Identifiers | |
---|---|
3D model (JSmol) |
|
ECHA InfoCard | 100.013.826 |
EC Number |
|
PubChem CID |
|
UNII | |
CompTox Dashboard (EPA) |
|
| |
| |
Properties | |
Zn3N2 | |
Molar mass | 224.154 g/mol |
Appearance | blue-gray cubic crystals[1] |
Density | 6.22 g/cm3, solid[1] |
Melting point | decomposes 700°C[1] |
insoluble, reacts | |
Structure | |
Cubic, cI80 | |
Ia-3, No. 206[2] | |
Hazards | |
GHS labelling: | |
Warning | |
H315, H319 | |
P264, P280, P302+P352, P305+P351+P338, P321, P332+P313, P337+P313, P362 | |
NFPA 704 (fire diamond) | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references |
Zinc nitride (Zn3N2) is an inorganic compound of zinc and nitrogen, usually obtained as (blue)grey crystals. It is a semiconductor. In pure form, it has the anti-bixbyite structure.
Chemical properties
Zinc nitride can be obtained by thermally decomposing zincamide (zinc diamine)[3] in an anaerobic environment, at temperatures in excess of 200 °C. The by-product of the reaction is ammonia.[4]
It can also be formed by heating zinc to 600 °C in a current of ammonia; the by-product is hydrogen gas.[3][5]
The decomposition of Zinc Nitride into the elements at the same temperature is a competing reaction.[6] At 700 °C Zinc Nitride decomposes.[1] It has also been made by producing an electric discharge between zinc electrodes in a nitrogen atmosphere.[6][7] Thin films have been produced by chemical vapour deposition of Bis(bis(trimethylsilyl)amido]zinc with ammonia gas onto silica or ZnO coated alumina at 275 to 410 °C.[8]
The crystal structure is anti-isomorphous with Manganese(III) oxide. (bixbyite).[2][7] The heat of formation is c. 24 kilocalories (100 kJ) per mol.[7] It is a semiconductor with a reported bandgap of c. 3.2eV,[9] however, a thin zinc nitride film prepared by electrolysis of molten salt mixture containing Li3N with a zinc electrode showed a band-gap of 1.01 eV.[10]
Zinc nitride reacts violently with water to form ammonia and zinc oxide.[3][4]
Zinc nitride reacts with lithium (produced in an electrochemical cell) by insertion. The initial reaction is the irreversible conversion into LiZn in a matrix of beta-Li3N. These products then can be converted reversibly and electrochemically into LiZnN and metallic Zn.[11][12]
See also
References
- 1 2 3 4 CRC Handbook of Chemistry and Physics (96 ed.), §4-100 Physical Constants of Inorganic Compounds
- 1 2 Partin, D. E.; Williams, D. J.; O'Keeffe, M. (1997). "The Crystal Structures of Mg3N2 and Zn3N2". Journal of Solid State Chemistry. 132 (1): 56–59. Bibcode:1997JSSCh.132...56P. doi:10.1006/jssc.1997.7407.
- 1 2 3 Roscoe, H. E.; Schorlemmer, C. (1907) [1878]. A Treatise on Chemistry: Volume II, The Metals (4th ed.). London: Macmillan. pp. 650–651. Retrieved 2007-11-01.
- 1 2 Bloxam, C. L. (1903). Chemistry, Inorganic and Organic (9th ed.). Philadelphia: P. Blakiston's Son & Co. p. 380. Retrieved 2007-10-31.
- ↑ Lowry, M. T. (1922). Inorganic Chemistry. Macmillan. p. 872. Retrieved 2007-11-01.
- 1 2 Maxtead, E.B. (1921), Ammonia and the Nitrides, pp. 69–20
- 1 2 3 Mellor, J.W. (1964), A Comprehensive Treatise on Inorganic and Theoretical Chemistry, vol. 8, Part 1, pp. 160–161
- ↑ Maile, E.; Fischer, R. A. (Oct 2005), "MOCVD of the Cubic Zinc Nitride Phase, Zn3N2, Using Zn[N(SiMe3)2]2 and Ammonia as Precursors", Chemical Vapor Deposition, 11 (10): 409–414, doi:10.1002/cvde.200506383
- ↑ Ebru, S.T.; Ramazan, E.; Hamide, K. (2007), "Structural and Optical Properties of Zinc Nitride Films Prepared by Pulsed Filtered Cathodic Vacuum Arc Deposition" (PDF), Chin. Phys. Lett., 24 (12): 3477, Bibcode:2007ChPhL..24.3477S, doi:10.1088/0256-307x/24/12/051, S2CID 123496085
- ↑ Toyoura, Kazuaki; Tsujimura, Hiroyuki; Goto, Takuya; Hachiya, Kan; Hagiwara, Rika; Ito, Yasuhiko (2005), "Optical properties of zinc nitride formed by molten salt electrochemical process", Thin Solid Films, 492 (1–2): 88–92, Bibcode:2005TSF...492...88T, doi:10.1016/j.tsf.2005.06.057
- ↑ Amatucci, G. G.; Pereira, N. (2004). "Nitride and Silicide Negative Electrodes". In Nazri, G.-A.; Pistoia, G. (eds.). Lithium Batteries: Science and Technology. Kluwer Academic Publishers. p. 256. ISBN 978-1-4020-7628-2. Retrieved 2007-11-01.
- ↑ Pereiraa, N.; Klein, L.C.; Amatuccia, G.G. (2002), "The Electrochemistry of Zn3 N 2 and LiZnN - A Lithium Reaction Mechanism for Metal Nitride Electrodes", Journal of the Electrochemical Society, 149 (3): A262, Bibcode:2002JElS..149A.262P, doi:10.1149/1.1446079
Further reading
- Futsuhara, M.; Yoshioka, K.; Takai, O. (1998). "Structural, electrical and optical properties of zinc nitride thin films prepared by reactive RF magnetron sputtering". Thin Solid Films. 322 (1): 274–281. Bibcode:1998TSF...322..274F. doi:10.1016/S0040-6090(97)00910-3.
- Lyutaya, M. D.; Bakuta, S. A. (1980). "Synthesis of the nitrides of Group II elements". Powder Metallurgy and Metal Ceramics. 19 (2): 118–122. doi:10.1007/BF00792038. S2CID 93036462.
- Wu, P.; Tiedje, T. (2016). "Molecular beam epitaxy growth and optical properties of single crystal Zn3N2 films". Semiconductor Science and Technology. 31 (10): 1–4. Bibcode:2016SeScT..31jLT01W. doi:10.1088/0268-1242/31/10/10LT01.