SALL4
Identifiers
AliasesSALL4, DRRS, HSAL4, ZNF797, dJ1112F19.1, spalt-like transcription factor 4, spalt like transcription factor 4, IVIC
External IDsOMIM: 607343 MGI: 2139360 HomoloGene: 10716 GeneCards: SALL4
Orthologs
SpeciesHumanMouse
Entrez

57167

99377

Ensembl

ENSG00000101115

ENSMUSG00000027547

UniProt

Q9UJQ4
Q6Y8G5

Q8BX22

RefSeq (mRNA)

NM_020436
NM_001318031

NM_175303
NM_201395
NM_201396

RefSeq (protein)

NP_001304960
NP_065169

NP_780512
NP_958797
NP_958798

Location (UCSC)Chr 20: 51.78 – 51.8 MbChr 2: 168.59 – 168.61 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Sal-like protein 4 (SALL4) is a transcription factor encoded by a member of the Spalt-like (SALL) gene family, SALL4.[5][6] The SALL genes were identified based on their sequence homology to Spalt, which is a homeotic gene originally cloned in Drosophila melanogaster that is important for terminal trunk structure formation in embryogenesis and imaginal disc development in the larval stages.[7][8] There are four human SALL proteins (SALL1, 2, 3, and 4) with structural homology and playing diverse roles in embryonic development, kidney function, and cancer.[9] The SALL4 gene encodes at least three isoforms, termed A, B, and C, through alternative splicing, with the A and B forms being the most studied. SALL4 can alter gene expression changes through its interaction with many co-factors and epigenetic complexes.[10] It is also known as a key embryonic stem cell (ESC) factor.

Structure, interaction partners, and DNA binding activity

SALL4 contains one zinc finger in its amino (N-) terminus and three clusters of zinc fingers that each coordinates zinc with two cysteines and two histidines (Cys2His2-type) that potentially confer nucleic acid binding activity. SALL4B lacks two of the zinc finger clusters found in the A isoform. Although it remains unclear which zinc finger cluster is responsible for SALL4’s DNA binding property

Different SALL family members can form hetero- or homodimers via their conserved glutamine (Q)-rich region.[11] SALL4 has at least one canonical nuclear localization signal (NLS) with the K-K/R-X-K/R motif in the N-terminal portion of the protein shared among both A and B isoforms (residues 64–67).[12] One report has suggested that with a mutated NLS sequence, SALL4 cannot localize to the nucleus.[12] Through a 12-amino acid sequence in its N-terminus (N-12a.a.), SALL4 binds to retinoblastoma binding protein 4 (RBBP4), a subunit of the nucleosome remodeling and histone deacetylation (NuRD) complex, which also contains chromodomain-helicase-DNA binding proteins (CHD3/4 or Mi-2a/b), metastasis-associated proteins (MTA), methyl-CpG-binding domain proteins (MBD2 or MBD3), and histone deacetylases (HDAC1 and HDAC2).[13][14][15][16] This association allows SALL4 to act as a transcriptional repressor. Accordingly, SALL4 has been shown to localize to heterochromatin regions in cells, for which its last zinc finger cluster (shared between SALL4A and B) is necessary.[17] Beside the NuRD complex, SALL4 is reportedly able to bind to other epigenetic modifiers such as histone lysine-specific demethylase 1 (LSD1), which is frequently associated with the NuRD complex and subsequently gene repression.[18] In addition, SALL4 can also activate gene expression via the recruitment of the mixed lineage leukemia (MLL) protein, which is a homolog of Drosophila Trithorax and yeast Set1 proteins and has histone 3 lysine 4 (H3K4) trimethylation activity.[19] This interaction is best characterized in the co-regulation of HOXA9 gene by SALL4 and MLL in leukemic cells.[19]

