This list contains quantum processors, also known as quantum processing units (QPUs). Some devices listed below have only been announced at press conferences so far, with no actual demonstrations or scientific publications characterizing the performance.
Quantum processors are difficult to compare due to the different architectures and approaches. Due to this, published qubit numbers do not reflect the performance levels of the processor. This is instead achieved through benchmarking metrics such as quantum volume, randomized benchmarking or circuit layer operations per second (CLOPS).[1]
Circuit-based quantum processors
These QPUs are based on the quantum circuit and quantum logic gate-based model of computing.
Manufacturer | Name/codename
designation |
Architecture | Layout | Fidelity (%) | Qubits (physical) | Release date | Quantum volume |
---|---|---|---|---|---|---|---|
Alpine Quantum Technologies | PINE System[2] | Trapped ion | 24[3] | June 7, 2021 | 128[4] | ||
Atom Computing | Phoenix | Neutral atoms in optical lattices | 100[5] | August 10, 2021 | |||
Atom Computing | N/A | Neutral atoms in optical lattices | 1180[6][7] | October 2023 | |||
N/A | Superconducting | N/A | 99.5[8] | 20 | 2017 | ||
N/A | Superconducting | 7×7 lattice | 99.7[8] | 49[9] | Q4 2017 (planned) | ||
Bristlecone | Superconducting transmon | 6×12 lattice | 99 (readout) 99.9 (1 qubit) 99.4 (2 qubits) | 72[10][11] | March 5, 2018 | ||
Sycamore | Superconducting transmon | 9×6 lattice | N/A | 53 effective (54 total) | 2019 | ||
IBM | IBM Q 5 Tenerife | Superconducting | bow tie | 99.897 (average gate) 98.64 (readout) |
5 | 2016[8] | |
IBM | IBM Q 5 Yorktown | Superconducting | bow tie | 99.545 (average gate) 94.2 (readout) |
5 | ||
IBM | IBM Q 14 Melbourne | Superconducting | N/A | 99.735 (average gate) 97.13 (readout) |
14 | ||
IBM | IBM Q 16 Rüschlikon | Superconducting | 2×8 lattice | 99.779 (average gate) 94.24 (readout) |
16[12] | May 17, 2017 (Retired: 26 September 2018)[13] |
|
IBM | IBM Q 17 | Superconducting | N/A | N/A | 17[12] | May 17, 2017 | |
IBM | IBM Q 20 Tokyo | Superconducting | 5×4 lattice | 99.812 (average gate) 93.21 (readout) |
20[14] | November 10, 2017 | |
IBM | IBM Q 20 Austin | Superconducting | 5×4 lattice | N/A | 20 | (Retired: 4 July 2018)[13] | |
IBM | IBM Q 50 prototype | Superconducting transmon | N/A | N/A | 50[14] | ||
IBM | IBM Q 53 | Superconducting | N/A | N/A | 53 | October 2019 | |
IBM | IBM Eagle | Superconducting | N/A | N/A | 127[15] | November 2021 | |
IBM | IBM Osprey[6][7] | Superconducting | N/A | N/A | 433[15] | November 2022 | |
IBM | IBM Condor[16][6] | Superconducting | N/A | N/A | 1121[15] | December 2023 | |
IBM | IBM Heron[16][6] | Superconducting | N/A | N/A | 133 | December 2023 | |
IBM | IBM Armonk[17] | Superconducting | Single Qubit | N/A | 1 | October 16, 2019 | |
IBM | IBM Ourense[17] | Superconducting | T | N/A | 5 | July 3, 2019 | |
IBM | IBM Vigo[17] | Superconducting | T | N/A | 5 | July 3, 2019 | |
IBM | IBM London[17] | Superconducting | T | N/A | 5 | September 13, 2019 | |
IBM | IBM Burlington[17] | Superconducting | T | N/A | 5 | September 13, 2019 | |
IBM | IBM Essex[17] | Superconducting | T | N/A | 5 | September 13, 2019 | |
