In physics, mirror matter, also called shadow matter or Alice matter, is a hypothetical counterpart to ordinary matter.[1]

Overview

Modern physics deals with three basic types of spatial symmetry: reflection, rotation, and translation. The known elementary particles respect rotation and translation symmetry but do not respect mirror reflection symmetry (also called P-symmetry or parity). Of the four fundamental interactionselectromagnetism, the strong interaction, the weak interaction, and gravity—only the weak interaction breaks parity.

Parity violation in weak interactions was first postulated by Tsung Dao Lee and Chen Ning Yang[2] in 1956 as a solution to the τ-θ puzzle. In consultation with the experimental physicist Chien-Shiung Wu a number of possibilities were proposed to test whether the weak interaction was in fact invariant under parity. One of the group's suggestions involved monitoring the decay of Cobalt-60,

to determine whether the electrons it emitted were radiated isotropically, like the two gamma rays. Wu performed this experiment in at the National Bureau of Standards in Washington, D.C. after nine months of work. Contrary to most expectations, in December of 1956 she and her team observed anisotropic electron radiation, proving that the weak interactions of the known particles violate parity.[3][4][5][6][7][8]

However, parity symmetry can be restored as a fundamental symmetry of nature if the particle content is enlarged so that every particle has a mirror partner. The theory in its modern form was described in 1991,[9] although the basic idea dates back further.[2][10][11] Mirror particles interact amongst themselves in the same way as ordinary particles, except where ordinary particles have left-handed interactions, mirror particles have right-handed interactions. In this way, it turns out that mirror reflection symmetry can exist as an exact symmetry of nature, provided that a "mirror" particle exists for every ordinary particle. Parity can also be spontaneously broken depending on the Higgs potential.[12][13] While in the case of unbroken parity symmetry the masses of particles are the same as their mirror partners, in case of broken parity symmetry the mirror partners are lighter or heavier.

Mirror matter, if it exists, would interact weakly in strength with ordinary matter. This is because the forces between mirror particles are mediated by mirror bosons. With the exception of the graviton, none of the known bosons can be identical to their mirror partners. The only way mirror matter can interact with ordinary matter via forces other than gravity is via kinetic mixing of mirror bosons with ordinary bosons. These interactions can only be very weak. Mirror particles have therefore been suggested as candidates for the inferred dark matter in the universe.[14][15][16][17][18]

In another context, mirror matter has been proposed to give rise to an effective Higgs mechanism responsible for the electroweak symmetry breaking. In such a scenario, mirror fermions have masses on the order of 1 TeV since they interact with an additional interaction, while some of the mirror bosons are identical to the ordinary gauge bosons. In order to emphasize the distinction of this model from the ones above, these mirror particles are usually called katoptrons.[19][20]

Observational effects

Abundance

Mirror matter could have been diluted to unobservably low densities during the inflation epoch. Sheldon Glashow has shown that if at some high energy scale particles exist which interact strongly with both ordinary and mirror particles, radiative corrections will lead to a mixing between photons and mirror photons.[21] This mixing has the effect of giving mirror electric charges a very small ordinary electric charge. Another effect of photon–mirror photon mixing is that it induces oscillations between positronium and mirror positronium. Positronium could then turn into mirror positronium and then decay into mirror photons.

The mixing between photons and mirror photons could be present in tree-level Feynman diagrams or arise as a consequence of quantum corrections due to the presence of particles that carry both ordinary and mirror charges. In the latter case, the quantum corrections have to vanish at the one and two loop-level Feynman diagrams, otherwise the predicted value of the kinetic mixing parameter would be larger than experimentally allowed.[21]

An experiment to measure this effect was being planned in November 2003. [22]

Dark matter

If mirror matter does exist in large abundances in the universe and if it interacts with ordinary matter via photon—mirror photon mixing, then this could be detected in dark matter direct detection experiments such as DAMA/NaI and its successor DAMA/LIBRA. In fact, it is one of the few dark matter candidates which can explain the positive DAMA/NaI dark matter signal whilst still being consistent with the null results of other dark matter experiments.[23][24]

