Part of a series related to |
Benthic life |
---|
Benthos Benthic zone Benthopelagic (coupling) Seabed |
Macrobenthos consists of the organisms that live at the bottom of a water column[1] and are visible to the naked eye.[2] In some classification schemes, these organisms are larger than 1 mm;[1] in another, the smallest dimension must be at least 0.5 mm.[3] They include polychaete worms, pelecypods, anthozoans, echinoderms, sponges, ascidians, crustaceans.
The marine macrobenthos community is a critical component and reliable indicator of the biotic integrity of marine ecosystems, especially the intertidal ecosystems.[4][5][6] On the one hand, macrobenthos plays a vital role in maintaining ecosystem functions, such as material cycling in sediments and energy flow in food webs. On the other hand, macrobenthos is relatively sedentary and therefore reflects the ambient conditions of sediments, in which many pollutants (e.g., heavy metals and organic enrichment) are ultimately partitioned.[7][8][9]
Heavy metal pollution is one of the most common anthropogenic pressures that impact marine ecosystems (e.g., intertidal zones, coastal waters, and estuaries), which has been documented by many studies throughout the world.[10][11][12] Heavy metal contaminants can result in adverse toxic effects on benthic organisms,[13][14] leading to the changes in composition, structure, and ecosystem function of macrobenthic communities.[15][5][16][17][18] For example, in Aveiro Lagoon (Portugal), with the increase of mercury contamination, the total abundance and species richness decreased, and tolerant taxa increased;[19] in Incheon Harbour (Korea) and the coastal zone south of Sfax (Tunisia), macrobenthic community gradually changed with the pollution levels, and species diversity decreased with decreased distance from the pollution source.[7][20] However, most of the studies were conducted in the subtidal zones other than intertidal zones, which are more vulnerable to human activities.[9]
Macrobenthos consists of numerous taxa, and different species have a different tolerance to environmental pressures. For example, polychaetes Capitella capitata and Heteromastus filiformis are naturally tolerant to environmental disturbance, which could live well in a highly organic enrichment and/or heavy metal polluted area,[21][7][22] while some taxa (e.g., polychaete Magelona dakini and amphipods Perioculodes longimanus) are inherently sensitive to environmental disturbance, and could not survive in such highly polluted zones.[23][24][9]
- The polychaete Capitella capitata
- The polychaete Heteromastus filiformis
- The amphipod Perioculodes longimanus
This indicates that each species has evolved a unique survival strategy to adapt to different environmental conditions, even though it may be similar in some ways with other species. When facing loads of contaminants, such as metal(loid)s and organic enrichment or other contaminants gradients, macrobenthos have to make some reactions to resist such adverse environmental conditions. Therefore, macrobenthic responses may reflect different types and levels of pollutant impacts.[7][5][9]
A visual examination of macroorganisms at the bottom of an aquatic ecosystem can be a good indicator of water quality.[25]
- Stony corals
- A sea squirt being used as a substrate for a nudibranch's egg spiral.
References
- 1 2 J.S. Link, C.A. Griswold, E.T. Methratta, J. Gunnard, Editors. 2006. Documentation for the Energy Modeling and Analysis eXercise (EMAX) Archived 2013-02-27 at the Wayback Machine. United States Department of Commerce, Northeast Fisheries Science Center. Reference Document 06-15 Chapter 8.
- ↑ "Macrobenthos definition". Mondofacto. 9 Oct 1997. Archived from the original on 16 September 2013. Retrieved 2011-01-26.
- ↑ "Macrobenthos definition". Science-Dictionary.com. Archived from the original on 2011-07-16. Retrieved 2011-01-26.
- ↑ Teixeira, Heliana; Neto, João Magalhães; Patrício, Joana; Veríssimo, Helena; Pinto, Rute; Salas, Fuensanta; Marques, João Carlos (2009). "Quality assessment of benthic macroinvertebrates under the scope of WFD using BAT, the Benthic Assessment Tool". Marine Pollution Bulletin. 58 (10): 1477–1486. doi:10.1016/j.marpolbul.2009.06.006. PMID 19615698.
- 1 2 3 Piló, D.; Ben-Hamadou, R.; Pereira, F.; Carriço, A.; Pereira, P.; Corzo, A.; Gaspar, M.B.; Carvalho, S. (2016). "How functional traits of estuarine macrobenthic assemblages respond to metal contamination?". Ecological Indicators. 71: 645–659. doi:10.1016/j.ecolind.2016.07.019. S2CID 89021490.