IBM | IBM Athens[18] | Superconducting | N/A | 5 | 32[19] | ||
IBM | IBM Belem[18] | Superconducting | Falcon r4T[20] | N/A | 5 | 16[20] | |
IBM | IBM Bogotá[18] | Superconducting | Falcon r4L[20] | N/A | 5 | 32[20] | |
IBM | IBM Casablanca[18] | Superconducting | Falcon r4H[20] | N/A | 7 | (Retired – March 2022) | 32[20] |
IBM | IBM Dublin[18] | Superconducting | N/A | 27 | 64 | ||
IBM | IBM Guadalupe[18] | Superconducting | Falcon r4P[20] | N/A | 16 | 32[20] | |
IBM | IBM Kolkata | Superconducting | N/A | 27 | 128 | ||
IBM | IBM Lima[18] | Superconducting | Falcon r4T[20] | N/A | 5 | 8[20] | |
IBM | IBM Manhattan[18] | Superconducting | N/A | 65 | 32[19] | ||
IBM | IBM Montreal[18] | Superconducting | Falcon r4[20] | N/A | 27 | 128[20] | |
IBM | IBM Mumbai[18] | Superconducting | Falcon r5.1[20] | N/A | 27 | 128[20] | |
IBM | IBM Paris[18] | Superconducting | N/A | 27 | 32[19] | ||
IBM | IBM Quito[18] | Superconducting | Falcon r4T[20] | N/A | 5 | 16[20] | |
IBM | IBM Rome[18] | Superconducting | N/A | 5 | 32[19] | ||
IBM | IBM Santiago[18] | Superconducting | N/A | 5 | 32[19] | ||
IBM | IBM Sydney[18] | Superconducting | Falcon r4[20] | N/A | 27 | 32[20] | |
IBM | IBM Toronto[18] | Superconducting | Falcon r4[20] | N/A | 27 | 32[20] | |
Intel | 17-Qubit Superconducting Test Chip | Superconducting | 40-pin cross gap | N/A | 17[21][22] | October 10, 2017 | |
Intel | Tangle Lake | Superconducting | 108-pin cross gap | N/A | 49[23] | January 9, 2018 | |
Intel | Tunnel Falls | Semiconductor spin qubits | 12[24] | June 15, 2023 | |||
IonQ | Harmony | Trapped ion | All-to-All[20] | 11[25] | 2022 | 8[20] | |
IonQ | Aria | Trapped ion | All-to-All[20] | 25[25] | 2022 | ||
IonQ | Forte | Trapped ion | 32x1 chain[26] All-to-All[20] | 99.98 (1 qubit) 98.5-99.3 (2 qubit)[26] |
32[25] | 2022 | |
IQM | - | Superconducting | Star | 99.91 (1 qubit) 99.14 (2 qubits) | 5[27] | November 30, 2021[28] | N/A |
IQM | - | Superconducting | Square lattice | 99.91 (1 qubit median) 99.944 (1 qubit max) 98.25 (2 qubits median) 99.1 (2 qubits max) |
20 | October 9, 2023[29] | 16[30] |
M Squared Lasers | Maxwell | Neutral atoms in optical lattices | 99.5 (3-qubit gate), 99.1 (4-qubit gate)[31] | 200[32] | November 2022 | ||
Oxford Quantum Circuits | Lucy[33] | Superconducting | 8 | 2022 | |||
Oxford Quantum Circuits | OQC Toshiko[34] | Superconducting | 32 | 2023 | |||
Quandela | Ascella | Photonics | N/A | 98.8 (1 qubit) 88.1 (2 qubits) 86.0 (3 qubits) |
6[35] | 2022[36] | |
QuTech at TU Delft | Spin-2 | Semiconductor spin qubits | 99 (average gate) 85(readout)[37] |
2 | 2020 | ||
QuTech at TU Delft | - | Semiconductor spin qubits | 6[38] | September 2022 | |||
QuTech at TU Delft | Starmon-5 | Superconducting | X configuration | 97 (readout)[39] | 5 | 2020 | |
Quantinuum | H2[40] | Trapped ion | Racetrack, All-to-All | 99.997 (1 qubit) 99.8 (2 qubit) |
32 | May 9, 2023 | 65,536[41] |
Quantinuum | H1-1[42] | Trapped ion | 15×15 (Circuit Size) | 99.996 (1 qubit) 99.8 (2 qubit) |
20 | 2022 | 524,288[43] |
Quantinuum | H1-2 [42] | Trapped ion | All-to-All[20] | 99.996 (1 qubit) 99.7 (2 qubit) |
12 | 2022 | 4096[44] |
Quantware | Soprano[45] | Superconducting | 99.9 (single-qubit gates) | 5 | July 2021 | ||
Quantware | Contralto[46] | Superconducting | 99.9 (single-qubit gates) | 25 | March 7, 2022[47] | ||
