This article summarizes equations used in optics, including geometric optics, physical optics, radiometry, diffraction, and interferometry.
Definitions
Geometric optics (luminal rays)
General fundamental quantities
| Quantity (common name/s) | (Common) symbol/s | SI units | Dimension | 
|---|---|---|---|
| Object distance | x, s, d, u, x1, s1, d1, u1 | m | [L] | 
| Image distance | x', s', d', v, x2, s2, d2, v2 | m | [L] | 
| Object height | y, h, y1, h1 | m | [L] | 
| Image height | y', h', H, y2, h2, H2 | m | [L] | 
| Angle subtended by object | θ, θo, θ1 | rad | dimensionless | 
| Angle subtended by image | θ', θi, θ2 | rad | dimensionless | 
| Curvature radius of lens/mirror | r, R | m | [L] | 
| Focal length | f | m | [L] | 
| Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension | 
|---|---|---|---|---|
| Lens power | P | m−1 = D (dioptre) | [L]−1 | |
| Lateral magnification | m | dimensionless | dimensionless | |
| Angular magnification | m | dimensionless | dimensionless | |
Physical optics (EM luminal waves)
There are different forms of the Poynting vector, the most common are in terms of the E and B or E and H fields.
| Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension | 
|---|---|---|---|---|
| Poynting vector | S, N | W m−2 | [M][T]−3 | |
| Poynting flux, EM field power flow | ΦS, ΦN | W | [M][L]2[T]−3 | |
| RMS Electric field of Light | Erms | N C−1 = V m−1 | [M][L][T]−3[I]−1 | |
| Radiation momentum | p, pEM, pr | J s m−1 | [M][L][T]−1 | |
| Radiation pressure | Pr, pr, PEM | W m−2 | [M][T]−3 | |
Radiometry

For spectral quantities two definitions are in use to refer to the same quantity, in terms of frequency or wavelength.
| Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension | 
|---|---|---|---|---|
| Radiant energy | Q, E, Qe, Ee | J | [M][L]2[T]−2 | |
| Radiant exposure | He | J m−2 | [M][T]−3 | |
| Radiant energy density | ωe | J m−3 | [M][L]−3 | |
| Radiant flux, radiant power | Φ, Φe | W | [M][L]2[T]−3 | |
| Radiant intensity | I, Ie | W sr−1 | [M][L]2[T]−3 | |
| Radiance, intensity | L, Le | W sr−1 m−2 | [M][T]−3 | |
| Irradiance | E, I, Ee, Ie | W m−2 | [M][T]−3 | |
| Radiant exitance, radiant emittance | M, Me | W m−2 | [M][T]−3 | |
| Radiosity | J, Jν, Je, Jeν | W m−2 | [M][T]−3 | |
| Spectral radiant flux, spectral radiant power | Φλ, Φν, Φeλ, Φeν | 
 | 
W m−1 (Φλ)  W Hz−1 = J (Φν)  | 
[M][L]−3[T]−3 (Φλ)  [M][L]−2[T]−2 (Φν)  | 
| Spectral radiant intensity | Iλ, Iν, Ieλ, Ieν | 
 | 
W sr−1 m−1 (Iλ)  W sr−1 Hz−1 (Iν)  | 
[M][L]−3[T]−3 (Iλ) [M][L]2[T]−2 (Iν)  | 
| Spectral radiance | Lλ, Lν, Leλ, Leν | 
 | 
W sr−1 m−3 (Lλ) W sr−1 m−2 Hz−1 (Lν)  | 
[M][L]−1[T]−3 (Lλ) [M][L]−2[T]−2 (Lν)  | 
| Spectral irradiance | Eλ, Eν, Eeλ, Eeν | 
 | 
W m−3 (Eλ)  W m−2 Hz−1 (Eν)  | 
[M][L]−1[T]−3 (Eλ)  [M][L]−2[T]−2 (Eν)  | 
Equations
Luminal electromagnetic waves
| Physical situation | Nomenclature | Equations | 
|---|---|---|
| Energy density in an EM wave | = mean energy density | For a dielectric: | 
| Kinetic and potential momenta (non-standard terms in use) | Potential momentum:
 
 Kinetic momentum: Canonical momentum:  | |
| Irradiance, light intensity | 
  | 
 At a spherical surface:  | 
| Doppler effect for light (relativistic) | 
 | |
| Cherenkov radiation, cone angle | 
  | 
|
| Electric and magnetic amplitudes | 
  | 
For a dielectric
 | 
| EM wave components | Electric 
 
 Magnetic  | |
Geometric optics
| Physical situation | Nomenclature | Equations | 
|---|---|---|
| Critical angle (optics) | 
  | 
|
| Thin lens equation | 
  | 
 Lens focal length from refraction indices  | 
| Image distance in a plane mirror | ||
| Spherical mirror | r = curvature radius of mirror | Spherical mirror equation
 
 Image distance in a spherical mirror  | 
Subscripts 1 and 2 refer to initial and final optical media respectively.
These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:
where:
- ε = permittivity of medium,
 - μ = permeability of medium,
 - λ = wavelength of light in medium,
 - v = speed of light in media.
 
