fork, and releasing them afterwards. In addition, it resets any lock-objects in the child. When extending or embedding
Python, there is no way to inform Python of additional (non-Python) locks that need to be acquired before or reset after
a fork. OS facilities such as pthread_atfork() would need to be used to accomplish the same thing. Additionally,
when extending or embedding Python, calling fork() directly rather than through os.fork() (and returning to or
calling into Python) may result in a deadlock by one of Python’s internal locks being held by a thread that is defunct after
the fork. PyOS_AfterFork_Child() tries to reset the necessary locks, but is not always able to.

9.5. Thread State and the Global Interpreter Lock 143

The Python/C API, Release 3.7.17

9.5.3 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding the Python
interpreter:
PyInterpreterState

This data structure represents the state shared by a number of cooperating threads. Threads belonging to the same
interpreter share their module administration and a few other internal items. There are no public members in this
structure.
Threads belonging to different interpreters initially share nothing, except process state like available memory, open
file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter
they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp, which points to this thread’s interpreter state.

void PyEval_InitThreads()
Initialize and acquire the global interpreter lock. It should be called in the main thread before creating a second
thread or engaging in any other thread operations such as PyEval_ReleaseThread(tstate). It is not
needed before calling PyEval_SaveThread() or PyEval_RestoreThread().
This is a no-op when called for a second time.
Changed in version 3.7: This function is now called by Py_Initialize(), so you don’t have to call it yourself
anymore.
Changed in version 3.2: This function cannot be called before Py_Initialize() anymore.

int PyEval_ThreadsInitialized()
Returns a non-zero value if PyEval_InitThreads() has been called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded.
Changed in version 3.7: The GIL is now initialized by Py_Initialize().

PyThreadState* PyEval_SaveThread()
Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread state
to NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread
must have acquired it.

void PyEval_RestoreThread(PyThreadState *tstate)
Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread state to
tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it, otherwise
deadlock ensues.

Note: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

PyThreadState* PyThreadState_Get()
Return the current thread state. The global interpreter lock must be held. When the current thread state is NULL,
this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState* PyThreadState_Swap(PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument tstate, which may be NULL. The global
interpreter lock must be held and is not released.

144 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.17

void PyEval_ReInitThreads()
This function is called from PyOS_AfterFork_Child() to ensure that newly created child processes don’t
hold locks referring to threads which are not running in the child process.

The following functions use thread-local storage, and are not compatible with sub-interpreters:
PyGILState_STATE PyGILState_Ensure()

Ensure that the current thread is ready to call the Python C API regardless of the current state of Python, or
of the global interpreter lock. This may be called as many times as desired by a thread as long as each call is
matched with a call to PyGILState_Release(). In general, other thread-related APIs may be used be-
tween PyGILState_Ensure() and PyGILState_Release() calls as long as the thread state is restored
to its previous state before the Release(). For example, normal usage of the Py_BEGIN_ALLOW_THREADS and
Py_END_ALLOW_THREADS macros is acceptable.
The return value is an opaque “handle” to the thread state when PyGILState_Ensure() was called, and must
be passed to PyGILState_Release() to ensure Python is left in the same state. Even though recursive calls
are allowed, these handles cannot be shared - each unique call to PyGILState_Ensure()must save the handle
for its call to PyGILState_Release().
When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure
is a fatal error.

Note: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

void PyGILState_Release(PyGILState_STATE)
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to the
corresponding PyGILState_Ensure() call (but generally this state will be unknown to the caller, hence the
use of the GILState API).
Every call to PyGILState_Ensure()must be matched by a call to PyGILState_Release() on the same
thread.

PyThreadState* PyGILState_GetThisThreadState()
Get the current thread state for this thread. May return NULL if no GILState API has been used on the current
thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been made
on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check()
Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return 1.
This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory allocation
functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or otherwise behave
differently.
New in version 3.4.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.
Py_BEGIN_ALLOW_THREADS

This macro expands to { PyThreadState *_save; _save = PyEval_SaveThread();. Note that
it contains an opening brace; it must be matched with a following Py_END_ALLOW_THREADSmacro. See above
for further discussion of this macro.

Py_END_ALLOW_THREADS
This macro expands to PyEval_RestoreThread(_save); }. Note that it contains a closing brace; it must

9.5. Thread State and the Global Interpreter Lock 145

The Python/C API, Release 3.7.17

bematched with an earlierPy_BEGIN_ALLOW_THREADSmacro. See above for further discussion of this macro.
Py_BLOCK_THREADS

This macro expands to PyEval_RestoreThread(_save);: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace.

Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_SaveThread();: it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.

9.5.4 Low-level API

All of the following functions must be called after Py_Initialize().
Changed in version 3.7: Py_Initialize() now initializes the GIL.
PyInterpreterState* PyInterpreterState_New()

Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is necessary
to serialize calls to this function.

void PyInterpreterState_Clear(PyInterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PyInterpreterState_Delete(PyInterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must have
been reset with a previous call to PyInterpreterState_Clear().

PyThreadState* PyThreadState_New(PyInterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not be
held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear(PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

void PyThreadState_Delete(PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been reset
with a previous call to PyThreadState_Clear().

PY_INT64_T PyInterpreterState_GetID(PyInterpreterState *interp)
Return the interpreter’s unique ID. If there was any error in doing so then -1 is returned and an error is set.
New in version 3.7.

PyObject* PyThreadState_GetDict()
Return value: Borrowed reference. Return a dictionary in which extensions can store thread-specific state informa-
tion. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this function
when no current thread state is available. If this function returns NULL, no exception has been raised and the caller
should assume no current thread state is available.

int PyThreadState_SetAsyncExc(unsigned long id, PyObject *exc)
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the
exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you must
write your own C extension to call this. Must be called with the GIL held. Returns the number of thread states
modified; this is normally one, but will be zero if the thread id isn’t found. If exc is NULL, the pending exception
(if any) for the thread is cleared. This raises no exceptions.
Changed in version 3.7: The type of the id parameter changed from long to unsigned long.

146 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.17

void PyEval_AcquireThread(PyThreadState *tstate)
Acquire the global interpreter lock and set the current thread state to tstate, which should not be NULL. The lock
must have been created earlier. If this thread already has the lock, deadlock ensues.
PyEval_RestoreThread() is a higher-level function which is always available (even when threads have not
been initialized).

void PyEval_ReleaseThread(PyThreadState *tstate)
Reset the current thread state to NULL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. The tstate argument, which must not be NULL, is only used to check
that it represents the current thread state — if it isn’t, a fatal error is reported.
PyEval_SaveThread() is a higher-level function which is always available (even when threads have not been
initialized).

void PyEval_AcquireLock()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock, a
deadlock ensues.
Deprecated since version 3.2: This function does not update the current thread state. Please use
PyEval_RestoreThread() or PyEval_AcquireThread() instead.

void PyEval_ReleaseLock()
Release the global interpreter lock. The lock must have been created earlier.
Deprecated since version 3.2: This function does not update the current thread state. Please use
PyEval_SaveThread() or PyEval_ReleaseThread() instead.

9.6 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that.
You can switch between sub-interpreters using the PyThreadState_Swap() function. You can create and destroy
them using the following functions:
PyThreadState* Py_NewInterpreter()

Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code.
In particular, the new interpreter has separate, independent versions of all imported modules, including the fun-
damental modules builtins, __main__ and sys. The table of loaded modules (sys.modules) and the
module search path (sys.path) are also separate. The new environment has no sys.argv variable. It has
new standard I/O stream file objects sys.stdin, sys.stdout and sys.stderr (however these refer to the
same underlying file descriptors).
The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation
of the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state is stored in
the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the
global interpreter lock must be held before calling this function and is still held when it returns; however, unlike
most other Python/C API functions, there needn’t be a current thread state on entry.)
Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is im-
ported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away. When the
same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents
of this copy; the extension’s init function is not called. Note that this is different from what happens when an
extension is imported after the interpreter has been completely re-initialized by calling Py_FinalizeEx() and
Py_Initialize(); in that case, the extension’s initmodule function is called again.

9.6. Sub-interpreter support 147

The Python/C API, Release 3.7.17

void Py_EndInterpreter(PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thread state is NULL. All
thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before calling
this function and is still held when it returns.) Py_FinalizeEx() will destroy all sub-interpreters that haven’t
been explicitly destroyed at that point.

9.6.1 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t perfect
— for example, using low-level file operations likeos.close() they can (accidentally or maliciously) affect each other’s
open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not work properly;
this is especially likely when the extension makes use of (static) global variables, or when the extension manipulates its
module’s dictionary after its initialization. It is possible to insert objects created in one sub-interpreter into a namespace of
another sub-interpreter; this should be done with great care to avoid sharing user-defined functions, methods, instances or
classes between sub-interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s
dictionary of loaded modules.
Also note that combining this functionality with PyGILState_*() APIs is delicate, because these APIs assume a
bijection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters.
It is highly recommended that you don’t switch sub-interpreters between a pair of matching PyGILState_Ensure()
and PyGILState_Release() calls. Furthermore, extensions (such as ctypes) using these APIs to allow calling
of Python code from non-Python created threads will probably be broken when using sub-interpreters.

9.7 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the
form of a function pointer and a void pointer argument.
int Py_AddPendingCall(int (*func)(void *), void *arg)

Schedule a function to be called from the main interpreter thread. On success, 0 is returned and func is queued for
being called in the main thread. On failure, -1 is returned without setting any exception.
When successfully queued, func will be eventually called from the main interpreter thread with the argument arg.
It will be called asynchronously with respect to normally running Python code, but with both these conditions met:

• on a bytecode boundary;
• with the main thread holding the global interpreter lock (func can therefore use the full C API).

funcmust return 0 on success, or -1 on failure with an exception set. func won’t be interrupted to perform another
asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock
is released.
This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

Warning: This is a low-level function, only useful for very special cases. There is no guarantee that func will
be called as quick as possible. If the main thread is busy executing a system call, func won’t be called before
the system call returns. This function is generally not suitable for calling Python code from arbitrary C threads.
Instead, use the PyGILState API.

New in version 3.1.

148 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.17

9.8 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are
used for profiling, debugging, and coverage analysis tools.
This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects,
making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace
functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported
to the Python-level trace functions in previous versions.
int (*Py_tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)

The type of the trace function registered using PyEval_SetProfile() and PyEval_SetTrace(). The
first parameter is the object passed to the registration function as obj, frame is the frame object to which the event
pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, PyTrace_C_RETURN, or
PyTrace_OPCODE, and arg depends on the value of what:

Value of what Meaning of arg
PyTrace_CALL Always Py_None.
PyTrace_EXCEPTION Exception information as returned by sys.exc_info().
PyTrace_LINE Always Py_None.
PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL Function object being called.
PyTrace_C_EXCEPTION Function object being called.
PyTrace_C_RETURN Function object being called.
PyTrace_OPCODE Always Py_None.

int PyTrace_CALL
The value of the what parameter to a Py_tracefunc function when a new call to a function or method is being
reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not
reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Py_tracefunc function when an exception has been raised. The callback
function is called with this value for what when after any bytecode is processed after which the exception becomes
set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to
unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives
these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a Py_tracefunc function (but not a profiling function) when a
line-number event is being reported. It may be disabled for a frame by setting f_trace_lines to 0 on that
frame.

int PyTrace_RETURN
The value for the what parameter to Py_tracefunc functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_tracefunc functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_tracefunc functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_tracefunc functions when a C function has returned.

9.8. Profiling and Tracing 149

The Python/C API, Release 3.7.17

int PyTrace_OPCODE
The value for the what parameter to Py_tracefunc functions (but not profiling functions) when a new op-
code is about to be executed. This event is not emitted by default: it must be explicitly requested by setting
f_trace_opcodes to 1 on the frame.

void PyEval_SetProfile(Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may be
any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj for each
thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events
except PyTrace_LINE PyTrace_OPCODE and PyTrace_EXCEPTION.

void PyEval_SetTrace(Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval_SetProfile(), except the tracing function does
receive line-number events and per-opcode events, but does not receive any event related to C function objects
being called. Any trace function registered using PyEval_SetTrace() will not receive PyTrace_C_CALL,
PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what parameter.

9.9 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.
PyInterpreterState* PyInterpreterState_Head()

Return the interpreter state object at the head of the list of all such objects.
PyInterpreterState* PyInterpreterState_Main()

Return the main interpreter state object.
PyInterpreterState* PyInterpreterState_Next(PyInterpreterState *interp)

Return the next interpreter state object after interp from the list of all such objects.
PyThreadState * PyInterpreterState_ThreadHead(PyInterpreterState *interp)

Return the pointer to the first PyThreadState object in the list of threads associated with the interpreter interp.
PyThreadState* PyThreadState_Next(PyThreadState *tstate)

Return the next thread state object after tstate from the list of all such objects belonging to the same
PyInterpreterState object.

9.10 Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native TLS
implementation to support the Python-level thread local storage API (threading.local). The CPython C level APIs
are similar to those offered by pthreads and Windows: use a thread key and functions to associate a void* value per
thread.
The GIL does not need to be held when calling these functions; they supply their own locking.
Note that Python.h does not include the declaration of the TLS APIs, you need to include pythread.h to use
thread-local storage.

Note: None of these API functions handle memory management on behalf of the void* values. You need to allo-
cate and deallocate them yourself. If the void* values happen to be PyObject*, these functions don’t do refcount
operations on them either.

150 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.17

9.10.1 Thread Specific Storage (TSS) API

TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses a new
type Py_tss_t instead of int to represent thread keys.
New in version 3.7.
See also:
“A New C-API for Thread-Local Storage in CPython” (PEP 539)
Py_tss_t

This data structure represents the state of a thread key, the definition of which may depend on the underlying TLS
implementation, and it has an internal field representing the key’s initialization state. There are no public members
in this structure.
When Py_LIMITED_API is not defined, static allocation of this type by Py_tss_NEEDS_INIT is allowed.

Py_tss_NEEDS_INIT
This macro expands to the initializer for Py_tss_t variables. Note that this macro won’t be defined with
Py_LIMITED_API.

Dynamic Allocation

Dynamic allocation of the Py_tss_t, required in extension modules built with Py_LIMITED_API, where static alloca-
tion of this type is not possible due to its implementation being opaque at build time.
Py_tss_t* PyThread_tss_alloc()

Return a value which is the same state as a value initialized with Py_tss_NEEDS_INIT, or NULL in the case
of dynamic allocation failure.

void PyThread_tss_free(Py_tss_t *key)
Free the given key allocated by PyThread_tss_alloc(), after first calling PyThread_tss_delete()
to ensure any associated thread locals have been unassigned. This is a no-op if the key argument is NULL.

Note: A freed key becomes a dangling pointer, you should reset the key to NULL.

Methods

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread_tss_set()
and PyThread_tss_get() are undefined if the given Py_tss_t has not been initialized by
PyThread_tss_create().
int PyThread_tss_is_created(Py_tss_t *key)

Return a non-zero value if the given Py_tss_t has been initialized by PyThread_tss_create().
int PyThread_tss_create(Py_tss_t *key)

Return a zero value on successful initialization of a TSS key. The behavior is undefined if the value pointed to
by the key argument is not initialized by Py_tss_NEEDS_INIT. This function can be called repeatedly on the
same key – calling it on an already initialized key is a no-op and immediately returns success.

void PyThread_tss_delete(Py_tss_t *key)
Destroy a TSS key to forget the values associated with the key across all threads, and change the key’s initialization
state to uninitialized. A destroyed key is able to be initialized again by PyThread_tss_create(). This
function can be called repeatedly on the same key – calling it on an already destroyed key is a no-op.

9.10. Thread Local Storage Support 151

https://www.python.org/dev/peps/pep-0539

The Python/C API, Release 3.7.17

int PyThread_tss_set(Py_tss_t *key, void *value)
Return a zero value to indicate successfully associating a void* value with a TSS key in the current thread. Each
thread has a distinct mapping of the key to a void* value.

void* PyThread_tss_get(Py_tss_t *key)
Return thevoid* value associated with a TSS key in the current thread. This returnsNULL if no value is associated
with the key in the current thread.

9.10.2 Thread Local Storage (TLS) API

Deprecated since version 3.7: This API is superseded by Thread Specific Storage (TSS) API.

Note: This version of the API does not support platforms where the native TLS key is defined in a way that cannot be
safely cast to int. On such platforms, PyThread_create_key() will return immediately with a failure status, and
the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.
int PyThread_create_key()
void PyThread_delete_key(int key)
int PyThread_set_key_value(int key, void *value)
void* PyThread_get_key_value(int key)
void PyThread_delete_key_value(int key)
void PyThread_ReInitTLS()

152 Chapter 9. Initialization, Finalization, and Threads

CHAPTER

TEN

MEMORY MANAGEMENT

10.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The manage-
ment of this private heap is ensured internally by the Python memory manager. The Python memory manager has different
components which deal with various dynamic storage management aspects, like sharing, segmentation, preallocation or
caching.
At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all Python-
related data by interacting with the memory manager of the operating system. On top of the rawmemory allocator, several
object-specific allocators operate on the same heap and implement distinct memory management policies adapted to the
peculiarities of every object type. For example, integer objects are managed differently within the heap than strings, tuples
or dictionaries because integers imply different storage requirements and speed/space tradeoffs. The Python memory
manager thus delegates some of the work to the object-specific allocators, but ensures that the latter operate within the
bounds of the private heap.
It is important to understand that the management of the Python heap is performed by the interpreter itself and that the
user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap. The
allocation of heap space for Python objects and other internal buffers is performed on demand by the Python memory
manager through the Python/C API functions listed in this document.
To avoid memory corruption, extension writers should never try to operate on Python objects with the functions exported
by the C library: malloc(), calloc(), realloc() and free(). This will result in mixed calls between the
C allocator and the Python memory manager with fatal consequences, because they implement different algorithms and
operate on different heaps. However, one may safely allocate and release memory blocks with the C library allocator for
individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

...Do some I/O operation involving buf...
res = PyBytes_FromString(buf);
free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory manager
is involved only in the allocation of the bytes object returned as a result.
In most situations, however, it is recommended to allocate memory from the Python heap specifically because the latter
is under control of the Python memory manager. For example, this is required when the interpreter is extended with new
object types written in C. Another reason for using the Python heap is the desire to inform the Python memory manager
about the memory needs of the extension module. Even when the requested memory is used exclusively for internal,

153

The Python/C API, Release 3.7.17

highly-specific purposes, delegating all memory requests to the Python memory manager causes the interpreter to have a
more accurate image of its memory footprint as a whole. Consequently, under certain circumstances, the Python memory
manager may or may not trigger appropriate actions, like garbage collection, memory compaction or other preventive
procedures. Note that by using the C library allocator as shown in the previous example, the allocated memory for the
I/O buffer escapes completely the Python memory manager.
See also:
The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.
The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allocator every
time a new pymalloc object arena is created, and on shutdown.

10.2 Raw Memory Interface

The following function sets are wrappers to the system allocator. These functions are thread-safe, the GIL does not need
to be held.
The default raw memory allocator uses the following functions: malloc(), calloc(), realloc() and free();
call malloc(1) (or calloc(1, 1)) when requesting zero bytes.
New in version 3.4.
void* PyMem_RawMalloc(size_t n)

Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc(1) had been
called instead. The memory will not have been initialized in any way.

void* PyMem_RawCalloc(size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.
Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc(1, 1) had been called instead.
New in version 3.5.

void* PyMem_RawRealloc(void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.
If p is NULL, the call is equivalent to PyMem_RawMalloc(n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.
Unless p is NULL, it must have been returned by a previous call to PyMem_RawMalloc(),
PyMem_RawRealloc() or PyMem_RawCalloc().
If the request fails, PyMem_RawRealloc() returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_RawFree(void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem_RawMalloc(), PyMem_RawRealloc() or PyMem_RawCalloc(). Otherwise, or if
PyMem_RawFree(p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

154 Chapter 10. Memory Management

The Python/C API, Release 3.7.17

10.3 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.
The default memory allocator uses the pymalloc memory allocator.

Warning: The GIL must be held when using these functions.