In mouse ESCs, Sall4 was found to bind the essential stem cell factor, octamer-binding transcription factor 4 (Oct4), in two separate unbiased mass spectrometry (spec) screens[20][21] Sall4 can also bind other important pluripotency proteins such as Nanog and sex determining region Y (SRY)-box 2 protein (Sox2).[22][23] Together these proteins can affect each other’s expression patterns as well as their own, thus forming a mESC-specific transcriptional regulatory circuit.[24] SALL4 has also been reported to bind T-box 5 protein (Tbx5) in cardiac tissues as well as genetically interact with Tbx5 in mouse limb development.[25] Other binding partners of SALL4 include promyelocytic leukemia zinc finger protein (PLZF) in sperm precursor cells,[26] Rad50 during DNA damage repair,[27] and b-catenin downstream of the Wnt signaling pathway.[28] Since most of these interactions were identified by mass-spec or co-immunoprecipitation, whether they are direct are unknown. Through chromatin immunoprecipitation (ChIP) followed by next-generation sequencing or microarray, some SALL4 targets have been identified.[29] A key verified target gene encodes the enzyme phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (PTEN). PTEN is a tumor suppressor that keeps uncontrolled cell growth in check through inducing programmed cell death, or apoptosis. SALL4 binds the PTEN promoter and recruits the NuRD complex to mediate its repression, thus leads to proliferation of cells.[16]

Expression and role in stem cells and development

In mouse embryos, SALL4 expression is detectable as early as the two-cell stage. Its expression persists through 8- and 16-cell stages to the blastocyst, where it is found in some cells of the trophectoderm and inner cell mass (ICM), from which mouse ESCs are derived.[30] SALL4 is an important factor for maintaining the “stemness” of ESCs of both mouse and human origin, since loss of Sall4 leads to differentiation of these pluripotent cells down the trophectoderm lineage.[17][30][31] This is possibly due to down-regulation of Pou5f1 (encoding Oct4) expression and up-regulation of caudal-type homeobox 2 (Cdx2) gene expression.[31] Sall4 is part of the transcriptional regulatory network that includes other pluripotent factors such as Oct4, Nanog, and Sox2[32][33] Because of its important role in early development, genetically mutated mice without functioning SALL4 die early on at the peri-implantation stage, while heterozygous mice have neural, kidney, heart defects and limb abnormalities.[17][25][34]

Clinical significance

The various SALL4-null mouse models mimic human mutations in the SALL4 gene, which were shown to cause developmental problems in patients with Okihiro/Duane-Radial-ray syndrome.[35][36] These individuals frequently have family history of hand malformation and eye movement disorders.

SALL4 expression is low to undetectable in most adult tissues with the exception of germ cells and human blood progenitor cells.[35][37] However, SALL4 is re-activated and mis-regulated in various cancers[38][39] such as acute myeloid leukemia (AML),[28] B-cell acute lymphocytic leukemia (B-ALL),[40] germ cell tumors,[41] gastric cancer,[42] breast cancer,[43] hepatocellular carcinoma (HCC),[44][45] lung cancer,[46] and glioma.[47] In many of these cancers, SALL4 expression was compared in tumor cells to the normal tissue counterpart, e.g. it is expressed in nearly half of primary human endometrial cancer samples, but not in normal or hyperplastic endometrial tissue samples.[48] Often, SALL4 expression is correlated with worse survival and poor prognosis such as in HCC,[44] or with metastasis such as in endometrial cancer,[48] colorectal carcinoma,[49] and esophageal squamous cell carcinoma.[50] It is unclear how SALL4 expression is de-regulated in malignant cells, but DNA hypomethylation in its intron 1 region has been observed in B-ALL.[40]

In breast cancer, Signal transducer and activator of transcription 3 (STAT3) has been reported to directly activate SALL4 expression.[51] Furthermore, canonical Wnt signaling has been proposed to activate SALL4 gene expression in both development[52][53] and in cancer.[28] In leukemia, the mechanism of SALL4 function is better characterized; mice with over-expression of human SALL4 develop myelodysplatic syndromes (MDS)-like symptoms and eventually AML.[28] This is consistent with high level of SALL4 expression correlating with high-risk MDS patients.[54][55] Further elucidating its tumorigenesis function, knocking down SALL4 expression with short hairpin-RNA in leukemic cells or treating these cells with a peptide that mimics the N-12aa of SALL4 to inhibit its interaction with the NuRD complex both result in cell death.[13][44] These suggest the primary cancer-maintaining property of SALL4 is mediated through its transcriptional repressing function. These observations have led to growing interest in SALL4 as both a diagnostic tool as well as target in cancer therapy. For example, in solid tumors such as germ cell tumors, SALL4 protein expression has become a standard diagnostic biomarker.[56]

