In mathematics, Fuchs' theorem, named after Lazarus Fuchs, states that a second-order differential equation of the form
has a solution expressible by a generalised Frobenius series when , and are analytic at or is a regular singular point. That is, any solution to this second-order differential equation can be written as
for some positive real s, or
for some positive real r, where y0 is a solution of the first kind.
Its radius of convergence is at least as large as the minimum of the radii of convergence of , and .
See also
References
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.