In mathematics, in the area of functional analysis and operator theory, the Volterra operator, named after Vito Volterra, is a bounded linear operator on the space L2[0,1] of complex-valued square-integrable functions on the interval [0,1]. On the subspace C[0,1] of continuous functions it represents indefinite integration. It is the operator corresponding to the Volterra integral equations.
Definition
The Volterra operator, V, may be defined for a function f ∈ L2[0,1] and a value t ∈ [0,1], as
Properties
- V is a bounded linear operator between Hilbert spaces, with Hermitian adjoint
- V is a Hilbert–Schmidt operator, hence in particular is compact.[1]
- V has no eigenvalues and therefore, by the spectral theory of compact operators, its spectrum σ(V) = {0}.[1]
- V is a quasinilpotent operator (that is, the spectral radius, ρ(V), is zero), but it is not nilpotent.
- The operator norm of V is exactly ||V|| = 2⁄π.[1]
References
- 1 2 3 "Spectrum of Indefinite Integral Operators". Stack Exchange. May 30, 2012.
Further reading
- Gohberg, Israel; Krein, M. G. (1970). Theory and Applications of Volterra Operators in Hilbert Space. Providence: American Mathematical Society. ISBN 0-8218-3627-7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.