Notes

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000101115 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000027547 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: SALL4 sal-like 4 (Drosophila)".
  6. Tatetsu H, Kong NR, Chong G, Amabile G, Tenen DG, Chai L (June 2016). "SALL4, the missing link between stem cells, development and cancer". Gene. 584 (2): 111–119. doi:10.1016/j.gene.2016.02.019. PMC 4823161. PMID 26892498.
  7. Kühnlein RP, Frommer G, Friedrich M, Gonzalez-Gaitan M, Weber A, Wagner-Bernholz JF, Gehring WJ, Jäckle H, Schuh R (Jan 1994). "spalt encodes an evolutionarily conserved zinc finger protein of novel structure which provides homeotic gene function in the head and tail region of the Drosophila embryo". The EMBO Journal. 13 (1): 168–179. doi:10.1002/j.1460-2075.1994.tb06246.x. PMC 394790. PMID 7905822.
  8. Kühnlein RP, Brönner G, Taubert H, Schuh R (Aug 1997). "Regulation of Drosophila spalt gene expression". Mechanisms of Development. 66 (1–2): 107–118. doi:10.1016/s0925-4773(97)00103-2. hdl:11858/00-001M-0000-0012-FF2D-C. PMID 9376314. S2CID 6371456.
  9. de Celis JF, Barrio R (2009). "Regulation and function of Spalt proteins during animal development". The International Journal of Developmental Biology. 53 (8–10): 1385–1398. doi:10.1387/ijdb.072408jd. hdl:10261/37592. PMID 19247946.
  10. Kohlhase J, Chitayat D, Kotzot D, Ceylaner S, Froster UG, Fuchs S, Montgomery T, Rösler B (Sep 2005). "SALL4 mutations in Okihiro syndrome (Duane-radial ray syndrome), acro-renal-ocular syndrome, and related disorders". Human Mutation. 26 (3): 176–183. doi:10.1002/humu.20215. PMID 16086360. S2CID 32696827.
  11. Sweetman D, Smith T, Farrell ER, Chantry A, Munsterberg A (Feb 2003). "The conserved glutamine-rich region of chick csal1 and csal3 mediates protein interactions with other spalt family members. Implications for Townes-Brocks syndrome". The Journal of Biological Chemistry. 278 (8): 6560–6566. doi:10.1074/jbc.M209066200. PMID 12482848. S2CID 45225368.
  12. 1 2 Wu M, Yang F, Ren Z, Jiang Y, Ma Y, Chen Y, Dai W (2014). "Identification of the nuclear localization signal of SALL4B, a stem cell transcription factor". Cell Cycle. 13 (9): 1456–1462. doi:10.4161/cc.28418. PMC 4050143. PMID 24626181.
  13. 1 2 Gao C, Dimitrov T, Yong KJ, Tatetsu H, Jeong HW, Luo HR, Bradner JE, Tenen DG, Chai L (Feb 2013). "Targeting transcription factor SALL4 in acute myeloid leukemia by interrupting its interaction with an epigenetic complex". Blood. 121 (8): 1413–1421. doi:10.1182/blood-2012-04-424275. PMC 3578956. PMID 23287862.
  14. Hong W, Nakazawa M, Chen YY, Kori R, Vakoc CR, Rakowski C, Blobel GA (Jul 2005). "FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1". The EMBO Journal. 24 (13): 2367–2378. doi:10.1038/sj.emboj.7600703. PMC 1173144. PMID 15920470.
  15. Lauberth SM, Rauchman M (Aug 2006). "A conserved 12-amino acid motif in Sall1 recruits the nucleosome remodeling and deacetylase corepressor complex". The Journal of Biological Chemistry. 281 (33): 23922–23931. doi:10.1074/jbc.M513461200. PMID 16707490. S2CID 22060389.
