The Python Language Reference
23| A 3.13.1

Guido van Rossum and the Python development team

13 05, 2025

Contents

N8
1.2

o) 24
2.1 = 7% (Line structure)

22 TREEZE
23 AW} ZIHNE
24 BE™E ..
25 AAR

26 FEA L
dlole] e

31 AALZLE
32 BEFHAZT ...
33 S5UNEolEE

34 FZE(Coroutines) ovvvi
A8 w

4.1 RyA

42 9]

43 AR L
‘%].Y_E ,\] A E

5.1 dimportlib. e
52 "7 A (package)
53 AA e
54 Zd(oading)
55 ZAZZIWEIRCIY L.
56 ¥FEJYZLE AAH WA

57 WZIAANAEE ...
5.8 __main__ o tjst EH3 117

50 FAES .
EXP

6.1 At& W3

6.2 o}E

6.3 xZzjo|w g

64 olslo|= EHA

6.5 AFAF A4k}

66 e} i

10

6.7 O] F AR AL L
6.8 AIZE AL L
6.9 Ol HIE AXL L e
6.10 HIIL . L L
6.11 =] A4HBoolean OPErations)t it e e e e e e e e e
6.12 WY A e
6.13 Z 7 E 3 A (Conditional eXpressions) v v v v i e e e e e
6.14 ZFCHLambdas)
6.15 FHA B-Z(Expression lists) o o e e
6.16 ZEES 3= oA
6.17 AR AL L e
o4~ (Simple statements)

7.1 BT B
0 o
T3 aSSEIE T o e e e e e e e e e e e e e e
Td PASS T o e e e e
TS5 del am o i e e
TO TebULNI AT v v v o v e e e e e e e e e e e e
TT yieldam o v v e e e e e e e e e e e e e e e e
T8 radise T . e e e s
TO break I8 o v o e e e e e
TI0 CONLANUE - « v v v o e e e e e e e e e e
TA1 DEZEE(Import) T o ot e e e e e e e e e
T2 global o5 . o o e e
713 nonlocal S5 . . s,
7.14 The typestatement i i e e e e e e e e e e e e e
H SR (Compound statements)

T R I
8.2 While T . v vt e e e e e e e e e
8.3 O AT o e e
B LTy AT . e
8.5 WAL S L s
8.6 Thematchstatementt i i it e e e e e e e e e e e e e
8.7 T AL e
8.8 N ALY e
8.9 FIZEL L
8.10 Type parameter lists Lo e e e e e e e e
49 225

0.1 GASFIFO| M ZZ T |
0.2 T A B
03 WBE U3 . e
94 EFA AT
SEEREE

go13)

About this documentation

B.1 Contributors to the Python documentation
A AL} gho] Al A

Cl 2ZEYY GAL . e
Cc2 JJrO] 4‘4 off BHAGAGAFESZ] 3ol & kA . ..
C3 ZTFdHaxzZEI oot glo] Al S0l . .. e
A2k

101
101
101
102
102
102
104
104
104
107
107
107

109
110
110
110
111
114
115
123
126
127
129

133
133
133
134
134

135

153

171
171

173
173
174
177

193

195

o
=T

The Python Language Reference, & 2|A 3.13.1

o
M

°l A2 AHAE Aoy T “F A 70 H = (core semantics)” & A H g oy Hasir et A &3t
A A H 2 Tt %’8 oA Blojd uZE, W g, R85 7IdE2 library-index ol 715 o
&l olojol o gk 1u] 3 A1 A ol 4 7] = tutorial-index o] A Al ZH Ut CC++ Z2 2 HE Y=
T NS A A 7t 2 A3 U th: extending-index &= o] A B R ES Aot Yol gt & 1€ S

éﬂr ™3}, c-api-index 2 C/C++ ZZ 18] W o] A Al &5 = A E Jﬂ o) AE L AA|BHA 7|4 T}

Contents

The Python Language Reference, & 2|A 3.13.1

2 Contents

CHAPTER 1

e

ol gl HAL A= ol Z2 I Ao & AUtk AASAE FEE St JA st
7h5 8 3 A Eehel 3 8 sk LA v, B ofF) B4 o)9)e] BE Zol §4 FARTE Aol
AR) o] AElo] F7 A9 EAF o) BAE % T 2 ol =S BEA T, S Ao R 7bsA
AN UL 2HF o7, vhek ot o] 3P ol A gHal o] wAIREe 2 sfo] WS ThA] A 52| AL 5,
ofnt o2 XS WA oF T Aol : A Bl ThE ol MEE Ao B AUk M,
of gt o] stol Mo AREStAL QL Aoj o] E4 G ol th gt 23k F Z ol thafl T g8 sta Aok AY
F43) oM FS 2 5 AUk £ o Y431 oS I Aok, ofnkE ol Re] A7e
AReEs Hol FHUT— 287 o 22 /A B AY)
FxEA) YT B T AR AT Yt AL ARG FHAL 94D Qo1 2L Aoje] e
A= F o2 Ao g AT 4 Utk Wl (e] A AAEE A 7FL Ql7]+= sHA '
CPython & 71 A 2] AL¥) & sholdl 230l 3, 229 S8 4 EL w2 A3 7127k Aok
TFdo] F7H Al FS WxstL = BFE 59 2ZFUTE 24, H2E S5 HS T =EY
ZHRoves Ae BA 2 AP
5E sholdl TR B WP £F RE S| nhekgUth o] 252 library-index o 7] %5 o] g%tk
Aol oo FEE vt Ao s AAE B RE UWF EEs2 02 dgH Yt
1.1 CHeH ASE
ol =7 92 AHgE = shol Td ol EABI) & AW EHT FAAE A Sl TS
7E oAy it FASo] AP
T2 FAEL:
CPython

Azo] 7% k3 14 & B 3 Qs C2 AT shold FAYY L Aoje] 2L /)5S BE

A7l A A= SF T
Jython

Python implemented in Java. This implementation can be used as a scripting language for Java applications,
or can be used to create applications using the Java class libraries. It is also often used to create tests for Java
libraries. More information can be found at the Jython website.

Python for NET
o] +8-& A A| £+ CPython 7 ¥ & AH&-3HA] BF, vl U A] = (managed) .NET 5§ Z 213 o] 31 NET
gho]l B & 2] & A&y o} Bryan Lloyd 7} W& Sl U thth. t] AbA| g A B = Python for NET & 3| o]
A o A Alg-H Yt

https://www.jython.org/
https://pythonnet.github.io/
https://pythonnet.github.io/

The Python Language Reference, & 2|A 3.13.1

IronPython
An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that generates
IL, and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the original creator
of Jython. For more information, see the IronPython website.

PyPy
An implementation of Python written completely in Python. It supports several advanced features not found
in other implementations like stackless support and a Just in Time compiler. One of the goals of the project is
to encourage experimentation with the language itself by making it easier to modify the interpreter (since it is
written in Python). Additional information is available on the PyPy project” s home page.

ZF 2L o] A A AHE L doje} 22Xz g2 W o g glojUALL, & o] A F A] of| A
G L e e S AUEL £ AGUD ol 2ol AE Fol THol ho) 01 A< tf dolo}
st A7) i e T+ R AZHE BAE F22 287 A5 UTh

1.2 27|%

The descriptions of lexical analysis and syntax use a modified Backus—Naur form (BNF) grammar notation. This
uses the following style of definition:

name = lc_letter (lc_letter | "_")*

lc_letter = ar..."z"

o] 1c_letter 2 Al 23}, ¢l 7%4— _]—1/]— 0] Ao] 1c_letter Y=o FJuz=
o} ¥ 1c_letter & 'a’ Abol 9] FAF st Yt (AR o] fFER L o
oA Hol= = o] & °1]EHJ 2 QJyrtt)

($ 3ol T3k name)JJr ==]ﬂ@‘%‘?‘r- A ZE (1) = Tt
7]B’°ﬂﬂ A7 7H ‘7%3 A4k Y th HE (7)) & ol o= 5 0] A=k A
R L e R A

2 74
VLR

N
rlo
=}
5
0]

4 LR
M g 3
o =% ot
Elpw
k| Ulﬂl 0
Nv
O, ot
o 2

it}

"

£
(o3

ofo nE o L
0, 0

o

2 g

o S

rr o

Mo

mggﬁ

= K m&ﬂ

12) 4
}01.

Mo
Y
e
e
rlo
R=IY)
tlo of
=
I-ﬂi
_V}i
_|93
M 0,
L
g
oH
Jn‘,
rlo XY
il
rlu

LUV U7 Ty e/
Er{mi& émﬂ{; 23
N?EE\Q eAh 2
a0 o Tl g i
o= Wi
foh = > 7
N3y ot
lo T
Y rﬂﬁ T
;;—{Nm\l =
e 8
i = —
_gm!jf S
yo, 1o = l‘lo
rlr-{nflr
4
NN rlo
I—_;N 2
-
Ni
fru
i) =
N rel
; il
ol
b
L 30,
zo 0
ol -
1o i
rlr
N
il
o
X
fu
=)
4
fu

Moo fo fLfo ot Doft T+ rfr
v :
o,

o
>
2
Ao
3‘:
e
i
o
ok
rlr
,
S
>
ofo
il

Ny
iv)
e
>|4',
_04

L
i 3o
oy
AW
kv)
£
o
o
1o

ol DA e gl
4] (Lexical Analysis)”) of| 4] AF-&

lo
=
ruEl:L

ﬂ 1o

e

19

Lot
4T o

X,

N

N
2 e

Sodmo > T © T Loy £ X Ol
o
ot

o
hiA
L
= r{m

4 Chapter 1. 72

https://ironpython.net/
https://pypy.org/
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

CHAPTER 2

L
ot
M
1%

gtol W ZFZ T ;L 5bA (parser) o & Ut A EL
olUl& E 2 (token) £2) 2EH Ut o] Foll A& o]F) 477}
ARyt

Sole T2 Y HAES $UDE TEGOE Puth 24 7YY AL
1927 ARGS UTF-8IU T A2 3-8 PEP 3120 of LU Th 22 32
+= syntaxError 7} @AYo}

2.1 & S X (Line structure)

stol AW =2 I ;WL o] 7|9 =2] & <l = (logical lines) EF g Ut}

211 =250l &

=g] A9 £ ZLNEWLINE EZ20 g T3FFLUTH o] 323d7 9= o)A (& So] BIEA]
—E—X(}—g}\]—o‘l) E;(ol-g_l;;q;ao] 57]—_,] AAE 7],iz‘|j—é; %4}\%14{;], _1.;3]790] zo A A]71]/]__3_}\];9'
&1 % 2 line joining) #2101 T2k st} o] Ako] £ 212 Q) % (physical lines) 5= 748 1o},

212 S2|®Q =

E2Z 2 2 L U= A RAE ZUEsE BEAE AIF2Yd UL a2 g Expdol= &
NES XEEFEFTEANA2E EFAEE = 5T - ASCILF (7H6“E—Z}) E A= YA,
ASCII A]& 2 CR LF(7] 2] A 2] 8 t}Sof 2= 73 E2xhE A} 231= Q5% 3, ASCII CR(7] 2] #] g &
S ARl A A i EA] §. o] FEIES S THE A Gl E‘:s}ﬂ] AHEE 5 g5y Th
dEY L2 X g EEH A Y BAE AR IS EMD}.

gol S WZT wl=, 22 FE FAL S WA & T8 FAH £ C AP (ASCIILFE A 6HE \n
AR Eo] FEFYTHS 8314 Fhol A APIZ A5 of oF ?ME}

21.3 =AM

FAL FAE gH ol T A = ;A TAHH = Al F E2] 4 QA &9 oA EEUth A4
A= A 2o FaA F2 oA, AL =8AA & TEAFULE 4L o] AU

https://peps.python.org/pep-3120/

The Python Language Reference, & 2|A 3.13.1

2.1.4 Q3L M

shol 23 FE] A A ALE WA Foll 9 F4 0] A7 coding[=:)\s* ((-\w. 1) T i A= @,
S A And Ao ANH L. o A7 A A WA 1EE LA HE 5] A o) B8
ARFUT Q1Y AAL Z AR ol T2 Lpelof Fuich. vHoF T vl Zolehd, A WAl & A FAw
glojoF gtk Alxg Aol A Fele T AU shibe

[# —*— coding: <encoding-name> —*-

old] GNU Emacs| A & ol A= Yt} o2 st

[# vim: fileencoding=<encoding-name>

ol d] Bram Moolenaar 2] VIM ol A] ¢l 41 & 1]},

If no encoding declaration is found, the default encoding is UTF-8. If the implicit or explicit encoding of a file is
UTF-8, an initial UTF-8 byte-order mark (b’ xefxbbxbf”) is ignored rather than being a syntax error.

If an encoding is declared, the encoding name must be recognized by Python (see standard-encodings). The encoding
is used for all lexical analysis, including string literals, comments and identifiers.

N

=

£ o149 BYHY FL o 2N BAN)E AEHA =AU FE ARV S AF Utk BIAd
Fo] $AE el ol T4 Ak obd o oAl EXFE ErhE, o & W £47
AAD A=, B B 94 F FAYUT AF Eol:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

m[n
2
B
K
X9,
e 1=
i

SN e 2 FA 2TE S syt 9 SN E TS AF9sHA XE U g A=
A ElHE S Al E ol EZE AYEHA ZIUT (5, £AE FlHE 0|99 ojH EEE o &7
AlE ARGl A Eoll Uro] 7152 & lauth). 222 BB E vhell e o e A7 el A A5
Fa 099 ol T AL £l ol XE Yt

21.6 SAHe = 28

25(0), &S (]),%%EZ({})7}*P%Q%E§%@.‘%Eﬂ*l‘31015 ozl 7He] EAd 22 U= &
AsUthAE =

month_names = ['Januari', 'Februari', 'Maart', # These are the

'April', 'Mei', 'Juni', # Dutch names

'Juli', 'Augustus', 'September', # for the months

'Oktober', 'November', 'December'] # of the year
BAHOR ool E FEL FHL 2P 5 YHUTE oo Xt BEY Bofnrle FadA G5y
o). F2kel] ¥l Z o] =o17}5g14;}_ EAAo 2 & AFsE £ E 7ol NEWLINE E 0] gh5o] %] %]
AsUTth FAIFOR oo 252 4T HEX d AL EAANE 58T 5 =t (o E Hep,
o] BFv FA ol x3E 5 glsUth

217 HI &

25| o] 2, B, E«ﬂ (formfeed) oF F+AIREC 2 LA H =24 A &2 FAH Ut (5 NEWLINE E Z©]
ghEo] A A kU Th) HE 2. Aol 9 s £ £5 ol vl £9] 4127} REPL 7 o] we} gebal 4
m*wqﬁémﬂﬁwa ol AL, 83 W 2(F FUol 2R gE 2) S thE A £

AT

6 Chapter 2. 01§ 24

The Python Language Reference, & 2|A 3.13.1

2.1.8 E0{M 7|

=4 2 AY Dol 2= T (LT] 29 W) S B ol 2L ANSE Hl ASH 1L, o]
OAl 2459 Fes 28s= v AHEA gth

Fe (DB LEEOR) 1-8749] Ao Ax WEH Ly, NFE F9 F Avo] s F2 57189
W57t HEE RE U (U2 ASEE PR BReE AQUTh) R WA] 2w 22} ool
e s 3We St Ee soi27E 2T U So27E o SUAE AHRSIA o2 A B A<
2 HA F sUTh A iAo S| o] Fullo] ST E AT
s sho] Wt 25l o] 28 o] 2 A9, o] B A} 25 o] 2ol S ek ol uel chE Al 54D
-/F— 9,12?& TabError & ?:_1,9_7,:}1/]1’/]-
FEA-ZNE TSI fro] AHg UNIX o] 2] 9] S Z oA AR 7|5 o] 525k A df o, shvte] 31
oA £ 22715 o 3 o] 25 4o] 25 A2 AW A™o] opdUrth thE SHEFE0A =
Ao Soiz7] #Eol Ao e & Athe A= Fol s oF T
£ 3= 24 29 Agol & 5 A5tk $A AP Eoj27] $2 AR A L FAFY T 5 0] A
97 B dol Fuolt o] gt A9t A A e ARE F + dvUtt 01, 2502 £7H0
o7 27549 4 A5 UTh.
A&5H 29 ST &L, 289 ARSI A, T 22 WY & 2 INDENTF DEDENT EE&2 e+
o] AHEE Ytk
s}e) 3 £ 9)7] Aol 0311hE 8ol Yy chpush); o] FL ThA A (pop) Do) QU Tk 2 8le
S ghe g 2de ohol A 92 ek w vk SR 4 el 0l 29 Ao A 2o S
27] SFo] 289 g o] i gt Wl g Uk 2rhE o} e A% Aojubx] Uk o Arkd

T ghe 28 91 SFLbe] INDENT & 25 vhguth o Athd o] gh2 ~Eof gl gt 3 shifo] opnt
itk o FETH2 RE 28] ZEE 7l (pop), 7 Wl 314> 7HF2] DEDENT E22 w5y th 514 2]
ol A, 8ol dobgles 02tk 2 319} 742 W DEDENT & 25 vhgyth

7)ol (EdAHT A BtE) SntaA] o027 d spold = 27| Y5 Uth

def perm(l) :
Compute the list of all permutations of 1
if len(l) <= 1:
return [1]
r = []
for i in range(len(l)):
s = 1[:1] + 1[1i+1:]
p = perm(s)
for x in p:
r.append (1[i:1+1] + x)
return r

O o€ o8] 7HA] &7 ol¥ & HoiFyh

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = 1[:1] + 1[1+1:]
p = perm(1l[:i] + 1[i+1:]) # error: unexpected indent

for x in p:
r.append (1[i:1+1] + x)
return r # error: inconsistent dedent

(R, 4 A AL o el A7 AT ek, @A) vhA o o 2] e o) £41717F 44 G T — return
= 9] Boj27)7k 2 del gk g3t AATA)

2.1. & P X(Line structure) 7

The Python Language Reference, & 2|A 3.13.1

21.9 EZ Al0|2] 344
=g F ol 2o S Ex1d g EEL AL F T,

sl Aol & *%AHD}% ZEEd e 4
gk (& 50, ab & s} EZo)A T ab = F e B

22 CIE E2=

NEWLINE, INDENT, DEDENT &= ¥ 52, 23 22 539 EZE9] A3t} 4 ﬁaﬂx}(idennﬁer),
719 & (keyword), 2 ©] & (literal), & 22} (operator), -5 Z]-(delimiter) (SFof A /“'31 Z £33 0]99)FW
TAES EZo] oA EEE R 9SS g UL R 7 Qﬁoﬂ/“] eEZO=E QS O

o, shite] B2 SutE 3 7he ek g A o) 2 OM EAdE 1AEE AL ° ,_j FaBlan

2.3 AHXIQ} 7| E

A2} (0] F (name) ©] 2}l E Futh & tha3 22 03] o & 7|sg Uth

sholdoll A Al ALe] BHe fUTE EE BEA UAX-31 o 7]9hS Tt of 7] o] sl& o] 71 ule
W82 ofefoll A Aoyt & o AAISH W82 PEP 3131 of| A 25 5~ g5t

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers include the uppercase and lowercase
letters A through z, the underscore _ and, except for the first character, the digits 0 through 9. Python 3.0 introduced

additional characters from outside the ASCII range (see PEP 3131). For these characters, the classification uses the
version of the Unicode Character Database as included in the unicodedata module.

A 2= o] o] Algke] glal, Al o] 2 (case) = i H U th

Momp

identifier = xid_start xid_continue*

id_start = <all characters in general categories Lu, L1, Lt, Lm, Lo, N1, the underscore,
id_continue = <all characters in id_start, plus characters in the categories Mn, Mc, Nd, Pc
xid_start = <all characters in id _start whose NFKC normalization is in "id_start xid_cont

xid_continue
AellA A U= e e Z=E2] ovE o] F5Uth
o Lu - uppercase letters
o LI - lowercase letters
o Lt - titlecase letters
o Lm - modifier letters
o Lo - other letters
o NI - letter numbers
e Mn - nonspacing marks
e Mc - spacing combining marks
e Nd - decimal numbers
e Pc - connector punctuations
o Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility
o Other_ID_ Continue - B} ZF7}A
BE A 2= 3hA] ol o8 NFKC A 513} @Al o2 | he 11, A8 #ko] v] il+= NFKC 9] 7]Rk-& F U th

A non-normative HTML file listing all valid identifier characters for Unicode 15.1.0 can be found at https://www.
unicode.org/Public/15.1.0/ucd/DerivedCoreProperties.txt

8 Chapter 2. 01§ 24

<all characters in id_continue whose NFKC normalization is in "id_continue*">

https://peps.python.org/pep-3131/
https://peps.python.org/pep-3131/
https://www.unicode.org/Public/15.1.0/ucd/PropList.txt
https://www.unicode.org/Public/15.1.0/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/15.1.0/ucd/DerivedCoreProperties.txt

The Python Language Reference, & 2|A 3.13.1

231 7|} E

ThS APEAHE L of oFof, E= Qloje] A9, 2 ALSH I, ANAA A A2 D 5 G5 U T o]
pdy
=

2ol
o] Gt A AFE 27 A-g of o Fulth

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try

as def from nonlocal while
assert del global not with
async elif if or yield

2.3.2 Soft Keywords
Added in version 3.10.

Some identifiers are only reserved under specific contexts. These are known as soft keywords. The identifiers match,
case, type and _ can syntactically act as keywords in certain contexts, but this distinction is done at the parser level,
not when tokenizing.

As soft keywords, their use in the grammar is possible while still preserving compatibility with existing code that
uses these names as identifier names.

match, case, and _ are used in the mat ch statement. type is used in the t ype statement.

A 3.120] A ¥ 7 : type is now a soft keyword.

2.3.3 Alixio| ofl o} H
I W) ofH BRe] AWAEe SHE
We 24 ddor pEEUTh

*

1o
=)
N
30
xf>
°
v
o
4z
3
o
>
e
B
il
rlo
>
i)
i)
M
1o

Not imported by from module import *.

In a case pattern within a match statement, _ is a soft keyword that denotes a wildcard.

Separately, the interactive interpreter makes the result of the last evaluation available in the variable _. (It is
stored in the builtins module, alongside built-in functions like print.)

Elsewhere, _ is a regular identifier. It is often used to name “special” items, but it is not special to Python
itself.

= A 3} (internationalization) &} F# 5] o] AL&E Ut} o] g o] B A= gettext

= o
=3 o
559 BAE 2 Zs}*uu

TAI2" 39 o8, ulFA 4 02 | (dunde)” o] Fol 2k A AH U o] o] EEL IEzeE
91 FA(EE 2ol ue S FFrith o A itk B BB A2 o] §L 55 w4 =
OJEE AAT 1 919 2ol A =g Utk stol A vl MAC| AL o e ATl A s
ol Futh ol BUel A, YA KO R BAR B0 AL Aok« o] 29 BE
g2, A1 glol £4F 4 A&y,

2.3. AHXIQ} [9

The Python Language Reference, & 2|A 3.13.1

29 4 A WA privaie)” o 22 219 oI F FEE AN AT,

24 2|E™

2l e (litera) & R WA IS xS AT 27 AU

anil}

241 EXILE0 HIOIEY 2EE

AL P EHE 2t 22 o9 Aoz Veg Utk

stringliteral = [stringprefix] (shortstring | longstring)
stringprefix = "r" | "u" | "R" | "U" | "f£" | "F"

["fxr"™ | "Fr" | "fR" | "FR" | "rf" | "rr" | "Rf" | "RE"
shortstring = "'" shortstringitem* "'" | '"' shortstringitem* '"'
longstring = "rr'" Jongstringitem* "'''"™ | '"""' Jongstringitem* '"""!'
shortstringitem = shortstringchar | stringescapeseq
longstringitem = longstringchar | stringescapeseq
shortstringchar = <any source character except "\" or newline or the quote>
longstringchar = <any source character except "\">
stringescapeseq = "\" <any source character>
bytesliteral u= bytesprefix (shortbytes | longbytes)
bytesprefix = "b" | "B" | "br" | "Br" | "bR" | "BR" | "rb" | "rB" | "Rb" | "RB"
shortbytes = "'" shortbhytesitem* "'" | '"' shortbytesitem* '"'
longbytes = "rrrw Jongbytesitem* "'''"™ | '""M"' Jongbytesitem* '"""!
shortbytesitem = shortbyteschar | bytesescapeseq
longbytesitem = longbyteschar | bytesescapeseq
shortbyteschar = <any ASCII character except "\" or newline or the quote>
longbyteschar = <any ASCII character except "\">
bytesescapeseqg = "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix or bytesprefix and the rest of the literal. The source character set is defined by the encoding
declaration; it is UTF-8 if no encoding declaration is given in the source file; see section Q15 & A1 <1,

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes ("). They can
also be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted
strings). The backslash (\) character is used to give special meaning to otherwise ordinary characters like n, which
means ‘newline’ when escaped (\n). It can also be used to escape characters that otherwise have a special meaning,
such as newline, backslash itself, or the quote character. See escape sequences below for examples.

uho] = % (bytes) B/ E1 DS B4 o' U 15 B o] BT ser B9 AABA A bytes Bo] A2
22 WU ©8 ASCH BAS W 298 4 gUth FEghe] 12850 A AL 22 gEL e
ojxF el P o AT ofof Frch.

Both string and bytes literals may optionally be prefixed with a letter 'r' or 'R'; such constructs are called raw

string literals and raw bytes literals respectively and treat backslashes as literal characters. As a result, in raw string
literals, '\U"' and '\u"' escapes are not treated specially.

Added in version 3.3: g H}o|E B|EE O] 'br' & 22 u|7t = rrb T F7HE IS5 Y
SFol# 2.x 91 3x o A Ao A AT TEES] 74 04E Beestas] 98 ol dol e E fuzE
ZHE (u'value') o] THA] = Y45 5 U th ZpA & 4 B = PEP 414 of] U5 U th

b r E TR = EXE HEHYEdL2 =Y —E—X]-oé 2] B & (formatted string literal)) U TF; f-strings <
RAR e e ARE 5 A% H%dﬂ o U b A S Sz o Teia 2
EARS oA, L ol £ 2lE L 2 Fh,

1;

10 Chapter 2. 01§ 24

https://peps.python.org/pep-0414/

The Python Language Reference, & 2|A 3.13.1

B TSI D AR A, A A1) ol A G D 1A 2 AN LA BETL A A e (2230
Fch). 19l 3 2ol Al 9] o] 2A 017 B A ke w7} e A, HE 8 FRAU L)
(‘TR 25D 2 A Dol AL T ALY S,)

Escape sequences

e R RO B 94 o4, BAAH o
oNA ASE AT U5 FH O S AHUTh A 4H =

O[AZO|= A[EA 2|0O| 72| Atet

\<newline> o A | EA7F EAH YUSE (1)

\\ o Al (\)

\ LS E ()

X WS E ()

\a ASCII ¥ (BEL)

\b ASCII ¥ 2~ 3] o] 2~ (BS)

\f ASCII Z 3 & (FF)

\n ASCII 2}¢1 3] = (LF)

\r ASCII 7§]] 8] & (CR)

\t ASCII 7} £ = (TAB)

\v ASCII M 2 &} (VT)

\ooo 8R4 000 B A AH E A} 2,4)

\xhh 1634 hh 2 A A A+ (3.4)

A 2l Bol AR A A H & o] AaA o] L AP A E:
O|AFO|= A|RA 2|O| S9| AtEt
\N{name} FUZE bl o] el o] 20| A name o]t o] F B F £2 (5)
\UxxxX 16-bit 16 A= xxxx 2 A FH &2} (6)
\UXXXXXXXX 32-bit 16315‘,: XXXXXXXX T Z] A= T,_—X} @)
ol A

(1) A backslash can be added at the end of a line to ignore the newline:

>>> 'This string will not include \
. backslashes or newline characters.'
'This string will not include backslashes or newline characters.'

The same result can be achieved using triple-quoted strings, or parentheses and string literal concatenation.
2) £F CuA7HA =,) Al 7|2 8047} 3 -8-H Ut
WA 3.119) 4] ¥ A Octal escapes with value larger than 00377 produce a DeprecationWarning.

H A 3.129] A ¥ 7 : Octal escapes with value larger than 00377 produce a SyntaxWarning. In a future
Python version they will be eventually a SyntaxError.

(B) B CE=2E, 4835 F M9 16047} Al &= o] oF gt}

@) vl =9 PH BN, 16159824 o] AAlo| = A4 A gk vho| =& EAGUh FAY
Qe el AL, o ol AAlol = A4 ghe] FUTE BA4E FA Y

(5) M7 33004 WA: B! A fo] 275 ALt
(6) B3] 472) 16442 Ba 2 Tk,
() ol gos BE FUDEES AnYT 4 A5vth B85 8709 160471 B

! https://www.unicode.org/Public/15.1.0/ucd/NameAliases. txt

it

24. 2lE{™ 11

https://www.unicode.org/Public/15.1.0/ucd/NameAliases.txt

The Python Language Reference, & 2|A 3.13.1

EE OO B9, JAH A g BE o Adolz AAE B WAH A e AE= ¥l gy,
=, 9 227 A3l A AUtk (o] AL UM AT) 2B} Y5ueh ol sAlol= A AL} AR
2w, H5 Al H FRY LES A7 AN 5 dEUTh) £AD AH DAY A4H =
oA o] = A B 27, who 2 BB Bol A& A5 4] 9 R Qo FE A

WA 3.69 A ¥ 7 : Unrecognized escape sequences produce a DeprecationWarning.

¥ A 3.129] A] ¥ 7 : Unrecognized escape sequences produce a SyntaxWarning. In a future Python version they
will be eventually a SyntaxError.
oA A, mZis o SR O]iﬂlolé HUoh stARE S S ej A 7F Ao A H Utk
AE Fol, rr\rr & EULE 4G e, T A9 EA7 Bl AUtk o SN ST,
rr\r e A EAD dE g UL (2 EADRA B o] LA B S Gt
S WS WA, R el o SeNR Y S PETH SN o) 2EmERE
oA o]z A]7]7] W—‘E?QH"/H. o A utE Fo L= MY EA= & 2Tl 0}1/13} 2] 8 E o
EgE = e 2Ahz QA5 ol el of g,

24.2 EX1H 2|E{E 0|0{£0]7]

olg 7ol Exdo|yulolEY lHE S (Fog BEedA) o] 7] Q- Uhsles Aol FEE
I olu)E o]oj &9l A} Ut ZH glE Fo) /‘ii "/} w2 E ARSI E FUth 24, "hello”
'world' = "helloworld" 9} % ?Jl%lﬂr o] 7158 71 EAE S Ao A of g Ei s 283 9
SHAE S5 U 4 AL %HU}D}?—’Q S Bo]L A= 73Ut ¢ & Eof:

re.compile (" [A-Za—-z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

o] 715l ¥ oA BH I YA, Aot Al HA TR Fsl oF Tk Ad A ke
TAE 22 oo 2ol 7] A= + AAE ARGSof Futh 2lH E o]oj 2ol 7|7t S AR T E
TS EE LR AT (L EADD S T2 E EADE ool Bol L AZA A5 I, EN EA
JHEL 5 24D A H D} o]0} 5 9ol 5213 oF T
2.4.3 f-strings
Added in version 3.6.
29 2219 2] € ¥ (formatted string literal) == f~E 2D (fstring) < '£' U 'Fr 2 <Fof] 201 2214 2
Gt ol EAE AP AEE U4 At FHE) PEAE FAAUT e BA
g o] A dzhe ZA 29 £ g H g2 AA Tl Alate = @AY YT
oJrAolE Afat A #AY e AAY U RIH Ik (FAA & FAL e ol Th
Uad ol 499 gL ooz e #0L wEh
f_string "= (literal_char | "{{" | "}}" | replacement_field)*
replacement_field = "{" f _expression ["="] ["!" conversion] [":" format_spec] "}"
f_expression = (conditional_expression | "*" or_expr)
("," conditional_expression | "," "*" or _expr)* [","]

| yield expression
conversion = msM | mpw | omgw
format_spec n= (literal_char | replacement_field)*

literal_char = <any code point except "{", "}" or NULL>
FZT 2 RRe AN JHIAY AFH e, o1F 52T (¢ vy Zh S Ehe By

= i
A ZE = Ak oo YUt st o= F2F (0 = X3 DEES A FA =], stol W BFH A o] H
WEUTH F7 284 H2E Y ghs BT ﬁ*lﬁ}r‘i%‘ﬁ (A Aol F&duch, A4 Fol 55

A
“rENE A TrE 4 s S =PE O 2 AESHE, W Rk (conversion) BETFF WS 5 QlF U T
329 2] 7 A} (format specifier) = W& A 4], T2 ' CEAAFUL AR FEsdE=5ET
2 Zdyth

12 Chapter 2. 01§ 24

The Python Language Reference, & 2|A 3.13.1

Expressions in formatted string literals are treated like regular Python expressions surrounded by parentheses, with
a few exceptions. An empty expression is not allowed, and both 1ambda and assignment expressions : = must be
surrounded by explicit parentheses. Each expression is evaluated in the context where the formatted string literal
appears, in order from left to right. Replacement expressions can contain newlines in both single-quoted and triple-
quoted f-strings and they can contain comments. Everything that comes after a # inside a replacement field is a
comment (even closing braces and quotes). In that case, replacement fields must be closed in a different line.

>>> f"abc{a # This is a comment }"

+ 3}"

'abech!

A 3.7 A vtol W 3.7 o] Ao, FA RA R A3 ol #AG H B FAA A avait T
A3} asyne for g e A2 WAL FESHA AgFUTH

¥ A 3.129]| A ¥4 7 : Prior to Python 3.12, comments were not allowed inside f-string replacement fields.

T 7S =0l AlFEHY, Eoll= A HAE, = I P Flo] 2P UTE A= FTES (¢

BT, o Fe) Lo A8 B g fAGuck R Aes e 2 AL o @

E?ﬂ 219 repr () 2 AlFFUTEH 2Wo] A=W HJ 1 o] AAFZR] k=S 7| EFHoZ 1329
o A8

Added in version 3.8: & 7| '="'.

H 2} (conversion) o] 2] g = H 4, £ 49 A3} 2ujg ﬂoﬂ A U W3 s = AFof str() &

SE5, ir Lrepr() S 3E0HA, 'la' Lascii() E &L

The result is then formatted using the format () protocol. The format specifier is passed to the _ format__ ()

method of the expression or conversion result. An empty string is passed when the format specifier is omitted. The
formatted result is then included in the final value of the whole string.

Top-level format specifiers may include nested replacement fields. These nested fields may include their own con-
version fields and format specifiers, but may not include more deeply nested replacement fields. The format specifier
mini-language is the same as that used by the str. format () method.

E9 24D P L ool 2D St QAT AF BEsbole PP 2D S8 gHUTh
A

2 #AY PP g 5

>>> name = "Fred"
>>> f"He said his name is {name "

"He said his name is 'Fred'."

>>> f"He said his name is {repr (name) # repr() is equivalent to !r

"

"He said his name is 'Fred'.
>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal ("12.34567")

>>> f"result: {value:{width}. {precision}}" # nested fields
'result: 12.35"

>>> today = datetime (year=2017, month=1, day=27)

>>> f"{today:%B %d, $Y}" # using date format specifier

'January 27, 2017'

>>> f"{today=:%B %d, %Y}" # using date format specifier and debugging
'today=January 27, 2017'

>>> number = 1024

>>> f"{number:#0x}" # using integer format specifier
'0x400"

>>> foo = "bar"

>>> f"{ foo " # preserves whitespace

" foo = 'bar'"

>>> line = "The mill's closed"

>>> f"{line "
'line = "The mill\'s closed"'

(TH5 sl el Aol A)

24. 2|EE 13

The Python Language Reference, & 2|A 3.13.1

(o] sl o] A ol A AI)

>>> f"{line 20"

"line = The mill's closed "
>>> f"{line 20"

'line = "The mill\'s closed" '

Reusing the outer f-string quoting type inside a replacement field is permitted:

>>> a = dict (x=2)
>>> f"abc {a["x" def"
'abc 2 def'

WA 3.129]| 4] ¥ 7 Prior to Python 3.12, reuse of the same quoting type of the outer f-string inside a replacement
field was not possible.

Backslashes are also allowed in replacement fields and are evaluated the same way as in any other context:

e g = [Tav, T, TeT]

>>> print (f"List a contains:\n{"\n".join(a) }")
List a contains:

a

b

@

B A 3.120)| A ¥ 7 Prior to Python 3.12, backslashes were not permitted inside an f-string replacement field.
y p g 1ep
BB 2T YL B) (docstring) © 2 AL 5 G h B4 0] 48 glelehe v AR UL,

kel

>>> def fool():
f"Not a docstring"

>>> foo. doc_ is None

True

£ A B Y S0l ek A oS PEP 498 2 P23, HAH W AL B AYSE AL
str.format () & A¥H = Zo] L5t}

244 X} 2|E{&H

There are three types of numeric literals: integers, floating-point numbers, and imaginary numbers. There are no
complex literals (complex numbers can be formed by adding a real number and an imaginary number).

ZA el d o] #28 29ekA] b= Aol Fosfof Futh -1 3 2L FE2 4 F AR - T2 E
12 78" 2@84 9T
245 M2 BlEHE

FEHE2 US4 22 0% Bz 2dgYUth

integer = decinteger | bininteger | octinteger | hexinteger
decinteger = nonzerodigit (["_"] digit)* | "O"+ (["_"] "O")*
bininteger = "o" ("b" | "B") (["_"] bindigit)+

octinteger = "o" ("o" | "O") (["_"] octdigit)+

hexinteger = "o" o ("x"™ | "X") (["_"] hexdigit)+

nonzerodigit = marL.LLo"on

digit = "o"..."9"

bindigit = "o" | maiv

octdigit = "or..."7"

hexdigit = digit | "a"..."f" | "A"..."F"

14 Chapter 2. 01§ 24

https://peps.python.org/pep-0498/

The Python Language Reference, & 2|A 3.13.1

of 478 5 A ek B A 2lE 2] dojof A2 glayt

e 2 HAY A g= 24 o 2qH A sy 7FsAS =07 A8 AES FEl Ae
S AEE 4 9% U

Z]
do % S
FUth BE2 A Aol v ox £F -2 4= A A AL (base specifier) Th3-oll L& 5= 31
p3]
z

e ﬂﬂ‘“’éﬂ 04]%%‘?5

7 2147483647 00177 0b100110111

3 79228162514264337593543950336 00377 Oxdeadbeef
100_000_000_000 0b_1110_0101

WA 36004 M elH oA A2 A5 28T FH 2 UES F Yk

2.4.6 Floating-point literals

Floating-point literals are described by the following lexical definitions:

floatnumber = pointfloat | exponentfloat
pointfloat = [digitpart] fraction | digitpart "."
exponentfloat = (digitpart | pointfloat) exponent
digitpart = digit (["_"] digit)*

fraction n= "." digitpart

exponent = ("e™ | "E™) ["+" | "-"] digitpart

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077010 is legal, and
denotes the same number as 77e10. The allowed range of floating-point literals is implementation-dependent. As
in integer literals, underscores are supported for digit grouping.

Some examples of floating-point literals:

[3.14 10. .001 1e100 3.14e-10 0e0 3.14_15_93 J

WA 36004 A Bl EA A5 A5 2T HHor UES s gy

2.4.7 5|4 2|Ej™
A4 B AL 0o} 2L o3 B e AP Uh

imagnumber = (floatnumber | digitpart) ("j" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating-point numbers and have the same restrictions on their range. To create a complex number with a nonzero
real part, add a floating-point number to it, e.g., (3+47j). Some examples of imaginary literals:

[3.14j 10.3 1073 .0017 1e1007 3.14e-103 3.14_15_933
2.5 ALK}

e ge B2 ARt

0 = & e / // % @

<< >> & | ~ = =

< > <= >= == =

2.5. 44X} 15

The Python Language Reference, & 2|A 3.13.1

| 8 @ =
—> += —= * = = //= %=
@= & |= AN= >>= <<= * k=

B 450 35 dHANNE 54T 5 U5
iera) ol 2= 589 117} 9] o). £% kel 5
A Ao TRAR N 5HA Y, FA ATS 5

2 s9gy
TFe 9 Q& ASCI £AES hE £25 A¥2A 588 67 gAY, 134 o o3 24
710l 5] vl g ok

D |

Th29] 9185 & ASCI 2 AHE S shol Aol A ALgH 4| Gh5Lich A 28 At 54 o] 9] 9] ol A
AgH e e 24 g ol gtk

CRR |

%9 oA E A A ASRE e 2 ellipsis
o J—X]— (augmented assignment operator) -2

ofo tlo
fuorlr

16 Chapter 2. 01§ 24

CHAPTER 3

colE =

3.1 A, 2, &

AA| (Objects) = 1}o] A o] ¢ o] ¥ (data) & 5413} 3 2 (abstraction) Y Ut} Tfo]A =2 79 BE ¢ o
Bl AA U A ko] BAE 2P YT (¥ o] ¥ (Von Neumann) & “Z 2 7150 W) 74 7] 55 (stored
program computer)” RS W21, £ 7 FA A FE A AR E TAFYTh)

Every object has an identity, a type and a value. An object’ s identity never changes once it has been created; you

may think of it as the object’ s address in memory. The i s operator compares the identity of two objects; the id ()
function returns an integer representing its identity.

CPython & }A]: CPython 2] 3¢, id(x) & x 7FAZE vlZ o FadYt

AA 2 B2 AR 7 A Ddte ddse FASL (S S0, “2olE 2) 2 F | A Eo] 7H4
T A Fed BE= BAFUT type) e AA Y F (0] A JA AAth S EHF U ofoldlE
Bl ot npd 7k =2, A 0] B (ype) AA HAE A eFFUTE!

ofHl AAEL WAL+ AdF UL TS 1A 5 e AAES 7PA (mutable) ©) k1 Ut 4ot
NS0l R Fof 7hS HAT 5 gle AN ESS B (immutable) o) 2kl Ty h (ZFH A Aol i FEE
AReta = A AEH ol 32 7HH AA 9 gho]l g w AT B 5 JFU o AT A G
St e AAEY Aol i & gleu g ZAH oy A3 E¥olgta gAY UL metx 8842
AUA= U BV S 2 A= s Uth £ o v BEEYth) AR 7HH A (mutability) -2
a7 o o3 AFFUTH A& 59 A BAYE, F2 (tuple) 2 &1 o] A 2, g 4 2] (dictionary) <}

g 2E (list) = 7FH ¢

WA= A3 YA H o2 33 = 2] g5yt o 25 2] @52 wlf (unreachable) 714 X] 5~ 7 (garbage collect)
Huoh 8 o] 7N A £ AE A A 7] AL ofef] Bekst= Z o] sjEg Uttt — of2 FxE = AAE2
FATA] = o] % M A AT H Ao R FTHEH A= FHY 4 A Y YL

CPython =& 4}A)): CPython & A 2 34~ A Ak (reference-counting) W41 -& AL-&3l=10], (A ALg o
2y H oz AZH M A9 A A AA7F F7HE YT o]l o R g RE AAE TR A AH
AR = AT 4= JFUTh AW 8 xRV e /MRAEES FATSYE B syt <34
Z7HRIA] =AY Alofol] #S AR = gc BE TAE F2EH FUTh & FIE2 2 Ao 2 F33
i1, CPython = WA E 4 AdFUTh F27TA AL wf S48 22 vto]d g Al o] A (finalization) =] = Z o]
O] E5hA] HoloF FUTH (LA B LS WA H & FolFojof P,

Note that the use of the implementation’ s tracing or debugging facilities may keep objects alive that would normally
be collectable. Also note that catching an exception with a t ry---except statement may keep objects alive.

‘,
¢
o
L
®

Loj AgtE 27102, o @ F9o] AR Y& WHSHE Aol b5 FuTh AT AE AW o} 7 4% B o]of A
S9ons dudos £ Azl ohdyrh

17

The Python Language Reference, & 2|A 3.13.1

Some objects contain references to “external” resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, usually a close () method. Programs
are strongly recommended to explicitly close such objects. The try--- finally statement and the with statement
provide convenient ways to do this.

ol AA 52 ot AA ol het F=2E 236t 5UTh o] A& WH oY (comainer) 2FiL 5
.o E2 A" ol 19 7 %l—‘%‘?&ﬂﬂ}.ﬂ—‘%
2o easl A oL ke =3 mli, Sof gt AR S| ofoltlElE] B ok g mA Ut 314 B
Z™ oy 7P dis =2 wl & A 7R AAEY ofoldE g Ytk 1A, (F2 z2)
E9 A" o7 7 AR 2o F2E kAl vk, 2 7HA AA 7 A A E E AE ol v ghe WA g Y Th

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object with
the same type and value, while for mutable objects this is not allowed. For example, aftera = 1; b = 1,aand b
may or may not refer to the same object with the value one, depending on the implementation. This is because int
is an immutable type, so the reference to 1 can be reused. This behaviour depends on the implementation used, so
should not be relied upon, but is something to be aware of when making use of object identity tests. However, after
c = [1; d = [1,candd are guaranteed to refer to two different, unique, newly created empty lists. (Note that e
= f = [] assigns the same object to both e and f.)

shefefl sho] o] 4H FEY B=o] dgych (PR wel C U Akt T2 Aol 44 8) T3
BEESS 2719 P2 AT 5 5T stol A vlel WA A § AS] B U T 5 Y ()
Eol, Rels, REHOE AGE A4 WA 55), B2 golnef 8 3 2748 b4l o A7k

ofgfol o= 2 o thst g2 ‘54 o] E] H E (special attribute)” & UG 3= TS 23U
OJAEL T HZT YA S AF3 —Eﬂ AHHA 9l AFS-E 913 Zlo] ofd Utk A= doz HAE

B2 S gug A o 3 2 She) AR 2T o) A7
B3l }2 g o2 74A Aol A gte) RS dele ol AL B UTh 98 Sol, N Her A7E
HE22 G o urE gyt =8 g 7.]Z1?:]1/]q_

3.2.2 Notimplemented

This type has a single value. There is a single object with this value. This object is accessed through the built-in
name Not Implemented. Numeric methods and rich comparison methods should return this value if they do not
implement the operation for the operands provided. (The interpreter will then try the reflected operation, or some
other fallback, depending on the operator.) It should not be evaluated in a boolean context.

t] 2FA| 3 W] 82 implementing-the-arithmetic-operations = 331 38}4] Al 2

W7 3.99 4 ¥ 7 : Evaluating Not Tmplemented in a boolean context is deprecated. While it currently evaluates
as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of Python.

3.2.3 Ellipsis
o] §& shite] ghure YTk o g e Sl AMA EAGUH o] AR AHD .. o1}

N
WdE °o]F Ellipsis & &8 HdUTh =22 Y yth

18 Chapter 3. C|O|E{ 2 &

The Python Language Reference, & 2|A 3.13.1

3.2.4 numbers.Number

2.
1RSS5 2|5 Pol 93] TS o)A\, H¢ A4 g Ak §oEol At BEUTh 274 A
=BT 2 W ghol TEol AT A Waps) gt shol el £AE B elsl S84 £ A
WA BAT o] Ainh SA W AR 52 B A S B0 YU

The string representations of the numeric classes, computed by __repr () and __str (), have the following
properties:

. Zela AR A2D o) Q) 24 e A AN E AL FER 2 2 EH D JUT
. JhsarE, B 1028 Ao

O

o 253 o Bd 0 AL B, AF 02 EAIH A FFYTh
. 0= Al2j8taL, 3 02 A A syt

2
e

Python distinguishes between integers, floating-point numbers, and complex numbers:

numbers.Integral

AT L 4849 A% AT 2ol Foh 2252 Vel

0 #x
A4 B FAL 257 £FD AZES vha Aabo] 713 o) v] g S 4L AT A8 AIY
ok

T 7] BR A5 A%

A4 (int)
oA (7 W R 3t A < XAE EA YT Al Z E (shift) 9} vpA 3
(mask) Altol BRI uj= o] HH o] 7HAH I, S5 €359 29 E4(2° s complement) 2 3
Hed, R uEZdE o2 Fo3] 44 A 22 a5 FUtt

o] 21 =gt AT & YEH Y Uth False 9 True F AW £ & AA YU £ F 2 int
3] o] x}gaoa (subtype) ©] T, T2 AF3Foll A 7+7] 03+ 2 & T2 o) o 9] = 2 G2 H3E =
Af-dl, Z7] FAE "ralse" & "True” 7} HFEH YT}

numbers .Real (float)

These represent machine-level double precision floating-point numbers. You are at the mercy of the underlying
machine architecture (and C or Java implementation) for the accepted range and handling of overflow. Python does
not support single-precision floating-point numbers; the savings in processor and memory usage that are usually the
reason for using these are dwarfed by the overhead of using objects in Python, so there is no reason to complicate the
language with two kinds of floating-point numbers.

numbers .Complex (complex)

These represent complex numbers as a pair of machine-level double precision floating-point numbers. The same
caveats apply as for floating-point numbers. The real and imaginary parts of a complex number z can be retrieved
through the read-only attributes z . real and z . imag.

3.25 AEAE

These represent finite ordered sets indexed by non-negative numbers. The built-in function len () returns the number
of items of a sequence. When the length of a sequence is n, the index set contains the numbers O, 1, ---, n-1. Item
i of sequence a is selected by a [i]. Some sequences, including built-in sequences, interpret negative subscripts by
adding the sequence length. For example, a [-2] equals a [n-2], the second to last item of sequence a with length
n.

3.2. EFSE A

oy

19

The Python Language Reference, & 2|A 3.13.1

Sequences also support slicing: a [1: 5] selects all items with index k such that i <= k < j. When used as an expression,
a slice is a sequence of the same type. The comment above about negative indexes also applies to negative slice
positions.

oI A A A 2) THA B 830 29 ohol) (extended ling)” = AR T ok

ali:j:k] = x = 1 + n*k,n>=0,i<=x<j 5 UZIE=TLEIF 5

A@re 2o npe TRE UL

rulm
rz
)
o
i
Ky

EH AEA

EH AL PO AAl= A Ao Fol= WAFE syt (ke AA 2o FxE 2ok,

I AR 7P = QA MA3E F ASU A, B AAZ R Y FxE e AA 0 A AA =

HwEE s sdoh)

O 22 gL el AR YUT

£ 214 (Strings)
A string is a sequence of values that represent Unicode code points. All the code points in the range U+0000 -
U+10FFFF can be represented in a string. Python doesn’ t have a char type; instead, every code point in the
string is represented as a string object with length 1. The built-in function ord () converts a code point from
its string form to an integer in the range 0 — 10FFFF; chr () converts an integer in the range 0 — 10FFFF
to the corresponding length 1 string object. str.encode () can be used to convert a str to bytes using the
given text encoding, and bytes.decode () can be used to achieve the opposite.

5+ (Tuples)

R 22 99 ol A AAYULE F A o4 FBo 2 TYH L RELS Fuiz Hed
FAAY 2202 WE 4 ek U] FBo 2 T FE (4 F singleton) & E &4 of
BUE RN UE FAGUNEEE AL £ Yons N POREFEL UEA
GHUTH. 1l FES &9 W BEE BE 5 YgUth

vl o] E & (Bytes)

A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range 0 <= x
< 256. Bytes literals (like b'abc ') and the built-in bytes () constructor can be used to create bytes objects.
Also, bytes objects can be decoded to strings via the decode () method.

7HH A EA

7 A DAL BrEo] R o W A E 4= 94U Th A H 3 9 A (subscription) I & 8ho] A& o) 9] B3} ge
(AHAD) 2o ez AHgE 5 sy
0 In

The collections and array module provide additional examples of mutable sequence types.

A F A WA M AE Aol syt
2] A E (Lists)

PAE 5L lelo] s AR UTh BlaEL Bulz HelH AL Y2 ol Yol A
B 45Ut (Bo] 00119 PJAEE err] AEo] 2o B guyTh)

vlo] E ujj & (Byte Arrays)
34 A BEel Ayt
o2k A (L2l A A B 75 ST 2) S A9l 82, vho] = i &S 2 o] E < (bytes) A 9}
e Qe o) 28} 7 5& Al TPt

3.2.6 gt HE(Set types)

AES TEH e EH AAEY A gla F3s AT vepE YT AT 5= gls Yot shA T
o H o] E —/1\—9} "HZ} o len() 2 AF e = FEEY NFE SHFYSE I T drkFQl
25 = w2 W4 7 Ab(fast membership testing), A| 2o A SEH FE A A,] (1ntersect10n), A
?S'(umon), Z}%] &} (difference), T & X} 5] & (symmetric difference) 3 242 3 & A 4HS A A= A Yy th

20 Chapter 3. C|O|E{ 2 &

The Python Language Reference, & 2|A 3.13.1

Ao ALTolt GAUE 719 2L 2w FHo| AFFUTh 1 G A9 54 vl B
Qutk 92 o] A8 H Tk Aol Folhof Ptk weF T S a7} ek vl v (o] & Sol, 1 7 1.0),
3% shuber Al Sol2 4 dEUTh
A e W R E Fol AUk

A3 (Sets)
o] AE2 7hA ATE eI YT WA set 0 AAAZ THE 5 93, add () E2 HAZES AHS
AA ol -3 4 dFUTh
£ A3l (Frozen sets)
oA=L EW ATS YU WR frozenset) A= v .
(frozenset) & B o] 3L s A] 7}5 stB 2, b J 3o A4y, 92 7|2 A2 &

3.2.7 0§Z (Mappings)

o|AEL 01_4_/] ol A A& o 7 olEl Al
notation) a[k] = Wl a oA kx 2 Qdd A 3l
HSJel L acr 249 40 B 55 e 0 F B e

Fiok
@A & el W o Yol ek

o
gl £3E FERES) A5 E B

El M L1 2|(Dictionaries)

A AEL A9 Aol AEx AFo 7 AUAH & ﬂgﬂ%}}@ﬂ°4ﬂﬁW4ﬂ AT S
e AS2 g2k, 9y 1 99 7hAd FollA ofoldlE B 7} of e} gtez HluE = ASE Y
Utk gAvele £8H 9 7do], 79 HAgte]l 5ol A A AW AL 2L PO FAFES
23k 97 WUt 72 AGH & A GO AP S ula] B Ak A Ho] gk
whof = S2b7h 2oka vl 2 E W (o] S Sol, 1 9 1.0), B O 22 gAY e FBL AT A8
S dsyTh

gAvels 4 €4S FAZUH, 717 D‘/#LMOH TAHor F7Hd THE} e eHE AR
—‘E?ME} 71%— 71% AANE S = AFHA FAT 715 AAYT7 A A sHE o] - A& #A

Dictionaries are mutable; they can be created by the { } notation (see section & 4 1 2] T] A~ 9]).

37 BE dom.ndbm I} dom.gnu = F712]]33 S AlF 3=, collections BE JA| up@71A 9

Utk

WA 3TAA A gAY = 3.6 0] AL 1o
3.690 A, A =AM 7F A= AR 2 A

A& FA A 2 k% Yt CPython
T3 A2 Ao g e ST

fr 2
e

3.2.8 Z2{=(Callable types)

28 2
JAEL P4 TE AMEE AH F1)o] 488 5 It FEYYh

AF R Mo Bt
2~
P,

A8 R B AR

AA = g A T8l HeodFq U (3 Aol Al Fa). o F4 v
(formal parameter) &=} 2+

+ ¢ A} (argument) F5F 02 T E5 o of It

rlo
)
>
o
ok
B[
o
e
ut
o

w
N
3]
Eh]
og
-}
ol

21

The Python Language Reference, & 2|A 3.13.1

Special read-only attributes

OEZ|RE o|o|

A reference to the dictionary that holds the
function’ s global variables — the global namespace of
the module in which the function was defined.

None or a tuple of cells that contain bindings for the
names specified in the co_freevars attribute of the
function’ s code object.

Al AA = cell_contents O] EZHEE 71X
gUth A9 ke 942 2w ohel g A
3 HlE AT 5 Ut

function._ _globals_

function._ closure_

o R

Special writable attributes

Most of these attributes check the type of the assigned value:

OEZ|RE ofo|

The function’ s documentation string, or None if un-
function._ _doc_ available.
The function’ s name. See also: _ name_
function._ _name_ e A T ES,
The function’s qualified name. See also:
__qgqualname__ attributes.
Added in version 3.3.
57 4 E RE o] F Et (Y D) None

function._ qualname_

function.__module_

A tuple containing default parameter values for those
parameters that have defaults, or None if no parameters
have a default value.

The code object representing the compiled function
function._ code_ body.

function.__defaults_

The namespace supporting arbitrary function attributes.

function.__diect__ See also: _ dict_ attributes.

A dictionary containing annotations of parameters.
The keys of the dictionary are the parameter names, and
"return' for the return annotation, if provided. See
also: annotations-howto.

A dictionary containing defaults for keyword-only
parameters.

function.__annotations

function._ _kwdefaults_

A tuple containing the type parameters of a generic
function.
Added in version 3.12.

function.__type_params___

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to attach
metadata to functions. Regular attribute dot-notation is used to get and set such attributes.

CPython =& A} Al: CPython’ s current implementation only supports function attributes on user-defined functions.
Function attributes on built-in functions may be supported in the future.

29 Chapter 3. C|O|E{ 2 &

The Python Language Reference, & 2|A 3.13.1

Additional information about a function’ s definition can be retrieved from its code object (accessible via the
___code___ attribute).

OIAEIA 0| A E (Instance methods)

A2rBAHAEE ZFYN, FHAANEA} BE ZHE AR (7 AFAF AL g4)S 23tk

Special read-only attributes:

Refers to the class instance object to which the method
method._ self is bound

Refers to the original function object
method._ func_

The method’ s documentation (same as method.
__func__.__doc__). A stringif the original func-
tion had a docstring, else None.

The name of the method (same as method.

__func_.__n amef)

method._ _doc_

method.___name_

The name of the module the method was defined in, or

method.__module None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of that
class), if that attribute is a user-defined function object or a classmethod object.

