Carbon budget and emission reduction scenarios needed to reach the two-degree target agreed to in the Paris Agreement (without net negative emissions, based on peak emissions)[1]

A carbon budget is a concept used in climate policy to help set emissions reduction targets in a fair and effective way. It looks at "the maximum amount of cumulative net global anthropogenic carbon dioxide (CO2) emissions that would result in limiting global warming to a given level".[2]:2220 When expressed relative to the pre-industrial period it is referred to as the total carbon budget, and when expressed from a recent specified date it is referred to as the remaining carbon budget.[2]:2220

A carbon budget consistent with keeping warming below a specified limit is also referred to as an emissions budget, an emissions quota, or allowable emissions.[3][4][5] An emissions budget may also be associated with objectives for other related climate variables, such as radiative forcing[6] or sea level rise.[7]

Total or remaining carbon budgets are calculated by combining estimates of various contributing factors, including scientific evidence and value judgments or choices.[8][9][10][11][12]

Global carbon budgets can be further divided into national emissions budgets, so that countries can set specific climate mitigation goals. Emissions budgets are relevant to climate change mitigation because they indicate a finite amount of carbon dioxide that can be emitted over time, before resulting in dangerous levels of global warming. Change in global temperature is independent from the geographic location of these emissions, and is largely independent of the timing of these emissions.[13][14]

Carbon budgets are applicable to the global level. To translate these global carbon budgets to the country level, a set of value judgments have to be made on how to distribute the total and remaining carbon budget. This involves the consideration of aspects of equity and fairness between countries[12][15] as well as other methodological choices.[15] There are many differences between nations, including but not limited to population, level of industrialisation, national emissions histories, and mitigation capabilities. For this reason, scientists have made attempts to allocate global carbon budgets among countries using methods that follow various principles of equity.[16]

Definition

The IPCC Sixth Assessment Reports defines carbon budget as the following two concepts:[2]:2220

  • "An assessment of carbon cycle sources and sinks on a global level, through the synthesis of evidence for fossil fuel and cement emissions, emissions and removals associated with land use and land-use change, ocean and natural land sources and sinks of carbon dioxide (CO2), and the resulting change in atmospheric CO2 concentration. This is referred to as the global carbon budget."; or
  • "The maximum amount of cumulative net global anthropogenic CO2 emissions that would result in limiting global warming to a given level with a given probability, taking into account the effect of other anthropogenic climate forcers. This is referred to as the total carbon budget when expressed starting from the pre-industrial period, and as the remaining carbon budget when expressed from a recent specified date."

Global carbon budgets can be further divided into national emissions budgets, so that countries can set specific climate mitigation goals.

An emissions budget may be distinguished from an emissions target, as an emissions target may be internationally or nationally set in accordance with objectives other than a specific global temperature and are commonly applied to the annual emissions in a single year as well.

Estimations

Recent and currently remaining carbon budget

Historical (unrestrained) carbon budget: Cumulative contributions to the global carbon budget since 1850 illustrate how source and sink components have been out of balance, causing an approximately 50% rise in atmospheric CO2.[17]
Fossil CO2 emissions: global; territorial; by fuel type (incl cement); per capita[18]

Several organisations provide annual updates to the remaining carbon budget, including the Global Carbon Project, the Mercator Research Institute on Global Commons and Climate Change (MCC)[19] and the CONSTRAIN project.[20] In March 2022, before formal publication of the 'Global Carbon Budget 2021' preprint,[18] scientists reported, based on Carbon Monitor[21] (CM) data, that after COVID-19-pandemic-caused record-level declines in 2020, global CO2 emissions rebounded sharply by 4.8% in 2021, indicating that at the current trajectory, the carbon budget for a ⅔ likelihood for limiting warming to 1.5 °C would be used up within 9.5 years.[22]

In April 2022, the now reviewed and officially published The Global Carbon Budget 2021 concluded that fossil CO2 emissions rebounded[23] from pandemic levels by around +4.8% relative to 2020 emissions – returning to 2019 levels.