Changed in version 3.6: The default allocator is now pymalloc instead of system malloc().
void* PyMem_Malloc(size_t n)

Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc(1) had been called
instead. The memory will not have been initialized in any way.

void* PyMem_Calloc(size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.
Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc(1, 1) had been called instead.
New in version 3.5.

void* PyMem_Realloc(void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.
If p is NULL, the call is equivalent to PyMem_Malloc(n); else if n is equal to zero, the memory block is resized
but is not freed, and the returned pointer is non-NULL.
Unless p is NULL, it must have been returned by a previous call to PyMem_Malloc(), PyMem_Realloc()
or PyMem_Calloc().
If the request fails, PyMem_Realloc() returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free(void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to PyMem_Malloc(),
PyMem_Realloc() or PyMem_Calloc(). Otherwise, or if PyMem_Free(p) has been called before, un-
defined behavior occurs.
If p is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.
TYPE* PyMem_New(TYPE, size_t n)

Same as PyMem_Malloc(), but allocates (n * sizeof(TYPE)) bytes of memory. Returns a pointer cast
to TYPE*. The memory will not have been initialized in any way.

TYPE* PyMem_Resize(void *p, TYPE, size_t n)
Same as PyMem_Realloc(), but the memory block is resized to (n * sizeof(TYPE)) bytes. Returns a
pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.
This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory when
handling errors.

10.3. Memory Interface 155

The Python/C API, Release 3.7.17

void PyMem_Del(void *p)
Same as PyMem_Free().

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving the
C API functions listed above. However, note that their use does not preserve binary compatibility across Python versions
and is therefore deprecated in extension modules.

• PyMem_MALLOC(size)

• PyMem_NEW(type, size)

• PyMem_REALLOC(ptr, size)

• PyMem_RESIZE(ptr, type, size)

• PyMem_FREE(ptr)

• PyMem_DEL(ptr)

10.4 Object allocators

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.
The default object allocator uses the pymalloc memory allocator.

Warning: The GIL must be held when using these functions.

void* PyObject_Malloc(size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc(1) had been
called instead. The memory will not have been initialized in any way.

void* PyObject_Calloc(size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.
Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyObject_Calloc(1, 1) had been called instead.
New in version 3.5.

void* PyObject_Realloc(void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.
If p is NULL, the call is equivalent to PyObject_Malloc(n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.
Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc(),
PyObject_Realloc() or PyObject_Calloc().
If the request fails, PyObject_Realloc() returns NULL and p remains a valid pointer to the previous memory
area.

void PyObject_Free(void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to

156 Chapter 10. Memory Management

The Python/C API, Release 3.7.17

PyObject_Malloc(), PyObject_Realloc() or PyObject_Calloc(). Otherwise, or if
PyObject_Free(p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

10.5 Default Memory Allocators

Default memory allocators:

Configuration Name PyMem_RawMallocPyMem_Malloc PyOb-
ject_Malloc

Release build "pymalloc" malloc pymalloc pymalloc
Debug build "pymalloc_debug"malloc + debug pymalloc + de-

bug
pymalloc + de-
bug

Release build, without py-
malloc

"malloc" malloc malloc malloc

Debug build, without py-
malloc

"malloc_debug" malloc + debug malloc + debug malloc + debug

Legend:
• Name: value for PYTHONMALLOC environment variable
• malloc: system allocators from the standard C library, C functions: malloc(), calloc(), realloc()
and free()

• pymalloc: pymalloc memory allocator
• “+ debug”: with debug hooks installed by PyMem_SetupDebugHooks()

10.6 Customize Memory Allocators

New in version 3.4.
PyMemAllocatorEx

Structure used to describe a memory block allocator. The structure has four fields:

Field Meaning
void *ctx user context passed as first argument
void* malloc(void *ctx, size_t size) allocate a memory block
void* calloc(void *ctx, size_t nelem, size_t
elsize)

allocate amemory block initialized with
zeros

void* realloc(void *ctx, void *ptr, size_t
new_size)

allocate or resize a memory block

void free(void *ctx, void *ptr) free a memory block

Changed in version 3.5: The PyMemAllocator structure was renamed to PyMemAllocatorEx and a new
calloc field was added.

PyMemAllocatorDomain
Enum used to identify an allocator domain. Domains:

10.5. Default Memory Allocators 157

The Python/C API, Release 3.7.17

PYMEM_DOMAIN_RAW
Functions:
• PyMem_RawMalloc()

• PyMem_RawRealloc()

• PyMem_RawCalloc()

• PyMem_RawFree()

PYMEM_DOMAIN_MEM
Functions:
• PyMem_Malloc(),
• PyMem_Realloc()

• PyMem_Calloc()

• PyMem_Free()

PYMEM_DOMAIN_OBJ
Functions:
• PyObject_Malloc()

• PyObject_Realloc()

• PyObject_Calloc()

• PyObject_Free()

void PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Get the memory block allocator of the specified domain.

void PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Set the memory block allocator of the specified domain.
The new allocator must return a distinct non-NULL pointer when requesting zero bytes.
For the PYMEM_DOMAIN_RAW domain, the allocator must be thread-safe: the GIL is not held when the allocator
is called.
If the new allocator is not a hook (does not call the previous allocator), the PyMem_SetupDebugHooks()
function must be called to reinstall the debug hooks on top on the new allocator.

void PyMem_SetupDebugHooks(void)
Setup hooks to detect bugs in the Python memory allocator functions.
Newly allocated memory is filled with the byte 0xCD (CLEANBYTE), freed memory is filled with the byte 0xDD
(DEADBYTE). Memory blocks are surrounded by “forbidden bytes” (FORBIDDENBYTE: byte 0xFD).
Runtime checks:

• Detect API violations, ex: PyObject_Free() called on a buffer allocated by PyMem_Malloc()
• Detect write before the start of the buffer (buffer underflow)
• Detect write after the end of the buffer (buffer overflow)
• Check that the GIL is held when allocator functions of PYMEM_DOMAIN_OBJ (ex:
PyObject_Malloc()) and PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) domains are called

On error, the debug hooks use the tracemalloc module to get the traceback where a memory block was allo-
cated. The traceback is only displayed if tracemalloc is tracing Python memory allocations and the memory
block was traced.

158 Chapter 10. Memory Management

The Python/C API, Release 3.7.17

These hooks are installed by default if Python is compiled in debug mode. The PYTHONMALLOC environment
variable can be used to install debug hooks on a Python compiled in release mode.
Changed in version 3.6: This function now also works on Python compiled in release mode. On error, the debug
hooks now use tracemalloc to get the traceback where a memory block was allocated. The debug hooks now
also check if the GIL is held when functions of PYMEM_DOMAIN_OBJ and PYMEM_DOMAIN_MEM domains are
called.
Changed in version 3.7.3: Byte patterns 0xCB (CLEANBYTE), 0xDB (DEADBYTE) and 0xFB
(FORBIDDENBYTE) have been replaced with 0xCD, 0xDD and 0xFD to use the same values than Win-
dows CRT debug malloc() and free().

10.7 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called “arenas” with a fixed size of 256 KiB. It falls back to PyMem_RawMalloc() and
PyMem_RawRealloc() for allocations larger than 512 bytes.
pymalloc is the default allocator of the PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) and PYMEM_DOMAIN_OBJ
(ex: PyObject_Malloc()) domains.
The arena allocator uses the following functions:

• VirtualAlloc() and VirtualFree() on Windows,
• mmap() and munmap() if available,
• malloc() and free() otherwise.

10.7.1 Customize pymalloc Arena Allocator

New in version 3.4.
PyObjectArenaAllocator

Structure used to describe an arena allocator. The structure has three fields:

Field Meaning
void *ctx user context passed as first argument
void* alloc(void *ctx, size_t size) allocate an arena of size bytes
void free(void *ctx, size_t size, void *ptr) free an arena

PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)
Get the arena allocator.

PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)
Set the arena allocator.

10.7. The pymalloc allocator 159

The Python/C API, Release 3.7.17

10.8 tracemalloc C API

New in version 3.7.
int PyTraceMalloc_Track(unsigned int domain, uintptr_t ptr, size_t size)

Track an allocated memory block in the tracemalloc module.
Return 0 on success, return -1 on error (failed to allocate memory to store the trace). Return -2 if tracemalloc is
disabled.
If memory block is already tracked, update the existing trace.

int PyTraceMalloc_Untrack(unsigned int domain, uintptr_t ptr)
Untrack an allocated memory block in the tracemalloc module. Do nothing if the block was not tracked.
Return -2 if tracemalloc is disabled, otherwise return 0.

10.9 Examples

Here is the example from section Overview, rewritten so that the I/O buffer is allocated from the Python heap by using
the first function set:

PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New(char, BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString(buf);
PyMem_Del(buf); /* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed, it
is required to use the same memory API family for a given memory block, so that the risk of mixing different allocators
is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as fatal because it
mixes two different allocators operating on different heaps.

char *buf1 = PyMem_New(char, BUFSIZ);
char *buf2 = (char *) malloc(BUFSIZ);
char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
...
PyMem_Del(buf3); /* Wrong -- should be PyMem_Free() */
free(buf2); /* Right -- allocated via malloc() */
free(buf1); /* Fatal -- should be PyMem_Del() */

160 Chapter 10. Memory Management

The Python/C API, Release 3.7.17

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are allocated
and released with PyObject_New(), PyObject_NewVar() and PyObject_Del().
These will be explained in the next chapter on defining and implementing new object types in C.

10.9. Examples 161

The Python/C API, Release 3.7.17

162 Chapter 10. Memory Management

CHAPTER

ELEVEN

OBJECT IMPLEMENTATION SUPPORT

This chapter describes the functions, types, and macros used when defining new object types.

11.1 Allocating Objects on the Heap

PyObject* _PyObject_New(PyTypeObject *type)
Return value: New reference.

PyVarObject* _PyObject_NewVar(PyTypeObject *type, Py_ssize_t size)
Return value: New reference.

PyObject* PyObject_Init(PyObject *op, PyTypeObject *type)
Return value: Borrowed reference. Initialize a newly-allocated object op with its type and initial reference. Returns
the initialized object. If type indicates that the object participates in the cyclic garbage detector, it is added to the
detector’s set of observed objects. Other fields of the object are not affected.

PyVarObject* PyObject_InitVar(PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference. This does everything PyObject_Init() does, and also initializes the length
information for a variable-size object.

TYPE* PyObject_New(TYPE, PyTypeObject *type)
Return value: New reference. Allocate a new Python object using the C structure type TYPE and the Python type
object type. Fields not defined by the Python object header are not initialized; the object’s reference count will be
one. The size of the memory allocation is determined from the tp_basicsize field of the type object.

TYPE* PyObject_NewVar(TYPE, PyTypeObject *type, Py_ssize_t size)
Return value: New reference. Allocate a new Python object using the C structure type TYPE and the Python type
object type. Fields not defined by the Python object header are not initialized. The allocated memory allows for the
TYPE structure plus size fields of the size given by the tp_itemsize field of type. This is useful for implementing
objects like tuples, which are able to determine their size at construction time. Embedding the array of fields into
the same allocation decreases the number of allocations, improving the memory management efficiency.

void PyObject_Del(void *op)
Releases memory allocated to an object using PyObject_New() or PyObject_NewVar(). This is normally
called from the tp_dealloc handler specified in the object’s type. The fields of the object should not be accessed
after this call as the memory is no longer a valid Python object.

PyObject _Py_NoneStruct
Object which is visible in Python as None. This should only be accessed using the Py_None macro, which
evaluates to a pointer to this object.

See also:
PyModule_Create() To allocate and create extension modules.

163

The Python/C API, Release 3.7.17

11.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section describes
these structures and how they are used.
All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and PyVarObject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects.
PyObject

All object types are extensions of this type. This is a type which contains the information Python needs to treat
a pointer to an object as an object. In a normal “release” build, it contains only the object’s reference count and
a pointer to the corresponding type object. Nothing is actually declared to be a PyObject, but every pointer
to a Python object can be cast to a PyObject*. Access to the members must be done by using the macros
Py_REFCNT and Py_TYPE.

PyVarObject
This is an extension of PyObject that adds the ob_size field. This is only used for objects that have some
notion of length. This type does not often appear in the Python/C API. Access to the members must be done by
using the macros Py_REFCNT, Py_TYPE, and Py_SIZE.

PyObject_HEAD
This is a macro used when declaring new types which represent objects without a varying length. The PyOb-
ject_HEAD macro expands to:

PyObject ob_base;

See documentation of PyObject above.
PyObject_VAR_HEAD

This is a macro used when declaring new types which represent objects with a length that varies from instance to
instance. The PyObject_VAR_HEAD macro expands to:

PyVarObject ob_base;

See documentation of PyVarObject above.
Py_TYPE(o)

This macro is used to access the ob_type member of a Python object. It expands to:

(((PyObject*)(o))->ob_type)

Py_REFCNT(o)
This macro is used to access the ob_refcnt member of a Python object. It expands to:

(((PyObject*)(o))->ob_refcnt)

Py_SIZE(o)
This macro is used to access the ob_size member of a Python object. It expands to:

(((PyVarObject*)(o))->ob_size)

PyObject_HEAD_INIT(type)
This is a macro which expands to initialization values for a new PyObject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

164 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.17

PyVarObject_HEAD_INIT(type, size)
This is a macro which expands to initialization values for a new PyVarObject type, including the ob_size
field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two PyObject*
parameters and return one such value. If the return value is NULL, an exception shall have been set. If not NULL,
the return value is interpreted as the return value of the function as exposed in Python. The function must return a
new reference.

PyCFunctionWithKeywords
Type of the functions used to implement Python callables in C with signature METH_VARARGS |
METH_KEYWORDS.

_PyCFunctionFast
Type of the functions used to implement Python callables in C with signature METH_FASTCALL.

_PyCFunctionFastWithKeywords
Type of the functions used to implement Python callables in C with signature METH_FASTCALL |
METH_KEYWORDS.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

Field C Type Meaning
ml_name const char * name of the method
ml_meth PyCFunction pointer to the C implementation
ml_flags int flag bits indicating how the call should be constructed
ml_doc const char * points to the contents of the docstring

The ml_meth is a C function pointer. The functions may be of different types, but they always return PyObject*.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyObject*, it is common that the method implementation uses the
specific C type of the self object.
The ml_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention.
There are four basic calling conventions for positional arguments and two of them can be combined with
METH_KEYWORDS to support also keyword arguments. So there are a total of 6 calling conventions:
METH_VARARGS

This is the typical calling convention, where the methods have the type PyCFunction. The function expects two
PyObject* values. The first one is the self object for methods; for module functions, it is the module object.
The second parameter (often called args) is a tuple object representing all arguments. This parameter is typically
processed using PyArg_ParseTuple() or PyArg_UnpackTuple().

METH_VARARGS | METH_KEYWORDS
Methods with these flags must be of type PyCFunctionWithKeywords. The function expects three parame-
ters: self, args, kwargs where kwargs is a dictionary of all the keyword arguments or possibly NULL if there are no
keyword arguments. The parameters are typically processed using PyArg_ParseTupleAndKeywords().

METH_FASTCALL
Fast calling convention supporting only positional arguments. The methods have the type _PyCFunctionFast.

11.2. Common Object Structures 165

The Python/C API, Release 3.7.17

The first parameter is self, the second parameter is a C array of PyObject* values indicating the arguments and
the third parameter is the number of arguments (the length of the array).
This is not part of the limited API.
New in version 3.7.

METH_FASTCALL | METH_KEYWORDS
Extension of METH_FASTCALL supporting also keyword arguments, with methods of type
_PyCFunctionFastWithKeywords. Keyword arguments are passed the same way as in the vector-
call protocol: there is an additional fourth PyObject* parameter which is a tuple representing the names of the
keyword arguments or possibly NULL if there are no keywords. The values of the keyword arguments are stored
in the args array, after the positional arguments.
This is not part of the limited API.
New in version 3.7.

METH_NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self
and will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

METH_O
Methods with a single object argument can be listed with the METH_O flag, instead of invoking
PyArg_ParseTuple() with a "O" argument. They have the type PyCFunction, with the self parame-
ter, and a PyObject* parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.
METH_CLASS

The method will be passed the type object as the first parameter rather than an instance of the type. This is used
to create class methods, similar to what is created when using the classmethod() built-in function.

METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to create
static methods, similar to what is created when using the staticmethod() built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.
METH_COEXIST

The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip re-
peated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains slot,
for example, would generate a wrapped method named __contains__() and preclude the loading of a corre-
sponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in place of the
wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are optimized more
than wrapper object calls.

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields are:

Field C Type Meaning
name const char * name of the member
type int the type of the member in the C struct
offset Py_ssize_t the offset in bytes that the member is located on the type’s object struct
flags int flag bits indicating if the field should be read-only or writable
doc const char * points to the contents of the docstring

166 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.17

type can be one of many T_ macros corresponding to various C types. When the member is accessed in Python,
it will be converted to the equivalent Python type.

Macro name C type
T_SHORT short
T_INT int
T_LONG long
T_FLOAT float
T_DOUBLE double
T_STRING const char *
T_OBJECT PyObject *
T_OBJECT_EX PyObject *
T_CHAR char
T_BYTE char
T_UBYTE unsigned char
T_UINT unsigned int
T_USHORT unsigned short
T_ULONG unsigned long
T_BOOL char
T_LONGLONG long long
T_ULONGLONG unsigned long long
T_PYSSIZET Py_ssize_t

T_OBJECT and T_OBJECT_EX differ in that T_OBJECT returns None if the member is NULL and
T_OBJECT_EX raises an AttributeError. Try to use T_OBJECT_EX over T_OBJECT because
T_OBJECT_EX handles use of the del statement on that attribute more correctly than T_OBJECT.
flags can be 0 for write and read access or READONLY for read-only access. Using T_STRING for type
implies READONLY. T_STRING data is interpreted as UTF-8. Only T_OBJECT and T_OBJECT_EX members
can be deleted. (They are set to NULL).

PyGetSetDef
Structure to define property-like access for a type. See also description of the PyTypeObject.tp_getset
slot.

Field C Type Meaning
name const char * attribute name
get getter C Function to get the attribute
set setter optional C function to set or delete the attribute, if omitted the attribute is readonly
doc const char * optional docstring
closure void * optional function pointer, providing additional data for getter and setter

The get function takes one PyObject* parameter (the instance) and a function pointer (the associated
closure):

typedef PyObject *(*getter)(PyObject *, void *);

It should return a new reference on success or NULL with a set exception on failure.
set functions take two PyObject* parameters (the instance and the value to be set) and a function pointer (the
associated closure):

typedef int (*setter)(PyObject *, PyObject *, void *);

11.2. Common Object Structures 167

The Python/C API, Release 3.7.17

In case the attribute should be deleted the second parameter is NULL. Should return 0 on success or -1 with a set
exception on failure.

11.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the
PyTypeObject structure. Type objects can be handled using any of thePyObject_*() orPyType_*() functions,
but do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects behave,
so they are very important to the interpreter itself and to any extension module that implements new types.
Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object stores
a large number of values, mostly C function pointers, each of which implements a small part of the type’s functionality.
The fields of the type object are examined in detail in this section. The fields will be described in the order in which they
occur in the structure.
Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, intargfunc, intintargfunc, intobjargproc, intintobjargproc, objob-
jargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, reprfunc, hashfunc
The structure definition for PyTypeObject can be found in Include/object.h. For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)

or tp_reserved (Python 3) */
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

(continues on next page)

168 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.17

(continued from previous page)
const char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
Py_ssize_t tp_dictoffset;
initproc tp_init;
allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;
destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObject;

The type object structure extends the PyVarObject structure. The ob_size field is used for dynamic types (cre-
ated by type_new(), usually called from a class statement). Note that PyType_Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.
PyObject* PyObject._ob_next
PyObject* PyObject._ob_prev

These fields are only present when the macro Py_TRACE_REFS is defined. Their initialization to NULL is taken
care of by the PyObject_HEAD_INITmacro. For statically allocated objects, these fields always remain NULL.
For dynamically allocated objects, these two fields are used to link the object into a doubly-linked list of all live
objects on the heap. This could be used for various debugging purposes; currently the only use is to print the objects
that are still alive at the end of a run when the environment variable PYTHONDUMPREFS is set.

11.3. Type Objects 169

The Python/C API, Release 3.7.17

These fields are not inherited by subtypes.
Py_ssize_t PyObject.ob_refcnt

This is the type object’s reference count, initialized to 1 by the PyObject_HEAD_INIT macro. Note that for
statically allocated type objects, the type’s instances (objects whose ob_type points back to the type) do not count
as references. But for dynamically allocated type objects, the instances do count as references.
This field is not inherited by subtypes.