When an instance method object is created by retrieving a user-defined function object from a class via one of its
instances, its ___self _ attribute is the instance, and the method object is said to be bound. The new method’ s
__func__ attribute is the original function object.

When an instance method object is created by retrieving a classmethod object from a class or instance, its
__self _ attribute is the class itself, and its __ func___ attribute is the function object underlying the class method.

When an instance method object is called, the underlying function (__func__) is called, inserting the class instance
(__self__)in front of the argument list. For instance, when C is a class which contains a definition for a function
£ (), and x is an instance of C, calling x. £ (1) is equivalent to calling C. f (x, 1).

When an instance method object is derived from a classmethod object, the “class instance” stored in ___self
will actually be the class itself, so that calling either x. £ (1) or C. £ (1) is equivalent to calling f (C, 1) where £ is
the underlying function.

It is important to note that user-defined functions which are attributes of a class instance are not converted to bound
methods; this only happens when the function is an attribute of the class.

AM|L42|0|E{ €r4=(Generator functions)

A function or method which uses the yield statement (see section yield <) is called a generator function. Such a
function, when called, always returns an iterator object which can be used to execute the body of the function: calling
the iterator’ s iterator._ next__ () method will cause the function to execute until it provides a value using the
vyield statement. When the function executes a ret urn statement or falls off the end, a StopIteration exception
is raised and the iterator will have reached the end of the set of values to be returned.

TR El §t4(Coroutine functions)
% ef 2

s E AR A Ao = Ty A EE ZFHE S (coroutine function) 21l 51U th o] H
GrE SRt e ANE BAGUH cie RHAL W, e i ih S} cyre o B8
AFRE = E Yttt 78 A A (Coroutine Objects) A AL 23 Al

w
N
3]
Eh]
og
-}
ol

23

The Python Language Reference, & 2|A 3.13.1

H|=S 7| M|LH2l|0|E] &4 (Asynchronous generator functions)

A function or method which is defined using async der and which uses the yield statement is called a asyn-
chronous generator function. Such a function, when called, returns an asynchronous iterator object which can be
used in an async for statement to execute the body of the function.

Calling the asynchronous iterator’ s aiterator._ _anext__ method will return an awaitable which when awaited
will execute until it provides a value using the yield expression. When the function executes an empty return
statement or falls off the end, a StopAsyncIteration exception is raised and the asynchronous iterator will have
reached the end of the set of values to be yielded.

LY &} €t4(Built-in functions)

A built-in function object is a wrapper around a C function. Examples of built-in functions are len () and math.
sin () (mathisastandard built-in module). The number and type of the arguments are determined by the C function.
Special read-only attributes:

e _ doc__ isthe function’ s documentation string, or None if unavailable. See function.__doc

e _ name__is the function’ s name. See function.__name .
e _ self__ issettoNone (but see the next item).

e _ module__is the name of the module the function was defined in or None if unavailable. See function.

__module__.

LHZ 0| M E (Built-in methods)

This is really a different disguise of a built-in function, this time containing an object passed to the C function as an
implicit extra argument. An example of a built-in method is alist.append (), assuming alist is a list object. In
this case, the special read-only attribute __self is set to the object denoted by alist. (The attribute has the same
semantics as it does with ot her instance methods.)

ZejA (Classes)

Classes are callable. These objects normally act as factories for new instances of themselves, but variations are
possible for class types that override __new__ (). The arguments of the call are passed to __new__ () and, in the
typical case, to __init__ () to initialize the new instance.

ZzlA 2IAEI A (Class Instances)

Instances of arbitrary classes can be made callable by defininga _ cal1l_ () method in their class.

3.2.9 2 =(Modules)

Modules are a basic organizational unit of Python code, and are created by the import system as invoked either by the
import statement, or by calling functions such as importlib.import_module () and built-in __import__ ().
A module object has a namespace implemented by a dictionary object (this is the dictionary referenced by the
__globals__ attribute of functions defined in the module). Attribute references are translated to lookups in this
dictionary, e.g., m. x is equivalent tom.__dict__ ["x"]. A module object does not contain the code object used to
initialize the module (since it isn’ t needed once the initialization is done).

AEIRE UYL REY o]F X MU E BAFUT A& S0, mx = 1 S m.__dict_ ["x"]

P oy

Import-related attributes on module objects

Module objects have the following attributes that relate to the import system. When a module is created using the
machinery associated with the import system, these attributes are filled in based on the module’ s spec, before the
loader executes and loads the module.

To create a module dynamically rather than using the import system, it’ s recommended to use importlib.util.
module_from_spec (), which will set the various import-controlled attributes to appropriate values. It’ s also

o4 Chapter 3. C|O|E{ 2 &

The Python Language Reference, & 2|A 3.13.1

possible to use the types.ModuleType constructor to create modules directly, but this technique is more error-
prone, as most attributes must be manually set on the module object after it has been created when using this approach.

'Yy
a

With the exception of __name__, it is strongly recommended that you rely on __spec__ and its attributes
instead of any of the other individual attributes listed in this subsection. Note that updating an attribute on
__spec__ will not update the corresponding attribute on the module itself:

24

>>> import typing

>>> typing. name , typing.__spec__.name
('typing', 'typing')

>>> typing.__spec__.name = 'spelling'

>>> typing. name , typing.__ _spec__ .name
('"typing', 'spelling')

>>> typing.__name__ = 'keyboard_smashing'
>>> typing. name , typing.__spec__.name

('keyboard_smashing', 'spelling')

module._ _name_

The name used to uniquely identify the module in the import system. For a directly executed module, this will
besetto"_ main_ ".

This attribute must be set to the fully qualified name of the module. It is expected to match the value of
module.___spec__.name.

module.__spec_

A record of the module’ s import-system-related state.
Set to the module spec that was used when importing the module. See Module specs for more details.

Added in version 3.4.

module.__package_

The package a module belongs to.

If the module is top-level (that is, not a part of any specific package) then the attribute should be set to "'
(the empty string). Otherwise, it should be set to the name of the module’ s package (which can be equal to
module.__name_ _ if the module itself is a package). See PEP 366 for further details.

This attribute is used instead of __name___ to calculate explicit relative imports for main modules. It defaults to
None for modules created dynamically using the t ypes.ModuleType constructor; use importlib.util.
module_from_spec () instead to ensure the attribute is set to a str.

It is strongly recommended that you use module._spec_ .parent instead of module._ package_ .
__package__ is now only used as a fallback if __spec__.parent is not set, and this fallback path is dep-
recated.

WA 3.4 A ¥ 7: This attribute now defaults to None for modules created dynamically using the types .
ModuleType constructor. Previously the attribute was optional.

W A 3.69] 4] W A: The value of _ package__ is expected to be the same as __spec__.parent.
p
__package__ is now only used as a fallback during import resolution if __spec__.parent is not defined.

H A 31090 A4 ¥ : ImportWarning is raised if an import resolution falls back to __package___ instead
of __spec__ .parent.

WA 3.129] A ¥ 7 : Raise DeprecationWarning instead of ImportWarning when falling back to
__package___ during import resolution.

Deprecated since version 3.13, will be removed in version 3.15: _ package__ will cease to be set or taken
into consideration by the import system or standard library.

3]
Eh]
og
-}
ol

25

https://peps.python.org/pep-0366/

The Python Language Reference, & 2|A 3.13.1

module.__ loader_

The loader object that the import machinery used to load the module.

This attribute is mostly useful for introspection, but can be used for additional loader-specific functionality, for
example getting data associated with a loader.

__loader__ defaults to None for modules created dynamically using the t ypes.ModuleType constructor;
use importlib.util.module_from_spec () instead to ensure the attribute is set to a loader object.

It is strongly recommended that you use module.__spec_ .loader instead of module._ loader_ .

W A 3.4 A ¥ 73: This attribute now defaults to None for modules created dynamically using the types.
ModuleType constructor. Previously the attribute was optional.

Deprecated since version 3.12, will be removed in version 3.16: Setting _ loader__ on a module while
failing to set __spec__.loader is deprecated. In Python 3.16, _ loader__ will cease to be set or taken
into consideration by the import system or the standard library.

module.__path_

A (possibly empty) sequence of strings enumerating the locations where the package’ s submodules will be
found. Non-package modules should not have a __path___ attribute. See __path___ attributes on modules for
more details.

It is strongly recommended that you use module._ spec_ .submodule_search_ locations instead of
module.__path__ .

module._ file_

module.__cached_

__file_ and _ cached__ are both optional attributes that may or may not be set. Both attributes should
be a st r when they are available.

__file__ indicates the pathname of the file from which the module was loaded (if loaded from a file), or the
pathname of the shared library file for extension modules loaded dynamically from a shared library. It might
be missing for certain types of modules, such as C modules that are statically linked into the interpreter, and
the import system may opt to leave it unset if it has no semantic meaning (for example, a module loaded from
a database).

If __file_ issetthenthe _cached__ attribute might also be set, which is the path to any compiled version
of the code (for example, a byte-compiled file). The file does not need to exist to set this attribute; the path
can simply point to where the compiled file would exist (see PEP 3147).

Note that __cached__ may be set even if __file_ is not set. However, that scenario is quite atypical.
Ultimately, the loader is what makes use of the module spec provided by the finder (from which __ file_
and __cached__ are derived). So if a loader can load from a cached module but otherwise does not load
from a file, that atypical scenario may be appropriate.

It is strongly recommended that you use module.__spec__.cached instead of module.__cached_ .

Deprecated since version 3.13, will be removed in version 3.15: Setting __cached__ on a module while
failing to set __spec__ .cached is deprecated. In Python 3.15, _ cached__ will cease to be set or taken
into consideration by the import system or standard library.

Other writable attributes on module objects
As well as the import-related attributes listed above, module objects also have the following writable attributes:

module._ _doc_

The module’ s documentation string, or None if unavailable. See also: __doc__ attributes.

module._ _annotations_

A dictionary containing variable annotations collected during module body execution. For best practices on
working with __annotations__, please see annotations-howto.

26 Chapter 3. C|O|E{ 2 &

https://peps.python.org/pep-3147/

The Python Language Reference, & 2|A 3.13.1

Module dictionaries
Module objects also have the following special read-only attribute:

module._ _dict_

The module’ s namespace as a dictionary object. Uniquely among the attributes listed here, __dict__ cannot
be accessed as a global variable from within a module; it can only be accessed as an attribute on module objects.

CPython 73 7} Al|: CPython ©] 2§ Y™ 2| & vl-%- W wzol, 9 el ol ek F=x7} ot

A, 55 0) oo S ol el 55 Tt El e 994 ek o) A% oo, oA 2
EAS A gAY el 2 A o] 8ok £ 4L BES [Fololof ATk

3.2.10 A2 X} M| ZeA (Custom classes)

Custom class types are typically created by class definitions (see section = 2 2~ % 2]). A class has a namespace
implemented by a dictionary object. Class attribute references are translated to lookups in this dictionary, e.g., C. x
is translated to C.__dict__ ["x"] (although there are a number of hooks which allow for other means of locating
attributes). When the attribute name is not found there, the attribute search continues in the base classes. This search
of the base classes uses the C3 method resolution order which behaves correctly even in the presence of ‘diamond’
inheritance structures where there are multiple inheritance paths leading back to a common ancestor. Additional
details on the C3 MRO used by Python can be found at python_2.3_mro.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into an instance
method object whose __selr attribute is C. When it would yield a staticmethod object, it is transformed
into the object wrapped by the static method object. See section T] 2~ = 5 E] ¢ 5} 7] for another way in which
attributes retrieved from a class may differ from those actually contained inits __dict___

Z 2 oEFHE YL S22 g9 E BAT B ojHl FA9r By Zg2o g E A
g A= syt

Fx AR W2 A2HAE SHFEE (I E EAAL) 2 ¢ IAFUTER & B 2).
32. EEE AS 27

The Python Language Reference, & 2|A 3.13.1

Special attributes

o|o|

type.__name_

type.__qualname_

type.__module_

type.__dict_

type.__bases_

doc

type.__ _

type.__annotations_

type.__type_params_

type._ _static_attributes_

type._ firstlineno_

type.__mro___

The class’ sname. Seealso: __name_ attributes.
The class’ s qualified name. See also: __qualname_
attributes.

The name of the module in which the class was defined.

A mapping proxy providing a read-only view of

the class’ s namespace. See also: _ dict
attributes.
A tuple containing the class’s bases. In most

cases, for a class defined as class X (A, B, C), X.
__bases__ will be exactly equal to (A, B, C).

The class’ s documentation string, or None if undefined.
Not inherited by subclasses.

A dictionary containing variable annotations col-
lected during class body execution. For best prac-
tices on working with __annotations__, please see
annotations-howto.

=24

Accessing the __annotations__ attribute of a
class object directly may yield incorrect results
in the presence of metaclasses. In addition, the
attribute may not exist for some classes. Use
inspect.get_annotations () to retrieve class
annotations safely.

A tuple containing the type parameters of a generic
class.

Added in version 3.12.

A tuple containing names of attributes of this class
which are assigned through self.x from any function
in its body.

Added in version 3.13.

The line number of the first line of the class defini-
tion, including decorators. Setting the _ module_
attribute removes the _ firstlineno__ item from
the type’ s dictionary.

Added in version 3.13.

The tuple of classes that are considered when looking
for base classes during method resolution.

Special methods

In addition to the special attributes described above, all Python classes also have the following two methods available:

type.mro ()

This method can be overridden by a metaclass to customize the method resolution order for its instances. It is

28

Chapter 3. C|O|E{ 2 &

The Python Language Reference, & 2|A 3.13.1

called at class instantiation, and its result is stored in ___mro__

type.__subclasses__ ()

Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those
references still alive. The list is in definition order. Example:

>>> class A: pass

>>> class B(A): pass
>>> A._ subclasses__ ()
[<class 'B'>]

3.2.11 ZciA 2IAE A (Class instances)

A class instance is created by calling a class object (see above). A class instance has a namespace implemented as a
dictionary which is the first place in which attribute references are searched. When an attribute is not found there, and
the instance’ s class has an attribute by that name, the search continues with the class attributes. If a class attribute
is found that is a user-defined function object, it is transformed into an instance method object whose __self
attribute is the instance. Static method and class method objects are also transformed; see above under “Classes” .
See section U] 2~ = 7 E| 531 3} 7] for another way in which attributes of a class retrieved via its instances may differ
from the objects actually stored in the class’ s __ dict__ . If no class attribute is found, and the object’ s class has a
__getattr__ () method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’ s dictionary, never a class’ s dictionary. If the class has a
__setattr__ () or __delattr__ () method, this is called instead of updating the instance dictionary directly.

o S o ZEY N =S HAW, Feh s AAAL S, AAL, MBI AT 5 gk 5
AE ol 55 RS HAAL.

Special attributes

object._ _class_
The class to which a class instance belongs.
object.__dict_

A dictionary or other mapping object used to store an object’ s (writable) attributes. Not all instances have a
__dict__ attribute; see the section on __slots__ for more details.

3.2.12 1/0 Z4A| (m}Y A2t E 224X UASL|CH
3 A = dd 5dS Jepd Ut 59 AR E e oqfﬂ 7HA S o] 5 Ut open() WA

34, os.popen (), OS-fdopen() a4 7—’,‘ A makefile () MM E (L8], otuts 3 REEo] A&
3tE U2 Sy HAEE).

sys.stdin, sys.stdout, sys.stderr = A EHZFHY & YH, &9, 98] 2EFJoZ 27|34 7Y
AANEYUTH BF IAE RER Fe]X] io.Text I0Base %“—*J%ﬂéfﬂl o5 FoE AEfF o)~ E

sy,

3.2.13 LHE & (Internal types)

A ZelE 7t YR A 02 A S BE FEL Aol A =B HUTH Az e w oA
59 Aol AT 5 QAT AAFL A5 A 71A AFFUTh

wr

A= vtol EE 7 31 Y 9 (byte-compiled) 23 7}5 3 3to] W ZEF YEtW =], 1 vio] E

T BEUn 7= AR 9} g4 AA o= xpo] 7 dFUth g4 7%‘21]“ o A *ﬂ(globaIS)

(B4 }7&4 EE)E HA Ao Z ZFZ3T YA, T E AR = o]Hl E (context) & ZFT QA 5
; 7] & 0147‘501 Eias 7—‘4%4]01] AZE] AW TZE AA o= YA FuUth (A3 At

*Jﬂh #ES U7l dEduh. 5 AA ek 22, ZE AR = EWola 7hH AA Sl thd

F2E AP ZFSHPAeER) 20 9,11] A5yt

-111
o I

32. E=E AS 29

The Python Language Reference, & 2|A 3.13.1

Special read-only attributes

codeobject.

codeobject.

codeobject.

codeobject

codeobject.

codeobject

codeobject.

codeobject

codeobject.

codeobject

codeobject.

codeobject

codeobject.

codeobject

codeobject.

codeobject

codeobject.

co_name

co_qualname

co_argcount

.co_posonlyargcount

co_kwonlyargcount

.co_nlocals

CO_varnames

.co_cellvars

co_freevars

.co_code

co_consts

.CO_names

co_filename

.co_firstlineno

co_lnotab

.co_stacksize

co_flags

The function name

The fully qualified function name
Added in version 3.11.

The total number of positional parameters (including
positional-only parameters and parameters with default
values) that the function has

The number of positional-only parameters (including
arguments with default values) that the function has

The number of keyword-only parameters (including ar-
guments with default values) that the function has

The number of local variables used by the function (in-
cluding parameters)

A tuple containing the names of the local variables in
the function (starting with the parameter names)

A tuple containing the names of local variables that
are referenced from at least one nested scope inside the
function

A tuple containing the names of free (closure) vari-
ables that a nested scope references in an outer scope.
See also function. closure .

Note: references to global and builtin names are not in-
cluded.

A string representing the sequence of byfecode instruc-
tions in the function

A tuple containing the literals used by the byrecode in
the function

A tuple containing the names used by the byfecode in
the function

The name of the file from which the code was compiled

The line number of the first line of the function

A string encoding the mapping from bytecode offsets to
line numbers. For details, see the source code of the
interpreter.

W A 3.12 5 E] 3| X] = : This attribute of code objects
is deprecated, and may be removed in Python 3.15.
The required stack size of the code object

An integer encoding a number of flags for the inter-
preter.

30

Chapter 3. C|O|E{ 2 &

The Python Language Reference, & 2|A 3.13.1

The following flag bits are defined for co_flags: bit 0x04 is set if the function uses the *arguments syntax to
accept an arbitrary number of positional arguments; bit 0x08 is set if the function uses the * *keywords syntax to
accept arbitrary keyword arguments; bit 0x20 is set if the function is a generator. See inspect-module-co-flags for
details on the semantics of each flags that might be present.

Future feature declarations (from __ future__ import division) also use bits in co_flags to indicate
whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if the function was compiled
with future division enabled; bits 0x10 and 0x1000 were used in earlier versions of Python.

Other bits in co_ f1ags are reserved for internal use.

If a code object represents a function, the first item in co_consts is the documentation string of the function, or
None if undefined.

Methods on code objects
codeobject.co_positions ()
Returns an iterable over the source code positions of each byrecode instruction in the code object.

The iterator returns tuples containing the (start_line, end_line, start_column, end_column).
The i-th tuple corresponds to the position of the source code that compiled to the i-th code unit. Column
information is O-indexed utf-8 byte offsets on the given source line.

This positional information can be missing. A non-exhaustive lists of cases where this may happen:

o Running the interpreter with -X no_debug_ranges.

» Loading a pyc file compiled while using -X no_debug_ranges.

« Position tuples corresponding to artificial instructions.

 Line and column numbers that can’ t be represented due to implementation specific limitations.
When this occurs, some or all of the tuple elements can be None.

Added in version 3.11.

0 Iz

This feature requires storing column positions in code objects which may result in a small increase of disk
usage of compiled Python files or interpreter memory usage. To avoid storing the extra information and/or
deactivate printing the extra traceback information, the -X no_debug_ranges command line flag or the
PYTHONNODEBUGRANGES environment variable can be used.

codeobject.co_lines ()

Returns an iterator that yields information about successive ranges of bytecodes. Each item yielded is a
(start, end, lineno) tuple:

e start (an int) represents the offset (inclusive) of the start of the byrecode range
» end (an int) represents the offset (exclusive) of the end of the byfecode range

e lineno is an int representing the line number of the byfecode range, or None if the bytecodes in the
given range have no line number

The items yielded will have the following properties:
o The first range yielded will have a start of 0.

e The (start, end) ranges will be non-decreasing and consecutive. That is, for any pair of tuples, the
start of the second will be equal to the end of the first.

» No range will be backwards: end >= start for all triples.

o The last tuple yielded will have end equal to the size of the byfecode.

w
N
3]
Eh]
og
-}
ol

31

The Python Language Reference, & 2|A 3.13.1

Zero-width ranges, where start ==

end, are allowed. Zero-width ranges are used for lines that are present

in the source code, but have been eliminated by the byrecode compiler.

Added in version 3.10.

(el = -

PEP 626 - Precise line numbers for debugging and other tools.
The PEP that introduced the co_1lines () method.

codeobject . replace (**kwargs)

Return a copy of the code object with new values for the specified fields.

Code objects are also supported by the generic function copy . replace ().

Added in version 3.8.

Z 3| 24| (Frame objects)

Frame objects represent execution frames. They may occur in fraceback objects, and are also passed to registered

trace functions.

Special read-only attributes

frame.f_back

frame.f_code

frame.f locals

frame.f_globals

frame.f_builtins

frame.f_ lasti

Points to the previous stack frame (towards the caller),
or None if this is the bottom stack frame

The code object being executed in this frame. Ac-
cessing this attribute raises an auditing event object .
__getattr__ with arguments obj and "f_code™".
The mapping used by the frame to look up local vari-
ables. If the frame refers to an optimized scope, this may
return a write-through proxy object.

WA 3.139 A ¥ 7 : Return a proxy for optimized
scopes.

The dictionary used by the frame to look up global vari-
ables

The dictionary used by the frame to look up built-in (in-
trinsic) names

The “precise instruction” of the frame object (this is an
index into the bytecode string of the code object)

32

Chapter 3. C|O|E{ 2 &

https://peps.python.org/pep-0626/

The Python Language Reference, & 2|A 3.13.1

Special writable attributes

If not None, this is a function called for various events
during code execution (this is used by debuggers). Nor-
mally an event is triggered for each new source line (see
f _trace_lines).

Set this attribute to False to disable triggering a tracing
event for each source line.

frame.f_ trace

frame.f_trace_lines

Set this attribute to True to allow per-opcode events
to be requested. Note that this may lead to undefined
interpreter behaviour if exceptions raised by the trace
function escape to the function being traced.

The current line number of the frame — writing to this
from within a trace function jumps to the given line
(only for the bottom-most frame). A debugger can im-
plement a Jump command (aka Set Next Statement) by
writing to this attribute.

frame.f_trace_opcodes

frame.f_lineno

Frame object methods

z28 9 AA = A WA EE A9 o
frame.clear ()

This method clears all references to local variables held by the frame. Also, if the frame belonged to a generator,
the generator is finalized. This helps break reference cycles involving frame objects (for example when catching
an exception and storing its fraceback for later use).

RuntimeError is raised if the frame is currently executing or suspended.
Added in version 3.4.

H A 3.13 A ¥ 7 Attempting to clear a suspended frame raises Runt imeError (as has always been the
case for executing frames).

Ego|AH ZH|(Traceback objects)

Traceback objects represent the stack trace of an exception. A traceback object is implicitly created when an ex-
ception occurs, and may also be explicitly created by calling t ypes . TracebackType.

WA 3.7 A ¥ 7 : Traceback objects can now be explicitly instantiated from Python code.

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack, at each
unwound level a traceback object is inserted in front of the current traceback. When an exception handler is entered,
the stack trace is made available to the program. (See section try <=-.) It is accessible as the third item of the tuple
returned by sys.exc_info (), and as the _ traceback__ attribute of the caught exception.

When the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard error
stream; if the interpreter is interactive, it is also made available to the user as sys.last_traceback.

For explicitly created tracebacks, it is up to the creator of the traceback to determine how the tb_next attributes
should be linked to form a full stack trace.

Special read-only attributes:

w
N
3]
Eh]
og
-}
ol

33

The Python Language Reference, & 2|A 3.13.1

Points to the execution frame of the current level.
Accessing this attribute raises an auditing event
object._getattr with arguments obj and
"tb_frame".

Gives the line number where the exception occurred

traceback.tb_frame

traceback.tb_lineno

Indicates the “precise instruction” .
traceback.tb_lasti

The line number and last instruction in the traceback may differ from the line number of its frame object if the
exception occurred in a t ry statement with no matching except clause or with a final1y clause.

traceback.tb_next

The special writable attribute tb_next is the next level in the stack trace (towards the frame where the ex-
ception occurred), or None if there is no next level.

B A 3.70]| A ¥ 73 This attribute is now writable

£2}0|A ZHX|(Slice objects)

Slice objects are used to represent slices for _getitem () methods. They are also created by the built-in
slice () function.

E5 97 A& olETRES: start + g (lower bound) Y U T}; stop & ZFEH(upper bound) U T} step
O’\Eﬂﬁﬁﬂ‘%r/} 7y 32 A=FE A7 None YUTE o] | EFREESLS 999 ol E + AFUTh
setolx A= shte] WA =& A Ao

slice.indices (self, length)

o] MlA =& dhuhe] 4 QA A} length E Rrota| Sefol 2 AR 7F A o] length Q1 A Aol A 85 &
o 7 &efo]xof it AR E ALFUE Al Y A4z P FES EHFUTh o2 4
Z} start 2} stop G 28}, step Tm EEFO]| A0 AE lo] E (stride) 4 o] YU th AEE A AL HAE

Hlofu Qg aEe A Ql Lol 20t 22 whE o % Thg A o,

AEHE! HIAM = ZHA|(Static method objects)

Static method objects provide a way of defeating the transformation of function objects to method objects described
above. A static method object is a wrapper around any other object, usually a user-defined method object. When a
static method object is retrieved from a class or a class instance, the object actually returned is the wrapped object,
which is not subject to any further transformation. Static method objects are also callable. Static method objects are
created by the built-in staticmethod () constructor.

EoA HAE 2| (Class method objects)

A class method object, like a static method object, is a wrapper around another object that alters the way in which
that object is retrieved from classes and class instances. The behaviour of class method objects upon such retrieval
is described above, under “instance methods”. Class method objects are created by the built-in classmethod ()
constructor.

33 54 HIME 0185

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or sub-
scripting and slicing) by defining methods with special names. This is Python’ s approach to operator overloading,
allowing classes to define their own behavior with respect to language operators. For instance, if a class defines a
method named __getitem (), and x is an instance of this class, then x [i] is roughly equivalent to type (x) .
__getitem_ (x, 1i). Except where mentioned, attempts to execute an operation raise an exception when no
appropriate method is defined (typically AttributeError or TypeError).

34 Chapter 3. C|O|E{ 2 &

The Python Language Reference, & 2|A 3.13.1

Setting a special method to None indicates that the corresponding operation is not available. For example, if a class
sets __iter__ () to None, the class is not iterable, so calling iter () on its instances will raise a TypeError
(without falling back to __getitem _()).”

HWZES W e s 7388 o, 22 Y3}t Aao Tol 5 37 A A et 2 0]

FaFUh A& Eo], AW AD2E= NI FEES ANE AV 2 Z 5848 5 dF YT AT
seto]2E AU A2 Tol ¢t E 5 A5 UTh (o] " 714 o= W3C 9] Document Object Model 2]
NodeList QE]FH o] A~ T})

3.3.1 7|==0l 3{AE{O}0|A|0|M

object._ _new__ Cls[]
S cs A 2" %‘i%ﬂ%ﬁﬂi_ ‘4‘3} _new_ () & 2HEH HAEJUT (ZZA
N5 erobe W 5 e A+l thelel, 3 WA A BEen S s 2o}
Aggych YA QA2 AA A 28 (Fd2 T2 A8 AUtk __new () 9
W ghe A AA la"E 2 o]0 of U Th (B cls o] A2’).

Typical implementations create a new instance of the class by invoking the superclass’ s new__ () method
using super () .__new__(cls[, ...]) with appropriate arguments and then modifying the newly created
instance as necessary before returning it.

If __new () is invoked during object construction and it returns an instance of cls, then the new instance’
s__init__ () method will be invoked like __init__ (self[, ...1),where selfis the new instance and
the remaining arguments are the same as were passed to the object constructor.

WOF new () Fhcs S AABIAE B8z Gom A AABAY inir () = 3TEHA G
Ut
_new () =32 W (int, str, tuple T} 2-2) Y] A B ZFEf AT AAEA YL AAE upo] =&
F S S ol SR U Th E3 ALg A 9 v Fe 2ol A Se s L AL ko] 23]
A9l A5 -89 U o)

object.__init__(self[,...])
(new__() ol g&f) A2 A7} 5 o, 3pAI B S22 A 2 F7] Aol & Ut
AAEL Fels YA EHO2 ALH AS YU Bepulo] 2 Fe2t inie () WMEE
23 QrkE, 4B s inic () WAL, AThE, Qa0 A o s et A
Sh o] SHtE A 27)3HE & g4 3] s ﬂ%ﬂ YA H 0B SEfFojof T} A& £
super () .__init_ ([args...]).
ANE WHEvd _new () & __init. () 7t YBHAL YO BE (_new () & VEI,
init () = AL A2EHUo|Z2F YT, init () 7}None 0|99 S EHFH A A
Z4ol| TypeError 5 42 ZYth

object.__del__(self)

A~ A7 5 7] A TG Urth Foldgtol A = (RAFsHA) 313 Apeta U h
ghek W o)A ZEATE el () WIANEE 23 QIThd, 4] %f’ﬂi _del_ () MM ExE, H9
o] JThd, A2R 2o A B o] A~ FER AL A A o F2-S A Gt A AHAI8H7] 918, A A=

Wlo] 2 Zel 20 M= 555 oF ATk

(AAFA = FAWH) __del () MAEE dABR A A2 FRE WHHFOZN AAEA
o B & AAAZE = dFUth oA E7—‘1‘5<ﬂ R& ozt YT F&s AA 7} 93 2 of
_del__ () o] FHAE SEE A& T wet thFUth @A CPython +38-2 22 st ATt 5 &

ek

It is not guaranteed that __del_ () methods are called for objects that still exist when the interpreter exits.
weakref.finalize provides a straightforward way to register a cleanup function to be called when an object
is garbage collected.

2The hash (), _iter__ (), _reversed__ (), __contains__ (), __class_getitem _ () and __fspath__ () methods have
special handling for this. Others will still raise a TypeError, but may do so by relying on the behavior that None is not callable.

33. S+ 0HAMEOIEE 35

The Python Language Reference, & 2|A 3.13.1

0 Iz
del x & A x._del () & ZEHA Ut — ol = A2 x o F= 315 (reference
count) & Sttt A 7141, Fofl e A2 x o Fx AF7t0ol B W T2F U

CPython -3 4}A: It is possible for a reference cycle to prevent the reference count of an object from going
to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage collector. A common
cause of reference cycles is when an exception has been caught in a local variable. The frame’ s locals then
reference the exception, which references its own traceback, which references the locals of all frames caught
in the traceback.

_del__ () o] EEHE LA AZ W Eo, o] Ao AY Fol TAYAIT] £ o9& FAIH L,
Ao sys.stderr 2 A7 28 H YL 53

e _del_ ()2 QHZIHE FET W AFD 5 JFUth AHAH SR, FM| 28 of d=
A ML (T2 2F 23H 7} o) v AHAE A

B o) g0l pe) WE ARSE A AA 02 A AN R A AABE W

—E‘L

AUk o AL, Wok 1 A ART) the THE BEA EASHA Frhd, der ()
A=t E8AE g, dE=E 2 EEe Golgl =% 3 s o £g0) @ 4
Ut

object.__repr_ (self)

repr () W2 B0l 93] B3 o] 249 8 44 <l officia)” £AY EAE AN Tk 7}

Solthd, o] AL A2 (A AT FA ol Fold W) ke Ze AAE ME TE F e 20k sfojyd
:anﬂaioqo]:aqq 7bFeshAl gdobd, <. 22 Qe dY. > FEHY EAEE S FCF
Futh vhE g2 HEEA] fXPQOMOP FuUrth e FA AT ser () RO _repr () W
B, repr ()2 L 22 2T v P A A A (informal)” AL £H o] 272 ol

A8 5 gt
This is typically used for debugging, so it is important that the representation is information-rich and unam-
biguous. A default implementation is provided by the object class itself.

object.__str__ (self)

Called by str (object), the default format__ () implementation, and the built-in function print (), to
compute the “informal” or nicely printable string representation of an object. The return value must be a str
object.

ol MMEE __ () °] kg ol RFA S 2 E Aol 7 A etk HollA
object.__repr__ () (T HEUT: o Besta 2 Bl AH8E 4 dLUTh

WAE object o] YH 7| FHL object._ repr. () & TE&THU T}

object._ bytes__(self)

Called by bytes to compute a byte-string representation of an object. This should return a bytes object. The
object class itself does not provide this method.

Chapter 3. C|O|E{ 2 &

The Python Language Reference, & 2|A 3.13.1

object.__ format__ (self, format_spec)

format () W& &<, ol shd, =9 Fx19 2] el & (formatted string literals)] Al A2} str. format ()
Uﬂ/ﬂEOﬂ ol 2= o], AAe “x WA FAE S TS ol YU T format_spec o]x]' 875 +=
TR SHAES 2= BXLG Y YT format_spec QAALS] S| AL format_ () S FA 3= & o
U BUat T Y WFREL bz A As AL, N T S4B E

g gent
AHg- 3t
#F 20" ol th 3l A = formatspec £ 18t Utk

HESE ghe WkE A B o] of of P th

The default implementation by the object class should be given an empty format_spec string. It delegates to
__str__ ().

WA 34004 WA object o _format WA= A, Wl FAFF o] obd A7 HEEH W
TypeError & WA Al 7 U Th

B A 3. 70| 4] H7: o]A| object._ format_ (x, '') = format (str(x), '') 7}FoFY e} str(x)

sk 553

object.__lt__ (self, other)

object.__le_ (self, other)

object.__eq _ (self, other)

object._ ne__ (self, other)

object._ gt__ (self, other)

object.__ge_ (self, other)
o) AE2 A9 “FH 3 v (rich comparison)” HA=dYch A4z 7159 uﬂ/\il: o]% 7vo] &
71%1‘/}%3’%7"‘1/]1‘/} x<ny et (y) 2EEEFYUL x<=y Ex.__le (y) S EEFYt}
x==y%x. —eq_(y) & aqE}'yX!=YT_‘X-7 7(y)%§%§.b}r/},x>yux _gt__(y) &
S¥Uh o=y = gef(y) £ SE3Yh

A rich comparison method may return the singleton Not Implemented if it does not implement the operation
for a given pair of arguments. By convention, False and True are returned for a successful comparison.
However, these methods can return any value, so if the comparison operator is used in a Boolean context (e.g.,
in the condition of an i £ statement), Python will call boo1 () on the value to determine if the result is true or
false.

By default, object implements __eg () by using is, returning NotImplemented in the case of a
false comparison: True if x is y else NotImplemented. For __ne (), by default it delegates to
__eqg__ () and inverts the result unless it is Not Implemented. There are no other implied relationships
among the comparison operators or default implementations; for example, the truth of (x<y or x==y) does
not imply x<=y. To automatically generate ordering operations from a single root operation, see functools.
total_ordering().

By default, the object class provides implementations consistent with % ¥] 7: equality compares according
to object identity, and order comparisons raise TypeError. Each default method may generate these results
directly, but may also return Not Implemented.

Mg W QRS A Qs gAY E 712 A E 5 g
B3 W hA F2B G0l nash () o B Eeko] Lhguth

There are no swapped-argument versions of these methods (to be used when the left argument does not support
the operation but the right argument does); rather, __ 1t () and __ gt__ () are each other’ s reflection,

le_ ()and__ _ge () areeach other’ sreflection,and __eq () and__ ne () are their own reflection.
If the operands are of different types, and the right operand’ s type is a direct or indirect subclass of the left
operand’ s type, the reflected method of the right operand has priority, otherwise the left operand’ s method
has priority. Virtual subclassing is not considered.

rlr
ofr

Al 7Fs AA S wrEx 2ol

When no appropriate method returns any value other than Not Implemented, the == and != operators will
fall back to is and is not, respectively.

3.3.

54 HME 018S 37

The Python Language Reference, & 2|A 3.13.1

object.__hash__ (self)

Called by built-in function hash () and for operations on members of hashed collections including set,
frozenset, and dict. The _ _hash__ () method should return an integer. The only required property
is that objects which compare equal have the same hash value; it is advised to mix together the hash values of
the components of the object that also play a part in comparison of objects by packing them into a tuple and
hashing the tuple. Example:

def _ hash_ (self):
return hash((self.name, self.nick, self.color))

0 Ix

hash() & AA 7} A& __hash () AINEZL EHF+ gZ Py_ssize_t o 7| E AF YTt
(truncate). ©] A& H X 64-bit W E | A= 8u}o] E 17, 32-bit & E oA = 4u}o] E Q) whek
AR __hash__ () 7FAZ TE HE 37| & 2 Y EE ALo] oA A ARE-E of of s},
BEAAG WEEA NS Z2 AA oF FLith o] SHe 418 B S python —c "import
sys; print (sys.hash_info.width)" ?j HE}

If a class does not define an __eqg () method it should not define a __hash__ () operation either; if it
defines _eq () butnot ___hash__ (), its instances will not be usable as items in hashable collections. If a
class defines mutable objects and implements an __eq__ () method, it should not implement __hash__ (),
since the implementation of rashable collections requires that a key’ s hash value is immutable (if the object’
s hash value changes, it will be in the wrong hash bucket).

User-defined classeshave __eq () and __hash__ () methods by default (inherited from the object class);
with them, all objects compare unequal (except with themselves) and x.__hash__ () returns an appropriate
value such that x == y implies both that x is y and hash (x) == hash (y).

eq () EARBYSIAEL hash () B AYSFHA = SWEE hash () 7hNone 22 A
Uth Zel28] _ hash_ () WA E7}FNone ©| |, EEH/\"] AaEAs=z2 I S AZS &
A E8 0] TypeError 5 Y€ © 7|1, isinstance (obj, collections.abc.Hashable) 2 AA}
Al b5 5hA) ebeha Swhe 74 Uk

Bk eq () EAARYSE WL RE FWHARRE hash () o FES BV A
o Az B oA HAI AR o]FA A AF|Fo]ok Pt __hash_ = <ParentClass>.
_ _hash___

WeF eq () EAARYSA e ATt ADS HR L Ao, S A oo hash
None & Z &38| of FUth A hash_ () & AT Fo] A% =
isinstance (obj, collections.abc.Hashable) < 0| |A] 7155t &5 QA),

'[Oo?i

2 W o

1

mol

oL
-

=

o)
D
=
B
[}
o
[a}

0 Fx

7|2 A 0 7 stri}bytes A E2] _ _hash_ () 2
AsUth 7N sho] W 2 A A Yo X skA] o
AT e ST+ A F U

This is intended to provide protection against a denial-of-service caused by carefully chosen inputs that

exploit the worst case performance of a dict insertion, O(n?) complexity. See http://ocert.org/advisories/
ocert-2011-003.html for details.

A ke W2 A olH# o] =A ol S FUTh 3Ho] WL o] EA o i3] oj W HAgE
SA] 5 U TH (28] AL HF 32-bit 9} 64-bit W= Ao o A = T U T}).

PYTHONHASHSEED & 231 3}4] Al £

g e IR R “EETH o (salted)”
o s 825 A 1, JJro]m SulEAo R

N\

rlr

H A 33004 WA A G B R A o2 S 3 YTh

38

Chapter 3. C|O|E{ 2 &

http://ocert.org/advisories/ocert-2011-003.html
http://ocert.org/advisories/ocert-2011-003.html

The Python Language Reference, & 2|A 3.13.1

object._ bool__ (self)

Called to implement truth value testing and the built-in operation bool () ; should return False or True.
When this method is not defined, 1en_ () is called, if it is defined, and the object is considered true if its
result is nonzero. If a class defines neither __len_ () nor _ bool__ () (which is true of the object class
itself), all its instances are considered true.

3.3.2 O{EE|HE YMA FHAE{OlO|H|O|M
e Jadzg o2 BE B2 (97], HYFH], x.name & AA 7)) 9 6] W] A5 ohe
e =gl 4o 4 A5yt

object.__getattr_ (self, name)

Called when the default attribute access fails withan Att ributeError (either __getattribute () raises
an AttributeError because name is not an instance attribute or an attribute in the class tree for self; or
__get__ () of a name property raises AttributeError). This method should either return the (computed)
attribute value or raise an At t ributeError exception. The object class itself does not provide this method.

Note that if the attribute is found through the normal mechanism, _ getattr () is not called. (This is
an intentional asymmetry between _ getattr () and __setattr__ ().) This is done both for efficiency
reasons and because otherwise __getattr () would have no way to access other attributes of the instance.
Note that at least for instance variables, you can take total control by not inserting any values in the instance
attribute dictionary (but instead inserting them in another object). See the _ getattribute__ () method
below for a way to actually get total control over attribute access.

object.__getattribute_ (self, name)
FH A2rEd 2o AJEZRE AAAE FHS7] Yol 27 glo] SE2F Utk WwHF Z
P27t getattr () T A FABY, getattribute () 7} BA|H Lo E FTE37
AttributeError & YO 7| R 9k oA} getattr £ SET A FH5UTH o] HIAEE= O ETRE
o] (AAH) 7= %Eﬂ—rﬂ UattributeError 92l & Yo A ok Ftt. o] v A = of| A] -3 A} 7 (in-
finite recursion) 7 WAL S 212 7] 913, 7R QAL BR o] = o) ol Aa] 18] 2L
o]E9 H|o|A ZY ALY HAEE TEFoF YT o] & £9],0object.__getattribute_ (self,

name) .

0 #x

This method may still be bypassed when 100king up special methods as the result of implicit invocation via
language syntax or built-in functions. See = A= z3].

|

w

A

N

el o] EZ|HE AN 29 AL, AR} obi 2 name 2 &2 ZHA} o] HI E object._ getattr =

ek,

object._ setattr_ (self, name, value)
olEFHE ol AlLE uf TEFHUth A<l v AYZ(
= A) thAlel o] Z o] EEF Yt name & A ER{E o] F 0]
e,

Cctatir) oA A28z o EdREe] YL T uhs, 22 o2 Mol Zeh2o)
HAEE i%ﬁﬂ ok gt} o] & E0] object._ setattr_ (self, name, value)

EA WA AEYEE WYY A2, AR} obj, name, valueZ ZFAF ©JHIE object._ setattr

. |
o oXl
Y

object.__delattr_ (self, name)

setater () HulZAA T =2 BES g5kt thAlo] AAFUTH o] 2L del obi.name
o] A7) o] 7} Q1= 7ol v & o] of Pk,

EAR NS AETHE AA| 9 AL, AR} obj 2 name &2 AL o] HIE object._ delattr_ <

A ek,

33. S+ HME OIEE 39

1

The Python Language Reference, & 2|A 3.13.1

object.__dir__(self)

Called when dir () is called on the object. An iterable must be returned. dir () converts the returned iterable
to a list and sorts it.

o
i
[m
o
=i}
[m

HM[A FHAE{OLO|A 0]
1

°|F _getattr_ ¥ dir__ E o EZRE U3 HIE AHEA B Yot U AHRE =

E%?%ﬂ;@%ﬁpﬁ = e AAE o ERREL o] 52 ol ALtE F=
Z AU attributeError S WA A Aok Ut AHEA Q) 23] (& object. getattribute ())
EH AEZHEVREE AN A TAE R 4O W, attributeError & Y27 7] Aol RE _ dict__
Cgetattr_ £ AT 2AN W, JEYRE o] o2 142 52T ANE EAFULL

The _ dir__ function should accept no arguments, and return an iterable of strings that represents the names ac-
cessible on module. If present, this function overrides the standard dir () search on a module.

BE FAClERE 4%, 22)< Hok AU S Ao steld, BE AN class
=2 HES types.toduleype 9 A B Fej22 44T 4 A5 U oI EW:

Id
+

ooy > mn
o

=2, it 0, Jm

>

import sys
from types import ModuleType

class VerboseModule (ModuleType) :
def _ repr_ (self):

~N

return f'Verbose {self._ name__ }'
def _ setattr_ (self, attr, value):
print (f'Setting {attr}...')
super () ._ _setattr__ (attr, value)
sys.modules [name]. class = VerboseModule
0 IFx
BE _ getattr O EE class AR EHE AAN2X TR ARSI 23 ol W
F2 o HUth- 25 Ao that AH AN AMA(RE W =9 et AN 2o AL EEY A Y
gxyEe tist FxE A AW & SFEA 5T

Added in version 3.7: __getattr__ ¥} _ dir_ EE JEZRE.

e 1)
PEP 562 - 2% _ getattr__ 3} _ dir__
25 gt __getattr_ I _ dir FFEAHIYUG

Cl&a3EE #8517

The following methods only apply when an instance of the class containing the method (a so-called descriptor class)

appears in an owner class (the descriptor must be in either the owner’ s class dictionary or in the class dictionary

for one of its parents). In the examples below, “the attribute” refers to the attribute whose name is the key of the
property in the owner class’ __ dict__ . The object class itself does not implement any of these protocols.

object.__get__(self, instance, owner=None)
YJoEYREEZ AL T =Y
o

instance = A EZHE IAR7F Aoy ¢

== 4% None Yt}

40 Chapter 3. C|O|E{ 2 &

https://peps.python.org/pep-0562/

The Python Language Reference, & 2|A 3.13.1

ol A E& Al4tE A ERRE & E8F AU AttributeError A2 & €2 Aok th
PEP 252 _ get_ ()°] tvhtt 7 7|9 QJAAE Zr= FelEoletal A FFYth Tho] A 24l 9
% D ATRE E o] HAIE ARG TE T, AR AR BT F ASE BE 275
O2aa e 7t JdS 5 A5t gho] M 2}A19] | getattribute () FHL Q3R 2} AA glo]
G4 % AAE wE AR

object.__set__ (self, instance, value)
AFAF FE 2 A2E 2 instance & AAEBRFEE M 3 value 2 AT) $EFH VT
__set__()olY__delete_ ()5 F7}5tE Y2 HE 79 o] “uf o] ¥| t] 23 ¢ €] (data descriptor)”
= WAl R FAA L, AL NEL 2T e 520178 BEIAPAL

object.__delete__ (self, instance)
2GA ZH 29 A2E X nstance @ A EBHEE AA T o] T EH YT
Instances of descriptors may also have the __objclass__ attribute present:

object.__objclass_

The attribute __objclass__ is interpreted by the inspect module as specifying the class where this object
was defined (setting this appropriately can assist in runtime introspection of dynamic class attributes). For
callables, it may indicate that an instance of the given type (or a subclass) is expected or required as the first
positional argument (for example, CPython sets this attribute for unbound methods that are implemented in
0.

CIA38E S&35}7]

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been overridden
by methods in the descriptor protocol: __get_ (), __set__ (),and __delete__ (). If any of those methods are
defined for an object, it is said to be a descriptor.

JEZRE AN29 7| 522 AAe g oA JEREE ¢, 211, AA| st A YUt
& Eo]a.x=a. dict_ ['x'] A /‘]ZLTSH/H type(a).__dict_ ['x'] & A A type(a) & WE}
SHAE AL s uo] A ZFe A %% AX 7 499 232 FAAF YT
22}, jESF 23] %k gho] ti A f’-%lEi HAEE 7S AA Y, sto] M2 712 52 dalel g2 HH
MAEE T2 5 AUtk AEH 529 o 9 X4 o] e Dol AoubA ofd AT YH
A A5l i o A o5 B e el et e el
Y23 ge 29 Al ZAH-2 2 F(binding) YU TH a.x. AR A JAAE©] 2 =2+ a o e o5 Y
c}:
44 5%
3 RVHEAE M AT BES AR TEhUaaYE MASE A 55T
AU TH x.__get_ (a)
Adredx A
WA AxE o] AFetH, a.x= ol T2 ATF YT type(a) .__dict_ ['x'].__get_ (a,
type(a))
o= 2F
ZH 2o dgstH, A x=0olH TEZ HIFH YA, dict_ ['x']._ _get_ (None, A).
Super 2%}
A dotted lookup such as super (A, a).xsearchesa.__class__._ mro__ for a base class B following A
and then returns B.__dict__ ['x'].__get__ (a, A). If nota descriptor, x is returned unchanged.

For instance bindings, the precedence of descriptor invocation depends on which descriptor methods are defined.
A descriptor can define any combination of __get__ (), et_ () and _ delete__ (). If it does not define
__get__ (), then accessing the attribute will return the descriptor object itself unless there is a value in the object’ s
instance dictionary. If the descriptor defines __set () and/or _ delete__ (), itis a data descriptor; if it defines
neither, it is a non-data descriptor. Normally, data descriptors define both __get_ () and __set__ (), while non-
data descriptors have just the _ get_ () method. Data descriptors with _ get_ () and __set__ () (and/or
__delete__ ()) defined always override a redefinition in an instance dictionary. In contrast, non-data descriptors
can be overridden by instances.

3.3. E2 OME 0|2E M

https://peps.python.org/pep-0252/

The Python Language Reference, & 2|A 3.13.1

Python methods (including those decorated with @staticmethod and @classmethod) are implemented as non-
data descriptors. Accordingly, instances can redefine and override methods. This allows individual instances to
acquire behaviors that differ from other instances of the same class.

property () F5E Hlo|8 faage 2 FAR U o uj o], A b At =2 5 (property) o] 52
DR TS

__slots__

__slots__ allow us to explicitly declare data members (like properties) and deny the creation of _ dict_ and
__weakref__ (unless explicitly declared in __slots__ or available in a parent.)

The space saved over using __dict__ can be significant. Attribute lookup speed can be significantly improved as
well.

object._ _slots_

This class variable can be assigned a string, iterable, or sequence of strings with variable names used by in-
stances. __slots__ reserves space for the declared variables and prevents the automatic creation of ___dict_
and __weakref _for each instance.

Notes on using __slots__

o When inheriting from a class without __slots__, the _ dict__ and __weakref__ attribute of the instances
will always be accessible.

o Withouta dict__ variable, instances cannot be assigned new variables not listed in the __slots__ definition.
Attempts to assign to an unlisted variable name raises AttributeError. If dynamic assignment of new
variables is desired, then add '__dict__ ' to the sequence of strings in the __slots__ declaration.

o Without a _ weakref _ variable for each instance, classes defining _ slots_ do not support weak
references to its instances. If weak reference support is needed, then add '__ weakref_ ' to the se-
quence of strings in the __slots__ declaration.

o __slots__ are implemented at the class level by creating descriptors for each variable name. As a result, class
attributes cannot be used to set default values for instance variables defined by __slots__; otherwise, the class
attribute would overwrite the descriptor assignment.

o Theactionof a__slots__ declaration is not limited to the class where it is defined. __slots__ declared in parents
are available in child classes. However, instances of a child subclass will geta _ dict_ and __weakref__
unless the subclass also defines __slots__ (which should only contain names of any additional slots).

c Ze Tt ol s FAAY sdors_ o AW ol 2L o] BY WEE _slors_ o A grh
Wo) 2 el sl Aol g W AN AT 5 gl A7l BT (o)A Ze AR RE TAIYEE
A4 28 e AL 9T, o) AL Z2 e olw A o AHlE HlA BTk vleel
o1& A 37 A% AAE F7HE AUk

e TypeError will be raised if nonempty __slots__ are defined for a class derived from a "variable-length"
built-in type suchas int, bytes, and tuple.

» Any non-string iferable may be assigned to __slots__

o Ifadictionary isused to assign __slots__, the dictionary keys will be used as the slot names. The values of
the dictionary can be used to provide per-attribute docstrings that will be recognised by inspect .getdoc ()
and displayed in the output of help ().

e _ class__ assignment works only if both classes have the same __slots__

« Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have
attributes created by slots (the other bases must have empty slot layouts) - violations raise TypeError.

o If an iterator is used for __slots__ then a descriptor is created for each of the iterator’ s values. However, the
__slots__ attribute will be an empty iterator.

42 Chapter 3. C|O|E{ 2 &

The Python Language Reference, & 2|A 3.13.1

3.3.3 EeiA M HAEDOIO|X|0|M

Whenever a class inherits from another class, __init_subclass__ () is called on the parent class. This way, it
is possible to write classes which change the behavior of subclasses. This is closely related to class decorators, but
where class decorators only affect the specific class they’ re applied to,
subclasses of the class defining the method.

init_subclass__ solely applies to future

classmethod object. 1n1t_subc1ass (cls)
ol A=+ :Tt?:
SO0, o LA P ABA AL A5
HAEY D}.
Keyword arguments which are given to a new class are passed to the parent class’ s __init_subclass__

For compatibility with other classes using __init_subclass__, one should take out the needed keyword
arguments and pass the others over to the base class, as in:

HH vt SEH Y ds = M AR Z
ol MAEE FAIHoR ZYLHAER

class Philosopher:
def __init_subclass__(cls, /, default_name, **kwargs):
super () .__init_subclass__ (**kwargs)
cls.default_name = default_name

class AustralianPhilosopher (Philosopher, default_name="Bruce"):
pass

7]% ;y_'-?:ﬂ_ object._init_subclass_{— O]'—‘_Tl— ?:15:_ 6‘]’] OJ'X] U]‘ OTX]—7]—§'—_§3F4 O} i%}’] @ Oﬂﬂ

£ AT

0 #x

el 2] A 3 E metaclass = U R & & x}ol ,] 3 4¥|¥ 1, __init_subclass_ & A
= A ks th AA HE S (BAI A Q] JE tfAlol]) = type (cls) E AM AT 5 5T

Added in version 3.6.

When a class is created, type._ new__ () scans the class variables and makes callbacks to those with a
__set_name__ () hook.

object.__set_name__ (self, owner, name)

Automatically called at the time the owning class owner is created. The object has been assigned to name in
that class:

class A:

x = C() # Automatically calls: x.__set_name__ (A, 'x'")

If the class variable is assigned after the class is created, __set_name__ () will not be called automatically.
If needed, _ set_name__ () can be called directly:

-

class A:

pass
e = C()
A.x = C # The hook is not called
c._ set_name__ (A, 'x'") # Manually invoke the hook
.

k)

o] ZbA & W82 S el A A 7] & FAsA Al L.
6

Added in version 3.6.

33. S+ HME OIEE 43

1

The Python Language Reference, & 2|A 3.13.1

ol et S

7NRAe®, FEHas type () = AHEA TE oAU 29 vt = A o] & F oA A H AL,
ZY O]?—\: type (name, bases, namespace) 2] A3}o] (] H o7

SWAE REE AL ZUA A Follnetaclass | PE AAE AL ALY, 1A AAE 83 o)
At SN2 AST 2N ALHutolz2d 5 YIS UTH T2 ool 4], MyClass 2} MySubclass &
B F Meta 9 Q1EHAJU T

class Meta (type) :
pass

class MyClass (metaclass=Meta) :
pass

class MySubclass (MyClass) :
pass

S A olA AFE e 719 E AAEL ot oM AE = RE ME Y2 ddsE AEeg
Sx A7t AdE), v 22 DAV g Ytk

« MRO &50] 24 gt

o AAgvE 227 2AEE Uy

o Sl ol ol EHlE YT

object.__mro_entries__ (self, bases)

If a base that appears in a class definition is not an instance of type, then an _ mro_entries__ () method
is searched on the base. If an _ mro_entries_ () method is found, the base is substituted with the result
of acallto__mro_entries__ () when creating the class. The method is called with the original bases tuple

passed to the bases parameter, and must return a tuple of classes that will be used instead of the base. The
returned tuple may be empty: in these cases, the original base is ignored.

] 27

types.resolve_bases()

Dynamically resolve bases that are not instances of type.
types.get_original_bases()

Retrieve a class’ s “original bases” prior to modifications by mro_entries ().

PEP 560
Core support for typing module and generic types.

a4 Chapter 3. C|O|E{ 2 &

https://peps.python.org/pep-0560/

The Python Language Reference, & 2|A 3.13.1

iy

7h3 wol v e Zel e A A SR XA H e 2 A (9
=9 e FAN2E(F, type (cls)) T A8 F Ut 7H3

A B B (subtype) YU T REeF o] Ak o] 2AZ R
LA 7)™ A3l g o

the) St AR H BE wo A Feha
S e 2o sk o] BT o
Eﬂ, %EHL_ ;g °| = TypeError =

g2 0|F St EHISHY|

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass has
a_ prepare__ attribute, it is called as namespace = metaclass._ prepare_ (name, bases, **kwds)
(where the additional keyword arguments, if any, come from the class definition). The __prepare__ method should
be implemented as a classmethod. The namespace returned by __prepare_ is passedinto___new__, but when
the final class object is created the namespace is copied into a new dict.

g vje} 2e)20] _prepare olEElHEZ rhE, el olE B0 ¥l 24 Qe vjHoR 27
Y
(S -
PEP 3115 - 3}o] % 3000 o] 4] &] we}l S A
__prepare_ O|F ¥ FS =YY

Sl A dic| ™57
Z 2 vl = (W 2F) exec (body, globals(), namespace) ¥Zro] AdiH Utk AUbA Q] exec() T&
JJrTQ Aol L el B o7t g Y Fol A o] F o] A uj 01?4 22313 (lexical scoping) ©] & 2l Hit]

EVAEES TP E o7 BAG IR 20l gt o BEL FRAES HF3ATHE A
N
shAIRE, Sl Ao 7h o YR A o] ol wjxAE, S Y RN Hojd MAE %% S
caadd o IBEE ¥4 Goi 2o uer datad 2da WA =sl A U v
HEE ol AA AU bF Aol st FAHCRE o3 23 F" __class_ FEE F3loF
U,
SaiA ZA TS|
Add ZF g2 o] E Z 7o)l S vltE Aoz YA H, Fe A AA 7Fmetaclass (name, bases,
namespace, **kwds) %%—‘EH 1?}%01@141:}(7]°ﬂH @%H%$7}Z—"l?_]OJE ?lz]-——c_prepare_
o degd As#d ZsUrh
o] 2o AR super () o ARE FA) e A9 F2HE AQUTh _class_ & Ze2 vpre)
HAES T oJ=dttets class. Usuper & 2T F¢ A oA ol o5 WhsolA= FAAA Z
24 (closure) F2 Utk o] 22 A gl FENS] super () 7ol F] 233 7oz A w1 g
SZH2E SHlEA Ze £ AEE FUHh W] AL T AHgE Sy dadaEsmAER

k<2

= .
Aed 3 WA Axbef 71230 AEE YT

A

CPython G-& A} A): CPython 3.6 o] Aol A, _ class__ Al(cel) & a2 o] F 7S] _ classcell <l
EZ ve FE o] dEE Yth Bk EXd, o] A %’*ﬂ]iﬂ%ﬂ}iﬂl z713}=] 7] 930 type.
__new__ SE7HA AEHA Auts o] of it o] EA| &2 £t ko] 4 3.8 o Al = RuntimeError &
oloj A A Y Yrh

When using the default metaclass type, or any metaclass that ultimately calls type.__new__, the following addi-
tional customization steps are invoked after creating the class object:

1) The type._ new__ method collects all of the attributes in the class namespace that define a
__set_name__ () method;

2) Those __set_name__ methods are called with the class being defined and the assigned name of that particular
attribute;

3) The__init_subclass__ () hookis called on the immediate parent of the new class in its method resolution
order.