It identifies three major issues for improving reliable accuracy of monitoring, shows that China and India surpassed 2019 levels (by 5.7% and 3.2%) while the EU and the US stayed beneath 2019 levels (by 5.3% and 4.5%), quantifies various changes and trends, for the first time provides models' estimates that are linked to the official country GHG inventories reporting, and suggests that the remaining carbon budget at 1. Jan 2022 for a 50% likelihood to limit global warming to 1.5 °C (albeit a temporary exceedence is to be expected) is 120 GtC (420 GtCO2) – or 11 years of 2021 emissions levels.[18]

This does not mean that likely 11 years remain to cut emissions but that if emissions stayed the same, instead of increasing like in 2021, 11 years of constant GHG emissions would be left in the hypothetical scenario that all emissions suddenly ceased in the 12th year. (The 50% likelihood may be describable as a kind of minimum plausible deniability requirement as lower likelihoods would make the 1.5 °C goal "unlikely".) Moreover, other trackers show (or highlight) different amounts of carbon budget left, such as the MCC, which as of May 2022 shows '7 years 1 month left'[19] and different likelihoods have different carbon budgets: a 83% likelihood would mean 6.6 ±0.1 years left (ending in 2028) according to CM data.[22]

In October 2023 a group of researchers updated the carbon budget including the CO2 emitted at 2020-2022 and new findings about the role of reduced presence of polluting particles in the atmosphere.[24] They found we can emit 250 GtCO2 or 6 years of emissions at current level starting from January 2023, for having a 50% chance to stay below 1.5 degrees. For reaching this target humanity will need to zero CO2 emissions by the year 2034. To have a 50% chance of staying below 2 degrees humanity can emit 1220 GtCO2 or 30 years of emissions at current level.[25][26]

Carbon budget in gigatonnes and factors

Estimating the remaining carbon budget at the global level depends on climate science and value judgments or choices. To translate a global budget to the national level, further value judgments and choices have to be made. Figure from the CONSTRAIN Zero In On Report.[8]

The finding of an almost linear relationship between global temperature rise and cumulative carbon dioxide emissions[14] has encouraged the estimation of global emissions budgets in order to remain below dangerous levels of warming. Since the pre-industrial period to 2019, approximately 2390 Gigatonnes of CO2 (Gt CO2) has already been emitted globally.[11]

Scientific estimations of the remaining global emissions budgets/quotas differ due to varied methodological approaches, and considerations of thresholds.[27] Estimations might not include all amplifying climate change feedbacks,[28][29][30][31] although the most authoritative carbon budget assessments by the IPCC do account explicitly for these.[9][11] The IPCC assesses the size of remaining carbon budgets using estimates of past warming caused by human activities, the amount of warming per cumulative unit of CO2 emissions (also known as the Transient Climate Response to cumulative Emissions of carbon dioxide, or TCRE), the amount of warming that could still occur once all emissions of CO2 are halted (known as the Zero Emissions Commitment[32]), and the impact of Earth system feedbacks that would otherwise not be covered; and vary according to the global temperature target that is chosen, the probability of staying below that target, and the emission of other non-CO2 greenhouse gases (GHGs).[9][10][11][33] This approach was first applied in the 2018 Special report on Global Warming of 1.5°C by the IPCC,[9] and was also used in its 2021 Working Group I Contribution to the Sixth Assessment Report.[11]

Carbon budget estimates depend on the likelihood or probability of avoiding a temperature limit, and the assumed warming that is projected to be caused by non-CO2 emissions.[9][10][11][34] The values for the carbon budget estimates in the following table are drawn from the latest assessment of the Physical Science Basis of climate change by the Working Group I Contribution to the IPCC Sixth Assessment Report.[11] These estimates assume non-CO2 emissions are also reduced in line with deep decarbonisation scenarios that reach global net zero CO2 emissions.[9][10][11] Carbon budget estimates thus depend on how successful society is in reducing non-CO2 emissions together with carbon dioxide emissions. The IPCC Sixth Assessment Report estimated that remaining carbon budgets can be 220 Gt CO2 higher or lower depending on how successful non-CO2 emissions are reduced.[11]

Estimated carbon budgets in GtCO2 from 2020 with likelihoods[11]:Table 5.8
Global warming relative to 1850-1900 17% 33% 50% 66% 83%
1.5 °C 900650500400300
1.7 °C 14501050850700550
2.0 °C 2300170013501150900

National emissions budgets

Carbon budgets are applicable to the global level. To translate these global carbon budgets to the country level, a set of value judgments have to be made on how to distribute the total and remaining carbon budget. In light of the many differences between nations, including but not limited to population, level of industrialisation, national emissions histories, and mitigation capabilities, scientists have made attempts to allocate global carbon budgets among countries using methods that follow various principles of equity.[16] Allocating national emissions budgets is comparable to sharing the effort to reduce global emissions, underlined by some assumptions of state-level responsibility of climate change. Many authors have conducted quantitative analyses which allocate emissions budgets,[5][35][36][37][38] often simultaneously addressing disparities in historical GHG emissions between nations.