Electromagnetic effects

Mirror matter may also be detected in electromagnetic field penetration experiments[25] and there would also be consequences for planetary science[26][27] and astrophysics.[28]

GZK puzzle

Mirror matter could also be responsible for the GZK puzzle. Topological defects in the mirror sector could produce mirror neutrinos which can oscillate to ordinary neutrinos.[29] Another possible way to evade the GZK bound is via neutron–mirror neutron oscillations.[30][31][32][33]

Gravitational effects

If mirror matter is present in the universe with sufficient abundance then its gravitational effects can be detected. Because mirror matter is analogous to ordinary matter, it is then to be expected that a fraction of the mirror matter exists in the form of mirror galaxies, mirror stars, mirror planets etc. These objects can be detected using gravitational microlensing.[34] One would also expect that some fraction of stars have mirror objects as their companion. In such cases one should be able to detect periodic Doppler shifts in the spectrum of the star.[17] There are some hints that such effects may already have been observed.[35]

Neutron to mirror-neutron oscillations

Neutrons which are electrically neutral particles of ordinary matter could oscillate into its mirror partner, the mirror neutron.[36] Recently experiments looked for neutrons vanishing into the mirror world. Most experiments found no signal and hence gave limits on transition rates to the mirror state,[37][38][39][40] one paper claimed signals.[41] Current research looks for signals where an applied magnetic field adjust the energy level of the neutron to the mirror world.[42][43] This energy difference can be interpreted due to a mirror magnetic field present in the mirror world or a mass difference of the neutron and its mirror partner. Such a transition to the mirror world could also solve the neutron lifetime puzzle.[44] Experiments searching for mirror neutron oscillation are ongoing at the Paul Scherrer Institute's UCN source, Switzerland, Institut Laue-Langevin, France and Spallation Neutron Source, USA.