33. S+ 0HAMEOIEE 45

https://peps.python.org/pep-3115/

The Python Language Reference, & 2|A 3.13.1

ZE AR 7S] A Fofl, Zel & A oo 2¢d Sd A dZ A ol HEANA (o) 22U 28 dgst
AL, 2 ddE Edart Ao H e A Y olF w3t dd gyt
When a new class is created by type.__new__, the object provided as the namespace parameter is copied to a new

ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which becomes
the dict__ attribute of the class object.

& o 17

PEP 3135 - A super
EAAQ _class_ E2A 3

N
et
i
o,
ot
A
v

HEl 22HAS EE
Z} X
=

HER Fej 2] FA A A G o= $HA 7 s U th B4 H 2 71A] ofolt] o] el = enum, 27, 1 E] | o]
2 A AHE3HE 9 < (automatic delegation), A5 3} 5 Z 2 ¥] (properety) A8 A, Z FA] (proxy), Z & & &
(framework), A}-=3}¥]—% 2 7}/ 7] 3} (automatic resource locking/synchronization) 5 ©] ¢l Ut}

3.34 9IAEA O MH SejA HAF HAEOIO|A|O|M
TS WA EEL isinstance () £ issubclass () W& 459 7| E S22 2] A o) 6F= t] AF2-H Ut

E 35|, W} Z 8 2 abc.ABCMeta &= FAF o o] & Z 7 2 (Abstract Base Class, ABC)ZS t}2 ABCE =33}
299 FHay FUNTF S 2T Uholl “7H Wl o] & F 2l & (virtual base class)” 2 7+ = 1A
St Al o] M EES FHRYTH
type.__instancecheck__(self, instance)
instance 7} (A A o] A} 2+ A 2 &) class 4 Adxrdrg2 HAFE & Jod FS s Fuch Wk
7§9]Q Eﬂ, isinstance (instance, class) & —7—@3}7] —HB‘H i%% E]—
type.__subclasscheck__ (self, subclass)

subclass 7} (A Aol A ZFF A0 2) class o] A B S22 HAFE 5 oW FS =HFTh
vlok Jo]E W, issubclass (subclass, class) = 73837 948 i%% B
A

°| “ﬂ/‘i:‘éﬁ—?’ﬂiiﬂ (et 2 2) ol M 23] At Aol F2 8 oF dy ot éﬂl%ﬁ]ﬂéoﬂfﬂ S

Uﬂ/ﬂtiﬂ«l T AU o] A2 A" 2o U] EEH = ST HAEEY 23] 9
o] Af A~ % el A T
o 1o

PEP 3119 - 34 wjo] A Zell2 9] £ ¢
Includes the specification for customizing isinstance() and issubclass () behavior through
__instancecheck__ () and ___subclasscheck__ (), with motivation for this functionality in the con-
text of adding Abstract Base Classes (see the abc module) to the language.

3.3.5 M2 & SLH LH7]

When using rype annotations, it is often useful to parameterize a generic type using Python’ s square-brackets notation.
For example, the annotation 1ist [int] might be used to signify a 1ist in which all the elements are of type int.

e o B
PEP 484 - Type Hints
Introducing Python’ s framework for type annotations

Generic Alias Types
Documentation for objects representing parameterized generic classes

46 Chapter 3. C|O|E{ 2 &

https://peps.python.org/pep-3135/
https://peps.python.org/pep-3119/
https://peps.python.org/pep-0484/

The Python Language Reference, & 2|A 3.13.1

Generics, user-defined generics and typing.Generic
Documentation on how to implement generic classes that can be parameterized at runtime and understood
by static type-checkers.

A class can generally only be parameterized if it defines the special class method _ class_getitem ().
classmethod object._ class_getitem__ (cls, key)
key ol 91 @ Qpel o3 A Y Zeh2o) S4BE Uehls AR E SelFUTh

When defined on a class, __class_getitem__ () is automatically a class method. As such, there is no need
for it to be decorated with @classmethod when it is defined.

The purpose of __class_getitem _

The purpose of __class getitem () isto allow runtime parameterization of standard-library generic classes in
order to more easily apply 7ype hints to these classes.

To implement custom generic classes that can be parameterized at runtime and understood by static type-checkers,
users should either inherit from a standard library class that already implements __ class_getitem__ (), or inherit
from typing.Generic, which has its own implementation of __class_getitem_ ().

Custom implementations of __class_getitem () on classes defined outside of the standard library may not be
understood by third-party type-checkers such as mypy. Using _ class_getitem__ () on any class for purposes
other than type hinting is discouraged.

__class_getitem__ versus __getitem _

Usually, the subscription of an object using square brackets will callthe getitem () instance method defined on
the object’ s class. However, if the object being subscribed is itself a class, the classmethod _ class_getitem__ ()
may be called instead. __class_getitem__ () should return a GenericAlias object if it is properly defined.

Presented with the expression ob7 [x], the Python interpreter follows something like the following process to decide
whether _ getitem () or__class_getitem _ () should be called:

from inspect import isclass

def subscribe (obj, x):
"""Return the result of the expression 'obj[x]'"""

class_of_obj = type (obj)

If the class of obj defines __getitem _,
call class_of_obj.__getitem _(obj, x)

if hasattr(class_of_obj, ' _getitem_'):
return class_of_obj._ _getitem__ (obj, x)
Else, 1f obj is a class and defines __class_getitem ,

call obj.__class_getitem _ (x)
elif isclass(obj) and hasattr(obj, ' class_getitem_ '"):
return obj.__ _class_getitem__ (x)

Else, raise an exception
else:
raise TypeError (
f"'{class_of_obj.__name__}' object is not subscriptable"

In Python, all classes are themselves instances of other classes. The class of a class is known as that class’ s metaclass,
and most classes have the t ype class as their metaclass. type doesnotdefine getitem (), meaning that expres-

3.3. E2 OME 0|2E 47

The Python Language Reference, & 2|A 3.13.1

sions such as 1ist [int],dict[str, float] and tuple[str, bytes] allresultin__ class_getitem ()
being called:

>>> # 1list has class "type'" as its metaclass, like most classes:
>>> type(list)
<class 'type'>

>>> type(dict) == type(list) == type(tuple) == type(str) == type (bytes)
True

>>> # "list[int]" calls "list.__class_getitem_ _ (int)"

>>> list[int]

list[int]

>>> # list.__class_getitem _ returns a GenericAlias object:

>>> type(list[int])
<class 'types.GenericAlias'>

However, if a class has a custom metaclass that defines _getitem (), subscribing the class may result in different
behaviour. An example of this can be found in the enum module:

>>> from enum import Enum

>>> class Menu (Enum) :
"""A breakfast menu"""
SPAM = 'spam'
BACON = 'bacon'

>>> # Enum classes have a custom metaclass:

>>> type (Menu)

<class 'enum.EnumMeta'>

>>> # EnumMeta defines __getitem _,

>>> # so __class_getitem__ 1is not called,

>>> # and the result is not a GenericAlias object:
>>> Menu['SPAM']

<Menu.SPAM: 'spam'>

>>> type (Menu['SPAM'])

<enum 'Menu'>

o B

PEP 560 - Core Support for typing module and generic types
Introducing _ class getitem (), and outlining when a subscription results in
__class_getitem__ () being called instead of _ _getitem ()

3.3.6 22{E A U LH7]

object.__call (self[, args...])

Called when the instance is “called” as a function; if this method is defined, x (argl, arg2, ...) roughly
translates to type (x) .__call__(x, argl, ...).Theobject class itself does not provide this method.

3.3.7 ZAH|0|{E ELH LY 7|

The following methods can be defined to implement container objects. None of them are provided by the object
class itself. Containers usually are sequences (such as 1ists or tuples) or mappings (like dictionaries), but can
represent other containers as well. The first set of methods is used either to emulate a sequence or to emulate a
mapping; the difference is that for a sequence, the allowable keys should be the integers k for which 0 <= k < N
where N is the length of the sequence, or s1ice objects, which define a range of items. It is also recommended
that mappings provide the methods keys (), values (), items (), get (), clear (), setdefault (), pop (),
popitem(), copy (), and update () behaving similar to those for Python’ s standard dictionary objects. The

48 Chapter 3. C|O|E{ 2 &

https://peps.python.org/pep-0560/

The Python Language Reference, & 2|A 3.13.1

collections.abc module provides a MutableMapping abstract base class to help create those methods from
a base set of __getitem (), __setitem (), _delitem (), and keys (). Mutable sequences should
provide methods append (), count (), index (), extend (), insert (), pop (), remove (), reverse () and
sort (), like Python standard 1ist objects. Finally, sequence types should implement addition (meaning concate-
nation) and multiplication (meaning repetition) by defining the methods _add (), radd (), __iadd (),
_mul__ (), __rmul__()and __imul__ () described below; they should not define other numerical operators. It
is recommended that both mappings and sequences implement the contains__ () method to allow efficient use
of the in operator; for mappings, in should search the mapping’ s keys; for sequences, it should search through the
values. It is further recommended that both mappings and sequences implement the ~ iter () method to allow
efficient iteration through the container; for mappings, __iter_ () should iterate through the object’ s keys; for
sequences, it should iterate through the values.

object.__len__(self)
Called to implement the built-in function len (). Should return the length of the object, an integer >= 0.
Also, an object that doesn’ t define a __bool_ () method and whose __len_ () method returns zero is
considered to be false in a Boolean context.

CPython - AHA): In CPython, the length is required to be at most sys.maxsize. If the length is
larger than sys.maxsize some features (such as len ()) may raise OverflowError. To prevent raising
OverflowError by truth value testing, an object must definea _ bool () method.

object._ length_hint__(self)

Called to implement operator.length_hint (). Should return an estimated length for the object (which
may be greater or less than the actual length). The length must be an integer >= 0. The return value may also
be Not Implemented, which is treated the same asif the __length_hint__ method didn’ t exist at all. This
method is purely an optimization and is never required for correctness.

Added in version 3.4.

2 WdH 1, T Y E BAAA QU 0 ol FEE B4 vone 22 AP U

object.__getitem__ (self, key)
Called to implement evaluation of self [key]. For sequence types, the accepted keys should be integers.
Optionally, they may support s1ice objects as well. Negative index support is also optional. If key is of an
inappropriate type, TypeError may be raised; if key is a value outside the set of indexes for the sequence
(after any special interpretation of negative values), IndexError should be raised. For mapping types, if key
is missing (not in the container), KeyError should be raised.

0 Iz

for FLE Al A2 25 SHE FA)87] A8, FRHF AP 20 B3l IndexError 7k dojd
Aoz 7lthsta glsuth

0 Fx

When subscripting a class, the special class method class getitem () may be called instead of
__getitem__ (). See _ class_getitem__ versus __ getitem___ for more details.

33. S+ 0HAMEOIEE 49

The Python Language Reference, & 2|A 3.13.1

object.__setitem__ (self, key, value)

self(key] 2 S 7@ As) =P Utk __getiten () F 22 FA7F 22k
w3 o] Ao, AAZE 71l thal] gkl A olu A} 719 715 =T A, Aldae] Aee
G50l FEE d ¢ e wWiRt FAF R FUth ZBRA key 22 AT _getitem () oA}
22 o9 E doAoF gyt

object.__delitem__ (self, key)

self[key] & 2AIE F@3H7] As) EEH Ytk getltem ()2 F7r ey UH
o

B Ao, AATE 719 AAE ST A, AA2Y A= FEO AIFAERE A AL
A= w7t LA o] of Tt Z5H key 19 75‘-‘%%7getltem7() o Aol Ze oo & %Jgﬂot
?J‘J"Jr-

object._ missing__ (self, key)
dict. getitem () ol dict AJB Zeh2oA] 7|7 DA 2ol YO selfkey] S FA3H7] Y3l
SEFYoh

object.__iter_ (self)
This method is called when an iterator is required for a container. This method should return a new iterator
object that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the
container.

object.__reversed_ _(self)

reversed () W& & 7]- oy o] E| g] A (reverse iteration) = 7+ & 5}7] Y5 (ATHH) =Yt A
H| o] 1 o 015 AANES 9 o2 g A o]E# olH AAE =85 FQ‘JD}-

_ _reversed__ () U'“/ﬂ‘:ﬂ' Al FEH A 4o, reversed () WASFE= AFE~ EEE—‘—(len__ ()
I getitem ())EUHASLZ ALFTYUTL A FXZZEFZ S A Q3+ AA =2 reversed() 7}
AFSE AR Y 8RN PHL ATL AL W reversea () B AT} T Tk
WA AAF AAAE (i 3 noe in) & HE Ag o Fﬁﬂ ol ¥ & o] A Yt 3}7*] ot 2
Hol A= o & °Z*°1 TS T JJré‘S ST HAEE ﬂxﬂ*ﬂ %lﬁ‘%ﬁ‘r o] A% AA=
PR B E U
object.__ contains__ (self, item)
W4 AR} 4SR5 7] S5 T 2R U fem o self ol 9o 22, TR A grew AL
=70k Tk v Axe] 39, 7)-gk Aol ohujek w39 717} 3 e of of k.
__contains__ () & ALT}A] &= AA] A, WA AALE HA _ iter () & 53 o]E
AL AR F, geciten (L BRGE AR o HAIA ZLETES AR FUTh o]
dl5 e s o 28 ATIAA L

3.3.8 <Al & LK LH7|

57 92 FU U7 N9 S 2L HAEES A8 S stk TAL = KAT E72) 540
o3 AN A b ALE (15 o, A4 obd £AS 3 HIE A4S ol B Sl WAESS

Bl A ke A2 dATol oF guth
object.__add__ (self, other)
object.__sub__ (self, other)

object._ mul__ (self, other)

object._ matmul__ (self, other)
object.__truediv__ (self, other)
object._ floordiv__ (self, other)
object.__mod__ (self, other)
object.__divmod__ (self, other)
object._ pow__ (self, other[, modulo])
object._ lshift__(self, other)
object.__rshift__(self, other)
object.__and__ (self, other)

50 Chapter 3. C|O|E{ 2 &

The Python Language Reference, & 2|A 3.13.1

object._ xor__ (self, other)

object.__or__ (self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, *, |). For instance, to evaluate the expression x + y, where x is an instance of a class
thathasan _ add () method, type (x) .__add__ (x, y) iscalled. The divmod _ () method should
be the equivalent to using __ floordiv__ () and __mod__ (); it should not be related to ___truediv__ ().
Note that __pow__ () should be defined to accept an optional third argument if the ternary version of the
built-in pow () function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return

NotImplemented.
object.__radd__ (self, other)
object.__rsub__ (self, other)
object.__rmul__ (self, other)
object.__rmatmul__ (self, other)
object._ rtruediv__ (self, other)
object.__rfloordiv__ (self, other)
object.__rmod__ (self, other)
object.__rdivmod__ (self, other)
object.__rpow__ (self, other[, modulo])
object.__rlshift_ (self, other)
object.__rrshift_ (self, other)
object.__rand__(self, other)
object.__rxor_ (self, other)
object.__ror__(self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, ~, |) with reflected (swapped) operands. These functions are only called if the left
operand does not support the corresponding operation® and the operands are of different types.* For instance,

to evaluate the expression x — y, where yis an instance of a class thathasan __ rsub__ () method, type (y) .

rsub__ (y, x) iscalledif type(x)._ sub__ (x, y) returns NotImplemented.

AR pou() £ __rpow_ () B 5EHH T AE5A &) FolaoF FTH (A2 A sl 2ol A
2 0] Y Bty oh.

object
object
object
object
object
object
object

object

0 Iz

vHoF @ 22 5 AHALY] Wo] 9% 3 AR §o) 1 Zehso)mm, 1 A ATt AL
AR WA= thE F3S AF5td, o] FlA =7 A% A4bate] F A8 A 2 WA =Rt
HAA ZESHULH o] S22 A B a7t 24 AMS ARG T + U5 Atk
.__iadd__ (self, other)

.__isub__ (self, other)
.__imul__ (self, other)
.__imatmul__ (self, other)
.__itruediv__ (self, other)
.__ifloordiv__ (self, other)

.__imod__ (self, other)

.__ipow__ (self, other[, modulo])

3 “Does not support” here means that the class has no such method, or the method returns Not Implemented. Do not set the method to None

if you wan

t to force fallback to the right operand’ s reflected method—that will instead have the opposite effect of explicitly blocking such fallback.

For operands of the same type, it is assumed that if the non-reflected method - such as __add__ () - fails then the overall operation is not

supported,

which is why the reflected method is not called.

33. §

£ HAME O|EE 51

The Python Language Reference, & 2|A 3.13.1

object.__ilshift_ (self, other)
object.__irshift_ (self, other)
object.__iand__ (self, other)
object.__ixor_ (self, other)
object._ _ior__(self, other)

These methods are called to implement the augmented arithmetic assignments (+=, -=, *=, @=, /=, //=, %=,
**=, <<=, >>=, g=, *=, |=). These methods should attempt to do the operation in-place (modifying self) and
return the result (which could be, but does not have to be, self). If a specific method is not defined, or if that
method returns Not Implemented, the augmented assignment falls back to the normal methods. For instance,
if x is an instance of a class withan __iadd () method, x += y isequivalentto x = x.__iadd__ (y)
JIf . iadd () does notexist, orif x.__iadd__ (y) returns Not Implemented, x.__add__ (y) andy.
__radd__ (x) are considered, as with the evaluation of x + y. In certain situations, augmented assignment
can result in unexpected errors (see fag-augmented-assignment-tuple-error), but this behavior is in fact part of

the data model.
object._ _neg__ (self)
object.__pos__ (self)
object.__abs__ (self)
object.__invert_ (self)
A Aks AR, +, abs (0, ~)= TS A8 SE=H Y Th
object.__complex__ (self)
object.__int__ (self)
object._ float_ (self)
WA g4 complex (), int (), float () & F&3}7] 3l =& H Uk I3

gk

object.__index_ (self)

rsﬁ

B9 e ei 7 of

operator.index () & T &3} —'4 3 E&5 a1, shoj o] A AAE HG 7“f<ﬂi—"\—$l ol ¥y

Okﬁ‘@(ﬁﬂol*‘ollﬁr‘ﬂ%b yhex (), oct () FFEolA o)ttt TE&FH Yt o] WA =9
EAE A AN BT FL= 7}174 Ayt HPC/‘] A& =HFF U
__int__ (), __float__() B __complex_ ()7} BY =] QA FowW, HF HF &5 int(),
float () W complex () = _ index ()= A& tTh

object.__round__ (self[, ndigits])

object.__trunc__ (self)

object.__floor__ (self)

object._ ceil__ (self)

W& &4 round () hmath &4 trunc (), floor() cell() 2 337 Y8l =&). ndigits 7}
round () B AEHA = 3l o] HIAEEL 2 F Integral (EE int) & 2 & AA 9 S

= F oF gy
The built-in function int () fallsbackto __ trunc__ () if neither __int__ () nor __index__ () is defined.

¥ A 3.119 A ¥ 7 : The delegation of int () to__trunc__ () is deprecated.

3.3.9 with & HEHIAE ZIg| X}

AEXE He] A} (context manager) & with & AP uf 2] = A A (context) e el
AAJUTE = B59 A5 f5), AH2E defahes Ao 4 AareR AR G2 S
AUt AHYAE A A= BE with & (wih & A4 A8 FUth o & A Ze A g, 259
HAEE TEHA AH AHEE = A5 U

ZE2E Feate] AP A S0+ g /7 Ao A= (global state) & W ¥8laL B8k A,
2191 € 7] (locking) 531 91 % 7) (unlocking) 3= 2, A& 74 S T 2 So| gl oh.

For more information on context managers, see typecontextmanager. The object class itself does not provide the
context manager methods.

52 Chapter 3. C|O|E{ 2 &

The Python Language Reference, & 2|A 3.13.1

object.__enter_ (self)
o] A9 ABA AYA L A 2Eo] AYFUTh wich £ as A2 AFE thaol ehd, o
A= gt k2 AZd ok

object.__exit__ (self, exc_type, exc_value, traceback)
of AR} ATA AW A AEES FRFUTH WANFEL Do ase A 3
el 7l Ut vtk AEAET} o 9] glo] FEFTHH, Al Q1A 27 None ©] H Y
TR} o] 9] 7} A BE 3, WA b e 9§ FA NI A0 W (5 FAHE AL O
o FUTH 2184 o 8= o] A ETFFES T AL AP FH T

Note that __exit () methods should not reraise the passed-in exception; this is the caller’ s responsibility.

& o 1]

PEP 343 - “with” &
stol W with ol thek 14, ¥l 43, <.

3.3.10 Customizing positional arguments in class pattern matching

When using a class name in a pattern, positional arguments in the pattern are not allowed by default, i.e. case
MyClass (x, y) is typically invalid without special support in MyClass. To be able to use that kind of pattern, the
class needs to define a __match_args__ attribute.

object.__match_args___
This class variable can be assigned a tuple of strings. When this class is used in a class pattern with positional
arguments, each positional argument will be converted into a keyword argument, using the corresponding value
in __match_args__ as the keyword. The absence of this attribute is equivalent to setting it to ().

For example, if MyClass.__match_args__ iS ("left", "center", "right") that means that case
MyClass (x, y) is equivalent to case MyClass (left=x, center=y). Note that the number of arguments
in the pattern must be smaller than or equal to the number of elements in __match_args__; if it is larger, the pattern
match attempt will raise a TypeError.

Added in version 3.10.

o 1

PEP 634 - Structural Pattern Matching
The specification for the Python match statement.

3.3.11 Emulating buffer types

The buffer protocol provides a way for Python objects to expose efficient access to a low-level memory array. This
protocol is implemented by builtin types such as bytes and memoryview, and third-party libraries may define
additional buffer types.

While buffer types are usually implemented in C, it is also possible to implement the protocol in Python.

object._ buffer_ (self, flags)
Called when a buffer is requested from self (for example, by the memoryview constructor). The flags argument
is an integer representing the kind of buffer requested, affecting for example whether the returned buffer is read-
only or writable. inspect .BufferFlags provides a convenient way to interpret the flags. The method must
return a memoryview object.

object.__release_buffer_ (self, buffer)
Called when a buffer is no longer needed. The buffer argument is a memoryview object that was previously
returned by _ burfer__ (). The method must release any resources associated with the buffer. This method
should return None. Buffer objects that do not need to perform any cleanup are not required to implement this
method.

33. S+ 0HAMEOIEE 53

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0634/

The Python Language Reference, & 2|A 3.13.1

Added in version 3.12.

e o 1o

PEP 688 - Making the buffer protocol accessible in Python
Introduces the Python _ buffer_ and _ release_buffer__ methods.

collections.abc.Buffer

ABC for buffer types.

3.3.12 E4+ HIME Z=3]
Nt AL S 2] A, BAAA EL A=) TEL A ALE A AU 7} obd AR Fo
Aol o] g mwk gul2 A S2gto] RAF UL ojd 54 0} 2L A= 98 dod)e
AA At
>>> class C:

pass
>>> ¢ = C()
>>> c.__len__ = lambda: 5

>>> len(c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methods such as __hash__ () and __repr__ ()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the con-
ventional lookup process, they would fail when invoked on the type object itself:

>>> 1 ._ _hash__ () == hash (1)
True
>>> int._ hash__ () == hash(int)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor '_ _hash ' of 'int' object needs an argument

FH2Y AAHA A2 HANEE TE3H = o]d A A RE A=+ FF ‘U E FH 2 S (metaclass
confusion)” o2}l £2]il, S+ WA EE 23T o 225 3= W or 9T £ syt

>>> type(l).__hash__ (1) == hash(1)

True

>>> type(int).__hash__ (int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the _getattribute () method even of the object’ s metaclass:

>>> class Meta (type) :
def _ _getattribute__ (*args):
print ("Metaclass getattribute invoked")
return type._ _getattribute__ (*args)

>>> class C(object, metaclass=Meta):
def _ len_ (self):
return 10
def _ getattribute__ (*args):

print ("Class getattribute invoked")
(TH5 sl el Aol A)

54 Chapter 3. C|O|E{ 2 &

https://peps.python.org/pep-0688/

The Python Language Reference, & 2|A 3.13.1

(o] sl o] A ol A AI)

return object._ _getattribute__ (*args)

>>> ¢ = C{()

>>> c.__len_ () # Explicit lookup via instance
Class getattribute invoked

10

>>> type(c).__len__ (c) # Explicit lookup via type
Metaclass getattribute invoked

10

>>> len (c) # Implicit lookup

10

Bypassing the getattribute__ () machinery in this fashion provides significant scope for speed optimisations
within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must be
set on the class object itself in order to be consistently invoked by the interpreter).

3.4 IR EIl(Coroutines)

3.4.1 O{9II0|E{E ZHA|(Awaitable Objects)

An awaitable object generally implements an __await__ () method. Coroutine objects returned from async def
functions are awaitable.

0 Ix

The generator iterator objects returned from generators decorated with types.coroutine () are also awaitable,
but they do not implement __await__ ().

object.__await__ (self)
Must return an iterator. Should be used to implement awaitable objects. For instance, asyncio.Future
implements this method to be compatible with the awa it expression. The object class itself is not awaitable
and does not provide this method.

0 #x

The language doesn’ t place any restriction on the type or value of the objects yielded by the iterator returned
by __await__, as this is specific to the implementation of the asynchronous execution framework (e.g.
asyncio) that will be managing the awaitable object.

Added in version 3.5.

o B

PEP 492 7} o}l o] 612 Ao T3 o) ApAI S JHE Z AL A& ch

3.4.2 T2 E| ZHx|(Coroutine Objects)

Coroutine objects are awaitable objects. A coroutine’ s execution can be controlled by calling __ await__ () and
iterating over the result. When the coroutine has finished executing and returns, the iterator raises StopIteration,
and the exception’ s value attribute holds the return value. If the coroutine raises an exception, it is propagated by
the iterator. Coroutines should not directly raise unhandled StopIteration exceptions.

2R AL theol Udste WSS £8 23 Qi A a ol 8 (4 U @ o] 5o el e o B v A =
BN L)) AST B U S, AVl El9hs Yo, I T L ole a0 HE A A A3

rlr

(3]

3.4. D EEIl(Coroutines) 5

https://peps.python.org/pep-0492/

The Python Language Reference, & 2|A 3.13.1

Fsuyrth
WA 35204 HA: ZFELS F W await 3 RuntimeError = Y2 7Yt}

coroutine.send (value)
Starts or resumes execution of the coroutine. If value is None, this is equivalent to advancing the iterator
returned by __await__ (). If value is not None, this method delegates to the send () method of the iterator
that caused the coroutine to suspend. The result (return value, StopIteration, or other exception) is the
same as when iterating over the __await__ () return value, described above.

coroutine.throw (value)

coroutine.throw (fype [, value [, traceback]])
Raises the specified exception in the coroutine. This method delegates to the t hrow () method of the iterator
that caused the coroutine to suspend, if it has such a method. Otherwise, the exception is raised at the suspen-
sion point. The result (return value, StopIteration, or other exception) is the same as when iterating over
the await__ () return value, described above. If the exception is not caught in the coroutine, it propagates
back to the caller.

¥ A 3.129) A ¥ 7 : The second signature (type[, value[, traceback]]) is deprecated and may be removed in
a future version of Python.

coroutine.close()
FFEo] A AEstal FRES Ut Bk IR o] A FA] Fold, o] M= WA
FEEo] YA vxllﬂ+ﬁ 3k o] Bl g o] Bl 9] close () MINERZ AT U Y X ES 7HA =
H). 28 2 A ZA A A A GeneratorExit & WAAA 7| =], ZFE o] A AAIS A B
FUTh wARo 2 TR o] A% e FEATIL BN, ok R AR A2 2k3hE
D]—

A7F ot 2w = Y9 =2 A Ao w245 23] Y th(closed).

M2 o oﬁ,
o{ﬂir

TE v
T
=4

_|§’~=

3.4.3 H|=7| O|E{2|0|E{(Asynchronous lterators)

Hl5 7] olH e o] 8 & A __anext_ WA EANX HE7] ZEE 2T 5 UFUH
H]5 7] olH &l o] Bl = async for TolA AMEE & A5 U T

The obiject class itself does not provide these methods.

object.__aiter_ (self)
H)5 7] olg gl ol e AAE F ok gt

object.__anext__(self)
olH# o lH tZ FH= F+ Ao HE = Ak FUh olEH oMo EYUH
StopAsyncIteration o3& 4O Ao g}

H]5 7] olE 2l & A A 9 o

class Reader:
async def readline(self):

def _ aiter_ (self):
return self

async def _ anext_ (self):
val = await self.readline ()
if val == b'"':

raise StopAsynclIteration
return val

Added in version 3.5.

56 Chapter 3. C|O|E{ 2 &

The Python Language Reference, & 2|A 3.13.1

WA 3.7 4] ¥ 7 Prior to Python 3.7, __aiter () could return an awaitable that would resolve to an asyn-
chronous iterator.

Starting with Python 3.7, __aiter () must return an asynchronous iterator object. Returning anything else will
result in a TypeError error.

3.44 H|ES7| HEHIAE 22| X}
v % 7] AP A~E 2] A} asynchronous context manager) = __aenter__ 2} aexit_ WA Z oA AP S
F A=Y 2E HE 2} YT

€l
.
AN FAT
W B A async wich EolA ALEE & dEUTh

The object class itself does not provide these methods.

HE7] A

object.__aenter_ (self)

Semantically similar to __enter__ (), the only difference being that it must return an awaitable.

object.__aexit__(self, exc_type, exc_value, traceback)

Semantically similar to __exit__ (), the only difference being that it must return an awaitable.

v AYAE Bl A 2] 2 of:

class AsyncContextManager:
async def _ _aenter_ (self):
await log('entering context')

async def _ aexit__ (self, exc_type, exc, tb):
await log('exiting context')

Added in version 3.5.

3.4. ZREIl(Coroutines) 57

The Python Language Reference, & 2|A 3.13.1

58 Chapter 3. C|O|E{ 2 &

cHAPTER 4

>
02t
h
1

41 Z2OHo| X

Aole Z2I9e RE 2R 02 e B (ock) & BT AW = 2
2e 24Utk 2§, g vy, S JYor Y=

o 259 E R (@E DS B e el E 2 AlEE s sdolut ele el
il FEESAUTE 23 HE ¥R (cFHLZ Az H PPl A=
)& ZE ESYUth m AAE AE-ste] W Sl A 2 A4 -’F—fr 2AYER (RE _main_ 0 F)
EZdUth WA TT eval () Fexec() E ALGHE ARG AAE ZE E59]

7}o] ol m

oo I T 1> of o
ol 1 S o offt off

Au)

rr

2

i

krl

2!

[

E52 A 2 < (execution frame) oA AHFHUTh 28| d2 RE e & 9 JH (Hw Aol A
UthE 23stal, Z= E59 Agfo] 2d 5o ojtf A o] RA AP S ASKL AAAE 2A T

4.2 0|51} ¢1Z (binding)

421 0| AHZ
ol (Names) & AAE 7Fe] AU o] 52 ol5 42 At w2l HEolFYth
The following constructs bind names:

« formal parameters to functions,

o class definitions,

« function definitions,

 assignment expressions,

« targets that are identifiers if occurring in an assignment:

- for loop header,

- after as in a with statement, except clause, except * clause, or in the as-pattern in structural pattern
matching,

- in a capture pattern in structural pattern matching
e import Statements.

e type Statements.

59

The Python Language Reference, & 2|A 3.13.1

e type parameter lists.

The import statement of the form from ... import * binds all names defined in the imported module, except
those beginning with an underscore. This form may only be used at the module level.

del 2ol o= thid GA] o] HHo| AZH Aoz FFYUCHAA 2u| 7t o] 5& A4 A st=
Aol 7= A =).

Aol JE B Feh At 34 gol WjEe] B H = B2 U 52T 4 9L,
2= BE)0H 54 S5 dFTh

If a name is bound in a block, it is a local variable of that block, unless declared as nonlocal or global. If a name

is bound at the module level, it is a global variable. (The variables of the module code block are local and global.) If
a variable is used in a code block but not defined there, it is a free variable.

223 dAEo) 533 429 o] FE2 th3 ol U2+ o] 5 A4 (name resolution) 7 2 ol a2} &4

=& o5 A4 (binding) & 7+) YTt

td

(@49

¥

=
=T

EHMW o] & 9] 7}A] A (visibility) & A] gtk A A B
5o TARUTH weF A7 g EFOlA o] ROl AW, 23E £ 5

= 2 o]
O3 ThE A8 S BEA S o4, ~mmE o5k Gt A oo HE wE BB 0w HyEth
)%l 1= 8% el A 8T W, A Tk gl 2 ame) g Aoz 44T, 2
TFAE=ERE AT FTS EZ2] 87 (environment))2t F5 U th

o] o] M= LA 2] ¢4 0 ™ NameError o 9] 7} SFA3 U T Wk S A AT L7} & AF T o)1,
-1 O]%O] }‘]"%‘Q“f /\] ;éxoﬂ O]’X] A ﬁﬂ X] SIS Z] ‘i“l—,—tﬂ UnboundLocalError 01]3] 7]— ‘?—_._]"‘E?j'l/] D]—
UnboundLocalError <= NameError & A H E’-EH/\?:] B

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated
as references to the current block. This can lead to errors when a name is used within a block before it is bound. This
rule is subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block.
The local variables of a code block can be determined by scanning the entire text of the block for name binding
operations. See the FAQ entry on UnboundLocalError for examples.

If the g1obal statement occurs within a block, all uses of the names specified in the statement refer to the bindings
of those names in the top-level namespace. Names are resolved in the top-level namespace by searching the global
namespace, i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace
of the module builtins. The global namespace is searched first. If the names are not found there, the builtins
namespace is searched next. If the names are also not found in the builtins namespace, new variables are created in
the global namespace. The global statement must precede all uses of the listed names.

Globel #& e BFY o|F AQ AN ZE ATTE AHUTH AF W5 A9 HF Al A
o DA A A Tt R Y

The nonlocal statement causes corresponding names to refer to previously bound variables in the nearest enclosing
function scope. SyntaxError is raised at compile time if the given name does not exist in any enclosing function
scope. Type parameters cannot be rebound with the nonlocal statement.

BES o] F B BEO AL YEED ©) AFOR BB U 2aYE WA BES G4
__main__ 9] E‘ril EHYrth

Class definition blocks and arguments to exec () and eval () are special in the context of name resolution. A
class definition is an executable statement that may use and define names. These references follow the normal rules
for name resolution with an exception that unbound local variables are looked up in the global namespace. The
namespace of the class definition becomes the attribute dictionary of the class. The scope of names defined in a class
block is limited to the class block; it does not extend to the code blocks of methods. This includes comprehensions
and generator expressions, but it does not include annotation scopes, which have access to their enclosing class scopes.
This means that the following will fail:

60 Chapter 4. Al&H ol

The Python Language Reference, & 2|A 3.13.1

class A:
a = 42
b = list(a + 1 for i in range(10))

However, the following will succeed:

class A:

type Alias = Nested
class Nested: pass

print (A.Alias.__value_) # <type 'A.Nested'>

4.2.3 Annotation scopes

Type parameter lists and t ype statements introduce annotation scopes, which behave mostly like function scopes, but
with some exceptions discussed below. Annotations currently do not use annotation scopes, but they are expected to
use annotation scopes in Python 3.13 when PEP 649 is implemented.

Annotation scopes are used in the following contexts:

Type parameter lists for generic type aliases.

Type parameter lists for generic functions. A generic function’ s annotations are executed within the annotation
scope, but its defaults and decorators are not.

Type parameter lists for generic classes. A generic class’ s base classes and keyword arguments are executed
within the annotation scope, but its decorators are not.

The bounds, constraints, and default values for type parameters (lazily evaluated).

The value of type aliases (lazily evaluated).

Annotation scopes differ from function scopes in the following ways:

Annotation scopes have access to their enclosing class namespace. If an annotation scope is immediately
within a class scope, or within another annotation scope that is immediately within a class scope, the code in
the annotation scope can use names defined in the class scope as if it were executed directly within the class
body. This contrasts with regular functions defined within classes, which cannot access names defined in the
class scope.

Expressions in annotation scopes cannot contain yield, yield from, await, or := expressions. (These
expressions are allowed in other scopes contained within the annotation scope.)

Names defined in annotation scopes cannot be rebound with nonlocal statements in inner scopes. This
includes only type parameters, as no other syntactic elements that can appear within annotation scopes can
introduce new names.

While annotation scopes have an internal name, that name is not reflected in the qualified name of objects
defined within the scope. Instead, the __qualname__ of such objects is as if the object were defined in the
enclosing scope.

Added in version 3.12: Annotation scopes were introduced in Python 3.12 as part of PEP 695.

¥ A 3.139]| A ¥ 7 : Annotation scopes are also used for type parameter defaults, as introduced by PEP 696.

4.2.4 Lazy evaluation

The values of type aliases created through the type statement are lazily evaluated. The same applies to the bounds,
constraints, and default values of type variables created through the rype parameter syntax. This means that they
are not evaluated when the type alias or type variable is created. Instead, they are only evaluated when doing so is
necessary to resolve an attribute access.

Example:

4.2. 0|§1} A& (binding) 61

https://peps.python.org/pep-0649/
https://peps.python.org/pep-0695/
https://peps.python.org/pep-0696/

The Python Language Reference, & 2|A 3.13.1

>>> type Alias = 1/0
>>> Alias._ value_
Traceback (most recent call last):

ZeroDivisionError: division by zero

>>> def func[T: 1/0](): pass
>>> T = func.__ _type_params__ [0]
>>> T._ bound_

Traceback (most recent call last):

ZeroDivisionError: division by zero

Here the exception is raised only when the __value_ attribute of the type alias or the __bound___ attribute of the
type variable is accessed.

This behavior is primarily useful for references to types that have not yet been defined when the type alias or type
variable is created. For example, lazy evaluation enables creation of mutually recursive type aliases:

from typing import Literal

type SimpleExpr = int | Parenthesized
type Parenthesized = tuple[Literal[" ("], Expr, Literall[")"]]
type Expr = SimpleExpr | tuple[SimpleExpr, Literal["+", "-"], Expr]

Lazily evaluated values are evaluated in annotation scope, which means that names that appear inside the lazily
evaluated value are looked up as if they were used in the immediately enclosing scope.

Added in version 3.12.

4.2.5 builtins 2} X|SH=l AlsH

CPython 78 AAl: A§AH= puiltine & AT A Dolol gUth ol 2 78 AR AFAUTH
LHZO]— O]%‘ ‘To"‘Zl'-g] %}"% %7616_}—17— Ao /\P%Z}% builtins 2 EE import ’5‘]—_1'7_ :/_7,”19] OiEﬂ—ﬁ'—E% 79-,)
S 543 of gk

D= 250 Aas AR U o) 5 F0L, A4 A o) 5
A) o] AL BA Vel 2 B o] o] of T THE AL
AOF, main EL%O{] ‘}Zl
_ builtins_ +Dbuiltins

F7F2 ©o]5 _ puiltins__ & ZIJ|FFOZH

A 259 97 AR E Y. 712
W= _ puiltins_ 7F WA 2 E builtins ©|2, T2 25 & wj=
= Ut}

25 ol tisl] o] 5 A AL AP o] ofy et A3 A o] FojFHYth o] AL oI T2 I =
7H2E 293 tE AS S3UY
i =10
def £():

print (1)
i = 42
£0)
eval() Fexec() T olF AL A AT Ao st 2 Ao glsUth o522 TE A9
A AT AA o] 5 FAA AAE £ JdH Utk A A= 7HF ko]l 234 o] & w7ke] ol A A
o] & &7t AAEULE! exec () Feval () Tol= A3} A A= A=k

A
7H5 8 QAL AU T BoF ©hA) 8 o] F1hE ol AW, 1R 7}

o] ghAl = o] At

il

2ol A== ZE7tRE| A3hAE = Al ol SAHA 97

62 Chapter 4. Al&H ol

The Python Language Reference, & 2|A 3.13.1

4.3 0f|2|

ol gl olleiut 9] A d 22 A Eskr] fle) ZE EF2 Ak Alo] E5S ME FEdU o7t
A E Aol A o2& %‘_EKMEHrmsed),EE%& FE EFoUYAHA F2 AR o g7t Eget

JEBEL 2 oW 2= BEAAA 9L AT & U
RN =

glol A AHZHEHE AP A ANHOLE YFrEs 2 22)E ZXT u & oyt sol#
ZZ2IWL raise TS ARINA GAZHOZ Q)& Lo = AFUth o] A 7] E try + except
To2 AAFFYULE 18 FA0NA finally F+ A8l (cleanup) T EF 117@'6} o AR E =, A5
A2l et 2ol ofy el A T oA of| Q] 7} A s 18 2] kA Al U T

go] #-2 of 2] A 2] of “F 2 (termination)” E & AFES U TEH ol &) XA] 7| 7F H 7 AP =A AT 5+
AL, vpZ A oA Ay S ﬁ]*ﬁLAL AA T ol 2] e] AAES A AS Fof At A4S AT =+
O.]/’\

[T UTHEA Y T 27h2 ASFE O AZA 7] A2 ey .
o] 7t oy ME X2 H A b2 wl, Bz B 220 AP S TR Y, S E v F2=

EotUth 7 A% 27, ol €] 7F systemExit Q1 A5 Al StaL, A8 Ed o]l S s Th

Exceptions are identified by class instances. The except clause is selected depending on the class of the instance:
it must reference the class of the instance or a non-virtual base class thereof. The instance can be received by the
handler and can carry additional information about the exceptional condition.

0 3z

oo WAl A& sto] W API Y27} obdych 2 Y82 @
AL, == o HAY Az Bl APE + Y= 2

A 1ry & ol A try <F, raise i O A raise ol gk A o] AlFH Y th

43. 0oll2| 63

The Python Language Reference, & 2|A 3.13.1

64

Chapter 4.

CHAPTER B

ol 1t
U E A|AH]
3t 2E o Q= Tlo|W FEX A rE o)zl T2 AMNAS EF 02 RE0 9= FESof ys A=
AL QUL spore B YEE AAE Qo)e /AR TR BUIA T, §A FRE ok,
importlib.import_module () ZL 4+ WA _ import_ () E YFE FXE doy|=0 AFRE &
o

import & F 7HA A4kE R A dYth WA
2720 o] Fof AZ gt lmport =9 73
Zoezg Z—L,] F{;} ‘41;]' __import__ ./] H}3

rﬂ
i

o] o] = a4 A]-_,] A ﬂs} /Kﬂ ‘:')\].zﬂ-oﬂ r;H H/\-]% import TS HAR.

_import__ () 9] AP TEL RES 2, LAY, RES BEL A4S £ YUTh RS
AAE QEESAL ol 2] A (sys . modules & EHFUHE AL A 2L R4 A9 oS o
Qold 5 Y71E AW, L F import BHo] ol § A2 A FH I

import —r‘O] /\13“9 EH xF ‘/H% __import__ () 7}33:%%]43]' ?:}EE /\]—}—\Eé]‘% i%ﬂ% E]'% U'“ﬂq“é‘
(importlib.import_module () ZL)L import_ () = A}RSIA ¢ dZE IS FLHF 7] Y3t

Ao e AEE S 5t

EEol A& 9EE D uf, sfoj RES A, TAdAHY, 2§ 44 s, 27139yt
Uo7 o] 50 R ES U AT 4 YUY, ModuleNotFoundError S Yo Ut} glo] ML Ax E HA7}
TR o]lF o BRES e g dzre FAFUT o] AFE2 thx Aol A A st o g
A &g Bel 4% 1 338 5 Lo

WA 33004 W74 QEE A 2FH2PEP 302 8] F WA A S5 FHES AT A5 U oA

EAHQA JZE A=
) =
=4

SUTH- AA X E A|2H O] sys.meta_path & T3] =&FH Yt} o 7]9
3, U] ©] €] H (native) ©] 2 7} of

T 7| XY Dol FEE AFUTH(PEP 420 & H A).

5.1 importlib

importlib B EL A X E A AT AT 2HR-517])83

import_module () & 93

APLE A F 3T B A4 3)

I types.ModuleType & HA .

B3 APIE A2 th o & 50, importlib.
Z __import__ () ol ¥]3] A= 1, ¢ kst
importlib ZFo]l B & 8] AHAE IFZXFAAA L

lil

m

2

%

rlo

=y

ol

o

F]F

o,

o 32

=70
£ oft

65

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/

The Python Language Reference, & 2|A 3.13.1

(S

.2 17| X|(package)

shol e 7HA S5e) BE AR W 23 3, BE BELS REo| st doi} O} 2 %o The oW
oz PAR LAY Aol ol APUTh BES 25T o8 ASTEE AT 94,
shol e 7] 4] 2 Ad e 23 A&

H7 A2 51 A 2"l gl T e etn A4 5 AW, A7) A9 BEo] AN 2POoRRE &
42t gong o W{E YT £ Tthe 3451 Dolo Gtk o £ B2 4, v el 9 5}
oleht W48 ST AYUTE Y A 2" OAHAY, A AL AS Ao =43, 74 E
HE BER ol Au AR 238 5 A5t

BE 577 BEo|ghe A2 7198kt Aol FR G HAT BE BE| 7142 AL ohgyrk
e Ao BANE, R AL SR SR REYUCL TADCE, pach ol REE £33
reERFe N AFFUh

All modules have a name. Subpackage names are separated from their parent package name by a dot, akin to Python’
s standard attribute access syntax. Thus you might have a package called email, which in turn has a subpackage
called email .mime and a module within that subpackage called email.mime.text.

5.2.1 ™Mt o7 |X]

ol {2 7 7HA F72] sh71 A& B FU), A+t 3 714 ¢ o]
oF 2 o]l At A5 A A I A AU TE A+ A7 A= 2

]IO
oft
=]
P
‘(‘f
o}
=
<l
e
o
N
)
2
— 0
)
vl
Ach
fru

i .
FAHUS A M7 AZFFEED uf, o] __init__.py FAo] FAH 2 HYH 1, T 0] FostE
AR o] W7 A9 o] & B2 o] EEE ARk _inic__py HAL OHE BES] /4 5 9t
Ak e ol A HES EFT S 1L, ol A4S YEED w) BE B AP o= RES 23U
AE o], e 22 A" wi 2] = 2 49 parent I 7| A 2} A 7HO] A B S} 7] A& A o] Fth
parent/]
__init__ .py
one/
__init__ .py
two/
__init__ .py
three/
__init__ .py

J

parent.one S ATz ESH parent/__init__.py U parent/one/__init__.py L ExAHo g APt

Yt} Hol2 parent.two &} parent.three & YEZEE Z}7Z} parent/two/__init_ .py @} parent/
three/__init__.py & A3}

o
N
N

o

TEE EEEREE EEERSE ikt
L EAEL 7ip 3 o] L} Y E9) A1} Tho] A o]
o} o] & 27k M7 AL st Al 2o A o

L TAA FE L G A EED S

. ok

& r@ o
S £ 0O

N

)

rlr

it

-0,
ox
Fj oy rfo
w >
N
ﬁ;r[r
Elgi B
~{> rg o
v
"
0, }Lr
R
()
ot > 2
iy
T
A, e

X0, N o © ©°

£
N,
52
o
&
k
%0,
oy
A
=

oo m

AF2817) gk U Th iAo S o]]
Ae] Bw 7] 4] (= 2 A9 9714 2]
2 z}E o

ot Ol‘J
tlo i
>4
oo N,
ol N,
ol

e i

__path_ oJEZHEZ duldel g~
o, 2 3712 Yo thS X E A=
sys.path)] A2 7} Al o™ 9] 7] x| A of o 3 A

F A7) A9 A9, parent/__init__.py U] gHUth AR, o
ent LB 2|7} A E 4 QlaL, Z42e] A2 ohe 24 :
0 & parent/two Fo Y X3HA k& 4= AFUTh o] A, shoj & 24l
g7 dxE = ujuic) H A4S parent 7] A& § 3k o] &

FH 7 A 9] F AL PEP 420 & FZ23HA L.

o ® ©

g o ey o He S

)

parent/one >

a q
AR HA7A F

o]
[n}

9, o
[r
A_P"l

o

°|

ul(f

66 Chapter 5. %'EE Al.ﬁ%

https://peps.python.org/pep-0420/

The Python Language Reference, & 2|A 3.13.1

5.3 2444

A48 A\ 25}7) S8, ool e QEED BE (E 51714, 314t o] 2] ol Aol & F-a8h 4] okeh

o &A% Atste o5 & 8 E FUth o] o] 52 import L E AFH o QAR importlib.

import_module () L}iimporti() ‘@-Zr_i @%% UH 7H%'/F‘§E—‘?LE1 ‘9“4 D]‘

o] o] 2 YZE FAMY of] GA A AL E =, B BREE 7= 3 OE-TL‘_% AEL T AU

& E9] foo.bar.baz. ¢ AFof|, oW HA foo &, I} foo.bar & U]—X]U]'OE foo.bar.
T ATEVAL = /‘1-4]?5]'1’4-“4 ModuleNotFoundError

baz & YT ESH T AT HF S AE
3]

M 5% AL R AN B4 sys modules AUTH o] MFE 7 ARES TYANA

Ao 92z E ¥ RE BE9 HA R 715k A 9ok foo.bar.baz 7} A YZE FHTIH,

sys.modules = foo, foo.bar, foo.bar.baz FEEES T3 TH ZH 7o LS = PSS B E 7

QU o,

QEESHE F BE 022 ays.modules o)A 3, T} GIThE G gho] YEES WEHL B E

o1, ZZ A A= g5 Ut ‘3]-7<] ‘:']' Zko] None ©| ¥, ModuleNotFoundError = 42 7] vk &
LEFp

o)l 9Leha, ol A% A,

sys.modules < 2 7|7} SFH UL 7| E A Sl R ES _ﬂrq A= A T (ThE R EE o] o}

I REA 3 FRE FASHL e T UeBE), AT o5 EE e A E F23E) A, th
Az EU Tto]|H o F Flo]F I RES UHA ;E_% US Ut 7)ol &= None € YT 45 g=d|, thS
ol Z E uj] ModuleNotFoundError 7} o] UEE w5 Ut}

25 AA o 3 FZRE FA ST, sys.modules Y A FES FEZ2 3 ZT A YFEFH F L E
AR = 7L 71 0] o} A Hof] 9 oH oF gt t}. RFHOl importlib.reload() & 22 E& AAE AA
&otaL, ZHsHA RS ZEE A A A BEY &S thA] 27|13 T

5.3.2 1}Ql(finder)2} 2 (loader)

Et‘irol sys.modules oA LA A ko, B ES Fopa] LEGY] 9Jaf slo] o JXE ZRE F o]
AUt ol 22 EEe T A9 AU AANEZ TAH o] YL Uth old 9} 20, Fele A
Z}” °l G e AHFS ARG, Fol W o] 52 RES e 5 A=A 2 sks AUt F AdE o]~
BES —?‘645} AAELS AXEHL REFUG- 8T RES 29T 5 vty 33w g E8lF
‘/]"4‘-
Thol W& g 7HA] 712 s HEH QEEES ¥ A5tk A WA A2 W RESI AAE
e A, F A A2 222 25 (frozen module) o] A A& 2Ha 5 913, Al WA A2 RES YEE
A= oA AAFUL GEE A2 5k A sde A2 zip 39S 7helvle AXEe] HEAUTh
I 2 URLE AEE 9l ASHE, AT AL = de AdES A ES &4 + dsUth
YXE dAe B4 7hsal A, 28 A4 A9 E Fdst] S8 A st o & F71E 5 syt
e e AR RES ZESAE FFUTE Fold o5 e ol X ES HHE FHES
2R BF 29 (module spec) = 2T, dZE A= EE82 2F T 0 o] A= A8t gt
O A2 o H e 26 22 g0 te) & O AAs] dPsted, dZE AL &4st7] 6
NEA MEL AES HEL TEI=AE 2T
WA 3404 M7 o] WAL spolyo A, A H 7 =Y & A EHF AT, oAl EHE 298t
Ae BE S ESFUTL QZ2E =5 ZE7F oMY AR H 7= st AT 2 982 H45 A5t

i
i
|\
flo
. 12
I~

X E 2 (import hook) YUt}

& =2 AN AL th LA v
& AdXE AZ ;‘3‘;(import path hook).

=

=

15 ‘4 t}: v €} = (meta hook) =

ﬂ LJ“

E£E A Eol A& 7] Ao
ARl e 4 QA Fuek o

o 2,

The Python Language Reference, & 2|A 3.13.1

UYEZE F2 £2 sys.path (T2 package.__path_) A7 472, A F=2 FH3 vhp= A
S2HUC thgo] AWAE0), YEE AE FL ays.pach hooks of Al ZHRE 25 BHow
%E%]— 2~]!__1/]1-4_

= 2 T A8

5.3.4 OE} 4 Z(meta path)

When the named module is not found in sys.modules, Python next searches sys.meta_path, which contains
a list of meta path finder objects. These finders are queried in order to see if they know how to handle the named
module. Meta path finders must implement a method called find_spec () which takes three arguments: a name,
an import path, and (optionally) a target module. The meta path finder can use any strategy it wants to determine
whether it can handle the named module or not.

who el A2 Tl E sl Foi2l o 5] ES A sk YL driel, 2% AAE EAF U 218
AT None & EHFUTH W sys.meta_path A g7} 29 S F8 £ 2] X oo H59 ol =514,
ModuleNotFoundError % ?:_127,} ‘/] D]' ‘i'jl'}‘g '5]'1_ r}f]ﬂ %‘% »7—16]: _—1 /x\l’}‘] 7]5’—; ?:IEE —L——LE*ﬂi%

Faa

The find_spec () method of meta path finders is called with two or three arguments. The first is the fully qualified
name of the module being imported, for example foo.bar.baz. The second argument is the path entries to use
for the module search. For top-level modules, the second argument is None, but for submodules or subpackages, the
second argument is the value of the parent package’ s _ _path__ attribute. If the appropriate __path__ attribute
cannot be accessed, a ModuleNotFoundError is raised. The third argument is an existing module object that will
be the target of loading later. The import system passes in a target module only during reload.

HEt ZE2= 3 Y Jd2E o tisf] o2 A A 2 JAFUTE o & S0, A ZEE 0] oFF A
=B HA sty &, foo.bar.baz & YXE W, WA 7 vel A& ST (mpt) S| thal
mpf.find_spec ("foo", None, None) & T Z3A] F A ?:]:_‘:’;Eg FYPFUth foo 7FIYZTEH S
HEt A2 E F UK A A foo.bar & YEE SF=0|, mpf.find_spec ("foo.bar", foo._ path__,
None) & &Yt 94t foo.bar 7} X E H W, npA] 2 &ML npr. find_spec ("foo.bar.baz",
foo.bar.__path__, None) =3 %QMD}

o' Wt AR AT E2 23 A4 d2ETAAFULE o] dEHEL F WA AAE None ©]
obd Zlo] 2 3/ None

m[o
i 10
v
)
T
v

sho] W8] 7] £ sys.meta_pach = 4| A9) WEl A2 SHAHE 23 AE U b 4P BES JEE
S e QI ERE RES JEENE P LI, S JEE A7 oA BES JEES

He ITHE A= 7 el o).

WA 3404 M7 : The find_spec () method of meta path finders replaced find_module (), which is now
deprecated. While it will continue to work without change, the import machinery will try it only if the finder does
not implement find_spec ().

WA 3.100 A M 7 : Use of find_module () by the import system now raises ImportWarning.

B A 3.120| A ¥ 7: find_module () has been removed. Use £ind_spec () instead.