One guiding principle that is used to allocate global emissions budgets to nations is the principle of "common but differentiated responsibilities and respective capabilities" that is included in the United Nations Framework Convention on Climate Change (UNFCCC).[16] This principle is not defined in further detail in the UNFCCC but is broadly understood to recognize nations' different cumulative historical contributions to global emissions as well as their different development stages. From this perspective, those countries with greater emissions during a set time period (for example, since the pre-industrial era to the present) are the most responsible for addressing excess emissions, as are countries that are richer. Thus, their national emissions budgets have to be smaller than those from countries that have polluted less in the past, or are poorer. The concept of national historical responsibility for climate change has prevailed in the literature since the early 1990s[39][40] and has been part of the key international agreements on climate change (UNFCCC, the Kyoto Protocol and the Paris Agreement). Consequently, those countries with the highest cumulative historical emissions have the most responsibility to take the strongest actions[41] and help developing countries to mitigate their emissions and adapt to climate change. This principle is recognized in international treaties and has been part of the diplomatic strategies by developing countries, that argue that they need larger emissions budgets[42] to reduce inequity and achieve sustainable development.

Another common equity principle for calculating national emissions budgets is the "egalitarian" principle. This principle stipulates individuals should have equal rights, and therefore emissions budgets should be distributed proportionally according to state populations.[16] Some scientists have thus reasoned the use of national per-capita emissions in national emissions budget calculations.[35][36][37][43] This principle may be favoured by nations with larger or rapidly growing populations,[42] but raises the question whether individuals can have a right to pollute.[44]

A third equity principle that has been employed in national budget calculations considers national sovereignty.[16] The "sovereignty" principle highlights the equal right of nations to pollute.[16] The grandfathering method for calculating national emissions budgets uses this principle. Grandfathering allocates these budgets proportionally according to emissions at a particular base year,[43] and has been used under international regimes such as the Kyoto Protocol[45] and the early phase of the European Union Emissions Trading Scheme (EU ETS)[46] This principle is often favoured by developed countries, as it allocates larger emissions budgets to them.[42] However, recent publications highlight that grandfathering is unsupported as an equity principle as it "creates 'cascading biases' against poorer states,[47] is not a 'standard of equity'[48]".[49] Other scholars have highlighted that "to treat states as the owners of emission rights has morally problematic consequences".[44]

Pathways to stay within carbon budget

The steps that can be taken to stay within one's carbon budget are explained within the concept of climate change mitigation.

Climate change mitigation (or decarbonisation) is action to limit climate change. This action either reduces emissions of greenhouse gases or removes those gases from the atmosphere.[50][51] The recent rise in global temperature is mostly due to emissions from burning fossil fuels such as coal, oil, and natural gas. There are various ways that mitigation can reduce emissions. These are transitioning to sustainable energy sources, conserving energy, and increasing efficiency. It is possible to remove carbon dioxide (CO2) from the atmosphere. This can be done by enlarging forests, restoring wetlands and using other natural and technical processes. The name for these processes is carbon sequestration.[52]:12[53] Governments and companies have pledged to reduce emissions to prevent dangerous climate change. These pledges are in line with international negotiations to limit warming.

