A period 1 element is one of the chemical elements in the first row (or period) of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate periodic (recurring) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when chemical behaviour begins to repeat, meaning that analog elements fall into the same vertical columns. The first period contains fewer elements than any other row in the table, with only two: hydrogen and helium. This situation can be explained by modern theories of atomic structure. In a quantum mechanical description of atomic structure, this period corresponds to the filling of the 1s orbital. Period 1 elements obey the duet rule in that they need two electrons to complete their valence shell.

Hydrogen and helium are the oldest and the most abundant elements in the universe.

All other periods in the periodic table contain at least eight elements, and it is often helpful to consider periodic trends across the period. However, period 1 contains only two elements, so this concept does not apply here.

In terms of vertical trends down groups, helium can be seen as a typical noble gas at the head of the IUPAC group 18, but as discussed below, hydrogen's chemistry is unique and it is not easily assigned to any group.[1]

Position of period 1 elements in the periodic table

The first electron shell, n = 1, consists of only one orbital, and the maximum number of valence electrons that a period 1 element can accommodate is two, both in the 1s orbital. The valence shell lacks "p" or any other kind of orbitals due to the general l < n constraint on the quantum numbers. Therefore, period 1 has exactly two elements. Although both hydrogen and helium are in the s-block, neither of them behaves similarly to other s-block elements. Their behaviour is so different from the other s-block elements that there is considerable disagreement over where these two elements should be placed in the periodic table.

Simply following electron configurations, hydrogen (electronic configuration 1s1) and helium (1s2) should be placed in groups 1 and 2, above lithium (1s22s1) and beryllium (1s22s2).[2] While such a placement is common for hydrogen, it is rarely used for helium outside of the context of illustrating the electron configurations. Usually, hydrogen is placed in group 1, and helium in group 18: this is the placement found on the IUPAC periodic table.[3] Some variation can be found on both these matters.[4]

Like the group 1 metals, hydrogen has one electron in its outermost shell[2] and typically loses its only electron in chemical reactions.[5] It has some metal-like chemical properties, being able to displace some metals from their salts.[5] But hydrogen forms a diatomic nonmetallic gas at standard conditions, unlike the alkali metals which are reactive solid metals. This and hydrogen's formation of hydrides, in which it gains an electron, brings it close to the properties of the halogens which do the same[5] (though it is rarer for hydrogen to form H than H+).[6] Moreover, the lightest two halogens (fluorine and chlorine) are gaseous like hydrogen at standard conditions.[5] Some properties of hydrogen are not a good fit for either group: hydrogen is neither highly oxidising nor highly reducing and is not reactive with water.[6] Hydrogen thus has properties corresponding to both those of the alkali metals and the halogens, but matches neither group perfectly, and is thus difficult to place by its chemistry.[5] Therefore, while the electronic placement of hydrogen in group 1 predominates, some rarer arrangements show either hydrogen in group 17,[7] duplicate hydrogen in both groups 1 and 17,[8][9] or float it separately from all groups.[9][10][4] The possibility of "floating" hydrogen has nonetheless been criticised by Eric Scerri, who points out that removing it from all groups suggests that it is being excluded from the periodic law, when all elements should be subject to that law.[11] A few authors have advocated more unusual placements for hydrogen, such as group 13 or group 14, on the grounds of trends in ionisation energy, electron affinity, and electronegativity.[6]

Helium is an unreactive noble gas at standard conditions, and has a full outer shell: these properties are like the noble gases in group 18, but not at all like the reactive alkaline earth metals of group 2. Therefore, helium is nearly universally placed in group 18[3] which its properties best match.[4] However, helium only has two outer electrons in its outer shell, whereas the other noble gases have eight; and it is an s-block element, whereas all other noble gases are p-block elements. Also, solid helium crystallises in a hexagonal close-packed structure, which matches beryllium and magnesium in group 2, but not the other noble gases in group 18.[12] In these ways helium better matches the alkaline earth metals.[2][4] Therefore, tables with both hydrogen and helium floating outside all groups may rarely be encountered.[10][4]