5.4 2%l (loading)

5 2o AR Y, YEE AR BELS 2P0 22 (DA) AR 2HE) L A FUTE o 7)o
QEEo] 29 74 5ok Lo Lol ek vk Q) 1o gy

module = None

if spec.loader is not None and hasattr (spec.loader, 'create module'):
It is assumed 'exec_module' will also be defined on the loader.
module = spec.loader.create_module (spec)

if module is None:
module = ModuleType (spec.name)

The import-related module attributes get set here:

_init_module_attrs (spec, module)

if spec.loader is None:
(TH5 sl el Aol A)

68 Chapter 5. %'EE Al.ﬁ%

The Python Language Reference, & 2|A 3.13.1

(o1 sl o] A ol A Al <5)
unsupported
raise ImportError
if spec.origin is None and spec.submodule_search_locations is not None:
namespace package

sys.modules[spec.name] = module
elif not hasattr (spec.loader, 'exec_module'):
module = spec.loader.load_module (spec.name)
else:
sys.modules[spec.name] = module
try:

spec.loader.exec_module (module)
except BaseException:
try:
del sys.modules([spec.name]
except KeyError:
pass
raise

return sys.modules[spec.name]

ChE 3} 22 AR AVl 9l shof o
o TeFFolR o] F9 EE| sys.modules 9] JYTHH, YXEE= oju] 22 EHE FY T}
« ECL VIR E 138 517] Aol REL sys.modules o A2 S F5 Ut o] AL 4y 2E 9]

A 58 0890 2) AN S e B S0 A ST B s moduiee A FoA 80 2

5 oto) ALEH Q1 A7) (recursion) B HFA| 311, 2 41 9] Aol o2l M 29 = AL B Th

b
>

¢

N

N

m M
EJJEO%

é
2

o 2ol A, At RE(LF] At RET S sys.modules oA AAFH YT} sys.modules
Mol o]m] Q= BREHN F4H a2 JegFor 29H BREE2 A0 Follof ofut gt
o= At R EX A} sys.modules o ‘FolAl 5]% g2 g Yt

o« ZEO] WHEHA T, o} & AP 7] A, 14 oA g ok o], AXE FaE= X E H™
EEJJEIRESZS AZTIUTEY YAt 2 1 ol 4 “_init_module_attrs”).

e RE AP EYA BEY o|F Fo] YA+ A2AH YU AP A 2 2
A A==, 2H7F o] E Zlo] o DA A oF =X 2R Tt

o 2 Z0lutE 0] 2| 1 exec_module() & AT L= REL Iz E Zo vtEE L= Ao old & 95

<
s

WA 34004 WA ZE AJ2dlo] 7|2 FAo] T 2o A Y-S
importlib.abc.Loader.load_module ()]}ﬂ__oﬂki-r Hquiff t}.

541 2

BEERUEE9Y 2HAA Vs S ATTUTH R 4. 2 E A+ %}L‘rfﬂ AAFZ importlib.
= X E

abc.Loader exec module()“ﬂk1 = AR 7 A2 H U th exec_module () ©]
EFE e FARYL
2He e} 2e 87 2 A5 L wEs ok Tt
« WO EFo] o] W BEW G BEOIY FA R 2L o] oo, ZHE BEY
FEEREY AY o] E %Zl'(module .__dict_) oA A3l oF Tt}
o Wk 27 RES AYFHA FFHW, tmportError & Y2 ok Ut} 3R] W exec_module ()
FF B S T2 ol = Aok Ut
wo AL, gholrel 2rE e AX YUt 18 A find_spec() FINEE 207} selr 2 AAH
23S FHFY
2 importlib 73 WH - 2} AR8HA] ek ok thAlo], sys.modules o A B o] 5 23N RES A5 UL 0| A
ARAG FIE QEES & BEO] eye modutes o 95 A4S HHE 4 Aok AUV th o AL T8 A 5 Aol 2 THE shol
FHAA AT B A

5.4. E%(loading) 69

The Python Language Reference, & 2|A 3.13.1

2 E 2T & create_module() HIAEE 33
AR 5 LGSl A 2F a8
create_module () & B & 7 72‘"-4 JEZIHEE 44 ¥
E:]—rtq 0]__)_1—2 ZJ;(]_L—_ /\H _,_EE AANE u]-‘:qr/}

Added in version 3.4: 2T 9] create_module () WA E.

W72 3494 ¥ load_module () WA =+ exec_module () 22 AP, YXE A7 299 TF
3 E (boilerplate) ol ™f & & 912 T}
olu] 23t EHEHRY TS Hdl, §2E A A+ load module() WA =7 EA3st1
exec_module () & T H3}A] O W load module() & AHEFU T 314 T load module() &
A= A5 Uth 28+ hAl exec_module () & T3} oF Fhch
load_module () HIAEE RES A3P3= A Qo floA AFRE FTF
Sfj ofk gt T2 Al o] BF &%El—tﬂmz—ﬂx“’] A E BoHH:
« ¥ sys modules o 70} 71 o] £2] W& AR 7} o] u] ZA)SHH, 2 6= WE A] 7 AR S AL of
Shth (28R ?%'_O_ , importlib.reload() ©] iﬂ]—i Z 2351 2] 9kA HUt)) Wk sys.modules
of FojXl o] Fo B o] RNowW, Zr= Al E’-‘%Zﬂ]ﬂ TS 11 sys.modules o] 5= 7}3) of g T
o AT e AT} o2 W 2hEE AS WA A6, EH 7t RE ZEE A6 doll ZE 0]
sys.modules o &3] 0]: st
¥ 2 0] A3} 3, R sys moaules o 4 REEE A AT o s, Ao B wETL
Al Asl oF 321, EE]7]—_‘1 ES AR YA Ao g 23 ASoful 18 oF st}

WA 350 A HA: exec_module() © AL E ¢ AT create_module() © YT A o
DeprecationWarning ©] WAy g th

B A 3.60 A H7: exec_module () ©] A% YA 9 create_module () ©] = A & ImportError

£ dogjyrh

B A 3.100 4] ¥ A: Use of load_module () will raise ImportWarning.

(boilerplate) 29 7] 5& 3

542 ME 2 E

oW HAYZSO 2 E (& £9], importlib APIE, import W import-from =, W& _ import_ ()) Al
HREEoZEEHuf, HH BE AR AZ2 HE BEI o]F F 7t o] FoA ULt ol & E0f, H 7] A
spam o] B EE foo & 7}A ¥, spam.foo & YFE 3 To|=spam 0] A/ H EEo| A Z2H o EZHE

o 27 FUTh T3} 28 UelEl e T2 2 Fo] grku eItk

spam/

__init__ .py
foo.py

and spam/__init__.py has the following line in it:

[from .foo import Foo

then executing the following puts name bindings for foo and Foo in the spam module:

>>> import spam

>>> spam. foo

<module 'spam.foo' from '/tmp/imports/spam/foo.py'>
>>> spam.Foo

<class 'spam.foo.Foo'>

SholWe] 94 o] & A FHAA B
E Xad”He ZEHAQ 7|59 7]
modules['spam.foo'] 7} YTHA (¢

Q= A9 foo ETHET QO%O]:@'L};}‘-L

99 A% 2 4+ A5UTh AW AAZE Y=
] sys.modules['spam'] I} sys.
), Foll A= A2 HEEA] Skl

v
ol
°
g

[>

70 Chapter 5. QL E A|

The Python Language Reference, & 2|A 3.13.1

5.4.3 Module specs

UXE AAE YXE A A EEAN NS hdst FRSS AP YT 53] 29 dof. tfRE AR &=
REREY FEOIth RE AN BEXL2 0] YXE AA JHE REHE Q= AYUrh

UYXE L2 ALESIH FEI7F AZE A 2”3 452 ALGE F UFUTHL A E S0 2 E
Eatulf= A=t ol R = 171% Agete 20 o). 7M T 83 AL, AXE AT 2HY FF A4t
(boilerplate operation) & 3 & = Y= sh= A YUt E& 230 itk 2H7F 2E A dS A

gyt

The module’ s spec is exposed as module.__spec_ . Setting __spec__ appropriately applies equally to modules
initialized during interpreter startup. The one exceptionis __main__, where _spec__is set to None in some cases.

See ModulesSpec for details on the contents of the module spec.

Added in version 3.4.

5.4.4 _ path__ attributes on modules

The _ path__ attribute should be a (possibly empty) sequence of strings enumerating the locations where the
package’ s submodules will be found. By definition, if a module hasa __path___ attribute, it is a package.

Apackage’s path__ attribute is used during imports of its subpackages. Within the import machinery, it functions
much the same as sys.path, i.e. providing a list of locations to search for modules during import. However,
__path__ is typically much more constrained than sys.path.

The same rules used for sys.path also apply to a package’ s path__ . sys.path_hooks (described below) are
consulted when traversing a package’ s __path_

A package’ s __init__.py file may set or alter the package’ s __path__ attribute, and this was typically the way
namespace packages were implemented prior to PEP 420. With the adoption of PEP 420, namespace packages
no longer need to supply __init__ .py files containing only __path__ manipulation code; the import machinery
automatically sets __path__ correctly for the namespace package.

NBAOR, RE RES AL repr & 2T AUth AR A JEYREED RE £
e ASol weh, 2E AA L repr & & YA A2 Ao @ 5 A%

REo] 2% (_spec) /MW, YEE AR TR0 repr £ WEH L AEFTUTH 130
A AL 2 0] YOB, JEE AL BEA AT £ AER 72 repr%?-@wu} nodule.

}d
ofo
ok
v
kl
>,
ok
rlr
:{
:‘-3
™,
o .

_ _name__,module._ file_ ,module._ loader_ = E repr -/] CQ E—%EE
HE7|Bgoz At

A8H T Qe AR AL o Hyrh

¢« 259] _spec_ OJEFFEE 7AW, 29 Y& HAEZE repr = B FUTE “name”, “loader”,
“origin”, “has_location” ©] E 2] -.‘?—E% o] AFEE Ut}

« BEO]__file OEFRHE

« BE0]__file. EIHEE ZA ?%-Z] Tk None ©] OP"‘ __loader__ & 7FAH, 29 repr ©|

B2EY repr o R 2 AFRH UL}
o 1A FOo W, repr ol EEE __name_ & ARSFUTh

WA 3.1290 A ¥ 7: Use of module_repr (), having been deprecated since Python 3.4, was removed in Python
3.12 and is no longer called during the resolution of a module’ s repr.

5.4.6 FHA|El HIO|E T E

spolmlo] pyc 3 2 HE 7 A
l:]]_u_ 1—]4];]. 7]£7(4 o=, _1]—0]5‘&_ 2~ =
Al o] 2= AE“?J‘%D} f%‘/\]Z}Oﬂ, AZE A~

3171 Aell, A7 2 A WA AA 22 py AT}
Ao 275 A 9L s w9l A
R AEDE EESE EXBEEReNaR 12

rTS s '||:|

5.4. E%(loading) 71

https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/

The Python Language Reference, & 2|A 3.13.1

gho] W& w5t “sfA] 7|9 A L& A Dok, NA L2 w e d o] E] thalol] A st o] Y&
NS AFEgUch A 76 cpye Lol F 7HA] WE o] 5 Utk A A (checked) 3 ¥] AL
(unchecked). ZAAFE S A] 7]4F .pyc T L] A, o] WMLE 2 UG A St A A E AN A] 9L 9]
A 2F vl Ete] A St o] FEAAS AAEUTE AN S A 710k A T o] FEIIA] 2> Hoz
T, shol M2 A LS ThA] A M2 AAL Al 719 Al ZHL-& vhs Y th Bl A
A 719 cpyc FFL] A, Fpo] A2 T3] A 3F o] EA T F-S FE It 7FF ok Al 7]k
.pyc Y FEA AAF 5 &L ——check-hash-based-pycs S 1E2 A AH YD 4 dFYth

B8 37004 WA: 1A 8 pye 52 FAHREY T o) ol Tl A vho] £ mE= A9 Ehel
EEE R R DR =

5.5 A2 7|dt ool

o A AF3Xo], FolH o 7| & HE A2 A ES
9}l (PathFinder) 2 B +U, 42 JdEE €9 HFE EL Q)
AdEHERES S XS 7= P YU

AR 71N 3 Y 242 AVFE 2 ESE Hol tisiA & of= A o] glsuth o
gASEA, 4 4S FAFA AE AEZE OF+ 5]

fu

3

Im

)
<l

ro

e O

1o

N

r

~
jus)

T e

It X

e

>

B

1T,

2

>

[l

i

o

al N

O rr

in}

i

ko

ok

o Ay [
Rl
o, I
o

o<
)
<
Iy}
=]
N
k)
o,
[
‘VE’ ie
N
o}
°.

3

o

[e)

i
td
i1l
Lo
D)
o,
tlo
113
[o®
)
N

i)
rr
S
ol
Jo
M7
O
[
Ar)
o
T
e E_(E,

e &l
i}

o
2

oY o> 1o
[y

3o W
M
o H
bl oD
o
R

4 [

NI)
e, R

=
I,
i)
ro
inj
rlr
-2
= [

1=
N
N
olr
8

sEuRo) 23 4 QES B F
2| 2 2| Yot AT, oA &2
)& ool A Aste 22 &
A+ o AHEYth

o, et A= ol o A2
W RAHA M5 e
|ZE°] MBI a2t A
2ol NY3l=l, sys.meta_path

[m
Jo
ofll
fifo

[m

Lc
£E

fr g o flo o
Hot

ofo

N
ofr
oy I
[T

o, o
T
!’ﬂ =, =

ek ol
v
Ir &
2
]

flo >
ofr

ok

-

Hot
o

X

2,

o

My o -

857 4 flo

1;

+
e 32 Ho 10

21 |y

- 3

ofF ~ W s

A

Lo

o

o

N

o rlr &2 hu
[kl
Hil

w M 1o o

=

i 3
o, O i
it = rfy
0 juiv [1!{0
ofr v
e

2 o
tu o M
>
oo

o
i
&

o
ﬂllﬂl

rlr

o
11
=2

¢

=
[
L
_"_L
o

2

>
I oo

i QK

T
>
>,
o

X,
nalines
o0 &

T

o &Ly
O,
L L
rlo
I oy i

o S
"
SN o ¢
Mo gt 2R
(2m 2ol

0o M 1=
o M td
o
°
g
4
BN
T
1o
g o
o L
rlr

Hel e

T
)
>,

o

Lo
fo
v
A
ol
=
o
oM,
fu
i)
o
An
rr
a1
ke
(m
i)
B
Lo
R\
(o3

12 1 alo [m Rl
W mofo

A A, AH A2 7)9E 5} T 7} sys .meta_path
TEHA gsUrh

HUPE ol N Al e od P Hohod N ood KLl P ox

=2
2 oM, of I
R
jf_L
ro
anj
rlr
oY,
fu
N
rE
i)
ro
g
1o
-
gt

—Hz
m
oY,
u
=
[m
vk
X
r o
v}
1o
=
i}
rlo
e,

N

N,
z

" E qrE U
2

[m

o M

e 2 H

fm S ro

n

o
i‘m :r1=F
o frro
{o, I,
ox rlr
RO
rlr
L
ne
>
[>
T,
(o]
2oy
Wi
i
}J,
)
N
N,
1
o

oY,
Hu
o
o

o
o
f
[m
>
2
o
érﬁi
ﬂlgﬂ
In
J 1
IF—rU rr
In k2
=
o X
XN
rlr of

D lmE oy O
omn @ o O

E.?{_',
L
£

A2 7Iuk kel = A A9 € 34y t}, sys.path, sys.path_hooks, sys.
path_importer_cache. 37| A A A 2] _path o]EZHE Z3 AL AL o|AEL dxE F
e AsEvol =8 4 g F7hel H e AT T

sys.path contains a list of strings providing search locations for modules and packages. It is initialized from the
PYTHONPATH environment variable and various other installation- and implementation-specific defaults. Entries in
sys.path can name directories on the file system, zip files, and potentially other “locations” (see the site module)
that should be searched for modules, such as URLS, or database queries. Only strings should be presenton sys.path;
all other data types are ignored.

A2 7|9k 3kl t &= vl EF 4 &2 5kl E o] 7] ufFoll, el A A
9] find_spec() WA EE SE3= Aoz JdxE A2 AA

=

24
al
frt
>

RS0 YEE AAE A2 AW el
S Al ZEU T} find_spec() o AlFE =

79 Chapter 5. ZE A|AH]

The Python Language Reference, & 2|A 3.13.1

path QA HAF 4G F2 5 el AEQ U HE 974 Yol A YEE 5 517149 pacn
AE LR, path A% 7} vone o W, A 4HH] YEEE E5L oys.pach 7} AHEH LIk

The path based finder iterates over every entry in the search path, and for each of these, looks for an appropriate
path entry finder (PathEntryFinder) for the path entry. Because this can be an expensive operation (e.g. there
may be stat () call overheads for this search), the path based finder maintains a cache mapping path entries to
path entry finders. This cache is maintained in sys.path_importer_cache (despite the name, this cache actually
stores finder objects rather than being limited to importer objects). In this way, the expensive search for a particular
path entry location’ s path entry finder need only be done once. User code is free to remove cache entries from
sys.path_importer_cache forcing the path based finder to perform the path entry search again.

AR AEZ 7} QAo glod, AR 7] 32l Bl sys.path_hooks o] Y& BRE ZHEE
ol B2 2 A dEe %o AT A AEE 97 BN ASAN SEEUT
3% AEAE OE 4+ A Ju A= U0 FARAY, Iporcicror & WD
ImportError + A 7|¥F 3¢ ﬂﬂ‘ﬂtﬁ Fo]l FARXN AR AEZ EAT AR AEL I}
988 Yot ol 4T ol oSl AN T Y 35 GAL AL ok
WOl =€ 71 0fa)of gtk vl E Q] 39S Fo A (o
UTEs o1} 24 916l the 214 & 9% o o ot Fol A48 11
7 oF F .

qkek sys.path_hooks gAo] ol 7Y Az dEg 39y & B8 FA XA
findfspec) WA=+ sys.path_ importer cache 9] None & A &35}l (o] 7
H7F fle= 71l 7171 $9130), None & EH FA] o] WEF A2 31T 7t BRES IS 5 fle= ¢€9
@ sys.path hooks o] S ol Hpel A% A= F Bl A% Aol

S tol LE 298 2 4817 A9 g0l Jot zuEgol AGHUL RE27L BE
o) A8 o

A 2+ o] @ € 2] (current working directory) - ¥l 242 EHAHCT} - & sys.path o] Y=
Efsd At tEA HAg Utk AAE, A 2 dEE vt ZXH‘GW o] HAHE sys
path importer cache L o}R e ghE AAH A FEUTh SAE, A4 49 dAHAL 2 2E
Z 3 uuitt oA EAF Ytk AMZ, sys.path_importer_ cache ©l /‘]—-9-5]35 AZ 9} importlib.
machinery.PathFinder.find_spec() 7} E8FE= A2 =W EXdo] oYzt A A A A 2 e g g

ZFEU

£ o
el
23

Y
flo ©

L ot

®

o
=

e o O iy
[o & et

o
[0 32
|

2 _I
Ho
flo rO
o Mo
Ry
ol 1

€ £, st Nad
-’-F _% ImportError

ofl =
i)

rt

r o
fm
LN
iz,
£ g
%o,

Lr
R
"o lo

552§§%Eamﬂﬁzﬁig

E7 27344 9 7)1 A9 JZEE AP o) F
J]r‘ﬂ\:‘]t find_spec () WA EE F& & of Tt}
firaspec) 5 91 YA BHFYULE QX ¢ Rl BUT AT o151 (4% 7w
B} 5. find spec() & #ko] &A@ AP BEY 292 FHFUTH o] 232 3 “loader” 7}
SAH @A A9 DI ch.

To indicate to the import machinery that the spec represents a namespace portion, the path entry finder sets
submodule_search_locations to a list containing the portion.

OPJ

ZF3)7) Aol A0 g olnpA|E 7] Y, AR dE

WA 34004 HA: find_spec () replaced find_loader () and find_module (), both of which are now dep-
recated, but will be used if find_spec () is not defined.

A9 A2 NEe AT L find spec() BAO) o F A AN HASES AT 4 gLk
o] M NESL 77 584wl o= AHSF Uk AT, find spec() o F2 A=e Ao
FAS W, o A A =5 FAF UL,

find_loader () takes one argument, the fully qualified name of the module being imported. find_loader ()
returns a 2-tuple where the first item is the loader and the second item is a namespace portion.

QEE m2EFY e TAET B THYS NN, B2 42 A= FANEL W F2 5
SF AR A 23 A5 A o poauie) WA £ AUTIY, SAY A2 Ael A
find_module () WA= Fpath A2 TEHA GSUH (AAES A2 S HxS& 0 S
BE AAHE 7I5HE A :’nﬂtﬁgﬂﬂr)

A2 dEg 3952 find module () MAEE AZ AEE Q7 o] & T3 7] X o] ZHO 7 o]
HRA 5= A2 5 2 ehA] 97 H:HT':Oﬂ AAH DU T F=2 AE2] spdHe] find loader () £

5.5. A2 7|8t O}l 73

The Python Language Reference, & 2|A 3.13.1

(

ki

find_module () ©] 2F EA3}H, YL E A 2" L A £find_module () Al find loader () = 3=

.

WA 31004 WZA: Calls to find_module() and find loader () by the import system will raise
ImportWarning

WA 3,120 A W 7: find_module () and find_loader () have been removed.

56 EZ AZE A|AH DG
YEE A 2F AAE wA 7] A% 7HF A=A 9= HIAYUE 2 sys.meta_path o] 7|2 PSS EF
AAlstAL, A2 e HE B R SE5E A A9 Ut
WHoF JEE A AL oM 25 ThE APIS O] R 54 9L, ©hA) QEE £ $AUS WA
Fohul, g impors () 948 AAE 202 FRU ST vt o] /e B4 mE I A
JEE £ BAUS WAHEF RE FEIA A48 % din
HEL A2 dFof = FolA oJH BREY YZESHEA R oW (RE YZE Al&HS &
5] B &4 3} 5F= A, find_spec () °A] None € =8 FE Al ModuleNotFoundError S 92 7| =
Ao 2 FEFUTE AA= e A= A S A&l oF Stths 2 A A8k HH, 2] & o 7]H S 4]
=AY
5.7 I |X| A IZE
AT QEEE A% AE AL T B Aa A AR 307 A ol A Aol Ao JEES ey
o} % 7) o Are] Alsl AL AR A9 RE(S)] o3 A} JEEE e, A wA A gl
b shhel 222 e UTh A8 So), B3 22 9712 WAL AFE wl:
package/
__init__ .py
subpackagel/
__init__ .py
moduleX.py
moduleY.py
subpackage?2/
__init__ .py
moduleZ.py
moduleA.py

kel

E

o
°
AU

subpackagel/moduleX.py Y} subpackagel/__init__ .py BFolA], T} F 23 At ¢

from .moduleY import spam

from .moduleY import spam as ham

from . import moduleY

from ..subpackagel import moduleY
from ..subpackage2.moduleZ import eggs
from ..moduleA import foo

AU dEZEE import <> FEE from <> import <> EHE AFET = AR A dEXZEE F AR
AW ST % AT L ol

[import XXX .YYY.ZZZ }

7} xxX.YYY. 2228 AR = Qe RH 402 = E3A| 1 .moduleY & &3 T E 4] o] oy 7] wj <)

U,

74 Chapter 5. %IEE AI.é.Eﬂl"

The Python Language Reference, & 2|A 3.13.1

5.8 __main__of| CHSI E&st 1

.".'.J

main_ BEL sholAe] JEE NAHH E88 A9 gYrh T2 ol 4 AFWEC], _main_
B2 oyo S puileins A AElx 26 A2 25 27130 o S o) £ Sk e, o) Ae
A R R ER AR A BT O AL _nain_ ol 273EE Ao dEzeBE AW
£ Zeas ge gASe e v wE ey

5.8.1 __main__._ spec__

_main__ o] @A 27|8}FH =R Wl __main_ . spec_ = FFE3| AAE7|E 33l None O F
AR 7= g
Jpol@o] mgdLE /\V—‘L@} __spec__ =3 BotE BECIU A ZFE 2o HPFUrt
E3h spec. 2 _main_ BEO] YHAH zip FYojLt ThE sys.path JEZE AP 5= AR 2
=g of 1§ iﬁ-ﬂ;ﬁ‘%‘ﬂr-

UM A Aol _main_ . spec_ X None £ & AAF LU, main & AU AR ZETH
AEE p5 e wEol 44 o2 ohA 9] Wz ok

e U3}y =EZE

s cHA

cEEYHes 49

« 22 ol ulol = R Yz 47 A8
OFAT 9ol _nain_._spec_ o] 34 vone Qo] FI ok gl A1 sdo] Ao ®

52 JEE D 4 Qo= T135UTh _nain_ o] SuE BE vetulo] e/t AR stthY n 29X S

g3 oF g k.

TS main. O] YZE Vs EEO HEH I, __main_ . spec_ ©] A A3 A AT} STl BtE,
ol 2 s thE REZ AFHAA FYsHoF FUth o] 22 if __name_ == "_main_ ": HAE

SeAQ BEo BEO] _main_ B ¥+ AL e AWE 2, Qb ol e mle A A i

AHE el te) 2371 RE 48 WARG Y BAE LT o2l HT) AFAT
o

sys.meta_path & H X FZ L PEP 302 0|1, Ho]&

1o

2 PEP 420 Yt}

PEP 420 introduced namespace packages for Python 3.3. PEP 420 also introduced the f£ind_loader () protocol
as an alternative to find_module ().

PEP 366 2 W9l R EoAQ HA A A AZLEE 3 package_ OJEFHEQ FE7}of A A
1 9%k

PEP 328 & Ao} o} WA 2 ¢l 4o} 9 ZEES 931 PEP 366 o] A5 _ package_ & A A3 5=
Mae }_7] of __name_ S = AP FYrTh

PEP338 2 RES AT HER A+ A2 APk

PEP 451 & 23 AR o] 5 QX E JHE 295t 2l F7HgUnh 2E &0l Fo AW tf &9
T IAEAAES YEE AR F7715 5 Uth ol A2 X E A 2H9 o] APl < 7 A 5t
=5 WS, AH e} 2 A WA EES FUHeH = AsUT

5.8. __main__0f| CHSt Swst 124 75

https://www.python.org/doc/essays/packages/
https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0328/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0338/
https://peps.python.org/pep-0451/

The Python Language Reference, & 2|A 3.13.1

76 Chapter 5. ZE A|AH]

CHAPTER O

a
rol
>

o] Fo ol Mo A AHEEHE BEFA 2459 ouS Ayt

3 Ak A
AgRITh 24 F 40

name = othername

L= (semantics) = F A &2 ™, o] FE] Q) name & T othername 3 25U Th

« otherwise, if either argument is a floating-point number, the other is converted to floating point;
o IPA o, F AAE BF Fgofop i, e 8 flssyth

A AAAE (A E £, ‘% AR AZE JAAR Fo 2= FAE) ol hal A= 2 7HA] 719 4 3 o]
A8 Yth 2 (extension) = 15 A4l AR 2 & Aol oF U th.

6.2 O} (Atoms)

FEL BWAY AP AEA LadUth 4 HHG ol B L AuAs el E) 35, B F,
F252 2N YUE EUH0E oo g RRF UL obE WL ods
atom = identifier | literal | enclosure
enclosure I= parenth_form | list_display | dict_display | set_display
| generator_expression | yield_atom

77

The Python Language Reference, & 2|A 3.13.1

6.2.1 A/HX} (0[F)

OFE 0% EHE WAL ol ST o}F Aol AL AW A}s) 79 = AL, o] E 3} Aol
sk E A= o] =53 A 4 (binding) AAES HAH K.

ol g0l A o) AL ul, b5l %L FokW AA A UL o] Fo] AZH A ek), kL T
'6]-‘55 NameError 01]94]’ 101 ‘E}’H D]-
Private name mangling

When an identifier that textually occurs in a class definition begins with two or more underscore characters and does
not end in two or more underscores, it is considered a private name of that class.

e] B

The class specifications.

More precisely, private names are transformed to a longer form before code is generated for them. If the transformed
name is longer than 255 characters, implementation-defined truncation may happen.

The transformation is independent of the syntactical context in which the identifier is used but only the following
private identifiers are mangled:

o Any name used as the name of a variable that is assigned or read or any name of an attribute being accessed.

The _ name___ attribute of nested functions, classes, and type aliases is however not mangled.

o The name of imported modules, e.g., spamin import __ spam. If the module is part of a package (i.e.,
its name contains a dot), the name is nof mangled, e.g., the __foo in import __ foo.bar is not mangled.

fin from spam import _ f.

o The name of an imported member, e.g.,
The transformation rule is defined as follows:

« The class name, with leading underscores removed and a single leading underscore inserted, is inserted in front
of the identifier, e.g., the identifier __spam occurring in a class named Foo, _Foo or __Foo is transformed to
_Foo__ spam.

« If the class name consists only of underscores, the transformation is the identity, e.g., the identifier __spam
occurring in a class named _ or ___is left as is.

6.2.2 2|E{& (Literals)
o] FArEF uio| EE gH E 3 o8 7HA] A g EE s A9t

literal = stringliteral | bytesliteral
| integer | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating-point number, complex num-
ber) with the given value. The value may be approximated in the case of floating-point and imaginary (complex)
literals. See section 2] E] 2 for details.

£ e e 29 vlo] e gof thg5k7] wEol, A9 olol e e gk Hrh € U Th 2L g
S o A 2 P (220 o e 28 Fael A O gad] 98 M) 2o
AAE QL FE YA, 2L g HE AAE LS S E YHTh

6.23 23 2ol 42 A
23 oto] Yo L, IR FARA AL b5 BB ZEYYth
parenth_form = "(" [starred_expression] ")"

78 Chapter 6. HE 514!

The Python Language Reference, & 2|A 3.13.1

Note that tuples are not formed by the parentheses, but rather by use of the comma. The exception is the empty tuple,
for which parentheses are required — allowing unparenthesized “nothing” in expressions would cause ambiguities
and allow common typos to pass uncaught.

6.24 2|AE, &8 el 2|9] c|AEY|0]|(display)

2B, A, gAY el & FAsH] A3, Fol 2 “tyA~F ¥ o] (displays)” 2t3 R 2+ S¥ e £ S 7]
T M 2~ 2 AlS U th

« g WS HAH o E G AY,

o dHo Rzt FEF AAES B3 A==, AZ e AA (comprehension) ©] 213l £ YT,

comprehension = assignment_expression comp_for
comp_for = ["async"] "for" target_list "in" or_test [comp_1iter]
comp_for | comp_if

comp_iter

comp_if "if" or _test [comp_iter]

Aze)d e shte BEAAT 1R E W2 H 43 st for A7 QA A A for EEif AR
TARYTE o] 4%, A Ao e 8258 7 for T if o] AR 2 EEoR FHH BEL
o2, 71 o] Y B2ol A BRI e Tl A TS0l A5 U,

SHA| e, 7H 2
AFZo A A

2 ok

ol R
o
=
O
[n}
i)
=2
30,
rlr
)
)
)
e
£
(o
1>

(o
R}
o
o
kJ
i
o
[l
)
)
2
rlo
Ao
>

7P 9% for 29 o]HYE AL, EeNe 2F 2o A B v, SAIFCR 3"
~zmz Az ARHUL Aubet ror A7 74 A% ror 29 RE BE] 242, 7HF A% o] ¢
o I;]' Oﬂ% %gr [X*Y

HEA A2 Fhol whet @bl = Qo vz et AT Z oA FUHE 5 gl
for x in range(10) for y in range(x, x+10)].

Az Aol 34 AR Yo Aro| 7} HA ST, BAHO T FHH AFLA yield Syield
from AL ZXE Utk

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous

iterator. A comprehension in an async def function may consist of either a for or async for clause following
the leading expression, may contain additional for or async for clauses, and may also use await expressions.

If a comprehension contains async for clauses, or if it contains await expressions or other asynchronous com-
prehensions anywhere except the iterable expression in the leftmost for clause, it is called an asynchronous compre-
hension. An asynchronous comprehension may suspend the execution of the coroutine function in which it appears.
See also PEP 530.

Added in version 3.6: H] 5 7] Az g3l M o] == P51t}
WA 384 WA yield @yield from< FA|HOZ FHA 2Tz A FAF YT

WA 3.119| A ¥ 7: Asynchronous comprehensions are now allowed inside comprehensions in asynchronous func-
tions. Outer comprehensions implicitly become asynchronous.

6.2.5 Z|AE C|AEd 0|

ZAE YaEF o] &= thZ & (square brackets) 2 F A A9 LE Al vl & 5 AFUTh

tlo

6.2. O} (Atoms) 79

https://peps.python.org/pep-0530/

The Python Language Reference, & 2|A 3.13.1

list_display = "[" [flexible expression_list | comprehension] "1"

JrEfaZdolr PAE ANE BELY, I WSS BAAY BSo|y Fueddo AT 5

QU HEZ 2Y BAAY 520 AFD W), 1 84 ©2 gre] T34 11
2 AR B A8 ARG A E T A=A el AFE W, ass dueddo s BEol s

ERSTERENEY
6.2.6 T C|AEa(0|
e g AaZ g o] =25 (curly braces) & A H 11, 719} gHS B8l ZE(colon) 0] Qe Aoz UM
e faZ e oo 728 4 o,

set_display = "{" (flexible expression_list | comprehension) "}"

AW g AN E BEL, 2RSS BEAY Aoy Adddo A4Y
o e e w A el A E T, L 8 AEe A Eo A bR ghol oA, 03
A7) Hal Wit Rz adel ABE o, IS AzeAdo BEol At 245 2AP YT

MATS () 02 BE]A 5 YUtk ol FE R W 9P B

AN

=<

6.2.7 EIML{2| CIAZd| 0|

A dictionary display is a possibly empty series of dict items (key/value pairs) enclosed in curly braces:

dict_display = "{" [dict_item_list | dict_comprehension] "}"
dict_item_list = dict_item ("," dict_item)* [","]

dict_item = expression ":" expression | "**" or_expr
dict_comprehension = expression ":" expression comp_for

YA HaZdels Al gAY A4S wEYTh

If a comma-separated sequence of dict items is given, they are evaluated from left to right to define the entries of the
dictionary: each key object is used as a key into the dictionary to store the corresponding value. This means that you
can specify the same key multiple times in the dict item list, and the final dictionary’ s value for that key will be the
last one given.

A double asterisk ** denotes dictionary unpacking. Its operand must be a mapping. Each mapping item is added to
the new dictionary. Later values replace values already set by earlier dict items and earlier dictionary unpackings.

Added in version 3.5: PEP 448 oj| /] A& A ¢tH v g fAaZg o2 o 3 7).

gV e AN, S AES e Az Aol irlel] A, AubA ¢l “for” oF “if” A SFol
wed F e 2l de 2 A Faedde] dgE W, deeiA = Tk g anse
AU E g E el Al E Yok

Restrictions on the types of the key values are listed earlier in section 353 7] <. (To summarize, the key type
should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not detected; the last
value (textually rightmost in the display) stored for a given key value prevails.

B 3.8 4 M who]H 3.8 o] Mo, 9] Az Ao, 719k ghe] F7F =472 A o5 of
QA ¥ k5 Ut CPython ol A, gho] 7] H t} ¥4 Jﬂ7}5] 54Ut 3.8 E &, PEP 572¢] A <tofl wpe}
717} FkE o WA I Yo

6.2.8 A|L42|0|E] ES14l (Generator expressions)
Avdeole 2842252 ERQ A AlvgE oy 27 duth

generator_expression = "(" expression comp_for ")"

80 Chapter 6. H 314!

https://peps.python.org/pep-0448/
https://peps.python.org/pep-0572/

The Python Language Reference, & 2|A 3.13.1

Avelole B@ AL A Ao E AAE UL, B BT} 52T U4 BT SHAATE
A Ao etE Az A AT 2oy

Aol e B A AL L WSS Ao AME _nexe () MAES 52D 0] Lo
meﬂﬂ¥%JHH—OHﬂﬂﬂﬂHﬂﬂﬂﬂﬂﬁHﬂﬂZHWJV‘ =) for Aol 9l o7

B AN 2 grol FolAH, T2 Ao Bk ozl A A ol AAs £ Aol ohzt
] [e)

A AEQNﬂﬂAHﬂﬂﬂHM&ﬂqw % for A7) 7} 9% for A9 BE FE 24L,
A A% ol Bl e Boll A /A2 grol et ebd - YO SRl ATzolA B4R S eyt
@]%% (x*y for x in range(10) for y in range(x, x+10)).

B st QAbEl 2 SO AL BEE AT 4 daUnh AT ULL 55 AML HA 2.

Aeeld 284 2HA Y 7THhE = A4 el okA 7] S8, FAACZ FolH Al gl o] E ol A
yield & yield from AL ZAFH Utk

Ad ole £ A o] async for Bo|t}await THAAES Z851H H]Eﬂ A9 ol ¥ &3 A (asynchronous
generator expression) ©] 2t E YUt H]l5 7] Aol A2 A v 7] Aoy AAE =HF
g o] AL H)E 7] o5 o5 AUt} (W] 5 7] o] & o] (As}mhmm)us Iterators) & FZ3HA).

Added in version 3.6: B] 5 7] 4 A dl o] & A o] == AH5 YT}

WA 37014 WA Fho] W 3.7 o] Ao, vl 5 7] A el o] e EEA O] acyne
LT 3 TR e L R e b ol A4 Al o] e T AN A S G

B A 3804 W7: yield & yield from2 BA|A O E ZHEH AT I oA

6.2.9 2= HE&{Al(Yield expressions)

yield_atom "(" yield_expression ")"

yield_from "yield" "from" expression

yield_expression = "yield" yield list | yield from

The yield expression is used when defining a generator function or an asynchronous generator function and thus can
only be used in the body of a function definition. Using a yield expression in a function’ s body causes that function
to be a generator function, and using it in an async def function’ s body causes that coroutine function to be an
asynchronous generator function. For example:

def gen(): # defines a generator function
yield 123

async def agen(): # defines an asynchronous generator function
yield 123

SeRE 23z o zeld AT A olE £8AS T A5
S

ol A = A4

W7 380l M A= BHA L
ol B ~3zo| A FA8 Uk,

A el o8] Tt ool A ARk wwe] vE 7] A olE B 15) Aol e B4
ARG A e 2 ATt

When a generator function is called, it returns an iterator known as a generator. That generator then controls the
execution of the generator function. The execution starts when one of the generator’ s methods is called. At that time,
the execution proceeds to the first yield expression, where it is suspended again, returning the value of yield 1ist
to the generator’ s caller, or None if yield 1ist is omitted. By suspended, we mean that all local state is retained,
including the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state
of any exception handling. When the execution is resumed by calling one of the generator’ s methods, the function
can proceed exactly as if the yield expression were just another external call. The value of the yield expression after
resuming depends on the method which resumed the execution. If __next_ () is used (typically via either a for
or the next () builtin) then the result is None. Otherwise, if send () is used, then the result will be the value passed
in to that method.

T AT Ao BRAL FASE o] A= ZA Ao

6.2. O} (Atoms) 81

The Python Language Reference, & 2|A 3.13.1

o BE AEL AVel ol B P48 NF 5 o] w5 BTk el W ATE BED, S} ol 4l
A AR 23 gom, dgo] AN FAF 5 ALk FA o] 4L A e ol H B4 yield
%7 40 ool A% 5o o} A B Aol 4 rke AU Aol 83 AL Aol <)
<

BAAL oy F2E OOl A A sl 2 Utk Al a0 6 7 (2 A47F00] H A} 7l 4] 47
ZH]) o] d g}o] = (finalize) | 7] Aol A7} = 2] oF oW, A &| o] B-o| E &l o]]] close () MIMET}
TEH, U7 < rinally o] ARBHES 5Pk

vield from <expr> o] AH3E uf, A58 HF A2 ofHEolojoF FUth. T olHHES °] Bl o] E
A A= Be2 A AvElolE M= ZEA A w2 ALgUth. send() 2 AEd B
W throw() EAGEH BE o9& Bof| 9= (underlying) o] E]#H| o] B} 7} S G Wl =& 2k JlThE 1%
o2 A Yttt 218X YthH, send() = AttributeError U TypeError & Y2 7| A%} throw() &
A ool S denh

ol gl olHdlolH 7t 45 d uf, LA Sf+= StopTteration ALEH 20 value QB REE= Y= £
29| gl Ut stopIteration & DL A w] YA A 02 HAH 7Lh, A H OB & o] B 7} Al &l o] B
A AF o2 o] 2o HUTHA R A o] El 7} 3L 5 2 (return) % © 2),

WA 334 HA: AB olEHdolEHE Ao] TES Y Ud}= yield from <expr> = F7HS YT

Q= wP4o] el $Wo] E2 hertd BEE YFT 5 gF vtk

& 1]

PEP 255 - b3t A & o] ¥

gtol ol A o|H g} yield E& F
PEP 342 - 7} € A& o] 81 & 52} £d

Al @] Ele] APISH 2 W& A A, 7 Erel BEE 0 2 ALE
PEP 380 - A B A ole] 2 g ds}= 2

The proposal to introduce the yield from syntax, making delegation to subgenerators easy.

PEP 525 - 55 7] A1 o] o))
S8 ol Aidlo] 6l 752 £7}5ho] PEP 492 33 A o,

ok

M2 0|E{-O|E{&H|0|E] M E

o] A1 gL Aol e o] el o] El9] B =SS ATk Al dlol8 Yo YL Ao) s
A48 % gzt

A ole 7t ojn] A3 Fd wff obefol] o= AN EES TE8 valuekrror 991 E 427]& Hol

o] s of g oh.

generator.__next_ ()
Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator
function is resumed witha _ next__ () method, the current yield expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value of

the yield listisreturned to next_ ()’ s caller. If the generator exits without yielding another value,
a StopIteration exception is raised.

o) HMANEE BT FAZHORE TP A& 59, for FZ Y W next () 5ol & 3H.
generator.send (value)

ARSI A o] E B2 S “H U Thsend)” . value AR AA A= FHA Y ghol

AUth send() WA =& AlYd o] 7tyield 3t T @< S8 A, AlF ol 87 oh & 3=

yield 3}A] 231 £ 83} stoplteration & oA Yt} send() 7} Zﬂ Hg o] EE AR 7| 2=

2R, 2 We A= @ Ao] gon e, dabrE W= A vone & AL oF FUTh

generator.throw (value)

82 Chapter 6. HE 514!

https://peps.python.org/pep-0255/
https://peps.python.org/pep-0342/
https://peps.python.org/pep-0380/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/

The Python Language Reference, & 2|A 3.13.1

generator.throw (fype [, value [, traceback]])

Raises an exception at the point where the generator was paused, and returns the next value yielded by the
generator function. If the generator exits without yielding another value, a StopIteration exception is
raised. If the generator function does not catch the passed-in exception, or raises a different exception, then
that exception propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the raise keyword is used.

For backwards compatibility, however, the second signature is supported, following a convention from older
versions of Python. The fype argument should be an exception class, and value should be an exception instance.
If the value is not provided, the type constructor is called to get an instance. If traceback is provided, it is set
on the exception, otherwise any existing __traceback___ attribute stored in value may be cleared.

¥ A 3.129)| A ¥ 7 : The second signature (type[, value[, traceback]]) is deprecated and may be removed in
a future version of Python.

generator.close ()

Raises a GeneratorExit at the point where the generator function was paused. If the generator function
catches the exception and returns a value, this value is returned from close (). If the generator function
is already closed, or raises GeneratorExit (by not catching the exception), close () returns None. If the
generator yields a value, a Runt imeError is raised. If the generator raises any other exception, it is propagated
to the caller. If the generator has already exited due to an exception or normal exit, close () returns None
and has no other effect.

¥ A 3.139]| A ¥ 7 : If a generator returns a value upon being closed, the value is returned by close ().

AL o
of 71l Al ol Bl gk A el ol § o] F2e Ald st e o7 sy th:

>>> def echo (value=None) :

print ("Execution starts when 'next ()' is called for the first time.")
try:
while True:
try:
value = (yield value)

except Exception as e:
value = e
finally:

print ("Don't forget to clean up when 'close()' is called.")

>>> generator = echo (1)
>>> print (next (generator))
Execution starts when
1

>>> print (next (generator))

'next ()"

None
>>> print (generator.send(2))
2

is called for the first time.

>>> generator.throw (TypeError, "spam")

TypeError ('spam',)

>>> generator.close ()

Don't forget to clean up when 'close()' is called.

yield from & AR&3F= ofl &=, “What’ s New in Python.” of] Q1= pep-380 2 H A 2.

6.2. O} (Atoms)

83

The Python Language Reference, & 2|A 3.13.1

H|S 7| MLA2[0|E g4

async def &AM U A=A dE A E A

o g,

HE 7] Ayl ole] &7 EEH W, b5 7] Al d o8 AA = &2 b5 7] olHd o5 E EHFUTh
a0 o2 I AA = A ol o] A S Ao th vlE 7] Al doly AAl= BE AFE o
async for oA A5 =, Al &]E1 ﬁzﬂ 7} for Bo| A AFEE = v Al 3} 8 A}Ek o).

Calling one of the asynchronous generator’ s methods returns an awaitable object, and the execution starts when this
object is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again,
returning the value of yield 1ist to the awaiting coroutine. As with a generator, suspension means that all local
state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation stack,
and the state of any exception handling. When the execution is resumed by awaiting on the next object returned by
the asynchronous generator’ s methods, the function can proceed exactly as if the yield expression were just another
external call. The value of the yield expression after resuming depends on the method which resumed the execution.
If _ anext_ () is used then the result is None. Otherwise, if asend () is used, then the result will be the value
passed in to that method.

rlr

I gsENE7 AVl H e A

If an asynchronous generator happens to exit early by break, the caller task being cancelled, or other exceptions, the
generator’ s async cleanup code will run and possibly raise exceptions or access context variables in an unexpected
context—perhaps after the lifetime of tasks it depends, or during the event loop shutdown when the async-generator
garbage collection hook is called. To prevent this, the caller must explicitly close the async generator by calling
aclose () method to finalize the generator and ultimately detach it from the event loop.

H5 7] Al # ol g ghro A, 45 AL cry FREY oo A d g Yttt kA vk v]5 7] Al #l
O 7} (A= 3571 00] H 71‘/} 7He] 2] = A" o 2 4) Fho] d gfo] X (finalize) = 7] ol A 7N A] ko,
try T2 E W dE A2 7] < fmally@% Al ey sl “-’H?‘L T Adsyth o A,
v 57| Zi]LﬂﬁﬂolEi— olE# o]H 9] aclose() & EE3Ha, 1 AHAE 2+ IFH AAE AP A, tf7]
%<l finally o] AYHEE st= L2, v]5 7] Ald olHE AP sl oWl E F = (event loop) Lt
2 A Z 2] (scheduler) ol Al 51 th

To take care of finalization upon event loop termination, an event loop should define a finalizer function which takes
an asynchronous generator-iterator and presumably calls aclose () and executes the coroutine. This finalizer may be
registered by calling sys.set_asyncgen_hooks (). When first iterated over, an asynchronous generator-iterator
will store the registered finalizer to be called upon finalization. For a reference example of a finalizer method see the
implementation of asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py.

FH 4 yield from <expr> & H|F7] AW & o|E oA AFE3l= A2 B o2t

H|S 7| M|L2l|0|E{-0|E{|0|E]{ M E

o] EAM L2 ¥E7] Al elH ol ol o] Ml =5 dgst=tl], Al ol H o] A S Alofst
< v AHE Yo

coroutine agen._ _anext_ ()

Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the last exe-
cuted yield expression. When an asynchronous generator function is resumed with an __anext__ () method,
the current yield expression always evaluates to None in the returned awaitable, which when run will con-
tinue to the next yield expression. The value of the yield 1ist of the yield expression is the value of the
StopIteration exception raised by the completing coroutine. If the asynchronous generator exits without
yielding another value, the awaitable instead raises a StopAsyncIteration exception, signalling that the
asynchronous iteration has completed.

ol MIME= BHEF asyne for Fxo o8 FAHZ TEH YT

coroutine agen.asend (value)

Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the
send () method for a generator, this “sends” a value into the asynchronous generator function, and the value
argument becomes the result of the current yield expression. The awaitable returned by the asend () method
will return the next value yielded by the generator as the value of the raised StopIteration, or raises
StopAsyncIteration if the asynchronous generator exits without yielding another value. When asend ()

84 Chapter 6. HE 514!

https://github.com/python/cpython/tree/3.13/Lib/asyncio/base_events.py

The Python Language Reference, & 2|A 3.13.1

is called to start the asynchronous generator, it must be called with None as the argument, because there is no
yield expression that could receive the value.

coroutine agen.athrow (value)

coroutine agen.athrow type[value[traceback]])
oAflelHES e, vlE 7] AYd o8 7t LAl SA S A A type FY A& €271
A #l ol el 347} yield 3F TF2 S WA Sl Stoplteration 99] 9] o g S8 F U v 57
A # o B 7} Oh-2 3t yield ﬁ}xl ?%3’— L5349, oJ ol E &l & 3f stopasyncIteration o2 7}
dojFuct Alvdole &7 A 2 & FA AL thE A2 & o7, ol oHES
AP u] 1 o 2] 7t of ol H Eo] &AL A H FH Y th
H A 3.129)| A ¥ 7 : The second signature (type[, valuel[, traceback]]) is deprecated and may be removed in
a future version of Python.

coroutine agen.aclose()
AdeoleES s, Aded, v57] AYdEoH ¥ ?ﬂ°”1@ﬂ@ﬂ@2i
GeneratorExit & WA Yt} "k 71 o] & o v]Z 7] Al 4 1‘51 &= 7F L obsHA (gracefully) &
E@‘}ﬂ L ol u] @ AL (2 AL E FA] %2 2 EH) GeneratorExit § 27| W, S8 o9 o]
B &2 stopIteration 9 2]& oYt} o]ojA &= H|&7] Al dE olH EE0] 8T+ F7H9
o] °ﬂ °] Bl & 52 stopAsyncIteration 9 &]& d ot} vheF v]5 7] Al d o] ¥ 7} gk yield
318 of ol o B 2] o3} Runt imeError 7} WAL TE. T} v 7] AU @ o] B 7 1 uHo] ThE
ﬂﬂ%%ﬂﬂ%ﬂ%ﬂﬂ%ﬂi%ﬂiﬁﬁW$%@ﬂ%ﬂﬂﬁﬂ]Hﬂﬂﬂ%@%?ii

ojn] FHFP LW, T o]oJ A= aclose () TEL OFFAE 5HA] e ol ol ES EEF YT

6.3 ZZ2}lo|oq2|
zefolm el Slofol A 7bg oA AEsHE AAELS e UL £92 o &tk

primary = atom | attributeref | subscription | slicing | call

OJEQ%E% = v 3% (period) £} o] 5o F ol 22 Zeto|H gt

attributeref = primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This
object is then asked to produce the attribute whose name is the identifier. The type and value produced is determined
by the object. Multiple evaluations of the same attribute reference may yield different objects.

This production can be customized by overriding the _ getattribute__ () method or the _ getattr ()
method. The __getattribute__ () method is called first and either returns a value or raises AttributeError
if the attribute is not available.

If an AttributeError is raised and the object hasa __getattr__ () method, that method is called as a fallback.

6.3.2 MEA3Z!M(Subscriptions)

The subscription of an instance of a container class will generally select an element from the container. The sub-
scription of a generic class will generally return a GenericAlias object.

subscription = primary "[" flexible expression_list "]"

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

6.3. =zjo|oqz| 85

The Python Language Reference, & 2|A 3.13.1

The primary must evaluate to an object that supports subscription. An object may support subscription through defin-
ingone or bothof __getitem () and__class_getitem _ (). When the primary is subscripted, the evaluated
result of the expression list will be passed to one of these methods. For more details on when __class_getitem
is called instead of __getitem__, see _ class_getitem__ versus __getitem___

If the expression list contains at least one comma, or if any of the expressions are starred, the expression list will
evaluate to a tuple containing the items of the expression list. Otherwise, the expression list will evaluate to the
value of the list” s sole member.

WA 3.119)| A ¥ 7 : Expressions in an expression list may be starred. See PEP 646.
For built-in objects, there are two types of objects that support subscription via __getitem _ ():

1. Mappings. If the primary is a mapping, the expression list must evaluate to an object whose value is one of the
keys of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An
example of a builtin mapping class is the dict class.

2. Sequences. If the primary is a sequence, the expression list must evaluate to an int or a slice (as discussed
in the following section). Examples of builtin sequence classes include the str, 1ist and tuple classes.

The formal syntax makes no special provision for negative indices in sequences. However, built-in sequences all
providea getitem__ () method that interprets negative indices by adding the length of the sequence to the index
so that, for example, x [-1] selects the last item of x. The resulting value must be a nonnegative integer less than
the number of items in the sequence, and the subscription selects the item whose index is that value (counting from
zero). Since the support for negative indices and slicing occurs in the object’ s getitem () method, subclasses
overriding this method will need to explicitly add that support.

A string is a special kind of sequence whose items are characters. A character is not a separate data type but a
string of exactly one character.

6.3.3 =2}0|2l(Slicings)

S AAE AA (o & 50, TAE 7= 2
o)

e E)ol 4 o 9] GRS AL Lol
g2 E9 40| Lk tf 9ol EFA ol 1} e Foll ALS

S %tk setolde] £SO @gTh

slicing = primary "[" slice_list "]"

slice_list = slice_item ("," slice_item)* [","]

slice_item = expression | proper_slice

proper_slice = [lower_bound] ":" [upper_bound] [":" [stride]]
lower_bound = expression

upper_bound = expression

stride = expression

Aakely N EEAYH HOEAEL EF S0l F EEOME

A, REAMBATGH SEfo]d o2 fHE 5 glFUth £HS o 53314 J %1'41 o] 4
N BEATHACRE S| A et 2ol Setold o= Ao A8ttty Jofte o w OHUH‘G“’
A AT (o] A9+ Eeholx 55 o] 1153 & 2Fo] 2 (proper slice) & 3T 2 33HA] ok wlf Y th.

The semantics for a slicing are as follows. The primary is indexed (using the same _ getitem () method as
normal subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one
comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice item
is the key. The conversion of a slice item that is an expression is that expression. The conversion of a proper slice is
a slice object (see section 353 7] %) whose start, stop and step attributes are the values of the expressions
given as lower bound, upper bound and stride, respectively, substituting None for missing expressions.

o] 3 Al B o= o] Q)& T %34

oZ‘,_I

6.34 S&
52 BB AH (18 B0, ¥ B W SR Y A B B2o8 32T
call = primary " (" [argument_list [","] | comprehension] ")"

86 Chapter 6. H 314!

https://peps.python.org/pep-0646/

The Python Language Reference, & 2|A 3.13.1

argument_list = positional_arguments ["," starred_and_keywords]
["," keywords_arguments]
| starred_and_keywords ["," keywords_arguments]
| keywords_arguments
positional_arguments = positional_item ("," positional_item)*
positional_item = assignment_expression | "*" expression
starred_and_keywords = ("*" expression | keyword_item)
("," "*" expression | "," keyword_item)*
keywords_arguments = (keyword_item | "**" expression)
("," keyword_item | "," "**" expression)*
keyword_item = identifier "=" expression

AT 5 e mHA G AR A IS A Fol e 5 QAT o 58 whRA) g

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and all objects havinga _ call () method are callable). All argument
expressions are evaluated before the call is attempted. Please refer to section <= % 2] for the syntax of formal
parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled
slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots.
Next, for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the
same as the first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError
exception is raised. Otherwise, the argument is placed in the slot, filling it (even if the expression is None, it fills
the slot). When all arguments have been processed, the slots that are still unfilled are filled with the corresponding
default value from the function definition. (Default values are calculated, once, when the function is defined; thus,
a mutable object such as a list or dictionary used as default value will be shared by all calls that don’ t specify an
argument value for the corresponding slot; this should usually be avoided.) If there are any unfilled slots for which no
default value is specified, a TypeError exception is raised. Otherwise, the list of filled slots is used as the argument
list for the call.

CPython /& AJAl: 732 9 X v 7h 57} o] B2 ZEA] koA, AALEA e BAH o7 o] & °] =93

sHels, 719 s 2EE 4 9e g RS A =& ¢ 01*144 CPython OM AAES 9317

A3l pyarg_ParseTuple () & AFS3E CE 3 H d4E0] o] A+ Yrh

FAWARAF EZER T B2 YA AAE0] YO, ridentifier w2

AA O}t ‘}, TypeError @ﬂﬂ% 013%}145}; o] A%, 1
=]

s
=
=

a& ‘” f”|°

o];q_y-]_ A oS o] Zof 23R O, *ridentifier = H2 A}
&8, 1ypesrror o198 Yo AT o] A, 2 A4 WA EAE Y]
Yelu, de A7 AR Sl gloed v (A) gAY e E dErs U T
f(

expression ©] g T Fof T4, eXpressiOHJ 2 ol H e E o] Hojof Pyt o] o]
ﬂﬁiéulﬁ%olzﬂM HX] AAEQA AAA AFEYUSE & £(x1, %2, *y, =3, x4) 9
v e T AAS YT, e, yM O] Ur%DPL o] A2 M+471 9] 91X A= x1, x2, yl, -+, yM, x3,
42 523+ 23 55Ty

o|& A3t A= AA *expr6551on EH ol A A 7)Y & QA Ho| & = Qolg, 7|Y = o}
(ZB]AL & +*expression AR - oFe £ Heh) dof Aeldvhe AUtk 2 A:

oY B En 100 N
—1om1mm£ lﬁﬁ

>>> def f(a, b):
print (a, b)

>>> f(b=1, *(2,))
21
>>> f(a=1, *(2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: f£() got multiple values for keyword argument 'a'

(TH5 sl el Aol A<)

6.3. =zjo|oqz| 87

The Python Language Reference, & 2|A 3.13.1

(o] A | o] A oA A A %)
>>> f£(1, *(2,))
12

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice
this confusion does not often arise.

If the syntax **expression appears in the function call, expression must evaluate to a mapping, the contents
of which are treated as additional keyword arguments. If a parameter matching a key has already been given a value
(by an explicit keyword argument, or from another unpacking), a TypeError exception is raised.

When **expression is used, each key in this mapping must be a string. Each value from the mapping is assigned
to the first formal parameter eligible for keyword assignment whose name is equal to the key. A key need not be a
Python identifier (e.g. "max-temp °F" is acceptable, although it will not match any formal parameter that could
be declared). If there is no match to a formal parameter the key-value pair is collected by the ** parameter, if there
is one, or if there is not, a TypeError exception is raised.