Solar energy and wind power have the greatest potential for mitigation at the lowest cost compared to a range of other options.[54] The availability of sunshine and wind is variable. But it is possible to deal with this through energy storage and improved electrical grids. These include long-distance electricity transmission, demand management and diversification of renewables.[55]:1 It is possible to reduce emissions from infrastructure that directly burns fossil fuels, such as vehicles and heating appliances, by electrifying the infrastructure. If the electricity comes from renewable sources instead of fossil fuels this will reduce emissions. Using heat pumps and electric vehicles can improve energy efficiency. If industrial processes must create carbon dioxide, carbon capture and storage can reduce net emissions.[56]

Greenhouse gas emissions from agriculture include methane as well as nitrous oxide. It is possible to cut emissions from agriculture by reducing food waste, switching to a more plant-based diet, by protecting ecosystems and by improving farming processes.[57]:XXV Changing energy sources, industrial processes and farming methods can reduce emissions. So can changes in demand for energy, for instance by moving towards low-carbon diets or more sustainable transport in cities. Urban planning and design are among the most effective tools in dealing with climate change, because they address both mitigation and adaptation.[58]

Climate change mitigation policies include: carbon pricing by carbon taxes and carbon emission trading, easing regulations for renewable energy deployment, reductions of fossil fuel subsidies, and divestment from fossil fuels, and subsidies for clean energy.[59] Current policies are estimated to produce global warming of about 2.7 °C by 2100.[60] This warming is significantly above the 2015 Paris Agreement's goal of limiting global warming to well below 2 °C and preferably to 1.5 °C.[61][62] Globally, limiting warming to 2 °C may result in higher economic benefits than economic costs.[63]

Globally, financial flows for climate mitigation and adaptation are estimated to be over $800 billion per year, while requirements are predicted to exceed $4 trillion per year by 2030.[64][65]

