There are many longstanding unsolved problems in mathematics for which a solution has still not yet been found. The notable unsolved problems in statistics are generally of a different flavor; according to John Tukey,[1] "difficulties in identifying problems have delayed statistics far more than difficulties in solving problems." A list of "one or two open problems" (in fact 22 of them) was given by David Cox.[2]

Inference and testing

Experimental design

Problems of a more philosophical nature

Notes

  1. Tukey, John W. (1954). "Unsolved Problems of Experimental Statistics". Journal of the American Statistical Association. 49 (268): 706–731. doi:10.2307/2281535. JSTOR 2281535.
  2. Cox, D. R. (1984). "Present Position and Potential Developments: Some Personal Views: Design of Experiments and Regression". Journal of the Royal Statistical Society. Series A (General). 147 (2): 306–315. doi:10.2307/2981685. JSTOR 2981685.
  3. Pal, Nabendu; Lim, Wooi K. (1997). "A note on second-order admissibility of the Graybill-Deal estimator of a common mean of several normal populations". Journal of Statistical Planning and Inference. 63: 71–78. doi:10.1016/S0378-3758(96)00202-9.
  4. Fraser, D.A.S.; Rousseau, J. (2008). "Studentization and deriving accurate p-values" (PDF). Biometrika. 95: 1–16. doi:10.1093/biomet/asm093.
  5. Jordan, M. I. (2011). "What are the open problems in Bayesian statistics?" (PDF). The ISBA Bulletin. 18 (1): 1–5.
  6. Zabell, S. L. (1992). "Predicting the unpredictable". Synthese. 90 (2): 205. doi:10.1007/bf00485351. S2CID 9416747.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.