  16. 1 2 Lu J, Jeong HW, Jeong H, Kong N, Yang Y, Carroll J, Luo HR, Silberstein LE, Chai L (2009). "Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex". PLOS ONE. 4 (5): e5577. Bibcode:2009PLoSO...4.5577L. doi:10.1371/journal.pone.0005577. PMC 2679146. PMID 19440552.
  17. 1 2 3 Sakaki-Yumoto M, Kobayashi C, Sato A, Fujimura S, Matsumoto Y, Takasato M, Kodama T, Aburatani H, Asashima M, Yoshida N, Nishinakamura R (Aug 2006). "The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development". Development. 133 (15): 3005–3013. doi:10.1242/dev.02457. PMID 16790473. S2CID 16264471.
  18. Liu L, Souto J, Liao W, Jiang Y, Li Y, Nishinakamura R, Huang S, Rosengart T, Yang VW, Schuster M, Ma Y, Yang J (Nov 2013). "Histone lysine-specific demethylase 1 (LSD1) protein is involved in Sal-like protein 4 (SALL4)-mediated transcriptional repression in hematopoietic stem cells". The Journal of Biological Chemistry. 288 (48): 34719–34728. doi:10.1074/jbc.M113.506568. PMC 3843083. PMID 24163373.
  19. 1 2 Li A, Yang Y, Gao C, Lu J, Jeong HW, Liu BH, Tang P, Yao X, Neuberg D, Huang G, Tenen DG, Chai L (Oct 2013). "A SALL4/MLL/HOXA9 pathway in murine and human myeloid leukemogenesis". The Journal of Clinical Investigation. 123 (10): 4195–4207. doi:10.1172/JCI62891. PMC 3784519. PMID 24051379.
  20. van den Berg DL, Snoek T, Mullin NP, Yates A, Bezstarosti K, Demmers J, Chambers I, Poot RA (Apr 2010). "An Oct4-centered protein interaction network in embryonic stem cells". Cell Stem Cell. 6 (4): 369–381. doi:10.1016/j.stem.2010.02.014. PMC 2860243. PMID 20362541.
  21. Pardo M, Lang B, Yu L, Prosser H, Bradley A, Babu MM, Choudhary J (2010). "An expanded Oct4 interaction network: implications for stem cell biology, development, and disease". Cell Stem Cell. 6 (4): 382–395. doi:10.1016/j.stem.2010.03.004. PMC 2860244. PMID 20362542.
  22. Wu Q, Chen X, Zhang J, Loh YH, Low TY, Zhang W, Zhang W, Sze SK, Lim B, Ng HH (Aug 2006). "Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells". The Journal of Biological Chemistry. 281 (34): 24090–24094. doi:10.1074/jbc.C600122200. PMID 16840789. S2CID 46337274.
  23. Tanimura N, Saito M, Ebisuya M, Nishida E, Ishikawa F (Feb 2013). "Stemness-related factor Sall4 interacts with transcription factors Oct-3/4 and Sox2 and occupies Oct-Sox elements in mouse embryonic stem cells". The Journal of Biological Chemistry. 288 (7): 5027–5038. doi:10.1074/jbc.M112.411173. PMC 3576104. PMID 23269686.
  24. Kim J, Chu J, Shen X, Wang J, Orkin SH (Mar 2008). "An extended transcriptional network for pluripotency of embryonic stem cells". Cell. 132 (6): 1049–1061. doi:10.1016/j.cell.2008.02.039. PMC 3837340. PMID 18358816.
  25. 1 2 Koshiba-Takeuchi K, Takeuchi JK, Arruda EP, Kathiriya IS, Mo R, Hui CC, Srivastava D, Bruneau BG (Feb 2006). "Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart". Nature Genetics. 38 (2): 175–183. doi:10.1038/ng1707. PMID 16380715. S2CID 30899786.
