In mathematics, the Suita conjecture is a conjecture related to the theory of the Riemann surface, the boundary behavior of conformal maps, the theory of Bergman kernel, and the theory of the L2 extension. The conjecture states the following:
Suita (1972): Let R be an Riemann surface, which admits a nontrivial Green function . Let be a local coordinate on a neighborhood of satisfying . Let be the Bergman kernel for holomorphic (1, 0) forms on R. We define , and . Let be the logarithmic capacity which is locally defined by on R. Then, the inequality holds on the every open Riemann surface R, and also, with equality, then or, R is conformally equivalent to the unit disc less a (possible) closed set of inner capacity zero.[1]
It was first proved by Błocki (2013) for the bounded plane domain and then completely in a more generalized version by Guan & Zhou (2015). Also, another proof of the Suita conjecture and some examples of its generalization to several complex variables (the multi (high) - dimensional Suita conjecture) were given in Błocki (2014a) and Błocki & Zwonek (2020). The multi (high) - dimensional Suita conjecture fails in non-pseudoconvex domains.[2] This conjecture was proved through the optimal estimation of the Ohsawa–Takegoshi L2 extension theorem.
Notes
References
- Błocki, Zbigniew (2013). "Suita conjecture and the Ohsawa-Takegoshi extension theorem". Inventiones Mathematicae. 193 (1): 149–158. Bibcode:2013InMat.193..149B. doi:10.1007/s00222-012-0423-2. S2CID 9209213.
- Błocki, Zbigniew (2014a). "A Lower Bound for the Bergman Kernel and the Bourgain-Milman Inequality". Geometric Aspects of Functional Analysis: Israel Seminar (GAFA) 2011-2013. Lecture Notes in Mathematics. Vol. 2116. pp. 53–63. doi:10.1007/978-3-319-09477-9_4. ISBN 978-3-319-09476-2.
- Błocki, Zbigniew (2014b). "Cauchy–Riemann meet Monge–Ampère". Bulletin of Mathematical Sciences. 4 (3): 433–480. doi:10.1007/s13373-014-0058-2. S2CID 53582451.
- Błocki, Zbigniew (2017). "Suita Conjecture from the One-dimensional Viewpoint" (PDF). Analysis Meets Geometry. Trends in Mathematics. pp. 127–133. doi:10.1007/978-3-319-52471-9_9. ISBN 978-3-319-52469-6. S2CID 125704662.
- Błocki, Zbigniew; Zwonek, Włodzimierz (2020). "Generalizations of the Higher Dimensional Suita Conjecture and Its Relation with a Problem of Wiegerinck". The Journal of Geometric Analysis. 30 (2): 1259–1270. arXiv:1811.02977. doi:10.1007/s12220-019-00343-8. S2CID 119622596.
- Guan, Qi'an; Zhou, Xiangyu (2015). "A solution of an extension problem with optimal estimate and applications". Annals of Mathematics. 181 (3): 1139–1208. arXiv:1310.7169. doi:10.4007/annals.2015.181.3.6. JSTOR 24523356. S2CID 56205818.
- Nikolov, Nikolai (2015). "Two remarks on the Suita conjecture". Annales Polonici Mathematici. 113: 61–63. arXiv:1411.6601. doi:10.4064/ap113-1-3. S2CID 119147234.
- Nikolov, Nikolai; Thomas, Pascal J. (2021). "Growth of Sibony metric and Bergman kernel for domains with low regularity". Journal of Mathematical Analysis and Applications. 499: 125018. arXiv:2005.04479. doi:10.1016/j.jmaa.2021.125018. S2CID 218581510.
- Bousfield Classes and Ohkawa's Theorem. Springer Proceedings in Mathematics & Statistics. Vol. 309. 2020. doi:10.1007/978-981-15-1588-0. ISBN 978-981-15-1587-3. S2CID 242194764.
- Ohsawa, Takeo (2017). "On the extension of holomorphic functions VIII — a remark on a theorem of Guan and Zhou". International Journal of Mathematics. 28 (9). doi:10.1142/S0129167X17400055.
- Suita, Nobuyuki (1972). "Capacities and kernels on Riemann surfaces". Archive for Rational Mechanics and Analysis. 46 (3): 212–217. Bibcode:1972ArRMA..46..212S. doi:10.1007/BF00252460. S2CID 123118650.