Names | |
---|---|
IUPAC name
9,10-Dimethoxy-7,8,13,13a-tetradehydro-2′H-[1,3]dioxolo[4′,5′:2,3]berbin-7-ium | |
Systematic IUPAC name
9,10-Dimethoxy-5,6-dihydro-2H-7λ5-[1,3]dioxolo[4,5-g]isoquinolino[3,2-a]isoquinolin-7-ylium[1] | |
Other names | |
Identifiers | |
3D model (JSmol) |
|
3570374 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
DrugBank | |
ECHA InfoCard | 100.016.572 |
EC Number |
|
KEGG | |
PubChem CID |
|
UNII | |
CompTox Dashboard (EPA) |
|
| |
| |
Properties | |
C20H18NO4+ | |
Molar mass | 336.366 g·mol−1 |
Appearance | Yellow solid |
Melting point | 145 °C (293 °F; 418 K)[3] |
Slowly soluble[3] | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references |
Berberine is a quaternary ammonium salt from the protoberberine group of benzylisoquinoline alkaloids
Due to its yellow color, Berberis were used to dye wool, leather, and wood.[4] Under ultraviolet light, berberine shows a strong yellow fluorescence,[5] making it useful in histology for staining heparin in mast cells.[6] As a natural dye, berberine has a color index of 75160.
Research
Studies on the properties of berberine are preliminary basic research: some studies are conducted on cell cultures or animal models, whereas clinical trials investigating the use of berberine in humans are limited.[7] A 2023 review study stated that berberine may improve lipid concentrations.[8] High-quality, large clinical studies are needed to properly evaluate the effectiveness and safety of berberine in various health conditions, because existing studies are insufficient to draw reliable conclusions.[7]
Berberine supplements are widely available in the U.S., but they have not been approved by the U.S. Food and Drug Administration (FDA) for any specific medical use. Researchers publicly warn that studies linking berberine to supposed health benefits are limited. Furthermore, the quality of berberine supplements can vary among different brands. A study conducted in 2017 found that out of 15 different products sold in the U.S., only six contained at least 90% berberine content.[9][10]
Biological sources
Berberine is found in such plants as Berberis vulgaris (barberry), Berberis aristata (tree turmeric), Berberis thunbergii, Mahonia aquifolium (Oregon grape), Hydrastis canadensis (goldenseal), Xanthorhiza simplicissima (yellowroot), Phellodendron amurense (Amur cork tree),[11] Coptis chinensis (Chinese goldthread), Tinospora cordifolia, Argemone mexicana (prickly poppy), and Eschscholzia californica (Californian poppy). Berberine is usually found in the roots, rhizomes, stems, and bark.[12]
Biosynthesis
The alkaloid berberine has a tetracyclic skeleton derived from a benzyltetrahydroisoquinoline system with the incorporation of an extra carbon atom as a bridge. Formation of the berberine bridge is rationalized as an oxidative process in which the N-methyl group, supplied by S-adenosyl methionine (SAM), is oxidized to an iminium ion, and a cyclization to the aromatic ring occurs by virtue of the phenolic group.[13]
Reticuline is the immediate precursor of protoberberine alkaloids in plants.[14] Berberine is an alkaloid derived from tyrosine. L-DOPA and 4-hydroxypyruvic acid both come from L-tyrosine. Although two tyrosine molecules are used in the biosynthetic pathway, only the phenethylamine fragment of the tetrahydroisoquinoline ring system is formed via DOPA, the remaining carbon atoms come from tyrosine via 4-hydroxyphenylacetaldehyde. L-DOPA loses carbon dioxide to form dopamine 1. Likewise, 4-hydroxypyruvic acid also loses carbon dioxide to form 4-hydroxyphenylacetaldehyde 2. Dopamine 1 then reacts with 4-hydroxy-phenylacetaldehyde 2 to form (S)-norcoclaurine 3 in a reaction similar to the Mannich reaction. After oxidation and methylation by SAM, (S)-reticuline 4 is formed. (S)-reticuline serves as a pivotal intermediate to other alkaloids. Oxidation of the tertiary amine then occurs and an iminium ion is formed 5. In a Mannich-like reaction the ortho position to the phenol is nucleophilic, and electrons are pushed to form 6. Product 6 then undergoes keto–enol tautomerism to form (S)-scoulerine, which is then methylated by SAM to form (S)-tetrahydrocolumbamine 7. Product 7 is then oxidized to form the methylenedioxy ring from the ortho-methoxyphenol, via an O2-, NADPH- and cytochrome P450-dependent enzyme, giving (S)-canadine 8. (S)-canadine is then oxidized to give the quaternary isoquinolinium system of berberine. This happens in two separate oxidation steps, both requiring molecular oxygen, with H2O2 and H2O produced in the successive processes.[15]
References
- ↑ IUPAC Chemical Nomenclature and Structure Representation Division (2013). "P-73.3.1". In Favre HA, Powell WH (eds.). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. IUPAC–RSC. ISBN 978-0-85404-182-4.
