ALPI | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | ALPI, IAP, alkaline phosphatase, intestinal | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 171740 MGI: 87984 HomoloGene: 134333 GeneCards: ALPI | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Alkaline phosphatase, intestinal also known as ALPI is a type of alkaline phosphatase that in humans is encoded by the ALPI gene.[5][6]
Intestinal alkaline phosphatase is an endogenous protein that plays an essential function in the maintenance of gut homeostasis. The protein is responsible for detoxifying bacterial toxins, dephosphorylating phosphorylated nucleotides, regulating lipid absorption in the intestine, and regulating the microbiome in the intestine.[7] In addition to these functions, intestinal alkaline phosphatase can also modulate bicarbonate secretion and can modulate the pH of the duodenum.[8]
References
- 1 2 3 GRCh38: Ensembl release 89: ENSG00000163295 - Ensembl, May 2017
- 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000036500 - Ensembl, May 2017
- ↑ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ↑ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ↑ Berger J, Garattini E, Hua JC, Udenfriend S (February 1987). "Cloning and sequencing of human intestinal alkaline phosphatase cDNA". Proceedings of the National Academy of Sciences of the United States of America. 84 (3): 695–698. Bibcode:1987PNAS...84..695B. doi:10.1073/pnas.84.3.695. PMC 304282. PMID 3468508.
- ↑ Henthorn PS, Raducha M, Edwards YH, Weiss MJ, Slaughter C, Lafferty MA, Harris H (March 1987). "Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase". Proceedings of the National Academy of Sciences of the United States of America. 84 (5): 1234–1238. Bibcode:1987PNAS...84.1234H. doi:10.1073/pnas.84.5.1234. PMC 304401. PMID 3469665.
- ↑ Fawley J, Gourlay DM (May 2016). "Intestinal alkaline phosphatase: a summary of its role in clinical disease". The Journal of Surgical Research. 202 (1): 225–234. doi:10.1016/j.jss.2015.12.008. PMC 4834149. PMID 27083970.
- ↑ Lallès JP (June 2010). "Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet". Nutrition Reviews. 68 (6): 323–332. doi:10.1111/j.1753-4887.2010.00292.x. PMID 20536777.
External links
- Human ALPI genome location and ALPI gene details page in the UCSC Genome Browser.
Further reading
- Hirasaka K, Tokuoka K, Nakao R, Yamada C, Oarada M, Imagawa T, et al. (April 2008). "Cathepsin C propeptide interacts with intestinal alkaline phosphatase and heat shock cognate protein 70 in human Caco-2 cells". The Journal of Physiological Sciences. 58 (2): 105–111. doi:10.2170/physiolsci.RP013007. PMID 18307834.
- Mahmood A, Shao JS, Alpers DH (August 2003). "Rat enterocytes secrete SLPs containing alkaline phosphatase and cubilin in response to corn oil feeding". American Journal of Physiology. Gastrointestinal and Liver Physiology. 285 (2): G433–G441. doi:10.1152/ajpgi.00466.2002. PMID 12660142. S2CID 30731288.
- Wada A, Wang AP, Isomoto H, Satomi Y, Takao T, Takahashi A, et al. (January 2005). "Placental and intestinal alkaline phosphatases are receptors for Aeromonas sobria hemolysin". International Journal of Medical Microbiology. 294 (7): 427–435. doi:10.1016/j.ijmm.2004.09.012. PMID 15715171.
- Nakano T, Inoue I, Alpers DH, Akiba Y, Katayama S, Shinozaki R, et al. (July 2009). "Role of lysophosphatidylcholine in brush-border intestinal alkaline phosphatase release and restoration". American Journal of Physiology. Gastrointestinal and Liver Physiology. 297 (1): G207–G214. doi:10.1152/ajpgi.90590.2008. PMC 3817256. PMID 19407215.
- Malo MS, Zhang W, Alkhoury F, Pushpakaran P, Abedrapo MA, Mozumder M, et al. (August 2004). "Thyroid hormone positively regulates the enterocyte differentiation marker intestinal alkaline phosphatase gene via an atypical response element". Molecular Endocrinology. 18 (8): 1941–1962. doi:10.1210/me.2003-0351. PMID 15143152.
