
A microwave (6 to 18 GHz) Phase Shifter and Frequency Translator
A phase shift module is a microwave network module which provides a controllable phase shift of the RF signal.[1][2][3] Phase shifters are used in phased arrays.[4][5][6]
Classification
Active versus passive
Active phase shifters provide gain, while passive phase shifters are lossy.
- Active:
- Applications: active electronically scanned array (AESA), passive electronically scanned array (PESA)
 - Gain: The phase shifter amplifies while phase shifting
 - Noise figure (NF)
 - Reciprocity: not reciprocal
 
 - Passive:
- Applications: active electronically scanned array (AESA), passive electronically scanned array (PESA)
 - Loss: the phase shifter attenuates while phase shifting
 - NF: NF = loss
 - Reciprocity: reciprocal
 
 
Analog versus digital
- Analog phase shifters provide a continuously variable phase shift or time delay.[7]
 - Digital phase shifters provide a discrete set of phase shifts or time delays. Discretization leads to quantization errors. Digital phase shifters require parallel bus control.
 - Differential, single-ended or waveguide:
- Differential transmission line: A differential transmission line is a balanced two-conductor transmission line in which the phase difference between currents is 180 degrees. The differential mode is less susceptible to common mode noise and cross talk.
 - Antenna selection: dipole, tapered slot antenna (TSA)
 - Examples: coplanar strip, slotline
 
 - Single-ended transmission line: A single-ended transmission line is a two-conductor transmission line in which one conductor is referenced to a common ground, the second conductor. The single-ended mode is more susceptible to common-mode noise and cross talk.
- Antenna selection: double folded slot (DFS), microstrip, monopole
 - Examples: CPW, microstrip, stripline
 
 - Waveguide
- Antenna selection: waveguide, horn
 
 
Frequency band
One-conductor or dielectric transmission line versus two-conductor transmission line
- One-conductor or dielectric transmission line (optical fibre, finline, waveguide):
- Modal
 - No TEM or quasi-TEM mode, not TTD or quasi-TTD
 - Higher-order TE, TM, HE or HM modes are distorted
 
 - Two-conductor transmission line (CPW, microstrip, slotline, stripline):
- Differential or single-ended
 - TEM or quasi-TEM mode is TTD or quasi-TTD
 
 - Phase shifters versus TTD phase shifter
- A phase shifter provides an invariable phase shift with frequency, and is used for fixed-beam frequency-invariant pattern synthesis.
 - A TTD phase shifter provides an invariable time delay with frequency, and is used for squint-free and ultra wideband (UWB) beam steering.
 
 
Reciprocal versus non-reciprocal
- Reciprocal: T/R
 - Non-reciprocal: T or R
 
Technology
Design
- Loaded-line:
- Distortion:
- Distorted if lumped
 - Undistorted and TTD if distributed
 
 
 - Distortion:
 - Reflect-type:
- Applications: reflect arrays (S11 phase shifters)
 - Distortion:
- Distorted if S21 phase shifter, because of 3 dB coupler
 - Undistorted and TTD if S11 phase shifter
 
 
 - Switched-network
- Network:
- High-pass or low-pass
 - or T
 
 - Distortion:
- Undistorted if the left-handed high-pass sections cancel out the distortion of the right-handed low-pass sections
 
 
 - Network:
 - Switched-line
- Applications: UWB beam steering
 - Distortion: undistorted and TTD
 
 - Vector summing
 
Figures of merit
- Number of effective bits, if digital [bit]
 - Biasing: current-driven, high-voltage electrostatic [mA, V]
 - DC power consumption [mW]
 - Distortion: group velocity dispersion (GVD) [ps2/nm]
 - Gain [dB] if active, loss [dB] if passive
 - Linearity: IP3, P1dB [dBm]
 - Phase shift / noise figure [°/dB] (phase shifter) or time delay / noise figure [ps/dB] (TTD phase shifter)
 - Power handling [mW, dBm]
 - Reliability [cycles, MTBF]
 - Size [mm2]
 - Switching time [ns]
 
References
- ↑ Microwave Solid State Circuit Design, 2nd Ed., by Inder Bahl and Prakash Bhartia, John Wiley & Sons, 2003 (Chapter 12)
 - ↑ RF MEMS Theory, Design and Technology by Gabriel Rebeiz, John Wiley & Sons, 2003 (Chapter 9-10)
 - ↑ Antenna Engineering Handbook, 4th Ed., by John Volakis, McGraw-Hill, 2007 (Chapter 21)
 - ↑ Phased Array Antennas, 2nd Ed., by R. C. Hansen, John Wiley & Sons, 1998
 - ↑ Phased Array Antenna Handbook, 2nd Ed., by Robert Mailloux, Artech House, 2005
 - ↑ Phased Array Antennas by Arun K. Bhattacharyya, John Wiley & Sons, 2006
 - ↑ Microwave Phase Shifter Archived 2003-03-27 at the Wayback Machine information from Herley General Microwave
 
External links
- "Phase Shifters", Micorwaves101.com
 - Microwave Phase Shifter information from Herley General Microwave
 - A low cost electro-mechanical phase shifter design, including a brief summary of solid state methods @ www.activefrance.com
 
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.