- ↑ Llanos, Elizabeth Noemi; Saracho Bottero, María Andrea; Jaubet, María Lourdes; Elías, Rodolfo; Garaffo, Griselda Valeria (2020). "Functional diversity in the intertidal macrobenthic community at sewage-affected shores from Southwestern Atlantic". Marine Pollution Bulletin. 157: 111365. doi:10.1016/j.marpolbul.2020.111365. PMID 32658710. S2CID 220518580.
- 1 2 3 4 Ryu, Jongseong; Khim, Jong Seong; Kang, Seong-Gil; Kang, Daeseok; Lee, Chang-hee; Koh, Chul-Hwan (2011). "The impact of heavy metal pollution gradients in sediments on benthic macrofauna at population and community levels". Environmental Pollution. 159 (10): 2622–2629. doi:10.1016/j.envpol.2011.05.034. PMID 21684642.
- ↑ Desrosiers, Mélanie; Usseglio-Polatera, Philippe; Archaimbault, Virginie; Larras, Floriane; Méthot, Ginette; Pinel-Alloul, Bernadette (2019). "Assessing anthropogenic pressure in the St. Lawrence River using traits of benthic macroinvertebrates". Science of the Total Environment. 649: 233–246. Bibcode:2019ScTEn.649..233D. doi:10.1016/j.scitotenv.2018.08.267. PMID 30173032. S2CID 52167429.
- 1 2 3 4 Dong, Jian-Yu; Zhao, Linlin; Yang, Xiaolong; Sun, Xin; Zhang, Xiumei (2021). "Functional Trait Responses of Macrobenthos to Anthropogenic Pressure in Three Temperate Intertidal Communities". Frontiers in Marine Science. 8. doi:10.3389/fmars.2021.756814. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
- ↑ Boudaya, Lobna; Mosbahi, Nawfel; Dauvin, Jean-Claude; Neifar, Lassad (2019). "Structure of the benthic macrofauna of an anthropogenic influenced area: Skhira Bay (Gulf of Gabès, central Mediterranean Sea)". Environmental Science and Pollution Research. 26 (13): 13522–13538. doi:10.1007/s11356-019-04809-8. PMID 30911967. S2CID 85517094.
- ↑ Izegaegbe, Joshua Idowu; Vivier, Leon; Mzimela, Hendrick Mduduzi (2020). "Trace metal contamination in sediment in the Mhlathuze Estuary, northern Kwa Zulu-Natal, South Africa: Effects on the macrobenthic community". Environmental Monitoring and Assessment. 192 (6): 401. doi:10.1007/s10661-020-08352-9. PMC 7256079. PMID 32468333.
- ↑ Wang, Xuejing; Fu, Renlong; Li, Hailong; Zhang, Yan; Lu, Meiqing; Xiao, Kai; Zhang, Xiaolang; Zheng, Chunmiao; Xiong, Ying (2020). "Heavy metal contamination in surface sediments: A comprehensive, large-scale evaluation for the Bohai Sea, China". Environmental Pollution. 260: 113986. doi:10.1016/j.envpol.2020.113986. PMID 31995779. S2CID 210947470.
- ↑ Dewitt, Theodore H.; Swartz, Richard C.; Hansen, David J.; McGovern, Douglas; Berry, Walter J. (1996). "Bioavailability and chronic toxicity of cadmium in sediment to the estuarine amphipod Leptocheirus plumulosus". Environmental Toxicology and Chemistry. 15 (12): 2095–2101. doi:10.1002/etc.5620151205.
- ↑ Dabney, Brittanie L.; Clements, William H.; Williamson, Jacob L.; Ranville, James F. (2018). "Influence of Metal Contamination and Sediment Deposition on Benthic Invertebrate Colonization at the North Fork Clear Creek Superfund Site, Colorado, USA". Environmental Science & Technology. 52 (12): 7072–7080. Bibcode:2018EnST...52.7072D. doi:10.1021/acs.est.7b06556. PMC 6008246. PMID 29812923.
- ↑ Mucha, Ana P.; Vasconcelos, M.Teresa S.D; Bordalo, Adriano A. (2003). "Macrobenthic community in the Douro estuary: Relations with trace metals and natural sediment characteristics". Environmental Pollution. 121 (2): 169–180. doi:10.1016/S0269-7491(02)00229-4. PMID 12521105.