  26. Hobbs RM, Fagoonee S, Papa A, Webster K, Altruda F, Nishinakamura R, Chai L, Pandolfi PP (Mar 2012). "Functional antagonism between Sall4 and Plzf defines germline progenitors". Cell Stem Cell. 10 (3): 284–298. doi:10.1016/j.stem.2012.02.004. PMC 3299297. PMID 22385656.
  27. Xiong J, Todorova D, Su NY, Kim J, Lee PJ, Shen Z, Briggs SP, Xu Y (Mar 2015). "Stemness factor Sall4 is required for DNA damage response in embryonic stem cells". The Journal of Cell Biology. 208 (5): 513–520. doi:10.1083/jcb.201408106. PMC 4347641. PMID 25733712.
  28. 1 2 3 4 Ma Y, Cui W, Yang J, Qu J, Di C, Amin HM, Lai R, Ritz J, Krause DS, Chai L (Oct 2006). "SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice". Blood. 108 (8): 2726–2735. doi:10.1182/blood-2006-02-001594. PMC 1895586. PMID 16763212.
  29. Yang J, Chai L, Gao C, Fowles TC, Alipio Z, Dang H, Xu D, Fink LM, Ward DC, Ma Y (Aug 2008). "SALL4 is a key regulator of survival and apoptosis in human leukemic cells". Blood. 112 (3): 805–813. doi:10.1182/blood-2007-11-126326. PMC 2481537. PMID 18487508.
  30. 1 2 Elling U, Klasen C, Eisenberger T, Anlag K, Treier M (Oct 2006). "Murine inner cell mass-derived lineages depend on Sall4 function". Proceedings of the National Academy of Sciences of the United States of America. 103 (44): 16319–16324. Bibcode:2006PNAS..10316319E. doi:10.1073/pnas.0607884103. PMC 1637580. PMID 17060609.
  31. 1 2 Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, Lou Y, Yang J, Ma Y, Chai L, Ng HH, Lufkin T, Robson P, Lim B (Oct 2006). "Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1". Nature Cell Biology. 8 (10): 1114–1123. doi:10.1038/ncb1481. PMID 16980957. S2CID 37507421.
  32. Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW, Orkin SH (Nov 2006). "A protein interaction network for pluripotency of embryonic stem cells". Nature. 444 (7117): 364–368. Bibcode:2006Natur.444..364W. doi:10.1038/nature05284. PMID 17093407. S2CID 4404796.
  33. Zhou Q, Chipperfield H, Melton DA, Wong WH (Oct 2007). "A gene regulatory network in mouse embryonic stem cells". Proceedings of the National Academy of Sciences of the United States of America. 104 (42): 16438–16443. Bibcode:2007PNAS..10416438Z. doi:10.1073/pnas.0701014104. PMC 2034259. PMID 17940043.
  34. Warren M, Wang W, Spiden S, Chen-Murchie D, Tannahill D, Steel KP, Bradley A (Jan 2007). "A Sall4 mutant mouse model useful for studying the role of Sall4 in early embryonic development and organogenesis". Genesis. 45 (1): 51–58. doi:10.1002/dvg.20264. PMC 2593393. PMID 17216607.
  35. 1 2 Kohlhase J, Heinrich M, Schubert L, Liebers M, Kispert A, Laccone F, Turnpenny P, Winter RM, Reardon W (Nov 2002). "Okihiro syndrome is caused by SALL4 mutations". Human Molecular Genetics. 11 (23): 2979–2987. doi:10.1093/hmg/11.23.2979. PMID 12393809.
  36. Al-Baradie R, Yamada K, St Hilaire C, Chan WM, Andrews C, McIntosh N, Nakano M, Martonyi EJ, Raymond WR, Okumura S, Okihiro MM, Engle EC (Nov 2002). "Duane radial ray syndrome (Okihiro syndrome) maps to 20q13 and results from mutations in SALL4, a new member of the SAL family". American Journal of Human Genetics. 71 (5): 1195–1199. doi:10.1086/343821. PMC 385096. PMID 12395297.
