In mathematics, a Dirac spectrum, named after Paul Dirac, is the spectrum of eigenvalues of a Dirac operator on a Riemannian manifold with a spin structure. The isospectral problem for the Dirac spectrum asks whether two Riemannian spin manifolds have identical spectra. The Dirac spectrum depends on the spin structure in the sense that there exists a Riemannian manifold with two different spin structures that have different Dirac spectra.[1]

See also

References

  1. Bar (2000). "Dependence of the Dirac spectrum on the spin structure" (PDF). Archived (PDF) from the original on 2012-03-19. Retrieved 2010-09-23. {{cite journal}}: Cite journal requires |journal= (help)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.