PyTypeObject* PyObject.ob_type
This is the type’s type, in other words its metatype. It is initialized by the argument to the
PyObject_HEAD_INIT macro, and its value should normally be &PyType_Type. However, for dynami-
cally loadable extension modules that must be usable on Windows (at least), the compiler complains that this is
not a valid initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT macro and to
initialize this field explicitly at the start of the module’s initialization function, before doing anything else. This is
typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. PyType_Ready() checks if ob_type is
NULL, and if so, initializes it to the ob_type field of the base class. PyType_Ready() will not change this
field if it is non-zero.
This field is inherited by subtypes.

Py_ssize_t PyVarObject.ob_size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type objects, this
field has a special internal meaning.
This field is not inherited by subtypes.

const char* PyTypeObject.tp_name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module globals,
the string should be the full module name, followed by a dot, followed by the type name; for built-in types, it should
be just the type name. If the module is a submodule of a package, the full package name is part of the full module
name. For example, a type named T defined in module M in subpackage Q in package P should have the tp_name
initializer "P.Q.M.T".
For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored in
the type dict as the value for key '__module__'.
For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot is made
accessible as the __module__ attribute, and everything after the last dot is made accessible as the __name__
attribute.
If no dot is present, the entire tp_name field is made accessible as the __name__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle. Additionally, it will not be listed in module documentations created with
pydoc.
This field is not inherited by subtypes.

Py_ssize_t PyTypeObject.tp_basicsize
Py_ssize_t PyTypeObject.tp_itemsize

These fields allow calculating the size in bytes of instances of the type.
There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with
variable-length instances have a non-zero tp_itemsize field. For a type with fixed-length instances, all instances
have the same size, given in tp_basicsize.

170 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.17

For a type with variable-length instances, the instances must have an ob_size field, and the instance size is
tp_basicsize plus N times tp_itemsize, where N is the “length” of the object. The value of N is typically
stored in the instance’s ob_size field. There are exceptions: for example, ints use a negative ob_size to
indicate a negative number, and N is abs(ob_size) there. Also, the presence of an ob_size field in the
instance layout doesn’t mean that the instance structure is variable-length (for example, the structure for the list
type has fixed-length instances, yet those instances have a meaningful ob_size field).
The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an initializer
for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance layout. The
basic size does not include the GC header size.
These fields are inherited separately by subtypes. If the base type has a non-zero tp_itemsize, it is generally not
safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the implementation
of the base type).
A note about alignment: if the variable items require a particular alignment, this should be taken care of by
the value of tp_basicsize. Example: suppose a type implements an array of double. tp_itemsize
is sizeof(double). It is the programmer’s responsibility that tp_basicsize is a multiple of
sizeof(double) (assuming this is the alignment requirement for double).

destructor PyTypeObject.tp_dealloc
A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singletons None and Ellipsis).
The destructor function is called by the Py_DECREF() and Py_XDECREF() macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor function
should free all references which the instance owns, free all memory buffers owned by the instance (using the freeing
function corresponding to the allocation function used to allocate the buffer), and finally (as its last action) call
the type’s tp_free function. If the type is not subtypable (doesn’t have the Py_TPFLAGS_BASETYPE flag bit
set), it is permissible to call the object deallocator directly instead of via tp_free. The object deallocator should
be the one used to allocate the instance; this is normally PyObject_Del() if the instance was allocated using
PyObject_New() orPyObject_VarNew(), orPyObject_GC_Del() if the instancewas allocated using
PyObject_GC_New() or PyObject_GC_NewVar().
This field is inherited by subtypes.

printfunc PyTypeObject.tp_print
Reserved slot, formerly used for print formatting in Python 2.x.

getattrfunc PyTypeObject.tp_getattr
An optional pointer to the get-attribute-string function.
This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_getattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_getattr(PyObject *o, char *attr_name);

This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattr and tp_getattro are both NULL.

setattrfunc PyTypeObject.tp_setattr
An optional pointer to the function for setting and deleting attributes.
This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_setattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_setattr(PyObject *o, char *attr_name, PyObject *v);

11.3. Type Objects 171

The Python/C API, Release 3.7.17

The v argument is set to NULL to delete the attribute. This field is inherited by subtypes together with
tp_setattro: a subtype inherits both tp_setattr and tp_setattro from its base type when the sub-
type’s tp_setattr and tp_setattro are both NULL.

PyAsyncMethods* tp_as_async
Pointer to an additional structure that contains fields relevant only to objects which implement awaitable and asyn-
chronous iterator protocols at the C-level. See Async Object Structures for details.
New in version 3.5: Formerly known as tp_compare and tp_reserved.

reprfunc PyTypeObject.tp_repr
An optional pointer to a function that implements the built-in function repr().
The signature is the same as for PyObject_Repr(); it must return a string or a Unicode object. Ideally, this
function should return a string that, when passed to eval(), given a suitable environment, returns an object with
the same value. If this is not feasible, it should return a string starting with '<' and ending with '>' from which
both the type and the value of the object can be deduced.
When this field is not set, a string of the form <%s object at %p> is returned, where %s is replaced by the
type name, and %p by the object’s memory address.
This field is inherited by subtypes.

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number protocol.
These fields are documented in Number Object Structures.
The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence protocol.
These fields are documented in Sequence Object Structures.
The tp_as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping protocol.
These fields are documented in Mapping Object Structures.
The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject.tp_hash
An optional pointer to a function that implements the built-in function hash().
The signature is the same as for PyObject_Hash(); it must return a value of the type Py_hash_t. The value -1
should not be returned as a normal return value; when an error occurs during the computation of the hash value,
the function should set an exception and return -1.
This field can be set explicitly to PyObject_HashNotImplemented() to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash__ = None at the Python level,
causing isinstance(o, collections.Hashable) to correctly return False. Note that the converse
is also true - setting __hash__ = None on a class at the Python level will result in the tp_hash slot being set
to PyObject_HashNotImplemented().
When this field is not set, an attempt to take the hash of the object raises TypeError.
This field is inherited by subtypes together with tp_richcompare: a subtype inherits both of
tp_richcompare and tp_hash, when the subtype’s tp_richcompare and tp_hash are both NULL.

ternaryfunc PyTypeObject.tp_call
An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call().

172 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.17

This field is inherited by subtypes.
reprfunc PyTypeObject.tp_str

An optional pointer to a function that implements the built-in operation str(). (Note that str is a type now,
and str() calls the constructor for that type. This constructor calls PyObject_Str() to do the actual work,
and PyObject_Str() will call this handler.)
The signature is the same as for PyObject_Str(); it must return a string or a Unicode object. This function
should return a “friendly” string representation of the object, as this is the representation that will be used, among
other things, by the print() function.
When this field is not set, PyObject_Repr() is called to return a string representation.
This field is inherited by subtypes.

getattrofunc PyTypeObject.tp_getattro
An optional pointer to the get-attribute function.
The signature is the same as for PyObject_GetAttr(). It is usually convenient to set this field to
PyObject_GenericGetAttr(), which implements the normal way of looking for object attributes.
This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattr and tp_getattro are both NULL.

setattrofunc PyTypeObject.tp_setattro
An optional pointer to the function for setting and deleting attributes.
The signature is the same as for PyObject_SetAttr(), but setting v to NULL to delete an attribute must be
supported. It is usually convenient to set this field to PyObject_GenericSetAttr(), which implements the
normal way of setting object attributes.
This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattr and tp_setattro are both NULL.

PyBufferProcs* PyTypeObject.tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer interface.
These fields are documented in Buffer Object Structures.
The tp_as_buffer field is not inherited, but the contained fields are inherited individually.

unsigned long PyTypeObject.tp_flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; others are used
to indicate that certain fields in the type object (or in the extension structures referenced via tp_as_number,
tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically not always present are
valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be considered to have a zero
or NULL value instead.
Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The Py_TPFLAGS_HAVE_GC flag bit is inherited together with the
tp_traverse and tp_clear fields, i.e. if the Py_TPFLAGS_HAVE_GC flag bit is clear in the subtype and
the tp_traverse and tp_clear fields in the subtype exist and have NULL values.
The following bit masks are currently defined; these can be ORed together using the | operator to form the value of
the tp_flags field. The macro PyType_HasFeature() takes a type and a flags value, tp and f, and checks
whether tp->tp_flags & f is non-zero.
Py_TPFLAGS_HEAPTYPE

This bit is set when the type object itself is allocated on the heap. In this case, the ob_type field of its
instances is considered a reference to the type, and the type object is INCREF’ed when a new instance is

11.3. Type Objects 173

The Python/C API, Release 3.7.17

created, and DECREF’ed when an instance is destroyed (this does not apply to instances of subtypes; only
the type referenced by the instance’s ob_type gets INCREF’ed or DECREF’ed).

Py_TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type cannot
be subtyped (similar to a “final” class in Java).

Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by PyType_Ready().

Py_TPFLAGS_READYING
This bit is set while PyType_Ready() is in the process of initializing the type object.

Py_TPFLAGS_HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be created us-
ing PyObject_GC_New() and destroyed using PyObject_GC_Del(). More information in section
Supporting Cyclic Garbage Collection. This bit also implies that the GC-related fields tp_traverse and
tp_clear are present in the type object.

Py_TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in the type object and its extension
structures. Currently, it includes the following bits: Py_TPFLAGS_HAVE_STACKLESS_EXTENSION,
Py_TPFLAGS_HAVE_VERSION_TAG.

Py_TPFLAGS_LONG_SUBCLASS

Py_TPFLAGS_LIST_SUBCLASS

Py_TPFLAGS_TUPLE_SUBCLASS

Py_TPFLAGS_BYTES_SUBCLASS

Py_TPFLAGS_UNICODE_SUBCLASS

Py_TPFLAGS_DICT_SUBCLASS

Py_TPFLAGS_BASE_EXC_SUBCLASS

Py_TPFLAGS_TYPE_SUBCLASS
These flags are used by functions such as PyLong_Check() to quickly determine if a type is a subclass
of a built-in type; such specific checks are faster than a generic check, like PyObject_IsInstance().
Custom types that inherit from built-ins should have their tp_flags set appropriately, or the code that
interacts with such types will behave differently depending on what kind of check is used.

Py_TPFLAGS_HAVE_FINALIZE
This bit is set when the tp_finalize slot is present in the type structure.
New in version 3.4.

const char* PyTypeObject.tp_doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as the
__doc__ attribute on the type and instances of the type.
This field is not inherited by subtypes.

traverseproc PyTypeObject.tp_traverse
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set. More information about Python’s garbage collection scheme can be
found in section Supporting Cyclic Garbage Collection.
The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical implementation
of a tp_traverse function simply calls Py_VISIT() on each of the instance’s members that are Python

174 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.17

objects that the instance owns. For example, this is function local_traverse() from the _thread extension
module:

static int
local_traverse(localobject *self, visitproc visit, void *arg)
{

Py_VISIT(self->args);
Py_VISIT(self->kw);
Py_VISIT(self->dict);
return 0;

}

Note that Py_VISIT() is called only on those members that can participate in reference cycles. Although there
is also a self->keymember, it can only be NULL or a Python string and therefore cannot be part of a reference
cycle.
On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want to
visit it anyway just so the gc module’s get_referents() function will include it.

Warning: When implementing tp_traverse, only the members that the instance owns (by having strong
references to them) must be visited. For instance, if an object supports weak references via the tp_weaklist
slot, the pointer supporting the linked list (what tp_weaklist points to) must not be visited as the instance does
not directly own the weak references to itself (the weakreference list is there to support the weak reference
machinery, but the instance has no strong reference to the elements inside it, as they are allowed to be removed
even if the instance is still alive).

Note that Py_VISIT() requires the visit and arg parameters to local_traverse() to have these specific
names; don’t name them just anything.
This field is inherited by subtypes together with tp_clear and the Py_TPFLAGS_HAVE_GC flag bit: the flag
bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

inquiry PyTypeObject.tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the Py_TPFLAGS_HAVE_GC
flag bit is set.
The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_clear functions in the system must combine to break all reference cycles. This
is subtle, and if in any doubt supply a tp_clear function. For example, the tuple type does not implement a
tp_clear function, because it’s possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the tp_clear functions of other types must be sufficient to break any cycle containing a tuple. This
isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp_clear.
Implementations of tp_clear should drop the instance’s references to those of its members that may be Python
objects, and set its pointers to those members to NULL, as in the following example:

static int
local_clear(localobject *self)
{

Py_CLEAR(self->key);
Py_CLEAR(self->args);
Py_CLEAR(self->kw);
Py_CLEAR(self->dict);
return 0;

}

11.3. Type Objects 175

The Python/C API, Release 3.7.17

The Py_CLEAR() macro should be used, because clearing references is delicate: the reference to the contained
object must not be decremented until after the pointer to the contained object is set to NULL. This is because
decrementing the reference count may cause the contained object to become trash, triggering a chain of reclamation
activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks, associated with the
contained object). If it’s possible for such code to reference self again, it’s important that the pointer to the contained
object be NULL at that time, so that self knows the contained object can no longer be used. The Py_CLEAR()
macro performs the operations in a safe order.
Because the goal of tp_clear functions is to break reference cycles, it’s not necessary to clear contained ob-
jects like Python strings or Python integers, which can’t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’s tp_dealloc function to invoke
tp_clear.
More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.
This field is inherited by subtypes together with tp_traverse and the Py_TPFLAGS_HAVE_GC flag bit: the
flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

richcmpfunc PyTypeObject.tp_richcompare
An optional pointer to the rich comparison function, whose signature is PyObject
*tp_richcompare(PyObject *a, PyObject *b, int op). The first parameter is guaran-
teed to be an instance of the type that is defined by PyTypeObject.
The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_NotImplemented, if another error occurred it must return NULL and set an
exception condition.

Note: If you want to implement a type for which only a limited set of comparisons makes sense (e.g. == and !=,
but not < and friends), directly raise TypeError in the rich comparison function.

This field is inherited by subtypes together with tp_hash: a subtype inherits tp_richcompare and tp_hash
when the subtype’s tp_richcompare and tp_hash are both NULL.
The following constants are defined to be used as the third argument for tp_richcompare and for
PyObject_RichCompare():

Constant Comparison
Py_LT <
Py_LE <=
Py_EQ ==
Py_NE !=
Py_GT >
Py_GE >=

The following macro is defined to ease writing rich comparison functions:
PyObject *Py_RETURN_RICHCOMPARE(VAL_A, VAL_B, int op)

Return Py_True or Py_False from the function, depending on the result of a comparison. VAL_A and
VAL_B must be orderable by C comparison operators (for example, they may be C ints or floats). The third
argument specifies the requested operation, as for PyObject_RichCompare().
The return value’s reference count is properly incremented.
On error, sets an exception and returns NULL from the function.
New in version 3.7.

176 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.17

Py_ssize_t PyTypeObject.tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used by
PyObject_ClearWeakRefs() and thePyWeakref_*() functions. The instance structure needs to include
a field of type PyObject* which is initialized to NULL.
Do not confuse this field with tp_weaklist; that is the list head for weak references to the type object itself.
This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found via
tp_weaklistoffset, this should not be a problem.
When a type defined by a class statement has no __slots__ declaration, and none of its base types are weakly
referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the instance layout
and setting the tp_weaklistoffset of that slot’s offset.
When a type’s __slots__ declaration contains a slot named __weakref__, that slot becomes the weak ref-
erence list head for instances of the type, and the slot’s offset is stored in the type’s tp_weaklistoffset.
When a type’s __slots__ declaration does not contain a slot named __weakref__, the type inherits its
tp_weaklistoffset from its base type.

getiterfunc PyTypeObject.tp_iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function).
This function has the same signature as PyObject_GetIter().
This field is inherited by subtypes.

iternextfunc PyTypeObject.tp_iternext
An optional pointer to a function that returns the next item in an iterator. When the iterator is exhausted, it must
return NULL; a StopIteration exception may or may not be set. When another error occurs, it must return
NULL too. Its presence signals that the instances of this type are iterators.
Iterator types should also define the tp_iter function, and that function should return the iterator instance itself
(not a new iterator instance).
This function has the same signature as PyIter_Next().
This field is inherited by subtypes.

struct PyMethodDef* PyTypeObject.tp_methods
An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular methods
of this type.
For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a method
descriptor.
This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* PyTypeObject.tp_members
An optional pointer to a static NULL-terminated array of PyMemberDef structures, declaring regular data mem-
bers (fields or slots) of instances of this type.
For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a member
descriptor.
This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* PyTypeObject.tp_getset
An optional pointer to a staticNULL-terminated array ofPyGetSetDef structures, declaring computed attributes
of instances of this type.

11.3. Type Objects 177

The Python/C API, Release 3.7.17

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a getset
descriptor.
This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

PyTypeObject* PyTypeObject.tp_base
An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.
This field is not inherited by subtypes (obviously), but it defaults to &PyBaseObject_Type (which to Python
programmers is known as the type object).

PyObject* PyTypeObject.tp_dict
The type’s dictionary is stored here by PyType_Ready().
This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once PyType_Ready() has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations (like
__add__()).
This field is not inherited by subtypes (though the attributes defined in here are inherited through a different mech-
anism).

Warning: It is not safe to use PyDict_SetItem() on or otherwise modify tp_dict with the dictionary
C-API.

descrgetfunc PyTypeObject.tp_descr_get
An optional pointer to a “descriptor get” function.
The function signature is

PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);

This field is inherited by subtypes.
descrsetfunc PyTypeObject.tp_descr_set

An optional pointer to a function for setting and deleting a descriptor’s value.
The function signature is

int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value. This field is inherited by subtypes.
Py_ssize_t PyTypeObject.tp_dictoffset

If the instances of this type have a dictionary containing instance variables, this field is non-zero and con-
tains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr().
Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.
If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If the value
is less than zero, it specifies the offset from the end of the instance structure. A negative offset is more expensive to
use, and should only be used when the instance structure contains a variable-length part. This is used for example
to add an instance variable dictionary to subtypes of str or tuple. Note that the tp_basicsize field should
account for the dictionary added to the end in that case, even though the dictionary is not included in the basic
object layout. On a system with a pointer size of 4 bytes, tp_dictoffset should be set to -4 to indicate that
the dictionary is at the very end of the structure.
The real dictionary offset in an instance can be computed from a negative tp_dictoffset as follows:

178 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.17

dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof(void*):

round up to sizeof(void*)

where tp_basicsize, tp_itemsize and tp_dictoffset are taken from the type object, and ob_size
is taken from the instance. The absolute value is taken because ints use the sign of ob_size to store
the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr().)
This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means that
the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is always
found via tp_dictoffset, this should not be a problem.
When a type defined by a class statement has no __slots__ declaration, and none of its base types has an instance
variable dictionary, a dictionary slot is added to the instance layout and the tp_dictoffset is set to that slot’s
offset.
When a type defined by a class statement has a __slots__ declaration, the type inherits its tp_dictoffset
from its base type.
(Adding a slot named __dict__ to the __slots__ declaration does not have the expected effect, it just causes
confusion. Maybe this should be added as a feature just like __weakref__ though.)

initproc PyTypeObject.tp_init
An optional pointer to an instance initialization function.
This function corresponds to the __init__()method of classes. Like __init__(), it is possible to create an
instance without calling __init__(), and it is possible to reinitialize an instance by calling its __init__()
method again.
The function signature is

int tp_init(PyObject *self, PyObject *args, PyObject *kwds)

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword
arguments of the call to __init__().
The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after the
type’s tp_new function has returned an instance of the type. If the tp_new function returns an instance of some
other type that is not a subtype of the original type, no tp_init function is called; if tp_new returns an instance
of a subtype of the original type, the subtype’s tp_init is called.
This field is inherited by subtypes.

allocfunc PyTypeObject.tp_alloc
An optional pointer to an instance allocation function.
The function signature is

PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should return a
pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but
with ob_refcnt set to 1 and ob_type set to the type argument. If the type’s tp_itemsize is non-zero,
the object’s ob_size field should be initialized to nitems and the length of the allocated memory block should
be tp_basicsize + nitems*tp_itemsize, rounded up to a multiple of sizeof(void*); otherwise,
nitems is not used and the length of the block should be tp_basicsize.
Do not use this function to do any other instance initialization, not even to allocate additional memory; that should
be done by tp_new.