  37. Gao C, Kong NR, Li A, Tatetu H, Ueno S, Yang Y, He J, Yang J, Ma Y, Kao GS, Tenen DG, Chai L (May 2013). "SALL4 is a key transcription regulator in normal human hematopoiesis". Transfusion. 53 (5): 1037–1049. doi:10.1111/j.1537-2995.2012.03888.x. PMC 3653586. PMID 22934838.
  38. Miettinen M, Wang Z, McCue PA, Sarlomo-Rikala M, Rys J, Biernat W, Lasota J, Lee YS (Mar 2014). "SALL4 expression in germ cell and non-germ cell tumors: a systematic immunohistochemical study of 3215 cases". The American Journal of Surgical Pathology. 38 (3): 410–420. doi:10.1097/PAS.0000000000000116. PMC 4041084. PMID 24525512.
  39. Zhang X, Yuan X, Zhu W, Qian H, Xu W (Feb 2015). "SALL4: an emerging cancer biomarker and target". Cancer Letters. 357 (1): 55–62. doi:10.1016/j.canlet.2014.11.037. PMID 25444934.
  40. 1 2 Ueno S, Lu J, He J, Li A, Zhang X, Ritz J, Silberstein LE, Chai L (Apr 2014). "Aberrant expression of SALL4 in acute B cell lymphoblastic leukemia: mechanism, function, and implication for a potential novel therapeutic target". Experimental Hematology. 42 (4): 307–316.e8. doi:10.1016/j.exphem.2014.01.005. PMC 4135469. PMID 24463278.
  41. Cao D, Li J, Guo CC, Allan RW, Humphrey PA (Jul 2009). "SALL4 is a novel diagnostic marker for testicular germ cell tumors". The American Journal of Surgical Pathology. 33 (7): 1065–1077. doi:10.1097/PAS.0b013e3181a13eef. PMID 19390421. S2CID 26881393.
  42. Zhang L, Xu Z, Xu X, Zhang B, Wu H, Wang M, Zhang X, Yang T, Cai J, Yan Y, Mao F, Zhu W, Shao Q, Qian H, Xu W (Nov 2014). "SALL4, a novel marker for human gastric carcinogenesis and metastasis". Oncogene. 33 (48): 5491–5500. doi:10.1038/onc.2013.495. PMID 24276240. S2CID 9201315.
  43. Kobayashi D, Kuribayshi K, Tanaka M, Watanabe N (Apr 2011). "SALL4 is essential for cancer cell proliferation and is overexpressed at early clinical stages in breast cancer". International Journal of Oncology. 38 (4): 933–939. doi:10.3892/ijo.2011.929. PMID 21274508.
  44. 1 2 3 Yong KJ, Gao C, Lim JS, Yan B, Yang H, Dimitrov T, Kawasaki A, Ong CW, Wong KF, Lee S, Ravikumar S, Srivastava S, Tian X, Poon RT, Fan ST, Luk JM, Dan YY, Salto-Tellez M, Chai L, Tenen DG (Jun 2013). "Oncofetal gene SALL4 in aggressive hepatocellular carcinoma". The New England Journal of Medicine. 368 (24): 2266–2276. doi:10.1056/NEJMoa1300297. PMC 3781214. PMID 23758232.
  45. Oikawa T, Kamiya A, Zeniya M, Chikada H, Hyuck AD, Yamazaki Y, Wauthier E, Tajiri H, Miller LD, Wang XW, Reid LM, Nakauchi H (Apr 2013). "Sal-like protein 4 (SALL4), a stem cell biomarker in liver cancers". Hepatology. 57 (4): 1469–1483. doi:10.1002/hep.26159. PMC 6669886. PMID 23175232.
  46. Morita S, Yoshida A, Goto A, Ota S, Tsuta K, Yokozawa K, Asamura H, Nakajima J, Takai D, Mori M, Oka T, Tamaru J, Itoyama S, Furuta K, Fukayama M, Tsuda H (Jun 2013). "High-grade lung adenocarcinoma with fetal lung-like morphology: clinicopathologic, immunohistochemical, and molecular analyses of 17 cases". The American Journal of Surgical Pathology. 37 (6): 924–932. doi:10.1097/PAS.0b013e31827e1e83. PMID 23629442. S2CID 22710166.