E4 *identifier o]t} **identifier & AHGE YA MANSEL 93 A 2T oLt A= A
FEER AHSE 4+ g5k

WA 35N WM B EES QY A vand ++ QA 9L o}
:_1-7_ Q 70

37: 9 So] o H ¥ <
7 () Fell & 4 93, 719 E AR DAV A)

= =
J (%) Foll & 5 UAFUTH 2 E PEP 448 o] A]

TE2 S oA o T A o H Fhe ERFUTH None A 5 95U T o] ghol o B A AL
A= s 449 Bl FH sy
RheF 27t o]—

g7t Aol g
The code block for the function is executed, passing it the argument list. The first thing the code block will do
is bind the formal parameters to the arguments; this is described in section <= “J 2]. When the code block
executes a return statement, this specifies the return value of the function call. If execution reaches the end
of the code block without executing a return statement, the return value is None.

WA g A
AT Qe = aawﬂaalm4mk 1229} W] A = S o] T g A 72 built-in-funcs & WA £
2o AR

I ZPg A9 A AdAEHAT

-

A

2 Jdadaw A =:
t-&ske AFSAF A 9] o7
5ol Ay yrch

gﬂ/\ O]AE-]/\IE:

g g F

The class must definea __call () method; the effect is then the same as if that method was called.

-~
folr
s
L)
rlr
i}
.
ro,
[>
rm
[>
‘\l,
w‘

WAl A7 S o 1 %

g

6.4 OJSI0IE EBIA

ofglolEl i oA 27l o] AL AN FATYT 27 TFE T4 AR AT 5 YT
await_expr = "await" primary

Added in version 3.5.

AR E A5 AR h 1A 2 8ol ¢

(o))
=2

rlr

88 Chapter 6. H 314!

https://peps.python.org/pep-0448/

The Python Language Reference, & 2|A 3.13.1

power "= (await_expr | primary) ["**" u_expr]
aA, 257 e ASAFT € F A4 Al d 2o A, Aabats L EF A dF o= Fho] Fa A
e} (0] o] 51 QA R T AR A= AL ok oh: —sxen & 1 o] H1Ih

Al A4k

b= W pow () 7 F /1Y AR S22 wiel 22 gu 7t JF Utk AF QAAE

< %ﬂ*?fP%AL*wDP XA A= WA 35 o g Ay, A9E 1 Y YUTh

int 3] A4EALY] A9, 7 HA AAF F471 obd o] A= AL H 22 IS w5yt T HA
S, LE A float 2 W3S 11, float 277 ALF YT A5 Eol, 10x+2 £ 100 8 B F

A 10%*-2 = 0.01 & EEHF YT

0.0 8 552 AFAHF3IH zerobivisionError & 4o UL S48 &2 AGAFIEH B4

(complex) 7F YUt} (A W Ao A= valueError & O AG U T]H)

This operation can be customized using the special __pow () and __rpow__ () methods.

o —

6.6 & & Lh=1} HIE ALt

RE A FAET U E At TS S HEE et

u_expr = power | "-" u_expr | "+" u_expr | "~" u_expr

The unary — (minus) operator yields the negation of its numeric argument; the operation can be overridden with the
neg__ () special method.

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the
__pos__ () special method.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is
defined as - (x+1) . It only applies to integral numbers or to custom objects that override the invert_ () special
method.

A A AS BT, QA7 SHHE §E 24 SHETHY, Typessror o 9 7h A F ok,

6.7 0O|gt At

>
r
r

m_expr = u_expr | m_expr "*" u_expr | m_expr "Q@" m_expr |
m_expr "//" u_expr | m_expr "/" u_expr |
m_expr "$" u_expr
a_expr = m_expr | a_expr "+" m_expr | a_expr "-" m_expr
‘@) QA QAT F2 FUT AAEL TF S, @ AAE A¢D GE A4E A

ofof I Th Fe] Ao, £AEL FF Yo NHA T FAAUTE FA A9, W29 W o]
SAFUTH S WY S W A AL E BE U,

This operation can be customized using the special __mul_ () and __rmul__ () methods.

¢ (a) AAHAE WY FA) S AQUTE o]0 YAPE ol A% o] ANAE FHIAA
FsUTH

This operation can be customized using the special __matmul () and ___rmatmul__ () methods.

Added in version 3.5.

6.6. U Bt ALST} H|E Q14 89

The Python Language Reference, & 2|A 3.13.1

/ ()3 /7 (B4 YA, floor division) AAMAFE-2 1 QJIAFE 9] % (quotient) & F U th A} AAE
2 WA FEFoE AP UL AFEY U2 AFE e+ ‘ifﬂ, AsEC 7@—? AL Az
%k—*bli},lﬁﬁr% A A Y] Aol “floor’ & FEst AUt 022 et A2

ZeroDivisionError OEﬂﬂE do 11/] 1’/]—

The division operation can be customized using the special __ truediv__ () and __ rtruediv__ () methods. The
floor division operation can be customized using the special __ floordiv.__ () and __rfloordiv__ () methods.

The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric
arguments are first converted to a common type. A zero right argument raises the zerobivisionError exception.
The arguments may be floating-point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 + 0.34.)
The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value of
the result is strictly smaller than the absolute value of the second operand'.

ArUxAd EEs A e 22 FsAeE AddF o AF5Uth x == (x//y)*y + (x%y). &
S BEZE U3 B9 divmod) 9 A28 o] AL UTE divnod (x, v) = (x//v, x5y)..
SRSl o BEE AL FAFHE 2ol T3], 5 Ak oA 2etd e BAG Zojg (A S o]
Adolgtis A dsUthe 33H7] A £4d AA ol S thA] g Utk £4d 25 9]
T2 gtol A grol B 7] ¥ 5 29 A old-string-formatting o] A A 8 gt}

The modulo operation can be customized using the special __mod__ () and __rmod__ () methods.

The floor division operator, the modulo operator, and the divmod () function are not defined for complex numbers.
Instead, convert to a floating-point number using the abs () function if appropriate.

D) AAAE 2 AREY e FUTH AREL B T 2AAL, B T 2L B A Aok g Th
Do) B, SAEL WA TEBo WA B, %A FAQULL FA] S AA2E oo RolA|
gk,

This operation can be customized using the special __add () and __radd () methods.
() A T AAEY A2 FUTH 24 AREL WA FEY oz AT

This operation can be customized using the special __sub__ () and __rsub__ () methods.

NZE QS 2 AR e S H59E 2

gt

it
oy

shift_expr = a_expr | shift_expr ("<<" | ">>") a_expr
o] O&/\\l—%—% 7@—/[\«:‘0— O]Z]—E_ H]_O}_r: 011,]1'4—, 3&]ﬂdyﬁ (?lx]_“;;l_f« %_RH OL]_Z]'E. _2'__01%]_] Zr\‘u %%0]1/}
LEZ o7 gy }(shift).

The left shift operation can be customized using the special __1shift () and __ rishift__ () methods. The
right shift operation can be customized using the special __rshift_ () and __rrshift__ () methods.

QEZEOZ pH|E AZE 3 A2 pow(2,n) 2 AF UxAlse Aoz Hgg Uk 9oz pnE
A|ZE 3t& A2 pow(2,n) & wohe 2082 AogUrch

babs (x8y) < abs(y) o] $8A0 22 Fo] A, float] Hol i 247 A1 (roundoff) W} # o) 31402 o] ofd £ gl
th oA & Eof, oo A ﬂoat7HEEE754 A= S22kl Eaﬂ%é 7}], -1e-100 % 1e100 7}1eioo9lr7‘° FEE 7PZI71 ukll
APE AAHE -1e-100 + 10100 AH, XA 02 10100 F A TE] 2L GRIUTE F ratn. frod () & LB A WA AR}
oo BH A AE F7 wj'ol], o] A -1e-100 & EHF UL oW H Yol o] = Za‘ﬂXlL °%“ile“°ﬂ “?4‘“”‘4%

2x7}k y-4 A ekt vl o} ofF 7hrke W —"r“(roundmg) 2ol x//y € (x-x%5y) //y BT 1 & 5 5tk 28 49
divmod (x,y) (0] * y + x % y 7Fx S} o} AR =S 3237 A, o] ML H] éﬂ%%iﬂ%ﬁﬂ-

o

90 Chapter 6. H 314!

The Python Language Reference, & 2|A 3.13.1

and_expr = shift_expr | and_expr "&" shift_expr

XOr_expr and_expr | xor_expr """ and_expr

or_expr xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom
object overriding __and () or __rand__ () special methods.

The ~ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must
be a custom object overriding __xor__ () or __rxor__ () special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a
custom object overriding __or () or __ror__ () special methods.

6.10 H|w
Cel= &2, gol oA BE v A2 2L FAEHE Zdetl, e, A28, HE ddsit Wy
Utk 3L Co=e,a < b < c 22 FFA 0] A Z2 Ao s FH YT}

comparison = or_expr (comp_operator or_expr)*
comp operator e P ‘ nsn | n__m | ns—n | ne—n | nyp_mn
| "iS" [llnot"J | ["not"] "in"

Comparisons yield boolean values: True or False. Custom rich comparison methods may return non-boolean values.
In this case Python will call bool () on such value in boolean contexts.

H = RS2 A AEYLH O E E90],x < vy <= z%x<yandy<= z &} 55 s, Apo] A
75 e BN TR AT (TS AR B R <y AR R S G AN
HacdRie)

FAHOZ a,b,c, v, y,z 7t BHA 0|11, 0pl, 0p2, -, 0pN 7} Bl 2l AAAFH, a opl b op2 ¢ ... y opN
ze 24 e A vk 3thE FS A9t a opl b and b op2 ¢ and ... y opN
. b ES T

2 opt b op2 c 7ha 9 c1ke] of W EFO| WILE QAIFA 7] Wl Ee], o & ol x < y > z o $9
a7 (o}v} o m A= gbrietE) Sul=rhe A o sl oF gk

6.10.1 gt H|w
ARAL <, >, ==, 5=, <=, 1= F AA 9] g gtk AA S0 22 L 22+ stk

A, gk @ 2 AA Sl (F3 otelHE ol Hal]) h= Zh=thal 2ot syt ﬁJrO] gl Oﬂfﬁ A <]

HE FAEA MG AUTH: o5 Eol, A Fhell o et 573 A 2 (canonical) A 2~ ¥ fs Ut
DR A (G5 ol 2) S E & A) 6 & 7 oo B

o} vl AR AA Y ghe] FAAA o thgt A8 T/ NES FAFUCH

ol R Ao w Aot A = FH5 U

Because all types are (direct or indirect) subtypes of object, they inherit the default comparison behavior from

object. Types can customize their comparison behavior by implementing rich comparison methodslike 1t (),
described in 7] =24 01 # A E|ulo] A o] A.

%5 WAL (== 9} 15) o] 7|8 5 AL AR e ool € E o] 7]

9e 5
ZE AAEA o] B5 WA 29 33, ThE olo| M E & 2 ¢
S

N
B
Lo

2N, oo

=

o
R

Bl
]

ok A, 2
ol ~E A 7ho] B
=
V=

A= —_—
ye=x ==

ZUt} o] A8 S =0] £ mE AR 7 WA (reflexive) (2, x 1
RE A B 8T v

7] o] 4 H] 3L (order comparison) (<, >, <=, >=) = A|F = A 03”\1412]- A E 8} TypeError
o] 712 9] £/t BRI AR S BA RlTkE A o,

O olol M EE E e dAH S G4 AR ThEThy, 7R S5 uad $5L, 479 3 g
7199 E530) & 1B A8 b W50 AR e AT AA g 4 dn U 18 BELS
ZpAl 9] vl 3l &S AL ulo]| 2 & F g 7 QQu, AR B2 WAy o] 284 A Y5y Tth

i
e
|o
i)
°
A

6.10. H|il 91

The Python Language Reference, & 2|A 3.13.1

W E3e e
=

F =2 & ((typesnumeric)) 3’4—5’: 2lol B 28] & fractions.Fraction ¥ decimal.Decimal ©J|
L=
-

S8E FAEL, Bossl L v E AUGHA) Stk Al g u s, 2 O 98
2re) Wla 7k s Th BHAE 5 B Gel A, AUEe] £4 glo] £eAow (AR
20 2) Suh= A WL gy,

NaN(not-a-number) Zf= float ('NaN') ¥} decimal.Decimal ('NaN') 2= EEH Uttt 2 E <x}2}
NaN 7Fe] v] i &= 7%;‘]?:]‘45} WA AA 02 W2k = 212, NaN o] ZpAl 7 4] O}T/}— i
Ytk ol & E0°],x = float ('NaN'),3 < x,x < 3% x == x5 EF AAAh x 1= x5 I
Yttt o] 522 [EEE 754 & 243U th

None and Not Implemented are singletons. PEP 8 advises that comparisons for singletons should always be
done with is or is not, never the equality operators.
vlol 2] Al E (bytes Y bytearray & AI2EHAF)2 IS A A4S vuE 5 A5 YTh
O] AL QAT £} g ALLFA AFA A 0 7 (lexicographically) H] 2 g T}

(

AR 2~E (tuple, list, range &
AR I th A2 e o
TypeError & 9o 7 th
Al A= S8 84 7H vl E AFSAl A Abd A o' vl gyt A A Eﬂ o]
2 5 Y SH(identical) 2 A 7} AFA1 3 2T}l (equal) 7FE Ut o] & F3l &

(cquality) AAFE: $-315F0] 52 AAMeT U F BH AL FA T
g B S AR 9l H e T3t 2ol o 2ol vtk

A
ol 2ot vl 7] A=, 22 FolaL, dol7k 2L, th5-3t

2’2 E5)2 22 3718 vag 4 At range+ tha Bl
7 FeTLAROEIE LY e

ﬂllﬂ rO

- FZ249A zd, S 2459 7 Ho)
2ot v E ook gyt (& 01, (1,2] == (1,2) = ARAAH, Fo] =7] EJYrh

- gavaE Y= Z2YdAE2 A MAZ 2 2459 22 EAE FSUY (A5 59, 11,
2,x] <= [1,2,y] ©x <= y} Z2FAYUD. HS3E= 247 e ¢ ol g 2 o]
2}l Hlj%ﬂﬁ}(ﬂl—%%% [1,2] < [1,2,3] = FIdYh

Mappings (instances of dict) compare equal if and only if they have equal (key, value) pairs. Equality
comparison of the keys and values enforces reflexivity.

4 ¥ (<, >, <=, >=) = TypeError & €42 7Yt}

RS (set]t frozenset & ALH2F) & 2L FSH A2 OE F S Lol vud 5 syth
ol A& e = F-E 5 g (subset) 7 91 5 3 (superset) = 558 EH vl AR E S ol gyt o] &
A= A A (total ordering) & 4 2] 3HA] R5UTH (Y& E°1 ?:. 1,2} 22,3} E HEHAE,
stk thE stue] R 2R ol AR, st thE skl A 1= 54U, webA, d
Aol 9 E5e o] ARz 4eEHA ST (o] &), max (), sorted () o ¥4
O 2] P2rEE AFetE AYHA F2 dAE EHDH-

A& vaE 1 8459 AMES ZA YT

[\J [‘.,.4

ij—d
ST
olA
,\2
N

TR G2 YL AT ANS2E FARA 971 AR, 718 D B8 AS U

LETTER A”) & +

fUTRE BE

rlo

ﬁ
i
2

F = 32l E (code points

Fuch fUnEd 9l

U+0041) &} =AY & X} (abstract characters) (1S S o], “LATIN CAPITAL
A EAEC] 24 o) HE TAETL R EAYA W, 27w S

e
R
g
Ar
1o
N

o

r{n:

oo BT molES] AAAT EAD 4 Qo _ir/kol BalS o] who] 9y th o & Sof, 24 2} “LATIN CAPITAL LETTER
C WITH CEDILLA” = T & $] X] U+00C7 o] 3= 3t 7] 2] B3} &2} (precomposed character) W .= 9] 2] U+0043 (LATIN CAPITAL

LETTER C) 9l 9 7|8 &2} (base character) &} F 0} 2= I = 9] %] U+0327 (COMBINING CEDILLA) ¢ 9l 23 22} (combining
character) 2 A]"ﬂi_i X232 5 A5 Th

ALY vl A A= = 3= ZJE FEAA vja gk o] A2 AgoA w ABA L & dFULE dE 9,
"\u00oC7" == " \u0043\u0327 "= AR UTH AAFE 2R o] 7 A4k 23} “LATIN CAPITAL LETTER C WITH CEDILLA” &
EATA YT 2EF5)

BERQL 2A B2l oA v zded (=, AFeto A A @A 0l ¥b¥ © 2) unicodedata.normalize () 2 AFEIAIA S

92

Chapter 6. H 314!

https://peps.python.org/pep-0008/

The Python Language Reference, & 2|A 3.13.1

vl 5 2HE ALE o] 2ok AFE AL O Sl AEL THesithE 2 7HA] 3 A AS S ok
Yk
+ 5% "2+ RFAHA (reflexive) o] o] of frU T} T2 W E %AW, ofo|HE B 7L 22 AA &= 2ot

H| 3L 5 o O]E ok
X is y‘?jx == yE]-.
o Bl = o] A A (symmetric) o] o oF U th T2 U2 Y, U3 T 2342 2 294 E
Fofof ok
x == y 2y == x
x 1= y&y 1= x
x < yy > x
x <= yoy >= x

o H]3LE 3 0] A (transitive) o] o oF U Tk Th (B A 81A] ¢h2) oS0 °o] A& oS FYth

X<yandy<=zt‘ﬂx<zE}-
e R =e A Rgo] Hojok Ptk ThE BE HASY, e HPAE 0] 2L ke Fojo}

X == yE]-not x =y
x < yﬂ—not X >= y(;ﬂ_(,_:,q_o/] 7§‘Cl)‘)
X > yilrnot x <= y(%ﬂ“f’f’"ﬂg 73‘?‘)
A et R @ AL A A ZE A AEFH Ut (o & S0, Al A2l = AEH A A g v g2
A= %}qu/]’). total_ordering() H|ZHo]EHE HAHA L.
«hash() AFE B5AT AV S FANF FUTh 2L AANSL 2L ANGES 2AY A
27h502 A A5 ofof gth
shol AL o] YTHY FAES FAFHA k5 UIth AH NaN gL o] 738 A g o Ak,

6.10.2 TE{Al ZHA} O1AL

QAL 0 3 nor 10 & WH AL AAFUTE
False%%‘/lq—.x not in s 2x in S_O,] —‘T’—

A W50l ol Ae AUse], S

list, tuple, set, frozenset, dict, collections.deque 2} 2+ A

or x == e for e in y) & =53t}

AL} wpo = | AL, x in yEx7by 9 PR EAY cubstring) A AL, 2] 2% 17
rrue UTh E5F AAE y. find () 1= -1 QUTE W EALL T e BAAEY B3 B

HAFH 7wl &, " in "abc" 2 True & EHEF YT}

For user-defined classes which define the _ contains_ () method, x in y returns True if vy.
__contains__ (x) returns a true value, and False otherwise.

For user-defined classes which donot define __contains__ () butdodefine__iter (),x in yis Trueif some
value z, for which the expression x is z or x == zistrue, is produced while iterating over y. If an exception is
raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem (), x in y is True if and only if
there is a non-negative integer index i such that x is y[i] or x == y[i], and no lower integer index raises the
IndexError exception. (If any other exception is raised, it is as if in raised that exception).

AMA} not inL ino =gA BP0z FolH)

6.10. H|il 93

The Python Language Reference, & 2|A 3.13.1

6.10.3 OfO|HIE|E| H| L
A2} is 2} is not & QA olo]HE EE AU x is x &}y 7} ofol HIE] E] 7} & A A A

W, el 4 2 4w BTk AA) cholME L 1a() HrE LGN AFHUT x ts noc
y&Eeld nA e Fur

6.11 =2| ¢iLH(Boolean operations)

or_test = and_test | or_test "or" and_ test
and_test = not_test | and_test "and" not_test
not_test = comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following
values are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including
strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects
can customize their truth value by providinga _ bool__ () method.

< 2 AAZE AR ol True &, TF A oW False & FUT

v WA e Pk ALY TR FATU 197 vy ol B
e FUok
x 9] G FEUTHx 7 Fol¥ 1 keSS U 18A FoHy 9

Fyth

anﬂwr - A% 9 gholu 1 3 S False 9 True B A|33HA] ¢Fa1, thAl mpx] o] ko] 3
AR ﬁEﬂTJ oF gth. o] 2 Lﬂi B7FAFULH A& £ s 7 EAE ol vl o] 1o
7122 A oo SThH, FH A s or 'foo' & °46P—L— HE AFFYUTE not 2 A S WHEofof
ez, 1 Azt &3 #A Qo] =2 gk (boolean value) & EHFUTE (Gl & £9], not "foo' & ' 7}
olUglralse & W UYTh)

Q
r
Y
o]
(@]
S

X
o

rob gl

an
17&

4 b

)
fio
%

?.

= e
1\1_& o 1
m L ru

fob Hl

E e &
f _V‘Lr_g mlm

Q

1 :iﬁi
it

oft

rEL ™,

6.12 CHY HEB4

assignment_expression = [identifier ":="] expression

An assignment expression (sometimes also called a “named expression” or “walrus”) assigns an expression to an
identifier, while also returning the value of the expression.

e Q) AL AL F S A ke AFALS AT AU

if matching := pattern.search(data):
do_something (matching)

e A3z od 2=FS A u):

while chunk := file.read(9000):
process (chunk)

Assignment expressions must be surrounded by parentheses when used as expression statements and when used
as sub-expressions in slicing, conditional, lambda, keyword-argument, and comprehension-if expressions and in
assert, with, and assignment statements. In all other places where they can be used, parentheses are not re-
quired, including in i f and while statements.

Added in version 3.8: T] E & Al of])3t] AFA| 3 W &2 PEP 5728 2 SHA 2.

4 2}% 7}8] A]-4> A (automatic garbage-collection) 2} A 2 2 (free lists) 2 T] 2 3 & E] (descriptor)] 52 ¢1 A7 wj&£of], 15 A4t
e A2"lA A S Y AFES Aludte AG 22 SR IR AT ul, Zog B o] 43t 52 AAT

5T o AAS ARE 150 EAE FAFAAL

94 Chapter 6. HE 514!

https://peps.python.org/pep-0572/

The Python Language Reference, & 2|A 3.13.1

6.13 =74 E3i4l(Conditional expressions)

conditional_expression o= or_test ["if" or_test "else" expression]

expression

ZH AL (] Z “AF & o AR} (ternary operator)” 2111 B U T BE slo] 4 A Abo| A 71 Fe @A

conditional_expression | lambda_expr

EWA x if C else y 2 WA xHAN 22 Co] & 7FUT C7FFolw, x 9] ghol 7oA 2L 71 <
SFUTE 18X ko, y o ge 73 ol 1 %S EHEYTh
=2

F & A0 Y3k o 24 3 &2 PEP 308 = I

Y

)z 5}

>,

}:o

6.14 ZiC}l(Lambdas)

lambda_expr = "lambda" [parameter_list] ":" expression
ot 28242 (w] = o} @ 4] (lambda forms) ©] 2k2 %% Ut ol & flt T8 vte& o AR YT
F A lambda parameters: expression «& &4 AAE FUtT) o] o] & gl= AA|= o2 A AYH

S5 AR AH EAFUH

def <lambda> (parameters) :
return expression

A H50 F e Ao A Al gk 2@ A0 whE ol X 3= £ 7 (statements) ©] L
o] = ©]] o] A (annotations) = =& 4= gl ol 23l of Futh

6.15 E 34| 55 (Expression lists)

starred_expression = ["*"] or_expr
flexible_expression n= assignment_expression | starred_expression
flexible_expression_list = flexible expression ("," flexible expression)* [","]
starred_expression_list = starred_expression ("," starred_expression)* [","]
expression_list = expression ("," expression)* [","]
yield_list = expression_list | starred_expression "," [starred_expression_list
PrE Qg Uasdeld 9N uE Agsta, Had shle] 4EE TP A B2 FEL
FUth §89) Qo B2 Qe RAAY ALYtk RIAEL AZol A 22F O R gho] T
of ~E 2] A F (asterisk) * = o|E] & & A 3}] (iterable unpacking) & WEHH Y th 3] A A = Al o] E1

Hh=
22 ojofof gyt 1 o 250 AAAR B A, A A AHAA A FZ, 2
A gkl EFH T

Added in version 3.5: ¥ 4] =20 A2} o]]2 & o 57), PEP 448 o 4] 2 2 2 A o) <] o,

i)
v
e
o
o

Added in version 3.11: Any item in an expression list may be starred. See PEP 646.

A trailing comma is required only to create a one-item tuple, such as 1, ; it is optional in all other cases. A single
expression without a trailing comma doesn’ t create a tuple, but rather yields the value of that expression. (To create
an empty tuple, use an empty pair of parentheses: ().)

6.16 'S 15t

Ol

rir
MH>
x

shol e Q%o L EX 0 A4 e TR o) he TohE T, Sl gro] AunT)
WA 78l 2ol FF 544 Al 2.
ge 504, BAAL 159 Bo £ A5 24 go] Tal AT

6.13. =71 H ¢ Al(Conditional expressions) 95

https://peps.python.org/pep-0308/
https://peps.python.org/pep-0448/
https://peps.python.org/pep-0646/

The Python Language Reference, & 2|A 3.13.1

exprl, expr2, expr3, expri4

(exprl, expr2, expr3, expré)

{exprl: expr2, expr3: expréd}

exprl + expr2 * (expr3 - exprd)

exprl (expr2, expr3, *exprd4, **exprb)

expr3, exprd4 = exprl, expr2

6.17 HLX} 2M=2
The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest
precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly

given, operators are binary. Operators in the same box group left to right (except for exponentiation and conditional

expressions, which group from right to left).

v, WA ZAAL ofol B B AXANES EF 22 SATHE 2 v Ao A A st 214 A A&
A Q8% 0 F o]oF o] 7] (chaining) 3t 7] 5= ZF YT
IS oY
(expressions...), é‘@'(binding) =235 2 85384, g2E gasy
[expressions...], {key: value...}, ©|,"9A4zg taZd o], A =y o]
{expressions...}
x[index], x[index:index], x (arguments.. ABAIAHA &golA], 55 o]JEFHE IF=X
.), x.attribute
await x o]go]E F 3 A
. ABA B
+X, =X, ~X % 2, H|E NOT
“ 61l T4, WY FA, A, A% A, e A
h- EREEE
<<, >> AlZE
& H| E AND
~ H] E XOR
| H E OR
in, not in, is, 1s not, <, <=,>,>=, l= == v 2, WA AALe) ololdlE E] AAME =3 Y T}
not x =] NOT
and =] AND
or =37] OR
if-else ZAz3dA
lambda o 284
_ CEET D
SAFAF AR s+ = QEZ | = AbEo|Y HE A F AT FslA AR YL F, 2x+-1 0.5 YU Th
6 AxAE B21E 2ol "ol = AR HUTH 22 $AeA 7 485U
96 Chapter 6. H 314!

CHAPTER /

CHa=F (Simple statements)

ol e deERol AlvEEL R FEH o] shite] £

simple_stmt = expression_stmt
assert_stmt
assignment_stmt
augmented_assignment_stmt
annotated_assignment_stmt
pass_stmt
del_stmt
return_stmt
yield_stmt

|

|

|

|

|

|

|

|

| raise_stmt
| break_stmt

| continue_stmt
| import_stmt

| future_stmt

| global_stmt

| nonlocal_stmt
|

type_stmt

T 2 #S AL YA, (B5) ZE A A (procedure) (217 il 23S S8 FE &5
sto] W ol A ZEAJA £ None & EHFUHE =217 Ao (HFE thetF o2) AU 34

Fo e AL g uwu e 227 J5Uth

EHH 2L (Bhte BEAY 5) AN B5 g 2HU

218 =04, gho] None ©] OFU W, } repr () B4 T A EADR AHE 1, 137
B sd gl i Feozy WUITE (2917 tome 3 0l 19 Sobd, ZEAA BF
g% BsA asyrh),

The Python Language Reference, & 2|A 3.13.1

AT olE= woll (D) d2sta 7k AA 8] o E-REU FEE2 S4 Y-

assignment_stmt = (target_list "=")+ (starred_expression | yield expression)
target_list = target ("," target)* [","]
target u= identifier

(attributeref, subscription, slicing 2] = o]+ Z 2ol 2] AA
IR A4 B (0] Ao

FEo] BhEold

| "(" [target_1list] ™))"
| "[" [target_list] "]"
| attributeref

| subscription

| slicing

|

"x" target

>

]
£ AL 715 A

r

= 29| Z-7ko] o) Q) g o

YL HA (B P B2 AN 0w GADU S A 1 A IR (A=A e 32

U ABE2IH A Y S8l) |, 7}L 71'421]7}42754'3;
obU A2 ARG, T o] MolEe] A £ glod o2 2
THAEL A A ES 1 AA ‘63«1 75«] o A To]z_]r/}(;i%sg A= AA

AAEBA 55, 2o ddsz sNd = A=t A 5 sy, o i d st
_]

sl Bl Tl g Axle] B Qe e 2ol AF Ao w FelH

o}
o BHAl BEo] (e A o2 5o Eo9v) FAE s fdE7F ¢le e Bzl ol W A A& e
SRR
o Else
- B2 Eio] off ~Ef 8] 2 F (asterisk) & $oll £ EF A, “AEFE (starred)” EFZ o] 2Rl E U T
StUE 233t AA = Hox B4 550 o= g9 RT3 22 5o FE5S

A ek e ol olob gk el A FREe A%l eERo R Lo
B4 ol Lo BAE S AP U Th o H 29 v FHE S Aeh= B Hef

G AS o AT, o161 0 Ll A S5 74 et B H1
(o] P2 o] 9S4 AU Th.

- 2K ew: A B BEo] ot B 29 2L S0 35
Bojojopatil, FREL, A%o|N) 2R, Y8

I>

. 0] A8 (0] 2) |-

- Lolgel WA 2= &
21 o] F F Tl Al A

- 28X oy: 10|
AN AR AZF Tt
1 o] E o] o]ln] AZAT o] 9l
o] H =& g5 o]A], 7 xﬂﬂ

o 10

EEUE $F dFUY

o BHZlo] olERRE FxW: xR Zetolr e R84 FS YL o] A2 Y 7Hs st o EE
FEE 7HA AA & Foloksttl, 2138 A 52 W TypeError 7F Yol gyth 2o 2 AA o] o] 3]
AEFREZ AAEHYIEE S HFUE S 3T 5 thd &) (B8 attributeError
oAl H ad dg = glth & 4oy
S A A7 S s Aad a0 A EYRE FR7FY Y AR FH oA BT 55,
9 (right-hand side) £ 8 4], a.x = AAHA A EGHREY (JIAHA ERREZFQTH) SeA

98

Chapter 7. Ct=2(Simple statements)

The Python Language Reference, & 2|A 3.13.1

oJEZ|HEZ AN 2T S Q55U th 23 (left-hand side) BFZ a.x = FA 25Hd BEojAgtx
FAJAAE2 o ERES AAFULE A, Fa.x 7t 22 JEYREE 77+ 2 2
gxdolopdyrth: ¥ @A o] SY2 o ELREE ZHe| T, HHS Y Bz A
Axdx EFFHES WFYTH

class Cls:

b

=3 # class variable
inst = Cls()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

]

obd A 4] o 31, 4|7 2o
2 A AE 742 Eo AR E T shem 2 ATk A7} 89S Mol U, IndexError
£ doUn (HE A3YE I N Ax0] e Qe PAsd A FES 2748 4 .

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the
mapping’ s key type, and the mapping is then asked to create a key/value pair which maps the subscript to the
assigned object. This can either replace an existing key/value pair with the same key value, or insert a new
key/value pair (if no key with the same value existed).

For user-defined objects, the setitem () method is called with appropriate arguments.

« BH2lo] efo]d ol Fxol mefoln 2] A e FHUTH (F1AE 22) 7HH AL AA
7Fuvkebol Utk ti Y E = AAl= 22 B Alda AR oF Fuh 21 b, EA g skt
Ao w@AY S TR 718G 0 AA 2] dojth AAGE ATt E o ok FUth &
T o= Aold St e, A2 ZdolE Huth 234 2ol FAFRES 034 Al A9
dolut I Abojofl Eoj 7k ol A =S A Uth mhA o2 Al AL Ao SelolAE HYH =
ARz WA EE 2 3 B AR AT S etk Sefol 28] Zol= Y jlH = Al A A
dolgtthE 4 YUtk
CPython 73 AHAl: A 73| A, B}2le EH2 A S 2A FAH 1, A5E TP 2= 44
A A ARE 7] wf ol o 2] WA A 7F
AAL T4 o] Ao 7F Fi e 7ke] F 3 o] “F Al A (simultaneous)” ¥ & (]
A4S W Th A=, il & S0 AEAd Qo A9 SH 2 AFol
e 58 de 2R dFUth dE 5o, A 22 22342 (0, 2

i] =1, 2 # 1 is updated, then x[i] 1is updated
(

& 1]

PEP 3132 - 274 o] 62| & o1 517
starget 7% ol T ek 74

2.1
= o

o

£ 2! 2 (Augmented assignment statements)

2o BTN o AT TS A E AQ Tk

o N
o

augmented_assignment_stmt = augtarget augop (expression_list | yield expression)

7.2. CHRIZE 99

https://peps.python.org/pep-3132/

The Python Language Reference, & 2|A 3.13.1

augtarget = identifier | attributeref | subscription | slicing
augop

I LB, | o= ‘ ne=" ‘ nA_mn ‘ " ‘=ll
(OFA A 7] 50 B o) ool] 2] AlAS HAIA

2)
9L B (L R THe Del A 5he) B 5 QHUH F BB BB e THL FL
AL Atot 9] Fol B o] § AS 2 W F, Aeje] B 1 AL
3 W ek gro] 73 4l o,

An augmented assignment statement like x += 1 can be rewritten as x = x + 1 to achieve a similar, but not
exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is
performed in-place, meaning that rather than creating a new object and assigning that to the target, the old object is
modified instead.

A 2], S U A2 e ge Fetr] ol ol AR e FHUTE A€ S0, ali] +=
£(x) EAgodalil 23T, £(x) 9 e 7ok, QS FASHAL, vpA o R T A0S ali]

o ThA] %o

=

fo EL ol
X2 Hr

te] £AN FEF 0% BALR Yok AL ol 9 2 T, S8 o) 2ol o o Ak Telz
e g o AUtk A 2, A e B2 s A 92 BHH, B2 oY wwol] s =
o2 A4te Auk o)A ¢l 4ka} BT

JELRE F2A B AL, AR YA Y Fe) 29} Q12T o Ee)HE

ry

375 7F A2

7.2.2 0{=H|0|EE CHQ Z(Annotated assighment statements)

ol o] 4t)2, 3 B A, Mgt o] ES HE o) Bl ol AT AT Yt WYE S FAE 2 Y
Ut

annotated_assignment_stmt = augtarget ":" expression

["=" (starred_expression | yield expression)]

The difference from normal tf] &} & is that only a single target is allowed.

The assignment target is considered “simple” if it consists of a single name that is not enclosed in parentheses. For
simple assignment targets, if in class or module scope, the annotations are evaluated and stored in a special class
or module attribute __annotations__ that is a dictionary mapping from variable names (mangled if private) to
evaluated annotations. This attribute is writable and is automatically created at the start of class or module body
execution, if annotations are found statically.

If the assignment target is not simple (an attribute, subscript node, or parenthesized name), the annotation is evaluated
if in class or module scope, but not stored.

o] go] f4 ATZAA o} ieH o] 2H W, o] o] B-& T ATz ol A o A (local) YU T, T4 2T Z A
of 1t o] A& gro] oA Ak A 9]) ek c
If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations

(where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the
target except for the last __setitem () or __setattr () call

] 27

PEP 526 - 4= o] ;o EH| o] H &Y
FAZ M ZHo= AL U (E N2 HF Y A2d A HS, T3 9] P S o] H 0| E =
THE F7 sk A<t

PEP 484 -3 3 E

B4 24 =79 DEANA AEE 4 9 3 ool o] et = W2 AT 93
=

100 Chapter 7. Ct=2(Simple statements)

L e I N L CEL "/=n | nwy/=n | "= WHkAk=D

https://peps.python.org/pep-0526/
https://peps.python.org/pep-0484/

The Python Language Reference, & 2|A 3.13.1

W 7 3.89]| 4] M 7 : Now annotated assignments allow the same expressions in the right hand side as regular assign-
ments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3 assert &

assert £-2 22 2 50of] T 7 0] A 4 (debugging assertion) & 4+ 3 H 2 & ¥ YUtk

assert_stmt = "assert" expression ["," expression]
ZrH3t FEl, assert expression 2 U3 55 Y th
N
if _ debug__ :

if not expression: raise AssertionError

325), assert expressionl, expression2 = U233 =53t

if _ debug__ :

if not expressionl: raise AssertionError (expression2)

These equivalences assume that __debug___ and AssertionError refer to the built-in variables with those names.
In the current implementation, the built-in variable _debug__ is True under normal circumstances, False when
optimization is requested (command line option —0). The current code generator emits no code for an assert
statement when optimization is requested at compile time. Note that it is unnecessary to include the source code for
the expression that failed in the error message; it will be displayed as part of the stack trace.

_ debug__ ol i th 42 3 =FH A s Utk of I W) g2 dH 2B Al o) 24 g Ytk

7.4 pass =

pass_stmt = "pass"

pass £ Eull) AP U T — AP of, o} H A= oA gkFUth EHA O Z £ R3] =
A AL B, IS AL Bn s LA A Eoh

def f (arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

7.5 del &

del_stmt = "del" target_list
A= i o] oA WA of vl okA A A o= HoFH Ut A AR AFFES YE sk tiAl,
o171 2 7Ax) A=A 95U T
B 220 AL 2 B S 9804 L BR 0 2 A Aoz AT,

o] 59 Ml B2 ZE BFo) Yl global woll I o] 5 0] TA&c=A ol et A Foly A o] F F3F
oAA o] FY AdZ= AAFUTLE o] Fo] AZE o] UA ¢F O H, NameError 9| & 7} doj gyt
AEYFE FX, NEATYHA, Sefol o AAl= 3 E Zetoly g A2 Ay Ut Setol A9
AAlE ARt o2 99 o Wl Sefo]lAE Yt AT 5 U (A T o] A 2 A} EF/}OW =
23] 7} ek g o).

WA 3204 WA A o= o] 5ol THEH EFNA A HFE 78 A5 A o] F FelA
2HA 3 A o] & e A 9k eks Y

7.3. assert & 101

The Python Language Reference, & 2|A 3.13.1

7.6 return &

return_stmt = "return" [expression_list]
return S EHA LR FHA Ao FH A 77t okl ¢ Aot T HH o YERE = A5 Th
ZHA F=o] o ghe 7ok, IE A ¢F O None 27 X FH YT
return & X2 BE (= None) = M8 O Z A, A A9 s+ T &S v dy T
o

AL 7FA try B A Ao] 7 Mol UEE wlte = AL sz HE] ARZ 8oy
Ao 1 £inaily Ao] AAAU T

Al H #l ol ¥ tﬂ—/\oﬂ/ﬂ returnw-> A &l ©]H 7]’:'15\' <= 7t 714, StopIteration "4]9’] E Yo 7]‘41‘/]’
return <ol A 3% &= 32 (A thH) stopIteration 9 /\“/HX]—Oﬂ o127 A= o] stopIteration.value
SECELE N,

v 5 7] Alydoly &golA, ¥ return B2 H]F 7] xﬂ U olE 7 Z2yee og T,
StopAsyncIteration 051]5’4 E doAYch vE7] AY Eﬂ o] E] 4ol A, vl o] YA L return &

4 el gy

7.7 yield &

yield_stmt = yield_expression

A yield statement is semantically equivalent to a yield expression. The yield statement can be used to omit the
parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield
statements

yield <expr>
yield from <expr>

2 3 2L yield B34 2R3 2=}

(yield <expr>)
(yield from <expr>)

J

Yield expressions and statements are only used when defining a generator function, and are only used in the body of
the generator function. Using yield in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.

yvield o] 5ol thst AA MF AFFELS L= 323 2] (Yield expressions) A A4S 1 8HH F)
7.8 raise &

raise_stmt = "raise" [expression ["from" expression]]

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known as
the active exception. If there isn’ t currently an active exception, a Runt imeError exception is raised indicating that
this is an error.

OZA] YO raise=dQ AAZE, A ‘ﬂaﬂ EHA9 kS I3t BaseException & Al B
AR o oF G T 2T, AN AAHAE BRD A AR Hol ZAAS) ARBAE ¢
AT

of| 2] 9] & (rype) & &) A2 S 21, Fh(value) 2 AT 2 2T YU T

A traceback object is normally created automatically when an exception is raised and attached to it as the
__traceback__ attribute. You can create an exception and set your own traceback in one step using the

102 Chapter 7. Ct=2(Simple statements)

The Python Language Reference, & 2|A 3.13.1

with_traceback () exception method (which returns the same exception instance, with its traceback set to its
argument), like so:

[raise Exception ("foo occurred") .with_traceback (tracebackobj)

The from clause is used for exception chaining: if given, the second expression must be another exception class
or instance. If the second expression is an exception instance, it will be attached to the raised exception as the
__cause__ attribute (which is writable). If the expression is an exception class, the class will be instantiated and
the resulting exception instance will be attached to the raised exception as the ___cause___ attribute. If the raised
exception is not handled, both exceptions will be printed:

>>> try:
print (1 / 0)
except Exception as exc:

raise RuntimeError ("Something bad happened") from exc

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
print (1 / 0)

~~ N~

ZeroDivisionError: division by zero
The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
raise RuntimeError ("Something bad happened") from exc
RuntimeError: Something bad happened

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled. An
exception may be handled when an except or finally clause, ora with statement, is used. The previous exception
is then attached as the new exception’ s __context___ attribute:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened")

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
print (1 / 0)

A

ZeroDivisionError: division by zero
During handling of the above exception, another exception occurred:
Traceback (most recent call last):

File "<stdin>", line 4, in <module>
raise RuntimeError ("Something bad happened")

RuntimeError: Something bad happened

Exception chaining can be explicitly suppressed by specifying None in the from clause:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened") from None

(Th= sl ol Aol A1)

7.8. raise & 103

The Python Language Reference, & 2|A 3.13.1

(o] A | o] A oA A A %)
Traceback (most recent call last):
File "<stdin>", line 4, in <module>

RuntimeError: Something bad happened

o o of] g o] W2 AHE o o] Ao M DAL 5 a1, o9 S Al st 2ol ek FH =y & A Aol
A=y

WA 3304 HA: oA raise x from Y A Y E None ©] 3 2F YTk
Added the __suppress_context___ attribute to suppress automatic display of the exception context.

¥ A 3.11 9] 4] ¥ 7 If the traceback of the active exception is modified in an except clause, a subsequent raise
statement re-raises the exception with the modified traceback. Previously, the exception was re-raised with the
traceback it had when it was caught.

7.9 break &

break_stmt = "break"

break & WA LR for Ywhile Fx| FHF AA R UEPE = lF Ut SpAIRE T £z <ko) g

FeA Ho ol FHH A= FFUTh
74 7h kol A S E AL e FZE S50, 1 F 2 7else AZ 23 Qb v Y th(skip).
for TZ 7} break B2 2E2F W, FZ Ao AL AR ZHS A St}

break 7t finally A2 7} try woll Al Ao 7 HAUEE vte = A9, FZ2RE JARE Hoj}r] 2o
1 finally Bo] A3g Yt}

N

7.10 continue &

continue_stmt = "continue"
]

continue £ WA O R for \hunile Fxo| FUF o v e & gtk SAE 1 Fx bl
gt 2 s Ao FHH AL GHUTh 23 kel A B AR G FE e Ao 22 Fol 7t

=% whE U

continue 7} finally A& 74 cry Bl A Ao} 7H Mol YE & BEE A9, T FE Ao 8¢ Al 2417
ol 1 finally &o] gﬁg% [Sh=

711 QX E (import) &

import_stmt "import" module ["as" identifier] ("," module ["as" identifier])*
| "from" relative_module "import" identifier ["as" identifier]
("," identifier ["as" identifier])*

| "from" relative_module "import" " (" identifier ["as" identifier]
("," identifier ["as" identifier])* [","] ")"

| "from" relative_module "import" "*"

module = (identifier ".")* identifier

relative_module = "."* module | "."+

1. REZ 2, 2esta, 3
2. YEE (inpore) o] 5HW 2029 4G o] F 7| o] FolLt o] EEL Pt}

104 Chapter 7. Ct=2(Simple statements)

The Python Language Reference, & 2|A 3.13.1

Fol (dEx Zeld) o2 e de 295t vhx) 7 Dol xS JxE Fo s £2d AAH,

=
-
% OAE A e Sy
The details of the first step, finding and loading modules, are described in greater detail in the section on the import
system, which also describes the various types of packages and modules that can be imported, as well as all the hooks
that can be used to customize the import system. Note that failures in this step may indicate either that the module

could not be located, or that an error occurred while initializing the module, which includes execution of the module’
s code.

LAY RE AT o] £997| | 744 & Stk o' Ao o] F Fke| A/NE Yth
e RE O EHas 7t 29, as Flol Lol Eo] dZEH ZE A dZ2F Ut
o« TFE o] o] AAE A 411, YZEHE=REC FHFY BECIH, BEY o] 5] YXEFH = EE
gt IR =2 A o] 5 F3te| dZFYh
e ARXEFHE BEO HAO BEo] oY B, 2 ZES 2= A dFIA Y o] Fo] HA
7)Ao et FRE A G ol F T AZFE UL dxEH BELS A FH o] 7| Hites &3]
A 5+3}E ©] & (full qualified name) & 53l YA 2 = of of Fhth
from P& F7+HH

1. dZEF BEo| 10
2. oW, Do AN B BRES JXETS = AS AET T YXZEH BEA T oEYRE
2 ohA) AA o
3. JEYFREZHASE A ¢4 ImportError § 423 YTh
4. 2A Fowd, I gholl thek Fx7F A G o] F F ol AR =, as Bo] AT A 7]l A
AQH o] E A, 184 gom o R HE o] 8L AH T}
AHE- el
import foo # foo imported and bound locally
import foo.bar.baz # foo, foo.bar, and foo.bar.baz imported, foo bound.
—locally

import foo.bar.baz as fbb # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.
—bound as fbb

from foo.bar import baz # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.
—bound as baz

from foo import attr # foo imported and foo.attr bound as attr

AEAEY 52 28 () ZuHEE, BE BYH BE Il ol 550 import 0] 5T AT L]
Al

of AelA &N o1 5 (public names) & 252 |5 FA _all__ o2tE o] 5 M S /\}ﬁﬂfﬂ
AREUE A= o] Ao, Ao Al@ Lol ok d=t, 1 B °1 @46?71‘% AEESHE o]FE YUY
th a1l N AATF o] EE2 BT T2 AFHIL WEA SAS ok FYTh _a11 ©] Zé«lilxl
gow, BEef o & ﬁ7}°ﬂ/ﬂ %‘ﬁﬂ £ °lF 5, BE A () E AIFSA G BE o]F0l FNE

FHUS. et e B AN IS S0l oF il 95 AL % oA AP o
PEES w2 A2 WASE AYUD U4 2 2Eo| JEES T ALE= shol Hele] BE
YEZES }AETIE Y| — from module import * — £ & FEAARS=HFH YT Tifiﬁiur o
A o] o Al AFR3l = A=+ syntaxError & 92 U Th
%‘lE;}Et‘irg X]’ﬁﬂfm

252 ddf o] & (absolute name) = A A E 8+ §lHY E oL}t 3 7] A 7}
ze

18| F2 S 1A el A= 2 s 7] A] ol &= ﬁ%@%ﬁ ol Aol dx2E
(relatlve lmport) = & AFULh fron o AR = AV EE ol ol Mo, g ol5=
23R % A 3 7] A A5y th e 2 o

714 A& okt Ae] Eebrob se A AR T 5 9l
YE=E GE wEol SAGE B A4S KL T A GE LA
=709 28, 55U LelA pro 917 %

711, YAXEE (import) £ 105

The Python Language Reference, & 2|A 3.13.1

ol

71] Huyt}. pkg.subpkgl ?l—oﬂ Al from . .subpkg2 import
AUk Aol dzEel Blgk 742 574) J 2=

import mod & AP35}, pkg.mod & YXE
mod & A 83} pkg. subpkg2 .mod = Y EZEF}
Aol o5 th

ErId REELEAHOT AASE SR 2 I1HEE X QD5}7] Y3l importlib. import_module () ©]

Alsgyth
1=1 DA

Ol A} module, filename, sys.path, sys.meta_path, sys.path_hooks & ZtA} O] E import S A A

Aue,
7111 X 2
F A F (future statement) = AL H7F EH S BE

i =
k= = 2] A of (directive) 18], 1 7] 52 n] g o] A=

A =
AdUth 2 7150] FFo] He M o] Hol| ZE &¢

future_stmt = "from" "__ future_ " "import" feature ["as" identifier]
("," feature ["as" identifier])*
| "from" "__ future__" "import" " (" feature ["as" identifier]

("," feature ["as" identifier])* [","] ™M)"

feature = identifier
FA =2 25 AL AFol velof gtk 4 & ol U= = = EE2
o« 28§ =2 E ¥ (docstring) (1T}HH),
. 54
« W1 &, 181
- TEFA EE

A L 23} 715 L annotations Y UTH (PEP 5632 A2 314 A]).

HJAN FA4 2 &3 EA43H A 71552 A3 sholA 39 93 AAFYTLE o] HFEo&
absolute_lmport, division, generators, generator_stop, unicode_literals, print_function,
nested_scopes E—l with_statement 7} TSHUTH o] AEL oo EQd A A sH 1, 2 & 3}

Azage A & 1ﬂ14ﬂﬂ%ﬂuw
A5k Aol A5 3 o AU Tk 4 P EEY o vlof g
A 5

Sl
tlo
ﬁa
ofo
:IOL_I‘
]
)
g;

FA T2 TAdLEE AL 3%

D} = ARE S8 FAHYUTH Al 7] o] T3 A ¢l= M EL ool AR MER EHS =Yt
S22 75 @), 0] A9t ALt RELS ThEA AT S AUtk 18 APEL AG Ao

Shaa gt

W Evic), AutdY s oj| 7% o] 250 AeH o] YA B, ok FA Fo| BA T A5

Zgstu god Astd A4 oy g oy

AFAAA AY AF G B2 J2E 2EH ZHYUTh BE BE__furure, ol A¥ YT o

UL, FA4 Fol A = Ao dubAJI Yo JdxEH T

Sz A AG) AYES F4 £ 8 B4 FA 7550 D

o7 Bl = obPAE S8 E o] ghgol T3 oF FUth

[import _ future__ [as name]

o2 FA ol ohguith ob R @ Hu e Aol A Aloko] gt BT Y= FY BTk

Code compiled by calls to the built-in functions exec () and compile () that occur in a module M containing a
future statement will, by default, use the new syntax or semantics associated with the future statement. This can be
controlled by optional arguments to compile () — see the documentation of that function for details.

106 Chapter 7. Ct=2(Simple statements)

https://peps.python.org/pep-0563/

The Python Language Reference, & 2|A 3.13.1

ey AElzolE sgaeeld ded #4 B sl Aol e)0 EAE DA,
Qe zele 7} -1, WG ~TYE o] Fo] ALFUTh FHOR A1, 1 AAPEFA L £
B

S, AT HETZFAYE o] Fofl A FE = Bt E A E 238 AU

e o B

PEP 236 - ¥} =t _ future__
_future__ v 71 Zofl o3k 2 2 0] Al

712 global &

global_stmt = "global" identifier ("," identifier)*

The global statement causes the listed identifiers to be interpreted as globals. It would be impossible to assign to a
global variable without global, although free variables may refer to globals without being declared global.

The global statement applies to the entire scope of a function or class body. A SyntaxError is raised if a variable
is used or assigned to prior to its global declaration in the scope.

Z2Iae] Fo] AV global & IhA o] T2 A A A} (directive) Y U TF. global &34 22 Al G ol| 3}
He meolw AP U B4, U exec) 42 BRE L EALO| Y} 2= AA o] EFH global
1P IS TR IE Hi"ﬂL V¥ —7—1] a1, O FAE] 29E IE AN o
o= ZE0 3= global woll &= TA A5 U eval () Fcompile () FFEE U}ZW}

7.13 nonlocal &

nonlocal_stmt = "nonlocal" identifier ("," identifier)*

‘When the definition of a function or class is nested (enclosed) within the definitions of other functions, its nonlocal
scopes are the local scopes of the enclosing functions. The nonlocal statement causes the listed identifiers to refer
to names previously bound in nonlocal scopes. It allows encapsulated code to rebind such nonlocal identifiers. If a
name is bound in more than one nonlocal scope, the nearest binding is used. If a name is not bound in any nonlocal
scope, or if there is no nonlocal scope, a SyntaxError is raised.

The nonlocal statement applies to the entire scope of a function or class body. A SyntaxError is raised if a
variable is used or assigned to prior to its nonlocal declaration in the scope.

] 27

PEP 3104 - v} AT Zoj Q= o] 25
nonlocal 9| 3.

2
Ee)
e
£
>
[>

Programmer’ s note: nonlocal is a directive to the parser and applies only to code parsed along with it. See the
note for the global statement.

7.14 The type statement

type_stmt = 'type' identifier [type_params] "=" expression
The type statement declares a type alias, which is an instance of typing.TypeAliasType.

For example, the following statement creates a type alias:

7.12. global & 107

https://peps.python.org/pep-0236/
https://peps.python.org/pep-3104/

The Python Language Reference, & 2|A 3.13.1

[type Point = tuple[float, float]

This code is roughly equivalent to:

annotation-def VALUE_OF_Point () :
return tuple[float, float]
Point = typing.TypeAliasType ("Point", VALUE_OF_Point ())

annotation-def indicates an annotation scope, which behaves mostly like a function, but with several small dif-
ferences.

The value of the type alias is evaluated in the annotation scope. It is not evaluated when the type alias is created, but
only when the value is accessed through the type alias’ s __value__ attribute (see Lazy evaluation). This allows the
type alias to refer to names that are not yet defined.

Type aliases may be made generic by adding a type parameter list after the name. See Generic type aliases for more.
type is a soft keyword.

Added in version 3.12.

&] 27

PEP 695 - Type Parameter Syntax
Introduced the type statement and syntax for generic classes and functions.

108 Chapter 7. Ct=2(Simple statements)

https://peps.python.org/pep-0695/

CHAPTER 8

EAFLOEEFEE I58)S 28Ut oJE o E O o8 2F 59 Ado 4 FAY
Aoyt 7tdsiA @ u)], A BT RS I 22 & ¢ U= A wH dutdg o7 B3R L o F
Zof Az

Z° 23 Yt}

if, while, for w72 S A Al
AE (cleanup) T=E FE+= 15 BF
o)ld IEEARFT

g
fu
-
ox
il
v
&
A
ox,
e
i)
M
o

= . E
AAUEL BT gL Sojxg] 222 2FUTh 4 4 HEt SEs AEs s AR A5
2eor Ty, 29 EE Ao o5 AoHE 4SS AU AEE AT 22 H oA
MEEoR HelH s 1 o4 1%

[if testl: if test2: print (x)

3 o] oA AmZ8o]l ZBE T Y AetA Ao A, v 22 AolA, print () TEE2 EF

ARH AY o) = stuE A A s Uths Aol 28] oF Ty

[if x <y < z: print(x); print(y); print(z)

8 ofstd:

compound_stmt = if_stmt
| while_ stmt

| for_stmt

| try_stmt

| with_stmt

| match_stmt

| funcdef

| classdef

| async_with_stmt
| async_for_stmt
|

async_funcdef

109

The Python Language Reference, & 2|A 3.13.1

suite = stmt_1list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement "= stmt_1list NEWLINE | compound_stmt
stmt_list = simple_stmt (";" simple_stmt)* [";"]
TS0l /4 NEWLINE © 2 ZUA DEDENT 7F 1 F & e 5 ol FE o Tt =5 A rhe st
A2 BEo] BB AL gle 719 =R A7) w2, RE o] gltkes 2% FESA .
(FelHo e FHE irfol €27 He S 27T 2R v (dangling) e1se’ FAE 2T
yth
BHS A8 b 2 AEOIM et By #A5S 2 4 4rg Fol 5= Erjg T
81 if &
iFRe 2R AR AEHUT
if_stmt = "if" assignment_expression ":" suite
("elif" assignment_expression ":" suite)*
["else" ":" suite]
Fol St AS WAL W7hA EAN B kg sy e h 2 P A F B3] Shte] 29 =S HeE g
Ytk (23 AR 9 A& =2 AxH(Boolean operations) A& E*ﬂ&) Jd o 2 29 EEAYF Y
(2Pile ir 7o thE ofd FEE A A gho] A A gsUth. BE @A 5] AROH

while T @A 0] el A AYPE e sl o AHHYth

while_stmt = "while" assignment_expression ":" suite

["else" ":" suite]
o] AL xAAS WMEHORE A, FolW, A HAl A EE At 38 A o] AXlolH (A5
28 A0 5 dath else 49 A9 E7} (AT) AWH L 228 FE gk
A AR 2N EA APBH = break T else B AYSHA L FZE FEFYTE A AA 29 E oA
APE = continue T A EY YA BES AVH I 84 Y AAR Eopztth

for £ (BAHE, 73, Bl2E Z22) Ald2 Uy o olHH 2 AA|8 2452 olHHE ol EsteT] AH:

for_stmt = "for" target_list "in" starred_list ":" suite
["else" ":" suite]

The starred_list expression is evaluated once; it should yield an iferable object. An iterator is created for that
iterable. The first item provided by the iterator is then assigned to the target list using the standard rules for assign-
ments (see T} $J i), and the suite is executed. This repeats for each item provided by the iterator. When the iterator
is exhausted, the suite in the e1se clause, if present, is executed, and the loop terminates.

