In mathematics, the Jacquet–Langlands correspondence is a correspondence between automorphic forms on GL2 and its twisted forms, proved by Jacquet and Langlands (1970,section 16) in their book Automorphic Forms on GL(2) using the Selberg trace formula. It was one of the first examples of the Langlands philosophy that maps between L-groups should induce maps between automorphic representations. There are generalized versions of the Jacquet–Langlands correspondence relating automorphic representations of GLr(D) and GLdr(F), where D is a division algebra of degree d2 over the local or global field F.

Suppose that G is an inner twist of the algebraic group GL2, in other words the multiplicative group of a quaternion algebra. The Jacquet–Langlands correspondence is bijection between

Corresponding representations have the same local components at all unramified places of G.

Rogawski (1983) and Deligne, Kazhdan & Vignéras (1984) extended the Jacquet–Langlands correspondence to division algebras of higher dimension.

References

  • Deligne, Pierre; Kazhdan, David; Vignéras, M.-F. (1984), "Représentations des algèbres centrales simples p-adiques", Représentations des groupes réductifs sur un corps local, Travaux en Cours, Paris: Hermann, pp. 33–117, ISBN 978-2-7056-5989-9, MR 0771672
  • Henniart, Guy (2006), "On the local Langlands and Jacquet-Langlands correspondences", in Sanz-Solé, Marta; Soria, Javier; Varona, Juan Luis; et al. (eds.), International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, pp. 1171–1182, ISBN 978-3-03719-022-7, MR 2275640, archived from the original on 2012-03-15, retrieved 2011-07-01
  • Jacquet, H.; Langlands, Robert P. (1970), Automorphic Forms on GL(2), Lecture Notes in Mathematics, vol. 114, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0058988, ISBN 978-3-540-04903-6, MR 0401654
  • Rogawski, Jonathan D. (1983), "Representations of GL(n) and division algebras over a p-adic field", Duke Mathematical Journal, 50 (1): 161–196, doi:10.1215/s0012-7094-83-05006-8, ISSN 0012-7094, MR 0700135
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.