See also

References

  1. Zyga, Lisa (2010-04-27). "Signs of dark matter may point to mirror matter candidate". Phys.org. Archived from the original on 2015-10-11. Retrieved 2023-11-24.
  2. 1 2 Lee, T. D.; Yang, C. N. (1956). "Question of Parity Conservation in Weak Interactions". Physical Review. 104 (1): 254–258. Bibcode:1956PhRv..104..254L. doi:10.1103/PhysRev.104.254. (Erratum: Bibcode:1957PhRv..106.1371L, doi:10.1103/PhysRev.106.1371)
  3. Wu, C. S.; Ambler, E.; Hayward, R. W.; Hoppes, D. D.; Hudson, R. P. (1957). "Experimental Test of Parity Conservation in Beta Decay". Physical Review. 105 (4): 1413–1415. Bibcode:1957PhRv..105.1413W. doi:10.1103/PhysRev.105.1413.
  4. Garwin, Richard L.; Lederman, Leon M.; Weinrich, Marcel (1957). "Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon". Physical Review. 105 (4): 1415–1417. Bibcode:1957PhRv..105.1415G. doi:10.1103/PhysRev.105.1415.
  5. Friedman, Jerome I.; Telegdi, V. L. (1957). "Nuclear Emulsion Evidence for Parity Nonconservation in the Decay Chain π+→μ+→e+". Physical Review. 106 (6): 1290–1293. Bibcode:1957PhRv..106.1290F. doi:10.1103/PhysRev.106.1290.
  6. Chiang, Tsai-Chien (2014). Madame Chien-Shiung Wu: The First Lady of Physics Research. World Scientific. pp. 136–137. ISBN 978-981-4374-84-2.
  7. Wu, C. S. (1973). Maglich, B. (ed.). Adventures in Experimental Physics: Gamma Volume. Princeton: World Science Communications. pp. 101–123. ASIN B000ITLM9Q.
  8. Lee, T. D. (2006). "New Insights to Old Problems". arXiv:hep-ph/0605017.
  9. Foot, R.; Lew, H.; Volkas, R.R. (1991). "A model with fundamental improper spacetime symmetries". Physics Letters B. 272 (1–2): 67–70. Bibcode:1991PhLB..272...67F. doi:10.1016/0370-2693(91)91013-L.
  10. Kobzarev, I.; Okun, L.; Pomeranchuk, I. (1966). "On the possibility of observing mirror particles". Soviet Journal of Nuclear Physics. 3: 837.
  11. Pavšič, Matej (1974). "External inversion, internal inversion, and reflection invariance". International Journal of Theoretical Physics. 9 (4): 229–244. arXiv:hep-ph/0105344. Bibcode:1974IJTP....9..229P. doi:10.1007/BF01810695. S2CID 15736872.
  12. Berezhiani, Zurab G.; Mohapatra, Rabindra N. (1995). "Reconciling present neutrino puzzles: Sterile neutrinos as mirror neutrinos". Physical Review D. 52 (11): 6607–6611. arXiv:hep-ph/9505385. Bibcode:1995PhRvD..52.6607B. doi:10.1103/PhysRevD.52.6607. PMID 10019200. S2CID 11306189.
  13. Foot, Robert; Lew, Henry; Volkas, Raymond Robert (2000). "Unbroken versus broken mirror world: A tale of two vacua". Journal of High Energy Physics. 2000 (7): 032. arXiv:hep-ph/0006027. Bibcode:2000JHEP...07..032F. doi:10.1088/1126-6708/2000/07/032. S2CID 11013856.
  14. Blinnikov, S. I.; Khlopov, M. Yu. (1982). "On possible effects of 'mirror' particles". Soviet Journal of Nuclear Physics. 36: 472.
  15. Blinnikov, S. I.; Khlopov, M. Yu. (1983). "Possible astronomical effects of mirror particles". Sov. Astron. 27: 371–375. Bibcode:1983SvA....27..371B.
  16. Kolb E. W., Seckel M., Turner M. S. (1985). "The shadow world of superstring theories". Nature. 314 (6010): 415–419. Bibcode:1985Natur.314..415K. doi:10.1038/314415a0. S2CID 4353658.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. 1 2 Khlopov, M. Yu.; Beskin, G. M.; Bochkarev, N. E.; Pushtilnik, L. A.; Pushtilnik, S. A. (1991). "Observational physics of mirror world" (PDF). Astron. Zh. Akad. Nauk SSSR. 68: 42–57. Archived (PDF) from the original on 2011-06-05.
  18. Hodges H. M. (1993). "Mirror baryons as the dark matter". Physical Review D. 47 (2): 456–459. Bibcode:1993PhRvD..47..456H. doi:10.1103/PhysRevD.47.456. PMID 10015599.