A WA A ENA AYH = break T2 else B2 AWSHA 1 F2E FEFUh A WA &
NN AYEH = continue T2 A EY Yw A HES AH L 1‘4‘% FEHOR o7k A, 1’/]’%60
o else AF ZFYTh

110 Chapter 8. 52 (Compound statements)

The Python Language Reference, & 2|A 3.13.1

for-F 2 B2 Z29 M5S0 A HUTH for- T2 29 B0 4] o] £ 7 AFE EFSIA, 1 850
FATYE e BT ol Byt

for i in range (10):
print (i)
i=25 # this will not affect the for-loop
because i will be overwritten with the next

index in the range

Names in the target list are not deleted when the loop is finished, but if the sequence is empty, they will not have
been assigned to at all by the loop. Hint: the built-in type range () represents immutable arithmetic sequences of
integers. For instance, iterating range (3) successively yields 0, 1, and then 2.

WA 3.119]| A WM 7 Starred elements are now allowed in the expression list.

84 try =

The t ry statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt = tryl_stmt | try2 stmt | try3 stmt
tryl_stmt = "try" ":" suite
("except" [expression ["as" identifier]] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try2_stmt = "try" ":" suite
("except" "*" expression ["as" identifier] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try3_stmt = "try" ":" suite
"finally" ":" suite

o) 9 of & 37} AM L o] o Mol R 5 AL, 9 DTN I3 raise £& AT A
A3 A B E paise F AN A 2S5 Y5 Th

8.4.1 except clause

The except clause(s) specify one or more exception handlers. When no exception occurs in the try clause, no
exception handler is executed. When an exception occurs in the t ry suite, a search for an exception handler is started.
This search inspects the except clauses in turn until one is found that matches the exception. An expression-less
except clause, if present, must be last; it matches any exception.

For an except clause with an expression, the expression must evaluate to an exception type or a tuple of exception
types. The raised exception matches an except clause whose expression evaluates to the class or a non-virtual base
class of the exception object, or to a tuple that contains such a class.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code
and on the invocation stack.'

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a
handler is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated
as if the entire t ry statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified after the as keyword in that
except clause, if present, and the except clause’ s suite is executed. All except clauses must have an executable
block. When the end of this block is reached, execution continues normally after the entire t ry statement. (This
means that if two nested handlers exist for the same exception, and the exception occurs in the try clause of the
inner handler, the outer handler will not handle the exception.)

q;}q%@lﬂ%%‘271%finally3=i°1ﬁlzl Fe e TE aFoR AP ULE 2 A A€ ol dY Ag dou e A BF

8.4. try = 111

The Python Language Reference, & 2|A 3.13.1

When an exception has been assigned using as target, it is cleared at the end of the except clause. This is as if

except E as N:
foo

7ol g7 e £ A7 2

)

St

except E as N:
try:
foo
finally:
del N

This means the exception must be assigned to a different name to be able to refer to it after the except clause.
Exceptions are cleared because with the traceback attached to them, they form a reference cycle with the stack
frame, keeping all locals in that frame alive until the next garbage collection occurs.

Before an except clause’ s suite is executed, the exception is stored in the sys module, where it can be accessed
from within the body of the except clause by calling sys.exception (). When leaving an exception handler, the
exception stored in the sys module is reset to its previous value:

>>> print (sys.exception())

None

>>> try:
raise TypeError

except:
print (repr (sys.exception()))
try:
raise ValueError
except:
print (repr (sys.exception()))

print (repr (sys.exception()))

TypeError ()
ValueError ()
TypeError ()
>>> print (sys.exception())

None

8.4.2 except* clause

The except* clause(s) are used for handling ExceptionGroups. The exception type for matching is interpreted
as in the case of except, but in the case of exception groups we can have partial matches when the type matches
some of the exceptions in the group. This means that multiple except * clauses can execute, each handling part of
the exception group. Each clause executes at most once and handles an exception group of all matching exceptions.
Each exception in the group is handled by at most one except * clause, the first that matches it.

>>> try:
raise ExceptionGroup("eg",
[ValueError (1), TypeError(2), OSError(3), OSError(4)])
except* TypeError as e:
print (f'caught {type (e) with nested {e.exceptions/')
except* OSError as e:
print (f'caught {type(e)} with nested {e.exceptions}')

caught <class 'ExceptionGroup'> with nested (TypeError (2),)
caught <class 'ExceptionGroup'> with nested (OSError (3), OSError (4))
+ Exception Group Traceback (most recent call last):

(TH5 sl el Aol A<)

112 Chapter 8. 52 (Compound statements)

The Python Language Reference, & 2|A 3.13.1

(o] A | o] A oA A A %)
| File "<stdin>", line 2, in <module>

| ExceptionGroup: eg

Any remaining exceptions that were not handled by any except* clause are re-raised at the end, along with all
exceptions that were raised from within the except * clauses. If this list contains more than one exception to reraise,
they are combined into an exception group.

If the raised exception is not an exception group and its type matches one of the except * clauses, it is caught and
wrapped by an exception group with an empty message string.

>>> try:
raise BlockingIOError
except* BlockingIOError as e:
print (repr (e))

ExceptionGroup ('', (BlockingIOError()))

J

An except* clause must have a matching expression; it cannot be except * : . Furthermore, this expression cannot
contain exception group types, because that would have ambiguous semantics.

It is not possible to mix except and except * in the same try. break, cont inue and return cannot appear in
an except* clause.

8.4.3 else clause

Ak 7t=3lelse AL Ao 20| try A ESE WA U LT, | 7} A LR 9EQk L, return, continue
T break o] AP A koW APFHUh else oA AT o 2= Soll Y+ except HollA]

A=A st

8.4.4 finally clause

If finally is present, it specifies a ‘cleanup’ handler. The try clause is executed, including any except and
else clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved.
The finally clause is executed. If there is a saved exception it is re-raised at the end of the finally clause. If
the finally clause raises another exception, the saved exception is set as the context of the new exception. If the
finally clause executes a return, break or cont inue statement, the saved exception is discarded:

>>> def f():
try:
1/0
finally:
return 42
>>> f ()
42

The exception information is not available to the program during execution of the finally clause.

When a return, break or continue statement is executed in the t ry suite of a try---finally statement, the
finally clause is also executed ‘on the way out.’

The return value of a function is determined by the last return statement executed. Since the finally clause
always executes, a return statement executed in the finally clause will always be the last one executed:

>>> def fool():
try:
(Th= o] A ol A1)

8.4. try = 113

The Python Language Reference, & 2|A 3.13.1

(o] sl o] A ol A AI)
return 'try'
finally:
return 'finally'

>>> foo ()

'finally'

W 7 3.89]| 4] ¥ 7 : Prior to Python 3.8, a cont i nue statement was illegal in the final1ly clause due to a problem
with the implementation.

8.5 with &

with —E--% %
A=] A
AanT > o=

2 AYAE B A (with £ AL AE el A A4S BAR) A AU ES
g2 w3 =

3
ok ol AL B cryexceptr finally A AL Bel s ANSE 5+ A=F
§}

=

with_stmt = "with" (" (" with_stmt_contents ","? ")" | with_stmt_contents
with_stmt_contents = with_item ("," with_item)*
with_item = expression ["as" target]

shite] “item” & AR&Sh= with w0 AL tha o] JyYH U

1. The context expression (the expression given in the with_item) is evaluated to obtain a context manager.
The context manager’ s __enter__ () is loaded for later use.
The context manager’ s __exit__ () is loaded for later use.

The context manager’ s __enter () method is invoked.

A

If a target was included in the wi t h statement, the return value from __enter_ () is assigned to it.

0 #x

The with statement guarantees that if the ~ enter () method returns without an error, then
__exit__ () will always be called. Thus, if an error occurs during the assignment to the target list, it
will be treated the same as an error occurring within the suite would be. See step 7 below.

6. ~91E 7} AFH UL

7. The context manager’ s __exit__ () method is invoked. If an exception caused the suite to be exited, its
type, value, and traceback are passed as arguments to __exit__ (). Otherwise, three None arguments are
supplied.

If the suite was exited due to an exception, and the return value from the exit () method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with
the statement following the with statement.

If the suite was exited for any reason other than an exception, the return value from __exit__ () is ignored,
and execution proceeds at the normal location for the kind of exit that was taken.

O3 g2 IE+

with EXPRESSION as TARGET:
SUITE

e 53t Es gk

114 Chapter 8. 52 (Compound statements)

)

".

n

Su1

The Python Language Reference, & 2|A 3.13.1

manager = (EXPRESSION)

enter = type (manager) .__enter_
exit = type (manager) .__exit_
value = enter (manager)

hit_except = False

try:
TARGET = wvalue
SUITE

except :
hit_except = True

if not exit (manager, *sys.exc_info()):
raise
finally:
if not hit_except:
exit (manager, None, None, None)

S RS FE e S0, AU AE B s vicn ol FHE AN Y A

i)
-
o

with A() as a, B() as b:
SUITE

ol 4o 2 g7} 553

with A() as a:
with B() as b:
SUITE

You can also write multi-item context managers in multiple lines if the items are surrounded by parentheses. For
example:

with (
A() as a,
B() as b,
) 8
SUITE

WA 31N WA g A AE 2R A9

¥ A 3.109]| A W 7 : Support for using grouping parentheses to break the statement in multiple lines.

& v 17

PEP 343 - “with” &
shol A with B9 74, W3, .

8.6 The match statement

Added in version 3.10.

The match statement is used for pattern matching. Syntax:

match_stmt = 'match' subject_expr ":" NEWLINE INDENT case_block+ DEDENT
subject_expr = star_named_expression "," star_named_expressions?

| named_expression
case_block = 'case' patterns [guard] ":" block

8.6. The match statement 115

https://peps.python.org/pep-0343/

The Python Language Reference, & 2|A 3.13.1

0 Iz

This section uses single quotes to denote soft keywords.

Pattern matching takes a pattern as input (following case) and a subject value (following mat ch). The pattern (which
may contain subpatterns) is matched against the subject value. The outcomes are:

« A match success or failure (also termed a pattern success or failure).
« Possible binding of matched values to a name. The prerequisites for this are further discussed below.

The match and case keywords are soft keywords.

t 17
o PEP 634 - Structural Pattern Matching: Specification
o PEP 636 - Structural Pattern Matching: Tutorial

8.6.1 Overview
Here’ s an overview of the logical flow of a match statement:

1. The subject expression subject_expr is evaluated and a resulting subject value obtained. If the subject
expression contains a comma, a tuple is constructed using the standard rules.

2. Each pattern in a case_block is attempted to match with the subject value. The specific rules for success
or failure are described below. The match attempt can also bind some or all of the standalone names within
the pattern. The precise pattern binding rules vary per pattern type and are specified below. Name bindings
made during a successful pattern match outlive the executed block and can be used after the match
statement.

0 Iz

During failed pattern matches, some subpatterns may succeed. Do not rely on bindings being made for a
failed match. Conversely, do not rely on variables remaining unchanged after a failed match. The exact
behavior is dependent on implementation and may vary. This is an intentional decision made to allow
different implementations to add optimizations.

3. If the pattern succeeds, the corresponding guard (if present) is evaluated. In this case all name bindings are
guaranteed to have happened.

« If the guard evaluates as true or is missing, the block inside case_block is executed.
o Otherwise, the next case_block is attempted as described above.

o If there are no further case blocks, the match statement is completed.

0 Ix

Users should generally never rely on a pattern being evaluated. Depending on implementation, the interpreter
may cache values or use other optimizations which skip repeated evaluations.

A sample match statement:

>>> flag = False
>>> match (100, 200):
case (100, 300): # Mismatch: 200 != 300

(THE sl el Aol A)

116 Chapter 8. 52 (Compound statements)

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/

The Python Language Reference, & 2|A 3.13.1

(o1 sl o] A ol A Al <5)
print ('Case 1'")
case (100, 200) if flag: # Successful match, but guard fails
print ('Case 2'")
case (100, y): # Matches and binds y to 200
print (f'Case 3, y: {y}")
case _: # Pattern not attempted
print ('Case 4, I match anything!"')

Case 3, y: 200

In this case, 1f flagis a guard. Read more about that in the next section.

8.6.2 Guards

guard = "if" named_expression

A guard (which is part of the case) must succeed for code inside the case block to execute. It takes the form: i
followed by an expression.

The logical flow of a case block with a guard follows:

1. Check that the pattern in the case block succeeded. If the pattern failed, the guard is not evaluated and the
next case block is checked.

2. If the pattern succeeded, evaluate the guard.
o If the quard condition evaluates as true, the case block is selected.
o If the guard condition evaluates as false, the case block is not selected.
« If the guard raises an exception during evaluation, the exception bubbles up.

Guards are allowed to have side effects as they are expressions. Guard evaluation must proceed from the first to the
last case block, one at a time, skipping case blocks whose pattern(s) don’ t all succeed. (L.e., guard evaluation must
happen in order.) Guard evaluation must stop once a case block is selected.

8.6.3 Irrefutable Case Blocks

An irrefutable case block is a match-all case block. A match statement may have at most one irrefutable case block,
and it must be last.

A case block is considered irrefutable if it has no guard and its pattern is irrefutable. A pattern is considered irrefutable
if we can prove from its syntax alone that it will always succeed. Only the following patterns are irrefutable:

o AS Partterns whose left-hand side is irrefutable

e OR Patterns containing at least one irrefutable pattern
o Capture Patterns

o Wildcard Patterns

« parenthesized irrefutable patterns

8.6.4 Patterns

0 Fx
This section uses grammar notations beyond standard EBNF:
« the notation SEP . RULE+ is shorthand for RULE (SEP RULE) *

« the notation ! RULE is shorthand for a negative lookahead assertion

8.6. The match statement 117

The Python Language Reference, & 2|A 3.13.1

The top-level syntax for patterns is:

patterns = open_sequence_pattern | pattern
pattern

as_pattern | or_pattern

closed_pattern = literal_pattern

capture_pattern
wildcard_pattern
value_pattern

sequence_pattern

|

|

|

|

| group_pattern
|

| mapping_pattern
|

class_pattern

The descriptions below will include a description “in simple terms” of what a pattern does for illustration purposes
(credits to Raymond Hettinger for a document that inspired most of the descriptions). Note that these descriptions
are purely for illustration purposes and may not reflect the underlying implementation. Furthermore, they do not
cover all valid forms.

OR Patterns

An OR pattern is two or more patterns separated by vertical bars |. Syntax:

or_pattern = "|".closed _pattern+

Only the final subpattern may be irrefutable, and each subpattern must bind the same set of names to avoid ambiguity.

An OR pattern matches each of its subpatterns in turn to the subject value, until one succeeds. The OR pattern is
then considered successful. Otherwise, if none of the subpatterns succeed, the OR pattern fails.

In simple terms, P1 | P2 | ... will try to match p1, if it fails it will try to match P2, succeeding immediately if
any succeeds, failing otherwise.

AS Patterns

An AS pattern matches an OR pattern on the left of the as keyword against a subject. Syntax:

as_pattern = or_pattern "as" capture_pattern

If the OR pattern fails, the AS pattern fails. Otherwise, the AS pattern binds the subject to the name on the right of
the as keyword and succeeds. capture_pattern cannotbe a _.

In simple terms P as NAME will match with P, and on success it will set NAME = <subject>.

Literal Patterns

A literal pattern corresponds to most /iterals in Python. Syntax:

literal pattern signed_number
| signed_number "+" NUMBER
| signed_number "-" NUMBER
| strings

| "None"

| "True"

| "False"

["-"] NUMBER

signed_number

118 Chapter 8. 52 (Compound statements)

The Python Language Reference, & 2|A 3.13.1

The rule strings and the token NUMBER are defined in the standard Python grammar. Triple-quoted strings are
supported. Raw strings and byte strings are supported. f-strings are not supported.

The forms signed_number '+' NUMBER and signed_number '-' NUMBER are for expressing complex num-
bers; they require a real number on the left and an imaginary number on the right. E.g. 3 + 4.

In simple terms, LITERAL will succeed only if <subject> == LITERAL. For the singletons None, True and
False, the is operator is used.

Capture Patterns

A capture pattern binds the subject value to a name. Syntax:

capture_pattern = ' _' NAME

A single underscore _ is not a capture pattern (this is what !'_' expresses). It is instead treated as a
wildcard_pattern.

In a given pattern, a given name can only be bound once. E.g. case x, x: ... isinvalid while case [x] | x:
. is allowed.

Capture patterns always succeed. The binding follows scoping rules established by the assignment expression operator
in PEP 572; the name becomes a local variable in the closest containing function scope unless there’ s an applicable
global or nonlocal Statement.

In simple terms NAME will always succeed and it will set NAME = <subject>.

Wildcard Patterns

A wildcard pattern always succeeds (matches anything) and binds no name. Syntax:

wildcard_pattern = v

_ is a soft keyword within any pattern, but only within patterns. It is an identifier, as usual, even within mat ch subject
expressions, guards, and case blocks.

In simple terms, _ will always succeed.

Value Patterns

A value pattern represents a named value in Python. Syntax:

attr
name_or_attr "." NAME
attr | NAME

value_pattern
attr
name_or_attr

The dotted name in the pattern is looked up using standard Python name resolution rules. The pattern succeeds if the
value found compares equal to the subject value (using the == equality operator).

In simple terms NAME1 . NAME2 will succeed only if <subject> == NAME1.NAME2

0 #Fx

If the same value occurs multiple times in the same match statement, the interpreter may cache the first value
found and reuse it rather than repeat the same lookup. This cache is strictly tied to a given execution of a given
match statement.

8.6. The match statement 119

https://peps.python.org/pep-0572/

The Python Language Reference, & 2|A 3.13.1

Group Patterns

A group pattern allows users to add parentheses around patterns to emphasize the intended grouping. Otherwise, it
has no additional syntax. Syntax:

group_pattern = "(" pattern ")"

In simple terms (P) has the same effect as p.

Sequence Patterns

A sequence pattern contains several subpatterns to be matched against sequence elements. The syntax is similar to
the unpacking of a list or tuple.

sequence_pattern = "[" [maybe_sequence_pattern] "1"
| "(" [open_sequence_pattern] ")"
open_sequence_pattern = maybe_star pattern "," [maybe_sequence_pattern]

maybe_sequence_pattern ", ".maybe_star_patternt+ ","?

star_pattern | pattern

maybe_star_pattern

star_pattern = "*" (capture_pattern | wildcard_pattern)
There is no difference if parentheses or square brackets are used for sequence patterns (i.e. (...) vS [...]).
0 Iz

A single pattern enclosed in parentheses without a trailing comma (e.g. (3 | 4)) is a group pattern. While a
single pattern enclosed in square brackets (e.g. [3 | 41) is still a sequence pattern.

At most one star subpattern may be in a sequence pattern. The star subpattern may occur in any position. If no
star subpattern is present, the sequence pattern is a fixed-length sequence pattern; otherwise it is a variable-length
sequence pattern.

The following is the logical flow for matching a sequence pattern against a subject value:
1. If the subject value is not a sequence’, the sequence pattern fails.
2. If the subject value is an instance of str, bytes or bytearray the sequence pattern fails.
3. The subsequent steps depend on whether the sequence pattern is fixed or variable-length.
If the sequence pattern is fixed-length:

1. If the length of the subject sequence is not equal to the number of subpatterns, the sequence pattern fails

2 In pattern matching, a sequence is defined as one of the following:
« aclass that inherits from collections.abc.Sequence
« a Python class that has been registered as collections.abc.Sequence
« a builtin class that has its (CPython) Py_TPFLAGS_SEQUENCE bit set
« aclass that inherits from any of the above
The following standard library classes are sequences:
e array.array
e collections.deque
e list
e memoryview
e range
e tuple

0 Iz

Subject values of type str, bytes, and bytearray do not match sequence patterns.

120 Chapter 8. 52 (Compound statements)

The Python Language Reference, & 2|A 3.13.1

2. Subpatterns in the sequence pattern are matched to their corresponding items in the subject sequence
from left to right. Matching stops as soon as a subpattern fails. If all subpatterns succeed in matching
their corresponding item, the sequence pattern succeeds.

Otherwise, if the sequence pattern is variable-length:

1. If the length of the subject sequence is less than the number of non-star subpatterns, the sequence pattern
fails.

2. The leading non-star subpatterns are matched to their corresponding items as for fixed-length sequences.

3. If the previous step succeeds, the star subpattern matches a list formed of the remaining subject items,
excluding the remaining items corresponding to non-star subpatterns following the star subpattern.

4. Remaining non-star subpatterns are matched to their corresponding subject items, as for a fixed-length
sequence.

0 Ix

The length of the subject sequence is obtained via 1en () (i.e. viathe __len_ () protocol). This length
may be cached by the interpreter in a similar manner as value patterns.

In simple terms [P1, P2, P3, :--, P<N>] matches only if all the following happens:
e check <subject> is a sequence
e len(subject) == <N>
e P1 matches <subject>[0] (note that this match can also bind names)
e P2 matches <subject>[1] (note that this match can also bind names)

« - and so on for the corresponding pattern/element.

Mapping Patterns

A mapping pattern contains one or more key-value patterns. The syntax is similar to the construction of a dictionary.
Syntax:

mapping_pattern = "{" [items_pattern] "}"

items_pattern ",".key_value_pattern+ ","?
key_value_pattern = (literal_pattern | value_pattern) ":" pattern

| double_star_pattern

double_star_pattern "A*N" capture_pattern

At most one double star pattern may be in a mapping pattern. The double star pattern must be the last subpattern in
the mapping pattern.

Duplicate keys in mapping patterns are disallowed. Duplicate literal keys will raise a SyntaxError. Two keys that
otherwise have the same value will raise a ValueError at runtime.

The following is the logical flow for matching a mapping pattern against a subject value:
1. If the subject value is not a mapping’,the mapping pattern fails.

2. If every key given in the mapping pattern is present in the subject mapping, and the pattern for each key matches
the corresponding item of the subject mapping, the mapping pattern succeeds.

3 In pattern matching, a mapping is defined as one of the following:
« aclass that inherits from collections.abc.Mapping
« a Python class that has been registered as collections.abc.Mapping
« a builtin class that has its (CPython) Py_TPFLAGS_MAPPING bit set
« aclass that inherits from any of the above
The standard library classes dict and types.MappingProxyType are mappings.

8.6. The match statement 121

The Python Language Reference, & 2|A 3.13.1

3. If duplicate keys are detected in the mapping pattern, the pattern is considered invalid. A SyntaxError is
raised for duplicate literal values; or a ValueError for named keys of the same value.

0 Zx
Key-value pairs are matched using the two-argument form of the mapping subject’ s get () method. Matched
key-value pairs must already be present in the mapping, and not created on-the-fly via _ missing__ () or

__getitem__ ().

In simple terms {KEY1: P1, KEY2: P2, ... } matches only if all the following happens:
o check <subject> is a mapping
¢ KEY1l in <subject>
. PlInaths<subject>[KEYl]

« - and so on for the corresponding KEY/pattern pair.

Class Patterns

A class pattern represents a class and its positional and keyword arguments (if any). Syntax:

class_pattern = name_or_attr " (" [pattern_arguments ","2?2] ")"
pattern_arguments = positional_patterns ["," keyword_ patterns]

| keyword_patterns
positional_patterns = ", ".pattern+

keyword_patterns ", ".keyword_pattern+

keyword_pattern = NAME "=" pattern

The same keyword should not be repeated in class patterns.
The following is the logical flow for matching a class pattern against a subject value:
1. If name_or_attr is not an instance of the builtin type , raise TypeError.
2. If the subject value is not an instance of name_or_attr (tested via isinstance ()), the class pattern fails.

3. If no pattern arguments are present, the pattern succeeds. Otherwise, the subsequent steps depend on whether
keyword or positional argument patterns are present.

For a number of built-in types (specified below), a single positional subpattern is accepted which will match
the entire subject; for these types keyword patterns also work as for other types.

If only keyword patterns are present, they are processed as follows, one by one:

I. The keyword is looked up as an attribute on the subject.
« If this raises an exception other than AttributeError, the exception bubbles up.
o If this raises AttributeError, the class pattern has failed.

« Else, the subpattern associated with the keyword pattern is matched against the subject’ s attribute value.
If this fails, the class pattern fails; if this succeeds, the match proceeds to the next keyword.

II. If all keyword patterns succeed, the class pattern succeeds.

If any positional patterns are present, they are converted to keyword patterns using the ~ match_args
attribute on the class name_or_attr before matching:
I. The equivalent of getattr (cls, "__match_args__ ", ()) iscalled.

« If this raises an exception, the exception bubbles up.

o If the returned value is not a tuple, the conversion fails and TypeError is raised.

122 Chapter 8. 52 (Compound statements)

The Python Language Reference, & 2|A 3.13.1

o If there are more positional patterns than len(cls.__match_args
raised.

), TypeError is

» Otherwise, positional pattern i is converted to a keyword pattern using __match_args__ [1]
as the keyword. __match_args__[i] must be a string; if not TypeError is raised.

« If there are duplicate keywords, TypeError is raised.

] 27

Customizing positional arguments in class pattern matching

I1. Once all positional patterns have been converted to keyword patterns,
the match proceeds as if there were only keyword patterns.

For the following built-in types the handling of positional subpatterns is different:
e bool
e bytearray
e bytes
e dict
e float
e frozenset
e int
e list
e set
e str
e tuple

These classes accept a single positional argument, and the pattern there is matched against the whole object
rather than an attribute. For example int (0| 1) matches the value 0, but not the value 0. 0.

In simple terms CLS (P1, attr=P2) matches only if the following happens:
e isinstance (<subject>, CLS)
 convert P1 to a keyword pattern using CLS.__match_args___
« For each keyword argument attr=p2:
— hasattr (<subject>, "attr")
— P2 matches <subject>.attr

« - and so on for the corresponding keyword argument/pattern pair.

o 17

o PEP 634 - Structural Pattern Matching: Specification
o PEP 636 - Structural Pattern Matching: Tutorial

B4 Ao AR RO B AR (E2 Y A5 AL BAR) B APt

8.7. &t Ao 123

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/

The Python Language Reference, & 2|A 3.13.1

funcdef = [decorators] "def" funcname [type_params] " (" [parameter_list] "
["->" expression] ":" suite

decorators = decorator+

decorator = "Q" assignment_expression NEWLINE

parameter_list = defparameter ("," defparameter)* "," "/" ["," [parameter_list_nc

| parameter_list_no_posonly

parameter_list_no_posonly
| parameter_list_starargs

parameter_list_starargs = "x" [star_parameter] ("," defparameter)* ["," ["**" parameter
| Wk %M parameter [u,"]

parameter = identifier [":" expression]

star_parameter = identifier [":" ["*"] expression]

defparameter = parameter ["=" expression]

funcname = identifier
T B AT = AU Agetd AR A A o] F T T ol5= T AA (Fge
A8 7he s I E =22 2] 3 (wrapper)). ©] &5 AR = @AY o] 5 FHol e FxE ek,
Tr7tEEE o A o5 3o E AREH YT
A4 Aol B v g AYeA FHUh F5t 52D W APF ok
B4 Aol e shiit 2 oo HmelolE] BdA o ad 5 gtk dFeolE AL 5

1o
o
alf
=2
2
iy
A}
A
o
2
Ay
o
Lo+

def func(): pass
func = fl (arg) (£2 (func))

Aol 7t YA E O F func ol A2 A dethe AW HE YT

W A 3.9 A ¥ 7 : Functions may be decorated with any valid assignment_expression. Previously, the gram-
mar was much more restrictive; see PEP 614 for details.

A list of type parameters may be given in square brackets between the function’ s name and the opening parenthesis for
its parameter list. This indicates to static type checkers that the function is generic. At runtime, the type parameters
can be retrieved from the function’ s ___type_params___ attribute. See Generic functions for more.

¥ A 3.120]| A ¥ 7 : Type parameter lists are new in Python 3.12.

BhLput 1 ol ko) v 7 w5 F o] parameter = expression WENE 7HA w), T2} 7] 2 w5 b
Soham g h AEgke] gk S A9, T3 W B S 24 2 A S A1, 1
w74 e] 7B gkol 2§ Ut vk vl pAS o}) E gk A E, < 7k 1A E s nE
WA 7RG Aok Gt — ol A2 Aol A B8 A o WA Aok e,

Default parameter values are evaluated from left to right when the function definition is executed. This means
that the expression is evaluated once, when the function is defined, and that the same “pre-computed” value is used
for each call. This is especially important to understand when a default parameter value is a mutable object, such as
a list or a dictionary: if the function modifies the object (e.g. by appending an item to a list), the default parameter
value is in effect modified. This is generally not what was intended. A way around this is to use None as the default,
and explicitly test for it in the body of the function, e.g.:

4 A string literal appearing as the first statement in the function body is transformed into the function’ s __doc__ attribute and therefore the
function’ s docstring.

124 Chapter 8. 52 (Compound statements)

defparameter ("," defparameter)* ["," [parameter_list_starargs]]

[l|

https://peps.python.org/pep-0614/

The Python Language Reference, & 2|A 3.13.1

def whats_on_the_telly (penguin=None) :
if penguin is None:
penguin = []
penguin.append ("property of the zoo")
return penguin

Function call semantics are described in more detail in section & <. A function call always assigns values to all pa-
rameters mentioned in the parameter list, either from positional arguments, from keyword arguments, or from default
values. If the form “*identifier” is present, it is initialized to a tuple receiving any excess positional parameters,
defaulting to the empty tuple. If the form “**identifier” is present, it is initialized to a new ordered mapping
receiving any excess keyword arguments, defaulting to a new empty mapping of the same type. Parameters after
“x” or “*identifier” are keyword-only parameters and may only be passed by keyword arguments. Parameters
before ““/” are positional-only parameters and may only be passed by positional arguments.

¥ A 3.89]| 4] ¥ 7: The / function parameter syntax may be used to indicate positional-only parameters. See PEP
570 for details.

Parameters may have an annotation of the form “: expression” following the parameter name. Any parameter
may have an annotation, even those of the form *identifier or **identifier. (As a special case, parameters
of the form *identifier may have an annotation “: *expression”.) Functions may have “return” annotation
of the form “-> expression” after the parameter list. These annotations can be any valid Python expression.
The presence of annotations does not change the semantics of a function. The annotation values are available as
values of a dictionary keyed by the parameters’ names inthe __annotations__ attribute of the function object. If
the annotations import from _ future_ is used, annotations are preserved as strings at runtime which enables
postponed evaluation. Otherwise, they are evaluated when the function definition is executed. In this case annotations
may be evaluated in a different order than they appear in the source code.

WA 3.119 A ¥ 7 : Parameters of the form “*identifier” may have an annotation “: *expression”. See
PEP 646.

FH A A ZA AFSTH7] F3l, o) F e e (elFol dZ2HA 2T E NEE AR Tt EY
ﬂﬁ%%ﬂﬁﬁﬁ%ﬂﬁﬁ#ﬂ,I%mmmuMMﬂHMﬁgqq-aqggqgggﬂg@¢
Ao g At 2 2 AUA dethe Ao FYSHA8; “der” EF0NA YA e b xH
Aoz AR B5AY AL A e ol gol YD 5 AFTh e el B Adele A7
ol b o] 4§ 8 2Ha}7] W ol “ces” WEN7L AL B 2 g o,

Z2 o 9 A B4 HAE FE A (firstclass) AATh T H o Stol| A AP E = “def” T2
S F AL 4GS+ At A Y48 A GUTh FHY RN ST Af AEEL T def &
EPSE 0] A WEES ANAT 5 Atk ©§ AT NS o] 53} A (binding) A4 L
HAL

o 1

PEP 3107 - 8= o] = E] o] A
S ojxEH oY H &= 4.
PEP 484 -8 31 &
ojiH o] Mol e HFE v] A F JNE.
PEP 526 - 5 o] ;- H| o] £
Ability to type hint variable declarations, including class variables and instance variables.
PEP 563 - o] ¥ 0] o] 2| 38 %7}
A B7Fote tiAl A o) o H o] S BAE AL E HESHA o mH o] d Yol A9
A F2E A AU h

PEP 318 - Decorators for Functions and Methods
Function and method decorators were introduced. Class decorators were introduced in PEP 3129.

[o0]
N
oo
+
0
1o

125

https://peps.python.org/pep-0570/
https://peps.python.org/pep-0570/
https://peps.python.org/pep-0646/
https://peps.python.org/pep-3107/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/
https://peps.python.org/pep-0563/
https://peps.python.org/pep-0318/
https://peps.python.org/pep-3129/

The Python Language Reference, & 2|A 3.13.1

8.8 EallA Mol
S A= FHW2 AA(

Fm

29 A= APS HAL)E Aol P}

classdef = [decorators] "class" classname [type_params] [inheritance] ":" suite
inheritance "(" [argument_1list] ")"

classname = identifier

Sl Hol= A3 7hse 2 YTl A% (inheritance) && 2
St (6 05 ALgol ol AL nEh 2o~ & wAlL), SR 2 g
Selsye Fe2 AR E oo} Gt A% B2o] G 2

S AsdUth 1A

class Foo:

pass

=edEsgUn

class Foo (object) :

pass

S22 AJEEANZ FER A H o] B F PPJr Ao A o] F FHE AFE st A AY =9 <
(ol 5% A4 (binding) & B A K) 01]/\1 % FHAUh (B &9E 5}

S A ETF AP S X H, A Er‘iﬂ%‘%ﬁr 718FAIRE, 21219 A o
28 o, Als 52 Aol E’EH E HEd X]—ﬂ. ol F TS A EZRE M & A
S AAE HE UL S o] 52 Ao A o] F FoA o] S AA G AZF YT

The order in which attributes are defined in the class body is preserved in the new class’ s __ dict__. Note that this
is reliable only right after the class is created and only for classes that were defined using the definition syntax.

e g vt 2o B AGHA A ALE e 28 5 YU Th

S A FrEH IR E A E HIZH I ES 5 A5t

P

Qfl (arg)
Qf2
class Foo: pass

£ e ok S5 E T

class Foo: pass
Foo = f1(arg) (f2 (Foo))

W ol e £AAe) G P FHL G5 vl weolH 9 BTk T3 The 1 A Se 2 ol Fo
Adg ek

WA 3.9 4 ¥ 7: Classes may be decorated with any valid assignment_expression. Previously, the grammar
was much more restrictive; see PEP 614 for details.

A list of type parameters may be given in square brackets immediately after the class’ s name. This indicates to
static type checkers that the class is generic. At runtime, the type parameters can be retrieved from the class’ s
_ type_params___ attribute. See Generic classes for more.

WA 3.129 A] ¥ 7 : Type parameter lists are new in Python 3.12.

—Li“’iﬂ‘ﬂ 7] Akgh: A HYoA FoH = LSS TR AJEYREYJ YL o] AES
274 ZHE YT A8 A EFHEE YA EoA self.name = value 2 AAE 4 5T

gaﬂia} AAEAEFHE BE “self.name” E7|HOE ANAT 4 Q11, o]H Ao g AxAT

o AAEA JERREE T2 0|59 FHAEYREE 7MY SR AJEHFEE A2EHA

5 A string literal appearing as the first statement in the class body is transformed into the namespace> s doc__item and therefore the class’
s docstring.

_{

126 Chapter 8. 52 (Compound statements)

https://peps.python.org/pep-0614/

The Python Language Reference, & 2|A 3.13.1

PHEY /RGO AGE 5 QAT 4N g AS e AL A4 A B ARE E 5 &Y
=
=

ol
o HAIHE & uE 7E A

] 27

PEP 3115 - 5}o] % 3000 2] W e} S| A
HE ZPg2 AHALS A EHor MRS, v 27t d= S
o ul & ¥ A dh= Ak

PEP 3129 - 2| A ¢ Z & o] €]
S vl Z o) E F718l= Al ok Tt WA & o] Z & o] Bl = PEP 3180 A = Y5 5y th

s

T4 e P

8.9 IREI
Added in version 3.5.

89.1 ZFRE &

ok

4 "ol

async_funcdef = [decorators] "async" "def" funcname " (" [parameter_list] ")"

["->" expression] ":" suite

Execution of Python coroutines can be suspended and resumed at many points (see coroutine). await expressions,
async forand async with can only be used in the body of a coroutine function.

async def THO 2 Ao H 4= A FZHE S|, await Yasyne 7| P EE TR U= F S
= 1‘%‘3‘45}~

i—‘?‘— @-?94 vi] Qo A yield from EH A& ARS8 212 syntaxError YUY Th

H

async def func(paraml, param2):
do_stuff ()
await some_coroutine ()

WA 3.7 4 ¥ A: await and async are now keywords; previously they were only treated as such inside the body
of a coroutine function.

8.9.2 async for &

async_for_stmt = "async" for_stmt
H5 7] olEl 2] & & ¥]5 7] olE g ol H & A H W&ot __aiter HINEE AFSHL, HlF 7] o H
o|H & A4lY] __anext_ WA =0 A H1£71 J__% TS UASUTH
async for -2 H|57] o]H 2] &l gt A g o] EH o] HZ s g Th
e 22 e
async for TARGET in ITER:
SUITE
else:
SUITEZ2

olu) 4o 2 T} 7 F5 FU)

8.9. AREI 127

https://peps.python.org/pep-3115/
https://peps.python.org/pep-3129/
https://peps.python.org/pep-0318/

The Python Language Reference, & 2|A 3.13.1

iter = (ITER)
iter = type(iter).__aiter__ (iter)
running = True

while running:
try:
TARGET = await type(iter).__anext__ (iter)
except StopAsyncIteration:
running = False
else:
SUITE
else:
SUITEZ2

Seealso_ aiter () and__anext__ () for details.

FFEE 349 vlr] Hholl A async for & AR SHE AL syntaxError YU Tth
8.9.3 async with &

async_with_stmt = "async" with_stmt
H|5 7] AEA~E He| 2} = enter 2 exit A Eo A AB S DA FAD 5 = AEHAE A2k ot

SR S A=

r{_r

async with EXPRESSION as TARGET:
SUITE

ez 53 s gyeh

manager = (EXPRESSION)
aenter = type (manager) .__aenter_
aexit = type (manager).__aexit_

value = await aenter (manager)
hit_except = False

try:
TARGET = value
SUITE

except :
hit_except = True

if not await aexit (manager, *sys.exc_info()):
raise
finally:
if not hit_except:

await aexit (manager, None, None, None)

See also __aenter_ () and ___aexit__ () for details.

FEE 349 vlr] Hhol| A async with & AFR 3= A2 SyntaxError Y Y Tth

& o 1]

PEP 492 - async 2} await =S A} 835}= F 2l
FFEES o] A A FA3 FHH /N

128 Chapter 8. 52 (Compound statements)

https://peps.python.org/pep-0492/

The Python Language Reference, & 2|A 3.13.1

8.10 Type parameter lists

Added in version 3.12.
A 3.13 9 A] ¥ 7 : Support for default values was added (see PEP 696).

type_params = "[" type_param ("," type_param)* "]"
type_param = typevar | typevartuple | paramspec

typevar = identifier (":" expression)? ("=" expression)?
typevartuple = "x" jdentifier ("=" expression)?

paramspec = "xx" jdentifier ("=" expression)?

Functions (including coroutines), classes and type aliases may contain a type parameter list:

def max[T] (args: 1list[T]) -> T:

async def amax[T] (args: list[T]) -> T:

class Bag[T]:
def @ iter (self) —> Iterator[T]:

def add(self, arg: T) —> None:

type ListOrSet[T] = 1list[T] | set[T]

Semantically, this indicates that the function, class, or type alias is generic over a type variable. This information is
primarily used by static type checkers, and at runtime, generic objects behave much like their non-generic counter-
parts.

Type parameters are declared in square brackets ([]) immediately after the name of the function, class, or type alias.
The type parameters are accessible within the scope of the generic object, but not elsewhere. Thus, after a declaration
def func([T] (): pass,the name T is not available in the module scope. Below, the semantics of generic objects
are described with more precision. The scope of type parameters is modeled with a special function (technically, an
annotation scope) that wraps the creation of the generic object.

Generic functions, classes, and type aliases have a __type_params___ attribute listing their type parameters.
Type parameters come in three kinds:

e typing.TypeVar, introduced by a plain name (e.g., T). Semantically, this represents a single type to a type
checker.

e typing.TypeVarTuple, introduced by a name prefixed with a single asterisk (e.g., *Ts). Semantically, this
stands for a tuple of any number of types.

e typing.ParamSpec, introduced by a name prefixed with two asterisks (e.g., **P). Semantically, this stands
for the parameters of a callable.

typing.TypeVar declarations can define bounds and constraints with a colon (:) followed by an expression. A
single expression after the colon indicates a bound (e.g. T: int). Semantically, this means that the typing.
TypeVar can only represent types that are a subtype of this bound. A parenthesized tuple of expressions after the
colon indicates a set of constraints (e.g. T: (str, bytes)). Each member of the tuple should be a type (again,
this is not enforced at runtime). Constrained type variables can only take on one of the types in the list of constraints.

For typing. TypeVars declared using the type parameter list syntax, the bound and constraints are not evaluated
when the generic object is created, but only when the value is explicitly accessed through the attributes __bound___
and __constraints__. Toaccomplish this, the bounds or constraints are evaluated in a separate annotation scope.

8.10. Type parameter lists 129

https://peps.python.org/pep-0696/

The Python Language Reference, & 2|A 3.13.1

typing.TypeVarTuples and typing.ParamSpecs cannot have bounds or constraints.

All three flavors of type parameters can also have a default value, which is used when the type parameter is not
explicitly provided. This is added by appending a single equals sign (=) followed by an expression. Like the bounds
and constraints of type variables, the default value is not evaluated when the object is created, but only when the type
parameter’ s ___default__ attribute is accessed. To this end, the default value is evaluated in a separate annotation
scope. If no default value is specified for a type parameter, the __default__ attribute is set to the special sentinel
object typing.NoDefault.

The following example indicates the full set of allowed type parameter declarations:

def overly_generic]|
SimpleTypeVar,
TypeVarWithDefault = int,
TypeVarWithBound: int,
TypeVarWithConstraints: (str, bytes),
*SimpleTypeVarTuple = (int, float),

**SimpleParamSpec = (str, bytearray),
1(
a: SimpleTypeVar,
b: TypeVarWithDefault,
c: TypeVarWithBound,
d: Callable[SimpleParamSpec, TypeVarWithConstraints],
*

e: SimpleTypeVarTuple,

8.10.1 Generic functions

Generic functions are declared as follows:

[def func[T] (axrg: T): ... }

This syntax is equivalent to:

annotation-def TYPE_ PARAMS_ OF_func () :
T = typing.TypeVar ("T")
def func(arg: T):
func.__type_params__ = (T,)
return func

func = TYPE_PARAMS_ OF_func ()

Here annotation-def indicates an annotation scope, which is not actually bound to any name at runtime. (One
other liberty is taken in the translation: the syntax does not go through attribute access on the t yping module, but
creates an instance of typing. TypeVar directly.)

The annotations of generic functions are evaluated within the annotation scope used for declaring the type parameters,
but the function’ s defaults and decorators are not.

The following example illustrates the scoping rules for these cases, as well as for additional flavors of type parameters:

@decorator
def func[T: int, *Ts, **P] (*args: *Ts, arg: Callable[P, T] = some_default):

Except for the /azy evaluation of the TypeVar bound, this is equivalent to:

DEFAULT_OF_arg = some_default

annotation-def TYPE PARAMS OF_func () :

(TH5 sl el Aol A)

130 Chapter 8. 52 (Compound statements)

The Python Language Reference, & 2|A 3.13.1

annotation-def BOUND_OF_T() :
return int

In reality,

T

typing.TypeVar ("T",

Ts
12

typing.TypeVarTuple ("Ts")

typing.ParamSpec ("P")

def func(*args: *Ts, arg: Callable|[P,

func.__type_params___ (T, Ts, P)

return func
decorator (TYPE_PARAMS_OF_func ())

func

(o] sl o] A ol A AI)

BOUND_OF_T () is evaluated only on demand.
bound=BOUND_OF_T ())

T]

DEFAULT_OF_arg) :

The capitalized names like DEFAULT_OF_arg are not actually bound at runtime.

8.10.2 Generic classes

Generic classes are declared as follows:

[class Bag[T]:

This syntax is equivalent to:

annotation-def TYPE_PARAMS_OF_Bag() :
T
class Bag(typing.Generic[T]) :

(T,)

typing.TypeVar ("T")

__type_params__ =

return Bag
TYPE_PARAMS_OF_Bag ()

Bag

Here again annotation-def (not a real keyword) indicates an annotation scope,

TYPE_PARAMS_OF_Bag is not actually bound at runtime.

and the name

Generic classes implicitly inherit from typing.Generic. The base classes and keyword arguments of generic
classes are evaluated within the type scope for the type parameters, and decorators are evaluated outside that scope.

This is illustrated by this example:

@decorator

class Bag(Base[T], arg=T):

This is equivalent to:

annotation-def TYPE_PARAMS_OF_Bag() :
T typing.TypeVar ("T")
class Bag(Base[T],

typing.Generic[T],
(T,)

__type_params___

return Bag
decorator (TYPE_PARAMS_OF_Bag())

Bag

arg=T) :

8.10. Type parameter lists

131

The Python Language Reference, & 2|A 3.13.1

8.10.3 Generic type aliases

The ¢ ype statement can also be used to create a generic type alias:

[type ListOrSet [T] = 1list[T] | set][T] }

Except for the /azy evaluation of the value, this is equivalent to:

annotation-def TYPE PARAMS OF_ListOrSet () :
T = typing.TypeVar ("T")

annotation-def VALUE_OF_ListOrSet () :
return 1ist[T] | set[T]
In reality, the value is lazily evaluated
return typing.TypeAliasType ("ListOrSet", VALUE_OF_ListOrSet (), type_params= (T,
))
ListOrSet = TYPE_PARAMS_OF_ListOrSet ()

J

Here, annotation-def (not a real keyword) indicates an annotation scope. The capitalized names like
TYPE_PARAMS_OF_ListOrSet are not actually bound at runtime.

132 Chapter 8. 52 (Compound statements)

CHAPTER 9

o =

P 245
gtold AHZelE= o] 7HA] SARTE 48e @& 5 YFUth B 4yt zz2a9 Atz
AEgd 23 HE g or Jdd 2, 28 &2 3Y 55. o] AL o] A5 AHeH = B AT

Ut

B0l ABH T BE Y RH EE 280 ATH AW, sys (215 A2H AW 2E) % builtine
9] 5, None) ¥ __main__ ©]2] 9] ol AL 7|35 2] kst v ek A2 A 31
S 9% A AT A o] & F S A T3t d AFLH YT

= = o
4R vl e o} T2 Ty AN A= o dE e At
delzeH =g or APE s YUt ol A, AR 2r S elol N AAFsA| i, 3
Aol & B3 (BHEE 7hedith A ¢olA g 27 8742 SQ 2233035 2sych 4
T4 _main__ 9 o]F F 7ol A ABFH Utk
SR 222 A 7HA] PR = QB e Hol A AEE ¢ AFUTh: —csming HH FHo=, A
AR HE A AR AL v R, 2F JY R, spdojy ZEPH o] ty FAH, JAH 2 H = S
RER St 28X dow 2 dE A zrafo s APgut

file_input = (NEWLINE | statement) *

o] L tha 3 B2 Aol A AR Ut

shlo| vt BAG R e &) SR shol W L2 IS ST
-E%%%ﬁ@ﬂ;

o exec() I Z ALH EALES g4 g uff;

133

The Python Language Reference, & 2|A 3.13.1

9.3 CH=ald &3

B3P o)A Qe he 2 B 78 ATtk

interactive_input = [stmt_list] NEWLINE | compound_stmt NEWLINE

&89 EFE2 e EolA vl S5 2ol o &l fras oF duth; shM 7t 45 e 2 A S=
o 89y

9.4 EHA UHY

2AA AHS Al eval) o] AREHUTE ol &= 3 S FAIFUT eval () 9 AHE QA= o=
o
=

Ashof ek

eval_input = expression_list NEWLINE*

0>
0

134 Chapter 9. 3

b

to
B>
uin

cHaPTER 10

MH 28 7

o] A& CPython & &4 7] & A /3 3h+= Tl *P%ﬂ%—?:‘ﬂ"ﬂﬁ A o8 E, A stold X A dUTh
(Grammar/python.gram< FZ 3} A L). ol HAL F= AT o] Ex o AHA N FRE kg

Y.

The notation is a mixture of EBNF and PEG. In particular, s followed by a symbol, token or parenthesized group
indicates a positive lookahead (i.e., is required to match but not consumed), while ! indicates a negative lookahead
(i.e., is required not to match). We use the | separator to mean PEG’ s “ordered choice” (written as / in traditional
PEG grammars). See PEP 617 for more details on the grammar’ s syntax.

PEG grammar for Python

m=======mmm——=mm=——m———e = START OF THE GRAMMAR ====================————"

General grammatical elements and rules:

* Strings with double quotes (") denote SOFT KEYWORDS

* Strings with single quotes (') denote KEYWORDS

* Upper case names (NAME) denote tokens in the Grammar/Tokens file

* Rule names starting with "invalid " are used for specialized syntax errors

— These rules are NOT used in the first pass of the parser.

- Only if the first pass fails to parse, a second pass including the invalid
rules will be executed.

— If the parser fails in the second phase with a generic syntax error, the
location of the generic failure of the first pass will be used (this avoids
reporting incorrect locations due to the invalid rules).

— The order of the alternatives involving invalid rules matter
(like any rule in PEG).

Grammar Syntax (see PEP 617 for more information):
rule_name: expression

Optionally, a type can be included right after the rule name, which
specifies the return type of the C or Python function corresponding to the

SO O R H W R H W R H W W R R W W R

rule:

(Th= sl ol Al ol A1)

135

https://github.com/python/cpython/tree/3.13/Grammar/python.gram
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://peps.python.org/pep-0617/

The Python Language Reference, &l2|A 3.13.1

(o1 sl o] A ol A] Al)
rule_name [return_type]: expression
If the return type is omitted, then a void * is returned in C and an Any 1in
Python.
el e2
Match el, then match eZ2.
el | e2
Match el or eZ.
The first alternative can also appear on the line after the rule name for
formatting purposes. In that case, a | must be used before the first
alternative, like so:
rule_name[return_type]:
| first_alt
| second_alt
(e)
Match e (allows also to use other operators in the group like '(e)*')
[e] or e?

e*
Match zero or more occurrences of e.
e+
Match one or more occurrences of e.
o @
Match one or more occurrences of e, separated by s. The generated parse tree
does not include the separator. This is otherwise identical to (e (s e)*).
&e
Succeed if e can be parsed, without consuming any input.
le
Fail if e can be parsed, without consuming any input.

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Optionally match e.
#

#

#

#

#

#

#

#

#

#

#

#

Commit to the current alternative, even if it fails to parse.
&&e

Eager parse e. The parser will not backtrack and will immediately
fail with SyntaxError if e cannot be parsed.

#

STARTING RULES

file: [statements] ENDMARKER

interactive: statement_newline

eval: expressions NEWLINE* ENDMARKER

func_type: '(' [type_expressions] ')' '->' expression NEWLINE* ENDMARKER

GENERAL STATEMENTS

statements: statement+
statement: compound_stmt | simple_stmts

statement_newline:
| compound_stmt NEWLINE
| simple_stmts
| NEWLINE
| ENDMARKER

(TH5 sl el Aol A)

136 Chapter 10. Fx| 2 74

The Python Language Reference, &!2|A 3.13.1

(o1 sl o] A ol A] Al)
simple_stmts:
| simple_stmt !';' NEWLINE # Not needed, there for speedup
[';'.simple_stmt+ [';'] NEWLINE

NOTE: assignment MUST precede expression, else parsing a simple assignment
will throw a SyntaxError.
simple_stmt:
| assignment
| type_alias
| star_expressions
| return_stmt
| import_stmt
| raise_stmt
| 'pass'
| del_stmt
| yield_stmt
| assert_stmt
| 'break'
| 'continue'
| global_stmt
| nonlocal_stmt

compound_stmt :

| function_def
| 1f_stmt
| class_def
| with_stmt
| for_stmt
| try_stmt
| while_stmt
| match_stmt

SIMPLE STATEMENTS

NOTE: annotated_rhs may start with 'yield'; yield expr must start with 'yield'

assignment:
| NAME ':' expression ['=' annotated_rhs]
[('(' single_target '")'
| single_subscript_attribute_target) ':' expression ['=' annotated_rhs]
| (star_targets '=')+ (yield_expr | star_expressions) !'=' [TYPE_COMMENT]
| single_target augassign ~ (yield_expr | star_expressions)
annotated_rhs: yield _expr | star_expressions
augassign:
['+="'
I —
| V=
[re="
| /=
['%="'
['e="'
[="'
| va=t
| r<<="

(TH5 sl el Aol A)

137

The Python Language Reference, & 2|A 3.13.1

(o1 sl o] A ol A A1)
| T>>="

| vkk=1

| /=

return_stmt:
| 'return' [star_expressions]

raise_stmt:

| 'raise' expression ['from' expression]
| 'raise'
global_stmt: 'global' ', '.NAME+
nonlocal_stmt: 'nonlocal' ', '.NAME+
del_stmt:
| 'del' del_targets &(';' | NEWLINE)

yield_stmt: yield_expr
assert_stmt: 'assert' expression [',' expression]
import_stmt:

| import_name

| import_from

Import statements

import_name: 'import' dotted_as_names

note below: the ('.' | '...') is necessary because '...' is tokenized as ELLIPSIS
import_from:

| "from' ('.' | '...')* dotted_name 'import' import_from_ targets

['"from' ('.' | '...')+ 'import' import_from_ targets

import_from_targets:

| '('" import_from_as_names [','] ")'

| import_from_as_names !','

['
import_from_as_names:

| ', '.import_from_ as_name+
import_from_as_name:

| NAME ['as' NAME]
dotted_as_names:

| ','".dotted_as_name+
dotted_as_name:

| dotted_name ['as' NAME]
dotted_name:

| dotted_name '.' NAME

| NAME

COMPOUND STATEMENTS

(TH5 sl el Aol A)

138 Chapter 10. Fx| 2 74

The Python Language Reference, & 2|A 3.13.1

block:
| NEWLINE INDENT statements DEDENT
| simple_stmts

decorators: ('Q'

Class definitions

class_def:
| decorators class_def_raw
| class_def_raw

class_def_ raw:

| 'elass' NAME [type_params] ['('

Function definitions

function_def:
| decorators function_def_ raw
| function_def_ raw

function_def raw:

| 'def' NAME
—comment] block
'def’
— [func_type_comment]

[type_params] ' ('

NAME [type_params]
block

| 'async'

Function parameters

params:
| parameters

parameters:

| slash_no_default param_no_default* param_with_default*
slash_with_default param_with_default*
param_no_default+ param _with_default*

|

|

| param_with_default+ [star_etc]
|

star_etc

Some duplication here because we can't write (',' |
which is because we don't support empty alternatives

slash_no_default:
l/l v,v
I/l &I)l

| param_no_default+
| param_no_default+
slash_with_default:

named_expression NEWLINE

[params]

(o1 sl o] A ol A A1)

) +

'Y' 1 ':' block

[arguments]

"Y' ['"->' expression] ':' [func_type_

'(' [params] '")' ['->' expression] ':'

[star_etc]
[star_etc]
[star_etc]

&')'),
(yet) .

| param_no_default* param_with_default+ '/' ',
| param_no_default* param_with_default+ '/' &')'
star_etc:
| '"*' param_no_default param_maybe_default* [kwds]
| "*' param_no_default_star_annotation param maybe_default* [kwds]
["*' ', ' param_maybe_default+ [kwds]

(TH5 sl el Aol A)

139

The Python Language Reference, &l2|A 3.13.1

(o1 sl o] x o A] A<

| kwds
kwds:
| '"**' param_no_default
One parameter. This *includes* a following comma and type comment.
#
There are three styles:
— No default
— With default
— Maybe with default
#
There are two alternative forms of each, to deal with type comments:
— Ends in a comma followed by an optional type comment
— No comma, optional type comment, must be followed by close paren
The latter form is for a final parameter without trailing comma.
#

param_no_default:

| param ',' TYPE_COMMENT?

| param TYPE_COMMENT? &')'
param_no_default_star_annotation:

| param_star_annotation ',' TYPE_COMMENT?

| param_star_annotation TYPE_COMMENT? &')'
param_with_default:

| param default ',' TYPE_COMMENT?

| param default TYPE_COMMENT? &')'
param_maybe_default:

| param default? ',' TYPE_COMMENT?

| param default? TYPE_COMMENT? &')'
param: NAME annotation?
param_star_annotation: NAME star_annotation

annotation: ':' expression
star_annotation: ':' star_expression
default: '=' expression | invalid_default

If statement

,,,,,,,,,,,,
if_ stmt:

| '"if' named_expression ':' block elif_ stmt

| "if' named_expression ':' block [else_block]
elif_ stmt:

| 'elif' named_expression ':' block elif_ stmt

| 'elif' named_expression ':' block [else_block]
else_block:

| 'else' ':' block

While statement

while_stmt:
| 'while' named_expression ':' block [else_block]

For statement

(TH5 sl el Aol A)

140 Chapter 10. Fx| 2 74

The Python Language Reference, & 2|A 3.13.1

(o1 sl o] A ol A A1)

for_stmt:

| 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_
—block]

| 'async' 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block.
—[else_block]

With statement

with_stmt:
['with' '(' ','.with_item+ ','? ')' ':' [TYPE_COMMENT] block
| 'with' ','.with_item+ ':' [TYPE_COMMENT] block
| 'async' 'with' '(' ','.with_item+ ','? ')' ':' block
| 'async' 'with' ','.with item+ ':' [TYPE_COMMENT] block

with_item:
| expression 'as' star_target &(',' | ")'" | ':")
| expression

Try statement

,,,,,,,,,,,,,
try_stmt:
| 'try' ':' block finally block
| 'try' ':' block except_block+ [else_block] [finally block]
| 'try' ':' block except_star_block+ [else_block] [finally_ block]

Except statement

except_block:

| 'except' expression ['as' NAME] ':' block

| '"except' ':' block
except_star_block:

| 'except' '*' expression ['as' NAME] ':' block
finally block:

| 'finally' ':' block

Match statement

match_stmt:
| "match" subject_expr ':' NEWLINE INDENT case_block+ DEDENT

subject_expr:

| star_named_expression ',' star_named_expressions?

| named_expression

case_block:
| "case" patterns guard? ':' block

guard: 'if' named_expression

patterns:

(TH5 sl el Aol A)

141

The Python Language Reference, & 2|A 3.13.1

(o] sl o] A ol A Al <5)
| open_sequence_pattern
| pattern

pattern:
| as_pattern
| or_pattern

as_pattern:
| or_pattern 'as' pattern_capture_target

or_pattern:
| "|'.closed_patternt

closed_pattern:
| literal_pattern
capture_pattern
wildcard_pattern
value_pattern

\

|

\

| group_pattern
| sequence_pattern
| mapping_pattern
|

class_pattern

Literal patterns are used for equality and identity constraints
literal_pattern:
| signed_number !('+' | '=-")
complex_number
strings

\

\

| '"None'
| '"True'
\

'False'

Literal expressions are used to restrict permitted mapping pattern keys
literal_expr:
| signed_number ! ('+' | '-")
complex_number
strings

|

|

| '"None'

| '"True'

| 'False'

complex_number:
| signed_real_number '+' imaginary_number
| signed_real_number '-' imaginary_number

signed_number:
| NUMBER
| '-'" NUMBER

signed_real_ number:
| real_number

| '"-'" real_number

real_number:
| NUMBER

(TH5 sl el Aol A)

142 Chapter 10. Zx| 2 74

The Python Language Reference, & 2|A 3.13.1

imaginary_number:
| NUMBER

capture_pattern:
| pattern_capture_target
pattern_capture_target:

‘ !ll n NAME !(l'l ‘ l(l

wildcard_pattern:

‘ "o

value_pattern:
| attr !'('.' |

attr:

| name_or_attr '.'
name_or_attr:

| attr

| NAME

group_pattern:
["(' pattern '")'
sequence_pattern:
['['
[(

open_sequence_pattern:
| maybe_star_pattern ','

maybe_sequence_pattern:
| ','.maybe_star_pattern
maybe_star_pattern:
| star_pattern
| pattern

star_pattern:

| '"*' pattern_capture_ta

| '"*'" wildcard_pattern

mapping_pattern:
‘ l{l l}l

| '"{' double_star_patter

[T {

[

items_pattern ',
items_pattern ','?

items_pattern:
| ','.key_value_pattern+

key_value_pattern:

| (literal_expr | attr)

double_star_pattern:

maybe_sequence_pattern?
open_sequence_pattern?