A few chemists, such as Henry Bent, have advocated that the electronic placement in group 2 be adopted for helium.[13][12][14][15][16] This assignment is also found in Charles Janet's left-step table. Arguments for this often rest on the first-row anomaly trend (s >> p > d > f), which states that the first element of each group often behaves quite differently from the succeeding ones: the difference is largest in the s-block (H and He), is moderate for the p-block (B to Ne), and is less pronounced for the d- and f-blocks.[13] Thus helium as the first s2 element before the alkaline earth metals stands out as anomalous in a way that helium as the first noble gas does not.[13] The normalized ionization potentials and electron affinities show better trends with helium in group 2 than in group 18; helium is expected to be slightly more reactive than neon (which breaks the general trend of reactivity in the noble gases, where the heavier ones are more reactive); and predicted helium compounds often lack neon analogues even theoretically, but sometimes have beryllium analogues.[17][18][19]

Elements

Chemical elementBlockElectron configuration
1HHydrogens-block1s1
2HeHeliums-block1s2

Hydrogen

Hydrogen discharge tube
Deuterium discharge tube

Hydrogen (H) is the chemical element with atomic number 1. At standard temperature and pressure, hydrogen is a colorless, odorless, nonmetallic, tasteless, highly flammable diatomic gas with the molecular formula H2. With an atomic mass of 1.00794 amu, hydrogen is the lightest element.[20]

Hydrogen is the most abundant of the chemical elements, constituting roughly 75% of the universe's elemental mass.[21] Stars in the main sequence are mainly composed of hydrogen in its plasma state. Elemental hydrogen is relatively rare on Earth, and is industrially produced from hydrocarbons such as methane, after which most elemental hydrogen is used "captively" (meaning locally at the production site), with the largest markets almost equally divided between fossil fuel upgrading, such as hydrocracking, and ammonia production, mostly for the fertilizer market. Hydrogen may be produced from water using the process of electrolysis, but this process is significantly more expensive commercially than hydrogen production from natural gas.[22]

The most common naturally occurring isotope of hydrogen, known as protium, has a single proton and no neutrons.[23] In ionic compounds, it can take on either a positive charge, becoming a cation composed of a bare proton, or a negative charge, becoming an anion known as a hydride. Hydrogen can form compounds with most elements and is present in water and most organic compounds.[24] It plays a particularly important role in acid-base chemistry, in which many reactions involve the exchange of protons between soluble molecules.[25] As the only neutral atom for which the Schrödinger equation can be solved analytically, study of the energetics and spectrum of the hydrogen atom has played a key role in the development of quantum mechanics.[26]

The interactions of hydrogen with various metals are very important in metallurgy, as many metals can suffer hydrogen embrittlement,[27] and in developing safe ways to store it for use as a fuel.[28] Hydrogen is highly soluble in many compounds composed of rare earth metals and transition metals[29] and can be dissolved in both crystalline and amorphous metals.[30] Hydrogen solubility in metals is influenced by local distortions or impurities in the metal crystal lattice.[31]

Helium

Helium discharge tube

Helium (He) is a colorless, odorless, tasteless, non-toxic, inert monatomic chemical element that heads the noble gas series in the periodic table and whose atomic number is 2.[32] Its boiling and melting points are the lowest among the elements and it exists only as a gas except in extreme conditions.[33]

Helium was discovered in 1868 by French astronomer Pierre Janssen, who first detected the substance as an unknown yellow spectral line signature in light from a solar eclipse.[34] In 1903, large reserves of helium were found in the natural gas fields of the United States, which is by far the largest supplier of the gas.[35] The substance is used in cryogenics,[36] in deep-sea breathing systems,[37] to cool superconducting magnets, in helium dating,[38] for inflating balloons,[39] for providing lift in airships,[40] and as a protective gas for industrial uses such as arc welding and growing silicon wafers.[41] Inhaling a small volume of the gas temporarily changes the timbre and quality of the human voice.[42] The behavior of liquid helium-4's two fluid phases, helium I and helium II, is important to researchers studying quantum mechanics and the phenomenon of superfluidity in particular,[43] and to those looking at the effects that temperatures near absolute zero have on matter, such as with superconductivity.[44]

Helium is the second lightest element and is the second most abundant in the observable universe.[45] Most helium was formed during the Big Bang, but new helium is being created as a result of the nuclear fusion of hydrogen in stars.[46] On Earth, helium is relatively rare and is created by the natural decay of some radioactive elements[47] because the alpha particles that are emitted consist of helium nuclei. This radiogenic helium is trapped with natural gas in concentrations of up to seven percent by volume,[48] from which it is extracted commercially by a low-temperature separation process called fractional distillation.[49]

