In probability theory, a subordinator is a stochastic process that is non-negative and whose increments are stationary and independent.[1] Subordinators are a special class of Lévy process that play an important role in the theory of local time.[2] In this context, subordinators describe the evolution of time within another stochastic process, the subordinated stochastic process. In other words, a subordinator will determine the random number of "time steps" that occur within the subordinated process for a given unit of chronological time.
In order to be a subordinator a process must be a Lévy process[3] It also must be increasing, almost surely,[3] or an additive process.[4]
Definition
A subordinator is a real-valued stochastic process that is a non-negative and a Lévy process.[1] Subordinators are the stochastic processes that have all of the following properties:
- almost surely
- is non-negative, meaning for all
- has stationary increments, meaning that for and , the distribution of the random variable depends only on and not on
- has independent increments, meaning that for all and all , the random variables defined by are independent of each other
- The paths of are càdlàg, meaning they are continuous from the right everywhere and the limits from the left exist everywhere
Examples
The variance gamma process can be described as a Brownian motion subject to a gamma subordinator.[3] If a Brownian motion, , with drift is subjected to a random time change which follows a gamma process, , the variance gamma process will follow:
The Cauchy process can be described as a Brownian motion subject to a Lévy subordinator.[3]
Representation
Every subordinator can be written as
where
- is a scalar and
- is a Poisson process on with intensity measure . Here is a measure on with , and is the Lebesgue measure.
The measure is called the Lévy measure of the subordinator, and the pair is called the characteristics of the subordinator.
Conversely, any scalar and measure on with define a subordinator with characteristics by the above relation.[5][1]
References
- 1 2 3 Kallenberg, Olav (2002). Foundations of Modern Probability (2nd ed.). New York: Springer. p. 290.
- ↑ Kallenberg, Olav (2017). Random Measures, Theory and Applications. Switzerland: Springer. p. 651. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.
- 1 2 3 4 Applebaum, D. "Lectures on Lévy processes and Stochastic calculus, Braunschweig; Lecture 2: Lévy processes" (PDF). University of Sheffield. pp. 37–53.
- ↑ Li, Jing; Li, Lingfei; Zhang, Gongqiu (2017). "Pure jump models for pricing and hedging VIX derivatives". Journal of Economic Dynamics and Control. 74. doi:10.1016/j.jedc.2016.11.001.
- ↑ Kallenberg, Olav (2002). Foundations of Modern Probability (2nd ed.). New York: Springer. p. 287.