I]l
l)l

(o1 sl o] A ol A A1)

maybe_sequence_pattern?

+ ','?

rget

v}v

n','?

double_star_pattern ','?

l}l

pattern

l}l

(TH5 sl el Aol A)

143

The Python Language Reference, & 2|A 3.13.1

(o1 sl o] A ol A A1)

| "**' pattern_capture_target

class_pattern:

| name_or_attr '(' ")'
| name_or_attr '(' positional_patterns ','? ')'
| name_or_attr '(' keyword_patterns ','? ')'
| (

name_or_attr ' (' positional_ patterns ',' keyword patterns ','? ')'

positional_patterns:
| ', "'.patternt

keyword_patterns:
| '",'.keyword_pattern+

keyword_pattern:
| NAME '=' pattern

Type statement
type_alias:
| "type" NAME [type_params] '=' expression
Type parameter declaration
type_params:
| invalid_type_params
["[' type_param_seq ']'
type_param_seq: ','.type_param+ [',']
type_param:
| NAME [type_param_bound] [type_param default]

| "*' NAME [type_param_starred_default]
| '"**' NAME [type_param_default]

type_param_bound: ':' expression
type_param_default: '=' expression
type_param_starred_default: '=' star_expression

EXPRESSIONS

expressions:
| expression (',' expression)+ [',']
| expression ',

| expression

expression:
| disjunction 'if' disjunction 'else' expression
| disjunction
| lambdef

yield_expr:
| 'yield' 'from' expression

(TH5 sl el Aol A)

144 Chapter 10. Zx| 2 74

The Python Language Reference, & 2|A 3.13.1

(o] A | o] A oA A A%)
| 'yield' [star_expressions]

star_expressions:

| star_expression (',' star_expression)+ [',']
| star_expression ',
\

star_expression

star_expression:
| "' bitwise_or

| expression
star_named_expressions: ','.star_named_expressiont [',']

star_named_expression:
| "' bitwise_or

| named_expression

assignment_expression:
| NAME ':=' ~ expression

named_expression:
| assignment_expression
| expression !':='

disjunction:
| conjunction ('or' conjunction)+
| conjunction

conjunction:
| inversion ('and' inversion)+
| inversion

inversion:
| "mot' inversion

| comparison

Comparison operators

comparison:
| bitwise_or compare_op_bitwise_or_pair+
| bitwise_or

compare_op_bitwise_or_pair:
eq_bitwise_or
noteq_bitwise_or
lte_bitwise_or
lt_bitwise_or
gte_bitwise_or

notin_bitwise_or
in_bitwise_or

|

\

|

\

\

| gt_bitwise_or
\

|

| isnot_bitwise_or
\

is_bitwise_or

eg _bitwise_or: '==' bitwise_or

(TH5 sl el Aol A)

145

The Python Language Reference, & 2|A 3.13.1

noteq_bitwise_or:

| ("!=') bitwise_or
lte_bitwise_or: '<=' bitwise_or
lt_bitwise_or: '<' bitwise_or

gte_bitwise_or: '>=' bitwise_or
gt_bitwise_or: '>' bitwise_or

notin_bitwise or: 'mot' 'in' bitwise_ or

in_bitwise_or: 'in' bitwise_or

isnot_bitwise_or: 'is' 'not' bitwise_or

is_bitwise_or: 'is' bitwise_or

Bitwise operators

bitwise_or:
| bitwise_or '|' bitwise_xor
| bitwise_xor

bitwise_xor:
| bitwise_xor '"' bitwise_and
| bitwise_and

bitwise_and:
| bitwise_and '&' shift_expr
| shift_expr

shift_expr:
| shift_expr '<<' sum
| shift_expr '>>' sum

| sum

Arithmetic operators

(o1 sl o] A ol A A1)

,,,,,,,,,,,,,,,,,,,,
sum:
| sum '+' term
| sum '-' term
| term
term
| term '*' factor
| term '/' factor
| term '//' factor
| term '$' factor
| term '@' factor
| factor
factor:
| '+' factor
| '=-' factor
| '~'" factor
| power
power:
| await_primary '**' factor
| await_primary
(BHg 3 o] Aol A1)
146 Chapter 10. ™A 2% &4

The Python Language Reference, &!2|A 3.13.1

(o1 sl o] x o A] A<

Primary elements

Primary elements are things like "obj.something.something", "obj[something]",

—"obj (something)'", "obj"

await_primary:
| 'await' primary

| primary
primary:
| primary '.' NAME
| primary genexp
| primary ' (' [arguments] ')'
| primary '[' slices ']'
| atom
slices
| slice !','
| '",'.(slice | starred_expression)+ [','"]
slice:
| [expression] ':' [expression] [':' [expression]]
| named_expression
atom:
| NAME
| '"True'
| 'False'
| '"None'
| strings
| NUMBER
| (tuple | group | genexp)
| (list | listcomp)
| (dict | set | dictcomp | setcomp)
[
group
['"('" (yield_expr | named_expression) ')'

Lambda functions

lambdef:
| 'lambda' [lambda_params] ':' expression

lambda_params:
| lambda_parameters

lambda_parameters etc. duplicates parameters but without annotations

or type comments, and if there's no comma after a parameter, we expect
a colon, not a close parenthesis. (For more, see parameters above.)

#

lambda_parameters:

| lambda_slash _no_default lambda_param_no_default* lambda_param with_default*.

(TH5 sl el Aol A)

147

The Python Language Reference, & 2|A 3.13.1

(e] s o] A ol Al Al
— [lambda_star_etc]
| lambda_slash _with_default lambda_param with_default* [lambda_star_etc]
| lambda_param no_default+ lambda_param with_default* [lambda_star_etc]
| lambda_param_with_default+ [lambda_star_etc]
| lambda_star_etc

lambda_slash _no_default:
| lambda_param_no_default+ '/' ','
| lambda_param_no_default+ '/' &':'

lambda_slash_with_default:
| lambda_param_no_default* lambda_param_with_default+ '/' ',
| lambda_param_no_default* lambda_param_with_default+ '/' &':'

lambda_star_etc:
['"*' lambda_param_no_default lambda_param_maybe_default* [lambda_kwds]
["*' ', ' lambda_param maybe_default+ [lambda_kwds]
| lambda_kwds

lambda_kwds:
| "**' lambda_param_no_default

lambda_param_no_default:

| lambda_param ','

| lambda_param &':'
lambda_param_with_default:

| lambda_param default ','

| lambda_param default &':'
lambda_param_maybe_default:

| lambda_param default? ','

| lambda_param default? &':'
lambda_param: NAME

LITERALS

fstring _middle:
| fstring_replacement_field
| FSTRING_MIDDLE
fstring_ replacement_field:
| '{' annotated_rhs '='? [fstring_conversion] [fstring full_ format_spec] '}'
fstring conversion:
["™!"™ NAME
fstring full format_spec:
| ':' fstring_format_spec*
fstring format_spec:
| FSTRING_MIDDLE
| fstring_replacement_field
fstring:
| FSTRING_START fstring middle* FSTRING_END

string: STRING
strings: (fstring|string)+

list:
| '['" [star_named_expressions] ']'

(TH5 sl el Aol A)

148 Chapter 10. Fx| 2 74

The Python Language Reference, & 2|A 3.13.1

tuple:
| '(' [star_named_expression '
set '{' star_named_expressions
Dicts
,,,,,
dict

{

[double_starred_kvpairs]

double_starred_kvpairs:

double_starred_kvpair:
| "**' bitwise_or
| kvpair

kvpair:

expression ':' expression

Comprehensions & Generators

for_1f clauses:
| for_if clause+

for_if_ clause:
| 'async' 'for'

| '"for'

star_targets

star_targets 'in'

listcomp:

| '"[' named_expression for_if clauses
setcomp:

| '"{' named_expression for_if clauses
genexp:

['"(' (assignment_expression
dictcomp:

['{'" kvpair for_if clauses

FUNCTION CALL ARGUMENTS

==========—==————————oo
arguments:

| args [','] &")'
args:

[', '.(starred_expression | (
—['," kwargs]

| kwargs
kwargs:

| ','.kwarg_or_starred+ ',' ',

| '",'.kwarg_or_starred+

', '.double_starred_kvpair+

'in'

~ disjunction

(o1 sl o] A ol A A1)

;' [star_named_expressions]]

l}l

l}l

(', ']

(lifl
disjunction)*

)*

~ disjunction
(lifl

disjunction

l]l

v}v

| expression !':="') for_if clauses ')'

v}v

assignment_expression | expression !':

' .kwarg_or_double_starred+

(TH5 sl el Aol A)

149

The Python Language Reference, & 2|A 3.13.1

| '",'.kwarg_or_double_starred+

starred_expression:
| '"*' expression

kwarg_or_starred:
| NAME '=' expression
| starred_expression

kwarg_or_double_starred:
| NAME '=' expression

| '"**' expression

ASSIGNMENT TARGETS

NOTE: star_targets may contain *bitwise_or,
star_targets:

| star_target !','
| star_target (',' star_target)* [',']
star_targets_list_seq: ','.star_target+ [',']

star_targets_tuple_seq:
| star_target (',' star_target)+ [',']
| star_target ','

star_target:
["*' (!'*' star_target)
| target_with_star_atom

target_with_star_atom:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead
| star_atom

star_atom:

\

| "(' target_with_star_atom ')'

["(' [star_targets_tuple_seq] ')'
|

'['" [star_targets_list_seq] ']'

single_target:
| single_subscript_attribute_target
| NAME
["(' single_target ')'

single_subscript_attribute_target:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead

t_primary:
| t_primary '.' NAME &t_lookahead

(o1 sl o] A ol A A1)

targets may not.

(TH5 sl el Aol A)

150

Chapter 10. ZA| &

=]
=

74

The Python Language Reference, &!2|A 3.13.1

(o1 sl o] A ol A AlZ)
t_primary '[' slices ']' &t_lookahead
t_primary genexp &t_lookahead
t_primary '(' [arguments] ')' &t_lookahead
atom &t_lookahead

t_lookahead: "(' | '['" | '.'

Targets for del statements

del_targets: ','.del_target+ [',']
del_target:

| t_primary '.' NAME !t_lookahead

| t_primary '[' slices ']' !t_lookahead

| del_t_atom

del_t_atom:
| NAME
| '('" del_target '")'
["('" [del_targets] '")'
| "['" [del_targets] ']'

TYPING ELEMENTS

type_expressions allow */** but ignore them
type_expressions:

','.expression+ ',' '*' expression ',' '**' expression
', '.expressiont ',' '*' expression
', '.expressiont+ ',' '"**' expression

|
|
|
| '*' expression ',' '**' expression
| '*' expression

| '"**' expression

|

', ' .expression+

func_type_comment:
| NEWLINE TYPE_COMMENT & (NEWLINE INDENT) # Must be followed by indented block
| TYPE_COMMENT

============== === = END OF THE GRAMMAR ======================

151

The Python Language Reference, & 2|A 3.13.1

152 Chapter 10. Zx| 2 74

APPENDIX A

0[0
<
bl

>>>
The default Python prompt of the inferactive shell. Often seen for code examples which can be executed

interactively in the interpreter.

e e AES eld 4 Atk
o The default Python prompt of the interactive shell when entering the code for an indented code block,

when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or
triple quotes), or after specifying a decorator.

e Ellipsis WA Ab4.

abstract base class (4} vl o] A S| A)
FA Aol Z Y2+ hasattr () 22 HE HIYE
“Hﬂ HAE) A, AdEF o) AE ZY st PHS ATT 2N 9 Efo]E & B4tk ABC+
THAF A B :WEH/__% Ty, ZH s]%‘} A O HME isinstance() 2} issubclass ()
o osf) ZAE = A= ZH2ED U abc BE AHAE HA 8. o] ol= B2 W ABC 9|
I:L}E}j?_ g o3 e Zﬂ‘éo] J&Yth: A& :r’—z (collections.abc B2 EIA]), XA} (numbers

E9A]), 2EZ (1o EEYA), YFXE 3 ZT (importlib.abc EE9A]). abc RES

—— %

oA A TS| ABCE T S5 Sl o

annotation (o] % €] o] A)
HFol w3 JE B AR EHE A, SR EYRE = wi/ibs Ut gy A4 E

EA AU v BeHA ZRE (dE £,

glol &gyt
A W2 o ;g o] -2 A3 A Zholl AA| 2T 5 ‘”X]“P A i, Zda S 9 5 ol
Hold& A4z g, & ,fﬁ—r-/] __annotations_ 5% o] EZ|RE] A AH Ut

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality. Also
see annotations-howto for best practices on working with annotations.

argument (212}
FTESESTU T (EevAE) 2 AGH =
= AR} (keyword argument): B4 & wj A1 27} ol -2 A} (o
o F Qo 29 gAY R AEH &= QA
55 BF 719 E dAY YT

L]
N
i

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

153

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python Language Reference, & 2|A 3.13.1

o Y X 2R} (positional argument): 7| Y= A A}F7} obd 21z} £ 2] < =
‘/]'9—74‘/]' OBl ElE o] ol » & 2o AEZ U5 UTh A E S, bR Z2 T=0A4 3
B5 92 AR Yo

A7 F4 Wk <) ol & 22 A9 M5 R Tk o thel A8 & F A S AL 52
de BAL. BHAow, ofd B840 A% AHEE 5 AFUTh TR ghol Ao Aol

L ojx o] w7 ¥l FE I} FAQ B 218} w7 ¥ 429] x}o] 9} PEP 3625 H A &

asynchronous context manager (¥]% 7] AR A€ #A 2]z}
An object which controls the environment seen in an async with statement by defining _ aenter () and
__aexit__ () methods. Introduced by PEP 492.

asynchronous generator (H]% 7] A& o] E{)
Hl5 7] Al e olg olg oy & FE & async
T, async for FZI} AR 5 O‘% dAH FES UEE yield BHA

UL

BE w57 AU d el E $52 A A, ol @ o] w7 AV ol E ol EdolE &
A2 AU o w5k ol)7} WekehA) b A9k, AT Sl E A BEFS Tk

v S 7] Al olg g4 avait EE A, asyne for &3} asyne with S 288 4 95 4th

asynchronous generator iterator (¥]%-7] AU & o] €] o]€] & o] €])
H]%7] Z‘”Lﬂ E‘”]E1 -4\—7]. U]—C 1_ 7“1‘“

This is an asynchronous iterator which when called using the _anext__ () method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yie1d expression.

Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the asynchronous generator iterator effectively resumes with another
awaitable returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable (8] % 7] o]g] 2] &)
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__ () method. Introduced by PEP 492.

asynchronous iterator (H]£ 7] o] €] #] o] €])
An object that implements the __aiter () and __anext__ () methods. __anext__ () must return an
awaitable object. async for resolves the awaitables returned by an asynchronous iterator’ s __anext__ ()
method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute (o] E 2] HE)
A value associated with an object which is usually referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.

It is possible to give an object an attribute whose name is not an identifier as defined by 4] 8 2} 2} 7] 9] =
for example using setattr (), if the object allows it. Such an attribute will not be accessible using a dotted
expression, and would instead need to be retrieved with getattr ().

awaitable (o] $jjo|E] &)
An object that can be used in an await expression. Can be a coroutine or an object withan __await__ ()
method. See also PEP 492.

BDFL
A 22 £ A1 = 2] A} (Benevolent Dictator For Life), < Guido van Rossum, 3} o] % 2] ZA] =}

binary file (B} o] 2] 2} Y)
A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode
("rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout .buffer, and instances of io.BytesIO and

gzip.GzipFile.

154 Appendix A. 0{%!

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

The Python Language Reference, & 2|A 3.13.1

str Z4A 2 G & F e 3L AA o A H2E ol = FxepA L.

borrowed reference
In Python’ s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection
can remove the last strong reference to the object and so destroy it.

Calling Py_INCREF () on the borrowed reference is recommended to convert it to a strong reference in-place,
except when the object cannot be destroyed before the last usage of the borrowed reference. The Py_NewRef ()
function can be used to create a new strong reference.

bytes-like object (H}o] E G F A A))
2] Z % memoryview A X
EE 0|1 bytes, bytearray, array.array AA &S 2T UL} vlo]ELR{F AR &2 vlo]
ol E b2t oje] 7p Aol AEE 4 9% Uk 95, el
AE 2 Aol A5 Uk

A AAES vhol el HloEl 7t AN A Y Bk Ysich. ol @ Aol AR AL EE AT
27l vlolEG R AA gty AL 71 v 5 AA| 9 ol 2= bytearray & bytearray 2
memoryview 7} AFUTH ThE AAEL viely e HolH 7t 29 AA (“Y7] A& vlo]EERF
A AZHEF a7 FUh o] 259 o| 2= bytes®bytes AA| 9 memoryview 7} UF

e},

bytecode (H}o] E F &)
gpo]H AA FEE Hpo]E I ER AIYE =], CPython JE|Z 2B of|A] Fho] =2 759 Y 1
EAI T WP E TEE pye 3100 AA o], 22 AL ¥ WA AT ol o wep A s
Utk (axo A vlo]E ZER] AL S 3T 5 A5 UTH. o] “FTHAo]” = ZHupo] E Z =9
H-$3te 71 AE A= 71 7 A A AdgE oy ZehUth vlolE I =+ AZ T2 vfol
7Hg 71 A A A5 AR 7|t A &, shol A v i Thol] b A o] A = oFth= Aol 25l of

ok

Hlo|E 3= Welolse] B8 dis RE AWA el g

callable
A callable is an object that can be called, possibly with a set of arguments (see argument), with the following
syntax:
[callable (argumentl, argument2, argumentN) }

A function, and by extension a method, is a callable. An instance of a class that implements the __call ()
method is also a callable.

callback (&)
ARz AL = vge] o AHel A AWE A1 SH F4

class (Z»)
AR ALY AAEE 7] ST, FAH2 A= BT FH2Y dxdAE g o =z Astst
EHAEAYYEE =

class variable (Z&] 2~ W)
e xoA Fo=H

closure variable
A free variable referenced from a nested scope that is defined in an outer scope rather than being resolved at
runtime from the globals or builtin namespaces. May be explicitly defined with the nonlocal keyword to
allow write access, or implicitly defined if the variable is only being read.

For example, in the inner function in the following code, both x and print are free variables, but only x is
a closure variable:

def outer():
x = 0
def inner():
nonlocal x

(TH5 sl el Aol A)

155

The Python Language Reference, & 2|A 3.13.1

(e]A sl o] A ol A A<
X += 1
print (x)
return inner

Due to the codeobject . co_freevars attribute (which, despite its name, only includes the names of closure
variables rather than listing all referenced free variables), the more general free variable term is sometimes used
even when the intended meaning is to refer specifically to closure variables.

complex number (&2 4)
A5 A4 AW FFAU, LE SASL A$ R AER Fo2 HAG YL H R
Ao &4 A (-1 AFHE FH A, TF A= 18, FTANAE =2 7| Th
5

o
stol e AL B/HES AL BaLE 7B AU S 5RE § AuAE Boly 77U,
A& S0, 3+15. math RES B45 1 Ho] BRI, cnatnE AHFFUTH Bado] G2 3
£ 5L £ 75Uk Lot 2712 2T, 79 HA5) FAEE F5 U
context

This term has different meanings depending on where and how it is used. Some common meanings:
o The temporary state or environment established by a context manager via a with statement.

o The collection of keyvalue bindings associated with a particular contextvars.Context object and
accessed via ContextVar objects. Also see context variable.

e A contextvars.Context object. Also see current context.

context management protocol
The enter () and __exit__ () methods called by the with statement. See PEP 343.

context manager (8] A E g z})
An object which implements the context management protocol and controls the environment seen in a with
statement. See PEP 343.

context variable (A& A E HF)
A variable whose value depends on which context is the current context. Values are accessed via
contextvars.ContextVar objects. Context variables are primarily used to isolate state between concur-
rent asynchronous tasks.

contiguous (%)
H 3 = 4 &3] C- A< (C-contiguous) ©) Ak 32 E & A< (Fortran contlguous) A o] ALolagty AR
Ut G2 M C-Ag ol WA RER AL QU Th A i ol A, FEELS A= AR,
00| A Al Ztete L B2k A2 St = v 2] of v 2] = of of T th. thabd C-A <5 v ol A,
Mme) 240 SN F2ES HED) 0A 2 AL A AP e AT S w, 2E T
A& o A=, R AA el A7) b whe] Wy

coroutine (¥ 5€l)
=g /_‘IEEQv/] o gulstdE Fefd Ut AABZEL 3 A - A AY3L T2 R F of A
gE&3hch IRE L o 2 A AA AYst, dEdtn, AT ¢ Y5UTh o] AEL asynce
def 22 FHT 4 FUTh PEP 4928 HA 2.

(¢}

~—

coroutine function (Z €l 34~
FE2E AAE EHFE= 4. ZFEH T4 = async def—v—oi AYE &+ I3, await & async
for@}t async with 7| P EE 238 4= 5t o] AEL2 PEP 492 o 93 =5 A5 o
CPython
gfol W =2 e W Aol 7 Al =&y, python.orgo] A ¥ ZF Ut} Ol 7 &= Jython o] L}
IronPython ¥} 22 t}2 A&7 72T E 37} &] 89 “CPython” o] A2 Y th

-

~

current context
The context (contextvars.Context object) that is currently used by ContextVar objects to access (get
or set) the values of context variables. Each thread has its own current context. Frameworks for executing
asynchronous tasks (see asyncio) associate each task with a context which becomes the current context
whenever the task starts or resumes execution.

156 Appendix A. 0{%!

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

The Python Language Reference, & 2|A 3.13.1

decorator (¢l Z.#) o] €])
g2 848 sEFE &4, BF ewrapper EHS AFS S S Wdlo 2 FeH YTt v 23
o]E] 9] £3} 9| +&= classmethod () & staticmethod () YUY

daeole £ wx Be BUY Bk b F A5 AL gow S5k

def f (arqg):
f = staticmethod (£f)

@staticmethod
def f (arqg):

2 hgol SefaolxE A AR, & A5 2 qynh vl ZH ol B ol e B AA T 82 o
Heo) of 2o Ae) o] AWAE HE Pk
descriptor (t] A =23 E])

Any object which defines the methods __get_ (), __set_ (),or__delete__ (). When a class attribute
is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to get,
set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

N3 RE) MASS gt AA S U ee [a2 e T a1y A e e GulAd
R

dictionary (<) 41 2])
An associative array, where arbitrary keys are mapped to values. The keys can be any object with___hash__ ()
and __eq () methods. Called a hash in Perl.

dictionary comprehension (5 A1) 7 = 2] 3l A)
e ol gl 24 AAG QRS AT ABE FL DAY

results = {n: n ** 2 for n in range (10) } < 2]
£ AT P 2E, A, GA v ele] o2 S o] Wisplay) & ZE3HA)

dictionary view (5 A4 2] &)
dict.keys (), dict.values (), dict.items () WA E7} E8F= A ES 9 Y8 Hetz 7
Uth o] 452 gAYz 5 e 4 <d FE Agstetl, g-de7t i34 o, 771 o
2w ats =dUh gAY e H2 9Ad B AER MR W List (dictview) B A S
= Ut} dict-views = H A 8.

docstring (5 A E)
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing class,

function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing (<] €}o|)

SHIE QAEH)2 E MR EA Adst= A S BA G 22Oy AeY; 4l T
HAEY AEYREZGSSH AU ARSI U (“LeAH Holal 2 x 3 #HAod, 172
22Tk S & Aol A H ol AT RGO, 2 AAH TEE R A AL o
FozH FALE MNAE 4 dFUTh 9 Eo]F 2 type () ©|Y isinstance () & AHESH AAME
93U th (LA g 9 Elo] P o] F4hw| o] A Ze A 2 HAE 4 Qg §ol s oF Futh) thAld,
hasattr () AN} EAFP Z & T8-S &t
EAFP

&2 H o= § 415 £3517] 7F 9 o} (Easier to ask for forgiveness than permission). ©] &3] 2 4= ¢l+= 1}
o|H I AEFY L, SHIE 7Y o ERREY EAE 7ML, 1 7ol S8l W A9 s Uth

T Ut
o ZEst mhE AEFA 2 W try@texcept 2o EAE SHAAFH UL o] HlZ Y2 Coh 22
E W dojol A A5 ALS-H = LBYL 284 3} v g Y o)

157

The Python Language Reference, & 2|A 3.13.1

expression (3 2])
o8 gow 7 $ A wyAL 27 of
EN S =

) T = =3 R 15
EHZE; o7, BE ?ioi TFAEE BEAA A2 ot Utk whileXH, EHA 02 AL T 5
2 o] dF5yth Ul ek EF o], d 2 o] ol gt}
extension module (E}Z‘} E’.-‘é)

f-string (f-F 2} ¥)
£ U Er E el %01
EP

o EQ LAY P

file object (3} 24 A))
An object exposing a file-oriented API (with methods such as read () orwrite ()) to an underlying resource.
Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type of
storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes, etc.).
File objects are also called file-like objects or streams.

AAZE A BEFY otd AR Eo] AF YT Eraw) vho]] 2] 5h, ¥ 3] = (buffered) 1} Lﬂal 24
HAE 5. o] 59 °1EHI olxtio BEA AP UTH 3t AAE W= FHAYI W
open()"’}’\e »= 011,]1—/}

file-like object (3} 5 A A
gt A A 9] v 5ok

filesystem encoding and error handler

Encoding and error handler used by Python to decode bytes from the operating system and encode Unicode to
the operating system.

L)
)
e
[
o
ot
n
40
)

g2
o
i
k]
4z
it
rlr
o
B

pEREEEE!

The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding
fails to provide this guarantee, API functions can raise UnicodeError.

The sys.getfilesystemencoding() and sys.getfilesystemencodeerrors () functions can be
used to get the filesystem encoding and error handler.

The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read () func-
tion: see filesystem_encoding and filesystem_errors members of PyConfig.

See also the locale encoding.
finder (3}¢1t)
EED BEL N 20 E Rodn AEsE A,

There are two types of finder: meta path finders for use with sys.meta_path, and path entry finders for use
with sys.path_hooks.

See 3}91 Y (finder) 2} = Y (loader) and import1ib for much more detail.
floor division (A 4= U}=A)

7} 7}77}" z*#iu] St A YAl g U Al A4kalE // ok o E S0, 284 11
// 48 27t AT Ae U A2 2. 758 S F YL (-11) // 47F-2.758 WHE Sk -309]
Qﬂhﬂoﬁom}wﬂk PEP 2382 H A 2.

free threading
A threading model where multiple threads can run Python bytecode simultaneously within the same interpreter.

This is in contrast to the global interpreter lock which allows only one thread to execute Python bytecode at a
time. See PEP 703.

free variable
Formally, as defined in the language execution model, a free variable is any variable used in a namespace which
is not a local variable in that namespace. See closure variable for an example. Pragmatically, due to the name of
the codeobject.co_rfreevars attribute, the term is also sometimes used as a synonym for closure variable.

function (g+4)

SEA)A o H e B FE Aol BAS. 97 L ol4ke] A7 7 AgE 4 Qv wirlel
Aol AgE 4 AT w4 ol A= 9 3 o AHE BAS

158 Appendix A. 0{%!

https://peps.python.org/pep-0498/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0703/

The Python Language Reference, & 2|A 3.13.1

function annotation (24~ o] - g o] H)
Sk ul) M 4=} kS Zro] of | o] A
T o H o] -2 gyt ZJI—QE‘ F3lE 2 ALEFUL: oA E 59, o] FF+= F /MY int AAE
‘?%01-501 Zog 7|y Ea /\]Oﬂ int 18 2 & 222 g Ut

def sum_two_numbers(a: int, b: int) -> int:
return a + b

G4 ol Eo] A B @5 o] Aol A AR T Th

See variable annotation and PEP 484, which describe this functionality. Also see annotations-howto for best
practices on working with annotations.

future
A future statement, from ___future__ import <feature>, directs the compiler to compile the current
module using syntax or semantics that will become standard in a future release of Python. The _ future_
module documents the possible values of feature. By importing this module and evaluating its variables, you
can see when a new feature was first added to the language and when it will (or did) become the default:

>>> import _ future
>>> _ future__ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection (7}1] X] 4= #)

o AR A e e dhd st AR vtol AL Bk A4 2 AT Ax 2B PANL BL
T 9 £ 71 74718 Bl ApIA £ A SAIUE A A7 g0 BEE A
Aol 5 U

generator (4] 112 o] &)

Aol g ofelgolE & B FE 5. b A Holed, b e ¢
2 A

=]
el
1>
o ©
i3
%
o
kv
Ir
N
v/
o
i
T
= Jul
)
il
Flo
2
It
1 J

) o fo
T _l
SHe ook B aea Ghe A9t 9T S0l AA BERS QAT

generator iterator (3] #] o] €] o] €] & o] E])
Aol s g7t ste= AA.

Ztyielde A AL A2 E S8, I Y22 (A HeSH U7 S uy-E52 2
A A E 719U AW old olH o H 7 AE Y, Wt o2 EAFYH (S vt
A2 A2k gaok o gy .
generator expression (A U@ o] €] £ 4))
An expression that returns an iterator. It looks like a normal expression followed by a for clause defining a

loop variable, range, and an optional i f clause. The combined expression generates values for an enclosing
function:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function (AW g &)
22 A Az e dsd el FaT o dre FAE . TS of® FH) AL E A=
"/]/\Jﬂ/‘q Gl os) 2F gk

AZ o 2a 2] £91F G2} functools.singledispatch () B Z & o] B2} PEP 443% X A Q.

generic type (A]u] 2 &)
A type that can be parameterized; typically a container class such as 1ist or dict. Used for type hints and
annotations.

For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the t yping module.

159

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

The Python Language Reference, & 2|A 3.13.1

GIL
A AEzeY % 2 HAL

global interpreter lock (9 Qe =g &)

3 W] © 2 shte] A =7 sho] M ol 2= B AWNEE 1AG] 95 CPyon AE =)
Ao B A S, (diet ol 02 528 AT S-S T A o] HA A4S EA
a7 B Utk Qe el E AAE B2

M 2~ of T3l A BHE S THE o] A] CPython & & Lf
A2 AHZEHE thsad =337 g4 Bes tAl, o5 ii*ﬂ/ﬂ 1A 7Y Alg-ste= HE g Y
Be HEe 3 ggrh

However, some extension modules, either standard or third-party, are designed so as to release the GIL when

doing computationally intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/0.

As of Python 3.13, the GIL can be disabled using the --disable-gil build configuration. After building
Python with this option, code must be run with -xX gi1=0 or after setting the PYTHON_GIL=0 environment
variable. This feature enables improved performance for multi-threaded applications and makes it easier to
use multi-core CPUs efficiently. For more details, see PEP 703.

hash-based pyc (3]] 7] 9} pyc)
SEA S AN 9 SN 2 o] 25 57 A2bo] obd HA1 & AHEIE vhol = e A A
L A ol = mE T a5E A2

hashable (3] A] 7}%)
An object is hashable if it has a hash value which never changes during its lifetime (it needs a ___hash__ ()
method), and can be compared to other objects (it needs an __eqg__ () method). Hashable objects which
compare equal must have the same hash value.

HA s AL AAE G-V EY 71V A I E AT 4 A Fhed), o] AFE FRE]
FH o2 HAGE AHESH7] wWiE YT

o - shol o} = WA A5 2 S A 7}~E‘HD}, (G EASARR=PERE|

la‘zl RS UTH (FZ ol U frozenset Z-2) € AH OS2 1

A 7hs g ok /\F‘LZP A ZFeag A2EdAs AREL 7 EH S
A& A Q) Btale) BF thE oAl v a s 3, siAI 32 id () B FE e H U h

o

IDLE
An Integrated Development and Learning Environment for Python. idle is a basic editor and interpreter envi-
ronment which ships with the standard distribution of Python.

immortal
Immortal objects are a CPython implementation detail introduced in PEP 683.

If an object is immortal, its reference count is never modified, and therefore it is never deallocated while the
interpreter is running. For example, True and None are immortal in CPython.

immutable (£4)

DA L 2 A, BA AAE 54 BAD, B2 2RFUD. ol AXSL WAL 5 9
ZUTh A 32 A %S @ A AR E w5 ol of FuTh WA gk sl A gto] glo]of st Fol A
ERREEE

— 5
N
o
i
[t
ok
il
Y
o
>{>"
VN

F7] Y3 AME = A s = A7 d]
s. path E—,—Ei ‘9“/]1;]’ SFA| T A B

é‘.: [m
E
Lo
oY,
o
4z o
f b

importing (¢ 2 ¥))

S EEC sfold D= RES sho| A HEA B S YL S B
importer (Y 3ZE])

BES 3% 1 22 371 % S A FAI0 9helt o2 2] AH Utk

interactive (t}3}3))
Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly

160 Appendix A. 0{%!

https://peps.python.org/pep-0703/
https://peps.python.org/pep-0683/

The Python Language Reference, & 2|A 3.13.1

by selecting it from your computer’ s main menu). It is a very powerful way to test out new ideas or inspect
modules and packages (remember help (x)). For more on interactive mode, see tut-interac.

interpreted (€] Z 2| €] =)
Mpol = TE A5} e) o] A wl ol 1L o] 5281271 oA v, spo] e A skel Aol 7} o]
olEz ey Aotk o AL BA AR 4 AL HEA AT, 22 AL A AR
S olrhe E=QUTh 222030 & ¢ AR AHH 7= oA, AE ZelE Ao 2E Aot
o} e AT M7 £ 8 ZeUrh ojsha = AL

interpreter shutdown (Q/E]Z2|g| £ 38
FEotehe 232 e), goj =l
o]

i
o
T
oM,
=2
o
P
o
AW
£

iterable (o] €] #] &)
An object capable of returning its members one at a time. Examples of iterables include all sequence types
(such as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of any
classes you define withan __iter () methodorwitha getitem () method that implements sequence
semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (),
--). When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter () or deal with iterator objects yourself. The ror statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator (o] €] o] €])

An object representing a stream of data. Repeated calls to the iterator’ s __next__ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
toits _ next__ () method justraise StopIteration again. Iterators are required to havean __iter_ ()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places
where other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A
container object (such as a 1ist) produces a fresh new iterator each time you pass it to the iter () function
oruseitina for loop. Attempting this with an iterator will just return the same exhausted iterator object used
in the previous iteration pass, making it appear like an empty container.

typeiter ol T 2} 3+ Y& 0] QJ&5 U Th

CPython ++& A} A]l: CPython does not consistently apply the requirement that an iterator define
__iter_ (). And also please note that the free-threading CPython does not guarantee the thread-safety
of iterator operations.

key function (7] g4)
7] &4 =& Z 9] A (collation) <=+ 7 & (sorting) ©] L} ¥l & (ordering) o] AH-&-5 = #E 8T+
FHEYUTE & £9], locale.strxfrm() = ZAYL EZ ISz FJE 7| & U=+ 4

g8yt

oMo e Tt Q450 ojBA LA A oJA I Fo|=AE Aojer] Y& 7] FL=
WolE Ut} o] ASol= min(), max (), sorted(), list.sort (), heapg.merge (), heapq.
nsmallest (), heapg.nlargest (), itertools.groupby () °] 2)\%1/]1_4-

There are several ways to create a key function. For example. the str.lower () method can serve as a
key function for case insensitive sorts. Alternatively, a key function can be built from a 1ambda expression
suchas lambda r: (r[0], r[2]). Also, operator.attrgetter (), operator.itemgetter (), and
operator.methodcaller () are three key function constructors. See the Sorting HOW TO for examples
of how to create and use key functions.

161

The Python Language Reference, & 2|A 3.13.1

keyword argument (7] 9] & <12})
oA E HA L.
lambda ()
2 o) go] THAL kel HA4 08 FAH o E gt ekl

lambda [parameters]: expression ?:]\4\:]-

<

2~ SFZ2>
T g3 e vEs

i fo B
= g

rlo it

LBYL

q o]l H 2} (Look before you leap). ©] T AEFY-2 S Z 0|} 23] & 317] Aol YA H o2 AL
%@7\}3“45}- o] ABFY > FAFP FI WA v H o, W2 ir 7 SAE SZA A H Y
9= SO A, LBYL 422 "1 717 9 71 2holl 4 242 WEA 2 918l Y]
0], 7T if key in mapping: return mappinglkey] + AA} X9, 3R] 9k 23] A,
157]'](6)7‘—:1 mapping | A A AsHA Ao 4 glE) o] d O]’”‘ Eo| L} EAFP J W=
N dE = syt

N
m]ﬂ N

'é O{N
mlm
|

RRURURUNY)

ofo]t
1% |
[o
HU

list (]2 E)
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension (2] 2 E 7 = 2] 3l A)
A2 845 AR == RS Aty 1 2345 r’%’\Ei YT AT WY, result =

3
['{:404x}'.format (x) for x in range(256) if x % 2 == 0] = 00| A] 255 A}o]] Q= R4
Bl 16715 (0x) B8 TR £A90) o 2ug BTk 28 A28 5 Yt Al
W, range (256) ol Y= 2= A7 AP Ut

loader (2 ¢])
An object that loads a module. It must define a method named 1oad_module (). A loader is typically returned
by a finder. See also:

o 391 Y (finder) 2+ = Y (loader)
e importlib.abc.Loader
« PEP 302

locale encoding

On Unix, it is the encoding of the LC_CTYPE locale. It can be set with locale.setlocale (locale.
LC_CTYPE, new_locale).

On Windows, it is the ANSI code page (ex: "cp1252").

On Android and VxWorks, Python uses "ut £-8" as the locale encoding.
locale.getencoding () can be used to get the locale encoding.

See also the filesystem encoding and error handler.

magic method (7] 2] W] 4] &)
S A= 9 vlFA A Qv

mapping (7} 3)
A container object that supports arbitrary key lookups and implements the methods specified in the
collections.abc.Mapping or collections.abc.MutableMapping abstract base classes. Exam-
ples include dict, collections.defaultdict, collections.OrderedDict and collections.
Counter.

meta path finder (W€} 3 2 5}2lt])
sys.meta_path & AMo] Z8F+= 3}elt]. vel A2 o= A2 dEz glolr & FHF o
9171 & B 4] ¥ kg,

U‘“ﬂ‘ 7§§ lﬂ"ﬂ‘:‘] 7]‘ ;r_""?ié_]'*‘i U'“}ﬂl:_%oﬂ Eﬂsﬂ/ﬂ-‘i— importlib.abc.MetaPathFinder = E‘?ﬂ %
e,

metaclass (W€} S| 2)
Sy FHa SHa A= ZH 2 ol F, FHa MY, H o]~
A S A o] S WO FAAS DES AL AL
9 QoL 718 PAL AU ol 0 E SFel BEE AL

r?:
rulo
[

162 Appendix A. 0{%!

https://peps.python.org/pep-0302/

The Python Language Reference, & 2|A 3.13.1

[
rlr

the AYUh AR ARl A L o] £/ AH B2 AW, B2 AL o), WEr 29
£ 3} 31 M2 ATIUTh o =2 HE AA 29 27 (ogging), 2= FAA S| 77
A7 AR FA, AZE AT L ThE 2ol AgH G
Eal

ol

method (u]])
5 A 1 (25 Sﬂfﬂi%%ﬂ%ﬁ%éﬁéﬁﬂéﬁﬁﬂqnﬁ?ﬂvé
Al

method resolution order (W] A& 24 4+ A])
Method Resolution Order is the order in which base classes are searched for a member during lookup. See
python_2.3_mro for details of the algorithm used by the Python interpreter since the 2.3 release.

module (2E)

shol Al L= 243} 9] S FIoE AN, RELS 99 st A ANES G o] F FUHS
25Utk 25L Qs AR o] oMo =P

module spec (2 & A ¥))
RES EESEUASHE YZE A- FHE
ModuleSpec & AAEH A,

o
i
k

o] & FZF importlib.machinery.

rlr

See also Module specs.

MRO
A= 24 A 2 2ZAL.

mutable (7}'H)
7ha A ghol M 4 AAT a0 £ ARA FATILE 2 £ mA2.

named tuple (V] Y& £Z)

“named tuple(H] 91 = F2)” o] 2 ol RZoIA 4451 o] & £L o EHEES A8
A~ T4 Qi o] AAA TS Yk BE Folu} Ze 0] A8F Tk Foluh Zeh sl

e 7lsE = s Asyth
time.localtime () & os.stat () 7} BF83F 23S Z3H5to], o]] A FH o] YA 5=t &
2 o & sys. float_info YUYt}

-

>>> sys.float_info[1l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be
created from a regular class definition that inherits from tuple and that defines named fields. Such a class
can be written by hand, or it can be created by inheriting t yping.NamedTuple, or with the factory function
collections.namedtuple (). The latter techniques also add some extra methods that may not be found
in hand-written or built-in named tuples.

namespace (©] S 2 7h
HP7 ARE = Fa o5 3 9AYEE TP UTH AAlo SHE o5 32 (FAE ol A)
EBakotyet Ao, AY, WA ol F FZo] dsUTH °ol&

APt} o & Eo], &4 builtins.open I os.open () JE9 o] E o & +EFH Yt
ESh o] 5 F2 oHW BE F4E FHIE=AE SHIA HEAAA THEAATG FA B4
T2 EULLh o= %01, random.seed () =X itertools.islice () B} 2 1 S¢S0 Zhzt
random-\»} itertool ‘g‘oﬂ -/]MH ‘_l"dﬂ 9»1 = O] uﬂﬁwHZ\:]]/]r’]’

namespace package (©] 5 57} 31 7] 7))
LA MBI 7)1 AE2 AH o] HE T 7]5 8= PEP 420 3l 7]). o] F 32 | 71 A &= £ A <A A A 7}
& $E 97, 58 _inic_.py o] 982 A 71714 e ek

163

https://peps.python.org/pep-0420/

The Python Language Reference, & 2|A 3.13.1

EZ EAL
nested scope (EHIA »r23=)
ER Foo A HEE Fxee 5. dE 0, thE T Wil FH T4+ v o
NE MAEL BT 4 A5UTh FHA ARSE EAoRE B2v s e W, gL 57
== A S of gyt A G A4S 7P YR AF oA 91 FyL nRIA =
A WSS A o F TN AT HUh nonlocas & 92 2730 25 AL St

new-style class (7+ 28} S| ~)
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only
new-style classes could use Python’ s newer, versatile features like ~ slots_, descriptors, properties,
__getattribute__ (), class methods, and static methods.

object (7 A)
FE B REY) & 2 & (MAE) ol Aod REHolH. &3 BE oY FHs
o HFH A W2 Zel 2 Uk

optimized scope
A scope where target local variable names are reliably known to the compiler when the code is compiled,
allowing optimization of read and write access to these names. The local namespaces for functions, generators,
coroutines, comprehensions, and generator expressions are optimized in this fashion. Note: most interpreter

optimizations are applied to all scopes, only those relying on a known set of local and nonlocal variable names
are restricted to optimized scopes.

package (2} 7] A])
A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module witha __path__ attribute.

AT N7 9ol 2 BN A = HA L.
parameter (7} 7] ¥H 3>

ﬂﬁ(whwﬂc)ﬂqﬂHUMvw%%¢

2 A EE. oA 7Y mziHsTE A5y

o A A-71 Y E (positional-or-keyword): 9] Q1A U 719 = A2 2 ALE 4= 9= AAE A AF
Ytk o] Ze] 712 FEj o v duth ol & S T2l A foo & bar:
[def func (foo, bar=None): ... }
« A 2-H8 (positional-only): A A 2R Al52 7 e AAE AT U A2 AE i+
W5 Ao MANS HFo]) FAE EFFT L F ol AT 5 AFUTh o & Sof chgof
A posonlyl T} posonly2:
[def func (posonlyl, posonly2, /, positional_or_keyword): ... }
o 7191 E-2 & (keyword-only): 719 EZ T A T2 5 QL& AAE A dTh 7] =-A-& w7
e T Ao o] wi A H e F5o A Skoll shute] Zh-H A i+ & I & 23 A
o] &} 2~

Ao = AdF Yt dE 59, b2l A kw_onlyl 2} kw_only2:

[def func(arg, *, kw_onlyl, kw_only2): ... }

o 7FH-9] A (var-positional): (tF2 w7l =50 &3] A o] u] dtolEo 7 9] %] QAR5 o &)
Asd = Jd=AA AAEY Y AF2E AAZFULE o w7 F= v 7] ¥ o] 5ol
* 5 ool BoA BE 4 sUth A& =9 tholl A args:

[def func (*args, **kwargs): ... J

o 7FH-Z1 9 = (var-keyword): (th& mi 7§ =50l o] sl A o]] vhol5 o] X 7] = Q1 2= of] T &)
AZE 5 e Qoo A A= A4S S AR T, o) & v A A RS o Fof
5 ol BojA B E 5 A5 Uth A& 5ol 919 oAl kwargs.

WA RS AE A JAAES % /BB e ol gt Ad o AL B4 AAES AFE 5 A%

g, S A

164 Appendix A. 0{%!

The Python Language Reference, & 2|A 3.13.1

x}_g_o] Z =, A2} v 9] 2ol 2= FAQ A&, inspect.Parameter S8 &,
Aol A, PEP 3625 E A&

path entry (7 2 d E2])
BE 71N 3R1Y 71 ¢

m
m
ek
1
i
il
filo
L
N
do
:oul;'
Y
k

St Y EE A e sl Fa

path entry finder (2 Q=

i)
‘E.
rO
z

sys.path_hooks 9}% ZHE (5, 42 dED) o] HFE Y A, Fol X A& A EF
2EEe e P 9T A
AZ JdEZ A Eo] FHI}= HAEEL importlib.abe.PathEntryFinder o U314t}

path entry hook (A2 e F)
A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules on
a specific path entry.

path based finder (7 2 7]4} 5} 2l)
718 v et A= QT E F sl Y2 E 4= oA BEZ FFUTH

path-like object (7 25 7 A))
51 Asd A28 e 44, A2F AAE F2E EUE str U bytes 247 0] A
U} os.PathLike ZZ2EZF S T H3}+= AA YUY}l os.PathLike ZEZ2EZF S X Y3t AA =
os.fspath() 45 T EFA] str U bytes T A|l2H"H A2 E AZE 4~ g5t} 4l os.
fsdecode () 2} os.fsencode () & Z+ZF str Y bytes 23S HAS=0 A9 4 5T PEP

5192 =95 35Utk
PEP

zko] 2 7§ 4 A| k. PEP<= sfo] W 77U El o] A EE Al g8t} ohol i &= %:L_—ZE Al s 2
of e M2 752 At AA EAdUTh PEP= AltE 75l ek 223 7] AbYF R
< AE Algsl oF Stk

PEP£ +82 M2 7|5 Aldsta Ao that AFUE 8-S st sfolxlof S0t 274
AR S A= 957 A8 712 W AUSE AUt PEP 24 2= AFUE WA gl & +53ta
nhg) o] A4S 2 A3} & A alo] 9T

PEP 1 Iz 34 2.

portion (Z4)
PEP 420 o]l A A 2] 3t A &, o] 2 57+ 9] 7] A of] o] v} 3= 3hite] t el g gl o] So] 9=
A% zip oLl A= = A= B FUh.

positional argument (9] 2] ¢12})
A2 E HA L.

provisional API (%7 API)
7 APl s ghol B 29 JM R
2 W37 A SE A= AR, A o2t
27 & B4 o) A A g WA
t %= AYUth— APIE 2357
Ay

&

SED

AN
S M
298 d g ow dol

]

-_x
o
i

AA API| A 2 A%, 317 S840 §AH A b WAL “HFo 2 o AYYT- BE
AEE 2A S el HA B L FAE NS Fode RE AR ARHYT
o AAE BE o 27 LA ND B TER AA QL Fo B2)X G RAL 5 YT E

Al s
WUk o A4S 182 PEP 4112 B 5

provisional package (373 =] 7]])
T APIE HA L.

Python 3000 (3}o]# 3000)
gho] 3.x vl 2hQle] M H (W 3] w7t ' w2 o]okr|E Al F o ¥hEo]X] o] Fo|t}) o] A
2 “pyik” 2 2o 2% FUL)

Pythonic (3}o] ¥ t}2)
O dojsolA drbAQd id S5 AHEsl A

2=

25 ol dEL 7ol

TR 4], shol A Qoo A 71 x5 A}

= 27k o) & Eol, ol Hol A A% 2k o]

165

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0519/
https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/

The Python Language Reference, & 2|A 3.13.1

for 22 AHBOA O H B EY RE 848 F3=
1o

YUt o2 g2 dojoll= old 3
FAEogong oMo Axd)A] 9

2 5%
AREL Ao 54 A E B B E Tk

<

for i in range(len(food)):
print (food[i])

o 28, Fol Atk e o g5k

for piece in food:
print (piece)

qualified name (3773} ¥ o] &)
EEY AYG 2Tz BE BYH A, T, AT o2 “HE"E B
28l o] &. PEP 3155 o Al A9l Btk 249 S49t Ze22) 450, 47344 o]
ol Z5Uth

>>> class C:
class D:
def meth (self):
pass

-

>>> C._ _gualname_

lC’

>>> C.D.__gualname

'C.D'

>>> C.D.meth. qualname
'C.D.meth'’

£ 77| =d AFeE ul, &A3] AAsEE ol & (fully qualified name) & 2= £ 12 37| X &L
ZFAH RER M= OE—rE]FJ ol F& Juyth ol & 5¢], email.mime. text:

>>> import email.mime.text

>>> emaill.mime.text. name

2 E
=

'email.mime.text'

reference count (32 3142)

The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Some objects are immortal and have reference counts that are never modified, and therefore the objects are
never deallocated. Reference counting is generally not visible to Python code, but it is a key element of the

CPython implementation. Programmers can call the sys.getrefcount () function to return the reference
count for a particular object.

regular package (37 2| 7] A])
_init__.py L& et v HE Y 22 A5 A A)AL
olF B H7A & HAL.
REPL
An acronym for the “read-eval-print loop”, another name for the inferactive interpreter shell.

__slots__
W FEg AA], @ éEdé EYREES IS ng AAdsta dxdA g e
AAGo 2 W 2el S A AE FUh A7) 91715 3A T, o] Bla Y e Suk=A 2183}
& e dolep, el TS B m e el A e o] AR A g S

=2 33t Aol F5UTh
sequence (X] @2)
An iterable which supports efficient element access using integer indices via the _ getitem () special
method and defines a __Ien () method that returns the length of the sequence. Some built-in sequence
types are 1ist, str, tuple, and bytes. Note that dict also supports __getitem () and __len__ (),

but is considered a mapping rather than a sequence because the lookups use arbitrary hashable keys rather
than integers.

166 Appendix A. 0{%!

https://peps.python.org/pep-3155/

The Python Language Reference, & 2|A 3.13.1

The collections.abc.Sequence abstract base class defines a much richer interface that goes beyond just
__getitem__ ()and__len__ (),adding count (), index(),__contains__(),and__reversed__ ().
Types that implement this expanded interface can be registered explicitly using register (). For more
documentation on sequence methods generally, see Common Sequence Operations.

set comprehension (3§ 7 = 2] 3 A)
olH# B Y+ 84 HAYV IR E At 245 F2 A vhEhsts 7HA S . results
= {c for c in 'abracadabra' if c not in 'abc'}= AL AT, 'dr}
Uth gl2E, A3 "9A 2o A Z e o] (display) & FZR A L.
single dispatch (A2 t] A3 X))
T3 o] ke AR Fof| 7|z A AAREE Al o o] X9 3 FH.
slice (& &}o] &)

HE AAA Y ARG TS AR, Setolat AN AaYE /WS AHEHA BEUG
variable_name[1:3:5] j}a‘:—], [] ?}Oﬂ/ﬂ 01?4 7Hg fﬂ‘g ZEOE ‘E“ﬂ@'l’]q EH‘?éli (/‘151——/—\—
IYPE)FZ7H2 YBEALE s1lice AA S AL)

soft deprecated
A soft deprecated API should not be used in new code, but it is safe for already existing code to use it. The
API remains documented and tested, but will not be enhanced further.

Soft deprecation, unlike normal deprecation, does not plan on removing the API and will not emit warnings.
See PEP 387: Soft Deprecation.

special method (54~ WA &)

stolfo] ol of W AxL, Al 22, AT u) BAHOR 5L AT, oA HAEE T
Mol BE=E Al Zstal %;“Jr‘“ o2 HA AFULH ST MM EE ST AR o 55 ol BAR
‘g0l A syt

statement (&%)

L 2 E (ZEY “EF(block)”) & FASE FEYUTE 42 134 oAU 79 EE

ARg S o8] 7HA 28 F9 st U th 7he Qs while, for

static type checker
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also
type hints and the typing module.

strong reference
In Python’ s C API, a strong reference is a reference to an object which is owned by the code holding the
reference. The strong reference is taken by calling Py_INCREF () when the reference is created and released
with Py_DECREF () when the reference is deleted.

The Py_NewRef () function can be used to create a strong reference to an object. Usually, the Py_DECREF ()
function must be called on the strong reference before exiting the scope of the strong reference, to avoid leaking
one reference.

See also borrowed reference.

text encoding (] A E 2137 ¢])
A string in Python is a sequence of Unicode code points (in range U+0000-U+10FFFF). To store or transfer
a string, it needs to be serialized as a sequence of bytes.

Serializing a string into a sequence of bytes is known as “encoding”, and recreating the string from the sequence
of bytes is known as “decoding” .

There are a variety of different text serialization codecs, which are collectively referred to as “text encodings”.
text file (8] A& 3}2))
i AAE AR & AL AU A 55 Aas AL GALE o= AT Ao HazHE
QA AHT E AT 0T 2 AE A gUc AE ﬂro o oz
2 99 319, sys. stdln, sys.stdout, io.StringIo & AAAHAE
Ju

HholEL 7 A4 £ el & & e 3k AA ol thsli A= vfo

167

https://peps.python.org/pep-0387/#soft-deprecation

The Python Language Reference, & 2|A 3.13.1

triple-quoted string (X% u}-& % H £x}14¥)
(

W E () U ALWEE () A AT EUA FAL. TS E Shbe Selnel £A ol ¢l

715 € Alet A FA T, o8 7HA] o] FoA L1 7 F U o] o] 7] ore zome
EUEU2EE FAYE ¢ 2T F UEE 3, dF EAE 2R A% 98 301] 24+
Jed, E2EHS L0 E3] €2 JdH5UTH

type ()

The type of a Python object determines what kind of object it is; every object has a type. An object’ s type is
accessible asits __class__ attribute or can be retrieved with t ype (ob7).

type alias (3 o] d o] X»)
g A Ak t st w0 A

g ol Qeolat 3 =S Besls

rir
&h

19] 590
9 4-8FUth 2 59

r

def remove_gray_shades (

colors: list[tuple[int, int, int]]) -> list[tuplel[int, int, int]]:

pass
.

£ ohe ol B 97 970 wE 5 A&k

-

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) -> list[Color]:
pass

o] 7]1%& AW atE typing T} PEP 4842 =z 314 2.
type hint (& 31 E)
W, 22 B RE 9 3 vizh g U kg o] 7o E = §S A sk o = H o] AL

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can
also aid IDEs with code Completion and refactoring.

get_type_hints () & A%ﬁﬁ}fﬁ ‘l“ﬂé%‘ T A WD}
o] 715& AW} typingd} PEP 4845 F 2314 L.

universal newlines (U A £ 9 7))
o3 22 ﬂ%%i%%A EO = A4S}, E"*EQE%‘E Aot Bl = FY 2 7R 3¢
e \nt, A== e \r\n', oA A WA EA] e ZF7+4 °J Ab-g-ofl #3l A= bytes.
splitlines () ¥ ol e} PEP 278 2} PEP 3116 &= E/‘ﬂﬁ.