References

  1. Michael Laing (2006). "Where to Put Hydrogen in a Periodic Table?". Foundations of Chemistry. 9 (2): 127–137. doi:10.1007/s10698-006-9027-5. S2CID 93781427.
  2. 1 2 3 Gray, p. 12
  3. 1 2 "Periodic Table of Elements". iupac.org. IUPAC. 2021. Archived from the original on 10 April 2016. Retrieved 3 April 2021.
  4. 1 2 3 4 5 Wothers, Peter; Keeler, Wothers (2008). Chemical structure and reactivity : an integrated approach. Oxford: Oxford University Press. p. 259. ISBN 978-0-19-928930-1.
  5. 1 2 3 4 5 Vlasov, L.; Trifonov, D. (1970). 107 Stories About Chemistry. Translated by Sobolev, D. Mir Publishers. pp. 23–27. ISBN 978-0-8285-5067-3.
  6. 1 2 3 Rayner-Canham, Geoffrey (2020). The Periodic Table: Past, Present, Future. World Scientific. pp. 71–84. ISBN 9789811218507.
  7. Clayden, Jonathan; Greeves, Nick; Warren, Stuart; Wothers, Peter (2001). Organic Chemistry (1st ed.). Oxford University Press. ISBN 978-0-19-850346-0.
  8. Seaborg, G. (1945). "The chemical and radioactive properties of the heavy elements". Chemical & Engineering News. 23 (23): 2190–93. doi:10.1021/cen-v023n023.p2190.
  9. 1 2 Kaesz, Herb; Atkins, Peter (2009). "A Central Position for Hydrogen in the Periodic Table". Chemistry International. 25 (6): 14. doi:10.1515/ci.2003.25.6.14.
  10. 1 2 Greenwood & Earnshaw, throughout the book
  11. Scerri, Eric (2004). "The Placement of Hydrogen in the Periodic Table". Chemistry International. 26 (3): 21–22. doi:10.1515/ci.2004.26.3.21. Retrieved 11 November 2022.
  12. 1 2 Kurushkin, Mikhail (2020). "Helium's placement in the Periodic Table from a crystal structure viewpoint". IUCrJ. 7 (4): 577–578. doi:10.1107/S2052252520007769. PMC 7340260. PMID 32695406. Archived from the original on 19 October 2021. Retrieved 19 June 2020.
  13. 1 2 3 Eric Scerri. 2020, The Periodic Table, Its Story and Its Significance, 2nd edition, Oxford University Press, New York, ISBN 978-0190914363. pp. 392–401, 407–420.
  14. Grochala, Wojciech (1 November 2017). "On the position of helium and neon in the Periodic Table of Elements". Foundations of Chemistry. 20 (2018): 191–207. doi:10.1007/s10698-017-9302-7.
  15. Bent Weberg, Libby (18 January 2019). ""The" periodic table". Chemical & Engineering News. 97 (3). Archived from the original on 1 February 2020. Retrieved 27 March 2020.
  16. Grandinetti, Felice (23 April 2013). "Neon behind the signs". Nature Chemistry. 5 (2013): 438. Bibcode:2013NatCh...5..438G. doi:10.1038/nchem.1631. PMID 23609097.
  17. Grochala, Wojciech (1 November 2017). "On the position of helium and neon in the Periodic Table of Elements". Foundations of Chemistry. 20 (2018): 191–207. doi:10.1007/s10698-017-9302-7.
  18. Bent Weberg, Libby (18 January 2019). ""The" periodic table". Chemical & Engineering News. 97 (3). Retrieved 27 March 2020.
  19. Grandinetti, Felice (23 April 2013). "Neon behind the signs". Nature Chemistry. 5 (2013): 438. Bibcode:2013NatCh...5..438G. doi:10.1038/nchem.1631. PMID 23609097.
  20. "Hydrogen – Energy". Energy Information Administration. Retrieved 2008-07-15.
  21. Palmer, David (November 13, 1997). "Hydrogen in the Universe". NASA. Retrieved 2008-02-05.
  22. Staff (2007). "Hydrogen Basics — Production". Florida Solar Energy Center. Retrieved 2008-02-05.
  23. Sullivan, Walter (1971-03-11). "Fusion Power Is Still Facing Formidable Difficulties". The New York Times.
  24. "hydrogen". Encyclopædia Britannica. 2008.
