In general relativity, the Weyl–Lewis–Papapetrou coordinates are a set of coordinates, used in the solutions to the vacuum region surrounding an axisymmetric distribution of mass–energy. They are named for Hermann Weyl, Thomas Lewis, and Achilles Papapetrou.[1][2][3]

Details

The square of the line element is of the form:[4]

where (t, ρ, ϕ, z) are the cylindrical Weyl–Lewis–Papapetrou coordinates in 3 + 1 spacetime, and λ, ν, ω, and B, are unknown functions of the spatial non-angular coordinates ρ and z only. Different authors define the functions of the coordinates differently.

See also

References

  1. Weyl, H. (1917). "Zur Gravitationstheorie". Annalen der Physik. 54 (18): 117–145. Bibcode:1917AnP...359..117W. doi:10.1002/andp.19173591804.
  2. Lewis, T. (1932). "Some special solutions of the equations of axially symmetric gravitational fields". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 136 (829): 176–92. Bibcode:1932RSPSA.136..176L. doi:10.1098/rspa.1932.0073.
  3. Papapetrou, A. (1948). "A static solution of the equations of the gravitatinal field for an arbitrary charge-distribution". Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences. 52: 191–204. JSTOR 20488481.
  4. Jiří Bičák; O. Semerák; Jiří Podolský; Martin Žofka (2002). Gravitation, Following the Prague Inspiration: A Volume in Celebration of the 60th Birthday of Jiří Bičák. World Scientific. p. 122. ISBN 981-238-093-0.

Further reading

Selected papers

Selected books


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.