11.3. Type Objects 179

The Python/C API, Release 3.7.17

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is always set to PyType_GenericAlloc(), to force a standard heap allocation strategy.
That is also the recommended value for statically defined types.

newfunc PyTypeObject.tp_new
An optional pointer to an instance creation function.
If this function is NULL for a particular type, that type cannot be called to create new instances; presumably there
is some other way to create instances, like a factory function.
The function signature is

PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds)

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).
The tp_new function should call subtype->tp_alloc(subtype, nitems) to allocate space for the
object, and then do only as much further initialization as is absolutely necessary. Initialization that can safely be
ignored or repeated should be placed in the tp_init handler. A good rule of thumb is that for immutable types,
all initialization should take place in tp_new, while for mutable types, most initialization should be deferred to
tp_init.
This field is inherited by subtypes, except it is not inherited by static types whose tp_base is NULL or
&PyBaseObject_Type.

destructor PyTypeObject.tp_free
An optional pointer to an instance deallocation function. Its signature is freefunc:

void tp_free(void *)

An initializer that is compatible with this signature is PyObject_Free().
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is set to a deallocator suitable to match PyType_GenericAlloc() and the value of the
Py_TPFLAGS_HAVE_GC flag bit.

inquiry PyTypeObject.tp_is_gc
An optional pointer to a function called by the garbage collector.
The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient to
look at the object’s type’s tp_flags field, and check the Py_TPFLAGS_HAVE_GC flag bit. But some types have
a mixture of statically and dynamically allocated instances, and the statically allocated instances are not collectible.
Such types should define this function; it should return 1 for a collectible instance, and 0 for a non-collectible
instance. The signature is

int tp_is_gc(PyObject *self)

(The only example of this are types themselves. The metatype, PyType_Type, defines this function to distinguish
between statically and dynamically allocated types.)
This field is inherited by subtypes.

PyObject* PyTypeObject.tp_bases
Tuple of base types.
This is set for types created by a class statement. It should be NULL for statically defined types.
This field is not inherited.

180 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.17

PyObject* PyTypeObject.tp_mro
Tuple containing the expanded set of base types, starting with the type itself and ending with object, in Method
Resolution Order.
This field is not inherited; it is calculated fresh by PyType_Ready().

destructor PyTypeObject.tp_finalize
An optional pointer to an instance finalization function. Its signature is destructor:

void tp_finalize(PyObject *)

If tp_finalize is set, the interpreter calls it once when finalizing an instance. It is called either from the garbage
collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated. Either way,
it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the object in a sane
state.
tp_finalize should not mutate the current exception status; therefore, a recommended way to write a non-
trivial finalizer is:

static void
local_finalize(PyObject *self)
{

PyObject *error_type, *error_value, *error_traceback;

/* Save the current exception, if any. */
PyErr_Fetch(&error_type, &error_value, &error_traceback);

/* ... */

/* Restore the saved exception. */
PyErr_Restore(error_type, error_value, error_traceback);

}

For this field to be taken into account (even through inheritance), you must also set the
Py_TPFLAGS_HAVE_FINALIZE flags bit.
This field is inherited by subtypes.
New in version 3.4.
See also:
“Safe object finalization” (PEP 442)

PyObject* PyTypeObject.tp_cache
Unused. Not inherited. Internal use only.

PyObject* PyTypeObject.tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* PyTypeObject.tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test macro COUNT_ALLOCS is defined, and are for internal use only.
They are documented here for completeness. None of these fields are inherited by subtypes.
Py_ssize_t PyTypeObject.tp_allocs

Number of allocations.
Py_ssize_t PyTypeObject.tp_frees

Number of frees.

11.3. Type Objects 181

https://www.python.org/dev/peps/pep-0442

The Python/C API, Release 3.7.17

Py_ssize_t PyTypeObject.tp_maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* PyTypeObject.tp_next
Pointer to the next type object with a non-zero tp_allocs field.

Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread which
created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage collection
on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called will own the
Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from some other C or C++
library, care should be taken to ensure that destroying those objects on the thread which called tp_dealloc will not violate
any assumptions of the library.

11.4 Number Object Structures

PyNumberMethods
This structure holds pointers to the functions which an object uses to implement the number protocol. Each function
is used by the function of similar name documented in the Number Protocol section.
Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_bool;
unaryfunc nb_invert;
binaryfunc nb_lshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
unaryfunc nb_int;
void *nb_reserved;
unaryfunc nb_float;

binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;

(continues on next page)

182 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.17

(continued from previous page)
binaryfunc nb_inplace_true_divide;

unaryfunc nb_index;

binaryfunc nb_matrix_multiply;
binaryfunc nb_inplace_matrix_multiply;

} PyNumberMethods;

Note: Binary and ternary functions must check the type of all their operands, and implement the necessary
conversions (at least one of the operands is an instance of the defined type). If the operation is not defined for the
given operands, binary and ternary functions must return Py_NotImplemented, if another error occurred they
must return NULL and set an exception.

Note: The nb_reserved field should always be NULL. It was previously called nb_long, and was renamed
in Python 3.0.1.

11.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has three
members:

lenfunc PyMappingMethods.mp_length
This function is used by PyMapping_Size() and PyObject_Size(), and has the same signature. This slot
may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods.mp_subscript
This function is used by PyObject_GetItem() and PySequence_GetSlice(), and has the same signa-
ture as PyObject_GetItem(). This slot must be filled for the PyMapping_Check() function to return 1,
it can be NULL otherwise.

objobjargproc PyMappingMethods.mp_ass_subscript
This function is used by PyObject_SetItem(), PyObject_DelItem(), PyObject_SetSlice()
and PyObject_DelSlice(). It has the same signature as PyObject_SetItem(), but v can also be set to
NULL to delete an item. If this slot is NULL, the object does not support item assignment and deletion.

11.6 Sequence Object Structures

PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length
This function is used by PySequence_Size() and PyObject_Size(), and has the same signature. It is
also used for handling negative indices via the sq_item and the sq_ass_item slots.

binaryfunc PySequenceMethods.sq_concat
This function is used by PySequence_Concat() and has the same signature. It is also used by the + operator,
after trying the numeric addition via the nb_add slot.

11.5. Mapping Object Structures 183

The Python/C API, Release 3.7.17

ssizeargfunc PySequenceMethods.sq_repeat
This function is used by PySequence_Repeat() and has the same signature. It is also used by the * operator,
after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq_item
This function is used by PySequence_GetItem() and has the same signature. It is also used by
PyObject_GetItem(), after trying the subscription via the mp_subscript slot. This slot must be filled
for the PySequence_Check() function to return 1, it can be NULL otherwise.
Negative indexes are handled as follows: if the sq_length slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sq_item. If sq_length is NULL, the index is passed as
is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by PySequence_SetItem() and has the same signature. It is also used by
PyObject_SetItem() and PyObject_DelItem(), after trying the item assignment and deletion via the
mp_ass_subscript slot. This slot may be left to NULL if the object does not support item assignment and
deletion.

objobjproc PySequenceMethods.sq_contains
This function may be used by PySequence_Contains() and has the same signature. This slot may be left to
NULL, in this case PySequence_Contains() simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq_inplace_concat
This function is used by PySequence_InPlaceConcat() and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceConcat() will
fall back to PySequence_Concat(). It is also used by the augmented assignment +=, after trying numeric
in-place addition via the nb_inplace_add slot.

ssizeargfunc PySequenceMethods.sq_inplace_repeat
This function is used by PySequence_InPlaceRepeat() and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceRepeat() will
fall back to PySequence_Repeat(). It is also used by the augmented assignment *=, after trying numeric
in-place multiplication via the nb_inplace_multiply slot.

11.7 Buffer Object Structures

PyBufferProcs
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an exporter
object can expose its internal data to consumer objects.

getbufferproc PyBufferProcs.bf_getbuffer
The signature of this function is:

int (PyObject *exporter, Py_buffer *view, int flags);

Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this
function MUST take these steps:
(1) Check if the request can be met. If not, raise PyExc_BufferError, set view->obj to NULL and

return -1.
(2) Fill in the requested fields.
(3) Increment an internal counter for the number of exports.
(4) Set view->obj to exporter and increment view->obj.
(5) Return 0.

184 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.17

If exporter is part of a chain or tree of buffer providers, two main schemes can be used:
• Re-export: Each member of the tree acts as the exporting object and sets view->obj to a new reference to
itself.

• Redirect: The buffer request is redirected to the root object of the tree. Here, view->obj will be a new
reference to the root object.

The individual fields of view are described in section Buffer structure, the rules how an exporter must react to specific
requests are in section Buffer request types.
All memory pointed to in the Py_buffer structure belongs to the exporter and must remain valid until there are
no consumers left. format, shape, strides, suboffsets and internal are read-only for the consumer.
PyBuffer_FillInfo() provides an easy way of exposing a simple bytes buffer while dealing correctly with
all request types.
PyObject_GetBuffer() is the interface for the consumer that wraps this function.

releasebufferproc PyBufferProcs.bf_releasebuffer
The signature of this function is:

void (PyObject *exporter, Py_buffer *view);

Handle a request to release the resources of the buffer. If no resources need to be released, PyBufferProcs.
bf_releasebuffer may be NULL. Otherwise, a standard implementation of this function will take these
optional steps:
(1) Decrement an internal counter for the number of exports.
(2) If the counter is 0, free all memory associated with view.
The exporter MUST use the internal field to keep track of buffer-specific resources. This field is guaranteed
to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.
This functionMUSTNOT decrement view->obj, since that is done automatically in PyBuffer_Release()
(this scheme is useful for breaking reference cycles).
PyBuffer_Release() is the interface for the consumer that wraps this function.

11.8 Async Object Structures

New in version 3.5.
PyAsyncMethods

This structure holds pointers to the functions required to implement awaitable and asynchronous iterator objects.
Here is the structure definition:

typedef struct {
unaryfunc am_await;
unaryfunc am_aiter;
unaryfunc am_anext;

} PyAsyncMethods;

unaryfunc PyAsyncMethods.am_await
The signature of this function is:

PyObject *am_await(PyObject *self)

11.8. Async Object Structures 185

The Python/C API, Release 3.7.17

The returned object must be an iterator, i.e. PyIter_Check() must return 1 for it.
This slot may be set to NULL if an object is not an awaitable.

unaryfunc PyAsyncMethods.am_aiter
The signature of this function is:

PyObject *am_aiter(PyObject *self)

Must return an awaitable object. See __anext__() for details.
This slot may be set to NULL if an object does not implement asynchronous iteration protocol.

unaryfunc PyAsyncMethods.am_anext
The signature of this function is:

PyObject *am_anext(PyObject *self)

Must return an awaitable object. See __anext__() for details. This slot may be set to NULL.

11.9 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from object
types which are “containers” for other objects which may also be containers. Types which do not store references to other
objects, or which only store references to atomic types (such as numbers or strings), do not need to provide any explicit
support for garbage collection.
To create a container type, the tp_flags field of the type object must include the Py_TPFLAGS_HAVE_GC and
provide an implementation of the tp_traverse handler. If instances of the type are mutable, a tp_clear imple-
mentation must also be provided.
Py_TPFLAGS_HAVE_GC

Objects with a type with this flag set must conform with the rules documented here. For convenience these objects
will be referred to as container objects.

Constructors for container types must conform to two rules:
1. The memory for the object must be allocated using PyObject_GC_New() or PyObject_GC_NewVar().
2. Once all the fields which may contain references to other containers are initialized, it must call

PyObject_GC_Track().
TYPE* PyObject_GC_New(TYPE, PyTypeObject *type)

Analogous to PyObject_New() but for container objects with the Py_TPFLAGS_HAVE_GC flag set.
TYPE* PyObject_GC_NewVar(TYPE, PyTypeObject *type, Py_ssize_t size)

Analogous to PyObject_NewVar() but for container objects with the Py_TPFLAGS_HAVE_GC flag set.
TYPE* PyObject_GC_Resize(TYPE, PyVarObject *op, Py_ssize_t newsize)

Resize an object allocated by PyObject_NewVar(). Returns the resized object or NULL on failure. op must
not be tracked by the collector yet.

void PyObject_GC_Track(PyObject *op)
Adds the object op to the set of container objects tracked by the collector. The collector can run at unexpected
times so objects must be valid while being tracked. This should be called once all the fields followed by the
tp_traverse handler become valid, usually near the end of the constructor.

void _PyObject_GC_TRACK(PyObject *op)
A macro version of PyObject_GC_Track(). It should not be used for extension modules.

186 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.17

Deprecated since version 3.6: This macro is removed from Python 3.8.
Similarly, the deallocator for the object must conform to a similar pair of rules:

1. Before fields which refer to other containers are invalidated, PyObject_GC_UnTrack() must be called.
2. The object’s memory must be deallocated using PyObject_GC_Del().

void PyObject_GC_Del(void *op)
Releases memory allocated to an object using PyObject_GC_New() or PyObject_GC_NewVar().

void PyObject_GC_UnTrack(void *op)
Remove the object op from the set of container objects tracked by the collector. Note that
PyObject_GC_Track() can be called again on this object to add it back to the set of tracked objects. The deal-
locator (tp_dealloc handler) should call this for the object before any of the fields used by the tp_traverse
handler become invalid.

void _PyObject_GC_UNTRACK(PyObject *op)
A macro version of PyObject_GC_UnTrack(). It should not be used for extension modules.
Deprecated since version 3.6: This macro is removed from Python 3.8.

The tp_traverse handler accepts a function parameter of this type:
int (*visitproc)(PyObject *object, void *arg)

Type of the visitor function passed to the tp_traverse handler. The function should be called with an object
to traverse as object and the third parameter to the tp_traverse handler as arg. The Python core uses several
visitor functions to implement cyclic garbage detection; it’s not expected that users will need to write their own
visitor functions.

The tp_traverse handler must have the following type:
int (*traverseproc)(PyObject *self, visitproc visit, void *arg)

Traversal function for a container object. Implementations must call the visit function for each object directly
contained by self, with the parameters to visit being the contained object and the arg value passed to the handler.
The visit function must not be called with a NULL object argument. If visit returns a non-zero value that value
should be returned immediately.

To simplify writing tp_traverse handlers, a Py_VISIT() macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exactly visit and arg:
void Py_VISIT(PyObject *o)

If o is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return it.
Using this macro, tp_traverse handlers look like:

static int
my_traverse(Noddy *self, visitproc visit, void *arg)
{

Py_VISIT(self->foo);
Py_VISIT(self->bar);
return 0;

}

The tp_clear handler must be of the inquiry type, or NULL if the object is immutable.
int (*inquiry)(PyObject *self)

Drop references that may have created reference cycles. Immutable objects do not have to define this method since
they can never directly create reference cycles. Note that the object must still be valid after calling this method
(don’t just call Py_DECREF() on a reference). The collector will call this method if it detects that this object is
involved in a reference cycle.

11.9. Supporting Cyclic Garbage Collection 187

The Python/C API, Release 3.7.17

188 Chapter 11. Object Implementation Support

CHAPTER

TWELVE

API AND ABI VERSIONING

PY_VERSION_HEX is the Python version number encoded in a single integer.
For example if the PY_VERSION_HEX is set to 0x030401a2, the underlying version information can be found by
treating it as a 32 bit number in the following manner:

Bytes Bits (big en-
dian order)

Meaning

1 1-8 PY_MAJOR_VERSION (the 3 in 3.4.1a2)
2 9-16 PY_MINOR_VERSION (the 4 in 3.4.1a2)
3 17-24 PY_MICRO_VERSION (the 1 in 3.4.1a2)
4 25-28 PY_RELEASE_LEVEL (0xA for alpha, 0xB for beta, 0xC for release candi-

date and 0xF for final), in this case it is alpha.
29-32 PY_RELEASE_SERIAL (the 2 in 3.4.1a2, zero for final releases)

Thus 3.4.1a2 is hexversion 0x030401a2.
All the given macros are defined in Include/patchlevel.h.

189

https://github.com/python/cpython/tree/3.7/Include/patchlevel.h

The Python/C API, Release 3.7.17

190 Chapter 12. API and ABI Versioning

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed interactively
in the interpreter.

... The default Python prompt of the interactive shell when entering the code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can
be detected by parsing the source and traversing the parse tree.
2to3 is available in the standard library as lib2to3; a standalone entry point is provided as Tools/scripts/
2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when other
techniques like hasattr()would be clumsy or subtly wrong (for example with magic methods). ABCs introduce
virtual subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance() and
issubclass(); see the abcmodule documentation. Python comes with many built-in ABCs for data structures
(in the collections.abc module), numbers (in the numbers module), streams (in the io module), import
finders and loaders (in the importlib.abc module). You can create your own ABCs with the abc module.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.
Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attributes,
and functions are stored in the __annotations__ special attribute of modules, classes, and functions, respec-
tively.
See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.

argument A value passed to a function (or method) when calling the function. There are two kinds of argument:
• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a value
in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following calls to
complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3 and
5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

191

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python/C API, Release 3.7.17

Arguments are assigned to the named local variables in a function body. See the calls section for the rules governing
this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned
to the local variable.
See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters, and
PEP 362.

asynchronous context manager An object which controls the environment seen in an async with statement by
defining __aenter__() and __aexit__() methods. Introduced by PEP 492.

asynchronous generator A function which returns an asynchronous generator iterator. It looks like a coroutine function
defined with async def except that it contains yield expressions for producing a series of values usable in an
async for loop.
Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in some
contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.
An asynchronous generator function may contain await expressions as well as async for, and async with
statements.

asynchronous generator iterator An object created by a asynchronous generator function.
This is an asynchronous iterator which when called using the __anext__() method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.
Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable An object, that can be used in an async for statement. Must return an asynchronous iterator
from its __aiter__() method. Introduced by PEP 492.

asynchronous iterator An object that implements the __aiter__() and __anext__() methods. __anext__
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__() method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an await expression. Can be a coroutine or an object with an __await__()
method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.
binary file A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode

('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.BytesIO
and gzip.GzipFile.
See also text file for a file object able to read and write str objects.

bytes-like object An object that supports the Buffer Protocol and can export a C-contiguous buffer. This includes all
bytes, bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like
objects can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.
Some operations need the binary data to be mutable. The documentation often refers to these as “read-write bytes-
like objects”. Examplemutable buffer objects includebytearray and amemoryview of abytearray. Other
operations require the binary data to be stored in immutable objects (“read-only bytes-like objects”); examples of
these include bytes and a memoryview of a bytes object.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a virtual

192 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

The Python/C API, Release 3.7.17

machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not expected
to work between different Python virtual machines, nor to be stable between Python releases.
A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions which operate
on instances of the class.

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the
class).

coercion The implicit conversion of an instance of one type to another during an operation which involves two arguments
of the same type. For example, int(3.15) converts the floating point number to the integer 3, but in 3+4.5,
each argument is of a different type (one int, one float), and both must be converted to the same type before they
can be added or it will raise a TypeError. Without coercion, all arguments of even compatible types would have
to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of a real
part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1),
often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature.
If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__() and
__exit__() methods. See PEP 343.

context variable A variable which can have different values depending on its context. This is similar to Thread-Local
Storage in which each execution thread may have a different value for a variable. However, with context variables,
there may be several contexts in one execution thread and the main usage for context variables is to keep track of
variables in concurrent asynchronous tasks. See contextvars.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next to each
other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the last index
varies the fastest when visiting items in order of memory address. However, in Fortran contiguous arrays, the first
index varies the fastest.

coroutine Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at
another point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492.

coroutine function A function which returns a coroutine object. A coroutine function may be defined with the async
def statement, and may contain await, async for, and async with keywords. These were introduced by
PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
“CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().
The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

193

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

The Python/C API, Release 3.7.17

The same concept exists for classes, but is less commonly used there. See the documentation for function definitions
and class definitions for more about decorators.

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the
respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.
For more information about descriptors’ methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() and __eq__() methods. Called a hash in Perl.

dictionary view The objects returned from dict.keys(), dict.values(), and dict.items() are called
dictionary views. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary
changes, the view reflects these changes. To force the dictionary view to become a full list uselist(dictview).
See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must
be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by
allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note, however,
that duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr() tests
or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common to
many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.
f-string String literals prefixed with 'f' or 'F' are commonly called “f-strings” which is short for formatted string

literals. See also PEP 498.
file object An object exposing a file-oriented API (with methods such as read() or write()) to an underlying re-

source. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.
There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the io module. The canonical way to create a file object is by using the open() function.

file-like object A synonym for file object.
finder An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path entry
finders for use with sys.path_hooks.
See PEP 302, PEP 420 and PEP 451 for much more detail.