Quantware | Tenor[48] | Superconducting | 64 | February 23, 2023 | |||
Rigetti | Agave | Superconducting | N/A | 96 (Single-qubit gates)
87 (Two-qubit gates) |
8 | June 4, 2018[49] | |
Rigetti | Acorn | Superconducting transmon | N/A | 98.63 (Single-qubit gates)
87.5 (Two-qubit gates) |
19[50] | December 17, 2017 | |
Rigetti | Aspen-1 | Superconducting | N/A | 93.23 (Single-qubit gates)
90.84 (Two-qubit gates) |
16 | November 30, 2018[49] | |
Rigetti | Aspen-4 | Superconducting | 99.88 (Single-qubit gates)
94.42 (Two-qubit gates) |
13 | March 10, 2019 | ||
Rigetti | Aspen-7 | Superconducting | 99.23 (Single-qubit gates)
95.2 (Two-qubit gates) |
28 | November 15, 2019 | ||
Rigetti | Aspen-8 | Superconducting | 99.22 (Single-qubit gates)
94.34 (Two-qubit gates) |
31 | May 5, 2020 | ||
Rigetti | Aspen-9 | Superconducting | 99.39 (Single-qubit gates)
94.28 (Two-qubit gates) |
32 | February 6, 2021 | ||
Rigetti | Aspen-10 | Superconducting | 99.37 (Single-qubit gates)
94.66 (Two-qubit gates) |
32 | November 4, 2021 | ||
Rigetti | Aspen-11 | Superconducting | Octagonal[20] | 99.8 (Single-qubit gates) 92.7 (Two-qubit gates CZ) 91.0 (Two-qubit gates XY) | 40 | December 15, 2021 | |
Rigetti | Aspen-M-1 | Superconducting transmon | Octagonal[20] | 99.8 (Single-qubit gates) 93.7 (Two-qubit gates CZ) 94.6 (Two-qubit gates XY) | 80 | February 15, 2022 | 8[20] |
Rigetti | Aspen-M-2 | Superconducting transmon | 99.8 (Single-qubit gates) 91.3 (Two-qubit gates CZ) 90.0 (Two-qubit gates XY) | 80 | August 1, 2022 | ||
Rigetti | Aspen-M-3 | Superconducting transmon | N/A | 99.9 (Single-qubit gates) 94.7 (Two-qubit gates CZ) 95.1 (Two-qubit gates XY) | 80[51] | December 2, 2022 | |
RIKEN | RIKEN | Superconducting | N/A | N/A | 53 effective (64 total) | March 27, 2023 | N/A |
SpinQ | Triangulum | Nuclear magnetic resonance | 3[52] | September 2021 | |||
USTC | Jiuzhang | Photonics | N/A | N/A | 76[53][54] | 2020 | |
USTC | Zuchongzhi | Superconducting | N/A | N/A | 62[55] | 2020 | |
USTC | Zuchongzhi 2.1 | Superconducting | lattice[56] | 99.86 (Single-qubit gates) 99.41 (Two-qubit gates) 95.48 (Readout) | 66[57] | 2021 | |
Xanadu | Borealis[58] | Photonics | N/A | N/A | 216[58] | 2022[58] | |
Xanadu | X8 [59] | Photonics | N/A | N/A | 8 | 2020 | |
Xanadu | X12 | Photonics | N/A | N/A | 12 | 2020[59] | |
Xanadu | X24 | Photonics | N/A | N/A | 24 | 2020[59] |
Annealing quantum processors
These QPUs are based on quantum annealing, not to be confused with digital annealing.[60]
Manufacturer | Name/Codename
/Designation |
Architecture | Layout | Fidelity (%) | Qubits | Release date |
---|---|---|---|---|---|---|
D-Wave | D-Wave One (Rainier) | Superconducting | C4 = Chimera(4,4,4)[61] = 4×4 K4,4 | N/A | 128 | May 11, 2011 |
D-Wave | D-Wave Two | Superconducting | C8 = Chimera(8,8,4)[61] = 8×8 K4,4 | N/A | 512 | 2013 |
D-Wave | D-Wave 2X | Superconducting | C12 = Chimera(12,12,4)[61] = 12×12 K4,4 | N/A | 1152 | 2015 |
D-Wave | D-Wave 2000Q | Superconducting | C16 = Chimera(16,16,4)[61] = 16×16 K4,4 | N/A | 2048 | 2017 |
D-Wave | D-Wave Advantage | Superconducting | Pegasus P16[62] | N/A | 5760 | 2020 |
Analog quantum processors
These QPUs are based on analog Hamiltonian simulation.
