In quantum physics, entanglement depth characterizes the strength of multiparticle entanglement. An entanglement depth means that the quantum state of a particle ensemble cannot be described under the assumption that particles interacted with each other only in groups having fewer than particles. It has been used to characterize the quantum states created in experiments with cold gases.[1]

Definition

Entanglement depth appeared first in the context of cold gases, together with entanglement criteria that made it possible to bound it from below based on measured quantities.[2][3][4][5][6][7][8]

We will now present a general definition based on convex sets of quantum states. First, we will define -producibility.[9] Let us consider a pure state that is the tensor product of multi-particle quantum states

The pure state is said to be -producible if all are states of at most particles. A mixed state is called -producible, if it is a mixture of pure states that are all at most -producible. The -producible mixed states form a convex set.

A quantum state contains at least genuine multiparticle entanglement of particles, if it is not -producible.

Finally, a quantum state has an entanglement depth , if it is -producible, but not -producible.

References

  1. Gross, C.; Zibold, T.; Nicklas, E.; Estève, J.; Oberthaler, M. K. (April 2010). "Nonlinear atom interferometer surpasses classical precision limit". Nature. 464 (7292): 1165–1169. arXiv:1009.2374. Bibcode:2010Natur.464.1165G. doi:10.1038/nature08919. PMID 20357767. S2CID 4419504.
  2. Sørensen, Anders S.; Mølmer, Klaus (14 May 2001). "Entanglement and Extreme Spin Squeezing". Physical Review Letters. 86 (20): 4431–4434. arXiv:quant-ph/0011035. Bibcode:2001PhRvL..86.4431S. doi:10.1103/PhysRevLett.86.4431. PMID 11384252. S2CID 206327094.
  3. Riedel, Max F.; Böhi, Pascal; Li, Yun; Hänsch, Theodor W.; Sinatra, Alice; Treutlein, Philipp (April 2010). "Atom-chip-based generation of entanglement for quantum metrology". Nature. 464 (7292): 1170–1173. arXiv:1003.1651. Bibcode:2010Natur.464.1170R. doi:10.1038/nature08988. PMID 20357765. S2CID 4302730.
  4. Bohnet, J. G.; Cox, K. C.; Norcia, M. A.; Weiner, J. M.; Chen, Z.; Thompson, J. K. (September 2014). "Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit". Nature Photonics. 8 (9): 731–736. arXiv:1310.3177. Bibcode:2014NaPho...8..731B. doi:10.1038/nphoton.2014.151. S2CID 67780562.
  5. Cox, Kevin C.; Greve, Graham P.; Weiner, Joshua M.; Thompson, James K. (4 March 2016). "Deterministic Squeezed States with Collective Measurements and Feedback". Physical Review Letters. 116 (9): 093602. arXiv:1512.02150. Bibcode:2016PhRvL.116i3602C. doi:10.1103/PhysRevLett.116.093602. PMID 26991175.
  6. Mitchell, Morgan W; Beduini, Federica A (17 July 2014). "Extreme spin squeezing for photons". New Journal of Physics. 16 (7): 073027. arXiv:1304.2527. Bibcode:2014NJPh...16g3027M. doi:10.1088/1367-2630/16/7/073027.
  7. Lücke, Bernd; Peise, Jan; Vitagliano, Giuseppe; Arlt, Jan; Santos, Luis; Tóth, Géza; Klempt, Carsten (17 April 2014). "Detecting Multiparticle Entanglement of Dicke States". Physical Review Letters. 112 (15): 155304. arXiv:1403.4542. Bibcode:2014PhRvL.112o5304L. doi:10.1103/PhysRevLett.112.155304. PMID 24785048.
  8. Zou, Yi-Quan; Wu, Ling-Na; Liu, Qi; Luo, Xin-Yu; Guo, Shuai-Feng; Cao, Jia-Hao; Tey, Meng Khoon; You, Li (19 June 2018). "Beating the classical precision limit with spin-1 Dicke states of more than 10,000 atoms". Proceedings of the National Academy of Sciences. 115 (25): 6381–6385. arXiv:1802.10288. Bibcode:2018PNAS..115.6381Z. doi:10.1073/pnas.1715105115. PMC 6016791. PMID 29858344.
  9. Gühne, Otfried; Tóth, Géza; Briegel, Hans J (4 November 2005). "Multipartite entanglement in spin chains". New Journal of Physics. 7: 229. arXiv:quant-ph/0502160. doi:10.1088/1367-2630/7/1/229.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.