  47. Zhang L, Yan Y, Jiang Y, Cui Y, Zou Y, Qian J, Luo C, Lu Y, Wu X (Jan 2015). "The expression of SALL4 in patients with gliomas: high level of SALL4 expression is correlated with poor outcome". Journal of Neuro-Oncology. 121 (2): 261–268. doi:10.1007/s11060-014-1646-4. PMID 25359397. S2CID 22232165.
  48. 1 2 Li A, Jiao Y, Yong KJ, Wang F, Gao C, Yan B, Srivastava S, Lim GS, Tang P, Yang H, Tenen DG, Chai L (Jan 2015). "SALL4 is a new target in endometrial cancer". Oncogene. 34 (1): 63–72. doi:10.1038/onc.2013.529. PMC 4059794. PMID 24336327.
  49. Forghanifard MM, Moghbeli M, Raeisossadati R, Tavassoli A, Mallak AJ, Boroumand-Noughabi S, Abbaszadegan MR (Jan 2013). "Role of SALL4 in the progression and metastasis of colorectal cancer". Journal of Biomedical Science. 20 (1): 6. doi:10.1186/1423-0127-20-6. PMC 3599462. PMID 23363002.
  50. Forghanifard MM, Ardalan Khales S, Javdani-Mallak A, Rad A, Farshchian M, Abbaszadegan MR (Apr 2014). "Stemness state regulators SALL4 and SOX2 are involved in progression and invasiveness of esophageal squamous cell carcinoma". Medical Oncology. 31 (4): 922. doi:10.1007/s12032-014-0922-7. PMID 24659265. S2CID 207374970.
  51. Bard JD, Gelebart P, Amin HM, Young LC, Ma Y, Lai R (May 2009). "Signal transducer and activator of transcription 3 is a transcriptional factor regulating the gene expression of SALL4". FASEB Journal. 23 (5): 1405–1414. doi:10.1096/fj.08-117721. PMID 19151334. S2CID 20179918.
  52. Young JJ, Kjolby RA, Kong NR, Monica SD, Harland RM (Apr 2014). "Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus". Development. 141 (8): 1683–1693. doi:10.1242/dev.099374. PMC 3978834. PMID 24715458.
  53. Böhm J, Sustmann C, Wilhelm C, Kohlhase J (Sep 2006). "SALL4 is directly activated by TCF/LEF in the canonical Wnt signaling pathway". Biochemical and Biophysical Research Communications. 348 (3): 898–907. doi:10.1016/j.bbrc.2006.07.124. PMID 16899215.
  54. Shuai X, Zhou D, Shen T, Wu Y, Zhang J, Wang X, Li Q (Oct 2009). "Overexpression of the novel oncogene SALL4 and activation of the Wnt/beta-catenin pathway in myelodysplastic syndromes". Cancer Genetics and Cytogenetics. 194 (2): 119–124. doi:10.1016/j.cancergencyto.2009.06.006. PMID 19781444.
  55. Wang F, Guo Y, Chen Q, Yang Z, Ning N, Zhang Y, Xu Y, Xu X, Tong C, Chai L, Cui W (Sep 2013). "Stem cell factor SALL4, a potential prognostic marker for myelodysplastic syndromes". Journal of Hematology & Oncology. 6 (1): 73. doi:10.1186/1756-8722-6-73. PMC 3856454. PMID 24283704.
  56. Ulbright TM, Tickoo SK, Berney DM, Srigley JR (Aug 2014). "Best practices recommendations in the application of immunohistochemistry in testicular tumors: report from the International Society of Urological Pathology consensus conference". The American Journal of Surgical Pathology. 38 (8): e50–9. doi:10.1097/PAS.0000000000000233. PMID 24832161. S2CID 11759077.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.