Polarization
| Physical situation | Nomenclature | Equations | 
|---|---|---|
| Angle of total polarisation | θB = Reflective polarization angle, Brewster's angle | |
| intensity from polarized light, Malus's law | 
  | 
|
Diffraction and interference
| Property or effect | Nomenclature | Equation | 
|---|---|---|
| Thin film in air | 
  | 
  | 
| The grating equation | 
  | 
|
| Rayleigh's criterion | ||
| Bragg's law (solid state diffraction) | 
  | 
 where  | 
| Single slit diffraction intensity | 
 
  | 
  | 
| N-slit diffraction (N ≥ 2) | 
 
  | 
  | 
| N-slit diffraction (all N) | ||
| Circular aperture intensity | 
  | 
|
| Amplitude for a general planar aperture | Cartesian and spherical polar coordinates are used, xy plane contains aperture
  | 
Near-field (Fresnel)
 
 Far-field (Fraunhofer)  | 
| Huygens–Fresnel–Kirchhoff principle | 
  | 
|
| Kirchhoff's diffraction formula | ||
Astrophysics definitions
In astrophysics, L is used for luminosity (energy per unit time, equivalent to power) and F is used for energy flux (energy per unit time per unit area, equivalent to intensity in terms of area, not solid angle). They are not new quantities, simply different names.
| Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension | 
|---|---|---|---|---|
| Comoving transverse distance | DM | pc (parsecs) | [L] | |
| Luminosity distance | DL | pc (parsecs) | [L] | |
| Apparent magnitude in band j (UV, visible and IR parts of EM spectrum) (Bolometric) | m | dimensionless | dimensionless | |
| Absolute magnitude
 (Bolometric)  | 
M | dimensionless | dimensionless | |
| Distance modulus | μ | dimensionless | dimensionless | |
| Colour indices | (No standard symbols) | dimensionless | dimensionless | |
| Bolometric correction | Cbol (No standard symbol) | dimensionless | dimensionless | |
See also
- Defining equation (physical chemistry)
 - List of electromagnetism equations
 - List of equations in classical mechanics
 - List of equations in gravitation
 - List of equations in nuclear and particle physics
 - List of equations in quantum mechanics
 - List of equations in wave theory
 - List of relativistic equations
 
Sources
- P.M. Whelan; M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1.
 - G. Woan (2010). The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2.
 - A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4.
 - R.G. Lerner; G.L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12–13. ISBN 978-0-07-025734-4.
 - C.B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2nd ed.). McGraw Hill. ISBN 0-07-051400-3.
 - P.A. Tipler; G. Mosca (2008). Physics for Scientists and Engineers: With Modern Physics (6th ed.). W.H. Freeman and Co. ISBN 978-1-4292-0265-7.
 - L.N. Hand; J.D. Finch (2008). Analytical Mechanics. Cambridge University Press. ISBN 978-0-521-57572-0.
 - T.B. Arkill; C.J. Millar (1974). Mechanics, Vibrations and Waves. John Murray. ISBN 0-7195-2882-8.
 - H.J. Pain (1983). The Physics of Vibrations and Waves (3rd ed.). John Wiley & Sons. ISBN 0-471-90182-2.
 - J.R. Forshaw; A.G. Smith (2009). Dynamics and Relativity. Wiley. ISBN 978-0-470-01460-8.
 - G.A.G. Bennet (1974). Electricity and Modern Physics (2nd ed.). Edward Arnold (UK). ISBN 0-7131-2459-8.
 - I.S. Grant; W.R. Phillips; Manchester Physics (2008). Electromagnetism (2nd ed.). John Wiley & Sons. ISBN 978-0-471-92712-9.
 - D.J. Griffiths (2007). Introduction to Electrodynamics (3rd ed.). Pearson Education, Dorling Kindersley. ISBN 978-81-7758-293-2.
 
Further reading
- L.H. Greenberg (1978). Physics with Modern Applications. Holt-Saunders International W.B. Saunders and Co. ISBN 0-7216-4247-0.
 - J.B. Marion; W.F. Hornyak (1984). Principles of Physics. Holt-Saunders International Saunders College. ISBN 4-8337-0195-2.
 - A. Beiser (1987). Concepts of Modern Physics (4th ed.). McGraw-Hill (International). ISBN 0-07-100144-1.
 - H.D. Young; R.A. Freedman (2008). University Physics – With Modern Physics (12th ed.). Addison-Wesley (Pearson International). ISBN 978-0-321-50130-1.