In mathematics, a Listing number of a topological space is one of several topological invariants introduced by the 19th-century mathematician Johann Benedict Listing and later given this name by Charles Sanders Peirce. Unlike the later invariants given by Bernhard Riemann, the Listing numbers do not form a complete set of invariants: two different two-dimensional manifolds may have the same Listing numbers as each other.[1]

There are four Listing numbers associated with a space.[2] The smallest Listing number counts the number of connected components of a space, and is thus equivalent to the zeroth Betti number.[3]

References

  1. Peirce, Charles Sanders (1992), Reasoning and the Logic of Things: The Cambridge Conferences Lectures of 1898, Harvard University Press, Footnote 70, pp. 279–280, ISBN 9780674749672.
  2. Peirce, pp. 99–102.
  3. Peirce, p. 99.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.