| Octagonal bipyramid | |
|---|---|
![]() | |
| Type | bipyramid |
| Faces | 16 triangles |
| Edges | 24 |
| Vertices | 10 |
| Schläfli symbol | { } + {8} |
| Coxeter diagram | |
| Symmetry group | D8h, [8,2], (*228), order 32 |
| Rotation group | D8, [8,2]+, (228), order 16 |
| Dual polyhedron | octagonal prism |
| Face configuration | V4.4.8 |
| Properties | convex, face-transitive |
The octagonal bipyramid is one of the infinite set of bipyramids, dual to the infinite prisms. If an octagonal bipyramid is to be face-transitive, all faces must be isosceles triangles. 16-sided dice are often octagonal bipyramids.
Images
It can be drawn as a tiling on a sphere which also represents the fundamental domains of [4,2], *422 symmetry:
Related polyhedra
| Bipyramid name | Digonal bipyramid | Triangular bipyramid (See: J12) |
Square bipyramid (See: O) |
Pentagonal bipyramid (See: J13) |
Hexagonal bipyramid | Heptagonal bipyramid | Octagonal bipyramid | Enneagonal bipyramid | Decagonal bipyramid | ... | Apeirogonal bipyramid |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Polyhedron image | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
... | ||||
| Spherical tiling image | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Plane tiling image | |
| Face config. | V2.4.4 | V3.4.4 | V4.4.4 | V5.4.4 | V6.4.4 | V7.4.4 | V8.4.4 | V9.4.4 | V10.4.4 | ... | V∞.4.4 |
| Coxeter diagram | ... |
| *n42 symmetry mutation of omnitruncated tilings: 4.8.2n | ||||||||
|---|---|---|---|---|---|---|---|---|
| Symmetry *n42 [n,4] |
Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||
| *242 [2,4] |
*342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4]... |
*∞42 [∞,4] | |
| Omnitruncated figure |
![]() 4.8.4 |
![]() 4.8.6 |
![]() 4.8.8 |
![]() 4.8.10 |
![]() 4.8.12 |
![]() 4.8.14 |
![]() 4.8.16 |
![]() 4.8.∞ |
| Omnitruncated duals |
![]() V4.8.4 |
![]() V4.8.6 |
![]() V4.8.8 |
![]() V4.8.10 |
![]() V4.8.12 |
![]() V4.8.14 |
![]() V4.8.16 |
![]() V4.8.∞ |
External links
- Weisstein, Eric W. "Dipyramid". MathWorld.
- Virtual Reality Polyhedra The Encyclopedia of Polyhedra
- VRML models <8>
- Conway Notation for Polyhedra Try: dP8
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.