- Rump A, Kasper G, Hayes C, Wen G, Starke H, Liehr T, et al. (April 2001). "Complex arrangement of genes within a 220-kb region of double-duplicated DNA on human 2q37.1". Genomics. 73 (1): 50–55. doi:10.1006/geno.2000.6504. PMID 11352565.
- Nauli AM, Zheng S, Yang Q, Li R, Jandacek R, Tso P (April 2003). "Intestinal alkaline phosphatase release is not associated with chylomicron formation". American Journal of Physiology. Gastrointestinal and Liver Physiology. 284 (4): G583–G587. doi:10.1152/ajpgi.00482.2002. PMID 12466148.
- Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, et al. (January 2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes". Genome Research. 16 (1): 55–65. doi:10.1101/gr.4039406. PMC 1356129. PMID 16344560.
- Alkhoury F, Malo MS, Mozumder M, Mostafa G, Hodin RA (August 2005). "Differential regulation of intestinal alkaline phosphatase gene expression by Cdx1 and Cdx2". American Journal of Physiology. Gastrointestinal and Liver Physiology. 289 (2): G285–G290. doi:10.1152/ajpgi.00037.2005. PMID 15774940.
- Giatromanolaki A, Sivridis E, Maltezos E, Koukourakis MI (December 2002). "Down-regulation of intestinal-type alkaline phosphatase in the tumor vasculature and stroma provides a strong basis for explaining amifostine selectivity". Seminars in Oncology. 29 (6 Suppl 19): 14–21. doi:10.1053/sonc.2002.37356. PMID 12577238.
- Torres MI, Lorite P, López-Casado MA, Ríos A (2007). "A new approach using tissue alkaline phosphatase histochemistry to identify Crohn's disease". Pathology, Research and Practice. 203 (6): 485–487. doi:10.1016/j.prp.2007.02.003. PMID 17498884.
- Hinnebusch BF, Siddique A, Henderson JW, Malo MS, Zhang W, Athaide CP, et al. (January 2004). "Enterocyte differentiation marker intestinal alkaline phosphatase is a target gene of the gut-enriched Kruppel-like factor". American Journal of Physiology. Gastrointestinal and Liver Physiology. 286 (1): G23–G30. doi:10.1152/ajpgi.00203.2003. PMID 12919939.
- Le Du MH, Millan JL (December 2002). "Structural evidence of functional divergence in human alkaline phosphatases". The Journal of Biological Chemistry. 277 (51): 49808–49814. doi:10.1074/jbc.M207394200. PMID 12372831.
- Goldberg RF, Austen WG, Zhang X, Munene G, Mostafa G, Biswas S, et al. (March 2008). "Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition". Proceedings of the National Academy of Sciences of the United States of America. 105 (9): 3551–3556. Bibcode:2008PNAS..105.3551G. doi:10.1073/pnas.0712140105. PMC 2265168. PMID 18292227.
- Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, et al. (August 2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins". Proceedings of the National Academy of Sciences of the United States of America. 101 (33): 12130–12135. Bibcode:2004PNAS..10112130B. doi:10.1073/pnas.0404720101. PMC 514446. PMID 15302935.
- Olsen L, Bressendorff S, Troelsen JT, Olsen J (August 2005). "Differentiation-dependent activation of the human intestinal alkaline phosphatase promoter by HNF-4 in intestinal cells". American Journal of Physiology. Gastrointestinal and Liver Physiology. 289 (2): G220–G226. doi:10.1152/ajpgi.00449.2004. PMID 15831710. S2CID 16852841.
- Fumoto K, Hoogenraad CC, Kikuchi A (December 2006). "GSK-3beta-regulated interaction of BICD with dynein is involved in microtubule anchorage at centrosome". The EMBO Journal. 25 (24): 5670–5682. doi:10.1038/sj.emboj.7601459. PMC 1698904. PMID 17139249.
- Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Molecular Systems Biology. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.