- ↑ Hu, Chengye; Dong, Jianyu; Gao, Lijia; Yang, Xiaolong; Wang, Zhan; Zhang, Xiumei (2019). "Macrobenthos functional trait responses to heavy metal pollution gradients in a temperate lagoon". Environmental Pollution. 253: 1107–1116. doi:10.1016/j.envpol.2019.06.117. PMID 31434188. S2CID 198353433.
- ↑ Roe, Rebecca A. L.; Tran, Thi Kim Anh; Schreider, Maria J.; MacFarlane, Geoff R. (2020). "Assessment of the Effects of Sediment-Associated Metals and Metalloids on Mangrove Macroinvertebrate Assemblages". Water, Air, & Soil Pollution. 231 (7): 352. Bibcode:2020WASP..231..352R. doi:10.1007/s11270-020-04731-7. S2CID 220309439.
- ↑ Dreujou, Elliot; Desroy, Nicolas; Carrière, Julie; Tréau De Coeli, Lisa; McKindsey, Christopher W.; Archambault, Philippe (2021). "Determining the Ecological Status of Benthic Coastal Communities: A Case in an Anthropized Sub-Arctic Area". Frontiers in Marine Science. 8. doi:10.3389/fmars.2021.637546.
- ↑ Nunes, M.; Coelho, J.P.; Cardoso, P.G.; Pereira, M.E.; Duarte, A.C.; Pardal, M.A. (2008). "The macrobenthic community along a mercury contamination in a temperate estuarine system (Ria de Aveiro, Portugal)". Science of the Total Environment. 405 (1–3): 186–194. Bibcode:2008ScTEn.405..186N. doi:10.1016/j.scitotenv.2008.07.009. PMID 18765161.
- ↑ Mosbahi, Nawfel; Serbaji, Mohamed Moncef; Pezy, Jean-Philippe; Neifar, Lassad; Dauvin, Jean-Claude (2019). "Response of benthic macrofauna to multiple anthropogenic pressures in the shallow coastal zone south of Sfax (Tunisia, central Mediterranean Sea)". Environmental Pollution. 253: 474–487. doi:10.1016/j.envpol.2019.06.080. PMID 31330340. S2CID 198170686.
- ↑ Selck, Henriette; Decho, Alan W.; Forbes, Valery E. (1999). "Effects of chronic metal exposure and sediment organic matter on digestive absorption efficiency of cadmium by the deposit-feeding polychaete Capitellaspecies I". Environmental Toxicology and Chemistry. 18 (6): 1289–1297. doi:10.1002/etc.5620180631. S2CID 247666449.
- ↑ Bae, Hanna; Lee, Jung-Ho; Song, Sung Joon; Park, Jinsoon; Kwon, Bong-Oh; Hong, Seongjin; Ryu, Jongseong; Choi, Kyungsik; Khim, Jong Seong (2017). "Impacts of environmental and anthropogenic stresses on macrozoobenthic communities in Jinhae Bay, Korea". Chemosphere. 171: 681–691. Bibcode:2017Chmsp.171..681B. doi:10.1016/j.chemosphere.2016.12.112. PMID 28061426.
- ↑ De-La-Ossa-Carretero, J.A.; Del-Pilar-Ruso, Y.; Giménez-Casalduero, F.; Sánchez-Lizaso, J.L.; Dauvin, J.-C. (2012). "Sensitivity of amphipods to sewage pollution". Estuarine, Coastal and Shelf Science. 96: 129–138. Bibcode:2012ECSS...96..129D. doi:10.1016/j.ecss.2011.10.020.
- ↑ Ellis, J. I.; Clark, D.; Atalah, J.; Jiang, W.; Taiapa, C.; Patterson, M.; Sinner, J.; Hewitt, J. (2017). "Multiple stressor effects on marine infauna: Responses of estuarine taxa and functional traits to sedimentation, nutrient and metal loading". Scientific Reports. 7 (1): 12013. Bibcode:2017NatSR...712013E. doi:10.1038/s41598-017-12323-5. PMC 5607226. PMID 28931887.
- ↑ Mulligan CN, Fukue M and Sato Y (2010) Sediments Contamination and Sustainable Remediation page 30, CRC Press. ISBN 9781420062236.