In mathematical analysis, Dini continuity is a refinement of continuity. Every Dini continuous function is continuous. Every Lipschitz continuous function is Dini continuous.

Definition

Let be a compact subset of a metric space (such as ), and let be a function from into itself. The modulus of continuity of is

The function is called Dini-continuous if

An equivalent condition is that, for any ,

where is the diameter of .

See also

References

  • Stenflo, Örjan (2001). "A note on a theorem of Karlin". Statistics & Probability Letters. 54 (2): 183–187. doi:10.1016/S0167-7152(01)00045-1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.