See also

References

  1. Christiana Figueres; Hans Joachim Schellnhuber; Gail Whiteman; Johan Rockström (2017-06-29). "Three years to safeguard our climate". Nature. Vol. 546, no. 7660. pp. 593–595. doi:10.1038/546593a. ISSN 0028-0836. Retrieved 2022-05-01.
  2. 1 2 3 IPCC, 2021: Annex VII: Glossary [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C.  Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, doi:10.1017/9781009157896.022.
  3. Meinshausen, Malte; Meinshausen, Nicolai; Hare, William; Raper, Sarah C. B.; Frieler, Katja; Knutti, Reto; Frame, David J.; Allen, Myles R. (April 2009). "Greenhouse-gas emission targets for limiting global warming to 2 °C". Nature. 458 (7242): 1158–1162. Bibcode:2009Natur.458.1158M. CiteSeerX 10.1.1.337.3632. doi:10.1038/nature08017. PMID 19407799. S2CID 4342402.
  4. Matthews, H Damon; Zickfeld, Kirsten; Knutti, Reto; Allen, Myles R (1 January 2018). "Focus on cumulative emissions, global carbon budgets and the implications for climate mitigation targets". Environmental Research Letters. 13 (1): 010201. Bibcode:2018ERL....13a0201D. doi:10.1088/1748-9326/aa98c9.
  5. 1 2 Raupach, Michael R.; Davis, Steven J.; Peters, Glen P.; Andrew, Robbie M.; Canadell, Josep G.; Ciais, Philippe; Friedlingstein, Pierre; Jotzo, Frank; van Vuuren, Detlef P.; Le Quéré, Corinne (21 September 2014). "Sharing a quota on cumulative carbon emissions". Nature Climate Change. 4 (10): 873–879. Bibcode:2014NatCC...4..873R. doi:10.1038/nclimate2384. hdl:11250/2484054.
  6. Intergovernmental Panel On Climate Change (2014). Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 978-1-107-05799-9.
  7. Clark, Peter U.; Mix, Alan C.; Eby, Michael; Levermann, Anders; Rogelj, Joeri; Nauels, Alexander; Wrathall, David J. (2018). "Sea-level commitment as a gauge for climate policy". Nature Climate Change. 8 (8): 653–655. Bibcode:2018NatCC...8..653C. doi:10.1038/s41558-018-0226-6. hdl:10044/1/63152. ISSN 1758-678X. S2CID 91593244.
  8. 1 2 Nauels, Alex; Rosen, Debbie; Mauritsen, Thorsten; Maycock, Amanda; McKenna, Christine; Roegli, Joeri; Schleussner, Carl-Friedrich; Smith, Ela; Smith, Chris; Forster, Piers (2019). "ZERO IN ON the remaining carbon budget and decadal warming rates. The CONSTRAIN Project Annual Report 2019". University of Leeds. doi:10.5518/100/20.
  9. 1 2 3 4 5 6 Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L., Séférian, R., Vilariño, M. V. (2018). "Global Warming of 1.5 °C: an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty". In Flato, G., Fuglestvedt, J., Mrabet, R., Schaeffer, R. (eds.). Mitigation pathways compatible with 1.5°C in the context of sustainable development. IPCC/WMO. pp. 93–174.
  10. 1 2 3 4 Rogelj, Joeri; Forster, Piers M.; Kriegler, Elmar; Smith, Christopher J.; Séférian, Roland (2019-07-18). "Estimating and tracking the remaining carbon budget for stringent climate targets". Nature. 571 (7765): 335–342. Bibcode:2019Natur.571..335R. doi:10.1038/s41586-019-1368-z. hdl:10044/1/78011. ISSN 0028-0836. PMID 31316194. S2CID 197542084.
  11. 1 2 3 4 5 6 7 8 9 10 Canadell, J. G., Monteiro, P. M. S., Costa, M. H., Cotrim da Cunha, L., Cox, P. M., Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., Zickfeld, K. (2021). "Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change". In Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B. (eds.). Global Carbon and other Biogeochemical Cycles and Feedbacks (PDF). Cambridge University Press.
  12. 1 2 Matthews, H. Damon; Tokarska, Katarzyna B.; Nicholls, Zebedee R. J.; Rogelj, Joeri; Canadell, Josep G.; Friedlingstein, Pierre; Frölicher, Thomas L.; Forster, Piers M.; Gillett, Nathan P.; Ilyina, Tatiana; Jackson, Robert B. (2020). "Opportunities and challenges in using remaining carbon budgets to guide climate policy". Nature Geoscience. 13 (12): 769–779. Bibcode:2020NatGe..13..769M. doi:10.1038/s41561-020-00663-3. hdl:20.500.11850/454127. ISSN 1752-0894. S2CID 227236155.
  13. Zickfeld, K.; Arora, V. K.; Gillett, N. P. (March 2012). "Is the climate response to CO emissions path dependent?". Geophysical Research Letters. 39 (5): n/a. Bibcode:2012GeoRL..39.5703Z. doi:10.1029/2011gl050205.