  19. Triantaphyllou G (2001). "Mass generation and the dynamical role of the Katoptron group". Modern Physics Letters A. 16 (2): 53–62. arXiv:hep-ph/0010147. Bibcode:2001MPLA...16...53T. doi:10.1142/S0217732301002274. S2CID 15689479.
  20. Triantaphyllou G., Zoupanos G. (2000). "Strongly interacting fermions from a higher dimensional unified gauge theory". Physics Letters B. 489 (3–4): 420–426. arXiv:hep-ph/0006262. Bibcode:2000PhLB..489..420T. CiteSeerX 10.1.1.347.9373. doi:10.1016/S0370-2693(00)00942-4. S2CID 17505679.
  21. 1 2 Glashow, S.L. (1986). "Positronium versus the mirror universe". Physics Letters B. 167 (1): 35–36. Bibcode:1986PhLB..167...35G. doi:10.1016/0370-2693(86)90540-X.
  22. Gninenko, S. N. (2004). "An Apparatus to Search for Mirror Dark Matter". International Journal of Modern Physics A. 19 (23): 3833–3847. arXiv:hep-ex/0311031. Bibcode:2004IJMPA..19.3833G. doi:10.1142/S0217751X04020105. S2CID 17721669.
  23. Foot, R. (2004). "Implications of the DAMA and CRESST experiments for mirror matter-type dark matter". Physical Review D. 69 (3): 036001. arXiv:hep-ph/0308254. Bibcode:2004PhRvD..69c6001F. doi:10.1103/PhysRevD.69.036001. S2CID 14580403.
  24. Foot, R. (2004). "Reconciling the Positive Dama Annual Modulation Signal with the Negative Results of the CDSM II Experiment". Modern Physics Letters A. 19 (24): 1841–1846. arXiv:astro-ph/0405362. Bibcode:2004MPLA...19.1841F. doi:10.1142/S0217732304015051. S2CID 18243354.
  25. Mitra, Saibal (2006). "Detecting dark matter in electromagnetic field penetration experiments". Physical Review D. 74 (4): 043532. arXiv:astro-ph/0605369. Bibcode:2006PhRvD..74d3532M. doi:10.1103/PhysRevD.74.043532. S2CID 119497509.
  26. Foot, R.; Mitra, S. (2003). "Mirror matter in the solar system: New evidence for mirror matter from Eros". Astroparticle Physics. 19 (6): 739–753. arXiv:astro-ph/0211067. Bibcode:2003APh....19..739F. doi:10.1016/S0927-6505(03)00119-1. S2CID 17578958.
  27. Foot, R.; Silagadze, Z. K. (2001). "Do mirror planets exist in our solar system?". Acta Physica Polonica B. 32 (7): 2271. arXiv:astro-ph/0104251. Bibcode:2001AcPPB..32.2271F.
  28. De Angelis, Alessandro; Pain, Reynald (2002). "Improved Limits on Photon Velocity Oscillations". Modern Physics Letters A. 17 (38): 2491–2496. arXiv:astro-ph/0205059. Bibcode:2002MPLA...17.2491D. doi:10.1142/S021773230200926X. S2CID 3042840.
  29. Berezinsky, V.; Vilenkin, A. (2000). "Ultrahigh energy neutrinos from hidden-sector topological defects". Physical Review D. 62 (8): 083512. arXiv:hep-ph/9908257. Bibcode:2000PhRvD..62h3512B. doi:10.1103/PhysRevD.62.083512. S2CID 204936092.
  30. Berezhiani, Zurab; Bento, Luís (2006). "Neutron–Mirror-Neutron Oscillations: How Fast Might They Be?". Physical Review Letters. 96 (8): 081801. arXiv:hep-ph/0507031. Bibcode:2006PhRvL..96h1801B. doi:10.1103/PhysRevLett.96.081801. PMID 16606167. S2CID 2171296.
  31. Berezhiani, Zurab; Bento, Luís (2006). "Fast neutron–mirror neutron oscillation and ultra high energy cosmic rays". Physics Letters B. 635 (5–6): 253–259. arXiv:hep-ph/0602227. Bibcode:2006PhLB..635..253B. doi:10.1016/j.physletb.2006.03.008. S2CID 119481860.
  32. Mohapatra, R.N.; Nasri, S.; Nussinov, S. (2005). "Some implications of neutron mirror neutron oscillation". Physics Letters B. 627 (1–4): 124–130. arXiv:hep-ph/0508109. doi:10.1016/j.physletb.2005.08.101. S2CID 119028382.
  33. Pokotilovski, Yu.N. (2006). "On the experimental search for neutron → mirror neutron oscillations". Physics Letters B. 639 (3–4): 214–217. arXiv:nucl-ex/0601017. Bibcode:2006PhLB..639..214P. doi:10.1016/j.physletb.2006.06.005. S2CID 16896749.