(
I~
ok

3 E = typing.

ol sl r ol A e 1 A

class C:
field: 'annotation'

M4 ol Eo] He A ow |
71thg ek
:]

[count: int
Ha o] o H o] A FH-2 Al A o] | o] EH U] & (Annotated assignment statements) | A A 78 g t}.

ool
rok
[t
u
>,
ofo
biail}
A
v
£
frt
il
B2
o,
g
4
rlr
H
=}
5
2
fifo
N
i
pa)
o
Fu

See function annotation, PEP 484 and PEP 526, which describe this functionality. Also see annotations-howto
for best practices on working with annotations.

virtual environment (7} 7))
spo]l M ALg 2Ll S8 T2 O o], T2 A|AH A A s = T JolH §8 T2 IWEY 5o

= =

168 Appendix A. 0{%!

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python Language Reference, & 2|A 3.13.1

VI 71 AL BAFAL G =5 AL A B,

QG FA FOWA, ol 4
dgAox 429 A8 94
ol [e)

venv & HA| 2.

virtual machine (7}4} 7] A))
szEglojwo R Aol H AFH. ol 1) 74 7 AL ol 2= AR e 7} B sk vhol =
SEEAYFYT

Zen of Python (}o] 4 Al)
shol 4 t)2bel fele} Aot o] B2 ol dlo] S o] a5k AEshe o] £l Huth o
318 ZEZ E A “import this” & YH3H B Juch

T
d
flo

169

The Python Language Reference, & 2|A 3.13.1

170 Appendix A. 0{%!

APPENDIX B

About this documentation

Python’ s documentation is generated from reStructuredText sources using Sphinx, a documentation generator orig-
inally created for Python and now maintained as an independent project.

A A9} o] & 918 EA Q1 N2 Fho] A ApA| 9 upRFA 2 A A 0 2 AFY -5 AMAFe] = QU Th 7] o] 3}
T AT, o] # ol th gk 7 B = reporting-bugs | o] 2| & IS Al 2. A 22 A B AR AA Y
A

Te BEol 7 Be 7ArE =y
o Fred L. Drake, Jr., the creator of the original Python documentation toolset and author of much of the content;
« the Docutils project for creating reStructuredText and the Docutils suite;

 Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python documentation

B2 Abgo] sl Al Ao, shol 4 EE wholHefe] B shold ABA A 7l AFUTh el Ae] FRAQ
222 glo]H A v ZF9 Misc/ACKS & ZZ S A L.

spolgdo] o] dd MK A AME 2 A A2 o)W AFUE L A 7)o Wl E AUt - AU

171

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.13/Misc/ACKS

The Python Language Reference, & 2|A 3.13.1

172 Appendix B. About this documentation

appeENDIX G

AR} 2fo Ml A

C.1 AZEQ0{Q A}

}o] -2 ABCEF= o] o] T A A& Al U] E 2k 2] Stichting Mathematisch Centrum (CWI, https://www.cwi.nl/
=) 2] Guido van Rossum ol 2] 3} 1990 dt] Z vkl Wkl H5Uth shoj ol the A2 &2 e w3
o) .85 917 ¥, Guido = 30] H9] 7.2 A A= ol %],

1995, Guido+ Virginia 2] Reston o]]+ Corporation for National Research Initiatives(CNRI, https://www.cnri.
reston.va.us/) o A sho] M 2 S AL a1, o] Lol A oA HAY AZEYAE SAUFYTH

20003 59, Guido %} sho] A a4 7] 9El 2 BeOpen.com 2 2 % A A] BeOpen PythonLabs © & 74 3155
Ut Z+2 3 104, PythonLabs Bl -2 Digital Creations(3] Zope Corporation; https://www.zope.org/ 2Z) 2
L A5 Yth 2001 d, 5ho] & 4 = E 9 o] A H(PSF, https:/www.python.org/psf/ %) o] A g% g4 th
o] @All= stol M A A A QA afote s 5835 AYHE v F 8 24 YUt Zope Corporation-&
PSFo| 391 3| Yyt

2 A oo thal Al = htips://opensource.org/S FZ 34
Ut shel A W E e GPLT e LItk ohele] &

H
A
.

o
— o©°
A1), AAH O, YR
chea M E R 2 ke AU
HHZE DHME R 2R GPL S &7
09.0~12 n/a 1991-1995 CWI yes
1.3~152 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 o] A 2.1.1 2001-3 A} PSF yes

173

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org

The Python Language Reference, & 2|A 3.13.1

GPL3} & 3H v} 212 92| 7L GPLE vlo] WS m| L3 th= AL 2 n|3iA & 5 UTth ZE vloj A
glo]l 2= GPLI} 28] o2 A S ééi S 0 £ AE WAL WEzS 5 IA Y
t}. GPL &% gfo] Al v}lo] W3} GPL 3o 2R E t}2 2z E9 o] 2 Ada 4 91 U} o=

)\.&
U—"C
A5 184 FaUTh

1w\

Guido®] A = 5to] o] Wi x5 7}5oHA vk B2 9 7 AL RS ol Al ZA=H Ut

C.2 TO|Mol| HMIASIHLE AFREL7| QI 0|2 b

glo] W A I E Qo] 9} A A= PSF License Agreement©l] e} gho] Al A 71 Fof g U,

v}o] A 3.8.6 5], AW A 9] oA, 2] X 7] e} 7 == PSF License Agreement 2} Zero-Clause BSD licensel|
wret o] gho] A 7h Foj gt

shol ol E3HE Q¥ Az e ojo] = ThE ehol A7k A g P Ut ehol Al S ehol Al 2ol s
£ =9 8 GAB U ol e ol dl20) BAR B2 wahE £m =)o o] o3l 2ol 4l u

Sog AL

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.13.1

This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and
the Individual or Organization ("Licensee") accessing and otherwise using Python

=

3.13.1 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.13.1 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice of
copyright, i.e., "Copyright © 2001-2024 Python Software Foundation; All Rights
Reserved" are retained in Python 3.13.1 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.13.1 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python
3.13.1.

4. PSF 1is making Python 3.13.1 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF PYTHON 3.13.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.13.1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.13.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between PSF and Licensee. This License
Agreement does not grant permission to use PSF trademarks or trade name in a
trademark sense to endorse or promote products or services of Licensee, or any

174 Appendix C. Ale} 2l0[MIA

The Python Language Reference, & 2|A 3.13.1

8.

third party.

By copying, installing or otherwise using Python 3.13.1, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

i.

This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

BeOpen is making the Software available to Licensee on an "AS IS" basis.

BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by and interpreted in all respects

by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, CNRI hereby
(TH5 sl el Aol A)

C.2. mo|Moll HMASIAHLE ALESHY| 2[8t 0|8 o 175

The Python Language Reference, & 2|A 3.13.1

(o1 sl o] A ol A Al <5)
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

176 Appendix C. A2} 2l0|MIA

The Python Language Reference, & 2|A 3.13.1

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.13.1 DOCU-
MENTATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

=
r
M
e 0
2
ok
Y
rd
e
2
)
K
30
rr
i)
)
22
[>
to

spol 2 vl EZdhof| ;2 3HE A AAF &z E S of o

C.3.1 HEM EQ[AH

The _random C extension underlying the random module includes code based on a download from http://www.math.
sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html. The following are the verbatim comments from the
original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without

(TH5 sl el Aol A)

C.3. Z§tEl AZEQ|0{0l CHE! 210|MIA L S0l 177

Hl

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python Language Reference, & 2|A 3.13.1

(o1 sl o] A ol A Al <5)
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 A3

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate source
files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS "‘AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
(TF& sl o Ao A %)

178 Appendix C. A2} 2l0|MIA

https://www.wide.ad.jp/

The Python Language Reference, & 2|A 3.13.1

(o] sl o] A ol A AI)
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 H|S7| A2 MH|A

The test .support.asynchat and test.support .asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 F7| &g

http.cookies E Tha 22 2| AMg 23t

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

(Th= sl ol Aol A1)

C.3. Z&HE AZEQ0{0l CHEt 2fo|MA L S0l 179

Hl

The Python Language Reference, & 2|A 3.13.1

(o1 sl o1 A o A A<)
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C35 A3 =X

trace RES T3} 2L 72 AFS TPk

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode X UUdecode g4

The uu codec contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

(TH5 sl el Aol A)

180 Appendix C. A2} 2l0|MIA

The Python Language Reference, & 2|A 3.13.1

(o1 sl o] A ol A Al <5)
Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.
— Arguments more compliant with Python standard

C3.7 XML YA T2 A &=

xmlrpc.client R E2 U 22 FY AHS 33 oh

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

The test.test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
(T2 sl o] Al ol A1)

C.3. Z&HE AZEQ0{0l CHEt 2fo|MA L S0l 181

Hl

The Python Language Reference, & 2|A 3.13.1

(o] sl o] A ol A AI)
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

select BE-L kqueve QB 5 o] 2ol thal T3} 22 Fo) AL ERFTH

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " 'AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

AFUTh of7]ell& tha 7 2 W&ol 23H o] d5uth

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

</MIT License>

Original location:
https://github.com/majek/csiphash/

(TH5 sl el Aol A)

182 Appendix C. A2} 2l0[MIA

The Python Language Reference, & 2|A 3.13.1

(o1 sl o] A ol A Al <5)
Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/1ittle2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod 2} dtoa

The file Pyt hon/dtoa. c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from https://web.archive.org/web/
20220517033456/http://www.netlib.org/fp/dtoa.c. The original file, as retrieved on March 16, 2009, contains the
following copyright and licensing notice:

/**
*

* The author of this software is David M. Gay.
*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

k*/

C.3.12 OpenSSL

The modules hashlib, posix and ss1 use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived
from that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
(Th= sl o] A of] Al%)

C.3. Z&HE AZEQ0{0l CHEt 2fo|MA L S0l 183

Hl

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python Language Reference, & 2|A 3.13.1

(e] s o] A ol Al Al
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,

(TH5 sl el Aol A)

184 Appendix C. Ale} 2l0[MIA

The Python Language Reference, & 2|A 3.13.1

(o] sl o] A ol A Al <5)
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution (s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

Submission of Contributions. Unless You explicitly state otherwise,

(TH5 sl el Aol A)

C.3.

SE 2T EFo{ol CHEt 2toldla K 52l 185

Hl

The Python Language Reference, & 2|A 3.13.1

(o1 sl o] A ol A Al <5)
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
—-—-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
(TH5 sl el Aol A)

186 Appendix C. A2} 2l0|MIA

The Python Language Reference, & 2|A 3.13.1

(e]A sl o] A ol A A<
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes C extension underlying the ct ypes module is built using an included copy of the libffi sources unless
the build is configured ——with-system-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘'Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

21ib 3L A2 Gl A FAE Zib o] UF 2efs oA MEo] A58 4 glod,
A2 AFg sl ER Y Th

bl

3}
=

il
N
=
B>
>

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

(TH5 sl el Aol A)

C.3. Z&HE AZEQ0{0l CHEt 2fo|MA L S0l 187

Hl

The Python Language Reference, & 2|A 3.13.1

(o1 sl o] A ol A Al <5)
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash
tracemalloc o &8 AH&5 & s A] Blo] B9 732 cfuhash Z2AEE 7|uto 2 gy

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

188 Appendix C. A2} 2l0|MIA

The Python Language Reference, & 2|A 3.13.1

C.3.17 libmpdec

The _decimal C extension underlying the decimal module is built using an included copy of the libmpdec library
unless the build is configured ——with-system-1ibmpdec:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14NHIAE AQIE

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/c14n-20/) was retrieved from the W3C
website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

(TH5 sl el Aol A)

C.3. Z&HE AZEQ0{0l CHEt 2fo|MA L S0l 189

Hl

https://www.w3.org/TR/xml-c14n2-testcases/

The Python Language Reference, & 2|A 3.13.1

(o] sl o] A ol A AI)
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.19 mimalloc
MIT License:

Copyright (c) 2018-2021 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE .

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

190 Appendix C. A2} 2l0|MIA

https://github.com/MagicStack/uvloop/tree/v0.16.0

The Python Language Reference, & 2|A 3.13.1

C.3.21 Global Unbounded Sequences (GUS)

The file Python/gsbr.c is adapted from FreeBSD’ s “Global Unbounded Sequences” safe memory reclamation
scheme in subr_smr.c. The file is distributed under the 2-Clause BSD License:

Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice unmodified, this list of conditions, and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR " "AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Z&HE AZEQ0{0l CHEt 2fo|MA L S0l 191

Hl

https://github.com/freebsd/freebsd-src/blob/main/sys/kern/subr_smr.c

The Python Language Reference, & 2|A 3.13.1

192 Appendix C. A2} 2l0[MIA

APPENDIX D

sho] 3} o] WA E:
Copyright © 2001-2024 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

WA 2ol 0 AL AT ARE o AL9) 2ho] 4l o A Al F T

193

The Python Language Reference, & 2|A 3.13.1

194 Appendix D. X{ZH#

1=
e

erutsl o] 2|
., 153
ellipsis literal, 18

string literal, 10
. (doD
attribute reference, 85
in numeric literal, 15
! (exclamation)
in formatted string literal, 12
- (minus)
binary operator, 90
unary operator, 89
' (single quote)
string literal, 10
! patterns, 117
" (double quote)
string literal, 10
string literal, 10
(hash)
comment, 5
source encoding declaration, 6
s (percent)
operator, 90

o
I

augmented assignment, 99

& (ampersand)
operator, 91

&:
augmented assignment, 99

() (parentheses)
call, 86
class definition, 126
function definition, 123
generator expression, 80
in assignment target list, 98
tuple display, 78

* (asterisk)
function definition, 125
import statement, 105
in assignment target list, 98
in expression lists, 95

in function calls, 87
operator, 89

* %
function definition, 125
in dictionary displays, 80
in function calls, 88
operator, 88

* k=
augmented assignment, 99

*
augmented assignment, 99

+ (plus)
binary operator, 90
unary operator, 89

+=
augmented assignment, 99

, (comma), 79
argument list, 86
expression list, 79, 80,95, 101, 126
identifier list, 107
import statement, 104
in dictionary displays, 80
in target list, 98
parameter list, 123
slicing, 86
with statement, 114

/ (slash)
function definition, 125
operator, 89

//

operator, 89
//=

augmented assignment, 99
/=

augmented assignment, 99
0b

integer literal, 14
0o

integer literal, 14
(05:4

integer literal, 14
: (colon)
annotated variable, 100

195

The Python Language Reference, & 2|A 3.13.1

compound statement, 110, 111, 114, 115, 123,
126

function annotations, 125
in dictionary expressions, 80
in formatted string literal, 12
lambda expression, 95
slicing, 86

:= (colon equals), 94

; (semicolon), 109

< (less)
operator, 91

<<
operator, 90

<<=

augmented assignment, 99
operator, 91
operator, 91

augmented assignment, 99
= (equals)

assignment statement, 98

class definition, 44

for help in debugging using string

literals, 12
function definition, 124
in function calls, 86

operator, 91

function annotations, 125
> (greater)
operator, 91

operator, 91
>>
operator, 90
>>=
augmented assignment, 99
>>>, 153
@ (ar)
class definition, 126
function definition, 124
operator, 89
[1 (square brackets)
in assignment target list,98
list expression, 79
subscription, 85

\ (backslash)

escape sequence, 11
\N

escape sequence, 11
\n

escape sequence, 11
\r

escape sequence, I1
\t

escape sequence, 11
\U

escape sequence, 11
\u

escape sequence, 11
\v

escape sequence, 11
\x

escape sequence, 11
~ (caret)

operator, 91

augmented assignment, 99
_ (underscore)

in numeric literal, 14,15
_, identifiers,9
__, identifiers,9
__abs__ () (object Wl A=), 52
__add__ () (object M| A &), 50
__aenter__ () (object | A =), 57
__aexit__ () (object M| A &), 57
__aiter__ () (object M| =), 56
__all__ (optional module attribute), 105
__and__ () (object M| A &), 50
__anext__ () (agen WA &), 84
__anext__ () (object M| &), 56
__annotations__ (class attribute), 28
__annotations__ (function attribute), 22
__annotations__ (function® 4743), 22
__annotations__ (module attribute), 24
__annotations__ (module®] £4]), 26
__annotations__ (type2] £4d), 28
__await__ () (object M| A &), 55
__bases__ (class attribute), 28
__bases__ (typeS] &A1), 28

__bool__ () (object method), 49
__bool__ () (object | A =), 38
__buffer__ () (object | =), 53

__bytes__ () (object M| =), 36
__cached__ (module attribute), 24
__cached__ (module®] £4), 26
__call__ () (object method), 88

escape sequence, 11 __call__ () (object Ml A =), 48
A\ __cause__ (exception attribute), 103
escape sequence, 11 __ceil__ () (object | =), 52
\a __class__ (instance attribute), 29
escape sequence, 11 __class__ (method cell), 45
\b __class__ (module attribute), 40
escape sequence, 11 __class__ (object®] $743), 29
\f __class_getitem__ () (object®] S WA =), 47
196 AHO|

=

The Python Language Reference, & 2|A 3.13.1

__classcell__ (class namespace entry), 45 __gt__() (object ¥| A =), 37
__closure__ (function attribute), 22 __hash__ () (object ¥| A =), 37
__closure__ (function®] %4]), 22 __iadd__ () (object M| A =), 51
__code__ (function attribute), 22 __iand__() (object M| A =), 51
__code__ (function®] £4), 22 __ifloordiv__ () (object M| A &), 51
__complex__ () (object WlA =), 52 __ilshift_ () (object H|A =), 51
__contains__ () (object W] A &), 50 __imatmul__ () (object M| A &), 51
__context__ (exception attribute), 103 __imod__ () (object WA =), 51
__debug__, 101 __imul__ () (object M| A =), 51
__defaults__ (function attribute), 22 __index__ () (object M| =), 52
__defaults__ (function® £4), 22 __init__ () (object WA =), 35
__del__ () (object M| A &), 35 __init_subclass__ () (object®] |2 WA &), 43
__delattr__ () (object M| A=), 39 __instancecheck__ () (type WA =), 46
__delete__ () (object Wl A=), 41 __int__ () (object M| =), 52
__delitem__ () (object M| A=), 50 __invert__ () (object W] A =), 52
__dict__ (class attribute), 28 __ior__ () (object M| A &), 51
__dict__ (function attribute), 22 __ipow__ () (object Wl A &), 51
__dict__ (function® £43), 22 __irshift_ () (object M]A =), 51
__dict__ (instance attribute), 29 __isub__ () (object || =), 51
__dict__ (module attribute), 27 __iter__ () (object ¥l A =), 50
__dict__ (module®] £4), 27 __itruediv__ () (object M| =), 51
__dict__ (object® %4]), 29 __ixor__ () (object Wl A &), 51
__dict__ (type2] £4), 28 __kwdefaults__ (function attribute), 22
__dir__ (module attribute), 40 __kwdefaults__ (function® £4]), 22
__dir__ () (object Wl A=), 39 __le__ () (object M| A =), 37
__divmod__ () (object #| A &), 50 __len__ () (mapping object method), 39
__doc__ (class attribute), 28 __len__ () (object M| A E), 49
__doc__ (function attribute), 22 __length_hint__ () (object WA =), 49
__doc__ (function®] £743), 22 __loader__ (module attribute), 24
__doc__ (method attribute), 23 __loader__ (module®] <743),25
__doc__ (method®] %7), 23 __1shift__ () (object M| =), 50
__doc__ (module attribute), 24 __1t__ () (object Wl A =), 37
__doc__ (module2] £A4), 26 _ main__
__doc__ (typeS] £4]), 28 module, 60, 133
__enter__ () (object M| A =), 52 __matmul__ () (object Wl A=), 50
__eq__() (object M| A =), 37 __missing__ () (object M| A=), 50
__exit__ () (object WA E), 53 __mod__ () (object M| A &), 50
_ file_ (module attribute), 24 _ _module__ (class attribute), 28
__file_ (module®] £4]), 26 __module__ (function attribute), 22
_ firstlineno__ (class attribute), 28 __module__ (function® £4]), 22
__firstlineno__ (type] £4d), 28 __module__ (method attribute), 23
__float_ () (object M| A &), 52 __module__ (method? £43),23
__floor__ () (object M| A E), 52 __module__ (typeQ] £4), 28
__floordiv__ () (object M|X =), 50 __mro__ (typed] &A1), 28
__format__ () (object W] A =), 36 __mro_entries__ () (object M| A &), 44
__ func__ (method attribute), 23 __mul__ () (object M| =), 50
_ func__ (method®] £4),23 __name___(class attribute), 28
_ future_ , 159 __name___ (function attribute), 22
future statement, 106 __name__ (function® £4), 22
__ge__() (object | A =), 37 __name__ (method attribute), 23
__get__ () (object M| =), 40 __name__ (method®] £4), 23
__getattr__ (module attribute), 40 __name__ (module attribute), 24
__getattr__ () (object M| A &), 39 __name__ (moduled] £4), 25
__getattribute__ () (object W] A =), 39 __name__ (type2] £4), 28
__getitem__ () (mapping object method), 34 __ne__ () (object M| =), 37
__getitem__ () (object M| A=), 49 __neg__ () (object M| =), 52
__globals__ (function attribute), 22 __new__ () (object M| A=), 35

__globals__ (function®] £743), 22 __next__ () (generator W] X} &), 82

AHO| 197

The Python Language Reference, & 2|A 3.13.1

__objclass__ (object®] £4]), 41
__or__() (object M| A E), 50
__package__ (module attribute), 24
__package__ (module®] £4]), 25
__path__ (module attribute), 24
__path__ (module®] $4), 26
__pos__ () (object M| =), 52
__povw__ () (object M| =), 50
__prepare__ (metaclass method), 45
__qualname__ (function® $43),22
__qualname__ (type2] £A4), 28
__radd__ () (object | =), 51
__rand__ () (object M| =), 51
__rdivmod__ () (object M| A=), 51
__release_buffer__ () (object | A =), 53
__repr__ () (object H A E), 36
__reversed__ () (object M| A &), 50
__rfloordiv__ () (object W] A E), 51
__rlshift__ () (object H{|A =), 51
Afrmatmulgi()(Ohkctuﬂ}ﬂli),SI
__rmod___() (object HAE), 51
__rmul__ () (object HAE), 51
__ror__ () (object A E), 51
__round__ () (object M| A E), 52
__rpow__ () (object HAE), 51
Afrrshiftgf()(OchtUﬂ/ﬂli),Sl
__rshift__ () (object W] A =), 50
__rsub__ () (object WA =), 51
__rtruediv__ () (object W] A &), 51
__rxor__ () (object HAE), 51
__self__ (method attribute), 23
__self_ (methodd] £4),23
__set__() (object W] =), 41
__set_name__ () (object WA =), 43
__setattr__ () (object M| A=), 39
__setitem_ () (object M| A E), 49
Aislotsggjl66
__spec__ (module attribute), 24
__spec__ (module®] £4), 25
_ _static_attributes__ (class attribute), 28
__static_attributes__ (typed] £4]), 28
__str__() (object M| A &), 36
__sub__ () (object H A &), 50
__subclasscheck__ () (type WA =), 46
__subclasses__ () (type WA &), 29
__traceback__ (exception attribute), 102
__truediv__ () (object M| A =), 50
__trunc__ () (object HAE), 52
__type_params___(class attribute), 28
__type_params___ (function attribute), 22
__type_params__ (function®] £743), 22
__type_params__ (type2] £41), 28
__xor__() (object M| A &), 50
{} (curly brackets)

dictionary expression, 80

in formatted string literal, 12

set expression, 80
| (vertical bar)

operator, 91
|:

augmented assignment, 99
~ (tilde)

operator, 89

A

abs
built-in function, 52

abstract base class (F4F o] Fe2~), 153

aclose () (agen Wl A =), 85
addition, 90
and
bitwise, 91
operator, 94
annotated
assignment, 100
annotation (o] = E|0]A), 153
annotations
function, 125
anonymous
function, 95
argument
call semantics, 86
function, 21
function definition, 124
argument (€1 A}), 153
arithmetic
conversion, 77
operation, binary, 89
operation, unary, 89
array
module, 20
as
except clause, 111
import statement, 105
keyword, 104, 111, 114, 115
match statement, 115
with statement, 114

AS pattern, OR pattern, capture pattern,

wildcard pattern, 117
ASCITI, 4,10
asend () (agen WA =), 84
assert
statement,lOI
AssertionError
exception, 101
assertions
debugging, 101
assignment
annotated, 100
attribute, 98
augmented, 99
class attribute, 27
class instance attribute, 29
expression, 94
slicing, 99
statement, 20, 98

198

The Python Language Reference, & 2|A 3.13.1

subscription, 99
target list, 98
assignment expression, 94
async
keyword, 127
async def
statement, 127
async for
in comprehensions, 79
statement, 127
async with
statement, 128
asynchronous context manager (H]%57] A€
E #eg|Ah, 154
asynchronous generator
asynchronous iterator, 24
function, 24
asynchronous generator (H] = 7] Ay d o)),
154
asynchronous generator iterator (H] I 7] A
Y o] g o] dl o] H), 154
asynchronous iterable (B]Z7] o]E| & &), 154
asynchronous iterator (B] % 7] o] ¥ & o] §),
154
asynchronous—generator
object, 84
athrow () (agen WA E), 85
atom, 77
attribute, 18
assignment, 98
assignment, class, 27
assignment, class instance, 29
class, 27
class instance, 29
deletion, 101
generic special, 18
reference, 85
special, 18
attribute (O]EZHE), 154
AttributeError
exception, 85
augmented
assignment, 99
await
in comprehensions, 79
keyword, 88, 127
awaitable (]9 °|EH &), 154

B
b
bytes literal, 10
"
bytes literal, 10
backslash character, 6
BDFL, 154
binary
arithmetic operation, 89
bitwise operation, 90

binary file (H}o]\y 2]), 154
binary literal, 14
binding
global name, 107
name, 59, 98, 104, 105, 123, 126
bitwise
and, 91
operation, binary, 90
operation, unary, 89
or, 91
xor, 91
blank line, 6
block, 59
code, 59
BNF, 4, 77
Boolean
object, 19
operation, 94
borrowed reference, 155
break
statement, 104, 110, 113
built-in
method, 24
built-in function
abs, 52
bytes, 36
call, 88
chr, 20
compile, 107
complex, 52
divmod, 51
eval, 107, 134
exec, 107
float, 52
hash, 38
id, 17
int, 52
len, 1921, 49
object, 24, 88
open, 29
ord, 20
pow, 51
print, 36
range, 111
repr, 97
round, 52
slice, 34
type, 17,44
built-in method
call, 88
object, 24, 88
builtins
module, 133
byte, 20
bytearray, 20
bytecode, 29
bytecode (B}o]E T X&), 155
bytes, 20

AHO|
= -

199

The Python Language Reference, & 2|A 3.13.1

built-in function, 36
bytes literal, 10
bytes-like object (HFo]|EE R AA), 155

C

c, 11
language, 18, 19, 24, 91
call, 86
built-in function, 88
built-in method, 88
class instance, 88
class object, 27,88
function, 21, 88
instance, 48, 88
method, 88
procedure, 97
user—-defined function, 88
callable, 155
object, 21, 86
callback (&), 155
case
keyword, 115
match, 115
case block, 117
C-contiguous, 156
chaining
comparisons, 91
exception, 103
character, 20, 86
chr
built-in function, 20
class
attribute, 27
attribute assignment, 27
body, 45
constructor, 35
definition, 102, 126
instance, 29
name, 126
object, 27, 88, 126
statement, 126
class (E82), 155
class instance
attribute, 29
attribute assignment, 29
call, 88
object, 27, 29, 88
class object
call, 27, 88
class variable (F&#| 2 HS), 155
clause, 109
clear () (frame W| A =), 33
close () (coroutine W] A &), 56
close () (generator ®| X E), 83
closure variable, 155
co_argcount (code object attribute), 29
co_argcount (codeobject®] <4J), 30
co_cellvars (code object attribute), 29

co_cellvars (codeobject®] <4]), 30
co_code (code object attribute), 29
co_code (codeobject®] <43), 30
co_consts (code object attribute), 29
co_consts (codeobject®] 4:73), 30
co_filename (code object attribute), 29
co_filename (codeobject®] <7]), 30
co_firstlineno (code object attribute), 29
co_firstlineno (codeobject®] %73), 30
co_flags (code object attribute), 29
co_flags (codeobject®] 4:743), 30
co_freevars (code object attribute), 29
co_freevars (codeobject®] <7J), 30
co_kwonlyargcount (code object attribute), 29
co_kwonlyargcount (codeobject®] <43), 30
co_lines () (codeobject | X £), 31
co_1lnotab (code object attribute), 29
co_lnotab (codeobject®] <4]), 30
co_name (code object attribute), 29
co_name (codeobject®] <43), 30
co_names (code object attribute), 29
co_names (codeobject®] 4573), 30
co_nlocals (code object attribute), 29
co_nlocals (codeobject®] 4:73), 30
co_positions () (codeobject M| A &), 31
co_posonlyargcount (code object attribute), 29
co_posonlyargcount (codeobject®] 4:43), 30
co_gualname (code object attribute), 29
co_qualname (codeobject®] <7J), 30
co_stacksize (code object attribute), 29
co_stacksize (codeobject®] %73), 30
co_varnames (code object attribute), 29
co_varnames (codeobject®] <4]), 30
code

block, 59
code object, 29
collections

module, 20
comma, 79

trailing, 95
command line, 133
comment, 5
comparison, 91
comparisons, 37

chaining, 91
compile

built—-in function, 107
complex

built-in function, 52

number, 19

object, 19
complex literal, 14
complex number (EAF), 156
compound

statement, 109
comprehensions, 79

dictionary, 80

list, 79

200

The Python Language Reference, & 2|A 3.13.1

set, 80
Conditional
expression, 94
conditional
expression, 95
constant, 10
constructor
class, 35
container, 18,27
context, 156

context management protocol, 156

context manager, 52

context manager (?ﬂE—‘“i\-E T‘:]—E]X}), 156

context variable (AHIAE
contiguous (A%), 156
continue
statement, 104, 110, 113
conversion
arithmetic, 77
string, 36,97
coroutine, 55, 81
function, 23
coroutine (ZFH), 156
coroutine function (ZFHE
CPython, 156
current context, 156

D

dangling

else, 110
data, 17

type, 18

type, immutable, 78
dbm.gnu

module, 21
dbm.ndbm

module, 21
debugging

assertions, 101
decimal literal, 14
decorator (W Z & o]), 157
DEDENT token, 7, 110
def

statement, 123
default

parameter value, 124
definition

class, 102, 126

function, 102, 123
del

statement, 35, 101
deletion

attribute, 101

target, 101

target list, 101
delimiters, 16
descriptor (Y23 Y H), 157
destructor, 35, 98

<), 156

), 156

dictionary
comprehensions, 80
display, 80

object, 21, 27, 38, 80, 85, 99

dictionary (84 8]), 157

dictionary comprehension (BA 4 e A

), 157

dictionary view (94 g &), 157

display

dictionary, 80

list, 79

set, 80
division, 89
divmod

built—-in function, 51
docstring, 126
docstring (B2 E), 157
documentation string, 31
duck-typing (9 E}o]3), 157

E

e
in numeric literal, 15
EAFP, 157
elif
keyword, 110
Ellipsis
object, 18
else

conditional expression, 95

dangling, 110

keyword, 104, 110, 111, 113
empty

list, 79

tuple, 20, 79

encoding declarations (source file), 6

environment, 60
error handling, 63
errors, 63

escape sequence, 11
eval

built-in function, 107, 134

evaluation
order, 95
exc_info (in module sys), 33
except
keyword, 111
except_star
keyword, 112
exception, 63, 102
AssertionError, 101
AttributeError, 85
chaining, 103
GeneratorExit, 83, 85
handler, 33
ImportError, 104
NameError, 78
raising, 102

3z

AHO|
= -

201

The Python Language Reference, & 2|A 3.13.1

StopAsyncIteration, 84
StopIteration, 82,102
TypeError, 89
ValueError, 90
ZeroDivisionError, 89
exception handler, 63
exclusive
or, 91
exec
built-in function, 107
execution
frame, 59, 126
restricted, 62
stack, 33
execution model, 59
expression, 77
assignment, 94
Conditional, 94
conditional, 95
generator, 80
lambda, 95, 125
list, 95,97
statement, 97
yield, 81
expression (23 A]), 158
extension
module, 18
extension module (B3 2 &), 158

Ff
£

formatted string literal, 10
£

formatted string literal, 10
f-string (}C-“E—Z]'Oea), 158
f_back (frame attribute), 32
f_back (frame® £A4), 32
f_builtins (frame attribute), 32
f_builtins (frame?] £4), 32
£_code (frame attribute), 32
f_code (frame2] £4), 32
f_globals (frame attribute), 32
f_globals (frame2] £73), 32
f_lasti (frame attribute), 32
f_lasti (frame®] $73), 32
f_lineno (frame attribute), 32
f_lineno (frame2 £A), 33
f_locals (frame attribute), 32
f_locals (frame2 £4]), 32
f_trace (frame attribute), 32
f_trace (frame2] $43), 33
f_trace_lines (frame attribute), 32
f_trace_lines (frame2] $743), 33
f_trace_opcodes (frame attribute), 32
f_trace_opcodes (frame2] $743), 33
False, 19
file object (< ZAA), 158
file-like object (FLF A, 158

filesystem encoding and error handler, 158

finalizer, 35
finally
keyword, 102, 104, 111, 113
find_spec
finder, 68
finder, 67
find_spec, 68
finder (3} 4), 158
float
built-in function, 52
floating-point
number, 19
object, 19
floating-point literal, 14
floor division (B4 =4, 158
for
in comprehensions, 79
statement, 104, 110
form
lambda, 95
format () (built-in function)
__str__ () (object method), 36
formatted string literal, 12
Fortran contiguous, 156
frame
execution, 59, 126
object, 32
free
variable, 60
free threading, 158
free variable, 158
from
import statement, 59, 105
keyword, 81, 104
yield from expression, 82
frozenset
object, 21
fstring, 12
f-string, 12
function
annotations, 125
anonymous, 95
argument, 21
call, 21,88
call, user-defined, 88
definition, 102, 123
generator, 81, 102
name, 123
object, 21, 24, 88, 123
user—-defined, 21
function (&), 158
function annotation (&4 o] g o]A), 159
future
statement, 106

G

garbage collection, 17

202

The Python Language Reference, & 2|A 3.13.1

garbage collection (7}F8]A] =7), 159 imaginary literal, 14
generator immortal, 160
expression, 80 immutable
function, 23, 81, 102 data type, 78
iterator, 23, 102 object, 20, 78, 80
object, 30, 80, 82 immutable (%), 160
generator (A d o] €), 159 immutable object, 17
generator expression (Al d o8 £&4]),159 immutable sequence
generator iterator (Al U@ o] ©] H d o] H), object, 20
159 immutable types
GeneratorExit subclassing, 35
exception, 83, 85 import
generic hooks, 67
special attribute, 18 statement, 24, 104
generic function (AW <), 159 import hooks, 67
generic type (AU &), 159 import machinery, 65
GIL, 160 import path (Y E 7 =), 160
global importer (Y ZH), 160
name binding, 107 ImportError
namespace, 22 exception, 104
statement, 101, 107 importing (Y X)), 160
global interpreter lock (A QB ZEE &), in
160 keyword, 110
grammar, 4 operator, 93
grouping, 7 inclusive
guard, 117 or, 91
INDENT token, 7
F* indentation, 7
handle an exception, 63 index operation, 19
handler indices () (slice WA &), 34
exception, 33 inheritance, 126
hash input, 134
built-in function, 38 instance
hash character, 5 call, 438, 83
hash-based pyc (3] A] 7]%} pyc), 160 class, 29
hashable, 80 object, 27, 29, 88
hashable (3] A] 7}=), 160 int
hexadecimal literal, 14 built-in function, 52
hierarchy integer, 20
type, 18 object, 19
hooks representation, 19
import, 67 integer literal, 14
meta, 67 interactive (Eﬁﬂ—_aé), 160
path, 67 interactive mode, 133

internal type, 29
I interpolated string literal, 12
interpreted (B Z & E] &), 161
interpreter, 133
interpreter shutdown (QIE]Z 2 £8), 161

id
built-in function, 17

identifier, 8,78
inversion, 89

identity
test, 93 invocation, 21
, 97
identity of an object, 17 1o
IDLE, 160 module, 29
if irrefutable case block, 117
is

conditional expression, 95
in comprehensions,79) operator,93
keyword, 115 is not

statement, 110 operator, 93

AHO| 203

The Python Language Reference, & 2|A 3.13.1

item empty, 79
sequence, 85 expression, 95, 97
string, 86 object, 20, 79, 85, 86, 99
item selection, 19 target, 98, 110
iterable list (]2 E), 162
unpacking, 95 list comprehension (B]2E AZ g 3A), 162
iterable (°]E & &), 161 literal, 10,78
iterator (©]E]d o] &), 161 loader, 67
loader (ZT), 162
J locale encoding, 162
5 logical line, 5
in numeric literal, 15 loop
Java statement, 104, 110
language, 19 loop control
target, 104

K
M

key, 80
key function (7] g4), 161 magic
key/value pair, 80 method (WA E), 162
keyword, 9 magic method (W] 2] WA &), 162
as, 104, 111, 114, 115 makefile () (socket method), 29
async, 127 mangling
await, 88, 127 name, 78
case, 115 mapping
elif, 110 object, 21, 29, 85, 99
else, 104,110, 111,113 mapping ("33), 162
except, 111 match
except_star, 112 case, 115
finally, 102, 104,111, 113 statement, 115
from, 81, 104 matrix multiplication, 89
if, 115 membership
in, 110 test, 93
yield, 81 meta
keyword argument (7] & 213}, 162 hooks, 67
meta hooks, 67
L meta path finder (WE} AE 3191 H), 162
lambda metaclass, 44
expression, 95, 125 metaclass (W B S 2), 162
form, 95 metaclass hint, 44
lambda (¥}, 162 method
language built-in, 24
c, 18,19, 24,91 call, 83
Java, 19 object, 23, 24, 88
last_traceback (in module sys), 33 user-defined, 23
LBYL, 162 method (Uﬂ A'] E), 163

leading whitespace,’ magic, 162
special, 167
method resolution order (WA E AA £ A]),

163

minus, 89

len

built-in function, 1921, 49
lexical analysis, 5
lexical definitions, 4

line continuation, 6 module
line joining, 5,6 __main__, 60,133
line structure,5 array, 20

builtins, 133
collections, 20
dbm.gnu, 21
dbm. ndbm, 21
extension, 18

list
assignment, target, 98
comprehensions, 79
deletion target, 101
display, 79

204 AHO|

The Python Language Reference, & 2|A 3.13.1

importing, 104
io, 29
namespace, 24
object, 24, 85
sys, 112,133
module (&), 163
module spec, 67
module spec (EE 2#), 163
modulo, 90
MRO, 163
mro () (type Wl A =), 28
multiplication, 89
mutable
object, 20, 98, 99
mutable (7}H), 163
mutable object, 17
mutable sequence
object, 20

N

name, 8, 59, 78
binding, 59, 98, 104, 105, 123, 126
binding, global, 107
class, 126
function, 123
mangling, 78
rebinding, 98
unbinding, 101

named expression, 94

named tuple (U¥YE= F&), 163

NameError
exception, 78

NameError (built-in exception), 60

names
private, 78

namespace, 59
global, 22
module, 24
package, 66

namespace (©] & &7}, 163

namespace package (0] & Z7F 3 7] A]), 163

negation, 89

nested scope(%?%g%liﬁfaéz),l64

new-style class (F2EFY Z32), 164

NEWLINE token,5, 110

None
object, 18, 97

nonlocal
statement, 107

not
operator, 94

not in
operator, 93

notation, 4

NotImplemented
object, 18

null
operation, 101

number, 14

complex, 19

floating-point, 19
numeric

object, 19, 29
numeric literal, 14

O

object, 17
asynchronous—-generator, 84
Boolean, 19
built-in function, 24, 88
built-in method, 24, 88
callable, 21, 86
class, 27, 88, 126
class instance, 27,29, 88
code, 29
complex, 19
dictionary, 21, 27, 38, 80, 85, 99
Ellipsis, 18
floating-point, 19
frame, 32
frozenset, 21
function, 21, 24, 88, 123
generator, 30, 80, 82
immutable, 20, 78, 80
immutable sequence, 20
instance, 27, 29, 88
integer, 19
list, 20, 79, 85, 86, 99
mapping, 21, 29, 85, 99
method, 23, 24, 88
module, 24, 85
mutable, 20, 98, 99
mutable sequence, 20
None, 18, 97
NotImplemented, 18
numeric, 19,29
sequence, 19, 29, 85, 86, 93, 99, 110
set, 21, 80
set type, 20
slice, 49
string, 85, 86
traceback, 33,102, 112
tuple, 20, 85, 86, 95
user—-defined function, 21, 88,123
user—-defined method, 23

object (ZAA]), 164

object.__match_args__ (W& ¥HF), 53

object.__slots__ (WA WHSE), 42

octal literal, 14

open
built-in function, 29

operation
binary arithmetic, 89
binary bitwise, 90
Boolean, 94
null, 101

AHO|
= -

205

The Python Language Reference, & 2|A 3.13.1

power, 88

shifting, 90

unary arithmetic, 89

unary bitwise, 89
operator

- (minus), 89, 90

% (percent), 90

& (ampersand), 91

* (asterisk), 89

* K 88

+ (plus), 89, 90

/ (slash), 89

//,89

< (less), 91

<<, 90

<=,91

> (greater), 91

>=,91

>>, 90

@ (ar), 89

~ (caret), 91

| (vertical bar), 91

~ (tilde), 89

and, 94

in, 93

is, 93

is not, 93

not, 94

not in, 93

or, 94

overloading, 34

precedence, 96

ternary, 95
operators, 15
optimized scope, 164
or

bitwise, 91

exclusive, 91

inclusive, 91

operator, 94
ord

built-in function, 20
order

evaluation, 95
output, 97

standard, 97
overloading

operator, 34

P

package, 66
namespace, 66
portion, 66
regular, 66

package (3] 7] A]), 164

parameter

call semantics, 87

function definition, 123

value, default, 124
parameter (U] 7] W), 164
parenthesized form, 78
parser, 5
pass

statement, 101
path

hooks, 67
path based finder, 72
path based finder (AE 7|4k 3}Q1H), 165
path entry (B Z A EF), 165
path entry finder (AE AEzE 3}91H), 165
path entry hook (AZE AdET F), 165
path hooks, 67
path-like object (AEZF A, 165
pattern matching, 115

PEP, 165
physical 1line, 5,6, 11
plus, 89
popen () (in module os), 29
portion

package, 66

portion (A1), 165
positional argument (X 1A}, 165
pow

built-in function, 51
power

operation, 88
precedence

operator, 96
primary, 85
print

built-in function, 36
print () (built-in function)

__str__ () (object method), 36
private

names, 78
procedure

call, 97
program, 133
provisional API (F+A API), 165
provisional package (ZA 3 7] A]), 165
Python 3000 (Z}o] % 3000), 165
Python gaF ™ICF

PEP 1, 165

PEP 8,92

PEP 236, 107

PEP 238,158

PEP 252,41

PEP 255,82

PEP 278, 168

PEP 302, 65,75,162

PEP 308,95

PEP 318, 125,127

PEP 328,75

PEP 338,75

206

The Python Language Reference, & 2|A 3.13.1

PEP 342,82

PEP 343,53,115,156

PEP 362, 154, 165

PEP 366,25,75

PEP 380, 82

PEP 411, 165

PEP 414,10

PEP 420, 65, 606,71, 75, 163, 165

PEP 443,159

PEP 448, 80, 88,95

PEP 451,75

PEP 483,159

PEP 484,46, 100, 125, 153, 159, 168

PEP 492,55, 82,128, 154, 156

PEP 498, 14, 158

PEP 519, 165

PEP 525, 82,154

PEP 526, 100, 125, 153, 168

PEP 530,79

PEP 560, 44,48

PEP 562,40

PEP 563, 106, 125

PEP 570, 125

PEP 572,80,94,119

PEP 585, 159

PEP 614,124,126

PEP 617,135

PEP 626,32

PEP 634,53,116, 123

PEP 636,116,123

PEP 646, 86, 95, 125

PEP 649,61

PEP 683, 160

PEP 688,54

PEP 695,61, 108

PEP 696,601, 129

PEP 703, 158, 160

PEP 3104, 107

PEP 3107, 125

PEP 3115,45,127

PEP 3116, 168

PEP 3119,46

PEP 3120,5

PEP 3129, 125,127

PEP 3131, 8

PEP 3132,99

PEP 3135,46

PEP 3147,26

PEP 3155, 166
PYTHON_GIL, 160
PYTHONHASHSEED, 38
Pythonic (Z}o] A THE), 165
PYTHONNODEBUGRANGES, 31
PYTHONPATH, 72

Q

qualified name (F7F3}H ©]&), 166

R
o

raw string literal, 10
o

raw string literal, 10
raise

statement, 102
raise an exception, 63
raising

exception, 102
range

built-in function, 111
raw string, 10
rebinding

name, 98
reference

attribute, 85
reference count (ZF 3144), 166

reference counting, 17

regular

package, 66
regular package (B3 3 7] A)), 166
relative

import, 105
REPL, 166
replace () (codeobject W| A E), 32
repr

built-in function, 97
repr () (built-in function)

__repr__ () (object method), 36
representation

integer, 19
reserved word, 9
restricted

execution, 62
return

statement, 102, 113
round

built-in function, 52

S

scope, 59, 60
send () (coroutine #| A E), 56
send () (generator Wl A &), 82
sequence
item, 85
object, 19, 29, 85, 86, 93,99, 110
sequence (A @2), 166
set
comprehensions, 80
display, 80
object, 21, 80
set comprehension (¢ AZ g 3A), 167
set type
object, 20
shifting
operation, 90
simple

207

The Python Language Reference, & 2|A 3.13.1

statement, 97
single dispatch (AZ Y23), 167
singleton
tuple, 20
slice, 86
built-in function, 34
object, 49
slice (&8}Fo]), 167
slicing, 19, 20, 86
assignment, 99
soft deprecated, 167
soft keyword, 9
source character set,6
space, 7
special
attribute, 18
attribute, generic, 18
method (WA &), 167
special method (54 WA E), 167
stack
execution, 33

trace, 33
standard
output, 97

Standard C, 11
standard input, 133
start (slice object attribute), 34, 86
statement
assert, 101
assignment, 20, 98
assignment, annotated, 100
assignment, augmented, 99
async def, 127
async for, 127
async with, 128
break, 104, 110, 113
class, 126
compound, 109
continue, 104, 110, 113
def, 123
del, 35,101
expression, 97
for, 104, 110
future, 106
global, 101, 107
if, 110
import, 24, 104
loop, 104, 110

yield, 102
statement (£7), 167
statement grouping, 7
static type checker, 167
stderr (in module sys), 29
stdin (in module sys), 29
stdio, 29
stdout (in module sys), 29
step (slice object attribute), 34, 86
stop (slice object attribute), 34, 86
StopAsyncIteration
exception, 84
StopIteration
exception, 82, 102
string
__format__ () (object method), 36
__str__ () (object method), 36
conversion, 36,97
formatted literal, 12
immutable sequences, 20
interpolated literal, 12
item, 86
object, 85, 86
string literal, 10
strong reference, 167
subclassing
immutable types, 35
subscription, 1921, 85
assignment, 99
subtraction, 90
suite, 109
syntax, 4
sys
module, 112, 133
sys.exc_info, 33
sys.exception, 33
sys.last_traceback, 33
sys.meta_path, 68
sys.modules, 67
sys.path, 72
sys.path_hooks, 72
sys.path_importer_cache, 72
sys.stderr, 29
sys.stdin, 29
sys.stdout, 29
SystemExit (built-in exception), 63

T

match, 115 tab, 7

nonlocal, 107 target, 98

pass, 101 deletion, 101

raise, 102 list, 98, 110

return, 102, 113 list assignment, 98

simple, 97 list, deletion, 101

try, 33, 111 loop control, 104

type, 107 tb_frame (traceback attribute), 33

while, 104, 110 tb_frame (traceback 2] <£A]), 34

with, 52, 114 tb_lasti (traceback attribute), 33
208 AHO

The Python Language Reference, & 2|A 3.13.1

tb_lasti (traceback?] £743), 34
tb_lineno (traceback attribute), 33
tb_lineno (traceback?] £ A), 34
tb_next (traceback attribute), 34
tb_next (tracebackd £743), 34
termination model, 63
ternary
operator, 95
test
identity, 93
membership, 93
text encoding (HIAE Q13 4Y), 167
text file (HI2E 3}4Y), 167
throw () (coroutine M| A &), 56
throw () (generator M| A =), 82
token, 5
trace
stack, 33
traceback
object, 33, 102, 112
trailing
comma, 95
triple-quoted string (A= W& %
168
triple—-quoted string, 10
True, 19
try
statement, 33, 111
tuple
empty, 20, 79
object, 20, 85, 86, 95
singleton, 20

(i
d
B
@g

type, 18
built-in function, 17,44
data, 18

hierarchy, 18
immutable data, 78
statement, 107
type (3), 168
type alias (¥ ol d g oj2), 168
type hint (8 3l E), 168
type of an object, 17
type parameters, 129
TypeError
exception, 89
types,

U

u'

internal, 29

string literal, 10
"

string literal, 10
unary

arithmetic operation, 89

bitwise operation, 89
unbinding

name, 101
UnboundLocalError, 60

Unicode, 20
Unicode Consortium, 10
universal newlines(#%L]Hiégég.gjﬁ)»l68
UNIX, 133
unpacking
dictionary, 80
in function calls, 87
iterable, 95
unreachable object, 17
unrecognized escape sequence, 12
user-defined
function, 21
function call, 88
method, 23
user—-defined function
object, 21, 88, 123
user-defined method
object, 23

\Y

value, 80
default parameter, 124
value of an object, 17
ValueError
exception, 90
values
writing, 97
variable
free, 60
variable annotation (R4 o] =H|o]A), 168
virtual environment (7} 37), 168
virtual machine (7} 7]1A)), 169

W

walrus operator, 94
while
statement, 104, 110
Windows, 133
with
statement, 52, 114
writing
values, 97

X

xor
bitwise, 91

Y

F3 Ux
PYTHON_GIL, 160
PYTHONHASHSEED, 38
PYTHONNODEBUGRANGES, 31
PYTHONPATH, 72

yield
examples, 83
expression, 81
keyword, 81

statement, 102

AHO|
= -

209

The Python Language Reference, & 2|A 3.13.1

Z

Zen of Python (3}o]4 Al), 169
ZeroDivisionError
exception, 89

210

	개요
	대안 구현들
	표기법

	어휘 분석
	줄 구조(Line structure)
	논리적인 줄
	물리적인 줄
	주석
	인코딩 선언
	명시적인 줄 결합
	묵시적인 줄 결합
	빈 줄
	들여쓰기
	토큰 사이의 공백

	다른 토큰들
	식별자와 키워드
	키워드
	Soft Keywords
	식별자의 예약 영역

	리터럴
	문자열과 바이트열 리터럴
	Escape sequences

	문자열 리터럴 이어붙이기
	f-strings
	숫자 리터럴
	정수 리터럴
	Floating-point literals
	허수 리터럴

	연산자
	구분자

	데이터 모델
	객체, 값, 형
	표준형 계층
	None
	NotImplemented
	Ellipsis
	numbers.Number
	numbers.Integral
	numbers.Real (float)
	numbers.Complex (complex)

	시퀀스들
	불변 시퀀스
	가변 시퀀스

	집합 형들(Set types)
	매핑(Mappings)
	딕셔너리(Dictionaries)

	콜러블(Callable types)
	사용자 정의 함수
	Special read-only attributes
	Special writable attributes

	인스턴스 메서드(Instance methods)
	제너레이터 함수(Generator functions)
	코루틴 함수(Coroutine functions)
	비동기 제너레이터 함수(Asynchronous generator functions)
	내장 함수(Built-in functions)
	내장 메서드(Built-in methods)
	클래스(Classes)
	클래스 인스턴스(Class Instances)

	모듈(Modules)
	Import-related attributes on module objects
	Other writable attributes on module objects
	Module dictionaries

	사용자 정의 클래스(Custom classes)
	Special attributes
	Special methods

	클래스 인스턴스(Class instances)
	Special attributes

	I/O 객체 (파일 객체라고도 알려져 있습니다)
	내부 형(Internal types)
	코드 객체(Code objects)
	Special read-only attributes
	Methods on code objects

	프레임 객체(Frame objects)
	Special read-only attributes
	Special writable attributes
	Frame object methods

	트레이스백 객체(Traceback objects)
	슬라이스 객체(Slice objects)
	스태틱 메서드 객체(Static method objects)
	클래스 메서드 객체(Class method objects)

	특수 메서드 이름들
	기본적인 커스터마이제이션
	어트리뷰트 액세스 커스터마이제이션
	모듈 어트리뷰트 액세스 커스터마이제이션
	디스크립터 구현하기
	디스크립터 호출하기
	__slots__

	클래스 생성 커스터마이제이션
	메타 클래스
	MRO 항목 결정하기
	적절한 메타 클래스 선택하기
	클래스 이름 공간 준비하기
	클래스 바디 실행하기
	클래스 객체 만들기
	메타 클래스의 용도

	인스턴스 및 서브 클래스 검사 커스터마이제이션
	제네릭 형 흉내 내기
	The purpose of __class_getitem__
	__class_getitem__ versus __getitem__

	콜러블 객체 흉내 내기
	컨테이너형 흉내 내기
	숫자 형 흉내 내기
	with 문 컨텍스트 관리자
	Customizing positional arguments in class pattern matching
	Emulating buffer types
	특수 메서드 조회

	코루틴(Coroutines)
	어웨이터블 객체(Awaitable Objects)
	코루틴 객체(Coroutine Objects)
	비동기 이터레이터(Asynchronous Iterators)
	비동기 컨텍스트 관리자

	실행 모델
	프로그램의 구조
	이름과 연결(binding)
	이름의 연결
	이름의 검색(resolution)
	Annotation scopes
	Lazy evaluation
	builtins 와 제한된 실행
	동적 기능과의 상호작용

	예외

	임포트 시스템
	importlib
	패키지(package)
	정규 패키지
	이름 공간 패키지

	검색
	모듈 캐시
	파인더(finder)와 로더(loader)
	임포트 훅(import hooks)
	메타 경로(meta path)

	로딩(loading)
	로더
	서브 모듈
	Module specs
	__path__ attributes on modules
	모듈 repr
	캐시된 바이트 코드 무효화

	경로 기반 파인더
	경로 엔트리 파인더
	경로 엔트리 파인더 프로토콜

	표준 임포트 시스템 교체하기
	패키지 상대 임포트
	__main__ 에 대한 특별한 고려
	__main__.__spec__

	참고문헌

	표현식
	산술 변환
	아톰 (Atoms)
	식별자 (이름)
	Private name mangling

	리터럴 (Literals)
	괄호 안에 넣은 형
	리스트, 집합, 딕셔너리의 디스플레이(display)
	리스트 디스플레이
	집합 디스플레이
	딕셔너리 디스플레이
	제너레이터 표현식 (Generator expressions)
	일드 표현식(Yield expressions)
	제너레이터-이터레이터 메서드
	사용 예
	비동기 제너레이터 함수
	비동기 제너레이터-이터레이터 메서드

	프라이머리
	어트리뷰트 참조
	서브스크립션(Subscriptions)
	슬라이싱(Slicings)
	호출

	어웨이트 표현식
	거듭제곱 연산자
	일 항 산술과 비트 연산
	이항 산술 연산
	시프트 연산
	이항 비트 연산
	비교
	값 비교
	멤버십 검사 연산
	아이덴티티 비교

	논리 연산(Boolean operations)
	대입 표현식
	조건 표현식(Conditional expressions)
	람다(Lambdas)
	표현식 목록(Expression lists)
	값을 구하는 순서
	연산자 우선순위

	단순문(Simple statements)
	표현식 문
	대입문
	증분 대입문(Augmented assignment statements)
	어노테이트된 대입문(Annotated assignment statements)

	assert 문
	pass 문
	del 문
	return 문
	yield 문
	raise 문
	break 문
	continue 문
	임포트(import) 문
	퓨처 문

	global 문
	nonlocal 문
	The type statement

	복합문(Compound statements)
	if 문
	while 문
	for 문
	try 문
	except clause
	except* clause
	else clause
	finally clause

	with 문
	The match statement
	Overview
	Guards
	Irrefutable Case Blocks
	Patterns
	OR Patterns
	AS Patterns
	Literal Patterns
	Capture Patterns
	Wildcard Patterns
	Value Patterns
	Group Patterns
	Sequence Patterns
	Mapping Patterns
	Class Patterns

	함수 정의
	클래스 정의
	코루틴
	코루틴 함수 정의
	async for 문
	async with 문

	Type parameter lists
	Generic functions
	Generic classes
	Generic type aliases

	최상위 요소들
	완전한 파이썬 프로그램
	파일 입력
	대화형 입력
	표현식 입력

	전체 문법 규격
	용어집
	About this documentation
	Contributors to the Python documentation

	역사와 라이센스
	소프트웨어의 역사
	파이썬에 액세스하거나 사용하기 위한 이용 약관
	PSF LICENSE AGREEMENT FOR PYTHON 3.13.1
	BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
	CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
	CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.13.1 DOCUMENTATION

	포함된 소프트웨어에 대한 라이센스 및 승인
	메르센 트위스터
	소켓
	비동기 소켓 서비스
	쿠키 관리
	실행 추적
	UUencode 및 UUdecode 함수
	XML 원격 프로시저 호출
	test_epoll
	Select kqueue
	SipHash24
	strtod 와 dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N 테스트 스위트
	mimalloc
	asyncio
	Global Unbounded Sequences (GUS)

	저작권
	색인

