In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.[1][2][3]
List of invariants
- Finite type invariant
 - Kontsevich invariant
 - Kashaev's invariant
 - Witten–Reshetikhin–Turaev invariant (Chern–Simons)
 - Invariant differential operator[4]
 - Rozansky–Witten invariant
 - Vassiliev knot invariant
 - Dehn invariant
 - LMO invariant[5]
 - Turaev–Viro invariant
 - Dijkgraaf–Witten invariant[6]
 - Reshetikhin–Turaev invariant
 - Tau-invariant
 - I-Invariant
 - Klein J-invariant
 - Quantum isotopy invariant[7]
 - Ermakov–Lewis invariant
 - Hermitian invariant
 - Goussarov–Habiro theory of finite-type invariant
 - Linear quantum invariant (orthogonal function invariant)
 - Murakami–Ohtsuki TQFT
 - Generalized Casson invariant
 - Casson-Walker invariant
 - Khovanov–Rozansky invariant
 - HOMFLY polynomial
 - K-theory invariants
 - Atiyah–Patodi–Singer eta invariant
 - Link invariant[8]
 - Casson invariant
 - Seiberg–Witten invariants
 - Gromov–Witten invariant
 - Arf invariant
 - Hopf invariant
 
See also
References
- ↑ Reshetikhin, N. & Turaev, V. (1991). "Invariants of 3-manifolds via link polynomials and quantum groups". Invent. Math. 103 (1): 547. Bibcode:1991InMat.103..547R. doi:10.1007/BF01239527. S2CID 123376541.
 - ↑ Kontsevich, Maxim (1993). "Vassiliev's knot invariants". Adv. Soviet Math. 16: 137.
 - ↑ Watanabe, Tadayuki (2007). "Knotted trivalent graphs and construction of the LMO invariant from triangulations". Osaka J. Math. 44 (2): 351. Retrieved 4 December 2012.
 - ↑ Letzter, Gail (2004). "Invariant differential operators for quantum symmetric spaces, II". arXiv:math/0406194.
 - ↑ Sawon, Justin (2000). "Topological quantum field theory and hyperkähler geometry". arXiv:math/0009222.
 - ↑ "Data" (PDF). hal.archives-ouvertes.fr. 1999. Retrieved 2019-11-04.
 - ↑  "Archived copy" (PDF). knot.kaist.ac.kr. Archived from the original (PDF) on 20 July 2007. Retrieved 13 January 2022.
{{cite web}}: CS1 maint: archived copy as title (link) - ↑  "Invariants of 3-manifolds via link polynomials and quantum groups - Springer". doi:10.1007/BF01239527. S2CID 123376541. 
{{cite journal}}: Cite journal requires|journal=(help) 
Further reading
External links
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.