  34. Mohapatra, R. N.; Teplitz, Vigdor L. (1999). "Mirror matter MACHOs". Physics Letters B. 462 (3–4): 302–309. arXiv:astro-ph/9902085. Bibcode:1999PhLB..462..302M. doi:10.1016/S0370-2693(99)00789-3. S2CID 119427850.
  35. Foot, R. (1999). "Have mirror stars been observed?". Physics Letters B. 452 (1–2): 83–86. arXiv:astro-ph/9902065. Bibcode:1999PhLB..452...83F. doi:10.1016/S0370-2693(99)00230-0. S2CID 11374130.
  36. Berezhiani, Zurab; Bento, Luis (2006-02-27). "Neutron - Mirror Neutron Oscillations: How Fast Might They Be?". Physical Review Letters. 96 (8): 081801. arXiv:hep-ph/0507031. Bibcode:2006PhRvL..96h1801B. doi:10.1103/PhysRevLett.96.081801. ISSN 0031-9007. PMID 16606167. S2CID 2171296.
  37. Ban, G.; Bodek, K.; Daum, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Khomutov, N.; Kirch, K.; Kistryn, S.; Knecht, A.; Knowles, P. (2007-10-19). "A direct experimental limit on neutron -- mirror neutron oscillations". Physical Review Letters. 99 (16): 161603. arXiv:0705.2336. Bibcode:2007PhRvL..99p1603B. doi:10.1103/PhysRevLett.99.161603. ISSN 0031-9007. PMID 17995237. S2CID 20503448.
  38. Abel, C.; Ayres, N. J.; Ban, G.; Bison, G.; Bodek, K.; Bondar, V.; Chanel, E.; Chiu, P.-J.; Crawford, C.; Daum, M.; Dinani, R. T. (January 2021). "A search for neutron to mirror-neutron oscillations". Physics Letters B. 812: 135993. arXiv:2009.11046. doi:10.1016/j.physletb.2020.135993. S2CID 228076358.
  39. Serebrov, A. P.; Aleksandrov, E. B.; Dovator, N. A.; Dmitriev, S. P.; Fomin, A. K.; Geltenbort, P.; Kharitonov, A. G.; Krasnoschekova, I. A.; Lasakov, M. S.; Murashkin, A. N.; Shmelev, G. E. (May 2008). "Experimental search for neutron - mirror neutron oscillations using storage of ultracold neutrons". Physics Letters B. 663 (3): 181–185. arXiv:0706.3600. Bibcode:2008PhLB..663..181S. doi:10.1016/j.physletb.2008.04.014. S2CID 119132581.
  40. Altarev, I.; Baker, C. A.; Ban, G.; Bodek, K.; Daum, M.; Fierlinger, P.; Geltenbort, P.; Green, K.; van der Grinten, M. G. D.; Gutsmiedl, E.; Harris, P. G. (2009-08-17). "Neutron to Mirror-Neutron Oscillations in the Presence of Mirror Magnetic Fields". Physical Review D. 80 (3): 032003. arXiv:0905.4208. Bibcode:2009PhRvD..80c2003A. doi:10.1103/PhysRevD.80.032003. ISSN 1550-7998. S2CID 7423799.
  41. Berezhiani, Z.; Biondi, R.; Geltenbort, P.; Krasnoshchekova, I. A.; Varlamov, V. E.; Vassiljev, A. V.; Zherebtsov, O. M. (2018-09-01). "New experimental limits on neutron – mirror neutron oscillations in the presence of mirror magnetic field". The European Physical Journal C. 78 (9): 717. arXiv:1712.05761. Bibcode:2018EPJC...78..717B. doi:10.1140/epjc/s10052-018-6189-y. ISSN 1434-6044. S2CID 119250376.
  42. Ayres, N. J.; Berezhiani, Z.; Biondi, R.; Bison, G.; Bodek, K.; Bondar, V.; Chiu, P.-J.; Daum, M.; Dinani, R. T.; Doorenbos, C. B.; Emmenegger, S. (2021-10-31). "Improved search for neutron to mirror-neutron oscillations in the presence of mirror magnetic fields with a dedicated apparatus at the PSI UCN source". Symmetry. 14 (3): 503. arXiv:2111.02794. Bibcode:2022Symm...14..503A. doi:10.3390/sym14030503.
  43. Broussard, L. J.; Bailey, K. M.; Bailey, W. B.; Barrow, J. L.; Berry, K.; Blose, A.; Crawford, C.; Debeer-Schmitt, L.; Frost, M.; Galindo-Uribarri, A.; Gallmeier, F. X. (2019). "New search for mirror neutron regeneration". EPJ Web of Conferences. 219: 07002. arXiv:1912.08264. Bibcode:2019EPJWC.21907002B. doi:10.1051/epjconf/201921907002. ISSN 2100-014X. S2CID 209405136.
  44. Berezhiani, Zurab (2019-06-10). "Neutron lifetime puzzle and neutron–mirror neutron oscillation". The European Physical Journal C. 79 (6): 484. arXiv:1807.07906. Bibcode:2019EPJC...79..484B. doi:10.1140/epjc/s10052-019-6995-x. ISSN 1434-6052. S2CID 119232602.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.