Function | Orbital launch vehicle |
---|---|
Manufacturer |
|
Country of origin | South Korea |
Project cost | ₩ 1.96 trillion; US$1.7 billion (spaceport included) [2] |
Size | |
Height | 47.2 m (155 ft) [3] |
Diameter | 3.5 m (11 ft) |
Mass | 200,000 kg (440,000 lb) |
Stages | 3 |
Capacity | |
Payload to LEO (200 km) | |
Mass | 3,300 kg (7,300 lb) |
Payload to SSO (500 km) | |
Mass | 2,200 kg (4,900 lb) |
Payload to SSO (700 km) | |
Mass | 1,900 kg (4,200 lb)[4] |
Payload to GTO | |
Mass | 1,000 kg (2,200 lb)[5] |
Launch history | |
Status | Active |
Launch sites | Naro Space Center, LC-2 |
Total launches | 3 |
Success(es) | 2 |
Failure(s) | 1 |
Notable outcome(s) | 0 |
First flight | 21 October 2021, 08:00 UTC |
Last flight | 25 May 2023, 09:24 UTC (Active) |
Type of passengers/cargo | Dummy satellite |
First stage | |
Height | 21.6 m (71 ft) |
Diameter | 3.5 m (11 ft) |
Powered by | 4 KRE-075 SL |
Maximum thrust | 2,942 kN (661,000 lbf) [6] |
Specific impulse | 261.7 seconds (Sea level), 298.6 seconds (Vacuum) [7] |
Burn time | 127 seconds |
Propellant | Jet A / LOX |
Second stage | |
Diameter | 2.6 m (8 ft 6 in) |
Powered by | 1 KRE-075 Vacuum |
Maximum thrust | 788 kN (177,000 lbf) [6] |
Specific impulse | 315.4 seconds (Vacuum) [6] |
Burn time | 148 seconds |
Propellant | Jet A / LOX |
Third stage | |
Height | 3.5 m (11 ft) |
Diameter | 2.6 m (8 ft 6 in) |
Powered by | 1 KRE-007 Vacuum |
Maximum thrust | 68.7 kN (15,400 lbf) [6] |
Specific impulse | 325.1 seconds (Vacuum) |
Burn time | 498 seconds |
Propellant | LOX / Jet A-1 |
Nuri (Korean: 누리; Korean pronunciation: [nuriː], meaning "world" in native Korean), also known as KSLV-II (Korean Space Launch Vehicle-II),[8] is a three-stage launch vehicle, the second one developed by South Korea and the successor to Naro-1 (KSLV-1).[9] Nuri is developed by Korea Aerospace Research Institute (KARI).[10][11][3][12] All three stages use indigenously developed launch vehicle engines, making Nuri the first indigenously developed South Korean orbital launch vehicle (the Naro-1 launch vehicle used a Russian-made first stage).
The South Korean government has set SpaceX as a "role model", striving to develop relatively cheap and reliable rockets competitive enough for the commercial launch market.[13]
On 21 October 2021, Nuri made its initial orbital launch attempt at 08:00 UTC and it launched a 1,500 kg (3,300 lb) dummy satellite payload into what was planned to be a 700 km (430 mi) Sun-synchronous orbit (SSO). However, despite the payload reaching the targeted apogee (700 km), the third stage shut down about 46 seconds earlier than planned and the payload did not achieve orbital speed.[12][14][15]
Nuri made its second flight on 21 June 2022, 07:00 UTC, with a payload of 1,500 kg (3,300 lb) including a 1,300 kg (2,900 lb) dummy satellite payload and a 180 kg (400 lb) performance verification satellite (PVSAT) including four cube satellites. The second launch was successful, putting all the satellites onto the 700 km (430 mi) Sun-synchronous orbit (SSO).[16] As a result of this launch, South Korea became the seventh country in the world with the ability to put a satellite with a mass of at least one ton, into orbit.[17][18]
After the two test launches, Nuri showed higher than expected performance, increasing its payload from 1,500 kg (3,300 Ib) to 1,900 kg (4,200 Ib).[19]
Specification
Nuri (KSLV-II) is a three-stage launch vehicle. The first stage booster uses four KRE-075 SL engines generating 266.4 tons of thrust with a specific impulse of 289.1 seconds. The second stage booster uses a single KRE-075 Vacuum engine, which has a wider nozzle for increased efficiency in vacuum with a specific impulse of 315.4 seconds. The third stage booster uses one KRE-007 engine with a specific impulse of 325.1 seconds. Both engine models use Jet A as fuel and liquid oxygen (LOX) as oxidizer.[20]
Future versions
Further improvements will be added after the success of KSLV-II program, mainly increasing the thrust of the KRE-075 from 744 kN (167,000 lbf) to 849 kN (191,000 lbf) and specific impulse from 261.7 seconds to 315.4 seconds. There are also plans on making the engine lighter by methods such as removing the pyrotechnic ignitor or limiting its gimbal range. This will allow the payload capacity of the modified KSLV-II to increase from 1.5 tons to 2.8 tons.[21]