Manufacturer | Name/Codename/Designation | Architecture | Layout | Fidelity (%) | Qubits | Release date |
---|---|---|---|---|---|---|
QuEra | Aquila | Neutral atoms | N/A | N/A | 256 | November 2022 |
See also
References
- ↑ Wack, Andrew; Paik, Hanhee; Javadi-Abhari, Ali; Jurcevic, Petar; Faro, Ismael; Gambetta, Jay M.; Johnson, Blake R. (29 Oct 2021). "A practical heuristic for finding graph minors". arXiv:2110.14108 [quant-ph].
- ↑ "THE SYSTEM IS THE FIRST COMMERCIAL 19-INCH RACK-MOUNTED ROOM-TEMPERATURE QUANTUM COMPUTER". AQT. Retrieved 21 Feb 2023.
- ↑ Pogorelov, I.; Feldker, T.; Et, al. (2021-06-07). "Compact Ion-Trap Quantum Computing Demonstrator". PRX Quantum. 2 (2): 020343. arXiv:2101.11390. Bibcode:2021PRXQ....2b0343P. doi:10.1103/PRXQuantum.2.020343. S2CID 231719119.
- ↑ "STATE OF QUANTUM COMPUTING IN EUROPE: AQT PUSHING PERFORMANCE WITH A QUANTUM VOLUME OF 128". AQT. 8 February 2023. Retrieved 24 Feb 2023.
- ↑ Barnes, Katrina; Battaglino, Peter; Et, al. (2022). "Assembly and coherent control of a register of nuclear spin qubits". Nature Communications. 13 (1): 2779. arXiv:2108.04790. Bibcode:2022NatCo..13.2779B. doi:10.1038/s41467-022-29977-z. PMC 9120523. PMID 35589685. S2CID 236965948.
- 1 2 3 4 Padavic-Callaghan, Karmela (December 9, 2023). "IBM unveils 1000-qubit computer". New Scientist. p. 13.
- 1 2 Wilkins, Alex (October 24, 2023). "Record-breaking quantum computer has more than 1000 qubits". New Scientist. Retrieved 2024-01-01.
- 1 2 3 Lant, Karla (2017-06-23). "Google is Closer Than Ever to a Quantum Computer Breakthrough". Futurism. Retrieved 2017-10-18.
- ↑ Simonite, Tom (2017-04-21). "Google's New Chip Is a Stepping Stone to Quantum Computing Supremacy". MIT Technology Review. Retrieved 2017-10-18.
- ↑ "A Preview of Bristlecone, Google's New Quantum Processor", Research (World wide web log), Google, March 2018.
- ↑ Greene, Tristan (2018-03-06). "Google reclaims quantum computer crown with 72 qubit processor". The Next Web. Retrieved 2018-06-27.
- 1 2 "IBM Builds Its Most Powerful Universal Quantum Computing Processors". IBM. 2017-05-17. Retrieved 2017-10-18.
- 1 2 "Quantum devices & simulators". IBM Q. 2018-06-05. Retrieved 2019-03-29.
- 1 2 "IBM Announces Advances to IBM Quantum Systems & Ecosystem". 10 November 2017. Retrieved 10 November 2017.