194 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451

The Python/C API, Release 3.7.17

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For example,
the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11)
// 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation An annotation of a function parameter or return value.
Function annotations are usually used for type hints: for example, this function is expected to take two int argu-
ments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.
See variable annotation and PEP 484, which describe this functionality.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter.
By importing the __future__ module and evaluating its variables, you can see when a new feature was first
added to the language and when it becomes the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage
collector can be controlled using the gc module.

generator A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next() function.
Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where the
intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.
Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for clause
defining a loop variable, range, and an optional if clause. The combined expression generates values for an en-
closing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed ofmultiple functions implementing the same operation for different types. Which
implementation should be used during a call is determined by the dispatch algorithm.
See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP 443.

GIL See global interpreter lock.
global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread executes Python

bytecode at a time. This simplifies the CPython implementation by making the object model (including critical

195

https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0443

The Python/C API, Release 3.7.17

built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it
easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded bymulti-processor
machines.
However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing I/O.
Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granularity) have not
been successful because performance suffered in the common single-processor case. It is believed that overcoming
this performance issue would make the implementation much more complicated and therefore costlier to maintain.

hash-based pyc A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source
file to determine its validity. See pyc-invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__()method). Hashable objects which compare
equal must have the same hash value.
Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash
value internally.
Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries) are not;
immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable. Objects which
are instances of user-defined classes are hashable by default. They all compare unequal (except with themselves),
and their hash value is derived from their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys.path, but for subpackages it may also come from the parent
package’s __path__ attribute.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.
interactive Python has an interactive interpreter which means you can enter statements and expressions at the interpreter

prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly creating
an executable which is then run. Interpreted languages typically have a shorter development/debug cycle than
compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it gradually releases
all allocated resources, such as modules and various critical internal structures. It also makes several calls to the
garbage collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code
executed during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).
The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

196 Appendix A. Glossary

The Python/C API, Release 3.7.17

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define with an __iter__() method or with a __getitem__() method that implements Sequence semantics.
Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(), …).
When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or passing
it to the built-in function next()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
to its __next__()method just raise StopIteration again. Iterators are required to have an __iter__()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a list) produces a fresh new iterator each time you pass it to the iter() function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.
More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.
A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.
nlargest(), and itertools.groupby().
There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression such
as lambda r: (r[0], r[2]). Also, the operator module provides three key function constructors:
attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples of how
to create and use key functions.

keyword argument See argument.
lambda An anonymous inline function consisting of a single expression which is evaluated when the function is called.

The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.
In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the looking”
and “the leaping”. For example, the code, if key in mapping: return mapping[key] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks
or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list since
access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the results.
result = ['{:#04x}'.format(x) for x in range(256) if x % 2 == 0] generates a list
of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted,
all elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically returned
by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

magic method An informal synonym for special method.

197

https://www.python.org/dev/peps/pep-0302

The Python/C API, Release 3.7.17

mapping A container object that supports arbitrary key lookups and implements the methods specified in the Mapping
or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

meta path finder A finder returned by a search of sys.meta_path. Meta path finders are related to, but different
from path entry finders.
See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented program-
ming languages provide a default implementation. What makes Python special is that it is possible to create custom
metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, ele-
gant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation,
implementing singletons, and many other tasks.
More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.
See also package.

module spec A namespace containing the import-related information used to load a module. An instance of
importlib.machinery.ModuleSpec.

MRO See method resolution order.
mutable Mutable objects can change their value but keep their id(). See also immutable.
named tuple The term “named tuple” applies to any type or class that inherits from tuple and whose indexable elements

are also accessible using named attributes. The type or class may have other features as well.
Several built-in types are named tuples, including the values returned by time.localtime() and os.
stat(). Another example is sys.float_info:

>>> sys.float_info[1] # indexed access
1024
>>> sys.float_info.max_exp # named field access
1024
>>> isinstance(sys.float_info, tuple) # kind of tuple
True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand or it can be created with the factory function collections.namedtuple(). The latter technique
also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity by
preventing naming conflicts. For instance, the functions builtins.open and os.open() are distinguished
by their namespaces. Namespaces also aid readability and maintainability by making it clear which module im-
plements a function. For instance, writing random.seed() or itertools.islice() makes it clear that
those functions are implemented by the random and itertools modules, respectively.

198 Appendix A. Glossary

https://www.python.org/download/releases/2.3/mro/

The Python/C API, Release 3.7.17

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace packages may
have no physical representation, and specifically are not like a regular package because they have no __init__.
py file.
See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference and
not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables read and
write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package APythonmodulewhich can contain submodules or recursively, subpackages. Technically, a package is a Python
module with an __path__ attribute.
See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument.
This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Python has no syntax for defining
positional-only parameters. However, some built-in functions have positional-only parameters (e.g. abs()).

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can be
defined by including a single var-positional parameter or bare * in the parameter list of the function definition
before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any
positional arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending the
parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional arguments.
See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, the
inspect.Parameter class, the function section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for importing.
path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to

locate modules given a path entry.
See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

199

https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0362

The Python/C API, Release 3.7.17

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.
path-like object An object representing a file system path. A path-like object is either a str or bytes object represent-

ing a path, or an object implementing the os.PathLike protocol. An object that supports the os.PathLike
protocol can be converted to a str or bytes file system path by calling the os.fspath() function; os.
fsdecode() and os.fsencode() can be used to guarantee a str or bytes result instead, respectively.
Introduced by PEP 519.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.
PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input
on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible
for building consensus within the community and documenting dissenting opinions.
See PEP 1.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as defined
in PEP 420.

positional argument See argument.
provisional API A provisional API is one which has been deliberately excluded from the standard library’s backwards

compatibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if deemed
necessary by core developers. Such changes will not be made gratuitously – they will occur only if serious funda-
mental flaws are uncovered that were missed prior to the inclusion of the API.
Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” - every attempt
will still be made to find a backwards compatible resolution to any identified problems.
This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API.
Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in

the distant future.) This is also abbreviated “Py3k”.
Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather than

implementing code using concepts common to other languages. For example, a common idiom in Python is to loop
over all elements of an iterable using a for statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

qualified name A dotted name showing the “path” from a module’s global scope to a class, function or method defined
in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

200 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

The Python/C API, Release 3.7.17

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including any
parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return the
reference count for a particular object.

regular package A traditional package, such as a directory containing an __init__.py file.
See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for rare
cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a __len__() method that returns the length of the sequence. Some built-in sequence types
are list, str, tuple, and bytes. Note that dict also supports __getitem__() and __len__(), but is
considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.
The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__() and __len__(), adding count(), index(), __contains__(), and
__reversed__(). Types that implement this expanded interface can be registered explicitly using
register().

single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a single
argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (subscript)
notation uses slice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addi-
tion. Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

statement A statement is part of a suite (a “block” of code). A statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

text encoding A codec which encodes Unicode strings to bytes.
text file A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented datastream

and handles the text encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),

201

The Python/C API, Release 3.7.17

sys.stdin, sys.stdout, and instances of io.StringIO.
See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string A string which is bound by three instances of either a quotation mark (”) or an apostrophe (‘).
While they don’t provide any functionality not available with single-quoted strings, they are useful for a number of
reasons. They allow you to include unescaped single and double quotes within a string and they can span multiple
lines without the use of the continuation character, making them especially useful when writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

type alias A synonym for a type, created by assigning the type to an identifier.
Type aliases are useful for simplifying type hints. For example:

from typing import List, Tuple

def remove_gray_shades(
colors: List[Tuple[int, int, int]]) -> List[Tuple[int, int, int]]:

pass

could be made more readable like this:

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades(colors: List[Color]) -> List[Color]:
pass

See typing and PEP 484, which describe this functionality.
type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return

value.
Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid IDEs
with code completion and refactoring.
Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().
See typing and PEP 484, which describe this functionality.

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a line:
the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention '\
r'. See PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.

variable annotation An annotation of a variable or a class attribute.
When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

202 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python/C API, Release 3.7.17

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to install
and upgrade Python distribution packages without interfering with the behaviour of other Python applications
running on the same system.
See also venv.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by
the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

203

The Python/C API, Release 3.7.17

204 Appendix A. Glossary

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written for
the Python documentation.
Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you want
to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers are always
welcome!
Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
• the Docutils project for creating reStructuredText and the Docutils suite;
• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation. See
Misc/ACKS in the Python source distribution for a partial list of contributors.
It is only with the input and contributions of the Python community that Python has such wonderful documentation –
Thank You!

205

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.7/Misc/ACKS

The Python/C API, Release 3.7.17

206 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.
In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
//www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.
In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
//www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.
All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the GPL,
let you distribute a modified version without making your changes open source. The GPL-compatible licenses make it
possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

207

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python/C API, Release 3.7.17

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.7.17

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

3.7.17 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.7.17 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 3.7.17 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.7.17 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
3.7.17.

4. PSF is making Python 3.7.17 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

↪→OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣

↪→THE
USE OF PYTHON 3.7.17 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.7.17
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.7.17, OR ANY␣

↪→DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

208 Appendix C. History and License

The Python/C API, Release 3.7.17

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 3.7.17, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2. Terms and conditions for accessing or otherwise using Python 209

The Python/C API, Release 3.7.17

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

(continues on next page)

210 Appendix C. History and License

The Python/C API, Release 3.7.17

(continued from previous page)
8. By clicking on the "ACCEPT" button where indicated, or by copying, installing

or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 211

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, Release 3.7.17

(continued from previous page)

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

(continues on next page)

212 Appendix C. History and License

http://www.wide.ad.jp/

The Python/C API, Release 3.7.17

(continued from previous page)
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 213

The Python/C API, Release 3.7.17

C.3.5 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C

(continues on next page)

214 Appendix C. History and License

The Python/C API, Release 3.7.17

(continued from previous page)
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 215

The Python/C API, Release 3.7.17

(continued from previous page)
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

The file Python/pyhash.c contains Marek Majkowski’ implementation of Dan Bernstein’s SipHash24 algorithm. It
contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

(continues on next page)

216 Appendix C. History and License

The Python/C API, Release 3.7.17

(continued from previous page)
Original location:

https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 217

http://www.netlib.org/fp/

The Python/C API, Release 3.7.17

(continued from previous page)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.

(continues on next page)

218 Appendix C. History and License

The Python/C API, Release 3.7.17

(continued from previous page)
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3. Licenses and Acknowledgements for Incorporated Software 219

The Python/C API, Release 3.7.17

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

220 Appendix C. History and License

The Python/C API, Release 3.7.17

C.3.15 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 221

The Python/C API, Release 3.7.17

(continued from previous page)
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
--with-system-libmpdec:

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

222 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:
Copyright © 2001-2023 Python Software Foundation. All rights reserved.
Copyright © 2000 BeOpen.com. All rights reserved.
Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

223

The Python/C API, Release 3.7.17

224 Appendix D. Copyright

INDEX

Non-alphabetical
..., 191
2to3, 191
>>>, 191
__all__ (package variable), 39
__dict__ (module attribute), 117
__doc__ (module attribute), 117
__file__ (module attribute), 117
__future__, 195
__import__

built-in function, 39
__loader__ (module attribute), 117
__main__

module, 11, 138, 147
__name__ (module attribute), 117
__package__ (module attribute), 117
__slots__, 201
_frozen (C type), 41
_inittab (C type), 42
_Py_c_diff (C function), 81
_Py_c_neg (C function), 81
_Py_c_pow (C function), 81
_Py_c_prod (C function), 81
_Py_c_quot (C function), 81
_Py_c_sum (C function), 81
_Py_NoneStruct (C variable), 163
_PyBytes_Resize (C function), 84
_PyCFunctionFast (C type), 165
_PyCFunctionFastWithKeywords (C type), 165
_PyImport_Fini (C function), 41
_PyImport_Init (C function), 41
_PyObject_GC_TRACK (C function), 186
_PyObject_GC_UNTRACK (C function), 187
_PyObject_New (C function), 163
_PyObject_NewVar (C function), 163
_PyTuple_Resize (C function), 105
_thread

module, 144

A
abort(), 38
abs

built-in function, 60
abstract base class, 191
annotation, 191
argument, 191
argv (in module sys), 141
ascii

built-in function, 57
asynchronous context manager, 192
asynchronous generator, 192
asynchronous generator iterator, 192
asynchronous iterable, 192
asynchronous iterator, 192
attribute, 192
awaitable, 192

B
BDFL, 192
binary file, 192
buffer interface

(see buffer protocol), 66
buffer object

(see buffer protocol), 66
buffer protocol, 66
built-in function

__import__, 39
abs, 60
ascii, 57
bytes, 57
classmethod, 166
compile, 40
divmod, 60
float, 62
hash, 58, 172
int, 62
len, 59, 63, 65, 107, 109, 112
pow, 60, 61
repr, 57, 172
staticmethod, 166
tuple, 64, 108
type, 59

builtins
module, 11, 138, 147

225

The Python/C API, Release 3.7.17

bytearray
object, 84

bytecode, 192
bytes

built-in function, 57
object, 82

bytes-like object, 192

C
calloc(), 153
Capsule

object, 126
C-contiguous, 69, 193
class, 193
class variable, 193
classmethod

built-in function, 166
cleanup functions, 38
close() (in module os), 147
CO_FUTURE_DIVISION (C variable), 19
code object, 115
coercion, 193
compile

built-in function, 40
complex number, 193

object, 81
context manager, 193
context variable, 193
contiguous, 69, 193
copyright (in module sys), 140
coroutine, 193
coroutine function, 193
CPython, 193
create_module (C function), 120

D
decorator, 193
descriptor, 194
dictionary, 194

object, 108
dictionary view, 194
divmod

built-in function, 60
docstring, 194
duck-typing, 194

E
EAFP, 194
environment variable

exec_prefix, 4
PATH, 11
prefix, 4
PYTHON*, 136
PYTHONDEBUG, 136

PYTHONDONTWRITEBYTECODE, 136
PYTHONDUMPREFS, 169
PYTHONHASHSEED, 136
PYTHONHOME, 11, 136, 141, 142
PYTHONINSPECT, 137
PYTHONIOENCODING, 139
PYTHONLEGACYWINDOWSFSENCODING, 137
PYTHONLEGACYWINDOWSSTDIO, 137
PYTHONMALLOC, 154, 157, 159
PYTHONMALLOCSTATS, 154
PYTHONNOUSERSITE, 137
PYTHONOPTIMIZE, 137
PYTHONPATH, 11, 136
PYTHONUNBUFFERED, 137
PYTHONVERBOSE, 137

EOFError (built-in exception), 116
exc_info() (in module sys), 9
exec_module (C function), 120
exec_prefix, 4
executable (in module sys), 140
exit(), 38
expression, 194
extension module, 194

F
f-string, 194
file

object, 116
file object, 194
file-like object, 194
finder, 194
float

built-in function, 62
floating point

object, 80
floor division, 195
Fortran contiguous, 69, 193
free(), 153
freeze utility, 41
frozenset

object, 111
function, 195

object, 112
function annotation, 195

G
garbage collection, 195
generator, 195
generator expression, 195
generator iterator, 195
generic function, 195
GIL, 195
global interpreter lock, 142, 195

226 Index

The Python/C API, Release 3.7.17

H
hash

built-in function, 58, 172
hash-based pyc, 196
hashable, 196

I
IDLE, 196
immutable, 196
import path, 196
importer, 196
importing, 196
incr_item(), 10
inquiry (C type), 187
instancemethod

object, 114
int

built-in function, 62
integer

object, 77
interactive, 196
interpreted, 196
interpreter lock, 142
interpreter shutdown, 196
iterable, 197
iterator, 197

K
key function, 197
KeyboardInterrupt (built-in exception), 29
keyword argument, 197

L
lambda, 197
LBYL, 197
len

built-in function, 59, 63, 65, 107, 109, 112
list, 197

object, 107
list comprehension, 197
loader, 197
lock, interpreter, 142
long integer

object, 77
LONG_MAX, 78

M
magic

method, 197
magic method, 197
main(), 139, 141
malloc(), 153
mapping, 198

object, 108
memoryview

object, 125
meta path finder, 198
metaclass, 198
METH_CLASS (built-in variable), 166
METH_COEXIST (built-in variable), 166
METH_FASTCALL (built-in variable), 165
METH_NOARGS (built-in variable), 166
METH_O (built-in variable), 166
METH_STATIC (built-in variable), 166
METH_VARARGS (built-in variable), 165
method, 198

magic, 197
object, 114
special, 201

method resolution order, 198
MethodType (in module types), 112, 114
module, 198

__main__, 11, 138, 147
_thread, 144
builtins, 11, 138, 147
object, 117
search path, 11, 138, 140
signal, 29
sys, 11, 138, 147

module spec, 198
modules (in module sys), 39, 138
ModuleType (in module types), 117
MRO, 198
mutable, 198

N
named tuple, 198
namespace, 198
namespace package, 199
nested scope, 199
new-style class, 199
None

object, 76
numeric

object, 77

O
object, 199

bytearray, 84
bytes, 82
Capsule, 126
code, 115
complex number, 81
dictionary, 108
file, 116
floating point, 80
frozenset, 111

Index 227

The Python/C API, Release 3.7.17

function, 112
instancemethod, 114
integer, 77
list, 107
long integer, 77
mapping, 108
memoryview, 125
method, 114
module, 117
None, 76
numeric, 77
sequence, 82
set, 111
tuple, 104
type, 5, 75

OverflowError (built-in exception), 78, 79

P
package, 199
package variable

__all__, 39
parameter, 199
PATH, 11
path

module search, 11, 138, 140
path (in module sys), 11, 138, 140
path based finder, 200
path entry, 199
path entry finder, 199
path entry hook, 200
path-like object, 200
PEP, 200
platform (in module sys), 140
portion, 200
positional argument, 200
pow

built-in function, 60, 61
prefix, 4
provisional API, 200
provisional package, 200
Py_ABS (C macro), 4
Py_AddPendingCall (C function), 148
Py_AddPendingCall(), 148
Py_AtExit (C function), 38
Py_BEGIN_ALLOW_THREADS, 142
Py_BEGIN_ALLOW_THREADS (C macro), 145
Py_BLOCK_THREADS (C macro), 146
Py_buffer (C type), 67
Py_buffer.buf (C member), 67
Py_buffer.format (C member), 67
Py_buffer.internal (C member), 68
Py_buffer.itemsize (C member), 67
Py_buffer.len (C member), 67
Py_buffer.ndim (C member), 68

Py_buffer.obj (C member), 67
Py_buffer.readonly (C member), 67
Py_buffer.shape (C member), 68
Py_buffer.strides (C member), 68
Py_buffer.suboffsets (C member), 68
Py_BuildValue (C function), 49
Py_BytesWarningFlag (C variable), 136
Py_CHARMASK (C macro), 4
Py_CLEAR (C function), 21
Py_CompileString (C function), 17
Py_CompileString(), 18, 19
Py_CompileStringExFlags (C function), 18
Py_CompileStringFlags (C function), 17
Py_CompileStringObject (C function), 18
Py_complex (C type), 81
Py_DebugFlag (C variable), 136
Py_DecodeLocale (C function), 36
Py_DECREF (C function), 21
Py_DECREF(), 6
Py_DontWriteBytecodeFlag (C variable), 136
Py_Ellipsis (C variable), 125
Py_EncodeLocale (C function), 36
Py_END_ALLOW_THREADS, 142
Py_END_ALLOW_THREADS (C macro), 145
Py_EndInterpreter (C function), 147
Py_EnterRecursiveCall (C function), 31
Py_eval_input (C variable), 18
Py_Exit (C function), 38
Py_False (C variable), 79
Py_FatalError (C function), 38
Py_FatalError(), 141
Py_FdIsInteractive (C function), 35
Py_file_input (C variable), 18
Py_Finalize (C function), 138
Py_FinalizeEx (C function), 138
Py_FinalizeEx(), 38, 138, 147, 148
Py_FrozenFlag (C variable), 136
Py_GetBuildInfo (C function), 141
Py_GetCompiler (C function), 140
Py_GetCopyright (C function), 140
Py_GETENV (C macro), 5
Py_GetExecPrefix (C function), 139
Py_GetExecPrefix(), 11
Py_GetPath (C function), 140
Py_GetPath(), 11, 139, 140
Py_GetPlatform (C function), 140
Py_GetPrefix (C function), 139
Py_GetPrefix(), 11
Py_GetProgramFullPath (C function), 140
Py_GetProgramFullPath(), 11
Py_GetProgramName (C function), 139
Py_GetPythonHome (C function), 141
Py_GetVersion (C function), 140
Py_HashRandomizationFlag (C variable), 136