- 1 2 3 The Merck Index, 14th ed., 1154. Berberine
- 1 2 The Merck Index, 10th Ed. (1983), p.165, Rahway: Merck & Co.
- ↑ Gulrajani ML (2001). "Present status of natural dyes". Indian Journal of Fibre & Textile Research. 26: 191–201 – via NISCAIR Online Periodicals Repository.
- ↑ Weiß D (2008). "Fluoreszenzfarbstoffe in der Natur" (in German). Retrieved 17 July 2009.
- ↑ "B3251 Berberine chloride form". Sigma-Aldrich. 2013. Retrieved 2 Aug 2013.
- 1 2 Song D, Hao J, Fan D (October 2020). "Biological properties and clinical applications of berberine". Front Med. 14 (5): 564–582. doi:10.1007/s11684-019-0724-6. PMID 32335802. S2CID 216111561.
- ↑ Hernandez AV, Hwang J, Nasreen I, et al. (2023). "Impact of Berberine or Berberine Combination Products on Lipoprotein, Triglyceride and Biological Safety Marker Concentrations in Patients with Hyperlipidemia: A Systematic Review and Meta-Analysis". J Diet Suppl: 1–18. doi:10.1080/19390211.2023.2212762. PMID 37183391. S2CID 258687419.
- ↑ Funk RS, Singh RK, Winefield RD, Kandel SE, Ruisinger JF, Moriarty PM, Backes JM (May 2018). "Variability in Potency Among Commercial Preparations of Berberine". J Diet Suppl. 15 (3): 343–351. doi:10.1080/19390211.2017.1347227. PMC 5807210. PMID 28792254.
- ↑ Subbaraman N (14 June 2023). "The Cheaper Weight-Loss Alternative Riding the Ozempic Wave". Wall Street Journal.
- ↑ Cicero AF, Baggioni A (2016). "Berberine and Its Role in Chronic Disease". Anti-inflammatory Nutraceuticals and Chronic Diseases. Advances in Experimental Medicine and Biology. Vol. 928. Cham: Springer International Publishing. pp. 27–45. doi:10.1007/978-3-319-41334-1_2. ISBN 978-3-319-41332-7. ISSN 0065-2598. PMID 27671811.
- ↑ "Berberine". PubChem, National Library of Medicine, US National Institutes of Health. March 9, 2020. Retrieved March 10, 2020.
- ↑ Dewick P (2009). Medicinal Natural Products: A Biosynthetic Approach (3rd ed.). West Sussex, England: Wiley. p. 357. ISBN 978-0-471-49641-0.
- ↑ Park SU, Facchini PJ (June 2000). "Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum l., and California poppy, Eschscholzia californica cham., root cultures". Journal of Experimental Botany. 51 (347): 1005–16. doi:10.1093/jexbot/51.347.1005. PMID 10948228.
- ↑ Dewick P (2009). Medicinal Natural Products: A Biosynthetic Approach (3rd ed.). West Sussex, England: Wiley. p. 358. ISBN 978-0-471-49641-0.