Separation axioms in topological spaces | |
---|---|
Kolmogorov classification | |
T0 | (Kolmogorov) |
T1 | (Fréchet) |
T2 | (Hausdorff) |
T2½ | (Urysohn) |
completely T2 | (completely Hausdorff) |
T3 | (regular Hausdorff) |
T3½ | (Tychonoff) |
T4 | (normal Hausdorff) |
T5 | (completely normal Hausdorff) |
T6 | (perfectly normal Hausdorff) |
In mathematics, in the field of topology, a topological space is said to be locally Hausdorff if every point has a neighbourhood that is a Hausdorff space under the subspace topology.[1]
Examples and sufficient conditions
- Every Hausdorff space is locally Hausdorff.
- There are locally Hausdorff spaces where a sequence has more than one limit. This can never happen for a Hausdorff space.
- The line with two origins is locally Hausdorff (it is in fact locally metrizable) but not Hausdorff.
- The etale space for the sheaf of differentiable functions on a differential manifold is not Hausdorff, but it is locally Hausdorff.
- Let be a set given the particular point topology with particular point The space is locally Hausdorff at since is an isolated point in and the singleton is a Hausdorff neighbourhood of For any other point any neighbourhood of it contains and therefore the space is not locally Hausdorff at
Properties
A space is locally Hausdorff exactly if it can be written as a union of Hausdorff open subspaces.[2] And in a locally Hausdorff space each point belongs to some Hausdorff dense open subspace.[3]
Every locally Hausdorff space is T1.[4] The converse is not true in general. For example, an infinite set with the cofinite topology is a T1 space that is not locally Hausdorff.
Every locally Hausdorff space is sober.[5]
If is a topological group that is locally Hausdorff at some point then is Hausdorff. This follows from the fact that if there exists a homeomorphism from to itself carrying to so is locally Hausdorff at every point, and is therefore T1 (and T1 topological groups are Hausdorff).
References
- ↑ Niefield, Susan B. (1991), "Weak products over a locally Hausdorff locale", Category theory (Como, 1990), Lecture Notes in Math., vol. 1488, Springer, Berlin, pp. 298–305, doi:10.1007/BFb0084228, MR 1173020.
- ↑ Niefield, S. B. (1983). "A note on the locally Hausdorff property". Cahiers de topologie et géométrie différentielle. 24 (1): 87–95. ISSN 2681-2398., Lemma 3.2
- ↑ Baillif, Mathieu; Gabard, Alexandre (2008). "Manifolds: Hausdorffness versus homogeneity". Proceedings of the American Mathematical Society. 136 (3): 1105–1111. arXiv:math/0609098. doi:10.1090/S0002-9939-07-09100-9., Lemma 4.2
- ↑ Niefield 1983, Proposition 3.4.
- ↑ Niefield 1983, Proposition 3.5.