The Harari–Shupe preon model (also known as rishon model, RM) is the earliest effort to develop a preon model to explain the phenomena appearing in the Standard Model (SM) of particle physics.[1] It was first developed independently by Haim Harari and by Michael A. Shupe[2] and later expanded by Harari and his then-student Nathan Seiberg.[3]

Model

The model has two kinds of fundamental particles called rishons (which means "primary" in Hebrew). They are T ("Third" since it has an electric charge of +1/3 e, or Tohu which means "unformed" in Hebrew) and V ("Vanishes", since it is electrically neutral, or Vohu which means "void" in Hebrew). All leptons and all flavours of quarks are three-rishon ordered triplets. These groups of three rishons have spin-1/2. They are as follows:

Each rishon has a corresponding antiparticle. Hence:

The W+ boson = TTTVVV; The W boson = TTTVVV.

Note that:

  • Matter and antimatter are equally abundant in nature in the RM. This still leaves open the question of why TTT, TVV, and TTV etc. are common whereas TTT, TVV, and TTV etc. are rare.
  • Higher generation leptons and quarks are presumed to be excited states of first generation leptons and quarks, but those states are not specified.
  • The simple RM does not provide an explanation of the mass-spectrum of the leptons and quarks.

Baryon number (B) and lepton number (L) are not conserved, but the quantity B − L is conserved. A baryon number violating process (such as proton decay) in the model would be

d+u+ud+d+ e+
  Fermion-level interaction
VVT+TVT+VTTVVT+VVT+TTT
  Rishon-level interaction
p  π0  +  e+
  Appearance in a particle detector

In the expanded Harari–Seiberg version the rishons possess color and hypercolor, explaining why the only composites are the observed quarks and leptons.[3] Under certain assumptions, it is possible to show that the model allows exactly for three generations of quarks and leptons.

Evidence

Currently, there is no scientific evidence for the existence of substructure within quarks and leptons, but there is no profound reason why such a substructure may not be revealed at shorter distances. In 2008, Piotr Zenczykowski has derived the RM by starting from a non-relativistic O(6) phase space.[4] Such model is based on fundamental principles and the structure of Clifford algebras, and fully recovers the RM by naturally explaining several obscure and otherwise artificial features of the original model.

References

  1. Harari, H. (1979). "A schematic model of quarks and leptons" (PDF). Physics Letters B. 86 (1): 83–86. Bibcode:1979PhLB...86...83H. doi:10.1016/0370-2693(79)90626-9. OSTI 1447265.
  2. Shupe, M. A. (1979). "A composite model of leptons and quarks". Physics Letters B. 86 (1): 87–92. Bibcode:1979PhLB...86...87S. doi:10.1016/0370-2693(79)90627-0.
  3. 1 2 Harari, Haim; Seiberg, Nathan (1982). "The rishon model" (PDF). Nuclear Physics B. North-Holland Publishing. 204 (1): 141–167. Bibcode:1982NuPhB.204..141H. doi:10.1016/0550-3213(82)90426-6. Retrieved 2 June 2018.
  4. Zenczykowski, P. (2008). "The Harari–Shupe preon model and nonrelativistic quantum phase space". Physics Letters B. 660 (5): 567–572. arXiv:0803.0223. Bibcode:2008PhLB..660..567Z. doi:10.1016/j.physletb.2008.01.045. S2CID 18236929.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.