Gyrate rhombicosidodecahedron
TypeJohnson
J71J72J73
Faces20 triangles
30 squares
12 pentagons
Edges120
Vertices60
Vertex configuration10(3.42.5)
4x5+3x10(3.4.5.4)
Symmetry groupC5v
Dual polyhedron-
Propertiesconvex, canonical
Net

In geometry, the gyrate rhombicosidodecahedron is one of the Johnson solids (J72). It is also a canonical polyhedron.

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids, Archimedean solids, prisms, or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966.[1]

It can be constructed as a rhombicosidodecahedron with one pentagonal cupola rotated through 36 degrees. They have the same faces around each vertex, but vertex configurations along the rotation become a different order, 3.4.4.5.


Rhombicosidodecahedron

Gyrate rhombicosidodecahedron

Alternative Johnson solids, constructed by rotating different cupolae of a rhombicosidodecahedron, are:

  1. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics, 18: 169–200, doi:10.4153/cjm-1966-021-8, MR 0185507, Zbl 0132.14603.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.