  14. 1 2 Matthews, H. Damon; Gillett, Nathan P.; Stott, Peter A.; Zickfeld, Kirsten (June 2009). "The proportionality of global warming to cumulative carbon emissions". Nature. 459 (7248): 829–832. Bibcode:2009Natur.459..829M. doi:10.1038/nature08047. PMID 19516338. S2CID 4423773.
  15. 1 2 Nauels, Alex; Rosen, Debbie; Mauritsen, Thorsten; Maycock, Amanda; McKenna, Christine; Roegli, Joeri; Schleussner, Carl-Friedrich; Smith, Ela; Smith, Chris; Forster, Piers (2019). "ZERO IN ON the remaining carbon budget and decadal warming rates. The CONSTRAIN Project Annual Report 2019". University of Leeds. doi:10.5518/100/20. {{cite journal}}: Cite journal requires |journal= (help)
  16. 1 2 3 4 5 6 Ringius, L.; Torvanger, A.; Underdal, A. (2002). "Burden sharing and fairness principles in international climate policy" (PDF). International Environmental Agreements. 2 (1): 1–22. doi:10.1023/a:1015041613785. S2CID 73604803.
  17. "Global Carbon Budget 2021" (PDF). Global Carbon Project. 4 November 2021. p. 57. Archived (PDF) from the original on 11 December 2021. The cumulative contributions to the global carbon budget from 1850. The carbon imbalance represents the gap in our current understanding of sources & sinks. ... Source: Friedlingstein et al 2021; Global Carbon Project 2021
  18. 1 2 3 Friedlingstein, Pierre; Jones, Matthew W.; O'Sullivan, Michael; et al. (26 April 2022). "Global Carbon Budget 2021". Earth System Science Data. 14 (4): 1917–2005. Bibcode:2022ESSD...14.1917F. doi:10.5194/essd-14-1917-2022. hdl:20.500.11850/545754. ISSN 1866-3508.
  19. 1 2 "Remaining carbon budget - Mercator Research Institute on Global Commons and Climate Change (MCC)". www.mcc-berlin.net. Retrieved 27 April 2022.
  20. "Publications | Reports Archives". Constrain. Retrieved 2023-09-20.
  21. "Carbon monitor". carbonmonitor.org. Retrieved 19 April 2022.
  22. 1 2 Liu, Zhu; Deng, Zhu; Davis, Steven J.; Giron, Clement; Ciais, Philippe (April 2022). "Monitoring global carbon emissions in 2021". Nature Reviews Earth & Environment. 3 (4): 217–219. Bibcode:2022NRvEE...3..217L. doi:10.1038/s43017-022-00285-w. ISSN 2662-138X. PMC 8935618. PMID 35340723.
  23. Jackson, R B; Friedlingstein, P; Le Quéré, C; Abernethy, S; Andrew, R M; Canadell, J G; Ciais, P; Davis, S J; Deng, Zhu; Liu, Zhu; Korsbakken, J I; Peters, G P (1 March 2022). "Global fossil carbon emissions rebound near pre-COVID-19 levels". Environmental Research Letters. 17 (3): 031001. arXiv:2111.02222. Bibcode:2022ERL....17c1001J. doi:10.1088/1748-9326/ac55b6. S2CID 241035429.
  24. Lamboll, Robin D.; Nicholls, Zebedee R. J.; Smith, Christopher J.; Kikstra, Jarmo S.; Byers, Edward; Rogelj, Joeri (December 2023). "Assessing the size and uncertainty of remaining carbon budgets". Nature Climate Change. 13 (12): 1360–1367. doi:10.1038/s41558-023-01848-5.
  25. McGrath, Matt (31 October 2023). "Carbon emissions threaten 1.5C climate threshold sooner than thought - report". Nature Climate Change. BBC. Retrieved 1 November 2023.
  26. BORENSTEIN, SETH (30 October 2023). "Earth Will Lock in 1.5°C of Warming By 2029 At Current Rate of Burning Fossil Fuels". Times. Retrieved 1 November 2023.
  27. Rogelj, Joeri; Schaeffer, Michiel; Friedlingstein, Pierre; Gillett, Nathan P.; van Vuuren, Detlef P.; Riahi, Keywan; Allen, Myles; Knutti, Reto (24 February 2016). "Differences between carbon budget estimates unravelled". Nature Climate Change. 6 (3): 245–252. Bibcode:2016NatCC...6..245R. doi:10.1038/nclimate2868. hdl:1874/330323. S2CID 87929010.
  28. Rogelj, Joeri; Forster, Piers M.; Kriegler, Elmar; Smith, Christopher J.; Séférian, Roland (17 July 2019). "Estimating and tracking the remaining carbon budget for stringent climate targets". Nature. 571 (7765): 335–342. Bibcode:2019Natur.571..335R. doi:10.1038/s41586-019-1368-z. hdl:10044/1/78011. PMID 31316194.
  29. Jamieson, Naomi Oreskes, Michael Oppenheimer, Dale. "Scientists Have Been Underestimating the Pace of Climate Change". Scientific American Blog Network. Retrieved 2019-08-21.{{cite web}}: CS1 maint: multiple names: authors list (link)
  30. Comyn-Platt, Edward (2018). "Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks" (PDF). Nature Geoscience. 11 (8): 568–573. Bibcode:2018NatGe..11..568C. doi:10.1038/s41561-018-0174-9. S2CID 134078252.
