Trimethylolethane triglycidyl ether
Names
IUPAC name
2-({2-Methyl-3-(2-oxiranylmethoxy)-2-[(2-oxiranylmethoxy)methyl]propoxy}methyl)oxirane
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.214.877
  • InChI=1S/C14H24O6/c1-14(8-15-2-11-5-18-11,9-16-3-12-6-19-12)10-17-4-13-7-20-13/h11-13H,2-10H2,1H3
    Key: YIEBXCCPOCRXRB-UHFFFAOYSA-N
  • CC(COCC1CO1)(COCC2CO2)COCC3CO3
Properties
C14H24O6
Molar mass 288.340 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Trimethylolethane triglycidyl ether (TMETGE) is an organic chemical in the glycidyl ether family. It has the formula C14H24O6 and the IUPAC name is 2-({2-methyl-3-[(oxiran-2-yl)methoxy]-2-{[(oxiran-2-yl)methoxy]methyl}propoxy}methyl)oxirane. The CAS number is 68460-21-9.[1] A key use is as a modifier for epoxy resins as a reactive diluent.[2][3]

Alternative names

[4]

  • Trimethylolethane,chloromethyloxirane polymer
  • Trimethylolethane triglycidyl ether
  • 1,3-Propanediol,2-(hydroxymethyl)-2-methyl-,polymer with (chloromethyl)oxirane
  • 1,3-Propanediol,2-(hydroxymethyl)-2-methyl-,polymer with 2-(chloromethyl)oxirane
  • 2-(hydroxymethyl)-2-methylpropane-1,3-diol-2-(chloromethyl)oxirane (1:1)

Manufacture

Trimethylolethane and epichlorohydrin are reacted with a Lewis acid catalyst to form a halohydrin. The next step is dehydrochlorination with sodium hydroxide. This forms the triglycidyl ether. Waste products are sodium chloride, water and excess sodium hydroxide (alkaline brine).[5][6]

Uses

As the molecule has 3 oxirane functionalities, a key use is modifying and reducing the viscosity of epoxy resins but giving higher functionality.[7] These reactive diluent modified epoxy resins may then be further formulated into CASE applications: Coatings, Adhesives, Sealants, and Elastomers. The use of the diluent does effect mechanical properties and microstructure of epoxy resins.[8][9] It produces epoxy coatings with high impact resistance[10] The molecule has been used to synthesize other molecules.[11][12]

See also

References

  1. "Trimethylolethane triglycidyl ether | C14H24O6 | ChemSpider". www.chemspider.com. Retrieved 2022-05-17.
  2. Monte, Salvatore J. (1998), Pritchard, Geoffrey (ed.), "Diluents and viscosity modifiers for epoxy resins", Plastics Additives: An A-Z reference, Polymer Science and Technology Series, Dordrecht: Springer Netherlands, vol. 1, pp. 211–216, doi:10.1007/978-94-011-5862-6_24, ISBN 978-94-011-5862-6, archived from the original on 2022-04-11, retrieved 2022-03-29
  3. Jagtap, Ameya Rajendra; More, Aarti (2022-08-01). "Developments in reactive diluents: a review". Polymer Bulletin. 79 (8): 5667–5708. doi:10.1007/s00289-021-03808-5. ISSN 1436-2449. S2CID 235678040.
  4. "68460-21-9". www.chemsrc.com. Retrieved 2022-05-17.
  5. Crivello, James V. (2006). "Design and synthesis of multifunctional glycidyl ethers that undergo frontal polymerization". Journal of Polymer Science Part A: Polymer Chemistry. 44 (21): 6435–6448. Bibcode:2006JPoSA..44.6435C. doi:10.1002/pola.21761. ISSN 0887-624X.
  6. US 5162547, Roth, Martin; Wolleb, Heinz & Truffer, Marc-Andre, "Process for the preparation of glycidyl ethers", published 1992-11-10, assigned to Ciba-Geigy Corp.
  7. Crivello, James V. (2006-11-01). "Design and synthesis of multifunctional glycidyl ethers that undergo frontal polymerization". Journal of Polymer Science Part A: Polymer Chemistry. 44 (21): 6435–6448. Bibcode:2006JPoSA..44.6435C. doi:10.1002/pola.21761. ISSN 0887-624X.
  8. Pastarnokienė, Liepa; Jonikaitė-Švėgždienė, Jūratė; Lapinskaitė, Neringa; Kulbokaitė, Rūta; Bočkuvienė, Alma; Kochanė, Tatjana; Makuška, Ričardas (2023-07-01). "The effect of reactive diluents on curing of epoxy resins and properties of the cured epoxy coatings". Journal of Coatings Technology and Research. 20 (4): 1207–1221. doi:10.1007/s11998-022-00737-4. ISSN 1935-3804.
  9. Khalina, Morteza; Beheshty, Mohammad Hosain; Salimi, Ali (2019-08-01). "The effect of reactive diluent on mechanical properties and microstructure of epoxy resins". Polymer Bulletin. 76 (8): 3905–3927. doi:10.1007/s00289-018-2577-6. ISSN 1436-2449. S2CID 105389177.
  10. US 8062468, Finter, Jürgen; Kramer, Andreas & Schulenburg, Jan Olaf et al., "Low-temperature impact resistant thermosetting epoxide resin compositions with solid epoxide resins", published 2011-11-22, assigned to Sika Technology AG
  11. Bednarczyk, Paulina; Irska, Izabela; Gziut, Konrad; Ossowicz-Rupniewska, Paula (2021-05-24). "Novel Multifunctional Epoxy (Meth)Acrylate Resins and Coatings Preparation via Cationic and Free-Radical Photopolymerization". Polymers. 13 (11): 1718. doi:10.3390/polym13111718. ISSN 2073-4360. PMC 8197387. PMID 34074023.
  12. Huajaikaew, Eakkapap; Piroonpan, Thananchai; Booncharoen, Kasidit; Pasanphan, Wanvimol (2022-02-01). "Comb-like poly(dodecyl methacrylate) modified SiO2 nanoparticles as nanohybrid coatings: Electron beam grafting and tuning superhydrophobic/water-repellent surface studies". Progress in Organic Coatings. 163: 106658. doi:10.1016/j.porgcoat.2021.106658. ISSN 0300-9440. S2CID 245043074.

Further reading

External websites

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.