Development
When technology development for Nuri began by October 2010,[20][22] the overall design goal was to develop a new expendable medium-lift launch vehicle that would be entirely developed with indigenous technology from Korea. As Nuri first reached orbit in June 2022, the total cost of the development program had been approximately US$1.5 billion.[16]
Engines development
- In March 2014, the first combustion test of the 7-ton class combustor,[20][22] was successfully completed, and the total assembly and initial ignition test of the KRE-007 engine started in July 2015. In addition, the first phase of the project was completed with the addition of a three-stage engine combustion test facility and a combustor combustion test facility. However, the problem of combustion instability in the KRE-075 burner required rework.[20][22]
- Hanwha Techwin Co. signed on 25 January 2016, a 14.1 billion won (US$11.77 million) contract with the Korea Aerospace Research Institute (KARI) to produce both types of liquid propellant rocket engines for Nuri.[23]
- On 8 January 2016, the second phase of the project was carried out to overcome the difficulties of combustor combustion instability and welding technology of the liquid engine fuel tank, and a combustion test of the KRE-075 engine for a few seconds was successful.[20][22]
- On 3 May 2016, the KRE-075 engine underwent a 1.5 second long spark ignition test. It was later fired for 75 seconds on 8 June 2016. Following these successes, on 20 July 2016, at 1:39 pm, the final target combustion time of 145 seconds (147 seconds) was achieved. During the ground test, the engine performed nominally, with all values such as combustion safety and combustion thrust within the expected error range. During an actual launch, the first stage engine is expected to burn for 127 seconds and the second stage engine for 143 seconds.
- Starting from October 2016 to October 2021, there have been over 184 combustion tests of the second prototype KRE-075 engine.[24]
KRE-075 sea level engine
Fuel | Jet A / LOX |
Thrust | 66.6 tf (SL), 75.9 tf (Vacuum) [7] |
Specific Impulse | 298.6 seconds [7] |
Height | 2.9 m |
Diameter | 2 m |
Cycle | Gas generator |
The KRE-075 engine was developed in April 2016 after the 30 tf engine development program.[25][20]
KRE-075 vacuum engine
Fuel | Jet A-1/LOX |
Thrust | 80.3 tf (Vacuum) [7] |
Specific Impulse | 315.4 seconds [7] |
Cycle | Gas generator |
KRE-007 engine
Fuel | Jet A-1/LOX |
Thrust | 7.0 tf [7] |
Specific Impulse | 325.1 seconds [7] |
Cycle | Gas Generator |
KSLV-II TLV
The Test Launch Vehicle (TLV) was a single stage launch vehicle (with a planned two stage version), qualifying the performance of the KRE-075 engine which powers the KSLV-II. The TLV was 25.8 m (85 ft) in length, 2.6 m (8 ft 6 in) in diameter, and with a mass of 52.1 tons. The main-stage liquid rocket propellant engine was fully gimballed.[26][27] With the 2nd stage engine installed, the two-stage version of TLV could perform as a small satellite launch vehicle.[28]
2018 flight
Wet Mass | 52.1 tons [29] |
Dry Mass | 38 tons |
Height | 25.8 m |
Diameter | 2.6 m |
Stages | 1 |
Engine | 1 KRE-075 |
Payload | mass simulator |
The TLV was launched from the Naro Space Center in Goheung, South Jeolla Province, on 28 November 2018. The main objective of the first suborbital flight was for the single-stage rocket's main engine to burn 140 seconds, reaching a 100 km altitude before splashing down in the sea between Jeju Island and Okinawa Island.[30]
The maiden flight was first delayed from 25 October 2018 for one month, due to abnormal readings detected in the launch vehicle propellant pressurization system.[31] The test flight was then rescheduled for 28 November 2018, at 07:00 UTC (16:00 KST). No payload was to be placed into orbit.[32]
The launch of the TLV while deemed successful with its main engine burning for 151 seconds in a 10-minute flight,[33] was not broadcast live.[34] After reaching a maximum altitude of 209 km (130 mi), the launch vehicle stage splashed down in the Pacific Ocean, 429 km (267 mi) southeast of Jeju Island.[35]
As the TLV was meant to serve as a test craft, and as the flight ended in a success, there was not a second TLV launch.