  31. Lenton, Timothy M.; Rockström, Johan; Gaffney, Owen; Rahmstorf, Stefan; Richardson, Katherine; Steffen, Will; Schellnhuber, Hans Joachim (2019-11-27). "Climate tipping points — too risky to bet against". Nature. 575 (7784): 592–595. Bibcode:2019Natur.575..592L. doi:10.1038/d41586-019-03595-0. hdl:10871/40141. PMID 31776487.
  32. MacDougall, Andrew H.; Frölicher, Thomas L.; Jones, Chris D.; Rogelj, Joeri; Matthews, H. Damon; Zickfeld, Kirsten; Arora, Vivek K.; Barrett, Noah J.; Brovkin, Victor; Burger, Friedrich A.; Eby, Micheal (2020-06-15). "Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2". Biogeosciences. 17 (11): 2987–3016. Bibcode:2020BGeo...17.2987M. doi:10.5194/bg-17-2987-2020. hdl:10044/1/79876. ISSN 1726-4189.
  33. Friedlingstein, P.; Andrew, R. M.; Rogelj, J.; Peters, G. P.; Canadell, J. G.; Knutti, R.; Luderer, G.; Raupach, M. R.; Schaeffer, M.; van Vuuren, D. P.; Le Quéré, C. (October 2014). "Persistent growth of CO 2 emissions and implications for reaching climate targets". Nature Geoscience. 7 (10): 709–715. Bibcode:2014NatGe...7..709F. CiteSeerX 10.1.1.711.8978. doi:10.1038/ngeo2248. S2CID 129068170.
  34. Rogelj, Joeri (5 February 2019). "Cumulative emissions of carbon - a path to halting climate change?". YouTube. Retrieved 17 May 2021.
  35. 1 2 Baer, P.; Athanasiou, T.; Kartha, S.; Kemp-Benedict, E. (2009). "Greenhouse development rights: A proposal for a fair global climate treaty". Ethics Place and Environment. 12 (3): 267–281. doi:10.1080/13668790903195495. S2CID 153611101.
  36. 1 2 Nabel, Julia E.M.S.; Rogelj, Joeri; Chen, Claudine M.; Markmann, Kathleen; Gutzmann, David J.H.; Meinshausen, Malte (2011). "Decision support for international climate policy – The PRIMAP emission module". Environmental Modelling & Software. 26 (12): 1419–1433. doi:10.1016/j.envsoft.2011.08.004.
  37. 1 2 Matthews, H. Damon (7 September 2015). "Quantifying historical carbon and climate debts among nations". Nature Climate Change. 6 (1): 60–64. Bibcode:2016NatCC...6...60M. doi:10.1038/nclimate2774. S2CID 87930705.
  38. Anderson, Kevin; Broderick, John F.; Stoddard, Isak (2020-05-28). "A factor of two: how the mitigation plans of 'climate progressive' nations fall far short of Paris-compliant pathways". Climate Policy. 20 (10): 1290–1304. doi:10.1080/14693062.2020.1728209. ISSN 1469-3062.
  39. Grübler, A.; Fujii, Y. (1991). "Inter-generational and spatial equity issues of carbon accounts" (PDF). Energy. 16 (11–12): 1397–1416. doi:10.1016/0360-5442(91)90009-b.
  40. Smith, K. R. (1992). "Allocating responsibility for global warming: The natural debt index". Ambio. Stockholm. 20 (2): 95–96.
  41. Botzen, W. J. W.; Gowdy, J. M.; Bergh, J. C. J. M. Van Den (1 January 2008). "Cumulative CO2 emissions: shifting international responsibilities for climate debt". Climate Policy. 8 (6): 569–576. doi:10.3763/cpol.2008.0539. S2CID 153972794.
  42. 1 2 3 Pan, J (2003). "Emissions rights and their transferability: equity concerns over climate change mitigation". International Environmental Agreements. 3 (1): 1–16. doi:10.1023/A:1021366620577. S2CID 18008551.
  43. 1 2 Neumayer, Eric (2000). "In defence of historical accountability for greenhouse gas emissions" (PDF). Ecological Economics. 33 (2): 185–192. doi:10.1016/s0921-8009(00)00135-x. S2CID 154625649.
  44. 1 2 Caney, Simon (2009). "Justice and the distribution of greenhouse gas emissions1". Journal of Global Ethics. 5 (2): 125–146. doi:10.1080/17449620903110300. ISSN 1744-9626. S2CID 144368369.
  45. UNFCCC (1998). "Kyoto Protocol to the United Nations Framework Convention on Climate Change".(http://unfccc.int/resource/docs/convkp/kpeng.pdf )
  46. 2010/384/: Commission Decision of 9 July 2010 on the Community-wide quantity of allowances to be issued under the EU Emission Trading Scheme for 2013 (notified under document C(2010) 4658)
  47. Kartha, Sivan; Athanasiou, Tom; Caney, Simon; Cripps, Elizabeth; Dooley, Kate; Dubash, Navroz K.; Fei, Teng; Harris, Paul G.; Holz, Christian; Lahn, Bård; Moellendorf, Darrel (2018). "Cascading biases against poorer countries". Nature Climate Change. 8 (5): 348–349. Bibcode:2018NatCC...8..348K. doi:10.1038/s41558-018-0152-7. hdl:20.500.11820/015eb0b4-9942-41f5-afa9-0f0c2a94deff. ISSN 1758-678X. S2CID 90164339.