- 1 2 3 Brooks, Michael (January–February 2024). "Bring on the noise". MIT Technology Review. Vol. 127, no. 1. Cambridge, Massachusetts. p. 50.
- 1 2 "IBM's 'Condor' quantum computer has more than 1000 qubits". New Scientist. Retrieved 2023-12-21.
- 1 2 3 4 5 6 "IBM Q Experience". IBM Q Experience. Retrieved 2020-01-04.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 "IBM Quantum". IBM Quantum. Retrieved 2023-06-18.
- 1 2 3 4 5 "IBM Blog". IBM Blog. Retrieved 2023-06-18.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Pelofske, Elijah; Bärtschi, Andreas; Eidenbenz, Stephan (2022). "Quantum Volume in Practice: What Users Can Expect from NISQ Devices". IEEE Transactions on Quantum Engineering. 3: 1–19. arXiv:2203.03816. doi:10.1109/TQE.2022.3184764. ISSN 2689-1808. S2CID 247315182.
- ↑ "Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging to QuTech". 2017-10-10. Retrieved 2017-10-18.
- ↑ Novet, Jordan (2017-10-10). "Intel shows off its latest chip for quantum computing as it looks past Moore's Law". CNBC. Retrieved 2017-10-18.
- ↑ "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". 2018-01-09. Retrieved 2018-01-14.
- ↑ "Intel's New Chip to Advance Silicon Spin Qubit Research for Quantum Computing". Intel Newsroom. Retrieved 2023-07-09.
- 1 2 3 "IonQ | Trapped Ion Quantum Computing". IonQ. Retrieved 2023-05-02.
- 1 2 arXiv:2009.11482
- ↑ "The Power of Co-Design, Hermanni Heimonen, IQM". Youtube. 2022-12-08. Retrieved 2023-06-09.
- ↑ "Finland's first 5-qubit quantum computer is now operational". VTTresearch.com. 2022-12-08. Retrieved 2023-06-09.
- ↑ "Finland launches a 20-qubit quantum computer – development towards more powerful quantum computers continues". meetiqm.com. 2023-10-09.
- ↑ "Finland Unveils Second Quantum Computer with 20 Qubits, Aims for 50-Qubit Device by 2024". quantumzeitgeist.com. 2023-10-10.
- ↑ Pelegrí, G.; Daley, A. J.; Pritchard, J. D. (2022). "High-fidelity multiqubit Rydberg gates via two-photon adiabatic rapid passage". Quantum Science and Technology. 7 (4): 045020. arXiv:2112.13025. Bibcode:2022QS&T....7d5020P. doi:10.1088/2058-9565/ac823a. S2CID 245502083.
- ↑ "MAXWELL: NEUTRAL ATOM QUANTUM PROCESSOR" (PDF). M Squared. Retrieved 12 April 2023.
- ↑ "Lucy". Oxford Quantum Circuits. 30 November 2021. Retrieved 20 Feb 2023.
- ↑ "OQC Toshiko". Oxford Quantum Circuits. 24 November 2023. Retrieved 27 Nov 2023.
- ↑ Pont, M.; Corrielli, G.; Fyrillas, A.; et, al. (2022-11-29). "High-fidelity generation of four-photon GHZ states on-chip". arXiv:2211.15626 [quant-ph].
- ↑ "La puissance d'un ordinateur quantique testée en ligne (The power of a quantum computer tested online)". Le Monde.fr. Le Monde. 22 November 2022.
- ↑ "Spin-2". Quantum Inspire. Retrieved 5 May 2021.
- ↑ "Six-qubit silicon quantum processor sets a record". PhysicsWorld. 19 October 2022. Retrieved 2023-07-09.
- ↑ "Starmon-5". Quantum Inspire. Retrieved 4 May 2021.
- ↑ "Quantinuum H2 Product Data Sheet" (PDF).
- ↑ "Quantinuum | Hardware | System Model H2". www.quantinuum.com. Retrieved 2023-05-12.
- 1 2 "Quantinuum System Model H1 Product Data Sheet" (PDF). Quantinuum. Retrieved 8 Jul 2023.