GEO KSLV
An upgraded variety of KSLV-II for geostationary equatorial orbit is under development. It will cluster four KRE-090 engines in the core stage, with four side boosters equipped with one KRE-090 engine each. The second stage will be powered with a vacuum-optimized variety of the same KRE-090 engine (KRE-090V), and the third stage will implement a newly developed KRE-010V oxidizer-rich staged combustion engine.[36]
Usage
Nuri will be used in launching several Earth observation satellites, such as KOMPSAT, medium-class satellites and LEO reconnaissance satellites. It is planned to support South Korea's Moon exploration mission to send orbiters and landers. Nuri will be South Korea's first launch vehicle to enter the commercial launch service market. The launch cost is estimated to be around US$30 million, which is cheaper than its Asian counterparts. This will allow for South Korea to provide cheap launch services for Southeast Asia countries.[37]
South Korea plans to launch a high-weight rocket named KSLV-3 in 2030 instead of improving the KSLV-2. The decision is aimed at narrowing the technology gap with other countries.[38]
Instead, it plans to develop a low-cost rocket that miniaturizes the KSLV-2 and is considering launching a military satellite to monitor North Korea.[39]
Launch history
Flight No. | Date / time (UTC) | Launch site | Payload | Payload mass | Orbit | Customer | Launch outcome |
---|---|---|---|---|---|---|---|
1 | October 21, 2021, 08:00 | Naro Space Center | Dummy satellite | 1,500 kg | Low Earth (planned) | KARI | Failure[12] |
Third stage shut down 46 seconds early, failed to reach orbit[40] | |||||||
2 | June 21, 2022, 07:00[41] | Naro Space Center | Dummy satellite (1.3 tons), performance verification satellite (180 kg, with 4 CubeSats)[42] | 1,500 kg | Low Earth, SSO | KARI | Success[43] |
3 | May 25, 2023, 09:24[44] | Naro Space Center | NEXTSat-2, SNIPE (4 CubeSats), JLC-101-v1-2, Lumir-T1, KSAT3U | 240kg | Low Earth, SSO | KAIST, KASI | Success[45] |
4 | NET 2025 | Naro Space Center | CAS500 3 | 500kg | Low Earth, SSO | KARI | Planned |
See also
References
- ↑ "한국 토종 우주발사체 누리호는 300개 기업이 함께 만들고 있다". dongascience.donga.com. 25 February 2021. Retrieved 26 February 2021.
- ↑ "과학기술정보통신부". Korean Ministry of Science and Technology Information and Communication. 19 January 2020.
- 1 2 "Korea Space Launch Vehicle KSLV-II". Korea Aerospace Research Institute. Archived from the original on 29 February 2016.
- ↑ "누리호 탑재 중량 1.5t→1.9t으로 성능 '업'". Donga Science. 4 December 2022.
- ↑ "2조 규모의 '차세대발사체(KSLV-III)' 개발 사업, 예타 조사 통과". sanhak=29 Nov 2022.
- 1 2 3 4 "한국형발사체 "누리호"에 대한 간단한 소개". 16 December 2018. Archived from the original on 24 June 2022. Retrieved 24 June 2022.
- 1 2 3 4 5 6 7 "[누리호] 7톤/75톤급 엔진의 스펙/성능 + 누리호 발사대 설계". 17 November 2018. Archived from the original on 24 June 2022. Retrieved 24 June 2022.
- ↑ "South Korea launches first homegrown space rocket Nuri". BBC News. 21 October 2021. Retrieved 22 October 2021.
- ↑ "[출처: 중앙일보] 설계부터 제작까지 100% 국산 로켓 내달 발사". JoongAng Ilbo. 7 September 2018.
- ↑ "South Korea delays launch of first homegrown space rocket". Yonhap News Agency. 29 December 2020.
- ↑ Ko, Jun-tae (7 June 2019). "Space: The final frontier, but not for much longer". Korea JoongAng Daily. Retrieved 2 October 2019.
- 1 2 3 "South Korea's KSLV-II conducts maiden launch". NASASpaceFlight.com. 21 October 2021. Retrieved 21 October 2021.
- ↑ Kim Ayeong (22 June 2022). "다가온 '뉴 스페이스' 시대‥"민간에 누리호 기술 이전"". MBC News.
- ↑ "South Korea test launches 1st domestically made space rocket". Ap News. 21 October 2021.
- ↑ 이원주 (21 October 2021). "(3rd LD) South Korea fails to put dummy satellite into orbit". Yonhap News Agency. Retrieved 21 October 2021.
- 1 2 Clark, Stephen (21 June 2022). "South Korea's all-domestic satellite launcher reaches orbit for first time". Spaceflight Now. Retrieved 22 June 2022.
- ↑ "South Korea succeeds in putting satellites into orbit, 7th in world". Kyodo News. 21 June 2022.
- ↑ "S. Korea joins elite space club as 7th member". 21 June 2022.
- ↑ "누리호 탑재 중량 1.5t→1.9t으로 성능 '업'". Donga Science. 4 December 2022.
