In algebra, an integrable module (or integrable representation) of a Kac–Moody algebra (a certain infinite-dimensional Lie algebra) is a representation of such that (1) it is a sum of weight spaces and (2) the Chevalley generators of are locally nilpotent.[1] For example, the adjoint representation of a Kac–Moody algebra is integrable.[2]

References

  1. Kac 1990, § 3.6.
  2. Kac 1990, Lemma 3.5.
  • Kac, Victor (1990). Infinite dimensional Lie algebras (3rd ed.). Cambridge University Press. ISBN 0-521-46693-8.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.