  48. Dooley, Kate; Holz, Christian; Kartha, Sivan; Klinsky, Sonja; Roberts, J. Timmons; Shue, Henry; Winkler, Harald; Athanasiou, Tom; Caney, Simon; Cripps, Elizabeth; Dubash, Navroz K. (2021). "Ethical choices behind quantifications of fair contributions under the Paris Agreement". Nature Climate Change. 11 (4): 300–305. Bibcode:2021NatCC..11..300D. doi:10.1038/s41558-021-01015-8. hdl:11250/2828413. ISSN 1758-678X. S2CID 232766664.
  49. Rajamani, Lavanya; Jeffery, Louise; Höhne, Niklas; Hans, Frederic; Glass, Alyssa; Ganti, Gaurav; Geiges, Andreas (2021-09-14). "National 'fair shares' in reducing greenhouse gas emissions within the principled framework of international environmental law". Climate Policy. 21 (8): 983–1004. doi:10.1080/14693062.2021.1970504. ISSN 1469-3062. S2CID 238231789.
  50. IPCC, 2021: Annex VII: Glossary [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C.  Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, doi:10.1017/9781009157896.022.
  51. Chen, Lin; Msigwa, Goodluck; Yang, Mingyu; Osman, Ahmed I.; Fawzy, Samer; Rooney, David W.; Yap, Pow-Seng (2022). "Strategies to achieve a carbon neutral society: a review". Environmental Chemistry Letters. 20 (4): 2277–2310. Bibcode:2022EnvCL..20.2277C. doi:10.1007/s10311-022-01435-8. PMC 8992416. PMID 35431715.
  52. Olivier J.G.J. and Peters J.A.H.W. (2020), Trends in global CO2 and total greenhouse gas emissions: 2020 report. PBL Netherlands Environmental Assessment Agency, The Hague.
  53. "Sector by sector: where do global greenhouse gas emissions come from?". Our World in Data. Retrieved 16 November 2022.
  54. IPCC (2022) Summary for policy makers in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States
  55. Ram M., Bogdanov D., Aghahosseini A., Gulagi A., Oyewo A.S., Child M., Caldera U., Sadovskaia K., Farfan J., Barbosa LSNS., Fasihi M., Khalili S., Dalheimer B., Gruber G., Traber T., De Caluwe F., Fell H.-J., Breyer C. Global Energy System based on 100% Renewable Energy – Power, Heat, Transport and Desalination Sectors Archived 2021-04-01 at the Wayback Machine. Study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta, Berlin, March 2019.
  56. "Cement – Analysis". IEA. Retrieved 24 November 2022.
  57. United Nations Environment Programme (2022). Emissions Gap Report 2022: The Closing Window — Climate crisis calls for rapid transformation of societies. Nairobi.
  58. Steuteville, Robert (2021-11-03). "Climate adaptation, mitigation, and urban design". CNU. Retrieved 2023-12-01.
  59. "Climate Change Performance Index" (PDF). November 2022. Retrieved 16 November 2022.
  60. Ritchie, Hannah; Roser, Max; Rosado, Pablo (11 May 2020). "CO2 and Greenhouse Gas Emissions". Our World in Data. Retrieved 27 August 2022.
  61. Harvey, Fiona (26 November 2019). "UN calls for push to cut greenhouse gas levels to avoid climate chaos". The Guardian. Retrieved 27 November 2019.
  62. "Cut Global Emissions by 7.6 Percent Every Year for Next Decade to Meet 1.5°C Paris Target – UN Report". United Nations Framework Convention on Climate Change. United Nations. Retrieved 27 November 2019.
  63. IPCC (2022). Shukla, P.R.; Skea, J.; Slade, R.; Al Khourdajie, A.; et al. (eds.). Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. p. 300.: The global benefits of pathways limiting warming to 2°C (>67%) outweigh global mitigation costs over the 21st century, if aggregated economic impacts of climate change are at the moderate to high end of the assessed range, and a weight consistent with economic theory is given to economic impacts over the long term. This holds true even without accounting for benefits in other sustainable development dimensions or nonmarket damages from climate change (medium confidence).
  64. "The crucial intersection between gender and climate". European Investment Bank. Retrieved 2023-12-29.
  65. Nations, United. "Finance & Justice". United Nations. Retrieved 2023-12-29.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.