228 Index

The Python/C API, Release 3.7.17

Py_IgnoreEnvironmentFlag (C variable), 136
Py_INCREF (C function), 21
Py_INCREF(), 6
Py_Initialize (C function), 138
Py_Initialize(), 11, 139, 147
Py_InitializeEx (C function), 138
Py_InspectFlag (C variable), 136
Py_InteractiveFlag (C variable), 137
Py_IsInitialized (C function), 138
Py_IsInitialized(), 11
Py_IsolatedFlag (C variable), 137
Py_LeaveRecursiveCall (C function), 31
Py_LegacyWindowsFSEncodingFlag (C vari-

able), 137
Py_LegacyWindowsStdioFlag (C variable), 137
Py_Main (C function), 15
Py_MAX (C macro), 4
Py_MEMBER_SIZE (C macro), 4
Py_MIN (C macro), 4
Py_mod_create (C variable), 120
Py_mod_exec (C variable), 120
Py_NewInterpreter (C function), 147
Py_None (C variable), 76
Py_NoSiteFlag (C variable), 137
Py_NotImplemented (C variable), 55
Py_NoUserSiteDirectory (C variable), 137
Py_OptimizeFlag (C variable), 137
Py_PRINT_RAW, 116
Py_QuietFlag (C variable), 137
Py_REFCNT (C macro), 164
Py_ReprEnter (C function), 31
Py_ReprLeave (C function), 32
Py_RETURN_FALSE (C macro), 80
Py_RETURN_NONE (C macro), 76
Py_RETURN_NOTIMPLEMENTED (C macro), 55
Py_RETURN_RICHCOMPARE (C function), 176
Py_RETURN_TRUE (C macro), 80
Py_SetPath (C function), 140
Py_SetPath(), 140
Py_SetProgramName (C function), 139
Py_SetProgramName(), 11, 138140
Py_SetPythonHome (C function), 141
Py_SetStandardStreamEncoding (C function),

139
Py_single_input (C variable), 19
Py_SIZE (C macro), 164
PY_SSIZE_T_MAX, 78
Py_STRINGIFY (C macro), 4
Py_TPFLAGS_BASE_EXC_SUBCLASS (built-in vari-

able), 174
Py_TPFLAGS_BASETYPE (built-in variable), 174
Py_TPFLAGS_BYTES_SUBCLASS (built-in variable),

174
Py_TPFLAGS_DEFAULT (built-in variable), 174

Py_TPFLAGS_DICT_SUBCLASS (built-in variable),
174

Py_TPFLAGS_HAVE_FINALIZE (built-in variable),
174

Py_TPFLAGS_HAVE_GC (built-in variable), 174
Py_TPFLAGS_HEAPTYPE (built-in variable), 173
Py_TPFLAGS_LIST_SUBCLASS (built-in variable),

174
Py_TPFLAGS_LONG_SUBCLASS (built-in variable),

174
Py_TPFLAGS_READY (built-in variable), 174
Py_TPFLAGS_READYING (built-in variable), 174
Py_TPFLAGS_TUPLE_SUBCLASS (built-in variable),

174
Py_TPFLAGS_TYPE_SUBCLASS (built-in variable),

174
Py_TPFLAGS_UNICODE_SUBCLASS (built-in vari-

able), 174
Py_tracefunc (C type), 149
Py_True (C variable), 79
Py_tss_NEEDS_INIT (C macro), 151
Py_tss_t (C type), 151
Py_TYPE (C macro), 164
Py_UCS1 (C type), 85
Py_UCS2 (C type), 85
Py_UCS4 (C type), 85
Py_UNBLOCK_THREADS (C macro), 146
Py_UnbufferedStdioFlag (C variable), 137
Py_UNICODE (C type), 85
Py_UNICODE_IS_HIGH_SURROGATE (C macro), 88
Py_UNICODE_IS_LOW_SURROGATE (C macro), 89
Py_UNICODE_IS_SURROGATE (C macro), 88
Py_UNICODE_ISALNUM (C function), 88
Py_UNICODE_ISALPHA (C function), 88
Py_UNICODE_ISDECIMAL (C function), 88
Py_UNICODE_ISDIGIT (C function), 88
Py_UNICODE_ISLINEBREAK (C function), 88
Py_UNICODE_ISLOWER (C function), 87
Py_UNICODE_ISNUMERIC (C function), 88
Py_UNICODE_ISPRINTABLE (C function), 88
Py_UNICODE_ISSPACE (C function), 87
Py_UNICODE_ISTITLE (C function), 88
Py_UNICODE_ISUPPER (C function), 87
Py_UNICODE_JOIN_SURROGATES (C macro), 89
Py_UNICODE_TODECIMAL (C function), 88
Py_UNICODE_TODIGIT (C function), 88
Py_UNICODE_TOLOWER (C function), 88
Py_UNICODE_TONUMERIC (C function), 88
Py_UNICODE_TOTITLE (C function), 88
Py_UNICODE_TOUPPER (C function), 88
Py_UNREACHABLE (C macro), 4
Py_UNUSED (C macro), 5
Py_VaBuildValue (C function), 51
Py_VerboseFlag (C variable), 137

Index 229

The Python/C API, Release 3.7.17

Py_VISIT (C function), 187
Py_XDECREF (C function), 21
Py_XDECREF(), 10
Py_XINCREF (C function), 21
PyAnySet_Check (C function), 111
PyAnySet_CheckExact (C function), 111
PyArg_Parse (C function), 48
PyArg_ParseTuple (C function), 48
PyArg_ParseTupleAndKeywords (C function), 48
PyArg_UnpackTuple (C function), 48
PyArg_ValidateKeywordArguments (C func-

tion), 48
PyArg_VaParse (C function), 48
PyArg_VaParseTupleAndKeywords (C function),

48
PyASCIIObject (C type), 85
PyAsyncMethods (C type), 185
PyAsyncMethods.am_aiter (C member), 186
PyAsyncMethods.am_anext (C member), 186
PyAsyncMethods.am_await (C member), 185
PyBool_Check (C function), 79
PyBool_FromLong (C function), 80
PyBUF_ANY_CONTIGUOUS (C macro), 70
PyBUF_C_CONTIGUOUS (C macro), 70
PyBUF_CONTIG (C macro), 70
PyBUF_CONTIG_RO (C macro), 70
PyBUF_F_CONTIGUOUS (C macro), 70
PyBUF_FORMAT (C macro), 69
PyBUF_FULL (C macro), 70
PyBUF_FULL_RO (C macro), 70
PyBUF_INDIRECT (C macro), 69
PyBUF_ND (C macro), 69, 70
PyBUF_RECORDS (C macro), 70
PyBUF_RECORDS_RO (C macro), 70
PyBUF_SIMPLE (C macro), 69
PyBUF_STRIDED (C macro), 70
PyBUF_STRIDED_RO (C macro), 70
PyBUF_STRIDES (C macro), 69
PyBUF_WRITABLE (C macro), 69
PyBuffer_FillContiguousStrides (C func-

tion), 72
PyBuffer_FillInfo (C function), 73
PyBuffer_FromContiguous (C function), 72
PyBuffer_GetPointer (C function), 72
PyBuffer_IsContiguous (C function), 72
PyBuffer_Release (C function), 72
PyBuffer_SizeFromFormat (C function), 72
PyBuffer_ToContiguous (C function), 72
PyBufferProcs, 66
PyBufferProcs (C type), 184
PyBufferProcs.bf_getbuffer (C member), 184
PyBufferProcs.bf_releasebuffer (Cmember),

185
PyByteArray_AS_STRING (C function), 85

PyByteArray_AsString (C function), 84
PyByteArray_Check (C function), 84
PyByteArray_CheckExact (C function), 84
PyByteArray_Concat (C function), 84
PyByteArray_FromObject (C function), 84
PyByteArray_FromStringAndSize (C function),

84
PyByteArray_GET_SIZE (C function), 85
PyByteArray_Resize (C function), 84
PyByteArray_Size (C function), 84
PyByteArray_Type (C variable), 84
PyByteArrayObject (C type), 84
PyBytes_AS_STRING (C function), 83
PyBytes_AsString (C function), 83
PyBytes_AsStringAndSize (C function), 83
PyBytes_Check (C function), 82
PyBytes_CheckExact (C function), 82
PyBytes_Concat (C function), 83
PyBytes_ConcatAndDel (C function), 84
PyBytes_FromFormat (C function), 82
PyBytes_FromFormatV (C function), 83
PyBytes_FromObject (C function), 83
PyBytes_FromString (C function), 82
PyBytes_FromStringAndSize (C function), 82
PyBytes_GET_SIZE (C function), 83
PyBytes_Size (C function), 83
PyBytes_Type (C variable), 82
PyBytesObject (C type), 82
PyCallable_Check (C function), 57
PyCallIter_Check (C function), 123
PyCallIter_New (C function), 123
PyCallIter_Type (C variable), 123
PyCapsule (C type), 126
PyCapsule_CheckExact (C function), 127
PyCapsule_Destructor (C type), 126
PyCapsule_GetContext (C function), 127
PyCapsule_GetDestructor (C function), 127
PyCapsule_GetName (C function), 127
PyCapsule_GetPointer (C function), 127
PyCapsule_Import (C function), 127
PyCapsule_IsValid (C function), 127
PyCapsule_New (C function), 127
PyCapsule_SetContext (C function), 127
PyCapsule_SetDestructor (C function), 128
PyCapsule_SetName (C function), 128
PyCapsule_SetPointer (C function), 128
PyCell_Check (C function), 115
PyCell_GET (C function), 115
PyCell_Get (C function), 115
PyCell_New (C function), 115
PyCell_SET (C function), 115
PyCell_Set (C function), 115
PyCell_Type (C variable), 115
PyCellObject (C type), 115

230 Index

The Python/C API, Release 3.7.17

PyCFunction (C type), 165
PyCFunctionWithKeywords (C type), 165
PyCode_Check (C function), 115
PyCode_GetNumFree (C function), 115
PyCode_New (C function), 115
PyCode_NewEmpty (C function), 116
PyCode_Type (C variable), 115
PyCodec_BackslashReplaceErrors (C func-

tion), 54
PyCodec_Decode (C function), 53
PyCodec_Decoder (C function), 53
PyCodec_Encode (C function), 53
PyCodec_Encoder (C function), 53
PyCodec_IgnoreErrors (C function), 54
PyCodec_IncrementalDecoder (C function), 53
PyCodec_IncrementalEncoder (C function), 53
PyCodec_KnownEncoding (C function), 53
PyCodec_LookupError (C function), 54
PyCodec_NameReplaceErrors (C function), 54
PyCodec_Register (C function), 53
PyCodec_RegisterError (C function), 54
PyCodec_ReplaceErrors (C function), 54
PyCodec_StreamReader (C function), 54
PyCodec_StreamWriter (C function), 54
PyCodec_StrictErrors (C function), 54
PyCodec_XMLCharRefReplaceErrors (C func-

tion), 54
PyCodeObject (C type), 115
PyCompactUnicodeObject (C type), 85
PyCompilerFlags (C type), 19
PyComplex_AsCComplex (C function), 82
PyComplex_Check (C function), 81
PyComplex_CheckExact (C function), 81
PyComplex_FromCComplex (C function), 81
PyComplex_FromDoubles (C function), 82
PyComplex_ImagAsDouble (C function), 82
PyComplex_RealAsDouble (C function), 82
PyComplex_Type (C variable), 81
PyComplexObject (C type), 81
PyContext (C type), 129
PyContext_CheckExact (C function), 129
PyContext_ClearFreeList (C function), 130
PyContext_Copy (C function), 129
PyContext_CopyCurrent (C function), 129
PyContext_Enter (C function), 130
PyContext_Exit (C function), 130
PyContext_New (C function), 129
PyContext_Type (C variable), 129
PyContextToken (C type), 129
PyContextToken_CheckExact (C function), 129
PyContextToken_Type (C variable), 129
PyContextVar (C type), 129
PyContextVar_CheckExact (C function), 129
PyContextVar_Get (C function), 130

PyContextVar_New (C function), 130
PyContextVar_Reset (C function), 130
PyContextVar_Set (C function), 130
PyContextVar_Type (C variable), 129
PyCoro_CheckExact (C function), 128
PyCoro_New (C function), 129
PyCoro_Type (C variable), 128
PyCoroObject (C type), 128
PyDate_Check (C function), 130
PyDate_CheckExact (C function), 131
PyDate_FromDate (C function), 131
PyDate_FromTimestamp (C function), 133
PyDateTime_Check (C function), 131
PyDateTime_CheckExact (C function), 131
PyDateTime_DATE_GET_FOLD (C function), 132
PyDateTime_DATE_GET_HOUR (C function), 132
PyDateTime_DATE_GET_MICROSECOND (C func-

tion), 132
PyDateTime_DATE_GET_MINUTE (C function), 132
PyDateTime_DATE_GET_SECOND (C function), 132
PyDateTime_DELTA_GET_DAYS (C function), 133
PyDateTime_DELTA_GET_MICROSECONDS (C

function), 133
PyDateTime_DELTA_GET_SECONDS (C function),

133
PyDateTime_FromDateAndTime (C function), 131
PyDateTime_FromDateAndTimeAndFold (C

function), 131
PyDateTime_FromTimestamp (C function), 133
PyDateTime_GET_DAY (C function), 132
PyDateTime_GET_MONTH (C function), 132
PyDateTime_GET_YEAR (C function), 132
PyDateTime_TIME_GET_FOLD (C function), 132
PyDateTime_TIME_GET_HOUR (C function), 132
PyDateTime_TIME_GET_MICROSECOND (C func-

tion), 132
PyDateTime_TIME_GET_MINUTE (C function), 132
PyDateTime_TIME_GET_SECOND (C function), 132
PyDateTime_TimeZone_UTC (C variable), 130
PyDelta_Check (C function), 131
PyDelta_CheckExact (C function), 131
PyDelta_FromDSU (C function), 131
PyDescr_IsData (C function), 123
PyDescr_NewClassMethod (C function), 123
PyDescr_NewGetSet (C function), 123
PyDescr_NewMember (C function), 123
PyDescr_NewMethod (C function), 123
PyDescr_NewWrapper (C function), 123
PyDict_Check (C function), 108
PyDict_CheckExact (C function), 108
PyDict_Clear (C function), 108
PyDict_ClearFreeList (C function), 111
PyDict_Contains (C function), 108
PyDict_Copy (C function), 109

Index 231

The Python/C API, Release 3.7.17

PyDict_DelItem (C function), 109
PyDict_DelItemString (C function), 109
PyDict_GetItem (C function), 109
PyDict_GetItemString (C function), 109
PyDict_GetItemWithError (C function), 109
PyDict_Items (C function), 109
PyDict_Keys (C function), 109
PyDict_Merge (C function), 110
PyDict_MergeFromSeq2 (C function), 110
PyDict_New (C function), 108
PyDict_Next (C function), 109
PyDict_SetDefault (C function), 109
PyDict_SetItem (C function), 109
PyDict_SetItemString (C function), 109
PyDict_Size (C function), 109
PyDict_Type (C variable), 108
PyDict_Update (C function), 110
PyDict_Values (C function), 109
PyDictObject (C type), 108
PyDictProxy_New (C function), 108
PyDoc_STR (C macro), 5
PyDoc_STRVAR (C macro), 5
PyErr_BadArgument (C function), 24
PyErr_BadInternalCall (C function), 26
PyErr_CheckSignals (C function), 29
PyErr_Clear (C function), 23
PyErr_Clear(), 9, 10
PyErr_ExceptionMatches (C function), 27
PyErr_ExceptionMatches(), 10
PyErr_Fetch (C function), 27
PyErr_Format (C function), 24
PyErr_FormatV (C function), 24
PyErr_GetExcInfo (C function), 28
PyErr_GivenExceptionMatches (C function), 27
PyErr_NewException (C function), 29
PyErr_NewExceptionWithDoc (C function), 29
PyErr_NoMemory (C function), 24
PyErr_NormalizeException (C function), 28
PyErr_Occurred (C function), 27
PyErr_Occurred(), 9
PyErr_Print (C function), 23
PyErr_PrintEx (C function), 23
PyErr_ResourceWarning (C function), 27
PyErr_Restore (C function), 28
PyErr_SetExcFromWindowsErr (C function), 25
PyErr_SetExcFromWindowsErrWithFilename

(C function), 25
PyErr_SetExcFromWindowsErrWithFilenameObject

(C function), 25
PyErr_SetExcFromWindowsErrWithFilenameObjects

(C function), 25
PyErr_SetExcInfo (C function), 28
PyErr_SetFromErrno (C function), 24

PyErr_SetFromErrnoWithFilename (C func-
tion), 25

PyErr_SetFromErrnoWithFilenameObject (C
function), 24

PyErr_SetFromErrnoWithFilenameObjects
(C function), 25

PyErr_SetFromWindowsErr (C function), 25
PyErr_SetFromWindowsErrWithFilename (C

function), 25
PyErr_SetImportError (C function), 25
PyErr_SetImportErrorSubclass (C function),

26
PyErr_SetInterrupt (C function), 29
PyErr_SetNone (C function), 24
PyErr_SetObject (C function), 24
PyErr_SetString (C function), 24
PyErr_SetString(), 9
PyErr_SyntaxLocation (C function), 26
PyErr_SyntaxLocationEx (C function), 26
PyErr_SyntaxLocationObject (C function), 26
PyErr_WarnEx (C function), 26
PyErr_WarnExplicit (C function), 27
PyErr_WarnExplicitObject (C function), 26
PyErr_WarnFormat (C function), 27
PyErr_WriteUnraisable (C function), 23
PyEval_AcquireLock (C function), 147
PyEval_AcquireThread (C function), 146
PyEval_AcquireThread(), 144
PyEval_EvalCode (C function), 18
PyEval_EvalCodeEx (C function), 18
PyEval_EvalFrame (C function), 18
PyEval_EvalFrameEx (C function), 18
PyEval_GetBuiltins (C function), 52
PyEval_GetFrame (C function), 52
PyEval_GetFuncDesc (C function), 53
PyEval_GetFuncName (C function), 53
PyEval_GetGlobals (C function), 52
PyEval_GetLocals (C function), 52
PyEval_InitThreads (C function), 144
PyEval_InitThreads(), 138
PyEval_MergeCompilerFlags (C function), 18
PyEval_ReInitThreads (C function), 144
PyEval_ReleaseLock (C function), 147
PyEval_ReleaseThread (C function), 147
PyEval_ReleaseThread(), 144
PyEval_RestoreThread (C function), 144
PyEval_RestoreThread(), 142, 144
PyEval_SaveThread (C function), 144
PyEval_SaveThread(), 142, 144
PyEval_SetProfile (C function), 150
PyEval_SetTrace (C function), 150
PyEval_ThreadsInitialized (C function), 144
PyExc_ArithmeticError, 32
PyExc_AssertionError, 32