- 1 2 3 4 5 6 "한국형발사체 누리호". Korea Aerospace Research Institute. 25 June 2021. Archived from the original on 23 June 2022. Retrieved 23 June 2022.
- ↑ "누리호 75톤급 엔진의 개량, 정지궤도 투입, 페이로드 옵션 그리고 재사용에 대하여". 21 December 2018.
- 1 2 3 4 "[누리호] 설계부터 1차 발사까지 11년 7개월의 일지". Science Times. 22 October 2021. Archived from the original on 24 June 2022. Retrieved 24 June 2022.
- ↑ "Hanwha Techwin to Produce Liquid Rocket Engine for Korea Space Launch Vehicle". 비즈니스코리아 - Business Korea. 26 January 2016. Retrieved 7 February 2019.
- ↑ "누리호는 어떻게 구성되어 있을까요?". Ministry of Science and ICT. 19 October 2021. Archived from the original on 24 June 2022. Retrieved 24 June 2022.
- ↑ 한국항공우주연구원(KARI). "[KARI]연비가 향상된 로켓엔진 연소시험(100초) 공개". Archived from the original on 18 November 2021. Retrieved 7 February 2019 – via YouTube.
- ↑ 한국항공우주연구원 (10 September 2018). "올 10월로 다가올 #시험발사체 조립 장면 타임랩스 영상으로 만나 보시죠!pic.twitter.com/25hDmf2lAg". twitter.com. Retrieved 7 February 2019.
- ↑ "사진 > KARI IMAGE". kari.re.kr. Retrieved 7 February 2019.
- ↑ "누리호 75톤급 엔진 시험발사체를 활용한 "소형발사체" 후속 개발에 대하여 (메탄 엔진을 사용하는 2단) > KARI IMAGE". 22 December 2018.
- ↑ "KSLV-II TLV Specifications". Retrieved 4 December 2022.
- ↑ 김한주 (28 November 2018). "South Korea to test launch space rocket engine". Yonhap News Agency. Retrieved 7 February 2019.
- ↑ "S. Korea delays test launch of space rocket engine". Yonhal News Agency. 17 October 2018. Retrieved 7 February 2019.
- ↑ 한국항공우주연구원 (13 November 2018). "11월 28일, 한국형발사체 '누리호'의 엔진시험을 위한 시험발사체 발사가 추진될 예정입니다.pic.twitter.com/9eOHhufcym". twitter.com. Retrieved 7 February 2019.
- ↑ 김한주 (28 November 2018). "(2nd LD) Space rocket engine burn time test meets target goal". Yonhap News Agency. Retrieved 7 February 2019.
- ↑ 한국항공우주연구원 (27 November 2018). "#시험발사체 발사 성공! 발사 모습을 영상으로 공개합니다.pic.twitter.com/lTkonvL7ax". twitter.com. Retrieved 7 February 2019.
- ↑ 김한주 (28 November 2018). "South Korea successfully tests space rocket engine". Yonhap News Agency. Retrieved 7 February 2019.
- ↑ Yu, Byungil; Lee, Kwang-Jin; Woo, Seongphil; Im, Ji-Hyuk; So, Younseok; Jeon, Junsu; Lee, Jungho; Seo, Daeban; Han, Yeoungmin; Kim, Jinhan (April 2018). "Development Status and Plan of the High Performance Upper Stage Engine for a GEO KSLV". Journal of the Korean Society of Propulsion Engineers. 22 (2): 125–130. doi:10.6108/KSPE.2018.22.2.125.
- ↑ 더보기>, 정구희 기자 <다른 기사 (30 October 2021). "[더스페셜리스트] 가성비 떨어지는 누리호? 그래도 쏴야 하는 이유". SBS 뉴스 (in Korean). Retrieved 4 May 2022.
- ↑ Nuri rocket launch set for mid-May to late-June
- ↑ 항우연, 소형발사체 개발 도전
- ↑ "Independently made Nuri rocket takes S. Korea into stratosphere". Hankyoreh. Retrieved 14 June 2022.
- ↑ Kanayama, Lee (21 June 2022). "KARI reaches orbit on second test flight of domestic Nuri rocket". NASASpaceFlight. Retrieved 31 March 2023.
- ↑ 장동우 (13 June 2022). "Final preparations under way for 2nd launch of S. Korean space rocket". Yonhap News Agency. Retrieved 14 June 2022.
- ↑ "(URGENT) Nuri rocket's performance verification satellite reaches orbit:gov't". Yonhap News Agency. 21 June 2022. Retrieved 21 June 2022.
- ↑ Davenport, Justin (25 May 2023). "South Korea launches research satellites on third Nuri flight". NASASpaceFlight. Retrieved 25 May 2023.
- ↑ Shin, Hyonhee; Choi, Soo-Hyang (25 May 2023). "South Korea says homegrown space rocket put satellites into orbit". Reuters. Seoul.