In abstract algebra, a partial algebra is a generalization of universal algebra to partial operations.[1][2]
Example(s)
- partial groupoid
- field — the multiplicative inversion is the only proper partial operation[1]
- effect algebras[3]
Structure
There is a "Meta Birkhoff Theorem" by Andreka, Nemeti and Sain (1982).[1]
References
- 1 2 3 Peter Burmeister (1993). "Partial algebras—an introductory survey". In Ivo G. Rosenberg; Gert Sabidussi (eds.). Algebras and Orders. Springer Science & Business Media. pp. 1–70. ISBN 978-0-7923-2143-9.
- ↑ George A. Grätzer (2008). Universal Algebra (2nd ed.). Springer Science & Business Media. Chapter 2. Partial algebras. ISBN 978-0-387-77487-9.
- ↑ Foulis, D. J.; Bennett, M. K. (1994). "Effect algebras and unsharp quantum logics". Foundations of Physics. 24 (10): 1331. doi:10.1007/BF02283036. hdl:10338.dmlcz/142815. S2CID 123349992.
Further reading
- Peter Burmeister (2002) [1986]. A Model Theoretic Oriented Approach to Partial Algebras. CiteSeerX 10.1.1.92.6134.
- Horst Reichel (1984). Structural induction on partial algebras. Akademie-Verlag.
- Horst Reichel (1987). Initial computability, algebraic specifications, and partial algebras. Clarendon Press. ISBN 978-0-19-853806-6.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.