232 Index

The Python/C API, Release 3.7.17

PyExc_AttributeError, 32
PyExc_BaseException, 32
PyExc_BlockingIOError, 32
PyExc_BrokenPipeError, 32
PyExc_BufferError, 32
PyExc_BytesWarning, 34
PyExc_ChildProcessError, 32
PyExc_ConnectionAbortedError, 32
PyExc_ConnectionError, 32
PyExc_ConnectionRefusedError, 32
PyExc_ConnectionResetError, 32
PyExc_DeprecationWarning, 34
PyExc_EnvironmentError, 33
PyExc_EOFError, 32
PyExc_Exception, 32
PyExc_FileExistsError, 32
PyExc_FileNotFoundError, 32
PyExc_FloatingPointError, 32
PyExc_FutureWarning, 34
PyExc_GeneratorExit, 32
PyExc_ImportError, 32
PyExc_ImportWarning, 34
PyExc_IndentationError, 32
PyExc_IndexError, 32
PyExc_InterruptedError, 32
PyExc_IOError, 33
PyExc_IsADirectoryError, 32
PyExc_KeyboardInterrupt, 32
PyExc_KeyError, 32
PyExc_LookupError, 32
PyExc_MemoryError, 32
PyExc_ModuleNotFoundError, 32
PyExc_NameError, 32
PyExc_NotADirectoryError, 32
PyExc_NotImplementedError, 32
PyExc_OSError, 32
PyExc_OverflowError, 32
PyExc_PendingDeprecationWarning, 34
PyExc_PermissionError, 32
PyExc_ProcessLookupError, 32
PyExc_RecursionError, 32
PyExc_ReferenceError, 32
PyExc_ResourceWarning, 34
PyExc_RuntimeError, 32
PyExc_RuntimeWarning, 34
PyExc_StopAsyncIteration, 32
PyExc_StopIteration, 32
PyExc_SyntaxError, 32
PyExc_SyntaxWarning, 34
PyExc_SystemError, 32
PyExc_SystemExit, 32
PyExc_TabError, 32
PyExc_TimeoutError, 32
PyExc_TypeError, 32

PyExc_UnboundLocalError, 32
PyExc_UnicodeDecodeError, 32
PyExc_UnicodeEncodeError, 32
PyExc_UnicodeError, 32
PyExc_UnicodeTranslateError, 32
PyExc_UnicodeWarning, 34
PyExc_UserWarning, 34
PyExc_ValueError, 32
PyExc_Warning, 34
PyExc_WindowsError, 33
PyExc_ZeroDivisionError, 32
PyException_GetCause (C function), 30
PyException_GetContext (C function), 30
PyException_GetTraceback (C function), 30
PyException_SetCause (C function), 30
PyException_SetContext (C function), 30
PyException_SetTraceback (C function), 30
PyFile_FromFd (C function), 116
PyFile_GetLine (C function), 116
PyFile_WriteObject (C function), 116
PyFile_WriteString (C function), 116
PyFloat_AS_DOUBLE (C function), 80
PyFloat_AsDouble (C function), 80
PyFloat_Check (C function), 80
PyFloat_CheckExact (C function), 80
PyFloat_ClearFreeList (C function), 80
PyFloat_FromDouble (C function), 80
PyFloat_FromString (C function), 80
PyFloat_GetInfo (C function), 80
PyFloat_GetMax (C function), 80
PyFloat_GetMin (C function), 80
PyFloat_Type (C variable), 80
PyFloatObject (C type), 80
PyFrame_GetLineNumber (C function), 53
PyFrameObject (C type), 18
PyFrozenSet_Check (C function), 111
PyFrozenSet_CheckExact (C function), 111
PyFrozenSet_New (C function), 111
PyFrozenSet_Type (C variable), 111
PyFunction_Check (C function), 112
PyFunction_GetAnnotations (C function), 113
PyFunction_GetClosure (C function), 113
PyFunction_GetCode (C function), 113
PyFunction_GetDefaults (C function), 113
PyFunction_GetGlobals (C function), 113
PyFunction_GetModule (C function), 113
PyFunction_New (C function), 113
PyFunction_NewWithQualName (C function), 113
PyFunction_SetAnnotations (C function), 113
PyFunction_SetClosure (C function), 113
PyFunction_SetDefaults (C function), 113
PyFunction_Type (C variable), 112
PyFunctionObject (C type), 112
PyGen_Check (C function), 128

Index 233

The Python/C API, Release 3.7.17

PyGen_CheckExact (C function), 128
PyGen_New (C function), 128
PyGen_NewWithQualName (C function), 128
PyGen_Type (C variable), 128
PyGenObject (C type), 128
PyGetSetDef (C type), 167
PyGILState_Check (C function), 145
PyGILState_Ensure (C function), 145
PyGILState_GetThisThreadState (C function),

145
PyGILState_Release (C function), 145
PyImport_AddModule (C function), 40
PyImport_AddModuleObject (C function), 39
PyImport_AppendInittab (C function), 42
PyImport_Cleanup (C function), 41
PyImport_ExecCodeModule (C function), 40
PyImport_ExecCodeModuleEx (C function), 40
PyImport_ExecCodeModuleObject (C function),

40
PyImport_ExecCodeModuleWithPathnames (C

function), 40
PyImport_ExtendInittab (C function), 42
PyImport_FrozenModules (C variable), 42
PyImport_GetImporter (C function), 41
PyImport_GetMagicNumber (C function), 41
PyImport_GetMagicTag (C function), 41
PyImport_GetModule (C function), 41
PyImport_GetModuleDict (C function), 41
PyImport_Import (C function), 39
PyImport_ImportFrozenModule (C function), 41
PyImport_ImportFrozenModuleObject (C

function), 41
PyImport_ImportModule (C function), 39
PyImport_ImportModuleEx (C function), 39
PyImport_ImportModuleLevel (C function), 39
PyImport_ImportModuleLevelObject (C func-

tion), 39
PyImport_ImportModuleNoBlock (C function),

39
PyImport_ReloadModule (C function), 39
PyIndex_Check (C function), 62
PyInstanceMethod_Check (C function), 114
PyInstanceMethod_Function (C function), 114
PyInstanceMethod_GET_FUNCTION (C function),

114
PyInstanceMethod_New (C function), 114
PyInstanceMethod_Type (C variable), 114
PyInterpreterState (C type), 144
PyInterpreterState_Clear (C function), 146
PyInterpreterState_Delete (C function), 146
PyInterpreterState_GetID (C function), 146
PyInterpreterState_Head (C function), 150
PyInterpreterState_Main (C function), 150
PyInterpreterState_New (C function), 146

PyInterpreterState_Next (C function), 150
PyInterpreterState_ThreadHead (C function),

150
PyIter_Check (C function), 65
PyIter_Next (C function), 65
PyList_Append (C function), 107
PyList_AsTuple (C function), 108
PyList_Check (C function), 107
PyList_CheckExact (C function), 107
PyList_ClearFreeList (C function), 108
PyList_GET_ITEM (C function), 107
PyList_GET_SIZE (C function), 107
PyList_GetItem (C function), 107
PyList_GetItem(), 8
PyList_GetSlice (C function), 108
PyList_Insert (C function), 107
PyList_New (C function), 107
PyList_Reverse (C function), 108
PyList_SET_ITEM (C function), 107
PyList_SetItem (C function), 107
PyList_SetItem(), 6
PyList_SetSlice (C function), 108
PyList_Size (C function), 107
PyList_Sort (C function), 108
PyList_Type (C variable), 107
PyListObject (C type), 107
PyLong_AsDouble (C function), 79
PyLong_AsLong (C function), 78
PyLong_AsLongAndOverflow (C function), 78
PyLong_AsLongLong (C function), 78
PyLong_AsLongLongAndOverflow (C function),

78
PyLong_AsSize_t (C function), 79
PyLong_AsSsize_t (C function), 78
PyLong_AsUnsignedLong (C function), 78
PyLong_AsUnsignedLongLong (C function), 79
PyLong_AsUnsignedLongLongMask (C function),

79
PyLong_AsUnsignedLongMask (C function), 79
PyLong_AsVoidPtr (C function), 79
PyLong_Check (C function), 77
PyLong_CheckExact (C function), 77
PyLong_FromDouble (C function), 77
PyLong_FromLong (C function), 77
PyLong_FromLongLong (C function), 77
PyLong_FromSize_t (C function), 77
PyLong_FromSsize_t (C function), 77
PyLong_FromString (C function), 77
PyLong_FromUnicode (C function), 77
PyLong_FromUnicodeObject (C function), 78
PyLong_FromUnsignedLong (C function), 77
PyLong_FromUnsignedLongLong (C function), 77
PyLong_FromVoidPtr (C function), 78
PyLong_Type (C variable), 77

234 Index

The Python/C API, Release 3.7.17

PyLongObject (C type), 77
PyMapping_Check (C function), 64
PyMapping_DelItem (C function), 65
PyMapping_DelItemString (C function), 65
PyMapping_GetItemString (C function), 65
PyMapping_HasKey (C function), 65
PyMapping_HasKeyString (C function), 65
PyMapping_Items (C function), 65
PyMapping_Keys (C function), 65
PyMapping_Length (C function), 64
PyMapping_SetItemString (C function), 65
PyMapping_Size (C function), 64
PyMapping_Values (C function), 65
PyMappingMethods (C type), 183
PyMappingMethods.mp_ass_subscript (C

member), 183
PyMappingMethods.mp_length (C member), 183
PyMappingMethods.mp_subscript (C member),

183
PyMarshal_ReadLastObjectFromFile (C func-

tion), 43
PyMarshal_ReadLongFromFile (C function), 43
PyMarshal_ReadObjectFromFile (C function),

43
PyMarshal_ReadObjectFromString (C func-

tion), 43
PyMarshal_ReadShortFromFile (C function), 43
PyMarshal_WriteLongToFile (C function), 42
PyMarshal_WriteObjectToFile (C function), 42
PyMarshal_WriteObjectToString (C function),

42
PyMem_Calloc (C function), 155
PyMem_Del (C function), 155
PYMEM_DOMAIN_MEM (C variable), 158
PYMEM_DOMAIN_OBJ (C variable), 158
PYMEM_DOMAIN_RAW (C variable), 157
PyMem_Free (C function), 155
PyMem_GetAllocator (C function), 158
PyMem_Malloc (C function), 155
PyMem_New (C function), 155
PyMem_RawCalloc (C function), 154
PyMem_RawFree (C function), 154
PyMem_RawMalloc (C function), 154
PyMem_RawRealloc (C function), 154
PyMem_Realloc (C function), 155
PyMem_Resize (C function), 155
PyMem_SetAllocator (C function), 158
PyMem_SetupDebugHooks (C function), 158
PyMemAllocatorDomain (C type), 157
PyMemAllocatorEx (C type), 157
PyMemberDef (C type), 166
PyMemoryView_Check (C function), 125
PyMemoryView_FromBuffer (C function), 125
PyMemoryView_FromMemory (C function), 125

PyMemoryView_FromObject (C function), 125
PyMemoryView_GET_BASE (C function), 125
PyMemoryView_GET_BUFFER (C function), 125
PyMemoryView_GetContiguous (C function), 125
PyMethod_Check (C function), 114
PyMethod_ClearFreeList (C function), 114
PyMethod_Function (C function), 114
PyMethod_GET_FUNCTION (C function), 114
PyMethod_GET_SELF (C function), 114
PyMethod_New (C function), 114
PyMethod_Self (C function), 114
PyMethod_Type (C variable), 114
PyMethodDef (C type), 165
PyModule_AddFunctions (C function), 121
PyModule_AddIntConstant (C function), 121
PyModule_AddIntMacro (C function), 122
PyModule_AddObject (C function), 121
PyModule_AddStringConstant (C function), 121
PyModule_AddStringMacro (C function), 122
PyModule_Check (C function), 117
PyModule_CheckExact (C function), 117
PyModule_Create (C function), 119
PyModule_Create2 (C function), 119
PyModule_ExecDef (C function), 121
PyModule_FromDefAndSpec (C function), 120
PyModule_FromDefAndSpec2 (C function), 120
PyModule_GetDef (C function), 117
PyModule_GetDict (C function), 117
PyModule_GetFilename (C function), 117
PyModule_GetFilenameObject (C function), 117
PyModule_GetName (C function), 117
PyModule_GetNameObject (C function), 117
PyModule_GetState (C function), 117
PyModule_New (C function), 117
PyModule_NewObject (C function), 117
PyModule_SetDocString (C function), 121
PyModule_Type (C variable), 117
PyModuleDef (C type), 118
PyModuleDef_Init (C function), 119
PyModuleDef_Slot (C type), 119
PyModuleDef_Slot.slot (C member), 119
PyModuleDef_Slot.value (C member), 120
PyModuleDef.m_base (C member), 118
PyModuleDef.m_clear (C member), 118
PyModuleDef.m_doc (C member), 118
PyModuleDef.m_free (C member), 118
PyModuleDef.m_methods (C member), 118
PyModuleDef.m_name (C member), 118
PyModuleDef.m_reload (C member), 118
PyModuleDef.m_size (C member), 118
PyModuleDef.m_slots (C member), 118
PyModuleDef.m_traverse (C member), 118
PyNumber_Absolute (C function), 60
PyNumber_Add (C function), 60

Index 235

The Python/C API, Release 3.7.17

PyNumber_And (C function), 61
PyNumber_AsSsize_t (C function), 62
PyNumber_Check (C function), 60
PyNumber_Divmod (C function), 60
PyNumber_Float (C function), 62
PyNumber_FloorDivide (C function), 60
PyNumber_Index (C function), 62
PyNumber_InPlaceAdd (C function), 61
PyNumber_InPlaceAnd (C function), 62
PyNumber_InPlaceFloorDivide (C function), 61
PyNumber_InPlaceLshift (C function), 61
PyNumber_InPlaceMatrixMultiply (C func-

tion), 61
PyNumber_InPlaceMultiply (C function), 61
PyNumber_InPlaceOr (C function), 62
PyNumber_InPlacePower (C function), 61
PyNumber_InPlaceRemainder (C function), 61
PyNumber_InPlaceRshift (C function), 62
PyNumber_InPlaceSubtract (C function), 61
PyNumber_InPlaceTrueDivide (C function), 61
PyNumber_InPlaceXor (C function), 62
PyNumber_Invert (C function), 60
PyNumber_Long (C function), 62
PyNumber_Lshift (C function), 61
PyNumber_MatrixMultiply (C function), 60
PyNumber_Multiply (C function), 60
PyNumber_Negative (C function), 60
PyNumber_Or (C function), 61
PyNumber_Positive (C function), 60
PyNumber_Power (C function), 60
PyNumber_Remainder (C function), 60
PyNumber_Rshift (C function), 61
PyNumber_Subtract (C function), 60
PyNumber_ToBase (C function), 62
PyNumber_TrueDivide (C function), 60
PyNumber_Xor (C function), 61
PyNumberMethods (C type), 182
PyObject (C type), 164
PyObject_AsCharBuffer (C function), 73
PyObject_ASCII (C function), 57
PyObject_AsFileDescriptor (C function), 116
PyObject_AsReadBuffer (C function), 73
PyObject_AsWriteBuffer (C function), 73
PyObject_Bytes (C function), 57
PyObject_Call (C function), 57
PyObject_CallFunction (C function), 58
PyObject_CallFunctionObjArgs (C function),

58
PyObject_CallMethod (C function), 58
PyObject_CallMethodObjArgs (C function), 58
PyObject_CallObject (C function), 58
PyObject_Calloc (C function), 156
PyObject_CheckBuffer (C function), 72
PyObject_CheckReadBuffer (C function), 73

PyObject_Del (C function), 163
PyObject_DelAttr (C function), 56
PyObject_DelAttrString (C function), 56
PyObject_DelItem (C function), 59
PyObject_Dir (C function), 59
PyObject_Free (C function), 156
PyObject_GC_Del (C function), 187
PyObject_GC_New (C function), 186
PyObject_GC_NewVar (C function), 186
PyObject_GC_Resize (C function), 186
PyObject_GC_Track (C function), 186
PyObject_GC_UnTrack (C function), 187
PyObject_GenericGetAttr (C function), 55
PyObject_GenericGetDict (C function), 56
PyObject_GenericSetAttr (C function), 56
PyObject_GenericSetDict (C function), 56
PyObject_GetArenaAllocator (C function), 159
PyObject_GetAttr (C function), 55
PyObject_GetAttrString (C function), 55
PyObject_GetBuffer (C function), 72
PyObject_GetItem (C function), 59
PyObject_GetIter (C function), 59
PyObject_HasAttr (C function), 55
PyObject_HasAttrString (C function), 55
PyObject_Hash (C function), 58
PyObject_HashNotImplemented (C function), 58
PyObject_HEAD (C macro), 164
PyObject_HEAD_INIT (C macro), 164
PyObject_Init (C function), 163
PyObject_InitVar (C function), 163
PyObject_IsInstance (C function), 57
PyObject_IsSubclass (C function), 57
PyObject_IsTrue (C function), 59
PyObject_Length (C function), 59
PyObject_LengthHint (C function), 59
PyObject_Malloc (C function), 156
PyObject_New (C function), 163
PyObject_NewVar (C function), 163
PyObject_Not (C function), 59
PyObject._ob_next (C member), 169
PyObject._ob_prev (C member), 169
PyObject_Print (C function), 55
PyObject_Realloc (C function), 156
PyObject_Repr (C function), 57
PyObject_RichCompare (C function), 56
PyObject_RichCompareBool (C function), 56
PyObject_SetArenaAllocator (C function), 159
PyObject_SetAttr (C function), 56
PyObject_SetAttrString (C function), 56
PyObject_SetItem (C function), 59
PyObject_Size (C function), 59
PyObject_Str (C function), 57
PyObject_Type (C function), 59
PyObject_TypeCheck (C function), 59

236 Index

The Python/C API, Release 3.7.17

PyObject_VAR_HEAD (C macro), 164
PyObjectArenaAllocator (C type), 159
PyObject.ob_refcnt (C member), 170
PyObject.ob_type (C member), 170
PyOS_AfterFork (C function), 35
PyOS_AfterFork_Child (C function), 35
PyOS_AfterFork_Parent (C function), 35
PyOS_BeforeFork (C function), 35
PyOS_CheckStack (C function), 36
PyOS_double_to_string (C function), 52
PyOS_FSPath (C function), 35
PyOS_getsig (C function), 36
PyOS_InputHook (C variable), 16
PyOS_ReadlineFunctionPointer (C variable),

16
PyOS_setsig (C function), 36
PyOS_snprintf (C function), 51
PyOS_stricmp (C function), 52
PyOS_string_to_double (C function), 51
PyOS_strnicmp (C function), 52
PyOS_vsnprintf (C function), 51
PyParser_SimpleParseFile (C function), 17
PyParser_SimpleParseFileFlags (C function),

17
PyParser_SimpleParseString (C function), 16
PyParser_SimpleParseStringFlags (C func-

tion), 17
PyParser_SimpleParseStringFlagsFilename

(C function), 17
PyProperty_Type (C variable), 123
PyRun_AnyFile (C function), 15
PyRun_AnyFileEx (C function), 15
PyRun_AnyFileExFlags (C function), 15
PyRun_AnyFileFlags (C function), 15
PyRun_File (C function), 17
PyRun_FileEx (C function), 17
PyRun_FileExFlags (C function), 17
PyRun_FileFlags (C function), 17
PyRun_InteractiveLoop (C function), 16
PyRun_InteractiveLoopFlags (C function), 16
PyRun_InteractiveOne (C function), 16
PyRun_InteractiveOneFlags (C function), 16
PyRun_SimpleFile (C function), 16
PyRun_SimpleFileEx (C function), 16
PyRun_SimpleFileExFlags (C function), 16
PyRun_SimpleString (C function), 15
PyRun_SimpleStringFlags (C function), 15
PyRun_String (C function), 17
PyRun_StringFlags (C function), 17
PySeqIter_Check (C function), 122
PySeqIter_New (C function), 122
PySeqIter_Type (C variable), 122
PySequence_Check (C function), 63
PySequence_Concat (C function), 63

PySequence_Contains (C function), 63
PySequence_Count (C function), 63
PySequence_DelItem (C function), 63
PySequence_DelSlice (C function), 63
PySequence_Fast (C function), 64
PySequence_Fast_GET_ITEM (C function), 64
PySequence_Fast_GET_SIZE (C function), 64
PySequence_Fast_ITEMS (C function), 64
PySequence_GetItem (C function), 63
PySequence_GetItem(), 8
PySequence_GetSlice (C function), 63
PySequence_Index (C function), 64
PySequence_InPlaceConcat (C function), 63
PySequence_InPlaceRepeat (C function), 63
PySequence_ITEM (C function), 64
PySequence_Length (C function), 63
PySequence_List (C function), 64
PySequence_Repeat (C function), 63
PySequence_SetItem (C function), 63
PySequence_SetSlice (C function), 63
PySequence_Size (C function), 63
PySequence_Tuple (C function), 64
PySequenceMethods (C type), 183
PySequenceMethods.sq_ass_item (C member),