- ↑ "Quantinuum H-Series quantum computer accelerates through 3 more performance records for quantum volume: 217, 218, and 219". Quantinuum. Retrieved 7 Jul 2023.
- ↑ "Quantinuum Announces Quantum Volume 4096 Achievement". Quantinuum. Retrieved 24 Feb 2023.
- ↑ "Soprano specs". Quantware. Retrieved 1 Feb 2023.
- ↑ "Contralto specs". Quantware. Retrieved 21 Feb 2023.
- ↑ "QUANTWARE RELEASES 25-QUBIT CONTRALTO QPU". Quantware. Retrieved 21 Feb 2023.
- ↑ "Tenor specs". Quantware. Retrieved 26 Feb 2023.
- 1 2 "QPU". Rigetti Computing. Archived from the original on 2019-05-16. Retrieved 2019-03-24.
- ↑ "Unsupervised Machine Learning on Rigetti 19Q with Forest 1.2". 2017-12-18. Retrieved 2018-03-21.
- ↑ "Aspen-M-3 Quantum Processor". Retrieved 2023-02-20.
- ↑ "Triangulum3 qubits desktop NMR quantum computer". AQT. Retrieved 24 Feb 2023.
- ↑ Ball, Philip (2020-12-03). "Physicists in China challenge Google's 'quantum advantage'". Nature. 588 (7838): 380. Bibcode:2020Natur.588..380B. doi:10.1038/d41586-020-03434-7. PMID 33273711.
- ↑ Letzter, Rafi – Staff Writer 07 (7 December 2020). "China claims fastest quantum computer in the world". livescience.com. Retrieved 2020-12-19.
{{cite web}}
: CS1 maint: numeric names: authors list (link) - ↑ Ball, Philip (2020-12-03). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor". Physical Review Letters. 127 (18): 180501. arXiv:2106.14734. Bibcode:2021PhRvL.127r0501W. doi:10.1103/PhysRevLett.127.180501. PMID 34767433. S2CID 235658633.
- ↑ Zhu, Qingling; et al. (2021). "Quantum Computational Advantage via 60-Qubit 24-Cycle Random Circuit Sampling". Science Bulletin. 67 (3): 240–245. arXiv:2109.03494. doi:10.1016/j.scib.2021.10.017. PMID 36546072. S2CID 237442167.
- ↑ Wu, Yulin; Bao, Wan-Su; Cao, Sirui; Chen, Fusheng; Chen, Ming-Cheng; Chen, Xiawei; Chung, Tung-Hsun; Deng, Hui; Du, Yajie; Fan, Daojin; Gong, Ming; Guo, Cheng; Guo, Chu; Guo, Shaojun; Han, Lianchen (2021-10-25). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor". Physical Review Letters. 127 (18): 180501. arXiv:2106.14734. Bibcode:2021PhRvL.127r0501W. doi:10.1103/PhysRevLett.127.180501. ISSN 0031-9007. PMID 34767433. S2CID 235658633.
- 1 2 3 Madsen, Lars S.; Laudenbach, Fabian; Askarani, Mohsen Falamarzi; Rortais, Fabien; Vincent, Trevor; Bulmer, Jacob F. F.; Miatto, Filippo M.; Neuhaus, Leonhard; Helt, Lukas G.; Collins, Matthew J.; Lita, Adriana E. (June 2022). "Quantum computational advantage with a programmable photonic processor". Nature. 606 (7912): 75–81. Bibcode:2022Natur.606...75M. doi:10.1038/s41586-022-04725-x. ISSN 1476-4687. PMC 9159949. PMID 35650354. S2CID 249276257.
- 1 2 3 "A new kind of quantum". spie.org. Retrieved 2021-01-09.
- ↑ "Digital Annealer – Quantum Computing Technology". Fujitsu. Retrieved 12 April 2023.
- 1 2 3 4 Cai, Jun; Macready, Bill; Roy, Aidan (10 Jun 2014). "A practical heuristic for finding graph minors". arXiv:1406.2741 [quant-ph].
- ↑ Boothby, Kelly; Bunyk, Paul; Raymond, Jack; Roy, Aidan (29 Feb 2020). "Next-Generation Topology of D-Wave Quantum Processors". arXiv:2003.00133 [quant-ph].