  25. Eustis, S. N.; Radisic, D.; Bowen, K. H.; Bachorz, R. A.; Haranczyk, M.; Schenter, G. K.; Gutowski, M. (2008-02-15). "Electron-Driven Acid-Base Chemistry: Proton Transfer from Hydrogen Chloride to Ammonia". Science. 319 (5865): 936–939. Bibcode:2008Sci...319..936E. doi:10.1126/science.1151614. PMID 18276886. S2CID 29493053.
  26. "Time-dependent Schrödinger equation". Encyclopædia Britannica. 2008.
  27. Rogers, H. C. (1999). "Hydrogen Embrittlement of Metals". Science. 159 (3819): 1057–1064. Bibcode:1968Sci...159.1057R. doi:10.1126/science.159.3819.1057. PMID 17775040.
  28. Christensen, C. H.; Nørskov, J. K.; Johannessen, T. (July 9, 2005). "Making society independent of fossil fuels — Danish researchers reveal new technology". Technical University of Denmark. Archived from the original on January 7, 2010. Retrieved 2008-03-28.
  29. Takeshita, T.; Wallace, W.E.; Craig, R.S. (1974). "Hydrogen solubility in 1:5 compounds between yttrium or thorium and nickel or cobalt". Inorganic Chemistry. 13 (9): 2282–2283. doi:10.1021/ic50139a050.
  30. Kirchheim, R.; Mutschele, T.; Kieninger, W (1988). "Hydrogen in amorphous and nanocrystalline metals". Materials Science and Engineering. 99 (1–2): 457–462. doi:10.1016/0025-5416(88)90377-1.
  31. Kirchheim, R. (1988). "Hydrogen solubility and diffusivity in defective and amorphous metals". Progress in Materials Science. 32 (4): 262–325. doi:10.1016/0079-6425(88)90010-2.
  32. "Helium: the essentials". WebElements. Retrieved 2008-07-15.
  33. "Helium: physical properties". WebElements. Retrieved 2008-07-15.
  34. "Pierre Janssen". MSN Encarta. Archived from the original on 2009-10-29. Retrieved 2008-07-15.
  35. Theiss, Leslie (2007-01-18). "Where Has All the Helium Gone?". Bureau of Land Management. Archived from the original on 2008-07-25. Retrieved 2008-07-15.
  36. Timmerhaus, Klaus D. (2006-10-06). Cryogenic Engineering: Fifty Years of Progress. Springer. ISBN 0-387-33324-X.
  37. Copel, M. (September 1966). "Helium voice unscrambling". Audio and Electroacoustics. 14 (3): 122–126. doi:10.1109/TAU.1966.1161862.
  38. "helium dating". Encyclopædia Britannica. 2008.
  39. Brain, Marshall (April 2000). "How Helium Balloons Work". How Stuff Works. Retrieved 2008-07-15.
  40. Jiwatram, Jaya (2008-07-10). "The Return of the Blimp". Popular Science. Retrieved 2008-07-15.
  41. "When good GTAW arcs drift; drafty conditions are bad for welders and their GTAW arcs". Welding Design & Fabrication. 2005-02-01.
  42. Montgomery, Craig (2006-09-04). "Why does inhaling helium make one's voice sound strange?". Scientific American. Retrieved 2008-07-15.
  43. "Probable Discovery Of A New, Supersolid, Phase Of Matter". Science Daily. 2004-09-03. Retrieved 2008-07-15.
  44. Browne, Malcolm W. (1979-08-21). "Scientists See Peril In Wasting Helium; Scientists See Peril in Waste of Helium". The New York Times.
  45. "Helium: geological information". WebElements. Retrieved 2008-07-15.
  46. Cox, Tony (1990-02-03). "Origin of the chemical elements". New Scientist. Retrieved 2008-07-15.
  47. "Helium supply deflated: production shortages mean some industries and partygoers must squeak by". Houston Chronicle. 2006-11-05.
  48. Brown, David (2008-02-02). "Helium a New Target in New Mexico". American Association of Petroleum Geologists. Retrieved 2008-07-15.
  49. Voth, Greg (2006-12-01). "Where Do We Get the Helium We Use?". The Science Teacher.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.