In mathematics, Malgrange–Zerner theorem (named for Bernard Malgrange and Martin Zerner) shows that a function on allowing holomorphic extension in each variable separately can be extended, under certain conditions, to a function holomorphic in all variables jointly. This theorem can be seen as a generalization of Bochner's tube theorem to functions defined on tube-like domains whose base is not an open set.

Theorem[1][2] Let

and let convex hull of . Let be a locally bounded function such that and that for any fixed point the function is holomorphic in in the interior of for each . Then the function can be uniquely extended to a function holomorphic in the interior of .

History

According to Henry Epstein,[1][3] this theorem was proved first by Malgrange in 1961 (unpublished), then by Zerner [4] (as cited in [1]), and commmunicated to him privately. Epstein's lectures [1] contain the first published proof (attributed there to Broz, Epstein and Glaser). The assumption was later relaxed to (see Ref.[1] in [2]) and finally to .[2]

References

  1. 1 2 3 4 Epstein, Henry (1966). Some analytic properties of scattering amplitudes in quantum field theory (8th Brandeis University Summer Institute in Theoretical Physics: Particle symmetries and axiomatic field theory). pp. 1–128.
  2. 1 2 3 Drużkowski, Ludwik M. (1999-02-22). "A generalization of the Malgrange–Zerner theorem". Annales Polonici Mathematici. 38 (2): 181–186. Retrieved 2021-07-01.
  3. Epstein, H. (1963). "On the Borchers class of a free field" (PDF). Il Nuovo Cimento. 27 (4): 886–893. doi:10.1007/bf02783277.
  4. Zerner M. (1961), mimeographed notes of a seminar given in Marseilles
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.