Zirconocene dichloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.697
UNII
  • InChI=1S/2C5H5.2ClH.Zr/c2*1-2-4-5-3-1;;;/h2*1-5H;2*1H;/q2*-1;;;+4/p-2 ☒N
    Key: QMBQEXOLIRBNPN-UHFFFAOYSA-L ☒N
  • InChI=1/2C5H5.2ClH.Zr/c2*1-2-4-5-3-1;;;/h2*1-5H;2*1H;/q2*-1;;;+4/p-2
    Key: QMBQEXOLIRBNPN-NUQVWONBAX
  • [cH-]1cccc1.[cH-]1cccc1.[Cl-].[Cl-].[Zr+4]
Properties
C10H10Cl2Zr
Molar mass 292.31 g·mol−1
Appearance white solid
Soluble (Hydrolysis)
Hazards
Safety data sheet (SDS) CAMEO Chemicals MSDS
Related compounds
Related compounds
Titanocene dichloride
Hafnocene dichloride
Vanadocene dichloride
Niobocene dichloride
Tantalocene dichloride
Tungstenocene dichloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Infobox references

Zirconocene dichloride is an organozirconium compound composed of a zirconium central atom, with two cyclopentadienyl and two chloro ligands. It is a colourless diamagnetic solid that is somewhat stable in air.

Preparation and structure

Zirconocene dichloride may be prepared from zirconium(IV) chloride-tetrahydrofuran complex and sodium cyclopentadienide:

ZrCl4(THF)2 + 2 NaCp → Cp2ZrCl2 + 2 NaCl + 2 THF

The closely related compound Cp2ZrBr2 was first described by Birmingham and Wilkinson.[1]

The compound is a bent metallocene: the Cp rings are not parallel, the average Cp(centroid)-M-Cp angle being 128°. The Cl-Zr-Cl angle of 97.1° is wider than in niobocene dichloride (85.6°) and molybdocene dichloride (82°). This trend helped to establish the orientation of the HOMO in this class of complex.[2]

Reactions

Schwartz's reagent

Zirconocene dichloride reacts with lithium aluminium hydride to give Cp2ZrHCl Schwartz's reagent:

(C5H5)2ZrCl2 + 1/4 LiAlH4 → (C5H5)2ZrHCl + 1/4 LiAlCl4

Since lithium aluminium hydride is a strong reductant, some over-reduction occurs to give the dihydrido complex, Cp2ZrH2; treatment of the product mixture with methylene chloride converts it to Schwartz's reagent.[3]

Negishi reagent

Zirconocene dichloride can also be used to prepare the Negishi reagent, Cp2Zr(η2-butene), which can be used as a source of Cp2Zr in oxidative cyclisation reactions. The Negishi reagent is prepared by treating zirconocene dichloride with n-BuLi, leading to replacement of the two chloride ligands with butyl groups. The dibutyl compound subsequently undergoes beta-hydride elimination to give one η2-butene ligand, with the other butyl ligand promptly lost as butane via reductive elimination.[4]

Carboalumination

Zirconocene dichloride catalyzes the carboalumination of alkynes by trimethylaluminium to give a (alkenyl)dimethylalane, a versatile intermediate for further cross coupling reactions for the synthesis of stereodefined trisubstituted olefins. For example, α-farnesene can be prepared as a single stereoisomer by carboalumination of 1-buten-3-yne with trimethylaluminium, followed by palladium-catalyzed coupling of the resultant vinylaluminium reagent with geranyl chloride.[5]

The use of trimethylaluminium for this reaction results in exclusive formation of the syn-addition product and, for terminal alkynes, the anti-Markovnikov addition with high selectivity (generally > 10:1). Unfortunately, the use of higher alkylaluminium reagents results in lowered yield, due to the formation of the hydroalumination product (via β-hydrogen elimination of the alkylzirconium intermediate) as side product, and only moderate regioselectivities.[6] Thus, practical applications of the carboalumination reaction are generally confined to the case of methylalumination. Although this is a major limitation, the synthetic utility of this process remains significant, due to the frequent appearance of methyl-substituted alkenes in natural products.

Zr-walk

Zirconocene dichloride together with a reducing reagent can form the zirconocene hydride catalyst in situ, which allows a positional isomerization (so-called "Zr-walk"[7]), and ends up with a cleavage of allylic bonds. Not only individual steps under stoichiometric conditions were described with Schwartz reagent,[8] and Negishi reagent,[9] but also catalytic applications on alkene hydroaluminations,[10] radical cyclisation,[11] polybutadiene cleavage,[12] and reductive removal of functional groups[13] were reported.