184
PySequenceMethods.sq_concat (C member), 183
PySequenceMethods.sq_contains (C member),

184
PySequenceMethods.sq_inplace_concat (C

member), 184
PySequenceMethods.sq_inplace_repeat (C

member), 184
PySequenceMethods.sq_item (C member), 184
PySequenceMethods.sq_length (C member), 183
PySequenceMethods.sq_repeat (C member), 183
PySet_Add (C function), 112
PySet_Check (C function), 111
PySet_Clear (C function), 112
PySet_ClearFreeList (C function), 112
PySet_Contains (C function), 112
PySet_Discard (C function), 112
PySet_GET_SIZE (C function), 112
PySet_New (C function), 111
PySet_Pop (C function), 112
PySet_Size (C function), 112
PySet_Type (C variable), 111
PySetObject (C type), 111
PySignal_SetWakeupFd (C function), 29
PySlice_AdjustIndices (C function), 124
PySlice_Check (C function), 123
PySlice_GetIndices (C function), 123
PySlice_GetIndicesEx (C function), 124
PySlice_New (C function), 123
PySlice_Type (C variable), 123

Index 237

The Python/C API, Release 3.7.17

PySlice_Unpack (C function), 124
PyState_AddModule (C function), 122
PyState_FindModule (C function), 122
PyState_RemoveModule (C function), 122
PyStructSequence_Desc (C type), 105
PyStructSequence_Field (C type), 106
PyStructSequence_GET_ITEM (C function), 106
PyStructSequence_GetItem (C function), 106
PyStructSequence_InitType (C function), 105
PyStructSequence_InitType2 (C function), 105
PyStructSequence_New (C function), 106
PyStructSequence_NewType (C function), 105
PyStructSequence_SET_ITEM (C function), 106
PyStructSequence_SetItem (C function), 106
PyStructSequence_UnnamedField (C variable),

106
PySys_AddWarnOption (C function), 37
PySys_AddWarnOptionUnicode (C function), 37
PySys_AddXOption (C function), 38
PySys_FormatStderr (C function), 38
PySys_FormatStdout (C function), 38
PySys_GetObject (C function), 37
PySys_GetXOptions (C function), 38
PySys_ResetWarnOptions (C function), 37
PySys_SetArgv (C function), 141
PySys_SetArgv(), 138
PySys_SetArgvEx (C function), 141
PySys_SetArgvEx(), 11, 138
PySys_SetObject (C function), 37
PySys_SetPath (C function), 37
PySys_WriteStderr (C function), 38
PySys_WriteStdout (C function), 37
Python 3000, 200
Python Enhancement Proposals

PEP 1, 200
PEP 7, 3, 5
PEP 238, 19, 195
PEP 278, 202
PEP 302, 194, 197
PEP 343, 193
PEP 362, 192, 199
PEP 383, 93, 94
PEP 384, 13
PEP 393, 85, 92
PEP 411, 200
PEP 420, 194, 199, 200
PEP 442, 181
PEP 443, 195
PEP 451, 120, 194
PEP 484, 191, 195, 202
PEP 489, 120
PEP 492, 192, 193
PEP 498, 194
PEP 519, 200

PEP 525, 192
PEP 526, 191, 202
PEP 528, 137
PEP 529, 94, 137
PEP 539, 151
PEP 3116, 202
PEP 3119, 57
PEP 3121, 118
PEP 3147, 41
PEP 3151, 33
PEP 3155, 200

PYTHON*, 136
PYTHONDEBUG, 136
PYTHONDONTWRITEBYTECODE, 136
PYTHONDUMPREFS, 169
PYTHONHASHSEED, 136
PYTHONHOME, 11, 136, 141, 142
Pythonic, 200
PYTHONINSPECT, 137
PYTHONIOENCODING, 139
PYTHONLEGACYWINDOWSFSENCODING, 137
PYTHONLEGACYWINDOWSSTDIO, 137
PYTHONMALLOC, 154, 157, 159
PYTHONMALLOCSTATS, 154
PYTHONNOUSERSITE, 137
PYTHONOPTIMIZE, 137
PYTHONPATH, 11, 136
PYTHONUNBUFFERED, 137
PYTHONVERBOSE, 137
PyThread_create_key (C function), 152
PyThread_delete_key (C function), 152
PyThread_delete_key_value (C function), 152
PyThread_get_key_value (C function), 152
PyThread_ReInitTLS (C function), 152
PyThread_set_key_value (C function), 152
PyThread_tss_alloc (C function), 151
PyThread_tss_create (C function), 151
PyThread_tss_delete (C function), 151
PyThread_tss_free (C function), 151
PyThread_tss_get (C function), 152
PyThread_tss_is_created (C function), 151
PyThread_tss_set (C function), 151
PyThreadState, 142
PyThreadState (C type), 144
PyThreadState_Clear (C function), 146
PyThreadState_Delete (C function), 146
PyThreadState_Get (C function), 144
PyThreadState_GetDict (C function), 146
PyThreadState_New (C function), 146
PyThreadState_Next (C function), 150
PyThreadState_SetAsyncExc (C function), 146
PyThreadState_Swap (C function), 144
PyTime_Check (C function), 131
PyTime_CheckExact (C function), 131

238 Index

The Python/C API, Release 3.7.17

PyTime_FromTime (C function), 131
PyTime_FromTimeAndFold (C function), 131
PyTimeZone_FromOffset (C function), 132
PyTimeZone_FromOffsetAndName (C function),

132
PyTrace_C_CALL (C variable), 149
PyTrace_C_EXCEPTION (C variable), 149
PyTrace_C_RETURN (C variable), 149
PyTrace_CALL (C variable), 149
PyTrace_EXCEPTION (C variable), 149
PyTrace_LINE (C variable), 149
PyTrace_OPCODE (C variable), 149
PyTrace_RETURN (C variable), 149
PyTraceMalloc_Track (C function), 160
PyTraceMalloc_Untrack (C function), 160
PyTuple_Check (C function), 104
PyTuple_CheckExact (C function), 104
PyTuple_ClearFreeList (C function), 105
PyTuple_GET_ITEM (C function), 104
PyTuple_GET_SIZE (C function), 104
PyTuple_GetItem (C function), 104
PyTuple_GetSlice (C function), 104
PyTuple_New (C function), 104
PyTuple_Pack (C function), 104
PyTuple_SET_ITEM (C function), 105
PyTuple_SetItem (C function), 105
PyTuple_SetItem(), 6
PyTuple_Size (C function), 104
PyTuple_Type (C variable), 104
PyTupleObject (C type), 104
PyType_Check (C function), 75
PyType_CheckExact (C function), 75
PyType_ClearCache (C function), 75
PyType_FromSpec (C function), 76
PyType_FromSpecWithBases (C function), 76
PyType_GenericAlloc (C function), 76
PyType_GenericNew (C function), 76
PyType_GetFlags (C function), 75
PyType_GetSlot (C function), 76
PyType_HasFeature (C function), 76
PyType_IS_GC (C function), 76
PyType_IsSubtype (C function), 76
PyType_Modified (C function), 75
PyType_Ready (C function), 76
PyType_Type (C variable), 75
PyTypeObject (C type), 75
PyTypeObject.tp_alloc (C member), 179
PyTypeObject.tp_allocs (C member), 181
PyTypeObject.tp_as_buffer (C member), 173
PyTypeObject.tp_base (C member), 178
PyTypeObject.tp_bases (C member), 180
PyTypeObject.tp_basicsize (C member), 170
PyTypeObject.tp_cache (C member), 181
PyTypeObject.tp_call (C member), 172

PyTypeObject.tp_clear (C member), 175
PyTypeObject.tp_dealloc (C member), 171
PyTypeObject.tp_descr_get (C member), 178
PyTypeObject.tp_descr_set (C member), 178
PyTypeObject.tp_dict (C member), 178
PyTypeObject.tp_dictoffset (C member), 178
PyTypeObject.tp_doc (C member), 174
PyTypeObject.tp_finalize (C member), 181
PyTypeObject.tp_flags (C member), 173
PyTypeObject.tp_free (C member), 180
PyTypeObject.tp_frees (C member), 181
PyTypeObject.tp_getattr (C member), 171
PyTypeObject.tp_getattro (C member), 173
PyTypeObject.tp_getset (C member), 177
PyTypeObject.tp_hash (C member), 172
PyTypeObject.tp_init (C member), 179
PyTypeObject.tp_is_gc (C member), 180
PyTypeObject.tp_itemsize (C member), 170
PyTypeObject.tp_iter (C member), 177
PyTypeObject.tp_iternext (C member), 177
PyTypeObject.tp_maxalloc (C member), 181
PyTypeObject.tp_members (C member), 177
PyTypeObject.tp_methods (C member), 177
PyTypeObject.tp_mro (C member), 180
PyTypeObject.tp_name (C member), 170
PyTypeObject.tp_new (C member), 180
PyTypeObject.tp_next (C member), 182
PyTypeObject.tp_print (C member), 171
PyTypeObject.tp_repr (C member), 172
PyTypeObject.tp_richcompare (C member), 176
PyTypeObject.tp_setattr (C member), 171
PyTypeObject.tp_setattro (C member), 173
PyTypeObject.tp_str (C member), 173
PyTypeObject.tp_subclasses (C member), 181
PyTypeObject.tp_traverse (C member), 174
PyTypeObject.tp_weaklist (C member), 181
PyTypeObject.tp_weaklistoffset (Cmember),

176
PyTZInfo_Check (C function), 131
PyTZInfo_CheckExact (C function), 131
PyUnicode_1BYTE_DATA (C function), 86
PyUnicode_1BYTE_KIND (C macro), 86
PyUnicode_2BYTE_DATA (C function), 86
PyUnicode_2BYTE_KIND (C macro), 86
PyUnicode_4BYTE_DATA (C function), 86
PyUnicode_4BYTE_KIND (C macro), 86
PyUnicode_AS_DATA (C function), 87
PyUnicode_AS_UNICODE (C function), 87
PyUnicode_AsASCIIString (C function), 100
PyUnicode_AsCharmapString (C function), 101
PyUnicode_AsEncodedString (C function), 96
PyUnicode_AsLatin1String (C function), 100
PyUnicode_AsMBCSString (C function), 102

Index 239

The Python/C API, Release 3.7.17

PyUnicode_AsRawUnicodeEscapeString (C
function), 99

PyUnicode_AsUCS4 (C function), 91
PyUnicode_AsUCS4Copy (C function), 91
PyUnicode_AsUnicode (C function), 92
PyUnicode_AsUnicodeAndSize (C function), 92
PyUnicode_AsUnicodeCopy (C function), 92
PyUnicode_AsUnicodeEscapeString (C func-

tion), 99
PyUnicode_AsUTF8 (C function), 96
PyUnicode_AsUTF8AndSize (C function), 96
PyUnicode_AsUTF8String (C function), 96
PyUnicode_AsUTF16String (C function), 98
PyUnicode_AsUTF32String (C function), 97
PyUnicode_AsWideChar (C function), 95
PyUnicode_AsWideCharString (C function), 95
PyUnicode_Check (C function), 86
PyUnicode_CheckExact (C function), 86
PyUnicode_ClearFreeList (C function), 87
PyUnicode_Compare (C function), 103
PyUnicode_CompareWithASCIIString (C func-

tion), 103
PyUnicode_Concat (C function), 102
PyUnicode_Contains (C function), 104
PyUnicode_CopyCharacters (C function), 91
PyUnicode_Count (C function), 103
PyUnicode_DATA (C function), 86
PyUnicode_Decode (C function), 96
PyUnicode_DecodeASCII (C function), 100
PyUnicode_DecodeCharmap (C function), 101
PyUnicode_DecodeFSDefault (C function), 94
PyUnicode_DecodeFSDefaultAndSize (C func-

tion), 94
PyUnicode_DecodeLatin1 (C function), 100
PyUnicode_DecodeLocale (C function), 93
PyUnicode_DecodeLocaleAndSize (C function),

93
PyUnicode_DecodeMBCS (C function), 102
PyUnicode_DecodeMBCSStateful (C function),

102
PyUnicode_DecodeRawUnicodeEscape (C func-

tion), 99
PyUnicode_DecodeUnicodeEscape (C function),

99
PyUnicode_DecodeUTF7 (C function), 99
PyUnicode_DecodeUTF7Stateful (C function),

99
PyUnicode_DecodeUTF8 (C function), 96
PyUnicode_DecodeUTF8Stateful (C function),

96
PyUnicode_DecodeUTF16 (C function), 98
PyUnicode_DecodeUTF16Stateful (C function),

98
PyUnicode_DecodeUTF32 (C function), 97

PyUnicode_DecodeUTF32Stateful (C function),
97

PyUnicode_Encode (C function), 96
PyUnicode_EncodeASCII (C function), 100
PyUnicode_EncodeCharmap (C function), 101
PyUnicode_EncodeCodePage (C function), 102
PyUnicode_EncodeFSDefault (C function), 94
PyUnicode_EncodeLatin1 (C function), 100
PyUnicode_EncodeLocale (C function), 93
PyUnicode_EncodeMBCS (C function), 102
PyUnicode_EncodeRawUnicodeEscape (C func-

tion), 99
PyUnicode_EncodeUnicodeEscape (C function),

99
PyUnicode_EncodeUTF7 (C function), 99
PyUnicode_EncodeUTF8 (C function), 97
PyUnicode_EncodeUTF16 (C function), 98
PyUnicode_EncodeUTF32 (C function), 97
PyUnicode_Fill (C function), 91
PyUnicode_Find (C function), 103
PyUnicode_FindChar (C function), 103
PyUnicode_Format (C function), 103
PyUnicode_FromEncodedObject (C function), 90
PyUnicode_FromFormat (C function), 89
PyUnicode_FromFormatV (C function), 90
PyUnicode_FromKindAndData (C function), 89
PyUnicode_FromObject (C function), 92
PyUnicode_FromString (C function), 89
PyUnicode_FromString(), 109
PyUnicode_FromStringAndSize (C function), 89
PyUnicode_FromUnicode (C function), 92
PyUnicode_FromWideChar (C function), 95
PyUnicode_FSConverter (C function), 94
PyUnicode_FSDecoder (C function), 94
PyUnicode_GET_DATA_SIZE (C function), 87
PyUnicode_GET_LENGTH (C function), 86
PyUnicode_GET_SIZE (C function), 87
PyUnicode_GetLength (C function), 91
PyUnicode_GetSize (C function), 92
PyUnicode_InternFromString (C function), 104
PyUnicode_InternInPlace (C function), 104
PyUnicode_Join (C function), 103
PyUnicode_KIND (C function), 86
PyUnicode_MAX_CHAR_VALUE (C function), 87
PyUnicode_New (C function), 89
PyUnicode_READ (C function), 87
PyUnicode_READ_CHAR (C function), 87
PyUnicode_ReadChar (C function), 91
PyUnicode_READY (C function), 86
PyUnicode_Replace (C function), 103
PyUnicode_RichCompare (C function), 103
PyUnicode_Split (C function), 102
PyUnicode_Splitlines (C function), 102
PyUnicode_Substring (C function), 91

240 Index

The Python/C API, Release 3.7.17

PyUnicode_Tailmatch (C function), 103
PyUnicode_TransformDecimalToASCII (C

function), 92
PyUnicode_Translate (C function), 101, 102
PyUnicode_TranslateCharmap (C function), 101
PyUnicode_Type (C variable), 85
PyUnicode_WCHAR_KIND (C macro), 86
PyUnicode_WRITE (C function), 86
PyUnicode_WriteChar (C function), 91
PyUnicodeDecodeError_Create (C function), 30
PyUnicodeDecodeError_GetEncoding (C func-

tion), 30
PyUnicodeDecodeError_GetEnd (C function), 31
PyUnicodeDecodeError_GetObject (C func-

tion), 30
PyUnicodeDecodeError_GetReason (C func-

tion), 31
PyUnicodeDecodeError_GetStart (C function),

30
PyUnicodeDecodeError_SetEnd (C function), 31
PyUnicodeDecodeError_SetReason (C func-

tion), 31
PyUnicodeDecodeError_SetStart (C function),

31
PyUnicodeEncodeError_Create (C function), 30
PyUnicodeEncodeError_GetEncoding (C func-

tion), 30
PyUnicodeEncodeError_GetEnd (C function), 31
PyUnicodeEncodeError_GetObject (C func-

tion), 30
PyUnicodeEncodeError_GetReason (C func-

tion), 31
PyUnicodeEncodeError_GetStart (C function),

30
PyUnicodeEncodeError_SetEnd (C function), 31
PyUnicodeEncodeError_SetReason (C func-

tion), 31
PyUnicodeEncodeError_SetStart (C function),

31
PyUnicodeObject (C type), 85
PyUnicodeTranslateError_Create (C func-

tion), 30
PyUnicodeTranslateError_GetEnd (C func-

tion), 31
PyUnicodeTranslateError_GetObject (C

function), 30
PyUnicodeTranslateError_GetReason (C

function), 31
PyUnicodeTranslateError_GetStart (C func-

tion), 30
PyUnicodeTranslateError_SetEnd (C func-

tion), 31
PyUnicodeTranslateError_SetReason (C

function), 31

PyUnicodeTranslateError_SetStart (C func-
tion), 31

PyVarObject (C type), 164
PyVarObject_HEAD_INIT (C macro), 164
PyVarObject.ob_size (C member), 170
PyWeakref_Check (C function), 126
PyWeakref_CheckProxy (C function), 126
PyWeakref_CheckRef (C function), 126
PyWeakref_GET_OBJECT (C function), 126
PyWeakref_GetObject (C function), 126
PyWeakref_NewProxy (C function), 126
PyWeakref_NewRef (C function), 126
PyWrapper_New (C function), 123

Q
qualified name, 200

R
realloc(), 153
reference count, 201
regular package, 201
repr

built-in function, 57, 172

S
sdterr

stdin stdout, 139
search

path, module, 11, 138, 140
sequence, 201

object, 82
set

object, 111
set_all(), 7
setswitchinterval() (in module sys), 142
SIGINT, 29
signal

module, 29
single dispatch, 201
SIZE_MAX, 79
slice, 201
special

method, 201
special method, 201
statement, 201
staticmethod

built-in function, 166
stderr (in module sys), 147
stdin

stdout sdterr, 139
stdin (in module sys), 147
stdout

sdterr, stdin, 139
stdout (in module sys), 147

Index 241

The Python/C API, Release 3.7.17

strerror(), 24
string

PyObject_Str (C function), 57
sum_list(), 8
sum_sequence(), 9
sys

module, 11, 138, 147
SystemError (built-in exception), 117

T
text encoding, 201
text file, 201
tp_as_async (C member), 172
tp_as_mapping (C member), 172
tp_as_number (C member), 172
tp_as_sequence (C member), 172
traverseproc (C type), 187
triple-quoted string, 202
tuple

built-in function, 64, 108
object, 104

type, 202
built-in function, 59
object, 5, 75

type alias, 202
type hint, 202

U
ULONG_MAX, 78
universal newlines, 202

V
variable annotation, 202
version (in module sys), 140, 141
virtual environment, 203
virtual machine, 203
visitproc (C type), 187

Z
Zen of Python, 203

242 Index

	Introduction
	Coding standards
	Include Files
	Useful macros
	Objects, Types and Reference Counts
	Exceptions
	Embedding Python
	Debugging Builds

	Stable Application Binary Interface
	The Very High Level Layer
	Reference Counting
	Exception Handling
	Printing and clearing
	Raising exceptions
	Issuing warnings
	Querying the error indicator
	Signal Handling
	Exception Classes
	Exception Objects
	Unicode Exception Objects
	Recursion Control
	Standard Exceptions
	Standard Warning Categories

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Parsing arguments and building values
	String conversion and formatting
	Reflection
	Codec registry and support functions

	Abstract Objects Layer
	Object Protocol
	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Buffer Protocol
	Old Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Numeric Objects
	Sequence Objects
	Container Objects
	Function Objects
	Other Objects

	Initialization, Finalization, and Threads
	Before Python Initialization
	Global configuration variables
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Sub-interpreter support
	Asynchronous Notifications
	Profiling and Tracing
	Advanced Debugger Support
	Thread Local Storage Support

	Memory Management
	Overview
	Raw Memory Interface
	Memory Interface
	Object allocators
	Default Memory Allocators
	Customize Memory Allocators
	The pymalloc allocator
	tracemalloc C API
	Examples

	Object Implementation Support
	Allocating Objects on the Heap
	Common Object Structures
	Type Objects
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Async Object Structures
	Supporting Cyclic Garbage Collection

	API and ABI Versioning
	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