Reductive removal of ether group
Reductive removal of ether group

References

  1. G. Wilkinson and J. M. Birmingham (1954). "Bis-cyclopentadienyl Compounds of Ti, Zr, V, Nb and Ta". J. Am. Chem. Soc. 76 (17): 4281–4284. doi:10.1021/ja01646a008.
  2. K. Prout, T. S. Cameron, R. A. Forder, and in parts S. R. Critchley, B. Denton and G. V. Rees "The crystal and molecular structures of bent bis-π-cyclopentadienyl-metal complexes: (a) bis-π-cyclopentadienyldibromorhenium(V) tetrafluoroborate, (b) bis-π-cyclopentadienyldichloromolybdenum(IV), (c) bis-π-cyclopentadienylhydroxomethylaminomolybdenum(IV) hexafluorophosphate, (d) bis-π-cyclopentadienylethylchloromolybdenum(IV), (e) bis-π-cyclopentadienyldichloroniobium(IV), (f) bis-π-cyclopentadienyldichloromolybdenum(V) tetrafluoroborate, (g) μ-oxo-bis[bis-π-cyclopentadienylchloroniobium(IV)] tetrafluoroborate, (h) bis-π-cyclopentadienyldichlorozirconium" Acta Crystallogr. 1974, volume B30, pp. 2290–2304. doi:10.1107/S0567740874007011
  3. S. L. Buchwald; S. J. LaMaire; R. B.; Nielsen; B. T. Watson; S. M. King. "Schwartz's Reagent". Organic Syntheses.; Collective Volume, vol. 9, p. 162
  4. Negishi, E.; Takashi, T. (1994). "Patterns of Stoichiometric and Catalytic Reactions of Organozirconium and Related Complexes of Synthetic Interest". Accounts of Chemical Research. 27 (5): 124–130. doi:10.1021/ar00041a002.
  5. "Palladium-Catalyzed Synthesis of 1,4-Dienes by Allylation of Alkenylalanes: α-Farnesene". www.orgsyn.org. Retrieved 2019-11-27.
  6. Huo, Shouquan (2016-09-19), Rappoport, Zvi (ed.), "Carboalumination Reactions", PATAI'S Chemistry of Functional Groups, Chichester, UK: John Wiley & Sons, Ltd, pp. 1–64, doi:10.1002/9780470682531.pat0834, ISBN 978-0-470-68253-1, retrieved 2021-01-19
  7. Sommer, Heiko; Juliá-Hernández, Francisco; Martin, Ruben; Marek, Ilan (2018-02-08). "Walking Metals for Remote Functionalization". ACS Central Science. 4 (2): 153–165. doi:10.1021/acscentsci.8b00005. ISSN 2374-7943. PMC 5833012. PMID 29532015. S2CID 4389888.
  8. Cénac, Nathalie; Zablocka, Maria; Igau, Alain; Commenges, Gérard; Majoral, Jean-Pierre; Skowronska, Aleksandra (1996-02-20). "Zirconium-Promoted Ring Opening. Scope and Limitations". Organometallics. 15 (4): 1208–1217. doi:10.1021/om950491+. ISSN 0276-7333.
  9. Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan (2013-12-08). "Merging allylic carbon–hydrogen and selective carbon–carbon bond activation". Nature. 505 (7482): 199–203. doi:10.1038/nature12761. ISSN 0028-0836. PMID 24317692. S2CID 205236414.
  10. Negishi; Yoshida (1980). "A novel zirconium- catalyzed hydroalumination of olefins". Tetrahedron Lett. 21 (16): 1501–1504. doi:10.1016/S0040-4039(00)92757-6.
  11. Fujita; Nakamura; Oshima (2001). "Triethylborane-Induced Radical Reaction with Schwartz Reagent". J. Am. Chem. Soc. 123 (13): 3137–3138. doi:10.1021/ja0032428.
  12. Zheng, Jun; Lin, Yichao; Liu, Feng; Tan, Haiying; Wang, Yanhui; Tang, Tao (2012-11-08). "Controlled Chain-Scission of Polybutadiene by the Schwartz Hydrozirconation". Chemistry - A European Journal. 19 (2): 541–548. doi:10.1002/chem.201202942. ISSN 0947-6539. PMID 23139199.
  13. Matt, Christof; Kölblin, Frederic; Streuff, Jan (2019-09-06). "Reductive C–O, C–N, and C–S Cleavage by a Zirconium Catalyzed Hydrometalation/β-Elimination Approach". Organic Letters. 21 (17): 6983–6988. doi:10.1021/acs.orglett.9b02572. ISSN 1523-7060. PMID 31403304. S2CID 199539801.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.